zsmalloc: add fullness into stat
[deliverable/linux.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * This allocator is designed for use with zram. Thus, the allocator is
16 * supposed to work well under low memory conditions. In particular, it
17 * never attempts higher order page allocation which is very likely to
18 * fail under memory pressure. On the other hand, if we just use single
19 * (0-order) pages, it would suffer from very high fragmentation --
20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21 * This was one of the major issues with its predecessor (xvmalloc).
22 *
23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24 * and links them together using various 'struct page' fields. These linked
25 * pages act as a single higher-order page i.e. an object can span 0-order
26 * page boundaries. The code refers to these linked pages as a single entity
27 * called zspage.
28 *
29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30 * since this satisfies the requirements of all its current users (in the
31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
32 * uncompressed form). For allocation requests larger than this size, failure
33 * is returned (see zs_malloc).
34 *
35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
37 * location of the allocated object. The reason for this indirection is that
38 * zsmalloc does not keep zspages permanently mapped since that would cause
39 * issues on 32-bit systems where the VA region for kernel space mappings
40 * is very small. So, before using the allocating memory, the object has to
41 * be mapped using zs_map_object() to get a usable pointer and subsequently
42 * unmapped using zs_unmap_object().
43 *
44 * Following is how we use various fields and flags of underlying
45 * struct page(s) to form a zspage.
46 *
47 * Usage of struct page fields:
48 * page->first_page: points to the first component (0-order) page
49 * page->index (union with page->freelist): offset of the first object
50 * starting in this page. For the first page, this is
51 * always 0, so we use this field (aka freelist) to point
52 * to the first free object in zspage.
53 * page->lru: links together all component pages (except the first page)
54 * of a zspage
55 *
56 * For _first_ page only:
57 *
58 * page->private (union with page->first_page): refers to the
59 * component page after the first page
60 * If the page is first_page for huge object, it stores handle.
61 * Look at size_class->huge.
62 * page->freelist: points to the first free object in zspage.
63 * Free objects are linked together using in-place
64 * metadata.
65 * page->objects: maximum number of objects we can store in this
66 * zspage (class->zspage_order * PAGE_SIZE / class->size)
67 * page->lru: links together first pages of various zspages.
68 * Basically forming list of zspages in a fullness group.
69 * page->mapping: class index and fullness group of the zspage
70 *
71 * Usage of struct page flags:
72 * PG_private: identifies the first component page
73 * PG_private2: identifies the last component page
74 *
75 */
76
77 #ifdef CONFIG_ZSMALLOC_DEBUG
78 #define DEBUG
79 #endif
80
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/sched.h>
84 #include <linux/bitops.h>
85 #include <linux/errno.h>
86 #include <linux/highmem.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <asm/tlbflush.h>
90 #include <asm/pgtable.h>
91 #include <linux/cpumask.h>
92 #include <linux/cpu.h>
93 #include <linux/vmalloc.h>
94 #include <linux/hardirq.h>
95 #include <linux/spinlock.h>
96 #include <linux/types.h>
97 #include <linux/debugfs.h>
98 #include <linux/zsmalloc.h>
99 #include <linux/zpool.h>
100
101 /*
102 * This must be power of 2 and greater than of equal to sizeof(link_free).
103 * These two conditions ensure that any 'struct link_free' itself doesn't
104 * span more than 1 page which avoids complex case of mapping 2 pages simply
105 * to restore link_free pointer values.
106 */
107 #define ZS_ALIGN 8
108
109 /*
110 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
111 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
112 */
113 #define ZS_MAX_ZSPAGE_ORDER 2
114 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
115
116 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
117
118 /*
119 * Object location (<PFN>, <obj_idx>) is encoded as
120 * as single (unsigned long) handle value.
121 *
122 * Note that object index <obj_idx> is relative to system
123 * page <PFN> it is stored in, so for each sub-page belonging
124 * to a zspage, obj_idx starts with 0.
125 *
126 * This is made more complicated by various memory models and PAE.
127 */
128
129 #ifndef MAX_PHYSMEM_BITS
130 #ifdef CONFIG_HIGHMEM64G
131 #define MAX_PHYSMEM_BITS 36
132 #else /* !CONFIG_HIGHMEM64G */
133 /*
134 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
135 * be PAGE_SHIFT
136 */
137 #define MAX_PHYSMEM_BITS BITS_PER_LONG
138 #endif
139 #endif
140 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
141
142 /*
143 * Memory for allocating for handle keeps object position by
144 * encoding <page, obj_idx> and the encoded value has a room
145 * in least bit(ie, look at obj_to_location).
146 * We use the bit to synchronize between object access by
147 * user and migration.
148 */
149 #define HANDLE_PIN_BIT 0
150
151 /*
152 * Head in allocated object should have OBJ_ALLOCATED_TAG
153 * to identify the object was allocated or not.
154 * It's okay to add the status bit in the least bit because
155 * header keeps handle which is 4byte-aligned address so we
156 * have room for two bit at least.
157 */
158 #define OBJ_ALLOCATED_TAG 1
159 #define OBJ_TAG_BITS 1
160 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
161 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
162
163 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
164 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
165 #define ZS_MIN_ALLOC_SIZE \
166 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
167 /* each chunk includes extra space to keep handle */
168 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
169
170 /*
171 * On systems with 4K page size, this gives 255 size classes! There is a
172 * trader-off here:
173 * - Large number of size classes is potentially wasteful as free page are
174 * spread across these classes
175 * - Small number of size classes causes large internal fragmentation
176 * - Probably its better to use specific size classes (empirically
177 * determined). NOTE: all those class sizes must be set as multiple of
178 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
179 *
180 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
181 * (reason above)
182 */
183 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
184
185 /*
186 * We do not maintain any list for completely empty or full pages
187 */
188 enum fullness_group {
189 ZS_ALMOST_FULL,
190 ZS_ALMOST_EMPTY,
191 _ZS_NR_FULLNESS_GROUPS,
192
193 ZS_EMPTY,
194 ZS_FULL
195 };
196
197 enum zs_stat_type {
198 OBJ_ALLOCATED,
199 OBJ_USED,
200 CLASS_ALMOST_FULL,
201 CLASS_ALMOST_EMPTY,
202 NR_ZS_STAT_TYPE,
203 };
204
205 #ifdef CONFIG_ZSMALLOC_STAT
206
207 static struct dentry *zs_stat_root;
208
209 struct zs_size_stat {
210 unsigned long objs[NR_ZS_STAT_TYPE];
211 };
212
213 #endif
214
215 /*
216 * number of size_classes
217 */
218 static int zs_size_classes;
219
220 /*
221 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
222 * n <= N / f, where
223 * n = number of allocated objects
224 * N = total number of objects zspage can store
225 * f = fullness_threshold_frac
226 *
227 * Similarly, we assign zspage to:
228 * ZS_ALMOST_FULL when n > N / f
229 * ZS_EMPTY when n == 0
230 * ZS_FULL when n == N
231 *
232 * (see: fix_fullness_group())
233 */
234 static const int fullness_threshold_frac = 4;
235
236 struct size_class {
237 /*
238 * Size of objects stored in this class. Must be multiple
239 * of ZS_ALIGN.
240 */
241 int size;
242 unsigned int index;
243
244 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
245 int pages_per_zspage;
246 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
247 bool huge;
248
249 #ifdef CONFIG_ZSMALLOC_STAT
250 struct zs_size_stat stats;
251 #endif
252
253 spinlock_t lock;
254
255 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
256 };
257
258 /*
259 * Placed within free objects to form a singly linked list.
260 * For every zspage, first_page->freelist gives head of this list.
261 *
262 * This must be power of 2 and less than or equal to ZS_ALIGN
263 */
264 struct link_free {
265 union {
266 /*
267 * Position of next free chunk (encodes <PFN, obj_idx>)
268 * It's valid for non-allocated object
269 */
270 void *next;
271 /*
272 * Handle of allocated object.
273 */
274 unsigned long handle;
275 };
276 };
277
278 struct zs_pool {
279 char *name;
280
281 struct size_class **size_class;
282 struct kmem_cache *handle_cachep;
283
284 gfp_t flags; /* allocation flags used when growing pool */
285 atomic_long_t pages_allocated;
286
287 #ifdef CONFIG_ZSMALLOC_STAT
288 struct dentry *stat_dentry;
289 #endif
290 };
291
292 /*
293 * A zspage's class index and fullness group
294 * are encoded in its (first)page->mapping
295 */
296 #define CLASS_IDX_BITS 28
297 #define FULLNESS_BITS 4
298 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
299 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
300
301 struct mapping_area {
302 #ifdef CONFIG_PGTABLE_MAPPING
303 struct vm_struct *vm; /* vm area for mapping object that span pages */
304 #else
305 char *vm_buf; /* copy buffer for objects that span pages */
306 #endif
307 char *vm_addr; /* address of kmap_atomic()'ed pages */
308 enum zs_mapmode vm_mm; /* mapping mode */
309 bool huge;
310 };
311
312 static int create_handle_cache(struct zs_pool *pool)
313 {
314 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
315 0, 0, NULL);
316 return pool->handle_cachep ? 0 : 1;
317 }
318
319 static void destroy_handle_cache(struct zs_pool *pool)
320 {
321 kmem_cache_destroy(pool->handle_cachep);
322 }
323
324 static unsigned long alloc_handle(struct zs_pool *pool)
325 {
326 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
327 pool->flags & ~__GFP_HIGHMEM);
328 }
329
330 static void free_handle(struct zs_pool *pool, unsigned long handle)
331 {
332 kmem_cache_free(pool->handle_cachep, (void *)handle);
333 }
334
335 static void record_obj(unsigned long handle, unsigned long obj)
336 {
337 *(unsigned long *)handle = obj;
338 }
339
340 /* zpool driver */
341
342 #ifdef CONFIG_ZPOOL
343
344 static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
345 {
346 return zs_create_pool(name, gfp);
347 }
348
349 static void zs_zpool_destroy(void *pool)
350 {
351 zs_destroy_pool(pool);
352 }
353
354 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
355 unsigned long *handle)
356 {
357 *handle = zs_malloc(pool, size);
358 return *handle ? 0 : -1;
359 }
360 static void zs_zpool_free(void *pool, unsigned long handle)
361 {
362 zs_free(pool, handle);
363 }
364
365 static int zs_zpool_shrink(void *pool, unsigned int pages,
366 unsigned int *reclaimed)
367 {
368 return -EINVAL;
369 }
370
371 static void *zs_zpool_map(void *pool, unsigned long handle,
372 enum zpool_mapmode mm)
373 {
374 enum zs_mapmode zs_mm;
375
376 switch (mm) {
377 case ZPOOL_MM_RO:
378 zs_mm = ZS_MM_RO;
379 break;
380 case ZPOOL_MM_WO:
381 zs_mm = ZS_MM_WO;
382 break;
383 case ZPOOL_MM_RW: /* fallthru */
384 default:
385 zs_mm = ZS_MM_RW;
386 break;
387 }
388
389 return zs_map_object(pool, handle, zs_mm);
390 }
391 static void zs_zpool_unmap(void *pool, unsigned long handle)
392 {
393 zs_unmap_object(pool, handle);
394 }
395
396 static u64 zs_zpool_total_size(void *pool)
397 {
398 return zs_get_total_pages(pool) << PAGE_SHIFT;
399 }
400
401 static struct zpool_driver zs_zpool_driver = {
402 .type = "zsmalloc",
403 .owner = THIS_MODULE,
404 .create = zs_zpool_create,
405 .destroy = zs_zpool_destroy,
406 .malloc = zs_zpool_malloc,
407 .free = zs_zpool_free,
408 .shrink = zs_zpool_shrink,
409 .map = zs_zpool_map,
410 .unmap = zs_zpool_unmap,
411 .total_size = zs_zpool_total_size,
412 };
413
414 MODULE_ALIAS("zpool-zsmalloc");
415 #endif /* CONFIG_ZPOOL */
416
417 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
418 {
419 return pages_per_zspage * PAGE_SIZE / size;
420 }
421
422 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
423 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
424
425 static int is_first_page(struct page *page)
426 {
427 return PagePrivate(page);
428 }
429
430 static int is_last_page(struct page *page)
431 {
432 return PagePrivate2(page);
433 }
434
435 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
436 enum fullness_group *fullness)
437 {
438 unsigned long m;
439 BUG_ON(!is_first_page(page));
440
441 m = (unsigned long)page->mapping;
442 *fullness = m & FULLNESS_MASK;
443 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
444 }
445
446 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
447 enum fullness_group fullness)
448 {
449 unsigned long m;
450 BUG_ON(!is_first_page(page));
451
452 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
453 (fullness & FULLNESS_MASK);
454 page->mapping = (struct address_space *)m;
455 }
456
457 /*
458 * zsmalloc divides the pool into various size classes where each
459 * class maintains a list of zspages where each zspage is divided
460 * into equal sized chunks. Each allocation falls into one of these
461 * classes depending on its size. This function returns index of the
462 * size class which has chunk size big enough to hold the give size.
463 */
464 static int get_size_class_index(int size)
465 {
466 int idx = 0;
467
468 if (likely(size > ZS_MIN_ALLOC_SIZE))
469 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
470 ZS_SIZE_CLASS_DELTA);
471
472 return min(zs_size_classes - 1, idx);
473 }
474
475 #ifdef CONFIG_ZSMALLOC_STAT
476
477 static inline void zs_stat_inc(struct size_class *class,
478 enum zs_stat_type type, unsigned long cnt)
479 {
480 class->stats.objs[type] += cnt;
481 }
482
483 static inline void zs_stat_dec(struct size_class *class,
484 enum zs_stat_type type, unsigned long cnt)
485 {
486 class->stats.objs[type] -= cnt;
487 }
488
489 static inline unsigned long zs_stat_get(struct size_class *class,
490 enum zs_stat_type type)
491 {
492 return class->stats.objs[type];
493 }
494
495 static int __init zs_stat_init(void)
496 {
497 if (!debugfs_initialized())
498 return -ENODEV;
499
500 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
501 if (!zs_stat_root)
502 return -ENOMEM;
503
504 return 0;
505 }
506
507 static void __exit zs_stat_exit(void)
508 {
509 debugfs_remove_recursive(zs_stat_root);
510 }
511
512 static int zs_stats_size_show(struct seq_file *s, void *v)
513 {
514 int i;
515 struct zs_pool *pool = s->private;
516 struct size_class *class;
517 int objs_per_zspage;
518 unsigned long class_almost_full, class_almost_empty;
519 unsigned long obj_allocated, obj_used, pages_used;
520 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
521 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
522
523 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
524 "class", "size", "almost_full", "almost_empty",
525 "obj_allocated", "obj_used", "pages_used",
526 "pages_per_zspage");
527
528 for (i = 0; i < zs_size_classes; i++) {
529 class = pool->size_class[i];
530
531 if (class->index != i)
532 continue;
533
534 spin_lock(&class->lock);
535 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
536 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
537 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
538 obj_used = zs_stat_get(class, OBJ_USED);
539 spin_unlock(&class->lock);
540
541 objs_per_zspage = get_maxobj_per_zspage(class->size,
542 class->pages_per_zspage);
543 pages_used = obj_allocated / objs_per_zspage *
544 class->pages_per_zspage;
545
546 seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
547 i, class->size, class_almost_full, class_almost_empty,
548 obj_allocated, obj_used, pages_used,
549 class->pages_per_zspage);
550
551 total_class_almost_full += class_almost_full;
552 total_class_almost_empty += class_almost_empty;
553 total_objs += obj_allocated;
554 total_used_objs += obj_used;
555 total_pages += pages_used;
556 }
557
558 seq_puts(s, "\n");
559 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
560 "Total", "", total_class_almost_full,
561 total_class_almost_empty, total_objs,
562 total_used_objs, total_pages);
563
564 return 0;
565 }
566
567 static int zs_stats_size_open(struct inode *inode, struct file *file)
568 {
569 return single_open(file, zs_stats_size_show, inode->i_private);
570 }
571
572 static const struct file_operations zs_stat_size_ops = {
573 .open = zs_stats_size_open,
574 .read = seq_read,
575 .llseek = seq_lseek,
576 .release = single_release,
577 };
578
579 static int zs_pool_stat_create(char *name, struct zs_pool *pool)
580 {
581 struct dentry *entry;
582
583 if (!zs_stat_root)
584 return -ENODEV;
585
586 entry = debugfs_create_dir(name, zs_stat_root);
587 if (!entry) {
588 pr_warn("debugfs dir <%s> creation failed\n", name);
589 return -ENOMEM;
590 }
591 pool->stat_dentry = entry;
592
593 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
594 pool->stat_dentry, pool, &zs_stat_size_ops);
595 if (!entry) {
596 pr_warn("%s: debugfs file entry <%s> creation failed\n",
597 name, "classes");
598 return -ENOMEM;
599 }
600
601 return 0;
602 }
603
604 static void zs_pool_stat_destroy(struct zs_pool *pool)
605 {
606 debugfs_remove_recursive(pool->stat_dentry);
607 }
608
609 #else /* CONFIG_ZSMALLOC_STAT */
610
611 static inline void zs_stat_inc(struct size_class *class,
612 enum zs_stat_type type, unsigned long cnt)
613 {
614 }
615
616 static inline void zs_stat_dec(struct size_class *class,
617 enum zs_stat_type type, unsigned long cnt)
618 {
619 }
620
621 static inline unsigned long zs_stat_get(struct size_class *class,
622 enum zs_stat_type type)
623 {
624 return 0;
625 }
626
627 static int __init zs_stat_init(void)
628 {
629 return 0;
630 }
631
632 static void __exit zs_stat_exit(void)
633 {
634 }
635
636 static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
637 {
638 return 0;
639 }
640
641 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
642 {
643 }
644
645 #endif
646
647
648 /*
649 * For each size class, zspages are divided into different groups
650 * depending on how "full" they are. This was done so that we could
651 * easily find empty or nearly empty zspages when we try to shrink
652 * the pool (not yet implemented). This function returns fullness
653 * status of the given page.
654 */
655 static enum fullness_group get_fullness_group(struct page *page)
656 {
657 int inuse, max_objects;
658 enum fullness_group fg;
659 BUG_ON(!is_first_page(page));
660
661 inuse = page->inuse;
662 max_objects = page->objects;
663
664 if (inuse == 0)
665 fg = ZS_EMPTY;
666 else if (inuse == max_objects)
667 fg = ZS_FULL;
668 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
669 fg = ZS_ALMOST_EMPTY;
670 else
671 fg = ZS_ALMOST_FULL;
672
673 return fg;
674 }
675
676 /*
677 * Each size class maintains various freelists and zspages are assigned
678 * to one of these freelists based on the number of live objects they
679 * have. This functions inserts the given zspage into the freelist
680 * identified by <class, fullness_group>.
681 */
682 static void insert_zspage(struct page *page, struct size_class *class,
683 enum fullness_group fullness)
684 {
685 struct page **head;
686
687 BUG_ON(!is_first_page(page));
688
689 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
690 return;
691
692 head = &class->fullness_list[fullness];
693 if (*head)
694 list_add_tail(&page->lru, &(*head)->lru);
695
696 *head = page;
697 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
698 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
699 }
700
701 /*
702 * This function removes the given zspage from the freelist identified
703 * by <class, fullness_group>.
704 */
705 static void remove_zspage(struct page *page, struct size_class *class,
706 enum fullness_group fullness)
707 {
708 struct page **head;
709
710 BUG_ON(!is_first_page(page));
711
712 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
713 return;
714
715 head = &class->fullness_list[fullness];
716 BUG_ON(!*head);
717 if (list_empty(&(*head)->lru))
718 *head = NULL;
719 else if (*head == page)
720 *head = (struct page *)list_entry((*head)->lru.next,
721 struct page, lru);
722
723 list_del_init(&page->lru);
724 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
725 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
726 }
727
728 /*
729 * Each size class maintains zspages in different fullness groups depending
730 * on the number of live objects they contain. When allocating or freeing
731 * objects, the fullness status of the page can change, say, from ALMOST_FULL
732 * to ALMOST_EMPTY when freeing an object. This function checks if such
733 * a status change has occurred for the given page and accordingly moves the
734 * page from the freelist of the old fullness group to that of the new
735 * fullness group.
736 */
737 static enum fullness_group fix_fullness_group(struct size_class *class,
738 struct page *page)
739 {
740 int class_idx;
741 enum fullness_group currfg, newfg;
742
743 BUG_ON(!is_first_page(page));
744
745 get_zspage_mapping(page, &class_idx, &currfg);
746 newfg = get_fullness_group(page);
747 if (newfg == currfg)
748 goto out;
749
750 remove_zspage(page, class, currfg);
751 insert_zspage(page, class, newfg);
752 set_zspage_mapping(page, class_idx, newfg);
753
754 out:
755 return newfg;
756 }
757
758 /*
759 * We have to decide on how many pages to link together
760 * to form a zspage for each size class. This is important
761 * to reduce wastage due to unusable space left at end of
762 * each zspage which is given as:
763 * wastage = Zp - Zp % size_class
764 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
765 *
766 * For example, for size class of 3/8 * PAGE_SIZE, we should
767 * link together 3 PAGE_SIZE sized pages to form a zspage
768 * since then we can perfectly fit in 8 such objects.
769 */
770 static int get_pages_per_zspage(int class_size)
771 {
772 int i, max_usedpc = 0;
773 /* zspage order which gives maximum used size per KB */
774 int max_usedpc_order = 1;
775
776 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
777 int zspage_size;
778 int waste, usedpc;
779
780 zspage_size = i * PAGE_SIZE;
781 waste = zspage_size % class_size;
782 usedpc = (zspage_size - waste) * 100 / zspage_size;
783
784 if (usedpc > max_usedpc) {
785 max_usedpc = usedpc;
786 max_usedpc_order = i;
787 }
788 }
789
790 return max_usedpc_order;
791 }
792
793 /*
794 * A single 'zspage' is composed of many system pages which are
795 * linked together using fields in struct page. This function finds
796 * the first/head page, given any component page of a zspage.
797 */
798 static struct page *get_first_page(struct page *page)
799 {
800 if (is_first_page(page))
801 return page;
802 else
803 return page->first_page;
804 }
805
806 static struct page *get_next_page(struct page *page)
807 {
808 struct page *next;
809
810 if (is_last_page(page))
811 next = NULL;
812 else if (is_first_page(page))
813 next = (struct page *)page_private(page);
814 else
815 next = list_entry(page->lru.next, struct page, lru);
816
817 return next;
818 }
819
820 /*
821 * Encode <page, obj_idx> as a single handle value.
822 * We use the least bit of handle for tagging.
823 */
824 static void *location_to_obj(struct page *page, unsigned long obj_idx)
825 {
826 unsigned long obj;
827
828 if (!page) {
829 BUG_ON(obj_idx);
830 return NULL;
831 }
832
833 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
834 obj |= ((obj_idx) & OBJ_INDEX_MASK);
835 obj <<= OBJ_TAG_BITS;
836
837 return (void *)obj;
838 }
839
840 /*
841 * Decode <page, obj_idx> pair from the given object handle. We adjust the
842 * decoded obj_idx back to its original value since it was adjusted in
843 * location_to_obj().
844 */
845 static void obj_to_location(unsigned long obj, struct page **page,
846 unsigned long *obj_idx)
847 {
848 obj >>= OBJ_TAG_BITS;
849 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
850 *obj_idx = (obj & OBJ_INDEX_MASK);
851 }
852
853 static unsigned long handle_to_obj(unsigned long handle)
854 {
855 return *(unsigned long *)handle;
856 }
857
858 static unsigned long obj_to_head(struct size_class *class, struct page *page,
859 void *obj)
860 {
861 if (class->huge) {
862 VM_BUG_ON(!is_first_page(page));
863 return *(unsigned long *)page_private(page);
864 } else
865 return *(unsigned long *)obj;
866 }
867
868 static unsigned long obj_idx_to_offset(struct page *page,
869 unsigned long obj_idx, int class_size)
870 {
871 unsigned long off = 0;
872
873 if (!is_first_page(page))
874 off = page->index;
875
876 return off + obj_idx * class_size;
877 }
878
879 static inline int trypin_tag(unsigned long handle)
880 {
881 unsigned long *ptr = (unsigned long *)handle;
882
883 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
884 }
885
886 static void pin_tag(unsigned long handle)
887 {
888 while (!trypin_tag(handle));
889 }
890
891 static void unpin_tag(unsigned long handle)
892 {
893 unsigned long *ptr = (unsigned long *)handle;
894
895 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
896 }
897
898 static void reset_page(struct page *page)
899 {
900 clear_bit(PG_private, &page->flags);
901 clear_bit(PG_private_2, &page->flags);
902 set_page_private(page, 0);
903 page->mapping = NULL;
904 page->freelist = NULL;
905 page_mapcount_reset(page);
906 }
907
908 static void free_zspage(struct page *first_page)
909 {
910 struct page *nextp, *tmp, *head_extra;
911
912 BUG_ON(!is_first_page(first_page));
913 BUG_ON(first_page->inuse);
914
915 head_extra = (struct page *)page_private(first_page);
916
917 reset_page(first_page);
918 __free_page(first_page);
919
920 /* zspage with only 1 system page */
921 if (!head_extra)
922 return;
923
924 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
925 list_del(&nextp->lru);
926 reset_page(nextp);
927 __free_page(nextp);
928 }
929 reset_page(head_extra);
930 __free_page(head_extra);
931 }
932
933 /* Initialize a newly allocated zspage */
934 static void init_zspage(struct page *first_page, struct size_class *class)
935 {
936 unsigned long off = 0;
937 struct page *page = first_page;
938
939 BUG_ON(!is_first_page(first_page));
940 while (page) {
941 struct page *next_page;
942 struct link_free *link;
943 unsigned int i = 1;
944 void *vaddr;
945
946 /*
947 * page->index stores offset of first object starting
948 * in the page. For the first page, this is always 0,
949 * so we use first_page->index (aka ->freelist) to store
950 * head of corresponding zspage's freelist.
951 */
952 if (page != first_page)
953 page->index = off;
954
955 vaddr = kmap_atomic(page);
956 link = (struct link_free *)vaddr + off / sizeof(*link);
957
958 while ((off += class->size) < PAGE_SIZE) {
959 link->next = location_to_obj(page, i++);
960 link += class->size / sizeof(*link);
961 }
962
963 /*
964 * We now come to the last (full or partial) object on this
965 * page, which must point to the first object on the next
966 * page (if present)
967 */
968 next_page = get_next_page(page);
969 link->next = location_to_obj(next_page, 0);
970 kunmap_atomic(vaddr);
971 page = next_page;
972 off %= PAGE_SIZE;
973 }
974 }
975
976 /*
977 * Allocate a zspage for the given size class
978 */
979 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
980 {
981 int i, error;
982 struct page *first_page = NULL, *uninitialized_var(prev_page);
983
984 /*
985 * Allocate individual pages and link them together as:
986 * 1. first page->private = first sub-page
987 * 2. all sub-pages are linked together using page->lru
988 * 3. each sub-page is linked to the first page using page->first_page
989 *
990 * For each size class, First/Head pages are linked together using
991 * page->lru. Also, we set PG_private to identify the first page
992 * (i.e. no other sub-page has this flag set) and PG_private_2 to
993 * identify the last page.
994 */
995 error = -ENOMEM;
996 for (i = 0; i < class->pages_per_zspage; i++) {
997 struct page *page;
998
999 page = alloc_page(flags);
1000 if (!page)
1001 goto cleanup;
1002
1003 INIT_LIST_HEAD(&page->lru);
1004 if (i == 0) { /* first page */
1005 SetPagePrivate(page);
1006 set_page_private(page, 0);
1007 first_page = page;
1008 first_page->inuse = 0;
1009 }
1010 if (i == 1)
1011 set_page_private(first_page, (unsigned long)page);
1012 if (i >= 1)
1013 page->first_page = first_page;
1014 if (i >= 2)
1015 list_add(&page->lru, &prev_page->lru);
1016 if (i == class->pages_per_zspage - 1) /* last page */
1017 SetPagePrivate2(page);
1018 prev_page = page;
1019 }
1020
1021 init_zspage(first_page, class);
1022
1023 first_page->freelist = location_to_obj(first_page, 0);
1024 /* Maximum number of objects we can store in this zspage */
1025 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1026
1027 error = 0; /* Success */
1028
1029 cleanup:
1030 if (unlikely(error) && first_page) {
1031 free_zspage(first_page);
1032 first_page = NULL;
1033 }
1034
1035 return first_page;
1036 }
1037
1038 static struct page *find_get_zspage(struct size_class *class)
1039 {
1040 int i;
1041 struct page *page;
1042
1043 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1044 page = class->fullness_list[i];
1045 if (page)
1046 break;
1047 }
1048
1049 return page;
1050 }
1051
1052 #ifdef CONFIG_PGTABLE_MAPPING
1053 static inline int __zs_cpu_up(struct mapping_area *area)
1054 {
1055 /*
1056 * Make sure we don't leak memory if a cpu UP notification
1057 * and zs_init() race and both call zs_cpu_up() on the same cpu
1058 */
1059 if (area->vm)
1060 return 0;
1061 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1062 if (!area->vm)
1063 return -ENOMEM;
1064 return 0;
1065 }
1066
1067 static inline void __zs_cpu_down(struct mapping_area *area)
1068 {
1069 if (area->vm)
1070 free_vm_area(area->vm);
1071 area->vm = NULL;
1072 }
1073
1074 static inline void *__zs_map_object(struct mapping_area *area,
1075 struct page *pages[2], int off, int size)
1076 {
1077 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1078 area->vm_addr = area->vm->addr;
1079 return area->vm_addr + off;
1080 }
1081
1082 static inline void __zs_unmap_object(struct mapping_area *area,
1083 struct page *pages[2], int off, int size)
1084 {
1085 unsigned long addr = (unsigned long)area->vm_addr;
1086
1087 unmap_kernel_range(addr, PAGE_SIZE * 2);
1088 }
1089
1090 #else /* CONFIG_PGTABLE_MAPPING */
1091
1092 static inline int __zs_cpu_up(struct mapping_area *area)
1093 {
1094 /*
1095 * Make sure we don't leak memory if a cpu UP notification
1096 * and zs_init() race and both call zs_cpu_up() on the same cpu
1097 */
1098 if (area->vm_buf)
1099 return 0;
1100 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1101 if (!area->vm_buf)
1102 return -ENOMEM;
1103 return 0;
1104 }
1105
1106 static inline void __zs_cpu_down(struct mapping_area *area)
1107 {
1108 kfree(area->vm_buf);
1109 area->vm_buf = NULL;
1110 }
1111
1112 static void *__zs_map_object(struct mapping_area *area,
1113 struct page *pages[2], int off, int size)
1114 {
1115 int sizes[2];
1116 void *addr;
1117 char *buf = area->vm_buf;
1118
1119 /* disable page faults to match kmap_atomic() return conditions */
1120 pagefault_disable();
1121
1122 /* no read fastpath */
1123 if (area->vm_mm == ZS_MM_WO)
1124 goto out;
1125
1126 sizes[0] = PAGE_SIZE - off;
1127 sizes[1] = size - sizes[0];
1128
1129 /* copy object to per-cpu buffer */
1130 addr = kmap_atomic(pages[0]);
1131 memcpy(buf, addr + off, sizes[0]);
1132 kunmap_atomic(addr);
1133 addr = kmap_atomic(pages[1]);
1134 memcpy(buf + sizes[0], addr, sizes[1]);
1135 kunmap_atomic(addr);
1136 out:
1137 return area->vm_buf;
1138 }
1139
1140 static void __zs_unmap_object(struct mapping_area *area,
1141 struct page *pages[2], int off, int size)
1142 {
1143 int sizes[2];
1144 void *addr;
1145 char *buf;
1146
1147 /* no write fastpath */
1148 if (area->vm_mm == ZS_MM_RO)
1149 goto out;
1150
1151 buf = area->vm_buf;
1152 if (!area->huge) {
1153 buf = buf + ZS_HANDLE_SIZE;
1154 size -= ZS_HANDLE_SIZE;
1155 off += ZS_HANDLE_SIZE;
1156 }
1157
1158 sizes[0] = PAGE_SIZE - off;
1159 sizes[1] = size - sizes[0];
1160
1161 /* copy per-cpu buffer to object */
1162 addr = kmap_atomic(pages[0]);
1163 memcpy(addr + off, buf, sizes[0]);
1164 kunmap_atomic(addr);
1165 addr = kmap_atomic(pages[1]);
1166 memcpy(addr, buf + sizes[0], sizes[1]);
1167 kunmap_atomic(addr);
1168
1169 out:
1170 /* enable page faults to match kunmap_atomic() return conditions */
1171 pagefault_enable();
1172 }
1173
1174 #endif /* CONFIG_PGTABLE_MAPPING */
1175
1176 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1177 void *pcpu)
1178 {
1179 int ret, cpu = (long)pcpu;
1180 struct mapping_area *area;
1181
1182 switch (action) {
1183 case CPU_UP_PREPARE:
1184 area = &per_cpu(zs_map_area, cpu);
1185 ret = __zs_cpu_up(area);
1186 if (ret)
1187 return notifier_from_errno(ret);
1188 break;
1189 case CPU_DEAD:
1190 case CPU_UP_CANCELED:
1191 area = &per_cpu(zs_map_area, cpu);
1192 __zs_cpu_down(area);
1193 break;
1194 }
1195
1196 return NOTIFY_OK;
1197 }
1198
1199 static struct notifier_block zs_cpu_nb = {
1200 .notifier_call = zs_cpu_notifier
1201 };
1202
1203 static int zs_register_cpu_notifier(void)
1204 {
1205 int cpu, uninitialized_var(ret);
1206
1207 cpu_notifier_register_begin();
1208
1209 __register_cpu_notifier(&zs_cpu_nb);
1210 for_each_online_cpu(cpu) {
1211 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1212 if (notifier_to_errno(ret))
1213 break;
1214 }
1215
1216 cpu_notifier_register_done();
1217 return notifier_to_errno(ret);
1218 }
1219
1220 static void zs_unregister_cpu_notifier(void)
1221 {
1222 int cpu;
1223
1224 cpu_notifier_register_begin();
1225
1226 for_each_online_cpu(cpu)
1227 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1228 __unregister_cpu_notifier(&zs_cpu_nb);
1229
1230 cpu_notifier_register_done();
1231 }
1232
1233 static void init_zs_size_classes(void)
1234 {
1235 int nr;
1236
1237 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1238 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1239 nr += 1;
1240
1241 zs_size_classes = nr;
1242 }
1243
1244 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1245 {
1246 if (prev->pages_per_zspage != pages_per_zspage)
1247 return false;
1248
1249 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1250 != get_maxobj_per_zspage(size, pages_per_zspage))
1251 return false;
1252
1253 return true;
1254 }
1255
1256 static bool zspage_full(struct page *page)
1257 {
1258 BUG_ON(!is_first_page(page));
1259
1260 return page->inuse == page->objects;
1261 }
1262
1263 unsigned long zs_get_total_pages(struct zs_pool *pool)
1264 {
1265 return atomic_long_read(&pool->pages_allocated);
1266 }
1267 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1268
1269 /**
1270 * zs_map_object - get address of allocated object from handle.
1271 * @pool: pool from which the object was allocated
1272 * @handle: handle returned from zs_malloc
1273 *
1274 * Before using an object allocated from zs_malloc, it must be mapped using
1275 * this function. When done with the object, it must be unmapped using
1276 * zs_unmap_object.
1277 *
1278 * Only one object can be mapped per cpu at a time. There is no protection
1279 * against nested mappings.
1280 *
1281 * This function returns with preemption and page faults disabled.
1282 */
1283 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1284 enum zs_mapmode mm)
1285 {
1286 struct page *page;
1287 unsigned long obj, obj_idx, off;
1288
1289 unsigned int class_idx;
1290 enum fullness_group fg;
1291 struct size_class *class;
1292 struct mapping_area *area;
1293 struct page *pages[2];
1294 void *ret;
1295
1296 BUG_ON(!handle);
1297
1298 /*
1299 * Because we use per-cpu mapping areas shared among the
1300 * pools/users, we can't allow mapping in interrupt context
1301 * because it can corrupt another users mappings.
1302 */
1303 BUG_ON(in_interrupt());
1304
1305 /* From now on, migration cannot move the object */
1306 pin_tag(handle);
1307
1308 obj = handle_to_obj(handle);
1309 obj_to_location(obj, &page, &obj_idx);
1310 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1311 class = pool->size_class[class_idx];
1312 off = obj_idx_to_offset(page, obj_idx, class->size);
1313
1314 area = &get_cpu_var(zs_map_area);
1315 area->vm_mm = mm;
1316 if (off + class->size <= PAGE_SIZE) {
1317 /* this object is contained entirely within a page */
1318 area->vm_addr = kmap_atomic(page);
1319 ret = area->vm_addr + off;
1320 goto out;
1321 }
1322
1323 /* this object spans two pages */
1324 pages[0] = page;
1325 pages[1] = get_next_page(page);
1326 BUG_ON(!pages[1]);
1327
1328 ret = __zs_map_object(area, pages, off, class->size);
1329 out:
1330 if (!class->huge)
1331 ret += ZS_HANDLE_SIZE;
1332
1333 return ret;
1334 }
1335 EXPORT_SYMBOL_GPL(zs_map_object);
1336
1337 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1338 {
1339 struct page *page;
1340 unsigned long obj, obj_idx, off;
1341
1342 unsigned int class_idx;
1343 enum fullness_group fg;
1344 struct size_class *class;
1345 struct mapping_area *area;
1346
1347 BUG_ON(!handle);
1348
1349 obj = handle_to_obj(handle);
1350 obj_to_location(obj, &page, &obj_idx);
1351 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1352 class = pool->size_class[class_idx];
1353 off = obj_idx_to_offset(page, obj_idx, class->size);
1354
1355 area = this_cpu_ptr(&zs_map_area);
1356 if (off + class->size <= PAGE_SIZE)
1357 kunmap_atomic(area->vm_addr);
1358 else {
1359 struct page *pages[2];
1360
1361 pages[0] = page;
1362 pages[1] = get_next_page(page);
1363 BUG_ON(!pages[1]);
1364
1365 __zs_unmap_object(area, pages, off, class->size);
1366 }
1367 put_cpu_var(zs_map_area);
1368 unpin_tag(handle);
1369 }
1370 EXPORT_SYMBOL_GPL(zs_unmap_object);
1371
1372 static unsigned long obj_malloc(struct page *first_page,
1373 struct size_class *class, unsigned long handle)
1374 {
1375 unsigned long obj;
1376 struct link_free *link;
1377
1378 struct page *m_page;
1379 unsigned long m_objidx, m_offset;
1380 void *vaddr;
1381
1382 handle |= OBJ_ALLOCATED_TAG;
1383 obj = (unsigned long)first_page->freelist;
1384 obj_to_location(obj, &m_page, &m_objidx);
1385 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1386
1387 vaddr = kmap_atomic(m_page);
1388 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1389 first_page->freelist = link->next;
1390 if (!class->huge)
1391 /* record handle in the header of allocated chunk */
1392 link->handle = handle;
1393 else
1394 /* record handle in first_page->private */
1395 set_page_private(first_page, handle);
1396 kunmap_atomic(vaddr);
1397 first_page->inuse++;
1398 zs_stat_inc(class, OBJ_USED, 1);
1399
1400 return obj;
1401 }
1402
1403
1404 /**
1405 * zs_malloc - Allocate block of given size from pool.
1406 * @pool: pool to allocate from
1407 * @size: size of block to allocate
1408 *
1409 * On success, handle to the allocated object is returned,
1410 * otherwise 0.
1411 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1412 */
1413 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1414 {
1415 unsigned long handle, obj;
1416 struct size_class *class;
1417 struct page *first_page;
1418
1419 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1420 return 0;
1421
1422 handle = alloc_handle(pool);
1423 if (!handle)
1424 return 0;
1425
1426 /* extra space in chunk to keep the handle */
1427 size += ZS_HANDLE_SIZE;
1428 class = pool->size_class[get_size_class_index(size)];
1429 /* In huge class size, we store the handle into first_page->private */
1430 if (class->huge) {
1431 size -= ZS_HANDLE_SIZE;
1432 class = pool->size_class[get_size_class_index(size)];
1433 }
1434
1435 spin_lock(&class->lock);
1436 first_page = find_get_zspage(class);
1437
1438 if (!first_page) {
1439 spin_unlock(&class->lock);
1440 first_page = alloc_zspage(class, pool->flags);
1441 if (unlikely(!first_page)) {
1442 free_handle(pool, handle);
1443 return 0;
1444 }
1445
1446 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1447 atomic_long_add(class->pages_per_zspage,
1448 &pool->pages_allocated);
1449
1450 spin_lock(&class->lock);
1451 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1452 class->size, class->pages_per_zspage));
1453 }
1454
1455 obj = obj_malloc(first_page, class, handle);
1456 /* Now move the zspage to another fullness group, if required */
1457 fix_fullness_group(class, first_page);
1458 record_obj(handle, obj);
1459 spin_unlock(&class->lock);
1460
1461 return handle;
1462 }
1463 EXPORT_SYMBOL_GPL(zs_malloc);
1464
1465 static void obj_free(struct zs_pool *pool, struct size_class *class,
1466 unsigned long obj)
1467 {
1468 struct link_free *link;
1469 struct page *first_page, *f_page;
1470 unsigned long f_objidx, f_offset;
1471 void *vaddr;
1472 int class_idx;
1473 enum fullness_group fullness;
1474
1475 BUG_ON(!obj);
1476
1477 obj &= ~OBJ_ALLOCATED_TAG;
1478 obj_to_location(obj, &f_page, &f_objidx);
1479 first_page = get_first_page(f_page);
1480
1481 get_zspage_mapping(first_page, &class_idx, &fullness);
1482 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1483
1484 vaddr = kmap_atomic(f_page);
1485
1486 /* Insert this object in containing zspage's freelist */
1487 link = (struct link_free *)(vaddr + f_offset);
1488 link->next = first_page->freelist;
1489 if (class->huge)
1490 set_page_private(first_page, 0);
1491 kunmap_atomic(vaddr);
1492 first_page->freelist = (void *)obj;
1493 first_page->inuse--;
1494 zs_stat_dec(class, OBJ_USED, 1);
1495 }
1496
1497 void zs_free(struct zs_pool *pool, unsigned long handle)
1498 {
1499 struct page *first_page, *f_page;
1500 unsigned long obj, f_objidx;
1501 int class_idx;
1502 struct size_class *class;
1503 enum fullness_group fullness;
1504
1505 if (unlikely(!handle))
1506 return;
1507
1508 pin_tag(handle);
1509 obj = handle_to_obj(handle);
1510 obj_to_location(obj, &f_page, &f_objidx);
1511 first_page = get_first_page(f_page);
1512
1513 get_zspage_mapping(first_page, &class_idx, &fullness);
1514 class = pool->size_class[class_idx];
1515
1516 spin_lock(&class->lock);
1517 obj_free(pool, class, obj);
1518 fullness = fix_fullness_group(class, first_page);
1519 if (fullness == ZS_EMPTY) {
1520 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1521 class->size, class->pages_per_zspage));
1522 atomic_long_sub(class->pages_per_zspage,
1523 &pool->pages_allocated);
1524 free_zspage(first_page);
1525 }
1526 spin_unlock(&class->lock);
1527 unpin_tag(handle);
1528
1529 free_handle(pool, handle);
1530 }
1531 EXPORT_SYMBOL_GPL(zs_free);
1532
1533 static void zs_object_copy(unsigned long src, unsigned long dst,
1534 struct size_class *class)
1535 {
1536 struct page *s_page, *d_page;
1537 unsigned long s_objidx, d_objidx;
1538 unsigned long s_off, d_off;
1539 void *s_addr, *d_addr;
1540 int s_size, d_size, size;
1541 int written = 0;
1542
1543 s_size = d_size = class->size;
1544
1545 obj_to_location(src, &s_page, &s_objidx);
1546 obj_to_location(dst, &d_page, &d_objidx);
1547
1548 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1549 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1550
1551 if (s_off + class->size > PAGE_SIZE)
1552 s_size = PAGE_SIZE - s_off;
1553
1554 if (d_off + class->size > PAGE_SIZE)
1555 d_size = PAGE_SIZE - d_off;
1556
1557 s_addr = kmap_atomic(s_page);
1558 d_addr = kmap_atomic(d_page);
1559
1560 while (1) {
1561 size = min(s_size, d_size);
1562 memcpy(d_addr + d_off, s_addr + s_off, size);
1563 written += size;
1564
1565 if (written == class->size)
1566 break;
1567
1568 if (s_off + size >= PAGE_SIZE) {
1569 kunmap_atomic(d_addr);
1570 kunmap_atomic(s_addr);
1571 s_page = get_next_page(s_page);
1572 BUG_ON(!s_page);
1573 s_addr = kmap_atomic(s_page);
1574 d_addr = kmap_atomic(d_page);
1575 s_size = class->size - written;
1576 s_off = 0;
1577 } else {
1578 s_off += size;
1579 s_size -= size;
1580 }
1581
1582 if (d_off + size >= PAGE_SIZE) {
1583 kunmap_atomic(d_addr);
1584 d_page = get_next_page(d_page);
1585 BUG_ON(!d_page);
1586 d_addr = kmap_atomic(d_page);
1587 d_size = class->size - written;
1588 d_off = 0;
1589 } else {
1590 d_off += size;
1591 d_size -= size;
1592 }
1593 }
1594
1595 kunmap_atomic(d_addr);
1596 kunmap_atomic(s_addr);
1597 }
1598
1599 /*
1600 * Find alloced object in zspage from index object and
1601 * return handle.
1602 */
1603 static unsigned long find_alloced_obj(struct page *page, int index,
1604 struct size_class *class)
1605 {
1606 unsigned long head;
1607 int offset = 0;
1608 unsigned long handle = 0;
1609 void *addr = kmap_atomic(page);
1610
1611 if (!is_first_page(page))
1612 offset = page->index;
1613 offset += class->size * index;
1614
1615 while (offset < PAGE_SIZE) {
1616 head = obj_to_head(class, page, addr + offset);
1617 if (head & OBJ_ALLOCATED_TAG) {
1618 handle = head & ~OBJ_ALLOCATED_TAG;
1619 if (trypin_tag(handle))
1620 break;
1621 handle = 0;
1622 }
1623
1624 offset += class->size;
1625 index++;
1626 }
1627
1628 kunmap_atomic(addr);
1629 return handle;
1630 }
1631
1632 struct zs_compact_control {
1633 /* Source page for migration which could be a subpage of zspage. */
1634 struct page *s_page;
1635 /* Destination page for migration which should be a first page
1636 * of zspage. */
1637 struct page *d_page;
1638 /* Starting object index within @s_page which used for live object
1639 * in the subpage. */
1640 int index;
1641 /* how many of objects are migrated */
1642 int nr_migrated;
1643 };
1644
1645 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1646 struct zs_compact_control *cc)
1647 {
1648 unsigned long used_obj, free_obj;
1649 unsigned long handle;
1650 struct page *s_page = cc->s_page;
1651 struct page *d_page = cc->d_page;
1652 unsigned long index = cc->index;
1653 int nr_migrated = 0;
1654 int ret = 0;
1655
1656 while (1) {
1657 handle = find_alloced_obj(s_page, index, class);
1658 if (!handle) {
1659 s_page = get_next_page(s_page);
1660 if (!s_page)
1661 break;
1662 index = 0;
1663 continue;
1664 }
1665
1666 /* Stop if there is no more space */
1667 if (zspage_full(d_page)) {
1668 unpin_tag(handle);
1669 ret = -ENOMEM;
1670 break;
1671 }
1672
1673 used_obj = handle_to_obj(handle);
1674 free_obj = obj_malloc(d_page, class, handle);
1675 zs_object_copy(used_obj, free_obj, class);
1676 index++;
1677 record_obj(handle, free_obj);
1678 unpin_tag(handle);
1679 obj_free(pool, class, used_obj);
1680 nr_migrated++;
1681 }
1682
1683 /* Remember last position in this iteration */
1684 cc->s_page = s_page;
1685 cc->index = index;
1686 cc->nr_migrated = nr_migrated;
1687
1688 return ret;
1689 }
1690
1691 static struct page *alloc_target_page(struct size_class *class)
1692 {
1693 int i;
1694 struct page *page;
1695
1696 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1697 page = class->fullness_list[i];
1698 if (page) {
1699 remove_zspage(page, class, i);
1700 break;
1701 }
1702 }
1703
1704 return page;
1705 }
1706
1707 static void putback_zspage(struct zs_pool *pool, struct size_class *class,
1708 struct page *first_page)
1709 {
1710 int class_idx;
1711 enum fullness_group fullness;
1712
1713 BUG_ON(!is_first_page(first_page));
1714
1715 get_zspage_mapping(first_page, &class_idx, &fullness);
1716 insert_zspage(first_page, class, fullness);
1717 fullness = fix_fullness_group(class, first_page);
1718 if (fullness == ZS_EMPTY) {
1719 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1720 class->size, class->pages_per_zspage));
1721 atomic_long_sub(class->pages_per_zspage,
1722 &pool->pages_allocated);
1723
1724 free_zspage(first_page);
1725 }
1726 }
1727
1728 static struct page *isolate_source_page(struct size_class *class)
1729 {
1730 struct page *page;
1731
1732 page = class->fullness_list[ZS_ALMOST_EMPTY];
1733 if (page)
1734 remove_zspage(page, class, ZS_ALMOST_EMPTY);
1735
1736 return page;
1737 }
1738
1739 static unsigned long __zs_compact(struct zs_pool *pool,
1740 struct size_class *class)
1741 {
1742 int nr_to_migrate;
1743 struct zs_compact_control cc;
1744 struct page *src_page;
1745 struct page *dst_page = NULL;
1746 unsigned long nr_total_migrated = 0;
1747
1748 cond_resched();
1749
1750 spin_lock(&class->lock);
1751 while ((src_page = isolate_source_page(class))) {
1752
1753 BUG_ON(!is_first_page(src_page));
1754
1755 /* The goal is to migrate all live objects in source page */
1756 nr_to_migrate = src_page->inuse;
1757 cc.index = 0;
1758 cc.s_page = src_page;
1759
1760 while ((dst_page = alloc_target_page(class))) {
1761 cc.d_page = dst_page;
1762 /*
1763 * If there is no more space in dst_page, try to
1764 * allocate another zspage.
1765 */
1766 if (!migrate_zspage(pool, class, &cc))
1767 break;
1768
1769 putback_zspage(pool, class, dst_page);
1770 nr_total_migrated += cc.nr_migrated;
1771 nr_to_migrate -= cc.nr_migrated;
1772 }
1773
1774 /* Stop if we couldn't find slot */
1775 if (dst_page == NULL)
1776 break;
1777
1778 putback_zspage(pool, class, dst_page);
1779 putback_zspage(pool, class, src_page);
1780 spin_unlock(&class->lock);
1781 nr_total_migrated += cc.nr_migrated;
1782 cond_resched();
1783 spin_lock(&class->lock);
1784 }
1785
1786 if (src_page)
1787 putback_zspage(pool, class, src_page);
1788
1789 spin_unlock(&class->lock);
1790
1791 return nr_total_migrated;
1792 }
1793
1794 unsigned long zs_compact(struct zs_pool *pool)
1795 {
1796 int i;
1797 unsigned long nr_migrated = 0;
1798 struct size_class *class;
1799
1800 for (i = zs_size_classes - 1; i >= 0; i--) {
1801 class = pool->size_class[i];
1802 if (!class)
1803 continue;
1804 if (class->index != i)
1805 continue;
1806 nr_migrated += __zs_compact(pool, class);
1807 }
1808
1809 synchronize_rcu();
1810
1811 return nr_migrated;
1812 }
1813 EXPORT_SYMBOL_GPL(zs_compact);
1814
1815 /**
1816 * zs_create_pool - Creates an allocation pool to work from.
1817 * @flags: allocation flags used to allocate pool metadata
1818 *
1819 * This function must be called before anything when using
1820 * the zsmalloc allocator.
1821 *
1822 * On success, a pointer to the newly created pool is returned,
1823 * otherwise NULL.
1824 */
1825 struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1826 {
1827 int i;
1828 struct zs_pool *pool;
1829 struct size_class *prev_class = NULL;
1830
1831 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1832 if (!pool)
1833 return NULL;
1834
1835 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1836 GFP_KERNEL);
1837 if (!pool->size_class) {
1838 kfree(pool);
1839 return NULL;
1840 }
1841
1842 pool->name = kstrdup(name, GFP_KERNEL);
1843 if (!pool->name)
1844 goto err;
1845
1846 if (create_handle_cache(pool))
1847 goto err;
1848
1849 /*
1850 * Iterate reversly, because, size of size_class that we want to use
1851 * for merging should be larger or equal to current size.
1852 */
1853 for (i = zs_size_classes - 1; i >= 0; i--) {
1854 int size;
1855 int pages_per_zspage;
1856 struct size_class *class;
1857
1858 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1859 if (size > ZS_MAX_ALLOC_SIZE)
1860 size = ZS_MAX_ALLOC_SIZE;
1861 pages_per_zspage = get_pages_per_zspage(size);
1862
1863 /*
1864 * size_class is used for normal zsmalloc operation such
1865 * as alloc/free for that size. Although it is natural that we
1866 * have one size_class for each size, there is a chance that we
1867 * can get more memory utilization if we use one size_class for
1868 * many different sizes whose size_class have same
1869 * characteristics. So, we makes size_class point to
1870 * previous size_class if possible.
1871 */
1872 if (prev_class) {
1873 if (can_merge(prev_class, size, pages_per_zspage)) {
1874 pool->size_class[i] = prev_class;
1875 continue;
1876 }
1877 }
1878
1879 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1880 if (!class)
1881 goto err;
1882
1883 class->size = size;
1884 class->index = i;
1885 class->pages_per_zspage = pages_per_zspage;
1886 if (pages_per_zspage == 1 &&
1887 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1888 class->huge = true;
1889 spin_lock_init(&class->lock);
1890 pool->size_class[i] = class;
1891
1892 prev_class = class;
1893 }
1894
1895 pool->flags = flags;
1896
1897 if (zs_pool_stat_create(name, pool))
1898 goto err;
1899
1900 return pool;
1901
1902 err:
1903 zs_destroy_pool(pool);
1904 return NULL;
1905 }
1906 EXPORT_SYMBOL_GPL(zs_create_pool);
1907
1908 void zs_destroy_pool(struct zs_pool *pool)
1909 {
1910 int i;
1911
1912 zs_pool_stat_destroy(pool);
1913
1914 for (i = 0; i < zs_size_classes; i++) {
1915 int fg;
1916 struct size_class *class = pool->size_class[i];
1917
1918 if (!class)
1919 continue;
1920
1921 if (class->index != i)
1922 continue;
1923
1924 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1925 if (class->fullness_list[fg]) {
1926 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1927 class->size, fg);
1928 }
1929 }
1930 kfree(class);
1931 }
1932
1933 destroy_handle_cache(pool);
1934 kfree(pool->size_class);
1935 kfree(pool->name);
1936 kfree(pool);
1937 }
1938 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1939
1940 static int __init zs_init(void)
1941 {
1942 int ret = zs_register_cpu_notifier();
1943
1944 if (ret)
1945 goto notifier_fail;
1946
1947 init_zs_size_classes();
1948
1949 #ifdef CONFIG_ZPOOL
1950 zpool_register_driver(&zs_zpool_driver);
1951 #endif
1952
1953 ret = zs_stat_init();
1954 if (ret) {
1955 pr_err("zs stat initialization failed\n");
1956 goto stat_fail;
1957 }
1958 return 0;
1959
1960 stat_fail:
1961 #ifdef CONFIG_ZPOOL
1962 zpool_unregister_driver(&zs_zpool_driver);
1963 #endif
1964 notifier_fail:
1965 zs_unregister_cpu_notifier();
1966
1967 return ret;
1968 }
1969
1970 static void __exit zs_exit(void)
1971 {
1972 #ifdef CONFIG_ZPOOL
1973 zpool_unregister_driver(&zs_zpool_driver);
1974 #endif
1975 zs_unregister_cpu_notifier();
1976
1977 zs_stat_exit();
1978 }
1979
1980 module_init(zs_init);
1981 module_exit(zs_exit);
1982
1983 MODULE_LICENSE("Dual BSD/GPL");
1984 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
This page took 0.112839 seconds and 6 git commands to generate.