thp, vmstats: add counters for huge file pages
[deliverable/linux.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
11 */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39 int cpu;
40 int i;
41
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44 for_each_online_cpu(cpu) {
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
49 }
50 }
51
52 /*
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59 get_online_cpus();
60 sum_vm_events(ret);
61 put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66 * Fold the foreign cpu events into our own.
67 *
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
70 */
71 void vm_events_fold_cpu(int cpu)
72 {
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
75
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
79 }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85 * Manage combined zone based / global counters
86 *
87 * vm_stat contains the global counters
88 */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91
92 #ifdef CONFIG_SMP
93
94 int calculate_pressure_threshold(struct zone *zone)
95 {
96 int threshold;
97 int watermark_distance;
98
99 /*
100 * As vmstats are not up to date, there is drift between the estimated
101 * and real values. For high thresholds and a high number of CPUs, it
102 * is possible for the min watermark to be breached while the estimated
103 * value looks fine. The pressure threshold is a reduced value such
104 * that even the maximum amount of drift will not accidentally breach
105 * the min watermark
106 */
107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110 /*
111 * Maximum threshold is 125
112 */
113 threshold = min(125, threshold);
114
115 return threshold;
116 }
117
118 int calculate_normal_threshold(struct zone *zone)
119 {
120 int threshold;
121 int mem; /* memory in 128 MB units */
122
123 /*
124 * The threshold scales with the number of processors and the amount
125 * of memory per zone. More memory means that we can defer updates for
126 * longer, more processors could lead to more contention.
127 * fls() is used to have a cheap way of logarithmic scaling.
128 *
129 * Some sample thresholds:
130 *
131 * Threshold Processors (fls) Zonesize fls(mem+1)
132 * ------------------------------------------------------------------
133 * 8 1 1 0.9-1 GB 4
134 * 16 2 2 0.9-1 GB 4
135 * 20 2 2 1-2 GB 5
136 * 24 2 2 2-4 GB 6
137 * 28 2 2 4-8 GB 7
138 * 32 2 2 8-16 GB 8
139 * 4 2 2 <128M 1
140 * 30 4 3 2-4 GB 5
141 * 48 4 3 8-16 GB 8
142 * 32 8 4 1-2 GB 4
143 * 32 8 4 0.9-1GB 4
144 * 10 16 5 <128M 1
145 * 40 16 5 900M 4
146 * 70 64 7 2-4 GB 5
147 * 84 64 7 4-8 GB 6
148 * 108 512 9 4-8 GB 6
149 * 125 1024 10 8-16 GB 8
150 * 125 1024 10 16-32 GB 9
151 */
152
153 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154
155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157 /*
158 * Maximum threshold is 125
159 */
160 threshold = min(125, threshold);
161
162 return threshold;
163 }
164
165 /*
166 * Refresh the thresholds for each zone.
167 */
168 void refresh_zone_stat_thresholds(void)
169 {
170 struct zone *zone;
171 int cpu;
172 int threshold;
173
174 for_each_populated_zone(zone) {
175 unsigned long max_drift, tolerate_drift;
176
177 threshold = calculate_normal_threshold(zone);
178
179 for_each_online_cpu(cpu)
180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181 = threshold;
182
183 /*
184 * Only set percpu_drift_mark if there is a danger that
185 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 * the min watermark could be breached by an allocation
187 */
188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 max_drift = num_online_cpus() * threshold;
190 if (max_drift > tolerate_drift)
191 zone->percpu_drift_mark = high_wmark_pages(zone) +
192 max_drift;
193 }
194 }
195
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 int (*calculate_pressure)(struct zone *))
198 {
199 struct zone *zone;
200 int cpu;
201 int threshold;
202 int i;
203
204 for (i = 0; i < pgdat->nr_zones; i++) {
205 zone = &pgdat->node_zones[i];
206 if (!zone->percpu_drift_mark)
207 continue;
208
209 threshold = (*calculate_pressure)(zone);
210 for_each_online_cpu(cpu)
211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 = threshold;
213 }
214 }
215
216 /*
217 * For use when we know that interrupts are disabled,
218 * or when we know that preemption is disabled and that
219 * particular counter cannot be updated from interrupt context.
220 */
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222 long delta)
223 {
224 struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 s8 __percpu *p = pcp->vm_stat_diff + item;
226 long x;
227 long t;
228
229 x = delta + __this_cpu_read(*p);
230
231 t = __this_cpu_read(pcp->stat_threshold);
232
233 if (unlikely(x > t || x < -t)) {
234 zone_page_state_add(x, zone, item);
235 x = 0;
236 }
237 __this_cpu_write(*p, x);
238 }
239 EXPORT_SYMBOL(__mod_zone_page_state);
240
241 /*
242 * Optimized increment and decrement functions.
243 *
244 * These are only for a single page and therefore can take a struct page *
245 * argument instead of struct zone *. This allows the inclusion of the code
246 * generated for page_zone(page) into the optimized functions.
247 *
248 * No overflow check is necessary and therefore the differential can be
249 * incremented or decremented in place which may allow the compilers to
250 * generate better code.
251 * The increment or decrement is known and therefore one boundary check can
252 * be omitted.
253 *
254 * NOTE: These functions are very performance sensitive. Change only
255 * with care.
256 *
257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
258 * However, the code must first determine the differential location in a zone
259 * based on the processor number and then inc/dec the counter. There is no
260 * guarantee without disabling preemption that the processor will not change
261 * in between and therefore the atomicity vs. interrupt cannot be exploited
262 * in a useful way here.
263 */
264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266 struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 s8 __percpu *p = pcp->vm_stat_diff + item;
268 s8 v, t;
269
270 v = __this_cpu_inc_return(*p);
271 t = __this_cpu_read(pcp->stat_threshold);
272 if (unlikely(v > t)) {
273 s8 overstep = t >> 1;
274
275 zone_page_state_add(v + overstep, zone, item);
276 __this_cpu_write(*p, -overstep);
277 }
278 }
279
280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281 {
282 __inc_zone_state(page_zone(page), item);
283 }
284 EXPORT_SYMBOL(__inc_zone_page_state);
285
286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287 {
288 struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 s8 __percpu *p = pcp->vm_stat_diff + item;
290 s8 v, t;
291
292 v = __this_cpu_dec_return(*p);
293 t = __this_cpu_read(pcp->stat_threshold);
294 if (unlikely(v < - t)) {
295 s8 overstep = t >> 1;
296
297 zone_page_state_add(v - overstep, zone, item);
298 __this_cpu_write(*p, overstep);
299 }
300 }
301
302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303 {
304 __dec_zone_state(page_zone(page), item);
305 }
306 EXPORT_SYMBOL(__dec_zone_page_state);
307
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309 /*
310 * If we have cmpxchg_local support then we do not need to incur the overhead
311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312 *
313 * mod_state() modifies the zone counter state through atomic per cpu
314 * operations.
315 *
316 * Overstep mode specifies how overstep should handled:
317 * 0 No overstepping
318 * 1 Overstepping half of threshold
319 * -1 Overstepping minus half of threshold
320 */
321 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322 long delta, int overstep_mode)
323 {
324 struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 s8 __percpu *p = pcp->vm_stat_diff + item;
326 long o, n, t, z;
327
328 do {
329 z = 0; /* overflow to zone counters */
330
331 /*
332 * The fetching of the stat_threshold is racy. We may apply
333 * a counter threshold to the wrong the cpu if we get
334 * rescheduled while executing here. However, the next
335 * counter update will apply the threshold again and
336 * therefore bring the counter under the threshold again.
337 *
338 * Most of the time the thresholds are the same anyways
339 * for all cpus in a zone.
340 */
341 t = this_cpu_read(pcp->stat_threshold);
342
343 o = this_cpu_read(*p);
344 n = delta + o;
345
346 if (n > t || n < -t) {
347 int os = overstep_mode * (t >> 1) ;
348
349 /* Overflow must be added to zone counters */
350 z = n + os;
351 n = -os;
352 }
353 } while (this_cpu_cmpxchg(*p, o, n) != o);
354
355 if (z)
356 zone_page_state_add(z, zone, item);
357 }
358
359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360 long delta)
361 {
362 mod_state(zone, item, delta, 0);
363 }
364 EXPORT_SYMBOL(mod_zone_page_state);
365
366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367 {
368 mod_state(zone, item, 1, 1);
369 }
370
371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372 {
373 mod_state(page_zone(page), item, 1, 1);
374 }
375 EXPORT_SYMBOL(inc_zone_page_state);
376
377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379 mod_state(page_zone(page), item, -1, -1);
380 }
381 EXPORT_SYMBOL(dec_zone_page_state);
382 #else
383 /*
384 * Use interrupt disable to serialize counter updates
385 */
386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387 long delta)
388 {
389 unsigned long flags;
390
391 local_irq_save(flags);
392 __mod_zone_page_state(zone, item, delta);
393 local_irq_restore(flags);
394 }
395 EXPORT_SYMBOL(mod_zone_page_state);
396
397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398 {
399 unsigned long flags;
400
401 local_irq_save(flags);
402 __inc_zone_state(zone, item);
403 local_irq_restore(flags);
404 }
405
406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408 unsigned long flags;
409 struct zone *zone;
410
411 zone = page_zone(page);
412 local_irq_save(flags);
413 __inc_zone_state(zone, item);
414 local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(inc_zone_page_state);
417
418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 __dec_zone_page_state(page, item);
424 local_irq_restore(flags);
425 }
426 EXPORT_SYMBOL(dec_zone_page_state);
427 #endif
428
429
430 /*
431 * Fold a differential into the global counters.
432 * Returns the number of counters updated.
433 */
434 static int fold_diff(int *diff)
435 {
436 int i;
437 int changes = 0;
438
439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440 if (diff[i]) {
441 atomic_long_add(diff[i], &vm_stat[i]);
442 changes++;
443 }
444 return changes;
445 }
446
447 /*
448 * Update the zone counters for the current cpu.
449 *
450 * Note that refresh_cpu_vm_stats strives to only access
451 * node local memory. The per cpu pagesets on remote zones are placed
452 * in the memory local to the processor using that pageset. So the
453 * loop over all zones will access a series of cachelines local to
454 * the processor.
455 *
456 * The call to zone_page_state_add updates the cachelines with the
457 * statistics in the remote zone struct as well as the global cachelines
458 * with the global counters. These could cause remote node cache line
459 * bouncing and will have to be only done when necessary.
460 *
461 * The function returns the number of global counters updated.
462 */
463 static int refresh_cpu_vm_stats(bool do_pagesets)
464 {
465 struct zone *zone;
466 int i;
467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468 int changes = 0;
469
470 for_each_populated_zone(zone) {
471 struct per_cpu_pageset __percpu *p = zone->pageset;
472
473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474 int v;
475
476 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477 if (v) {
478
479 atomic_long_add(v, &zone->vm_stat[i]);
480 global_diff[i] += v;
481 #ifdef CONFIG_NUMA
482 /* 3 seconds idle till flush */
483 __this_cpu_write(p->expire, 3);
484 #endif
485 }
486 }
487 #ifdef CONFIG_NUMA
488 if (do_pagesets) {
489 cond_resched();
490 /*
491 * Deal with draining the remote pageset of this
492 * processor
493 *
494 * Check if there are pages remaining in this pageset
495 * if not then there is nothing to expire.
496 */
497 if (!__this_cpu_read(p->expire) ||
498 !__this_cpu_read(p->pcp.count))
499 continue;
500
501 /*
502 * We never drain zones local to this processor.
503 */
504 if (zone_to_nid(zone) == numa_node_id()) {
505 __this_cpu_write(p->expire, 0);
506 continue;
507 }
508
509 if (__this_cpu_dec_return(p->expire))
510 continue;
511
512 if (__this_cpu_read(p->pcp.count)) {
513 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
514 changes++;
515 }
516 }
517 #endif
518 }
519 changes += fold_diff(global_diff);
520 return changes;
521 }
522
523 /*
524 * Fold the data for an offline cpu into the global array.
525 * There cannot be any access by the offline cpu and therefore
526 * synchronization is simplified.
527 */
528 void cpu_vm_stats_fold(int cpu)
529 {
530 struct zone *zone;
531 int i;
532 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
533
534 for_each_populated_zone(zone) {
535 struct per_cpu_pageset *p;
536
537 p = per_cpu_ptr(zone->pageset, cpu);
538
539 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
540 if (p->vm_stat_diff[i]) {
541 int v;
542
543 v = p->vm_stat_diff[i];
544 p->vm_stat_diff[i] = 0;
545 atomic_long_add(v, &zone->vm_stat[i]);
546 global_diff[i] += v;
547 }
548 }
549
550 fold_diff(global_diff);
551 }
552
553 /*
554 * this is only called if !populated_zone(zone), which implies no other users of
555 * pset->vm_stat_diff[] exsist.
556 */
557 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
558 {
559 int i;
560
561 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
562 if (pset->vm_stat_diff[i]) {
563 int v = pset->vm_stat_diff[i];
564 pset->vm_stat_diff[i] = 0;
565 atomic_long_add(v, &zone->vm_stat[i]);
566 atomic_long_add(v, &vm_stat[i]);
567 }
568 }
569 #endif
570
571 #ifdef CONFIG_NUMA
572 /*
573 * Determine the per node value of a stat item.
574 */
575 unsigned long node_page_state(int node, enum zone_stat_item item)
576 {
577 struct zone *zones = NODE_DATA(node)->node_zones;
578 int i;
579 unsigned long count = 0;
580
581 for (i = 0; i < MAX_NR_ZONES; i++)
582 count += zone_page_state(zones + i, item);
583
584 return count;
585 }
586
587 #endif
588
589 #ifdef CONFIG_COMPACTION
590
591 struct contig_page_info {
592 unsigned long free_pages;
593 unsigned long free_blocks_total;
594 unsigned long free_blocks_suitable;
595 };
596
597 /*
598 * Calculate the number of free pages in a zone, how many contiguous
599 * pages are free and how many are large enough to satisfy an allocation of
600 * the target size. Note that this function makes no attempt to estimate
601 * how many suitable free blocks there *might* be if MOVABLE pages were
602 * migrated. Calculating that is possible, but expensive and can be
603 * figured out from userspace
604 */
605 static void fill_contig_page_info(struct zone *zone,
606 unsigned int suitable_order,
607 struct contig_page_info *info)
608 {
609 unsigned int order;
610
611 info->free_pages = 0;
612 info->free_blocks_total = 0;
613 info->free_blocks_suitable = 0;
614
615 for (order = 0; order < MAX_ORDER; order++) {
616 unsigned long blocks;
617
618 /* Count number of free blocks */
619 blocks = zone->free_area[order].nr_free;
620 info->free_blocks_total += blocks;
621
622 /* Count free base pages */
623 info->free_pages += blocks << order;
624
625 /* Count the suitable free blocks */
626 if (order >= suitable_order)
627 info->free_blocks_suitable += blocks <<
628 (order - suitable_order);
629 }
630 }
631
632 /*
633 * A fragmentation index only makes sense if an allocation of a requested
634 * size would fail. If that is true, the fragmentation index indicates
635 * whether external fragmentation or a lack of memory was the problem.
636 * The value can be used to determine if page reclaim or compaction
637 * should be used
638 */
639 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
640 {
641 unsigned long requested = 1UL << order;
642
643 if (!info->free_blocks_total)
644 return 0;
645
646 /* Fragmentation index only makes sense when a request would fail */
647 if (info->free_blocks_suitable)
648 return -1000;
649
650 /*
651 * Index is between 0 and 1 so return within 3 decimal places
652 *
653 * 0 => allocation would fail due to lack of memory
654 * 1 => allocation would fail due to fragmentation
655 */
656 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
657 }
658
659 /* Same as __fragmentation index but allocs contig_page_info on stack */
660 int fragmentation_index(struct zone *zone, unsigned int order)
661 {
662 struct contig_page_info info;
663
664 fill_contig_page_info(zone, order, &info);
665 return __fragmentation_index(order, &info);
666 }
667 #endif
668
669 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
670 #ifdef CONFIG_ZONE_DMA
671 #define TEXT_FOR_DMA(xx) xx "_dma",
672 #else
673 #define TEXT_FOR_DMA(xx)
674 #endif
675
676 #ifdef CONFIG_ZONE_DMA32
677 #define TEXT_FOR_DMA32(xx) xx "_dma32",
678 #else
679 #define TEXT_FOR_DMA32(xx)
680 #endif
681
682 #ifdef CONFIG_HIGHMEM
683 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
684 #else
685 #define TEXT_FOR_HIGHMEM(xx)
686 #endif
687
688 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
689 TEXT_FOR_HIGHMEM(xx) xx "_movable",
690
691 const char * const vmstat_text[] = {
692 /* enum zone_stat_item countes */
693 "nr_free_pages",
694 "nr_alloc_batch",
695 "nr_inactive_anon",
696 "nr_active_anon",
697 "nr_inactive_file",
698 "nr_active_file",
699 "nr_unevictable",
700 "nr_mlock",
701 "nr_anon_pages",
702 "nr_mapped",
703 "nr_file_pages",
704 "nr_dirty",
705 "nr_writeback",
706 "nr_slab_reclaimable",
707 "nr_slab_unreclaimable",
708 "nr_page_table_pages",
709 "nr_kernel_stack",
710 "nr_unstable",
711 "nr_bounce",
712 "nr_vmscan_write",
713 "nr_vmscan_immediate_reclaim",
714 "nr_writeback_temp",
715 "nr_isolated_anon",
716 "nr_isolated_file",
717 "nr_shmem",
718 "nr_dirtied",
719 "nr_written",
720 "nr_pages_scanned",
721 #if IS_ENABLED(CONFIG_ZSMALLOC)
722 "nr_zspages",
723 #endif
724 #ifdef CONFIG_NUMA
725 "numa_hit",
726 "numa_miss",
727 "numa_foreign",
728 "numa_interleave",
729 "numa_local",
730 "numa_other",
731 #endif
732 "workingset_refault",
733 "workingset_activate",
734 "workingset_nodereclaim",
735 "nr_anon_transparent_hugepages",
736 "nr_free_cma",
737
738 /* enum writeback_stat_item counters */
739 "nr_dirty_threshold",
740 "nr_dirty_background_threshold",
741
742 #ifdef CONFIG_VM_EVENT_COUNTERS
743 /* enum vm_event_item counters */
744 "pgpgin",
745 "pgpgout",
746 "pswpin",
747 "pswpout",
748
749 TEXTS_FOR_ZONES("pgalloc")
750
751 "pgfree",
752 "pgactivate",
753 "pgdeactivate",
754
755 "pgfault",
756 "pgmajfault",
757 "pglazyfreed",
758
759 TEXTS_FOR_ZONES("pgrefill")
760 TEXTS_FOR_ZONES("pgsteal_kswapd")
761 TEXTS_FOR_ZONES("pgsteal_direct")
762 TEXTS_FOR_ZONES("pgscan_kswapd")
763 TEXTS_FOR_ZONES("pgscan_direct")
764 "pgscan_direct_throttle",
765
766 #ifdef CONFIG_NUMA
767 "zone_reclaim_failed",
768 #endif
769 "pginodesteal",
770 "slabs_scanned",
771 "kswapd_inodesteal",
772 "kswapd_low_wmark_hit_quickly",
773 "kswapd_high_wmark_hit_quickly",
774 "pageoutrun",
775 "allocstall",
776
777 "pgrotated",
778
779 "drop_pagecache",
780 "drop_slab",
781
782 #ifdef CONFIG_NUMA_BALANCING
783 "numa_pte_updates",
784 "numa_huge_pte_updates",
785 "numa_hint_faults",
786 "numa_hint_faults_local",
787 "numa_pages_migrated",
788 #endif
789 #ifdef CONFIG_MIGRATION
790 "pgmigrate_success",
791 "pgmigrate_fail",
792 #endif
793 #ifdef CONFIG_COMPACTION
794 "compact_migrate_scanned",
795 "compact_free_scanned",
796 "compact_isolated",
797 "compact_stall",
798 "compact_fail",
799 "compact_success",
800 "compact_daemon_wake",
801 #endif
802
803 #ifdef CONFIG_HUGETLB_PAGE
804 "htlb_buddy_alloc_success",
805 "htlb_buddy_alloc_fail",
806 #endif
807 "unevictable_pgs_culled",
808 "unevictable_pgs_scanned",
809 "unevictable_pgs_rescued",
810 "unevictable_pgs_mlocked",
811 "unevictable_pgs_munlocked",
812 "unevictable_pgs_cleared",
813 "unevictable_pgs_stranded",
814
815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
816 "thp_fault_alloc",
817 "thp_fault_fallback",
818 "thp_collapse_alloc",
819 "thp_collapse_alloc_failed",
820 "thp_file_alloc",
821 "thp_file_mapped",
822 "thp_split_page",
823 "thp_split_page_failed",
824 "thp_deferred_split_page",
825 "thp_split_pmd",
826 "thp_zero_page_alloc",
827 "thp_zero_page_alloc_failed",
828 #endif
829 #ifdef CONFIG_MEMORY_BALLOON
830 "balloon_inflate",
831 "balloon_deflate",
832 #ifdef CONFIG_BALLOON_COMPACTION
833 "balloon_migrate",
834 #endif
835 #endif /* CONFIG_MEMORY_BALLOON */
836 #ifdef CONFIG_DEBUG_TLBFLUSH
837 #ifdef CONFIG_SMP
838 "nr_tlb_remote_flush",
839 "nr_tlb_remote_flush_received",
840 #endif /* CONFIG_SMP */
841 "nr_tlb_local_flush_all",
842 "nr_tlb_local_flush_one",
843 #endif /* CONFIG_DEBUG_TLBFLUSH */
844
845 #ifdef CONFIG_DEBUG_VM_VMACACHE
846 "vmacache_find_calls",
847 "vmacache_find_hits",
848 "vmacache_full_flushes",
849 #endif
850 #endif /* CONFIG_VM_EVENTS_COUNTERS */
851 };
852 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
853
854
855 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
856 defined(CONFIG_PROC_FS)
857 static void *frag_start(struct seq_file *m, loff_t *pos)
858 {
859 pg_data_t *pgdat;
860 loff_t node = *pos;
861
862 for (pgdat = first_online_pgdat();
863 pgdat && node;
864 pgdat = next_online_pgdat(pgdat))
865 --node;
866
867 return pgdat;
868 }
869
870 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
871 {
872 pg_data_t *pgdat = (pg_data_t *)arg;
873
874 (*pos)++;
875 return next_online_pgdat(pgdat);
876 }
877
878 static void frag_stop(struct seq_file *m, void *arg)
879 {
880 }
881
882 /* Walk all the zones in a node and print using a callback */
883 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
884 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
885 {
886 struct zone *zone;
887 struct zone *node_zones = pgdat->node_zones;
888 unsigned long flags;
889
890 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
891 if (!populated_zone(zone))
892 continue;
893
894 spin_lock_irqsave(&zone->lock, flags);
895 print(m, pgdat, zone);
896 spin_unlock_irqrestore(&zone->lock, flags);
897 }
898 }
899 #endif
900
901 #ifdef CONFIG_PROC_FS
902 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
903 struct zone *zone)
904 {
905 int order;
906
907 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
908 for (order = 0; order < MAX_ORDER; ++order)
909 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
910 seq_putc(m, '\n');
911 }
912
913 /*
914 * This walks the free areas for each zone.
915 */
916 static int frag_show(struct seq_file *m, void *arg)
917 {
918 pg_data_t *pgdat = (pg_data_t *)arg;
919 walk_zones_in_node(m, pgdat, frag_show_print);
920 return 0;
921 }
922
923 static void pagetypeinfo_showfree_print(struct seq_file *m,
924 pg_data_t *pgdat, struct zone *zone)
925 {
926 int order, mtype;
927
928 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
929 seq_printf(m, "Node %4d, zone %8s, type %12s ",
930 pgdat->node_id,
931 zone->name,
932 migratetype_names[mtype]);
933 for (order = 0; order < MAX_ORDER; ++order) {
934 unsigned long freecount = 0;
935 struct free_area *area;
936 struct list_head *curr;
937
938 area = &(zone->free_area[order]);
939
940 list_for_each(curr, &area->free_list[mtype])
941 freecount++;
942 seq_printf(m, "%6lu ", freecount);
943 }
944 seq_putc(m, '\n');
945 }
946 }
947
948 /* Print out the free pages at each order for each migatetype */
949 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
950 {
951 int order;
952 pg_data_t *pgdat = (pg_data_t *)arg;
953
954 /* Print header */
955 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
956 for (order = 0; order < MAX_ORDER; ++order)
957 seq_printf(m, "%6d ", order);
958 seq_putc(m, '\n');
959
960 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
961
962 return 0;
963 }
964
965 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
966 pg_data_t *pgdat, struct zone *zone)
967 {
968 int mtype;
969 unsigned long pfn;
970 unsigned long start_pfn = zone->zone_start_pfn;
971 unsigned long end_pfn = zone_end_pfn(zone);
972 unsigned long count[MIGRATE_TYPES] = { 0, };
973
974 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
975 struct page *page;
976
977 if (!pfn_valid(pfn))
978 continue;
979
980 page = pfn_to_page(pfn);
981
982 /* Watch for unexpected holes punched in the memmap */
983 if (!memmap_valid_within(pfn, page, zone))
984 continue;
985
986 if (page_zone(page) != zone)
987 continue;
988
989 mtype = get_pageblock_migratetype(page);
990
991 if (mtype < MIGRATE_TYPES)
992 count[mtype]++;
993 }
994
995 /* Print counts */
996 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
997 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
998 seq_printf(m, "%12lu ", count[mtype]);
999 seq_putc(m, '\n');
1000 }
1001
1002 /* Print out the free pages at each order for each migratetype */
1003 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1004 {
1005 int mtype;
1006 pg_data_t *pgdat = (pg_data_t *)arg;
1007
1008 seq_printf(m, "\n%-23s", "Number of blocks type ");
1009 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1010 seq_printf(m, "%12s ", migratetype_names[mtype]);
1011 seq_putc(m, '\n');
1012 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1013
1014 return 0;
1015 }
1016
1017 #ifdef CONFIG_PAGE_OWNER
1018 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1019 pg_data_t *pgdat,
1020 struct zone *zone)
1021 {
1022 struct page *page;
1023 struct page_ext *page_ext;
1024 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1025 unsigned long end_pfn = pfn + zone->spanned_pages;
1026 unsigned long count[MIGRATE_TYPES] = { 0, };
1027 int pageblock_mt, page_mt;
1028 int i;
1029
1030 /* Scan block by block. First and last block may be incomplete */
1031 pfn = zone->zone_start_pfn;
1032
1033 /*
1034 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1035 * a zone boundary, it will be double counted between zones. This does
1036 * not matter as the mixed block count will still be correct
1037 */
1038 for (; pfn < end_pfn; ) {
1039 if (!pfn_valid(pfn)) {
1040 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1041 continue;
1042 }
1043
1044 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1045 block_end_pfn = min(block_end_pfn, end_pfn);
1046
1047 page = pfn_to_page(pfn);
1048 pageblock_mt = get_pageblock_migratetype(page);
1049
1050 for (; pfn < block_end_pfn; pfn++) {
1051 if (!pfn_valid_within(pfn))
1052 continue;
1053
1054 page = pfn_to_page(pfn);
1055
1056 if (page_zone(page) != zone)
1057 continue;
1058
1059 if (PageBuddy(page)) {
1060 pfn += (1UL << page_order(page)) - 1;
1061 continue;
1062 }
1063
1064 if (PageReserved(page))
1065 continue;
1066
1067 page_ext = lookup_page_ext(page);
1068 if (unlikely(!page_ext))
1069 continue;
1070
1071 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1072 continue;
1073
1074 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1075 if (pageblock_mt != page_mt) {
1076 if (is_migrate_cma(pageblock_mt))
1077 count[MIGRATE_MOVABLE]++;
1078 else
1079 count[pageblock_mt]++;
1080
1081 pfn = block_end_pfn;
1082 break;
1083 }
1084 pfn += (1UL << page_ext->order) - 1;
1085 }
1086 }
1087
1088 /* Print counts */
1089 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1090 for (i = 0; i < MIGRATE_TYPES; i++)
1091 seq_printf(m, "%12lu ", count[i]);
1092 seq_putc(m, '\n');
1093 }
1094 #endif /* CONFIG_PAGE_OWNER */
1095
1096 /*
1097 * Print out the number of pageblocks for each migratetype that contain pages
1098 * of other types. This gives an indication of how well fallbacks are being
1099 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1100 * to determine what is going on
1101 */
1102 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1103 {
1104 #ifdef CONFIG_PAGE_OWNER
1105 int mtype;
1106
1107 if (!static_branch_unlikely(&page_owner_inited))
1108 return;
1109
1110 drain_all_pages(NULL);
1111
1112 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1113 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1114 seq_printf(m, "%12s ", migratetype_names[mtype]);
1115 seq_putc(m, '\n');
1116
1117 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1118 #endif /* CONFIG_PAGE_OWNER */
1119 }
1120
1121 /*
1122 * This prints out statistics in relation to grouping pages by mobility.
1123 * It is expensive to collect so do not constantly read the file.
1124 */
1125 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1126 {
1127 pg_data_t *pgdat = (pg_data_t *)arg;
1128
1129 /* check memoryless node */
1130 if (!node_state(pgdat->node_id, N_MEMORY))
1131 return 0;
1132
1133 seq_printf(m, "Page block order: %d\n", pageblock_order);
1134 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1135 seq_putc(m, '\n');
1136 pagetypeinfo_showfree(m, pgdat);
1137 pagetypeinfo_showblockcount(m, pgdat);
1138 pagetypeinfo_showmixedcount(m, pgdat);
1139
1140 return 0;
1141 }
1142
1143 static const struct seq_operations fragmentation_op = {
1144 .start = frag_start,
1145 .next = frag_next,
1146 .stop = frag_stop,
1147 .show = frag_show,
1148 };
1149
1150 static int fragmentation_open(struct inode *inode, struct file *file)
1151 {
1152 return seq_open(file, &fragmentation_op);
1153 }
1154
1155 static const struct file_operations fragmentation_file_operations = {
1156 .open = fragmentation_open,
1157 .read = seq_read,
1158 .llseek = seq_lseek,
1159 .release = seq_release,
1160 };
1161
1162 static const struct seq_operations pagetypeinfo_op = {
1163 .start = frag_start,
1164 .next = frag_next,
1165 .stop = frag_stop,
1166 .show = pagetypeinfo_show,
1167 };
1168
1169 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1170 {
1171 return seq_open(file, &pagetypeinfo_op);
1172 }
1173
1174 static const struct file_operations pagetypeinfo_file_ops = {
1175 .open = pagetypeinfo_open,
1176 .read = seq_read,
1177 .llseek = seq_lseek,
1178 .release = seq_release,
1179 };
1180
1181 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1182 struct zone *zone)
1183 {
1184 int i;
1185 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1186 seq_printf(m,
1187 "\n pages free %lu"
1188 "\n min %lu"
1189 "\n low %lu"
1190 "\n high %lu"
1191 "\n scanned %lu"
1192 "\n spanned %lu"
1193 "\n present %lu"
1194 "\n managed %lu",
1195 zone_page_state(zone, NR_FREE_PAGES),
1196 min_wmark_pages(zone),
1197 low_wmark_pages(zone),
1198 high_wmark_pages(zone),
1199 zone_page_state(zone, NR_PAGES_SCANNED),
1200 zone->spanned_pages,
1201 zone->present_pages,
1202 zone->managed_pages);
1203
1204 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1205 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1206 zone_page_state(zone, i));
1207
1208 seq_printf(m,
1209 "\n protection: (%ld",
1210 zone->lowmem_reserve[0]);
1211 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1212 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1213 seq_printf(m,
1214 ")"
1215 "\n pagesets");
1216 for_each_online_cpu(i) {
1217 struct per_cpu_pageset *pageset;
1218
1219 pageset = per_cpu_ptr(zone->pageset, i);
1220 seq_printf(m,
1221 "\n cpu: %i"
1222 "\n count: %i"
1223 "\n high: %i"
1224 "\n batch: %i",
1225 i,
1226 pageset->pcp.count,
1227 pageset->pcp.high,
1228 pageset->pcp.batch);
1229 #ifdef CONFIG_SMP
1230 seq_printf(m, "\n vm stats threshold: %d",
1231 pageset->stat_threshold);
1232 #endif
1233 }
1234 seq_printf(m,
1235 "\n all_unreclaimable: %u"
1236 "\n start_pfn: %lu"
1237 "\n inactive_ratio: %u",
1238 !zone_reclaimable(zone),
1239 zone->zone_start_pfn,
1240 zone->inactive_ratio);
1241 seq_putc(m, '\n');
1242 }
1243
1244 /*
1245 * Output information about zones in @pgdat.
1246 */
1247 static int zoneinfo_show(struct seq_file *m, void *arg)
1248 {
1249 pg_data_t *pgdat = (pg_data_t *)arg;
1250 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1251 return 0;
1252 }
1253
1254 static const struct seq_operations zoneinfo_op = {
1255 .start = frag_start, /* iterate over all zones. The same as in
1256 * fragmentation. */
1257 .next = frag_next,
1258 .stop = frag_stop,
1259 .show = zoneinfo_show,
1260 };
1261
1262 static int zoneinfo_open(struct inode *inode, struct file *file)
1263 {
1264 return seq_open(file, &zoneinfo_op);
1265 }
1266
1267 static const struct file_operations proc_zoneinfo_file_operations = {
1268 .open = zoneinfo_open,
1269 .read = seq_read,
1270 .llseek = seq_lseek,
1271 .release = seq_release,
1272 };
1273
1274 enum writeback_stat_item {
1275 NR_DIRTY_THRESHOLD,
1276 NR_DIRTY_BG_THRESHOLD,
1277 NR_VM_WRITEBACK_STAT_ITEMS,
1278 };
1279
1280 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1281 {
1282 unsigned long *v;
1283 int i, stat_items_size;
1284
1285 if (*pos >= ARRAY_SIZE(vmstat_text))
1286 return NULL;
1287 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1288 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1289
1290 #ifdef CONFIG_VM_EVENT_COUNTERS
1291 stat_items_size += sizeof(struct vm_event_state);
1292 #endif
1293
1294 v = kmalloc(stat_items_size, GFP_KERNEL);
1295 m->private = v;
1296 if (!v)
1297 return ERR_PTR(-ENOMEM);
1298 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1299 v[i] = global_page_state(i);
1300 v += NR_VM_ZONE_STAT_ITEMS;
1301
1302 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1303 v + NR_DIRTY_THRESHOLD);
1304 v += NR_VM_WRITEBACK_STAT_ITEMS;
1305
1306 #ifdef CONFIG_VM_EVENT_COUNTERS
1307 all_vm_events(v);
1308 v[PGPGIN] /= 2; /* sectors -> kbytes */
1309 v[PGPGOUT] /= 2;
1310 #endif
1311 return (unsigned long *)m->private + *pos;
1312 }
1313
1314 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1315 {
1316 (*pos)++;
1317 if (*pos >= ARRAY_SIZE(vmstat_text))
1318 return NULL;
1319 return (unsigned long *)m->private + *pos;
1320 }
1321
1322 static int vmstat_show(struct seq_file *m, void *arg)
1323 {
1324 unsigned long *l = arg;
1325 unsigned long off = l - (unsigned long *)m->private;
1326
1327 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1328 return 0;
1329 }
1330
1331 static void vmstat_stop(struct seq_file *m, void *arg)
1332 {
1333 kfree(m->private);
1334 m->private = NULL;
1335 }
1336
1337 static const struct seq_operations vmstat_op = {
1338 .start = vmstat_start,
1339 .next = vmstat_next,
1340 .stop = vmstat_stop,
1341 .show = vmstat_show,
1342 };
1343
1344 static int vmstat_open(struct inode *inode, struct file *file)
1345 {
1346 return seq_open(file, &vmstat_op);
1347 }
1348
1349 static const struct file_operations proc_vmstat_file_operations = {
1350 .open = vmstat_open,
1351 .read = seq_read,
1352 .llseek = seq_lseek,
1353 .release = seq_release,
1354 };
1355 #endif /* CONFIG_PROC_FS */
1356
1357 #ifdef CONFIG_SMP
1358 static struct workqueue_struct *vmstat_wq;
1359 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1360 int sysctl_stat_interval __read_mostly = HZ;
1361
1362 #ifdef CONFIG_PROC_FS
1363 static void refresh_vm_stats(struct work_struct *work)
1364 {
1365 refresh_cpu_vm_stats(true);
1366 }
1367
1368 int vmstat_refresh(struct ctl_table *table, int write,
1369 void __user *buffer, size_t *lenp, loff_t *ppos)
1370 {
1371 long val;
1372 int err;
1373 int i;
1374
1375 /*
1376 * The regular update, every sysctl_stat_interval, may come later
1377 * than expected: leaving a significant amount in per_cpu buckets.
1378 * This is particularly misleading when checking a quantity of HUGE
1379 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1380 * which can equally be echo'ed to or cat'ted from (by root),
1381 * can be used to update the stats just before reading them.
1382 *
1383 * Oh, and since global_page_state() etc. are so careful to hide
1384 * transiently negative values, report an error here if any of
1385 * the stats is negative, so we know to go looking for imbalance.
1386 */
1387 err = schedule_on_each_cpu(refresh_vm_stats);
1388 if (err)
1389 return err;
1390 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1391 val = atomic_long_read(&vm_stat[i]);
1392 if (val < 0) {
1393 switch (i) {
1394 case NR_ALLOC_BATCH:
1395 case NR_PAGES_SCANNED:
1396 /*
1397 * These are often seen to go negative in
1398 * recent kernels, but not to go permanently
1399 * negative. Whilst it would be nicer not to
1400 * have exceptions, rooting them out would be
1401 * another task, of rather low priority.
1402 */
1403 break;
1404 default:
1405 pr_warn("%s: %s %ld\n",
1406 __func__, vmstat_text[i], val);
1407 err = -EINVAL;
1408 break;
1409 }
1410 }
1411 }
1412 if (err)
1413 return err;
1414 if (write)
1415 *ppos += *lenp;
1416 else
1417 *lenp = 0;
1418 return 0;
1419 }
1420 #endif /* CONFIG_PROC_FS */
1421
1422 static void vmstat_update(struct work_struct *w)
1423 {
1424 if (refresh_cpu_vm_stats(true)) {
1425 /*
1426 * Counters were updated so we expect more updates
1427 * to occur in the future. Keep on running the
1428 * update worker thread.
1429 */
1430 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1431 this_cpu_ptr(&vmstat_work),
1432 round_jiffies_relative(sysctl_stat_interval));
1433 }
1434 }
1435
1436 /*
1437 * Switch off vmstat processing and then fold all the remaining differentials
1438 * until the diffs stay at zero. The function is used by NOHZ and can only be
1439 * invoked when tick processing is not active.
1440 */
1441 /*
1442 * Check if the diffs for a certain cpu indicate that
1443 * an update is needed.
1444 */
1445 static bool need_update(int cpu)
1446 {
1447 struct zone *zone;
1448
1449 for_each_populated_zone(zone) {
1450 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1451
1452 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1453 /*
1454 * The fast way of checking if there are any vmstat diffs.
1455 * This works because the diffs are byte sized items.
1456 */
1457 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1458 return true;
1459
1460 }
1461 return false;
1462 }
1463
1464 /*
1465 * Switch off vmstat processing and then fold all the remaining differentials
1466 * until the diffs stay at zero. The function is used by NOHZ and can only be
1467 * invoked when tick processing is not active.
1468 */
1469 void quiet_vmstat(void)
1470 {
1471 if (system_state != SYSTEM_RUNNING)
1472 return;
1473
1474 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1475 return;
1476
1477 if (!need_update(smp_processor_id()))
1478 return;
1479
1480 /*
1481 * Just refresh counters and do not care about the pending delayed
1482 * vmstat_update. It doesn't fire that often to matter and canceling
1483 * it would be too expensive from this path.
1484 * vmstat_shepherd will take care about that for us.
1485 */
1486 refresh_cpu_vm_stats(false);
1487 }
1488
1489 /*
1490 * Shepherd worker thread that checks the
1491 * differentials of processors that have their worker
1492 * threads for vm statistics updates disabled because of
1493 * inactivity.
1494 */
1495 static void vmstat_shepherd(struct work_struct *w);
1496
1497 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1498
1499 static void vmstat_shepherd(struct work_struct *w)
1500 {
1501 int cpu;
1502
1503 get_online_cpus();
1504 /* Check processors whose vmstat worker threads have been disabled */
1505 for_each_online_cpu(cpu) {
1506 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1507
1508 if (!delayed_work_pending(dw) && need_update(cpu))
1509 queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1510 }
1511 put_online_cpus();
1512
1513 schedule_delayed_work(&shepherd,
1514 round_jiffies_relative(sysctl_stat_interval));
1515 }
1516
1517 static void __init start_shepherd_timer(void)
1518 {
1519 int cpu;
1520
1521 for_each_possible_cpu(cpu)
1522 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1523 vmstat_update);
1524
1525 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1526 schedule_delayed_work(&shepherd,
1527 round_jiffies_relative(sysctl_stat_interval));
1528 }
1529
1530 static void vmstat_cpu_dead(int node)
1531 {
1532 int cpu;
1533
1534 get_online_cpus();
1535 for_each_online_cpu(cpu)
1536 if (cpu_to_node(cpu) == node)
1537 goto end;
1538
1539 node_clear_state(node, N_CPU);
1540 end:
1541 put_online_cpus();
1542 }
1543
1544 /*
1545 * Use the cpu notifier to insure that the thresholds are recalculated
1546 * when necessary.
1547 */
1548 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1549 unsigned long action,
1550 void *hcpu)
1551 {
1552 long cpu = (long)hcpu;
1553
1554 switch (action) {
1555 case CPU_ONLINE:
1556 case CPU_ONLINE_FROZEN:
1557 refresh_zone_stat_thresholds();
1558 node_set_state(cpu_to_node(cpu), N_CPU);
1559 break;
1560 case CPU_DOWN_PREPARE:
1561 case CPU_DOWN_PREPARE_FROZEN:
1562 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1563 break;
1564 case CPU_DOWN_FAILED:
1565 case CPU_DOWN_FAILED_FROZEN:
1566 break;
1567 case CPU_DEAD:
1568 case CPU_DEAD_FROZEN:
1569 refresh_zone_stat_thresholds();
1570 vmstat_cpu_dead(cpu_to_node(cpu));
1571 break;
1572 default:
1573 break;
1574 }
1575 return NOTIFY_OK;
1576 }
1577
1578 static struct notifier_block vmstat_notifier =
1579 { &vmstat_cpuup_callback, NULL, 0 };
1580 #endif
1581
1582 static int __init setup_vmstat(void)
1583 {
1584 #ifdef CONFIG_SMP
1585 cpu_notifier_register_begin();
1586 __register_cpu_notifier(&vmstat_notifier);
1587
1588 start_shepherd_timer();
1589 cpu_notifier_register_done();
1590 #endif
1591 #ifdef CONFIG_PROC_FS
1592 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1593 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1594 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1595 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1596 #endif
1597 return 0;
1598 }
1599 module_init(setup_vmstat)
1600
1601 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1602
1603 /*
1604 * Return an index indicating how much of the available free memory is
1605 * unusable for an allocation of the requested size.
1606 */
1607 static int unusable_free_index(unsigned int order,
1608 struct contig_page_info *info)
1609 {
1610 /* No free memory is interpreted as all free memory is unusable */
1611 if (info->free_pages == 0)
1612 return 1000;
1613
1614 /*
1615 * Index should be a value between 0 and 1. Return a value to 3
1616 * decimal places.
1617 *
1618 * 0 => no fragmentation
1619 * 1 => high fragmentation
1620 */
1621 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1622
1623 }
1624
1625 static void unusable_show_print(struct seq_file *m,
1626 pg_data_t *pgdat, struct zone *zone)
1627 {
1628 unsigned int order;
1629 int index;
1630 struct contig_page_info info;
1631
1632 seq_printf(m, "Node %d, zone %8s ",
1633 pgdat->node_id,
1634 zone->name);
1635 for (order = 0; order < MAX_ORDER; ++order) {
1636 fill_contig_page_info(zone, order, &info);
1637 index = unusable_free_index(order, &info);
1638 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1639 }
1640
1641 seq_putc(m, '\n');
1642 }
1643
1644 /*
1645 * Display unusable free space index
1646 *
1647 * The unusable free space index measures how much of the available free
1648 * memory cannot be used to satisfy an allocation of a given size and is a
1649 * value between 0 and 1. The higher the value, the more of free memory is
1650 * unusable and by implication, the worse the external fragmentation is. This
1651 * can be expressed as a percentage by multiplying by 100.
1652 */
1653 static int unusable_show(struct seq_file *m, void *arg)
1654 {
1655 pg_data_t *pgdat = (pg_data_t *)arg;
1656
1657 /* check memoryless node */
1658 if (!node_state(pgdat->node_id, N_MEMORY))
1659 return 0;
1660
1661 walk_zones_in_node(m, pgdat, unusable_show_print);
1662
1663 return 0;
1664 }
1665
1666 static const struct seq_operations unusable_op = {
1667 .start = frag_start,
1668 .next = frag_next,
1669 .stop = frag_stop,
1670 .show = unusable_show,
1671 };
1672
1673 static int unusable_open(struct inode *inode, struct file *file)
1674 {
1675 return seq_open(file, &unusable_op);
1676 }
1677
1678 static const struct file_operations unusable_file_ops = {
1679 .open = unusable_open,
1680 .read = seq_read,
1681 .llseek = seq_lseek,
1682 .release = seq_release,
1683 };
1684
1685 static void extfrag_show_print(struct seq_file *m,
1686 pg_data_t *pgdat, struct zone *zone)
1687 {
1688 unsigned int order;
1689 int index;
1690
1691 /* Alloc on stack as interrupts are disabled for zone walk */
1692 struct contig_page_info info;
1693
1694 seq_printf(m, "Node %d, zone %8s ",
1695 pgdat->node_id,
1696 zone->name);
1697 for (order = 0; order < MAX_ORDER; ++order) {
1698 fill_contig_page_info(zone, order, &info);
1699 index = __fragmentation_index(order, &info);
1700 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1701 }
1702
1703 seq_putc(m, '\n');
1704 }
1705
1706 /*
1707 * Display fragmentation index for orders that allocations would fail for
1708 */
1709 static int extfrag_show(struct seq_file *m, void *arg)
1710 {
1711 pg_data_t *pgdat = (pg_data_t *)arg;
1712
1713 walk_zones_in_node(m, pgdat, extfrag_show_print);
1714
1715 return 0;
1716 }
1717
1718 static const struct seq_operations extfrag_op = {
1719 .start = frag_start,
1720 .next = frag_next,
1721 .stop = frag_stop,
1722 .show = extfrag_show,
1723 };
1724
1725 static int extfrag_open(struct inode *inode, struct file *file)
1726 {
1727 return seq_open(file, &extfrag_op);
1728 }
1729
1730 static const struct file_operations extfrag_file_ops = {
1731 .open = extfrag_open,
1732 .read = seq_read,
1733 .llseek = seq_lseek,
1734 .release = seq_release,
1735 };
1736
1737 static int __init extfrag_debug_init(void)
1738 {
1739 struct dentry *extfrag_debug_root;
1740
1741 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1742 if (!extfrag_debug_root)
1743 return -ENOMEM;
1744
1745 if (!debugfs_create_file("unusable_index", 0444,
1746 extfrag_debug_root, NULL, &unusable_file_ops))
1747 goto fail;
1748
1749 if (!debugfs_create_file("extfrag_index", 0444,
1750 extfrag_debug_root, NULL, &extfrag_file_ops))
1751 goto fail;
1752
1753 return 0;
1754 fail:
1755 debugfs_remove_recursive(extfrag_debug_root);
1756 return -ENOMEM;
1757 }
1758
1759 module_init(extfrag_debug_init);
1760 #endif
This page took 0.15734 seconds and 6 git commands to generate.