mm: move definition for LRU isolation modes to a header
[deliverable/linux.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20
21 #ifdef CONFIG_VM_EVENT_COUNTERS
22 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
23 EXPORT_PER_CPU_SYMBOL(vm_event_states);
24
25 static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask)
26 {
27 int cpu;
28 int i;
29
30 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
31
32 for_each_cpu(cpu, cpumask) {
33 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
34
35 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
36 ret[i] += this->event[i];
37 }
38 }
39
40 /*
41 * Accumulate the vm event counters across all CPUs.
42 * The result is unavoidably approximate - it can change
43 * during and after execution of this function.
44 */
45 void all_vm_events(unsigned long *ret)
46 {
47 get_online_cpus();
48 sum_vm_events(ret, cpu_online_mask);
49 put_online_cpus();
50 }
51 EXPORT_SYMBOL_GPL(all_vm_events);
52
53 #ifdef CONFIG_HOTPLUG
54 /*
55 * Fold the foreign cpu events into our own.
56 *
57 * This is adding to the events on one processor
58 * but keeps the global counts constant.
59 */
60 void vm_events_fold_cpu(int cpu)
61 {
62 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
63 int i;
64
65 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
66 count_vm_events(i, fold_state->event[i]);
67 fold_state->event[i] = 0;
68 }
69 }
70 #endif /* CONFIG_HOTPLUG */
71
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
73
74 /*
75 * Manage combined zone based / global counters
76 *
77 * vm_stat contains the global counters
78 */
79 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
80 EXPORT_SYMBOL(vm_stat);
81
82 #ifdef CONFIG_SMP
83
84 static int calculate_threshold(struct zone *zone)
85 {
86 int threshold;
87 int mem; /* memory in 128 MB units */
88
89 /*
90 * The threshold scales with the number of processors and the amount
91 * of memory per zone. More memory means that we can defer updates for
92 * longer, more processors could lead to more contention.
93 * fls() is used to have a cheap way of logarithmic scaling.
94 *
95 * Some sample thresholds:
96 *
97 * Threshold Processors (fls) Zonesize fls(mem+1)
98 * ------------------------------------------------------------------
99 * 8 1 1 0.9-1 GB 4
100 * 16 2 2 0.9-1 GB 4
101 * 20 2 2 1-2 GB 5
102 * 24 2 2 2-4 GB 6
103 * 28 2 2 4-8 GB 7
104 * 32 2 2 8-16 GB 8
105 * 4 2 2 <128M 1
106 * 30 4 3 2-4 GB 5
107 * 48 4 3 8-16 GB 8
108 * 32 8 4 1-2 GB 4
109 * 32 8 4 0.9-1GB 4
110 * 10 16 5 <128M 1
111 * 40 16 5 900M 4
112 * 70 64 7 2-4 GB 5
113 * 84 64 7 4-8 GB 6
114 * 108 512 9 4-8 GB 6
115 * 125 1024 10 8-16 GB 8
116 * 125 1024 10 16-32 GB 9
117 */
118
119 mem = zone->present_pages >> (27 - PAGE_SHIFT);
120
121 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
122
123 /*
124 * Maximum threshold is 125
125 */
126 threshold = min(125, threshold);
127
128 return threshold;
129 }
130
131 /*
132 * Refresh the thresholds for each zone.
133 */
134 static void refresh_zone_stat_thresholds(void)
135 {
136 struct zone *zone;
137 int cpu;
138 int threshold;
139
140 for_each_populated_zone(zone) {
141 threshold = calculate_threshold(zone);
142
143 for_each_online_cpu(cpu)
144 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
145 = threshold;
146 }
147 }
148
149 /*
150 * For use when we know that interrupts are disabled.
151 */
152 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
153 int delta)
154 {
155 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
156
157 s8 *p = pcp->vm_stat_diff + item;
158 long x;
159
160 x = delta + *p;
161
162 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
163 zone_page_state_add(x, zone, item);
164 x = 0;
165 }
166 *p = x;
167 }
168 EXPORT_SYMBOL(__mod_zone_page_state);
169
170 /*
171 * For an unknown interrupt state
172 */
173 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
174 int delta)
175 {
176 unsigned long flags;
177
178 local_irq_save(flags);
179 __mod_zone_page_state(zone, item, delta);
180 local_irq_restore(flags);
181 }
182 EXPORT_SYMBOL(mod_zone_page_state);
183
184 /*
185 * Optimized increment and decrement functions.
186 *
187 * These are only for a single page and therefore can take a struct page *
188 * argument instead of struct zone *. This allows the inclusion of the code
189 * generated for page_zone(page) into the optimized functions.
190 *
191 * No overflow check is necessary and therefore the differential can be
192 * incremented or decremented in place which may allow the compilers to
193 * generate better code.
194 * The increment or decrement is known and therefore one boundary check can
195 * be omitted.
196 *
197 * NOTE: These functions are very performance sensitive. Change only
198 * with care.
199 *
200 * Some processors have inc/dec instructions that are atomic vs an interrupt.
201 * However, the code must first determine the differential location in a zone
202 * based on the processor number and then inc/dec the counter. There is no
203 * guarantee without disabling preemption that the processor will not change
204 * in between and therefore the atomicity vs. interrupt cannot be exploited
205 * in a useful way here.
206 */
207 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
208 {
209 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
210 s8 *p = pcp->vm_stat_diff + item;
211
212 (*p)++;
213
214 if (unlikely(*p > pcp->stat_threshold)) {
215 int overstep = pcp->stat_threshold / 2;
216
217 zone_page_state_add(*p + overstep, zone, item);
218 *p = -overstep;
219 }
220 }
221
222 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
223 {
224 __inc_zone_state(page_zone(page), item);
225 }
226 EXPORT_SYMBOL(__inc_zone_page_state);
227
228 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
229 {
230 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
231 s8 *p = pcp->vm_stat_diff + item;
232
233 (*p)--;
234
235 if (unlikely(*p < - pcp->stat_threshold)) {
236 int overstep = pcp->stat_threshold / 2;
237
238 zone_page_state_add(*p - overstep, zone, item);
239 *p = overstep;
240 }
241 }
242
243 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
244 {
245 __dec_zone_state(page_zone(page), item);
246 }
247 EXPORT_SYMBOL(__dec_zone_page_state);
248
249 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
250 {
251 unsigned long flags;
252
253 local_irq_save(flags);
254 __inc_zone_state(zone, item);
255 local_irq_restore(flags);
256 }
257
258 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
259 {
260 unsigned long flags;
261 struct zone *zone;
262
263 zone = page_zone(page);
264 local_irq_save(flags);
265 __inc_zone_state(zone, item);
266 local_irq_restore(flags);
267 }
268 EXPORT_SYMBOL(inc_zone_page_state);
269
270 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
271 {
272 unsigned long flags;
273
274 local_irq_save(flags);
275 __dec_zone_page_state(page, item);
276 local_irq_restore(flags);
277 }
278 EXPORT_SYMBOL(dec_zone_page_state);
279
280 /*
281 * Update the zone counters for one cpu.
282 *
283 * The cpu specified must be either the current cpu or a processor that
284 * is not online. If it is the current cpu then the execution thread must
285 * be pinned to the current cpu.
286 *
287 * Note that refresh_cpu_vm_stats strives to only access
288 * node local memory. The per cpu pagesets on remote zones are placed
289 * in the memory local to the processor using that pageset. So the
290 * loop over all zones will access a series of cachelines local to
291 * the processor.
292 *
293 * The call to zone_page_state_add updates the cachelines with the
294 * statistics in the remote zone struct as well as the global cachelines
295 * with the global counters. These could cause remote node cache line
296 * bouncing and will have to be only done when necessary.
297 */
298 void refresh_cpu_vm_stats(int cpu)
299 {
300 struct zone *zone;
301 int i;
302 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
303
304 for_each_populated_zone(zone) {
305 struct per_cpu_pageset *p;
306
307 p = per_cpu_ptr(zone->pageset, cpu);
308
309 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
310 if (p->vm_stat_diff[i]) {
311 unsigned long flags;
312 int v;
313
314 local_irq_save(flags);
315 v = p->vm_stat_diff[i];
316 p->vm_stat_diff[i] = 0;
317 local_irq_restore(flags);
318 atomic_long_add(v, &zone->vm_stat[i]);
319 global_diff[i] += v;
320 #ifdef CONFIG_NUMA
321 /* 3 seconds idle till flush */
322 p->expire = 3;
323 #endif
324 }
325 cond_resched();
326 #ifdef CONFIG_NUMA
327 /*
328 * Deal with draining the remote pageset of this
329 * processor
330 *
331 * Check if there are pages remaining in this pageset
332 * if not then there is nothing to expire.
333 */
334 if (!p->expire || !p->pcp.count)
335 continue;
336
337 /*
338 * We never drain zones local to this processor.
339 */
340 if (zone_to_nid(zone) == numa_node_id()) {
341 p->expire = 0;
342 continue;
343 }
344
345 p->expire--;
346 if (p->expire)
347 continue;
348
349 if (p->pcp.count)
350 drain_zone_pages(zone, &p->pcp);
351 #endif
352 }
353
354 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
355 if (global_diff[i])
356 atomic_long_add(global_diff[i], &vm_stat[i]);
357 }
358
359 #endif
360
361 #ifdef CONFIG_NUMA
362 /*
363 * zonelist = the list of zones passed to the allocator
364 * z = the zone from which the allocation occurred.
365 *
366 * Must be called with interrupts disabled.
367 */
368 void zone_statistics(struct zone *preferred_zone, struct zone *z)
369 {
370 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
371 __inc_zone_state(z, NUMA_HIT);
372 } else {
373 __inc_zone_state(z, NUMA_MISS);
374 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
375 }
376 if (z->node == numa_node_id())
377 __inc_zone_state(z, NUMA_LOCAL);
378 else
379 __inc_zone_state(z, NUMA_OTHER);
380 }
381 #endif
382
383 #ifdef CONFIG_COMPACTION
384 struct contig_page_info {
385 unsigned long free_pages;
386 unsigned long free_blocks_total;
387 unsigned long free_blocks_suitable;
388 };
389
390 /*
391 * Calculate the number of free pages in a zone, how many contiguous
392 * pages are free and how many are large enough to satisfy an allocation of
393 * the target size. Note that this function makes no attempt to estimate
394 * how many suitable free blocks there *might* be if MOVABLE pages were
395 * migrated. Calculating that is possible, but expensive and can be
396 * figured out from userspace
397 */
398 static void fill_contig_page_info(struct zone *zone,
399 unsigned int suitable_order,
400 struct contig_page_info *info)
401 {
402 unsigned int order;
403
404 info->free_pages = 0;
405 info->free_blocks_total = 0;
406 info->free_blocks_suitable = 0;
407
408 for (order = 0; order < MAX_ORDER; order++) {
409 unsigned long blocks;
410
411 /* Count number of free blocks */
412 blocks = zone->free_area[order].nr_free;
413 info->free_blocks_total += blocks;
414
415 /* Count free base pages */
416 info->free_pages += blocks << order;
417
418 /* Count the suitable free blocks */
419 if (order >= suitable_order)
420 info->free_blocks_suitable += blocks <<
421 (order - suitable_order);
422 }
423 }
424
425 /*
426 * A fragmentation index only makes sense if an allocation of a requested
427 * size would fail. If that is true, the fragmentation index indicates
428 * whether external fragmentation or a lack of memory was the problem.
429 * The value can be used to determine if page reclaim or compaction
430 * should be used
431 */
432 int fragmentation_index(unsigned int order, struct contig_page_info *info)
433 {
434 unsigned long requested = 1UL << order;
435
436 if (!info->free_blocks_total)
437 return 0;
438
439 /* Fragmentation index only makes sense when a request would fail */
440 if (info->free_blocks_suitable)
441 return -1000;
442
443 /*
444 * Index is between 0 and 1 so return within 3 decimal places
445 *
446 * 0 => allocation would fail due to lack of memory
447 * 1 => allocation would fail due to fragmentation
448 */
449 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
450 }
451 #endif
452
453 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
454 #include <linux/proc_fs.h>
455 #include <linux/seq_file.h>
456
457 static char * const migratetype_names[MIGRATE_TYPES] = {
458 "Unmovable",
459 "Reclaimable",
460 "Movable",
461 "Reserve",
462 "Isolate",
463 };
464
465 static void *frag_start(struct seq_file *m, loff_t *pos)
466 {
467 pg_data_t *pgdat;
468 loff_t node = *pos;
469 for (pgdat = first_online_pgdat();
470 pgdat && node;
471 pgdat = next_online_pgdat(pgdat))
472 --node;
473
474 return pgdat;
475 }
476
477 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
478 {
479 pg_data_t *pgdat = (pg_data_t *)arg;
480
481 (*pos)++;
482 return next_online_pgdat(pgdat);
483 }
484
485 static void frag_stop(struct seq_file *m, void *arg)
486 {
487 }
488
489 /* Walk all the zones in a node and print using a callback */
490 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
491 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
492 {
493 struct zone *zone;
494 struct zone *node_zones = pgdat->node_zones;
495 unsigned long flags;
496
497 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
498 if (!populated_zone(zone))
499 continue;
500
501 spin_lock_irqsave(&zone->lock, flags);
502 print(m, pgdat, zone);
503 spin_unlock_irqrestore(&zone->lock, flags);
504 }
505 }
506 #endif
507
508 #ifdef CONFIG_PROC_FS
509 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
510 struct zone *zone)
511 {
512 int order;
513
514 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
515 for (order = 0; order < MAX_ORDER; ++order)
516 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
517 seq_putc(m, '\n');
518 }
519
520 /*
521 * This walks the free areas for each zone.
522 */
523 static int frag_show(struct seq_file *m, void *arg)
524 {
525 pg_data_t *pgdat = (pg_data_t *)arg;
526 walk_zones_in_node(m, pgdat, frag_show_print);
527 return 0;
528 }
529
530 static void pagetypeinfo_showfree_print(struct seq_file *m,
531 pg_data_t *pgdat, struct zone *zone)
532 {
533 int order, mtype;
534
535 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
536 seq_printf(m, "Node %4d, zone %8s, type %12s ",
537 pgdat->node_id,
538 zone->name,
539 migratetype_names[mtype]);
540 for (order = 0; order < MAX_ORDER; ++order) {
541 unsigned long freecount = 0;
542 struct free_area *area;
543 struct list_head *curr;
544
545 area = &(zone->free_area[order]);
546
547 list_for_each(curr, &area->free_list[mtype])
548 freecount++;
549 seq_printf(m, "%6lu ", freecount);
550 }
551 seq_putc(m, '\n');
552 }
553 }
554
555 /* Print out the free pages at each order for each migatetype */
556 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
557 {
558 int order;
559 pg_data_t *pgdat = (pg_data_t *)arg;
560
561 /* Print header */
562 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
563 for (order = 0; order < MAX_ORDER; ++order)
564 seq_printf(m, "%6d ", order);
565 seq_putc(m, '\n');
566
567 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
568
569 return 0;
570 }
571
572 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
573 pg_data_t *pgdat, struct zone *zone)
574 {
575 int mtype;
576 unsigned long pfn;
577 unsigned long start_pfn = zone->zone_start_pfn;
578 unsigned long end_pfn = start_pfn + zone->spanned_pages;
579 unsigned long count[MIGRATE_TYPES] = { 0, };
580
581 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
582 struct page *page;
583
584 if (!pfn_valid(pfn))
585 continue;
586
587 page = pfn_to_page(pfn);
588
589 /* Watch for unexpected holes punched in the memmap */
590 if (!memmap_valid_within(pfn, page, zone))
591 continue;
592
593 mtype = get_pageblock_migratetype(page);
594
595 if (mtype < MIGRATE_TYPES)
596 count[mtype]++;
597 }
598
599 /* Print counts */
600 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
601 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
602 seq_printf(m, "%12lu ", count[mtype]);
603 seq_putc(m, '\n');
604 }
605
606 /* Print out the free pages at each order for each migratetype */
607 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
608 {
609 int mtype;
610 pg_data_t *pgdat = (pg_data_t *)arg;
611
612 seq_printf(m, "\n%-23s", "Number of blocks type ");
613 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
614 seq_printf(m, "%12s ", migratetype_names[mtype]);
615 seq_putc(m, '\n');
616 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
617
618 return 0;
619 }
620
621 /*
622 * This prints out statistics in relation to grouping pages by mobility.
623 * It is expensive to collect so do not constantly read the file.
624 */
625 static int pagetypeinfo_show(struct seq_file *m, void *arg)
626 {
627 pg_data_t *pgdat = (pg_data_t *)arg;
628
629 /* check memoryless node */
630 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
631 return 0;
632
633 seq_printf(m, "Page block order: %d\n", pageblock_order);
634 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
635 seq_putc(m, '\n');
636 pagetypeinfo_showfree(m, pgdat);
637 pagetypeinfo_showblockcount(m, pgdat);
638
639 return 0;
640 }
641
642 static const struct seq_operations fragmentation_op = {
643 .start = frag_start,
644 .next = frag_next,
645 .stop = frag_stop,
646 .show = frag_show,
647 };
648
649 static int fragmentation_open(struct inode *inode, struct file *file)
650 {
651 return seq_open(file, &fragmentation_op);
652 }
653
654 static const struct file_operations fragmentation_file_operations = {
655 .open = fragmentation_open,
656 .read = seq_read,
657 .llseek = seq_lseek,
658 .release = seq_release,
659 };
660
661 static const struct seq_operations pagetypeinfo_op = {
662 .start = frag_start,
663 .next = frag_next,
664 .stop = frag_stop,
665 .show = pagetypeinfo_show,
666 };
667
668 static int pagetypeinfo_open(struct inode *inode, struct file *file)
669 {
670 return seq_open(file, &pagetypeinfo_op);
671 }
672
673 static const struct file_operations pagetypeinfo_file_ops = {
674 .open = pagetypeinfo_open,
675 .read = seq_read,
676 .llseek = seq_lseek,
677 .release = seq_release,
678 };
679
680 #ifdef CONFIG_ZONE_DMA
681 #define TEXT_FOR_DMA(xx) xx "_dma",
682 #else
683 #define TEXT_FOR_DMA(xx)
684 #endif
685
686 #ifdef CONFIG_ZONE_DMA32
687 #define TEXT_FOR_DMA32(xx) xx "_dma32",
688 #else
689 #define TEXT_FOR_DMA32(xx)
690 #endif
691
692 #ifdef CONFIG_HIGHMEM
693 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
694 #else
695 #define TEXT_FOR_HIGHMEM(xx)
696 #endif
697
698 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
699 TEXT_FOR_HIGHMEM(xx) xx "_movable",
700
701 static const char * const vmstat_text[] = {
702 /* Zoned VM counters */
703 "nr_free_pages",
704 "nr_inactive_anon",
705 "nr_active_anon",
706 "nr_inactive_file",
707 "nr_active_file",
708 "nr_unevictable",
709 "nr_mlock",
710 "nr_anon_pages",
711 "nr_mapped",
712 "nr_file_pages",
713 "nr_dirty",
714 "nr_writeback",
715 "nr_slab_reclaimable",
716 "nr_slab_unreclaimable",
717 "nr_page_table_pages",
718 "nr_kernel_stack",
719 "nr_unstable",
720 "nr_bounce",
721 "nr_vmscan_write",
722 "nr_writeback_temp",
723 "nr_isolated_anon",
724 "nr_isolated_file",
725 "nr_shmem",
726 #ifdef CONFIG_NUMA
727 "numa_hit",
728 "numa_miss",
729 "numa_foreign",
730 "numa_interleave",
731 "numa_local",
732 "numa_other",
733 #endif
734
735 #ifdef CONFIG_VM_EVENT_COUNTERS
736 "pgpgin",
737 "pgpgout",
738 "pswpin",
739 "pswpout",
740
741 TEXTS_FOR_ZONES("pgalloc")
742
743 "pgfree",
744 "pgactivate",
745 "pgdeactivate",
746
747 "pgfault",
748 "pgmajfault",
749
750 TEXTS_FOR_ZONES("pgrefill")
751 TEXTS_FOR_ZONES("pgsteal")
752 TEXTS_FOR_ZONES("pgscan_kswapd")
753 TEXTS_FOR_ZONES("pgscan_direct")
754
755 #ifdef CONFIG_NUMA
756 "zone_reclaim_failed",
757 #endif
758 "pginodesteal",
759 "slabs_scanned",
760 "kswapd_steal",
761 "kswapd_inodesteal",
762 "kswapd_low_wmark_hit_quickly",
763 "kswapd_high_wmark_hit_quickly",
764 "kswapd_skip_congestion_wait",
765 "pageoutrun",
766 "allocstall",
767
768 "pgrotated",
769 #ifdef CONFIG_HUGETLB_PAGE
770 "htlb_buddy_alloc_success",
771 "htlb_buddy_alloc_fail",
772 #endif
773 "unevictable_pgs_culled",
774 "unevictable_pgs_scanned",
775 "unevictable_pgs_rescued",
776 "unevictable_pgs_mlocked",
777 "unevictable_pgs_munlocked",
778 "unevictable_pgs_cleared",
779 "unevictable_pgs_stranded",
780 "unevictable_pgs_mlockfreed",
781 #endif
782 };
783
784 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
785 struct zone *zone)
786 {
787 int i;
788 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
789 seq_printf(m,
790 "\n pages free %lu"
791 "\n min %lu"
792 "\n low %lu"
793 "\n high %lu"
794 "\n scanned %lu"
795 "\n spanned %lu"
796 "\n present %lu",
797 zone_page_state(zone, NR_FREE_PAGES),
798 min_wmark_pages(zone),
799 low_wmark_pages(zone),
800 high_wmark_pages(zone),
801 zone->pages_scanned,
802 zone->spanned_pages,
803 zone->present_pages);
804
805 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
806 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
807 zone_page_state(zone, i));
808
809 seq_printf(m,
810 "\n protection: (%lu",
811 zone->lowmem_reserve[0]);
812 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
813 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
814 seq_printf(m,
815 ")"
816 "\n pagesets");
817 for_each_online_cpu(i) {
818 struct per_cpu_pageset *pageset;
819
820 pageset = per_cpu_ptr(zone->pageset, i);
821 seq_printf(m,
822 "\n cpu: %i"
823 "\n count: %i"
824 "\n high: %i"
825 "\n batch: %i",
826 i,
827 pageset->pcp.count,
828 pageset->pcp.high,
829 pageset->pcp.batch);
830 #ifdef CONFIG_SMP
831 seq_printf(m, "\n vm stats threshold: %d",
832 pageset->stat_threshold);
833 #endif
834 }
835 seq_printf(m,
836 "\n all_unreclaimable: %u"
837 "\n prev_priority: %i"
838 "\n start_pfn: %lu"
839 "\n inactive_ratio: %u",
840 zone->all_unreclaimable,
841 zone->prev_priority,
842 zone->zone_start_pfn,
843 zone->inactive_ratio);
844 seq_putc(m, '\n');
845 }
846
847 /*
848 * Output information about zones in @pgdat.
849 */
850 static int zoneinfo_show(struct seq_file *m, void *arg)
851 {
852 pg_data_t *pgdat = (pg_data_t *)arg;
853 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
854 return 0;
855 }
856
857 static const struct seq_operations zoneinfo_op = {
858 .start = frag_start, /* iterate over all zones. The same as in
859 * fragmentation. */
860 .next = frag_next,
861 .stop = frag_stop,
862 .show = zoneinfo_show,
863 };
864
865 static int zoneinfo_open(struct inode *inode, struct file *file)
866 {
867 return seq_open(file, &zoneinfo_op);
868 }
869
870 static const struct file_operations proc_zoneinfo_file_operations = {
871 .open = zoneinfo_open,
872 .read = seq_read,
873 .llseek = seq_lseek,
874 .release = seq_release,
875 };
876
877 static void *vmstat_start(struct seq_file *m, loff_t *pos)
878 {
879 unsigned long *v;
880 #ifdef CONFIG_VM_EVENT_COUNTERS
881 unsigned long *e;
882 #endif
883 int i;
884
885 if (*pos >= ARRAY_SIZE(vmstat_text))
886 return NULL;
887
888 #ifdef CONFIG_VM_EVENT_COUNTERS
889 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
890 + sizeof(struct vm_event_state), GFP_KERNEL);
891 #else
892 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
893 GFP_KERNEL);
894 #endif
895 m->private = v;
896 if (!v)
897 return ERR_PTR(-ENOMEM);
898 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
899 v[i] = global_page_state(i);
900 #ifdef CONFIG_VM_EVENT_COUNTERS
901 e = v + NR_VM_ZONE_STAT_ITEMS;
902 all_vm_events(e);
903 e[PGPGIN] /= 2; /* sectors -> kbytes */
904 e[PGPGOUT] /= 2;
905 #endif
906 return v + *pos;
907 }
908
909 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
910 {
911 (*pos)++;
912 if (*pos >= ARRAY_SIZE(vmstat_text))
913 return NULL;
914 return (unsigned long *)m->private + *pos;
915 }
916
917 static int vmstat_show(struct seq_file *m, void *arg)
918 {
919 unsigned long *l = arg;
920 unsigned long off = l - (unsigned long *)m->private;
921
922 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
923 return 0;
924 }
925
926 static void vmstat_stop(struct seq_file *m, void *arg)
927 {
928 kfree(m->private);
929 m->private = NULL;
930 }
931
932 static const struct seq_operations vmstat_op = {
933 .start = vmstat_start,
934 .next = vmstat_next,
935 .stop = vmstat_stop,
936 .show = vmstat_show,
937 };
938
939 static int vmstat_open(struct inode *inode, struct file *file)
940 {
941 return seq_open(file, &vmstat_op);
942 }
943
944 static const struct file_operations proc_vmstat_file_operations = {
945 .open = vmstat_open,
946 .read = seq_read,
947 .llseek = seq_lseek,
948 .release = seq_release,
949 };
950 #endif /* CONFIG_PROC_FS */
951
952 #ifdef CONFIG_SMP
953 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
954 int sysctl_stat_interval __read_mostly = HZ;
955
956 static void vmstat_update(struct work_struct *w)
957 {
958 refresh_cpu_vm_stats(smp_processor_id());
959 schedule_delayed_work(&__get_cpu_var(vmstat_work),
960 round_jiffies_relative(sysctl_stat_interval));
961 }
962
963 static void __cpuinit start_cpu_timer(int cpu)
964 {
965 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
966
967 INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
968 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
969 }
970
971 /*
972 * Use the cpu notifier to insure that the thresholds are recalculated
973 * when necessary.
974 */
975 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
976 unsigned long action,
977 void *hcpu)
978 {
979 long cpu = (long)hcpu;
980
981 switch (action) {
982 case CPU_ONLINE:
983 case CPU_ONLINE_FROZEN:
984 start_cpu_timer(cpu);
985 node_set_state(cpu_to_node(cpu), N_CPU);
986 break;
987 case CPU_DOWN_PREPARE:
988 case CPU_DOWN_PREPARE_FROZEN:
989 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
990 per_cpu(vmstat_work, cpu).work.func = NULL;
991 break;
992 case CPU_DOWN_FAILED:
993 case CPU_DOWN_FAILED_FROZEN:
994 start_cpu_timer(cpu);
995 break;
996 case CPU_DEAD:
997 case CPU_DEAD_FROZEN:
998 refresh_zone_stat_thresholds();
999 break;
1000 default:
1001 break;
1002 }
1003 return NOTIFY_OK;
1004 }
1005
1006 static struct notifier_block __cpuinitdata vmstat_notifier =
1007 { &vmstat_cpuup_callback, NULL, 0 };
1008 #endif
1009
1010 static int __init setup_vmstat(void)
1011 {
1012 #ifdef CONFIG_SMP
1013 int cpu;
1014
1015 refresh_zone_stat_thresholds();
1016 register_cpu_notifier(&vmstat_notifier);
1017
1018 for_each_online_cpu(cpu)
1019 start_cpu_timer(cpu);
1020 #endif
1021 #ifdef CONFIG_PROC_FS
1022 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1023 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1024 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1025 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1026 #endif
1027 return 0;
1028 }
1029 module_init(setup_vmstat)
1030
1031 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1032 #include <linux/debugfs.h>
1033
1034 static struct dentry *extfrag_debug_root;
1035
1036 /*
1037 * Return an index indicating how much of the available free memory is
1038 * unusable for an allocation of the requested size.
1039 */
1040 static int unusable_free_index(unsigned int order,
1041 struct contig_page_info *info)
1042 {
1043 /* No free memory is interpreted as all free memory is unusable */
1044 if (info->free_pages == 0)
1045 return 1000;
1046
1047 /*
1048 * Index should be a value between 0 and 1. Return a value to 3
1049 * decimal places.
1050 *
1051 * 0 => no fragmentation
1052 * 1 => high fragmentation
1053 */
1054 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1055
1056 }
1057
1058 static void unusable_show_print(struct seq_file *m,
1059 pg_data_t *pgdat, struct zone *zone)
1060 {
1061 unsigned int order;
1062 int index;
1063 struct contig_page_info info;
1064
1065 seq_printf(m, "Node %d, zone %8s ",
1066 pgdat->node_id,
1067 zone->name);
1068 for (order = 0; order < MAX_ORDER; ++order) {
1069 fill_contig_page_info(zone, order, &info);
1070 index = unusable_free_index(order, &info);
1071 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1072 }
1073
1074 seq_putc(m, '\n');
1075 }
1076
1077 /*
1078 * Display unusable free space index
1079 *
1080 * The unusable free space index measures how much of the available free
1081 * memory cannot be used to satisfy an allocation of a given size and is a
1082 * value between 0 and 1. The higher the value, the more of free memory is
1083 * unusable and by implication, the worse the external fragmentation is. This
1084 * can be expressed as a percentage by multiplying by 100.
1085 */
1086 static int unusable_show(struct seq_file *m, void *arg)
1087 {
1088 pg_data_t *pgdat = (pg_data_t *)arg;
1089
1090 /* check memoryless node */
1091 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1092 return 0;
1093
1094 walk_zones_in_node(m, pgdat, unusable_show_print);
1095
1096 return 0;
1097 }
1098
1099 static const struct seq_operations unusable_op = {
1100 .start = frag_start,
1101 .next = frag_next,
1102 .stop = frag_stop,
1103 .show = unusable_show,
1104 };
1105
1106 static int unusable_open(struct inode *inode, struct file *file)
1107 {
1108 return seq_open(file, &unusable_op);
1109 }
1110
1111 static const struct file_operations unusable_file_ops = {
1112 .open = unusable_open,
1113 .read = seq_read,
1114 .llseek = seq_lseek,
1115 .release = seq_release,
1116 };
1117
1118 static void extfrag_show_print(struct seq_file *m,
1119 pg_data_t *pgdat, struct zone *zone)
1120 {
1121 unsigned int order;
1122 int index;
1123
1124 /* Alloc on stack as interrupts are disabled for zone walk */
1125 struct contig_page_info info;
1126
1127 seq_printf(m, "Node %d, zone %8s ",
1128 pgdat->node_id,
1129 zone->name);
1130 for (order = 0; order < MAX_ORDER; ++order) {
1131 fill_contig_page_info(zone, order, &info);
1132 index = fragmentation_index(order, &info);
1133 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1134 }
1135
1136 seq_putc(m, '\n');
1137 }
1138
1139 /*
1140 * Display fragmentation index for orders that allocations would fail for
1141 */
1142 static int extfrag_show(struct seq_file *m, void *arg)
1143 {
1144 pg_data_t *pgdat = (pg_data_t *)arg;
1145
1146 walk_zones_in_node(m, pgdat, extfrag_show_print);
1147
1148 return 0;
1149 }
1150
1151 static const struct seq_operations extfrag_op = {
1152 .start = frag_start,
1153 .next = frag_next,
1154 .stop = frag_stop,
1155 .show = extfrag_show,
1156 };
1157
1158 static int extfrag_open(struct inode *inode, struct file *file)
1159 {
1160 return seq_open(file, &extfrag_op);
1161 }
1162
1163 static const struct file_operations extfrag_file_ops = {
1164 .open = extfrag_open,
1165 .read = seq_read,
1166 .llseek = seq_lseek,
1167 .release = seq_release,
1168 };
1169
1170 static int __init extfrag_debug_init(void)
1171 {
1172 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1173 if (!extfrag_debug_root)
1174 return -ENOMEM;
1175
1176 if (!debugfs_create_file("unusable_index", 0444,
1177 extfrag_debug_root, NULL, &unusable_file_ops))
1178 return -ENOMEM;
1179
1180 if (!debugfs_create_file("extfrag_index", 0444,
1181 extfrag_debug_root, NULL, &extfrag_file_ops))
1182 return -ENOMEM;
1183
1184 return 0;
1185 }
1186
1187 module_init(extfrag_debug_init);
1188 #endif
This page took 0.05573 seconds and 5 git commands to generate.