ARM: dts: imx28-cfa100: Fix display duplicate name warning
[deliverable/linux.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * This allocator is designed for use with zram. Thus, the allocator is
16 * supposed to work well under low memory conditions. In particular, it
17 * never attempts higher order page allocation which is very likely to
18 * fail under memory pressure. On the other hand, if we just use single
19 * (0-order) pages, it would suffer from very high fragmentation --
20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21 * This was one of the major issues with its predecessor (xvmalloc).
22 *
23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24 * and links them together using various 'struct page' fields. These linked
25 * pages act as a single higher-order page i.e. an object can span 0-order
26 * page boundaries. The code refers to these linked pages as a single entity
27 * called zspage.
28 *
29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30 * since this satisfies the requirements of all its current users (in the
31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
32 * uncompressed form). For allocation requests larger than this size, failure
33 * is returned (see zs_malloc).
34 *
35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
37 * location of the allocated object. The reason for this indirection is that
38 * zsmalloc does not keep zspages permanently mapped since that would cause
39 * issues on 32-bit systems where the VA region for kernel space mappings
40 * is very small. So, before using the allocating memory, the object has to
41 * be mapped using zs_map_object() to get a usable pointer and subsequently
42 * unmapped using zs_unmap_object().
43 *
44 * Following is how we use various fields and flags of underlying
45 * struct page(s) to form a zspage.
46 *
47 * Usage of struct page fields:
48 * page->first_page: points to the first component (0-order) page
49 * page->index (union with page->freelist): offset of the first object
50 * starting in this page. For the first page, this is
51 * always 0, so we use this field (aka freelist) to point
52 * to the first free object in zspage.
53 * page->lru: links together all component pages (except the first page)
54 * of a zspage
55 *
56 * For _first_ page only:
57 *
58 * page->private (union with page->first_page): refers to the
59 * component page after the first page
60 * page->freelist: points to the first free object in zspage.
61 * Free objects are linked together using in-place
62 * metadata.
63 * page->objects: maximum number of objects we can store in this
64 * zspage (class->zspage_order * PAGE_SIZE / class->size)
65 * page->lru: links together first pages of various zspages.
66 * Basically forming list of zspages in a fullness group.
67 * page->mapping: class index and fullness group of the zspage
68 *
69 * Usage of struct page flags:
70 * PG_private: identifies the first component page
71 * PG_private2: identifies the last component page
72 *
73 */
74
75 #ifdef CONFIG_ZSMALLOC_DEBUG
76 #define DEBUG
77 #endif
78
79 #include <linux/module.h>
80 #include <linux/kernel.h>
81 #include <linux/bitops.h>
82 #include <linux/errno.h>
83 #include <linux/highmem.h>
84 #include <linux/string.h>
85 #include <linux/slab.h>
86 #include <asm/tlbflush.h>
87 #include <asm/pgtable.h>
88 #include <linux/cpumask.h>
89 #include <linux/cpu.h>
90 #include <linux/vmalloc.h>
91 #include <linux/hardirq.h>
92 #include <linux/spinlock.h>
93 #include <linux/types.h>
94 #include <linux/zsmalloc.h>
95 #include <linux/zpool.h>
96
97 /*
98 * This must be power of 2 and greater than of equal to sizeof(link_free).
99 * These two conditions ensure that any 'struct link_free' itself doesn't
100 * span more than 1 page which avoids complex case of mapping 2 pages simply
101 * to restore link_free pointer values.
102 */
103 #define ZS_ALIGN 8
104
105 /*
106 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
107 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
108 */
109 #define ZS_MAX_ZSPAGE_ORDER 2
110 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
111
112 /*
113 * Object location (<PFN>, <obj_idx>) is encoded as
114 * as single (unsigned long) handle value.
115 *
116 * Note that object index <obj_idx> is relative to system
117 * page <PFN> it is stored in, so for each sub-page belonging
118 * to a zspage, obj_idx starts with 0.
119 *
120 * This is made more complicated by various memory models and PAE.
121 */
122
123 #ifndef MAX_PHYSMEM_BITS
124 #ifdef CONFIG_HIGHMEM64G
125 #define MAX_PHYSMEM_BITS 36
126 #else /* !CONFIG_HIGHMEM64G */
127 /*
128 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
129 * be PAGE_SHIFT
130 */
131 #define MAX_PHYSMEM_BITS BITS_PER_LONG
132 #endif
133 #endif
134 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
135 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
136 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
137
138 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
143
144 /*
145 * On systems with 4K page size, this gives 255 size classes! There is a
146 * trader-off here:
147 * - Large number of size classes is potentially wasteful as free page are
148 * spread across these classes
149 * - Small number of size classes causes large internal fragmentation
150 * - Probably its better to use specific size classes (empirically
151 * determined). NOTE: all those class sizes must be set as multiple of
152 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
153 *
154 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
155 * (reason above)
156 */
157 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
158 #define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
159 ZS_SIZE_CLASS_DELTA + 1)
160
161 /*
162 * We do not maintain any list for completely empty or full pages
163 */
164 enum fullness_group {
165 ZS_ALMOST_FULL,
166 ZS_ALMOST_EMPTY,
167 _ZS_NR_FULLNESS_GROUPS,
168
169 ZS_EMPTY,
170 ZS_FULL
171 };
172
173 /*
174 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
175 * n <= N / f, where
176 * n = number of allocated objects
177 * N = total number of objects zspage can store
178 * f = 1/fullness_threshold_frac
179 *
180 * Similarly, we assign zspage to:
181 * ZS_ALMOST_FULL when n > N / f
182 * ZS_EMPTY when n == 0
183 * ZS_FULL when n == N
184 *
185 * (see: fix_fullness_group())
186 */
187 static const int fullness_threshold_frac = 4;
188
189 struct size_class {
190 /*
191 * Size of objects stored in this class. Must be multiple
192 * of ZS_ALIGN.
193 */
194 int size;
195 unsigned int index;
196
197 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
198 int pages_per_zspage;
199
200 spinlock_t lock;
201
202 /* stats */
203 u64 pages_allocated;
204
205 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
206 };
207
208 /*
209 * Placed within free objects to form a singly linked list.
210 * For every zspage, first_page->freelist gives head of this list.
211 *
212 * This must be power of 2 and less than or equal to ZS_ALIGN
213 */
214 struct link_free {
215 /* Handle of next free chunk (encodes <PFN, obj_idx>) */
216 void *next;
217 };
218
219 struct zs_pool {
220 struct size_class size_class[ZS_SIZE_CLASSES];
221
222 gfp_t flags; /* allocation flags used when growing pool */
223 };
224
225 /*
226 * A zspage's class index and fullness group
227 * are encoded in its (first)page->mapping
228 */
229 #define CLASS_IDX_BITS 28
230 #define FULLNESS_BITS 4
231 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
232 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
233
234 struct mapping_area {
235 #ifdef CONFIG_PGTABLE_MAPPING
236 struct vm_struct *vm; /* vm area for mapping object that span pages */
237 #else
238 char *vm_buf; /* copy buffer for objects that span pages */
239 #endif
240 char *vm_addr; /* address of kmap_atomic()'ed pages */
241 enum zs_mapmode vm_mm; /* mapping mode */
242 };
243
244 /* zpool driver */
245
246 #ifdef CONFIG_ZPOOL
247
248 static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
249 {
250 return zs_create_pool(gfp);
251 }
252
253 static void zs_zpool_destroy(void *pool)
254 {
255 zs_destroy_pool(pool);
256 }
257
258 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
259 unsigned long *handle)
260 {
261 *handle = zs_malloc(pool, size);
262 return *handle ? 0 : -1;
263 }
264 static void zs_zpool_free(void *pool, unsigned long handle)
265 {
266 zs_free(pool, handle);
267 }
268
269 static int zs_zpool_shrink(void *pool, unsigned int pages,
270 unsigned int *reclaimed)
271 {
272 return -EINVAL;
273 }
274
275 static void *zs_zpool_map(void *pool, unsigned long handle,
276 enum zpool_mapmode mm)
277 {
278 enum zs_mapmode zs_mm;
279
280 switch (mm) {
281 case ZPOOL_MM_RO:
282 zs_mm = ZS_MM_RO;
283 break;
284 case ZPOOL_MM_WO:
285 zs_mm = ZS_MM_WO;
286 break;
287 case ZPOOL_MM_RW: /* fallthru */
288 default:
289 zs_mm = ZS_MM_RW;
290 break;
291 }
292
293 return zs_map_object(pool, handle, zs_mm);
294 }
295 static void zs_zpool_unmap(void *pool, unsigned long handle)
296 {
297 zs_unmap_object(pool, handle);
298 }
299
300 static u64 zs_zpool_total_size(void *pool)
301 {
302 return zs_get_total_size_bytes(pool);
303 }
304
305 static struct zpool_driver zs_zpool_driver = {
306 .type = "zsmalloc",
307 .owner = THIS_MODULE,
308 .create = zs_zpool_create,
309 .destroy = zs_zpool_destroy,
310 .malloc = zs_zpool_malloc,
311 .free = zs_zpool_free,
312 .shrink = zs_zpool_shrink,
313 .map = zs_zpool_map,
314 .unmap = zs_zpool_unmap,
315 .total_size = zs_zpool_total_size,
316 };
317
318 MODULE_ALIAS("zpool-zsmalloc");
319 #endif /* CONFIG_ZPOOL */
320
321 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
322 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
323
324 static int is_first_page(struct page *page)
325 {
326 return PagePrivate(page);
327 }
328
329 static int is_last_page(struct page *page)
330 {
331 return PagePrivate2(page);
332 }
333
334 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
335 enum fullness_group *fullness)
336 {
337 unsigned long m;
338 BUG_ON(!is_first_page(page));
339
340 m = (unsigned long)page->mapping;
341 *fullness = m & FULLNESS_MASK;
342 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
343 }
344
345 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
346 enum fullness_group fullness)
347 {
348 unsigned long m;
349 BUG_ON(!is_first_page(page));
350
351 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
352 (fullness & FULLNESS_MASK);
353 page->mapping = (struct address_space *)m;
354 }
355
356 /*
357 * zsmalloc divides the pool into various size classes where each
358 * class maintains a list of zspages where each zspage is divided
359 * into equal sized chunks. Each allocation falls into one of these
360 * classes depending on its size. This function returns index of the
361 * size class which has chunk size big enough to hold the give size.
362 */
363 static int get_size_class_index(int size)
364 {
365 int idx = 0;
366
367 if (likely(size > ZS_MIN_ALLOC_SIZE))
368 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
369 ZS_SIZE_CLASS_DELTA);
370
371 return idx;
372 }
373
374 /*
375 * For each size class, zspages are divided into different groups
376 * depending on how "full" they are. This was done so that we could
377 * easily find empty or nearly empty zspages when we try to shrink
378 * the pool (not yet implemented). This function returns fullness
379 * status of the given page.
380 */
381 static enum fullness_group get_fullness_group(struct page *page)
382 {
383 int inuse, max_objects;
384 enum fullness_group fg;
385 BUG_ON(!is_first_page(page));
386
387 inuse = page->inuse;
388 max_objects = page->objects;
389
390 if (inuse == 0)
391 fg = ZS_EMPTY;
392 else if (inuse == max_objects)
393 fg = ZS_FULL;
394 else if (inuse <= max_objects / fullness_threshold_frac)
395 fg = ZS_ALMOST_EMPTY;
396 else
397 fg = ZS_ALMOST_FULL;
398
399 return fg;
400 }
401
402 /*
403 * Each size class maintains various freelists and zspages are assigned
404 * to one of these freelists based on the number of live objects they
405 * have. This functions inserts the given zspage into the freelist
406 * identified by <class, fullness_group>.
407 */
408 static void insert_zspage(struct page *page, struct size_class *class,
409 enum fullness_group fullness)
410 {
411 struct page **head;
412
413 BUG_ON(!is_first_page(page));
414
415 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
416 return;
417
418 head = &class->fullness_list[fullness];
419 if (*head)
420 list_add_tail(&page->lru, &(*head)->lru);
421
422 *head = page;
423 }
424
425 /*
426 * This function removes the given zspage from the freelist identified
427 * by <class, fullness_group>.
428 */
429 static void remove_zspage(struct page *page, struct size_class *class,
430 enum fullness_group fullness)
431 {
432 struct page **head;
433
434 BUG_ON(!is_first_page(page));
435
436 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
437 return;
438
439 head = &class->fullness_list[fullness];
440 BUG_ON(!*head);
441 if (list_empty(&(*head)->lru))
442 *head = NULL;
443 else if (*head == page)
444 *head = (struct page *)list_entry((*head)->lru.next,
445 struct page, lru);
446
447 list_del_init(&page->lru);
448 }
449
450 /*
451 * Each size class maintains zspages in different fullness groups depending
452 * on the number of live objects they contain. When allocating or freeing
453 * objects, the fullness status of the page can change, say, from ALMOST_FULL
454 * to ALMOST_EMPTY when freeing an object. This function checks if such
455 * a status change has occurred for the given page and accordingly moves the
456 * page from the freelist of the old fullness group to that of the new
457 * fullness group.
458 */
459 static enum fullness_group fix_fullness_group(struct zs_pool *pool,
460 struct page *page)
461 {
462 int class_idx;
463 struct size_class *class;
464 enum fullness_group currfg, newfg;
465
466 BUG_ON(!is_first_page(page));
467
468 get_zspage_mapping(page, &class_idx, &currfg);
469 newfg = get_fullness_group(page);
470 if (newfg == currfg)
471 goto out;
472
473 class = &pool->size_class[class_idx];
474 remove_zspage(page, class, currfg);
475 insert_zspage(page, class, newfg);
476 set_zspage_mapping(page, class_idx, newfg);
477
478 out:
479 return newfg;
480 }
481
482 /*
483 * We have to decide on how many pages to link together
484 * to form a zspage for each size class. This is important
485 * to reduce wastage due to unusable space left at end of
486 * each zspage which is given as:
487 * wastage = Zp - Zp % size_class
488 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
489 *
490 * For example, for size class of 3/8 * PAGE_SIZE, we should
491 * link together 3 PAGE_SIZE sized pages to form a zspage
492 * since then we can perfectly fit in 8 such objects.
493 */
494 static int get_pages_per_zspage(int class_size)
495 {
496 int i, max_usedpc = 0;
497 /* zspage order which gives maximum used size per KB */
498 int max_usedpc_order = 1;
499
500 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
501 int zspage_size;
502 int waste, usedpc;
503
504 zspage_size = i * PAGE_SIZE;
505 waste = zspage_size % class_size;
506 usedpc = (zspage_size - waste) * 100 / zspage_size;
507
508 if (usedpc > max_usedpc) {
509 max_usedpc = usedpc;
510 max_usedpc_order = i;
511 }
512 }
513
514 return max_usedpc_order;
515 }
516
517 /*
518 * A single 'zspage' is composed of many system pages which are
519 * linked together using fields in struct page. This function finds
520 * the first/head page, given any component page of a zspage.
521 */
522 static struct page *get_first_page(struct page *page)
523 {
524 if (is_first_page(page))
525 return page;
526 else
527 return page->first_page;
528 }
529
530 static struct page *get_next_page(struct page *page)
531 {
532 struct page *next;
533
534 if (is_last_page(page))
535 next = NULL;
536 else if (is_first_page(page))
537 next = (struct page *)page_private(page);
538 else
539 next = list_entry(page->lru.next, struct page, lru);
540
541 return next;
542 }
543
544 /*
545 * Encode <page, obj_idx> as a single handle value.
546 * On hardware platforms with physical memory starting at 0x0 the pfn
547 * could be 0 so we ensure that the handle will never be 0 by adjusting the
548 * encoded obj_idx value before encoding.
549 */
550 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
551 {
552 unsigned long handle;
553
554 if (!page) {
555 BUG_ON(obj_idx);
556 return NULL;
557 }
558
559 handle = page_to_pfn(page) << OBJ_INDEX_BITS;
560 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
561
562 return (void *)handle;
563 }
564
565 /*
566 * Decode <page, obj_idx> pair from the given object handle. We adjust the
567 * decoded obj_idx back to its original value since it was adjusted in
568 * obj_location_to_handle().
569 */
570 static void obj_handle_to_location(unsigned long handle, struct page **page,
571 unsigned long *obj_idx)
572 {
573 *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
574 *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
575 }
576
577 static unsigned long obj_idx_to_offset(struct page *page,
578 unsigned long obj_idx, int class_size)
579 {
580 unsigned long off = 0;
581
582 if (!is_first_page(page))
583 off = page->index;
584
585 return off + obj_idx * class_size;
586 }
587
588 static void reset_page(struct page *page)
589 {
590 clear_bit(PG_private, &page->flags);
591 clear_bit(PG_private_2, &page->flags);
592 set_page_private(page, 0);
593 page->mapping = NULL;
594 page->freelist = NULL;
595 page_mapcount_reset(page);
596 }
597
598 static void free_zspage(struct page *first_page)
599 {
600 struct page *nextp, *tmp, *head_extra;
601
602 BUG_ON(!is_first_page(first_page));
603 BUG_ON(first_page->inuse);
604
605 head_extra = (struct page *)page_private(first_page);
606
607 reset_page(first_page);
608 __free_page(first_page);
609
610 /* zspage with only 1 system page */
611 if (!head_extra)
612 return;
613
614 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
615 list_del(&nextp->lru);
616 reset_page(nextp);
617 __free_page(nextp);
618 }
619 reset_page(head_extra);
620 __free_page(head_extra);
621 }
622
623 /* Initialize a newly allocated zspage */
624 static void init_zspage(struct page *first_page, struct size_class *class)
625 {
626 unsigned long off = 0;
627 struct page *page = first_page;
628
629 BUG_ON(!is_first_page(first_page));
630 while (page) {
631 struct page *next_page;
632 struct link_free *link;
633 unsigned int i, objs_on_page;
634
635 /*
636 * page->index stores offset of first object starting
637 * in the page. For the first page, this is always 0,
638 * so we use first_page->index (aka ->freelist) to store
639 * head of corresponding zspage's freelist.
640 */
641 if (page != first_page)
642 page->index = off;
643
644 link = (struct link_free *)kmap_atomic(page) +
645 off / sizeof(*link);
646 objs_on_page = (PAGE_SIZE - off) / class->size;
647
648 for (i = 1; i <= objs_on_page; i++) {
649 off += class->size;
650 if (off < PAGE_SIZE) {
651 link->next = obj_location_to_handle(page, i);
652 link += class->size / sizeof(*link);
653 }
654 }
655
656 /*
657 * We now come to the last (full or partial) object on this
658 * page, which must point to the first object on the next
659 * page (if present)
660 */
661 next_page = get_next_page(page);
662 link->next = obj_location_to_handle(next_page, 0);
663 kunmap_atomic(link);
664 page = next_page;
665 off = (off + class->size) % PAGE_SIZE;
666 }
667 }
668
669 /*
670 * Allocate a zspage for the given size class
671 */
672 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
673 {
674 int i, error;
675 struct page *first_page = NULL, *uninitialized_var(prev_page);
676
677 /*
678 * Allocate individual pages and link them together as:
679 * 1. first page->private = first sub-page
680 * 2. all sub-pages are linked together using page->lru
681 * 3. each sub-page is linked to the first page using page->first_page
682 *
683 * For each size class, First/Head pages are linked together using
684 * page->lru. Also, we set PG_private to identify the first page
685 * (i.e. no other sub-page has this flag set) and PG_private_2 to
686 * identify the last page.
687 */
688 error = -ENOMEM;
689 for (i = 0; i < class->pages_per_zspage; i++) {
690 struct page *page;
691
692 page = alloc_page(flags);
693 if (!page)
694 goto cleanup;
695
696 INIT_LIST_HEAD(&page->lru);
697 if (i == 0) { /* first page */
698 SetPagePrivate(page);
699 set_page_private(page, 0);
700 first_page = page;
701 first_page->inuse = 0;
702 }
703 if (i == 1)
704 set_page_private(first_page, (unsigned long)page);
705 if (i >= 1)
706 page->first_page = first_page;
707 if (i >= 2)
708 list_add(&page->lru, &prev_page->lru);
709 if (i == class->pages_per_zspage - 1) /* last page */
710 SetPagePrivate2(page);
711 prev_page = page;
712 }
713
714 init_zspage(first_page, class);
715
716 first_page->freelist = obj_location_to_handle(first_page, 0);
717 /* Maximum number of objects we can store in this zspage */
718 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
719
720 error = 0; /* Success */
721
722 cleanup:
723 if (unlikely(error) && first_page) {
724 free_zspage(first_page);
725 first_page = NULL;
726 }
727
728 return first_page;
729 }
730
731 static struct page *find_get_zspage(struct size_class *class)
732 {
733 int i;
734 struct page *page;
735
736 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
737 page = class->fullness_list[i];
738 if (page)
739 break;
740 }
741
742 return page;
743 }
744
745 #ifdef CONFIG_PGTABLE_MAPPING
746 static inline int __zs_cpu_up(struct mapping_area *area)
747 {
748 /*
749 * Make sure we don't leak memory if a cpu UP notification
750 * and zs_init() race and both call zs_cpu_up() on the same cpu
751 */
752 if (area->vm)
753 return 0;
754 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
755 if (!area->vm)
756 return -ENOMEM;
757 return 0;
758 }
759
760 static inline void __zs_cpu_down(struct mapping_area *area)
761 {
762 if (area->vm)
763 free_vm_area(area->vm);
764 area->vm = NULL;
765 }
766
767 static inline void *__zs_map_object(struct mapping_area *area,
768 struct page *pages[2], int off, int size)
769 {
770 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
771 area->vm_addr = area->vm->addr;
772 return area->vm_addr + off;
773 }
774
775 static inline void __zs_unmap_object(struct mapping_area *area,
776 struct page *pages[2], int off, int size)
777 {
778 unsigned long addr = (unsigned long)area->vm_addr;
779
780 unmap_kernel_range(addr, PAGE_SIZE * 2);
781 }
782
783 #else /* CONFIG_PGTABLE_MAPPING */
784
785 static inline int __zs_cpu_up(struct mapping_area *area)
786 {
787 /*
788 * Make sure we don't leak memory if a cpu UP notification
789 * and zs_init() race and both call zs_cpu_up() on the same cpu
790 */
791 if (area->vm_buf)
792 return 0;
793 area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
794 if (!area->vm_buf)
795 return -ENOMEM;
796 return 0;
797 }
798
799 static inline void __zs_cpu_down(struct mapping_area *area)
800 {
801 if (area->vm_buf)
802 free_page((unsigned long)area->vm_buf);
803 area->vm_buf = NULL;
804 }
805
806 static void *__zs_map_object(struct mapping_area *area,
807 struct page *pages[2], int off, int size)
808 {
809 int sizes[2];
810 void *addr;
811 char *buf = area->vm_buf;
812
813 /* disable page faults to match kmap_atomic() return conditions */
814 pagefault_disable();
815
816 /* no read fastpath */
817 if (area->vm_mm == ZS_MM_WO)
818 goto out;
819
820 sizes[0] = PAGE_SIZE - off;
821 sizes[1] = size - sizes[0];
822
823 /* copy object to per-cpu buffer */
824 addr = kmap_atomic(pages[0]);
825 memcpy(buf, addr + off, sizes[0]);
826 kunmap_atomic(addr);
827 addr = kmap_atomic(pages[1]);
828 memcpy(buf + sizes[0], addr, sizes[1]);
829 kunmap_atomic(addr);
830 out:
831 return area->vm_buf;
832 }
833
834 static void __zs_unmap_object(struct mapping_area *area,
835 struct page *pages[2], int off, int size)
836 {
837 int sizes[2];
838 void *addr;
839 char *buf = area->vm_buf;
840
841 /* no write fastpath */
842 if (area->vm_mm == ZS_MM_RO)
843 goto out;
844
845 sizes[0] = PAGE_SIZE - off;
846 sizes[1] = size - sizes[0];
847
848 /* copy per-cpu buffer to object */
849 addr = kmap_atomic(pages[0]);
850 memcpy(addr + off, buf, sizes[0]);
851 kunmap_atomic(addr);
852 addr = kmap_atomic(pages[1]);
853 memcpy(addr, buf + sizes[0], sizes[1]);
854 kunmap_atomic(addr);
855
856 out:
857 /* enable page faults to match kunmap_atomic() return conditions */
858 pagefault_enable();
859 }
860
861 #endif /* CONFIG_PGTABLE_MAPPING */
862
863 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
864 void *pcpu)
865 {
866 int ret, cpu = (long)pcpu;
867 struct mapping_area *area;
868
869 switch (action) {
870 case CPU_UP_PREPARE:
871 area = &per_cpu(zs_map_area, cpu);
872 ret = __zs_cpu_up(area);
873 if (ret)
874 return notifier_from_errno(ret);
875 break;
876 case CPU_DEAD:
877 case CPU_UP_CANCELED:
878 area = &per_cpu(zs_map_area, cpu);
879 __zs_cpu_down(area);
880 break;
881 }
882
883 return NOTIFY_OK;
884 }
885
886 static struct notifier_block zs_cpu_nb = {
887 .notifier_call = zs_cpu_notifier
888 };
889
890 static void zs_exit(void)
891 {
892 int cpu;
893
894 #ifdef CONFIG_ZPOOL
895 zpool_unregister_driver(&zs_zpool_driver);
896 #endif
897
898 cpu_notifier_register_begin();
899
900 for_each_online_cpu(cpu)
901 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
902 __unregister_cpu_notifier(&zs_cpu_nb);
903
904 cpu_notifier_register_done();
905 }
906
907 static int zs_init(void)
908 {
909 int cpu, ret;
910
911 cpu_notifier_register_begin();
912
913 __register_cpu_notifier(&zs_cpu_nb);
914 for_each_online_cpu(cpu) {
915 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
916 if (notifier_to_errno(ret)) {
917 cpu_notifier_register_done();
918 goto fail;
919 }
920 }
921
922 cpu_notifier_register_done();
923
924 #ifdef CONFIG_ZPOOL
925 zpool_register_driver(&zs_zpool_driver);
926 #endif
927
928 return 0;
929 fail:
930 zs_exit();
931 return notifier_to_errno(ret);
932 }
933
934 /**
935 * zs_create_pool - Creates an allocation pool to work from.
936 * @flags: allocation flags used to allocate pool metadata
937 *
938 * This function must be called before anything when using
939 * the zsmalloc allocator.
940 *
941 * On success, a pointer to the newly created pool is returned,
942 * otherwise NULL.
943 */
944 struct zs_pool *zs_create_pool(gfp_t flags)
945 {
946 int i, ovhd_size;
947 struct zs_pool *pool;
948
949 ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
950 pool = kzalloc(ovhd_size, GFP_KERNEL);
951 if (!pool)
952 return NULL;
953
954 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
955 int size;
956 struct size_class *class;
957
958 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
959 if (size > ZS_MAX_ALLOC_SIZE)
960 size = ZS_MAX_ALLOC_SIZE;
961
962 class = &pool->size_class[i];
963 class->size = size;
964 class->index = i;
965 spin_lock_init(&class->lock);
966 class->pages_per_zspage = get_pages_per_zspage(size);
967
968 }
969
970 pool->flags = flags;
971
972 return pool;
973 }
974 EXPORT_SYMBOL_GPL(zs_create_pool);
975
976 void zs_destroy_pool(struct zs_pool *pool)
977 {
978 int i;
979
980 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
981 int fg;
982 struct size_class *class = &pool->size_class[i];
983
984 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
985 if (class->fullness_list[fg]) {
986 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
987 class->size, fg);
988 }
989 }
990 }
991 kfree(pool);
992 }
993 EXPORT_SYMBOL_GPL(zs_destroy_pool);
994
995 /**
996 * zs_malloc - Allocate block of given size from pool.
997 * @pool: pool to allocate from
998 * @size: size of block to allocate
999 *
1000 * On success, handle to the allocated object is returned,
1001 * otherwise 0.
1002 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1003 */
1004 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1005 {
1006 unsigned long obj;
1007 struct link_free *link;
1008 int class_idx;
1009 struct size_class *class;
1010
1011 struct page *first_page, *m_page;
1012 unsigned long m_objidx, m_offset;
1013
1014 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1015 return 0;
1016
1017 class_idx = get_size_class_index(size);
1018 class = &pool->size_class[class_idx];
1019 BUG_ON(class_idx != class->index);
1020
1021 spin_lock(&class->lock);
1022 first_page = find_get_zspage(class);
1023
1024 if (!first_page) {
1025 spin_unlock(&class->lock);
1026 first_page = alloc_zspage(class, pool->flags);
1027 if (unlikely(!first_page))
1028 return 0;
1029
1030 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1031 spin_lock(&class->lock);
1032 class->pages_allocated += class->pages_per_zspage;
1033 }
1034
1035 obj = (unsigned long)first_page->freelist;
1036 obj_handle_to_location(obj, &m_page, &m_objidx);
1037 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1038
1039 link = (struct link_free *)kmap_atomic(m_page) +
1040 m_offset / sizeof(*link);
1041 first_page->freelist = link->next;
1042 memset(link, POISON_INUSE, sizeof(*link));
1043 kunmap_atomic(link);
1044
1045 first_page->inuse++;
1046 /* Now move the zspage to another fullness group, if required */
1047 fix_fullness_group(pool, first_page);
1048 spin_unlock(&class->lock);
1049
1050 return obj;
1051 }
1052 EXPORT_SYMBOL_GPL(zs_malloc);
1053
1054 void zs_free(struct zs_pool *pool, unsigned long obj)
1055 {
1056 struct link_free *link;
1057 struct page *first_page, *f_page;
1058 unsigned long f_objidx, f_offset;
1059
1060 int class_idx;
1061 struct size_class *class;
1062 enum fullness_group fullness;
1063
1064 if (unlikely(!obj))
1065 return;
1066
1067 obj_handle_to_location(obj, &f_page, &f_objidx);
1068 first_page = get_first_page(f_page);
1069
1070 get_zspage_mapping(first_page, &class_idx, &fullness);
1071 class = &pool->size_class[class_idx];
1072 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1073
1074 spin_lock(&class->lock);
1075
1076 /* Insert this object in containing zspage's freelist */
1077 link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
1078 + f_offset);
1079 link->next = first_page->freelist;
1080 kunmap_atomic(link);
1081 first_page->freelist = (void *)obj;
1082
1083 first_page->inuse--;
1084 fullness = fix_fullness_group(pool, first_page);
1085
1086 if (fullness == ZS_EMPTY)
1087 class->pages_allocated -= class->pages_per_zspage;
1088
1089 spin_unlock(&class->lock);
1090
1091 if (fullness == ZS_EMPTY)
1092 free_zspage(first_page);
1093 }
1094 EXPORT_SYMBOL_GPL(zs_free);
1095
1096 /**
1097 * zs_map_object - get address of allocated object from handle.
1098 * @pool: pool from which the object was allocated
1099 * @handle: handle returned from zs_malloc
1100 *
1101 * Before using an object allocated from zs_malloc, it must be mapped using
1102 * this function. When done with the object, it must be unmapped using
1103 * zs_unmap_object.
1104 *
1105 * Only one object can be mapped per cpu at a time. There is no protection
1106 * against nested mappings.
1107 *
1108 * This function returns with preemption and page faults disabled.
1109 */
1110 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1111 enum zs_mapmode mm)
1112 {
1113 struct page *page;
1114 unsigned long obj_idx, off;
1115
1116 unsigned int class_idx;
1117 enum fullness_group fg;
1118 struct size_class *class;
1119 struct mapping_area *area;
1120 struct page *pages[2];
1121
1122 BUG_ON(!handle);
1123
1124 /*
1125 * Because we use per-cpu mapping areas shared among the
1126 * pools/users, we can't allow mapping in interrupt context
1127 * because it can corrupt another users mappings.
1128 */
1129 BUG_ON(in_interrupt());
1130
1131 obj_handle_to_location(handle, &page, &obj_idx);
1132 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1133 class = &pool->size_class[class_idx];
1134 off = obj_idx_to_offset(page, obj_idx, class->size);
1135
1136 area = &get_cpu_var(zs_map_area);
1137 area->vm_mm = mm;
1138 if (off + class->size <= PAGE_SIZE) {
1139 /* this object is contained entirely within a page */
1140 area->vm_addr = kmap_atomic(page);
1141 return area->vm_addr + off;
1142 }
1143
1144 /* this object spans two pages */
1145 pages[0] = page;
1146 pages[1] = get_next_page(page);
1147 BUG_ON(!pages[1]);
1148
1149 return __zs_map_object(area, pages, off, class->size);
1150 }
1151 EXPORT_SYMBOL_GPL(zs_map_object);
1152
1153 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1154 {
1155 struct page *page;
1156 unsigned long obj_idx, off;
1157
1158 unsigned int class_idx;
1159 enum fullness_group fg;
1160 struct size_class *class;
1161 struct mapping_area *area;
1162
1163 BUG_ON(!handle);
1164
1165 obj_handle_to_location(handle, &page, &obj_idx);
1166 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1167 class = &pool->size_class[class_idx];
1168 off = obj_idx_to_offset(page, obj_idx, class->size);
1169
1170 area = this_cpu_ptr(&zs_map_area);
1171 if (off + class->size <= PAGE_SIZE)
1172 kunmap_atomic(area->vm_addr);
1173 else {
1174 struct page *pages[2];
1175
1176 pages[0] = page;
1177 pages[1] = get_next_page(page);
1178 BUG_ON(!pages[1]);
1179
1180 __zs_unmap_object(area, pages, off, class->size);
1181 }
1182 put_cpu_var(zs_map_area);
1183 }
1184 EXPORT_SYMBOL_GPL(zs_unmap_object);
1185
1186 u64 zs_get_total_size_bytes(struct zs_pool *pool)
1187 {
1188 int i;
1189 u64 npages = 0;
1190
1191 for (i = 0; i < ZS_SIZE_CLASSES; i++)
1192 npages += pool->size_class[i].pages_allocated;
1193
1194 return npages << PAGE_SHIFT;
1195 }
1196 EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
1197
1198 module_init(zs_init);
1199 module_exit(zs_exit);
1200
1201 MODULE_LICENSE("Dual BSD/GPL");
1202 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
This page took 0.073646 seconds and 5 git commands to generate.