zsmalloc: add comments for ->inuse to zspage
[deliverable/linux.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->first_page: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private (union with page->first_page): refers to the
30 * component page after the first page
31 * If the page is first_page for huge object, it stores handle.
32 * Look at size_class->huge.
33 * page->freelist: points to the first free object in zspage.
34 * Free objects are linked together using in-place
35 * metadata.
36 * page->objects: maximum number of objects we can store in this
37 * zspage (class->zspage_order * PAGE_SIZE / class->size)
38 * page->lru: links together first pages of various zspages.
39 * Basically forming list of zspages in a fullness group.
40 * page->mapping: class index and fullness group of the zspage
41 * page->inuse: the number of objects that are used in this zspage
42 *
43 * Usage of struct page flags:
44 * PG_private: identifies the first component page
45 * PG_private2: identifies the last component page
46 *
47 */
48
49 #include <linux/module.h>
50 #include <linux/kernel.h>
51 #include <linux/sched.h>
52 #include <linux/bitops.h>
53 #include <linux/errno.h>
54 #include <linux/highmem.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
59 #include <linux/cpumask.h>
60 #include <linux/cpu.h>
61 #include <linux/vmalloc.h>
62 #include <linux/hardirq.h>
63 #include <linux/spinlock.h>
64 #include <linux/types.h>
65 #include <linux/debugfs.h>
66 #include <linux/zsmalloc.h>
67 #include <linux/zpool.h>
68
69 /*
70 * This must be power of 2 and greater than of equal to sizeof(link_free).
71 * These two conditions ensure that any 'struct link_free' itself doesn't
72 * span more than 1 page which avoids complex case of mapping 2 pages simply
73 * to restore link_free pointer values.
74 */
75 #define ZS_ALIGN 8
76
77 /*
78 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
79 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
80 */
81 #define ZS_MAX_ZSPAGE_ORDER 2
82 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
83
84 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
85
86 /*
87 * Object location (<PFN>, <obj_idx>) is encoded as
88 * as single (unsigned long) handle value.
89 *
90 * Note that object index <obj_idx> is relative to system
91 * page <PFN> it is stored in, so for each sub-page belonging
92 * to a zspage, obj_idx starts with 0.
93 *
94 * This is made more complicated by various memory models and PAE.
95 */
96
97 #ifndef MAX_PHYSMEM_BITS
98 #ifdef CONFIG_HIGHMEM64G
99 #define MAX_PHYSMEM_BITS 36
100 #else /* !CONFIG_HIGHMEM64G */
101 /*
102 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
103 * be PAGE_SHIFT
104 */
105 #define MAX_PHYSMEM_BITS BITS_PER_LONG
106 #endif
107 #endif
108 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
109
110 /*
111 * Memory for allocating for handle keeps object position by
112 * encoding <page, obj_idx> and the encoded value has a room
113 * in least bit(ie, look at obj_to_location).
114 * We use the bit to synchronize between object access by
115 * user and migration.
116 */
117 #define HANDLE_PIN_BIT 0
118
119 /*
120 * Head in allocated object should have OBJ_ALLOCATED_TAG
121 * to identify the object was allocated or not.
122 * It's okay to add the status bit in the least bit because
123 * header keeps handle which is 4byte-aligned address so we
124 * have room for two bit at least.
125 */
126 #define OBJ_ALLOCATED_TAG 1
127 #define OBJ_TAG_BITS 1
128 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
129 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
130
131 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
132 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
133 #define ZS_MIN_ALLOC_SIZE \
134 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
135 /* each chunk includes extra space to keep handle */
136 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
137
138 /*
139 * On systems with 4K page size, this gives 255 size classes! There is a
140 * trader-off here:
141 * - Large number of size classes is potentially wasteful as free page are
142 * spread across these classes
143 * - Small number of size classes causes large internal fragmentation
144 * - Probably its better to use specific size classes (empirically
145 * determined). NOTE: all those class sizes must be set as multiple of
146 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
147 *
148 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
149 * (reason above)
150 */
151 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
152
153 /*
154 * We do not maintain any list for completely empty or full pages
155 */
156 enum fullness_group {
157 ZS_ALMOST_FULL,
158 ZS_ALMOST_EMPTY,
159 _ZS_NR_FULLNESS_GROUPS,
160
161 ZS_EMPTY,
162 ZS_FULL
163 };
164
165 enum zs_stat_type {
166 OBJ_ALLOCATED,
167 OBJ_USED,
168 CLASS_ALMOST_FULL,
169 CLASS_ALMOST_EMPTY,
170 NR_ZS_STAT_TYPE,
171 };
172
173 struct zs_size_stat {
174 unsigned long objs[NR_ZS_STAT_TYPE];
175 };
176
177 #ifdef CONFIG_ZSMALLOC_STAT
178 static struct dentry *zs_stat_root;
179 #endif
180
181 /*
182 * number of size_classes
183 */
184 static int zs_size_classes;
185
186 /*
187 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
188 * n <= N / f, where
189 * n = number of allocated objects
190 * N = total number of objects zspage can store
191 * f = fullness_threshold_frac
192 *
193 * Similarly, we assign zspage to:
194 * ZS_ALMOST_FULL when n > N / f
195 * ZS_EMPTY when n == 0
196 * ZS_FULL when n == N
197 *
198 * (see: fix_fullness_group())
199 */
200 static const int fullness_threshold_frac = 4;
201
202 struct size_class {
203 spinlock_t lock;
204 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
205 /*
206 * Size of objects stored in this class. Must be multiple
207 * of ZS_ALIGN.
208 */
209 int size;
210 unsigned int index;
211
212 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
213 int pages_per_zspage;
214 struct zs_size_stat stats;
215
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217 bool huge;
218 };
219
220 /*
221 * Placed within free objects to form a singly linked list.
222 * For every zspage, first_page->freelist gives head of this list.
223 *
224 * This must be power of 2 and less than or equal to ZS_ALIGN
225 */
226 struct link_free {
227 union {
228 /*
229 * Position of next free chunk (encodes <PFN, obj_idx>)
230 * It's valid for non-allocated object
231 */
232 void *next;
233 /*
234 * Handle of allocated object.
235 */
236 unsigned long handle;
237 };
238 };
239
240 struct zs_pool {
241 const char *name;
242
243 struct size_class **size_class;
244 struct kmem_cache *handle_cachep;
245
246 gfp_t flags; /* allocation flags used when growing pool */
247 atomic_long_t pages_allocated;
248
249 struct zs_pool_stats stats;
250
251 /* Compact classes */
252 struct shrinker shrinker;
253 /*
254 * To signify that register_shrinker() was successful
255 * and unregister_shrinker() will not Oops.
256 */
257 bool shrinker_enabled;
258 #ifdef CONFIG_ZSMALLOC_STAT
259 struct dentry *stat_dentry;
260 #endif
261 };
262
263 /*
264 * A zspage's class index and fullness group
265 * are encoded in its (first)page->mapping
266 */
267 #define CLASS_IDX_BITS 28
268 #define FULLNESS_BITS 4
269 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
270 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
271
272 struct mapping_area {
273 #ifdef CONFIG_PGTABLE_MAPPING
274 struct vm_struct *vm; /* vm area for mapping object that span pages */
275 #else
276 char *vm_buf; /* copy buffer for objects that span pages */
277 #endif
278 char *vm_addr; /* address of kmap_atomic()'ed pages */
279 enum zs_mapmode vm_mm; /* mapping mode */
280 bool huge;
281 };
282
283 static int create_handle_cache(struct zs_pool *pool)
284 {
285 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
286 0, 0, NULL);
287 return pool->handle_cachep ? 0 : 1;
288 }
289
290 static void destroy_handle_cache(struct zs_pool *pool)
291 {
292 kmem_cache_destroy(pool->handle_cachep);
293 }
294
295 static unsigned long alloc_handle(struct zs_pool *pool)
296 {
297 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
298 pool->flags & ~__GFP_HIGHMEM);
299 }
300
301 static void free_handle(struct zs_pool *pool, unsigned long handle)
302 {
303 kmem_cache_free(pool->handle_cachep, (void *)handle);
304 }
305
306 static void record_obj(unsigned long handle, unsigned long obj)
307 {
308 *(unsigned long *)handle = obj;
309 }
310
311 /* zpool driver */
312
313 #ifdef CONFIG_ZPOOL
314
315 static void *zs_zpool_create(const char *name, gfp_t gfp,
316 const struct zpool_ops *zpool_ops,
317 struct zpool *zpool)
318 {
319 return zs_create_pool(name, gfp);
320 }
321
322 static void zs_zpool_destroy(void *pool)
323 {
324 zs_destroy_pool(pool);
325 }
326
327 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
328 unsigned long *handle)
329 {
330 *handle = zs_malloc(pool, size);
331 return *handle ? 0 : -1;
332 }
333 static void zs_zpool_free(void *pool, unsigned long handle)
334 {
335 zs_free(pool, handle);
336 }
337
338 static int zs_zpool_shrink(void *pool, unsigned int pages,
339 unsigned int *reclaimed)
340 {
341 return -EINVAL;
342 }
343
344 static void *zs_zpool_map(void *pool, unsigned long handle,
345 enum zpool_mapmode mm)
346 {
347 enum zs_mapmode zs_mm;
348
349 switch (mm) {
350 case ZPOOL_MM_RO:
351 zs_mm = ZS_MM_RO;
352 break;
353 case ZPOOL_MM_WO:
354 zs_mm = ZS_MM_WO;
355 break;
356 case ZPOOL_MM_RW: /* fallthru */
357 default:
358 zs_mm = ZS_MM_RW;
359 break;
360 }
361
362 return zs_map_object(pool, handle, zs_mm);
363 }
364 static void zs_zpool_unmap(void *pool, unsigned long handle)
365 {
366 zs_unmap_object(pool, handle);
367 }
368
369 static u64 zs_zpool_total_size(void *pool)
370 {
371 return zs_get_total_pages(pool) << PAGE_SHIFT;
372 }
373
374 static struct zpool_driver zs_zpool_driver = {
375 .type = "zsmalloc",
376 .owner = THIS_MODULE,
377 .create = zs_zpool_create,
378 .destroy = zs_zpool_destroy,
379 .malloc = zs_zpool_malloc,
380 .free = zs_zpool_free,
381 .shrink = zs_zpool_shrink,
382 .map = zs_zpool_map,
383 .unmap = zs_zpool_unmap,
384 .total_size = zs_zpool_total_size,
385 };
386
387 MODULE_ALIAS("zpool-zsmalloc");
388 #endif /* CONFIG_ZPOOL */
389
390 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
391 {
392 return pages_per_zspage * PAGE_SIZE / size;
393 }
394
395 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
396 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
397
398 static int is_first_page(struct page *page)
399 {
400 return PagePrivate(page);
401 }
402
403 static int is_last_page(struct page *page)
404 {
405 return PagePrivate2(page);
406 }
407
408 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
409 enum fullness_group *fullness)
410 {
411 unsigned long m;
412 BUG_ON(!is_first_page(page));
413
414 m = (unsigned long)page->mapping;
415 *fullness = m & FULLNESS_MASK;
416 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
417 }
418
419 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
420 enum fullness_group fullness)
421 {
422 unsigned long m;
423 BUG_ON(!is_first_page(page));
424
425 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
426 (fullness & FULLNESS_MASK);
427 page->mapping = (struct address_space *)m;
428 }
429
430 /*
431 * zsmalloc divides the pool into various size classes where each
432 * class maintains a list of zspages where each zspage is divided
433 * into equal sized chunks. Each allocation falls into one of these
434 * classes depending on its size. This function returns index of the
435 * size class which has chunk size big enough to hold the give size.
436 */
437 static int get_size_class_index(int size)
438 {
439 int idx = 0;
440
441 if (likely(size > ZS_MIN_ALLOC_SIZE))
442 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
443 ZS_SIZE_CLASS_DELTA);
444
445 return min(zs_size_classes - 1, idx);
446 }
447
448 static inline void zs_stat_inc(struct size_class *class,
449 enum zs_stat_type type, unsigned long cnt)
450 {
451 class->stats.objs[type] += cnt;
452 }
453
454 static inline void zs_stat_dec(struct size_class *class,
455 enum zs_stat_type type, unsigned long cnt)
456 {
457 class->stats.objs[type] -= cnt;
458 }
459
460 static inline unsigned long zs_stat_get(struct size_class *class,
461 enum zs_stat_type type)
462 {
463 return class->stats.objs[type];
464 }
465
466 #ifdef CONFIG_ZSMALLOC_STAT
467
468 static int __init zs_stat_init(void)
469 {
470 if (!debugfs_initialized())
471 return -ENODEV;
472
473 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
474 if (!zs_stat_root)
475 return -ENOMEM;
476
477 return 0;
478 }
479
480 static void __exit zs_stat_exit(void)
481 {
482 debugfs_remove_recursive(zs_stat_root);
483 }
484
485 static int zs_stats_size_show(struct seq_file *s, void *v)
486 {
487 int i;
488 struct zs_pool *pool = s->private;
489 struct size_class *class;
490 int objs_per_zspage;
491 unsigned long class_almost_full, class_almost_empty;
492 unsigned long obj_allocated, obj_used, pages_used;
493 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
494 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
495
496 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
497 "class", "size", "almost_full", "almost_empty",
498 "obj_allocated", "obj_used", "pages_used",
499 "pages_per_zspage");
500
501 for (i = 0; i < zs_size_classes; i++) {
502 class = pool->size_class[i];
503
504 if (class->index != i)
505 continue;
506
507 spin_lock(&class->lock);
508 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
509 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
510 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
511 obj_used = zs_stat_get(class, OBJ_USED);
512 spin_unlock(&class->lock);
513
514 objs_per_zspage = get_maxobj_per_zspage(class->size,
515 class->pages_per_zspage);
516 pages_used = obj_allocated / objs_per_zspage *
517 class->pages_per_zspage;
518
519 seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
520 i, class->size, class_almost_full, class_almost_empty,
521 obj_allocated, obj_used, pages_used,
522 class->pages_per_zspage);
523
524 total_class_almost_full += class_almost_full;
525 total_class_almost_empty += class_almost_empty;
526 total_objs += obj_allocated;
527 total_used_objs += obj_used;
528 total_pages += pages_used;
529 }
530
531 seq_puts(s, "\n");
532 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
533 "Total", "", total_class_almost_full,
534 total_class_almost_empty, total_objs,
535 total_used_objs, total_pages);
536
537 return 0;
538 }
539
540 static int zs_stats_size_open(struct inode *inode, struct file *file)
541 {
542 return single_open(file, zs_stats_size_show, inode->i_private);
543 }
544
545 static const struct file_operations zs_stat_size_ops = {
546 .open = zs_stats_size_open,
547 .read = seq_read,
548 .llseek = seq_lseek,
549 .release = single_release,
550 };
551
552 static int zs_pool_stat_create(const char *name, struct zs_pool *pool)
553 {
554 struct dentry *entry;
555
556 if (!zs_stat_root)
557 return -ENODEV;
558
559 entry = debugfs_create_dir(name, zs_stat_root);
560 if (!entry) {
561 pr_warn("debugfs dir <%s> creation failed\n", name);
562 return -ENOMEM;
563 }
564 pool->stat_dentry = entry;
565
566 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
567 pool->stat_dentry, pool, &zs_stat_size_ops);
568 if (!entry) {
569 pr_warn("%s: debugfs file entry <%s> creation failed\n",
570 name, "classes");
571 return -ENOMEM;
572 }
573
574 return 0;
575 }
576
577 static void zs_pool_stat_destroy(struct zs_pool *pool)
578 {
579 debugfs_remove_recursive(pool->stat_dentry);
580 }
581
582 #else /* CONFIG_ZSMALLOC_STAT */
583 static int __init zs_stat_init(void)
584 {
585 return 0;
586 }
587
588 static void __exit zs_stat_exit(void)
589 {
590 }
591
592 static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool)
593 {
594 return 0;
595 }
596
597 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
598 {
599 }
600 #endif
601
602
603 /*
604 * For each size class, zspages are divided into different groups
605 * depending on how "full" they are. This was done so that we could
606 * easily find empty or nearly empty zspages when we try to shrink
607 * the pool (not yet implemented). This function returns fullness
608 * status of the given page.
609 */
610 static enum fullness_group get_fullness_group(struct page *page)
611 {
612 int inuse, max_objects;
613 enum fullness_group fg;
614 BUG_ON(!is_first_page(page));
615
616 inuse = page->inuse;
617 max_objects = page->objects;
618
619 if (inuse == 0)
620 fg = ZS_EMPTY;
621 else if (inuse == max_objects)
622 fg = ZS_FULL;
623 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
624 fg = ZS_ALMOST_EMPTY;
625 else
626 fg = ZS_ALMOST_FULL;
627
628 return fg;
629 }
630
631 /*
632 * Each size class maintains various freelists and zspages are assigned
633 * to one of these freelists based on the number of live objects they
634 * have. This functions inserts the given zspage into the freelist
635 * identified by <class, fullness_group>.
636 */
637 static void insert_zspage(struct page *page, struct size_class *class,
638 enum fullness_group fullness)
639 {
640 struct page **head;
641
642 BUG_ON(!is_first_page(page));
643
644 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
645 return;
646
647 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
648 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
649
650 head = &class->fullness_list[fullness];
651 if (!*head) {
652 *head = page;
653 return;
654 }
655
656 /*
657 * We want to see more ZS_FULL pages and less almost
658 * empty/full. Put pages with higher ->inuse first.
659 */
660 list_add_tail(&page->lru, &(*head)->lru);
661 if (page->inuse >= (*head)->inuse)
662 *head = page;
663 }
664
665 /*
666 * This function removes the given zspage from the freelist identified
667 * by <class, fullness_group>.
668 */
669 static void remove_zspage(struct page *page, struct size_class *class,
670 enum fullness_group fullness)
671 {
672 struct page **head;
673
674 BUG_ON(!is_first_page(page));
675
676 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
677 return;
678
679 head = &class->fullness_list[fullness];
680 BUG_ON(!*head);
681 if (list_empty(&(*head)->lru))
682 *head = NULL;
683 else if (*head == page)
684 *head = (struct page *)list_entry((*head)->lru.next,
685 struct page, lru);
686
687 list_del_init(&page->lru);
688 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
689 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
690 }
691
692 /*
693 * Each size class maintains zspages in different fullness groups depending
694 * on the number of live objects they contain. When allocating or freeing
695 * objects, the fullness status of the page can change, say, from ALMOST_FULL
696 * to ALMOST_EMPTY when freeing an object. This function checks if such
697 * a status change has occurred for the given page and accordingly moves the
698 * page from the freelist of the old fullness group to that of the new
699 * fullness group.
700 */
701 static enum fullness_group fix_fullness_group(struct size_class *class,
702 struct page *page)
703 {
704 int class_idx;
705 enum fullness_group currfg, newfg;
706
707 BUG_ON(!is_first_page(page));
708
709 get_zspage_mapping(page, &class_idx, &currfg);
710 newfg = get_fullness_group(page);
711 if (newfg == currfg)
712 goto out;
713
714 remove_zspage(page, class, currfg);
715 insert_zspage(page, class, newfg);
716 set_zspage_mapping(page, class_idx, newfg);
717
718 out:
719 return newfg;
720 }
721
722 /*
723 * We have to decide on how many pages to link together
724 * to form a zspage for each size class. This is important
725 * to reduce wastage due to unusable space left at end of
726 * each zspage which is given as:
727 * wastage = Zp % class_size
728 * usage = Zp - wastage
729 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
730 *
731 * For example, for size class of 3/8 * PAGE_SIZE, we should
732 * link together 3 PAGE_SIZE sized pages to form a zspage
733 * since then we can perfectly fit in 8 such objects.
734 */
735 static int get_pages_per_zspage(int class_size)
736 {
737 int i, max_usedpc = 0;
738 /* zspage order which gives maximum used size per KB */
739 int max_usedpc_order = 1;
740
741 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
742 int zspage_size;
743 int waste, usedpc;
744
745 zspage_size = i * PAGE_SIZE;
746 waste = zspage_size % class_size;
747 usedpc = (zspage_size - waste) * 100 / zspage_size;
748
749 if (usedpc > max_usedpc) {
750 max_usedpc = usedpc;
751 max_usedpc_order = i;
752 }
753 }
754
755 return max_usedpc_order;
756 }
757
758 /*
759 * A single 'zspage' is composed of many system pages which are
760 * linked together using fields in struct page. This function finds
761 * the first/head page, given any component page of a zspage.
762 */
763 static struct page *get_first_page(struct page *page)
764 {
765 if (is_first_page(page))
766 return page;
767 else
768 return page->first_page;
769 }
770
771 static struct page *get_next_page(struct page *page)
772 {
773 struct page *next;
774
775 if (is_last_page(page))
776 next = NULL;
777 else if (is_first_page(page))
778 next = (struct page *)page_private(page);
779 else
780 next = list_entry(page->lru.next, struct page, lru);
781
782 return next;
783 }
784
785 /*
786 * Encode <page, obj_idx> as a single handle value.
787 * We use the least bit of handle for tagging.
788 */
789 static void *location_to_obj(struct page *page, unsigned long obj_idx)
790 {
791 unsigned long obj;
792
793 if (!page) {
794 BUG_ON(obj_idx);
795 return NULL;
796 }
797
798 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
799 obj |= ((obj_idx) & OBJ_INDEX_MASK);
800 obj <<= OBJ_TAG_BITS;
801
802 return (void *)obj;
803 }
804
805 /*
806 * Decode <page, obj_idx> pair from the given object handle. We adjust the
807 * decoded obj_idx back to its original value since it was adjusted in
808 * location_to_obj().
809 */
810 static void obj_to_location(unsigned long obj, struct page **page,
811 unsigned long *obj_idx)
812 {
813 obj >>= OBJ_TAG_BITS;
814 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
815 *obj_idx = (obj & OBJ_INDEX_MASK);
816 }
817
818 static unsigned long handle_to_obj(unsigned long handle)
819 {
820 return *(unsigned long *)handle;
821 }
822
823 static unsigned long obj_to_head(struct size_class *class, struct page *page,
824 void *obj)
825 {
826 if (class->huge) {
827 VM_BUG_ON(!is_first_page(page));
828 return *(unsigned long *)page_private(page);
829 } else
830 return *(unsigned long *)obj;
831 }
832
833 static unsigned long obj_idx_to_offset(struct page *page,
834 unsigned long obj_idx, int class_size)
835 {
836 unsigned long off = 0;
837
838 if (!is_first_page(page))
839 off = page->index;
840
841 return off + obj_idx * class_size;
842 }
843
844 static inline int trypin_tag(unsigned long handle)
845 {
846 unsigned long *ptr = (unsigned long *)handle;
847
848 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
849 }
850
851 static void pin_tag(unsigned long handle)
852 {
853 while (!trypin_tag(handle));
854 }
855
856 static void unpin_tag(unsigned long handle)
857 {
858 unsigned long *ptr = (unsigned long *)handle;
859
860 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
861 }
862
863 static void reset_page(struct page *page)
864 {
865 clear_bit(PG_private, &page->flags);
866 clear_bit(PG_private_2, &page->flags);
867 set_page_private(page, 0);
868 page->mapping = NULL;
869 page->freelist = NULL;
870 page_mapcount_reset(page);
871 }
872
873 static void free_zspage(struct page *first_page)
874 {
875 struct page *nextp, *tmp, *head_extra;
876
877 BUG_ON(!is_first_page(first_page));
878 BUG_ON(first_page->inuse);
879
880 head_extra = (struct page *)page_private(first_page);
881
882 reset_page(first_page);
883 __free_page(first_page);
884
885 /* zspage with only 1 system page */
886 if (!head_extra)
887 return;
888
889 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
890 list_del(&nextp->lru);
891 reset_page(nextp);
892 __free_page(nextp);
893 }
894 reset_page(head_extra);
895 __free_page(head_extra);
896 }
897
898 /* Initialize a newly allocated zspage */
899 static void init_zspage(struct page *first_page, struct size_class *class)
900 {
901 unsigned long off = 0;
902 struct page *page = first_page;
903
904 BUG_ON(!is_first_page(first_page));
905 while (page) {
906 struct page *next_page;
907 struct link_free *link;
908 unsigned int i = 1;
909 void *vaddr;
910
911 /*
912 * page->index stores offset of first object starting
913 * in the page. For the first page, this is always 0,
914 * so we use first_page->index (aka ->freelist) to store
915 * head of corresponding zspage's freelist.
916 */
917 if (page != first_page)
918 page->index = off;
919
920 vaddr = kmap_atomic(page);
921 link = (struct link_free *)vaddr + off / sizeof(*link);
922
923 while ((off += class->size) < PAGE_SIZE) {
924 link->next = location_to_obj(page, i++);
925 link += class->size / sizeof(*link);
926 }
927
928 /*
929 * We now come to the last (full or partial) object on this
930 * page, which must point to the first object on the next
931 * page (if present)
932 */
933 next_page = get_next_page(page);
934 link->next = location_to_obj(next_page, 0);
935 kunmap_atomic(vaddr);
936 page = next_page;
937 off %= PAGE_SIZE;
938 }
939 }
940
941 /*
942 * Allocate a zspage for the given size class
943 */
944 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
945 {
946 int i, error;
947 struct page *first_page = NULL, *uninitialized_var(prev_page);
948
949 /*
950 * Allocate individual pages and link them together as:
951 * 1. first page->private = first sub-page
952 * 2. all sub-pages are linked together using page->lru
953 * 3. each sub-page is linked to the first page using page->first_page
954 *
955 * For each size class, First/Head pages are linked together using
956 * page->lru. Also, we set PG_private to identify the first page
957 * (i.e. no other sub-page has this flag set) and PG_private_2 to
958 * identify the last page.
959 */
960 error = -ENOMEM;
961 for (i = 0; i < class->pages_per_zspage; i++) {
962 struct page *page;
963
964 page = alloc_page(flags);
965 if (!page)
966 goto cleanup;
967
968 INIT_LIST_HEAD(&page->lru);
969 if (i == 0) { /* first page */
970 SetPagePrivate(page);
971 set_page_private(page, 0);
972 first_page = page;
973 first_page->inuse = 0;
974 }
975 if (i == 1)
976 set_page_private(first_page, (unsigned long)page);
977 if (i >= 1)
978 page->first_page = first_page;
979 if (i >= 2)
980 list_add(&page->lru, &prev_page->lru);
981 if (i == class->pages_per_zspage - 1) /* last page */
982 SetPagePrivate2(page);
983 prev_page = page;
984 }
985
986 init_zspage(first_page, class);
987
988 first_page->freelist = location_to_obj(first_page, 0);
989 /* Maximum number of objects we can store in this zspage */
990 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
991
992 error = 0; /* Success */
993
994 cleanup:
995 if (unlikely(error) && first_page) {
996 free_zspage(first_page);
997 first_page = NULL;
998 }
999
1000 return first_page;
1001 }
1002
1003 static struct page *find_get_zspage(struct size_class *class)
1004 {
1005 int i;
1006 struct page *page;
1007
1008 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1009 page = class->fullness_list[i];
1010 if (page)
1011 break;
1012 }
1013
1014 return page;
1015 }
1016
1017 #ifdef CONFIG_PGTABLE_MAPPING
1018 static inline int __zs_cpu_up(struct mapping_area *area)
1019 {
1020 /*
1021 * Make sure we don't leak memory if a cpu UP notification
1022 * and zs_init() race and both call zs_cpu_up() on the same cpu
1023 */
1024 if (area->vm)
1025 return 0;
1026 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1027 if (!area->vm)
1028 return -ENOMEM;
1029 return 0;
1030 }
1031
1032 static inline void __zs_cpu_down(struct mapping_area *area)
1033 {
1034 if (area->vm)
1035 free_vm_area(area->vm);
1036 area->vm = NULL;
1037 }
1038
1039 static inline void *__zs_map_object(struct mapping_area *area,
1040 struct page *pages[2], int off, int size)
1041 {
1042 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1043 area->vm_addr = area->vm->addr;
1044 return area->vm_addr + off;
1045 }
1046
1047 static inline void __zs_unmap_object(struct mapping_area *area,
1048 struct page *pages[2], int off, int size)
1049 {
1050 unsigned long addr = (unsigned long)area->vm_addr;
1051
1052 unmap_kernel_range(addr, PAGE_SIZE * 2);
1053 }
1054
1055 #else /* CONFIG_PGTABLE_MAPPING */
1056
1057 static inline int __zs_cpu_up(struct mapping_area *area)
1058 {
1059 /*
1060 * Make sure we don't leak memory if a cpu UP notification
1061 * and zs_init() race and both call zs_cpu_up() on the same cpu
1062 */
1063 if (area->vm_buf)
1064 return 0;
1065 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1066 if (!area->vm_buf)
1067 return -ENOMEM;
1068 return 0;
1069 }
1070
1071 static inline void __zs_cpu_down(struct mapping_area *area)
1072 {
1073 kfree(area->vm_buf);
1074 area->vm_buf = NULL;
1075 }
1076
1077 static void *__zs_map_object(struct mapping_area *area,
1078 struct page *pages[2], int off, int size)
1079 {
1080 int sizes[2];
1081 void *addr;
1082 char *buf = area->vm_buf;
1083
1084 /* disable page faults to match kmap_atomic() return conditions */
1085 pagefault_disable();
1086
1087 /* no read fastpath */
1088 if (area->vm_mm == ZS_MM_WO)
1089 goto out;
1090
1091 sizes[0] = PAGE_SIZE - off;
1092 sizes[1] = size - sizes[0];
1093
1094 /* copy object to per-cpu buffer */
1095 addr = kmap_atomic(pages[0]);
1096 memcpy(buf, addr + off, sizes[0]);
1097 kunmap_atomic(addr);
1098 addr = kmap_atomic(pages[1]);
1099 memcpy(buf + sizes[0], addr, sizes[1]);
1100 kunmap_atomic(addr);
1101 out:
1102 return area->vm_buf;
1103 }
1104
1105 static void __zs_unmap_object(struct mapping_area *area,
1106 struct page *pages[2], int off, int size)
1107 {
1108 int sizes[2];
1109 void *addr;
1110 char *buf;
1111
1112 /* no write fastpath */
1113 if (area->vm_mm == ZS_MM_RO)
1114 goto out;
1115
1116 buf = area->vm_buf;
1117 if (!area->huge) {
1118 buf = buf + ZS_HANDLE_SIZE;
1119 size -= ZS_HANDLE_SIZE;
1120 off += ZS_HANDLE_SIZE;
1121 }
1122
1123 sizes[0] = PAGE_SIZE - off;
1124 sizes[1] = size - sizes[0];
1125
1126 /* copy per-cpu buffer to object */
1127 addr = kmap_atomic(pages[0]);
1128 memcpy(addr + off, buf, sizes[0]);
1129 kunmap_atomic(addr);
1130 addr = kmap_atomic(pages[1]);
1131 memcpy(addr, buf + sizes[0], sizes[1]);
1132 kunmap_atomic(addr);
1133
1134 out:
1135 /* enable page faults to match kunmap_atomic() return conditions */
1136 pagefault_enable();
1137 }
1138
1139 #endif /* CONFIG_PGTABLE_MAPPING */
1140
1141 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1142 void *pcpu)
1143 {
1144 int ret, cpu = (long)pcpu;
1145 struct mapping_area *area;
1146
1147 switch (action) {
1148 case CPU_UP_PREPARE:
1149 area = &per_cpu(zs_map_area, cpu);
1150 ret = __zs_cpu_up(area);
1151 if (ret)
1152 return notifier_from_errno(ret);
1153 break;
1154 case CPU_DEAD:
1155 case CPU_UP_CANCELED:
1156 area = &per_cpu(zs_map_area, cpu);
1157 __zs_cpu_down(area);
1158 break;
1159 }
1160
1161 return NOTIFY_OK;
1162 }
1163
1164 static struct notifier_block zs_cpu_nb = {
1165 .notifier_call = zs_cpu_notifier
1166 };
1167
1168 static int zs_register_cpu_notifier(void)
1169 {
1170 int cpu, uninitialized_var(ret);
1171
1172 cpu_notifier_register_begin();
1173
1174 __register_cpu_notifier(&zs_cpu_nb);
1175 for_each_online_cpu(cpu) {
1176 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1177 if (notifier_to_errno(ret))
1178 break;
1179 }
1180
1181 cpu_notifier_register_done();
1182 return notifier_to_errno(ret);
1183 }
1184
1185 static void zs_unregister_cpu_notifier(void)
1186 {
1187 int cpu;
1188
1189 cpu_notifier_register_begin();
1190
1191 for_each_online_cpu(cpu)
1192 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1193 __unregister_cpu_notifier(&zs_cpu_nb);
1194
1195 cpu_notifier_register_done();
1196 }
1197
1198 static void init_zs_size_classes(void)
1199 {
1200 int nr;
1201
1202 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1203 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1204 nr += 1;
1205
1206 zs_size_classes = nr;
1207 }
1208
1209 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1210 {
1211 if (prev->pages_per_zspage != pages_per_zspage)
1212 return false;
1213
1214 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1215 != get_maxobj_per_zspage(size, pages_per_zspage))
1216 return false;
1217
1218 return true;
1219 }
1220
1221 static bool zspage_full(struct page *page)
1222 {
1223 BUG_ON(!is_first_page(page));
1224
1225 return page->inuse == page->objects;
1226 }
1227
1228 unsigned long zs_get_total_pages(struct zs_pool *pool)
1229 {
1230 return atomic_long_read(&pool->pages_allocated);
1231 }
1232 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1233
1234 /**
1235 * zs_map_object - get address of allocated object from handle.
1236 * @pool: pool from which the object was allocated
1237 * @handle: handle returned from zs_malloc
1238 *
1239 * Before using an object allocated from zs_malloc, it must be mapped using
1240 * this function. When done with the object, it must be unmapped using
1241 * zs_unmap_object.
1242 *
1243 * Only one object can be mapped per cpu at a time. There is no protection
1244 * against nested mappings.
1245 *
1246 * This function returns with preemption and page faults disabled.
1247 */
1248 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1249 enum zs_mapmode mm)
1250 {
1251 struct page *page;
1252 unsigned long obj, obj_idx, off;
1253
1254 unsigned int class_idx;
1255 enum fullness_group fg;
1256 struct size_class *class;
1257 struct mapping_area *area;
1258 struct page *pages[2];
1259 void *ret;
1260
1261 BUG_ON(!handle);
1262
1263 /*
1264 * Because we use per-cpu mapping areas shared among the
1265 * pools/users, we can't allow mapping in interrupt context
1266 * because it can corrupt another users mappings.
1267 */
1268 BUG_ON(in_interrupt());
1269
1270 /* From now on, migration cannot move the object */
1271 pin_tag(handle);
1272
1273 obj = handle_to_obj(handle);
1274 obj_to_location(obj, &page, &obj_idx);
1275 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1276 class = pool->size_class[class_idx];
1277 off = obj_idx_to_offset(page, obj_idx, class->size);
1278
1279 area = &get_cpu_var(zs_map_area);
1280 area->vm_mm = mm;
1281 if (off + class->size <= PAGE_SIZE) {
1282 /* this object is contained entirely within a page */
1283 area->vm_addr = kmap_atomic(page);
1284 ret = area->vm_addr + off;
1285 goto out;
1286 }
1287
1288 /* this object spans two pages */
1289 pages[0] = page;
1290 pages[1] = get_next_page(page);
1291 BUG_ON(!pages[1]);
1292
1293 ret = __zs_map_object(area, pages, off, class->size);
1294 out:
1295 if (!class->huge)
1296 ret += ZS_HANDLE_SIZE;
1297
1298 return ret;
1299 }
1300 EXPORT_SYMBOL_GPL(zs_map_object);
1301
1302 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1303 {
1304 struct page *page;
1305 unsigned long obj, obj_idx, off;
1306
1307 unsigned int class_idx;
1308 enum fullness_group fg;
1309 struct size_class *class;
1310 struct mapping_area *area;
1311
1312 BUG_ON(!handle);
1313
1314 obj = handle_to_obj(handle);
1315 obj_to_location(obj, &page, &obj_idx);
1316 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1317 class = pool->size_class[class_idx];
1318 off = obj_idx_to_offset(page, obj_idx, class->size);
1319
1320 area = this_cpu_ptr(&zs_map_area);
1321 if (off + class->size <= PAGE_SIZE)
1322 kunmap_atomic(area->vm_addr);
1323 else {
1324 struct page *pages[2];
1325
1326 pages[0] = page;
1327 pages[1] = get_next_page(page);
1328 BUG_ON(!pages[1]);
1329
1330 __zs_unmap_object(area, pages, off, class->size);
1331 }
1332 put_cpu_var(zs_map_area);
1333 unpin_tag(handle);
1334 }
1335 EXPORT_SYMBOL_GPL(zs_unmap_object);
1336
1337 static unsigned long obj_malloc(struct page *first_page,
1338 struct size_class *class, unsigned long handle)
1339 {
1340 unsigned long obj;
1341 struct link_free *link;
1342
1343 struct page *m_page;
1344 unsigned long m_objidx, m_offset;
1345 void *vaddr;
1346
1347 handle |= OBJ_ALLOCATED_TAG;
1348 obj = (unsigned long)first_page->freelist;
1349 obj_to_location(obj, &m_page, &m_objidx);
1350 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1351
1352 vaddr = kmap_atomic(m_page);
1353 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1354 first_page->freelist = link->next;
1355 if (!class->huge)
1356 /* record handle in the header of allocated chunk */
1357 link->handle = handle;
1358 else
1359 /* record handle in first_page->private */
1360 set_page_private(first_page, handle);
1361 kunmap_atomic(vaddr);
1362 first_page->inuse++;
1363 zs_stat_inc(class, OBJ_USED, 1);
1364
1365 return obj;
1366 }
1367
1368
1369 /**
1370 * zs_malloc - Allocate block of given size from pool.
1371 * @pool: pool to allocate from
1372 * @size: size of block to allocate
1373 *
1374 * On success, handle to the allocated object is returned,
1375 * otherwise 0.
1376 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1377 */
1378 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1379 {
1380 unsigned long handle, obj;
1381 struct size_class *class;
1382 struct page *first_page;
1383
1384 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1385 return 0;
1386
1387 handle = alloc_handle(pool);
1388 if (!handle)
1389 return 0;
1390
1391 /* extra space in chunk to keep the handle */
1392 size += ZS_HANDLE_SIZE;
1393 class = pool->size_class[get_size_class_index(size)];
1394
1395 spin_lock(&class->lock);
1396 first_page = find_get_zspage(class);
1397
1398 if (!first_page) {
1399 spin_unlock(&class->lock);
1400 first_page = alloc_zspage(class, pool->flags);
1401 if (unlikely(!first_page)) {
1402 free_handle(pool, handle);
1403 return 0;
1404 }
1405
1406 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1407 atomic_long_add(class->pages_per_zspage,
1408 &pool->pages_allocated);
1409
1410 spin_lock(&class->lock);
1411 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1412 class->size, class->pages_per_zspage));
1413 }
1414
1415 obj = obj_malloc(first_page, class, handle);
1416 /* Now move the zspage to another fullness group, if required */
1417 fix_fullness_group(class, first_page);
1418 record_obj(handle, obj);
1419 spin_unlock(&class->lock);
1420
1421 return handle;
1422 }
1423 EXPORT_SYMBOL_GPL(zs_malloc);
1424
1425 static void obj_free(struct zs_pool *pool, struct size_class *class,
1426 unsigned long obj)
1427 {
1428 struct link_free *link;
1429 struct page *first_page, *f_page;
1430 unsigned long f_objidx, f_offset;
1431 void *vaddr;
1432 int class_idx;
1433 enum fullness_group fullness;
1434
1435 BUG_ON(!obj);
1436
1437 obj &= ~OBJ_ALLOCATED_TAG;
1438 obj_to_location(obj, &f_page, &f_objidx);
1439 first_page = get_first_page(f_page);
1440
1441 get_zspage_mapping(first_page, &class_idx, &fullness);
1442 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1443
1444 vaddr = kmap_atomic(f_page);
1445
1446 /* Insert this object in containing zspage's freelist */
1447 link = (struct link_free *)(vaddr + f_offset);
1448 link->next = first_page->freelist;
1449 if (class->huge)
1450 set_page_private(first_page, 0);
1451 kunmap_atomic(vaddr);
1452 first_page->freelist = (void *)obj;
1453 first_page->inuse--;
1454 zs_stat_dec(class, OBJ_USED, 1);
1455 }
1456
1457 void zs_free(struct zs_pool *pool, unsigned long handle)
1458 {
1459 struct page *first_page, *f_page;
1460 unsigned long obj, f_objidx;
1461 int class_idx;
1462 struct size_class *class;
1463 enum fullness_group fullness;
1464
1465 if (unlikely(!handle))
1466 return;
1467
1468 pin_tag(handle);
1469 obj = handle_to_obj(handle);
1470 obj_to_location(obj, &f_page, &f_objidx);
1471 first_page = get_first_page(f_page);
1472
1473 get_zspage_mapping(first_page, &class_idx, &fullness);
1474 class = pool->size_class[class_idx];
1475
1476 spin_lock(&class->lock);
1477 obj_free(pool, class, obj);
1478 fullness = fix_fullness_group(class, first_page);
1479 if (fullness == ZS_EMPTY) {
1480 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1481 class->size, class->pages_per_zspage));
1482 atomic_long_sub(class->pages_per_zspage,
1483 &pool->pages_allocated);
1484 free_zspage(first_page);
1485 }
1486 spin_unlock(&class->lock);
1487 unpin_tag(handle);
1488
1489 free_handle(pool, handle);
1490 }
1491 EXPORT_SYMBOL_GPL(zs_free);
1492
1493 static void zs_object_copy(unsigned long dst, unsigned long src,
1494 struct size_class *class)
1495 {
1496 struct page *s_page, *d_page;
1497 unsigned long s_objidx, d_objidx;
1498 unsigned long s_off, d_off;
1499 void *s_addr, *d_addr;
1500 int s_size, d_size, size;
1501 int written = 0;
1502
1503 s_size = d_size = class->size;
1504
1505 obj_to_location(src, &s_page, &s_objidx);
1506 obj_to_location(dst, &d_page, &d_objidx);
1507
1508 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1509 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1510
1511 if (s_off + class->size > PAGE_SIZE)
1512 s_size = PAGE_SIZE - s_off;
1513
1514 if (d_off + class->size > PAGE_SIZE)
1515 d_size = PAGE_SIZE - d_off;
1516
1517 s_addr = kmap_atomic(s_page);
1518 d_addr = kmap_atomic(d_page);
1519
1520 while (1) {
1521 size = min(s_size, d_size);
1522 memcpy(d_addr + d_off, s_addr + s_off, size);
1523 written += size;
1524
1525 if (written == class->size)
1526 break;
1527
1528 s_off += size;
1529 s_size -= size;
1530 d_off += size;
1531 d_size -= size;
1532
1533 if (s_off >= PAGE_SIZE) {
1534 kunmap_atomic(d_addr);
1535 kunmap_atomic(s_addr);
1536 s_page = get_next_page(s_page);
1537 BUG_ON(!s_page);
1538 s_addr = kmap_atomic(s_page);
1539 d_addr = kmap_atomic(d_page);
1540 s_size = class->size - written;
1541 s_off = 0;
1542 }
1543
1544 if (d_off >= PAGE_SIZE) {
1545 kunmap_atomic(d_addr);
1546 d_page = get_next_page(d_page);
1547 BUG_ON(!d_page);
1548 d_addr = kmap_atomic(d_page);
1549 d_size = class->size - written;
1550 d_off = 0;
1551 }
1552 }
1553
1554 kunmap_atomic(d_addr);
1555 kunmap_atomic(s_addr);
1556 }
1557
1558 /*
1559 * Find alloced object in zspage from index object and
1560 * return handle.
1561 */
1562 static unsigned long find_alloced_obj(struct page *page, int index,
1563 struct size_class *class)
1564 {
1565 unsigned long head;
1566 int offset = 0;
1567 unsigned long handle = 0;
1568 void *addr = kmap_atomic(page);
1569
1570 if (!is_first_page(page))
1571 offset = page->index;
1572 offset += class->size * index;
1573
1574 while (offset < PAGE_SIZE) {
1575 head = obj_to_head(class, page, addr + offset);
1576 if (head & OBJ_ALLOCATED_TAG) {
1577 handle = head & ~OBJ_ALLOCATED_TAG;
1578 if (trypin_tag(handle))
1579 break;
1580 handle = 0;
1581 }
1582
1583 offset += class->size;
1584 index++;
1585 }
1586
1587 kunmap_atomic(addr);
1588 return handle;
1589 }
1590
1591 struct zs_compact_control {
1592 /* Source page for migration which could be a subpage of zspage. */
1593 struct page *s_page;
1594 /* Destination page for migration which should be a first page
1595 * of zspage. */
1596 struct page *d_page;
1597 /* Starting object index within @s_page which used for live object
1598 * in the subpage. */
1599 int index;
1600 };
1601
1602 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1603 struct zs_compact_control *cc)
1604 {
1605 unsigned long used_obj, free_obj;
1606 unsigned long handle;
1607 struct page *s_page = cc->s_page;
1608 struct page *d_page = cc->d_page;
1609 unsigned long index = cc->index;
1610 int ret = 0;
1611
1612 while (1) {
1613 handle = find_alloced_obj(s_page, index, class);
1614 if (!handle) {
1615 s_page = get_next_page(s_page);
1616 if (!s_page)
1617 break;
1618 index = 0;
1619 continue;
1620 }
1621
1622 /* Stop if there is no more space */
1623 if (zspage_full(d_page)) {
1624 unpin_tag(handle);
1625 ret = -ENOMEM;
1626 break;
1627 }
1628
1629 used_obj = handle_to_obj(handle);
1630 free_obj = obj_malloc(d_page, class, handle);
1631 zs_object_copy(free_obj, used_obj, class);
1632 index++;
1633 record_obj(handle, free_obj);
1634 unpin_tag(handle);
1635 obj_free(pool, class, used_obj);
1636 }
1637
1638 /* Remember last position in this iteration */
1639 cc->s_page = s_page;
1640 cc->index = index;
1641
1642 return ret;
1643 }
1644
1645 static struct page *isolate_target_page(struct size_class *class)
1646 {
1647 int i;
1648 struct page *page;
1649
1650 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1651 page = class->fullness_list[i];
1652 if (page) {
1653 remove_zspage(page, class, i);
1654 break;
1655 }
1656 }
1657
1658 return page;
1659 }
1660
1661 /*
1662 * putback_zspage - add @first_page into right class's fullness list
1663 * @pool: target pool
1664 * @class: destination class
1665 * @first_page: target page
1666 *
1667 * Return @fist_page's fullness_group
1668 */
1669 static enum fullness_group putback_zspage(struct zs_pool *pool,
1670 struct size_class *class,
1671 struct page *first_page)
1672 {
1673 enum fullness_group fullness;
1674
1675 BUG_ON(!is_first_page(first_page));
1676
1677 fullness = get_fullness_group(first_page);
1678 insert_zspage(first_page, class, fullness);
1679 set_zspage_mapping(first_page, class->index, fullness);
1680
1681 if (fullness == ZS_EMPTY) {
1682 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1683 class->size, class->pages_per_zspage));
1684 atomic_long_sub(class->pages_per_zspage,
1685 &pool->pages_allocated);
1686
1687 free_zspage(first_page);
1688 }
1689
1690 return fullness;
1691 }
1692
1693 static struct page *isolate_source_page(struct size_class *class)
1694 {
1695 int i;
1696 struct page *page = NULL;
1697
1698 for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1699 page = class->fullness_list[i];
1700 if (!page)
1701 continue;
1702
1703 remove_zspage(page, class, i);
1704 break;
1705 }
1706
1707 return page;
1708 }
1709
1710 /*
1711 *
1712 * Based on the number of unused allocated objects calculate
1713 * and return the number of pages that we can free.
1714 */
1715 static unsigned long zs_can_compact(struct size_class *class)
1716 {
1717 unsigned long obj_wasted;
1718
1719 obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
1720 zs_stat_get(class, OBJ_USED);
1721
1722 obj_wasted /= get_maxobj_per_zspage(class->size,
1723 class->pages_per_zspage);
1724
1725 return obj_wasted * class->pages_per_zspage;
1726 }
1727
1728 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1729 {
1730 struct zs_compact_control cc;
1731 struct page *src_page;
1732 struct page *dst_page = NULL;
1733
1734 spin_lock(&class->lock);
1735 while ((src_page = isolate_source_page(class))) {
1736
1737 BUG_ON(!is_first_page(src_page));
1738
1739 if (!zs_can_compact(class))
1740 break;
1741
1742 cc.index = 0;
1743 cc.s_page = src_page;
1744
1745 while ((dst_page = isolate_target_page(class))) {
1746 cc.d_page = dst_page;
1747 /*
1748 * If there is no more space in dst_page, resched
1749 * and see if anyone had allocated another zspage.
1750 */
1751 if (!migrate_zspage(pool, class, &cc))
1752 break;
1753
1754 putback_zspage(pool, class, dst_page);
1755 }
1756
1757 /* Stop if we couldn't find slot */
1758 if (dst_page == NULL)
1759 break;
1760
1761 putback_zspage(pool, class, dst_page);
1762 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1763 pool->stats.pages_compacted += class->pages_per_zspage;
1764 spin_unlock(&class->lock);
1765 cond_resched();
1766 spin_lock(&class->lock);
1767 }
1768
1769 if (src_page)
1770 putback_zspage(pool, class, src_page);
1771
1772 spin_unlock(&class->lock);
1773 }
1774
1775 unsigned long zs_compact(struct zs_pool *pool)
1776 {
1777 int i;
1778 struct size_class *class;
1779
1780 for (i = zs_size_classes - 1; i >= 0; i--) {
1781 class = pool->size_class[i];
1782 if (!class)
1783 continue;
1784 if (class->index != i)
1785 continue;
1786 __zs_compact(pool, class);
1787 }
1788
1789 return pool->stats.pages_compacted;
1790 }
1791 EXPORT_SYMBOL_GPL(zs_compact);
1792
1793 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1794 {
1795 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1796 }
1797 EXPORT_SYMBOL_GPL(zs_pool_stats);
1798
1799 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1800 struct shrink_control *sc)
1801 {
1802 unsigned long pages_freed;
1803 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1804 shrinker);
1805
1806 pages_freed = pool->stats.pages_compacted;
1807 /*
1808 * Compact classes and calculate compaction delta.
1809 * Can run concurrently with a manually triggered
1810 * (by user) compaction.
1811 */
1812 pages_freed = zs_compact(pool) - pages_freed;
1813
1814 return pages_freed ? pages_freed : SHRINK_STOP;
1815 }
1816
1817 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1818 struct shrink_control *sc)
1819 {
1820 int i;
1821 struct size_class *class;
1822 unsigned long pages_to_free = 0;
1823 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1824 shrinker);
1825
1826 if (!pool->shrinker_enabled)
1827 return 0;
1828
1829 for (i = zs_size_classes - 1; i >= 0; i--) {
1830 class = pool->size_class[i];
1831 if (!class)
1832 continue;
1833 if (class->index != i)
1834 continue;
1835
1836 pages_to_free += zs_can_compact(class);
1837 }
1838
1839 return pages_to_free;
1840 }
1841
1842 static void zs_unregister_shrinker(struct zs_pool *pool)
1843 {
1844 if (pool->shrinker_enabled) {
1845 unregister_shrinker(&pool->shrinker);
1846 pool->shrinker_enabled = false;
1847 }
1848 }
1849
1850 static int zs_register_shrinker(struct zs_pool *pool)
1851 {
1852 pool->shrinker.scan_objects = zs_shrinker_scan;
1853 pool->shrinker.count_objects = zs_shrinker_count;
1854 pool->shrinker.batch = 0;
1855 pool->shrinker.seeks = DEFAULT_SEEKS;
1856
1857 return register_shrinker(&pool->shrinker);
1858 }
1859
1860 /**
1861 * zs_create_pool - Creates an allocation pool to work from.
1862 * @flags: allocation flags used to allocate pool metadata
1863 *
1864 * This function must be called before anything when using
1865 * the zsmalloc allocator.
1866 *
1867 * On success, a pointer to the newly created pool is returned,
1868 * otherwise NULL.
1869 */
1870 struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
1871 {
1872 int i;
1873 struct zs_pool *pool;
1874 struct size_class *prev_class = NULL;
1875
1876 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1877 if (!pool)
1878 return NULL;
1879
1880 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1881 GFP_KERNEL);
1882 if (!pool->size_class) {
1883 kfree(pool);
1884 return NULL;
1885 }
1886
1887 pool->name = kstrdup(name, GFP_KERNEL);
1888 if (!pool->name)
1889 goto err;
1890
1891 if (create_handle_cache(pool))
1892 goto err;
1893
1894 /*
1895 * Iterate reversly, because, size of size_class that we want to use
1896 * for merging should be larger or equal to current size.
1897 */
1898 for (i = zs_size_classes - 1; i >= 0; i--) {
1899 int size;
1900 int pages_per_zspage;
1901 struct size_class *class;
1902
1903 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1904 if (size > ZS_MAX_ALLOC_SIZE)
1905 size = ZS_MAX_ALLOC_SIZE;
1906 pages_per_zspage = get_pages_per_zspage(size);
1907
1908 /*
1909 * size_class is used for normal zsmalloc operation such
1910 * as alloc/free for that size. Although it is natural that we
1911 * have one size_class for each size, there is a chance that we
1912 * can get more memory utilization if we use one size_class for
1913 * many different sizes whose size_class have same
1914 * characteristics. So, we makes size_class point to
1915 * previous size_class if possible.
1916 */
1917 if (prev_class) {
1918 if (can_merge(prev_class, size, pages_per_zspage)) {
1919 pool->size_class[i] = prev_class;
1920 continue;
1921 }
1922 }
1923
1924 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1925 if (!class)
1926 goto err;
1927
1928 class->size = size;
1929 class->index = i;
1930 class->pages_per_zspage = pages_per_zspage;
1931 if (pages_per_zspage == 1 &&
1932 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1933 class->huge = true;
1934 spin_lock_init(&class->lock);
1935 pool->size_class[i] = class;
1936
1937 prev_class = class;
1938 }
1939
1940 pool->flags = flags;
1941
1942 if (zs_pool_stat_create(name, pool))
1943 goto err;
1944
1945 /*
1946 * Not critical, we still can use the pool
1947 * and user can trigger compaction manually.
1948 */
1949 if (zs_register_shrinker(pool) == 0)
1950 pool->shrinker_enabled = true;
1951 return pool;
1952
1953 err:
1954 zs_destroy_pool(pool);
1955 return NULL;
1956 }
1957 EXPORT_SYMBOL_GPL(zs_create_pool);
1958
1959 void zs_destroy_pool(struct zs_pool *pool)
1960 {
1961 int i;
1962
1963 zs_unregister_shrinker(pool);
1964 zs_pool_stat_destroy(pool);
1965
1966 for (i = 0; i < zs_size_classes; i++) {
1967 int fg;
1968 struct size_class *class = pool->size_class[i];
1969
1970 if (!class)
1971 continue;
1972
1973 if (class->index != i)
1974 continue;
1975
1976 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1977 if (class->fullness_list[fg]) {
1978 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1979 class->size, fg);
1980 }
1981 }
1982 kfree(class);
1983 }
1984
1985 destroy_handle_cache(pool);
1986 kfree(pool->size_class);
1987 kfree(pool->name);
1988 kfree(pool);
1989 }
1990 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1991
1992 static int __init zs_init(void)
1993 {
1994 int ret = zs_register_cpu_notifier();
1995
1996 if (ret)
1997 goto notifier_fail;
1998
1999 init_zs_size_classes();
2000
2001 #ifdef CONFIG_ZPOOL
2002 zpool_register_driver(&zs_zpool_driver);
2003 #endif
2004
2005 ret = zs_stat_init();
2006 if (ret) {
2007 pr_err("zs stat initialization failed\n");
2008 goto stat_fail;
2009 }
2010 return 0;
2011
2012 stat_fail:
2013 #ifdef CONFIG_ZPOOL
2014 zpool_unregister_driver(&zs_zpool_driver);
2015 #endif
2016 notifier_fail:
2017 zs_unregister_cpu_notifier();
2018
2019 return ret;
2020 }
2021
2022 static void __exit zs_exit(void)
2023 {
2024 #ifdef CONFIG_ZPOOL
2025 zpool_unregister_driver(&zs_zpool_driver);
2026 #endif
2027 zs_unregister_cpu_notifier();
2028
2029 zs_stat_exit();
2030 }
2031
2032 module_init(zs_init);
2033 module_exit(zs_exit);
2034
2035 MODULE_LICENSE("Dual BSD/GPL");
2036 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
This page took 0.098226 seconds and 6 git commands to generate.