zsmalloc: correct fragile [kmap|kunmap]_atomic use
[deliverable/linux.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * This allocator is designed for use with zram. Thus, the allocator is
16 * supposed to work well under low memory conditions. In particular, it
17 * never attempts higher order page allocation which is very likely to
18 * fail under memory pressure. On the other hand, if we just use single
19 * (0-order) pages, it would suffer from very high fragmentation --
20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21 * This was one of the major issues with its predecessor (xvmalloc).
22 *
23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24 * and links them together using various 'struct page' fields. These linked
25 * pages act as a single higher-order page i.e. an object can span 0-order
26 * page boundaries. The code refers to these linked pages as a single entity
27 * called zspage.
28 *
29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30 * since this satisfies the requirements of all its current users (in the
31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
32 * uncompressed form). For allocation requests larger than this size, failure
33 * is returned (see zs_malloc).
34 *
35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
37 * location of the allocated object. The reason for this indirection is that
38 * zsmalloc does not keep zspages permanently mapped since that would cause
39 * issues on 32-bit systems where the VA region for kernel space mappings
40 * is very small. So, before using the allocating memory, the object has to
41 * be mapped using zs_map_object() to get a usable pointer and subsequently
42 * unmapped using zs_unmap_object().
43 *
44 * Following is how we use various fields and flags of underlying
45 * struct page(s) to form a zspage.
46 *
47 * Usage of struct page fields:
48 * page->first_page: points to the first component (0-order) page
49 * page->index (union with page->freelist): offset of the first object
50 * starting in this page. For the first page, this is
51 * always 0, so we use this field (aka freelist) to point
52 * to the first free object in zspage.
53 * page->lru: links together all component pages (except the first page)
54 * of a zspage
55 *
56 * For _first_ page only:
57 *
58 * page->private (union with page->first_page): refers to the
59 * component page after the first page
60 * page->freelist: points to the first free object in zspage.
61 * Free objects are linked together using in-place
62 * metadata.
63 * page->objects: maximum number of objects we can store in this
64 * zspage (class->zspage_order * PAGE_SIZE / class->size)
65 * page->lru: links together first pages of various zspages.
66 * Basically forming list of zspages in a fullness group.
67 * page->mapping: class index and fullness group of the zspage
68 *
69 * Usage of struct page flags:
70 * PG_private: identifies the first component page
71 * PG_private2: identifies the last component page
72 *
73 */
74
75 #ifdef CONFIG_ZSMALLOC_DEBUG
76 #define DEBUG
77 #endif
78
79 #include <linux/module.h>
80 #include <linux/kernel.h>
81 #include <linux/bitops.h>
82 #include <linux/errno.h>
83 #include <linux/highmem.h>
84 #include <linux/string.h>
85 #include <linux/slab.h>
86 #include <asm/tlbflush.h>
87 #include <asm/pgtable.h>
88 #include <linux/cpumask.h>
89 #include <linux/cpu.h>
90 #include <linux/vmalloc.h>
91 #include <linux/hardirq.h>
92 #include <linux/spinlock.h>
93 #include <linux/types.h>
94 #include <linux/zsmalloc.h>
95 #include <linux/zpool.h>
96
97 /*
98 * This must be power of 2 and greater than of equal to sizeof(link_free).
99 * These two conditions ensure that any 'struct link_free' itself doesn't
100 * span more than 1 page which avoids complex case of mapping 2 pages simply
101 * to restore link_free pointer values.
102 */
103 #define ZS_ALIGN 8
104
105 /*
106 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
107 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
108 */
109 #define ZS_MAX_ZSPAGE_ORDER 2
110 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
111
112 /*
113 * Object location (<PFN>, <obj_idx>) is encoded as
114 * as single (unsigned long) handle value.
115 *
116 * Note that object index <obj_idx> is relative to system
117 * page <PFN> it is stored in, so for each sub-page belonging
118 * to a zspage, obj_idx starts with 0.
119 *
120 * This is made more complicated by various memory models and PAE.
121 */
122
123 #ifndef MAX_PHYSMEM_BITS
124 #ifdef CONFIG_HIGHMEM64G
125 #define MAX_PHYSMEM_BITS 36
126 #else /* !CONFIG_HIGHMEM64G */
127 /*
128 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
129 * be PAGE_SHIFT
130 */
131 #define MAX_PHYSMEM_BITS BITS_PER_LONG
132 #endif
133 #endif
134 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
135 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
136 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
137
138 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
143
144 /*
145 * On systems with 4K page size, this gives 255 size classes! There is a
146 * trader-off here:
147 * - Large number of size classes is potentially wasteful as free page are
148 * spread across these classes
149 * - Small number of size classes causes large internal fragmentation
150 * - Probably its better to use specific size classes (empirically
151 * determined). NOTE: all those class sizes must be set as multiple of
152 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
153 *
154 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
155 * (reason above)
156 */
157 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
158 #define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
159 ZS_SIZE_CLASS_DELTA + 1)
160
161 /*
162 * We do not maintain any list for completely empty or full pages
163 */
164 enum fullness_group {
165 ZS_ALMOST_FULL,
166 ZS_ALMOST_EMPTY,
167 _ZS_NR_FULLNESS_GROUPS,
168
169 ZS_EMPTY,
170 ZS_FULL
171 };
172
173 /*
174 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
175 * n <= N / f, where
176 * n = number of allocated objects
177 * N = total number of objects zspage can store
178 * f = fullness_threshold_frac
179 *
180 * Similarly, we assign zspage to:
181 * ZS_ALMOST_FULL when n > N / f
182 * ZS_EMPTY when n == 0
183 * ZS_FULL when n == N
184 *
185 * (see: fix_fullness_group())
186 */
187 static const int fullness_threshold_frac = 4;
188
189 struct size_class {
190 /*
191 * Size of objects stored in this class. Must be multiple
192 * of ZS_ALIGN.
193 */
194 int size;
195 unsigned int index;
196
197 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
198 int pages_per_zspage;
199
200 spinlock_t lock;
201
202 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
203 };
204
205 /*
206 * Placed within free objects to form a singly linked list.
207 * For every zspage, first_page->freelist gives head of this list.
208 *
209 * This must be power of 2 and less than or equal to ZS_ALIGN
210 */
211 struct link_free {
212 /* Handle of next free chunk (encodes <PFN, obj_idx>) */
213 void *next;
214 };
215
216 struct zs_pool {
217 struct size_class *size_class[ZS_SIZE_CLASSES];
218
219 gfp_t flags; /* allocation flags used when growing pool */
220 atomic_long_t pages_allocated;
221 };
222
223 /*
224 * A zspage's class index and fullness group
225 * are encoded in its (first)page->mapping
226 */
227 #define CLASS_IDX_BITS 28
228 #define FULLNESS_BITS 4
229 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
230 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
231
232 struct mapping_area {
233 #ifdef CONFIG_PGTABLE_MAPPING
234 struct vm_struct *vm; /* vm area for mapping object that span pages */
235 #else
236 char *vm_buf; /* copy buffer for objects that span pages */
237 #endif
238 char *vm_addr; /* address of kmap_atomic()'ed pages */
239 enum zs_mapmode vm_mm; /* mapping mode */
240 };
241
242 /* zpool driver */
243
244 #ifdef CONFIG_ZPOOL
245
246 static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
247 {
248 return zs_create_pool(gfp);
249 }
250
251 static void zs_zpool_destroy(void *pool)
252 {
253 zs_destroy_pool(pool);
254 }
255
256 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
257 unsigned long *handle)
258 {
259 *handle = zs_malloc(pool, size);
260 return *handle ? 0 : -1;
261 }
262 static void zs_zpool_free(void *pool, unsigned long handle)
263 {
264 zs_free(pool, handle);
265 }
266
267 static int zs_zpool_shrink(void *pool, unsigned int pages,
268 unsigned int *reclaimed)
269 {
270 return -EINVAL;
271 }
272
273 static void *zs_zpool_map(void *pool, unsigned long handle,
274 enum zpool_mapmode mm)
275 {
276 enum zs_mapmode zs_mm;
277
278 switch (mm) {
279 case ZPOOL_MM_RO:
280 zs_mm = ZS_MM_RO;
281 break;
282 case ZPOOL_MM_WO:
283 zs_mm = ZS_MM_WO;
284 break;
285 case ZPOOL_MM_RW: /* fallthru */
286 default:
287 zs_mm = ZS_MM_RW;
288 break;
289 }
290
291 return zs_map_object(pool, handle, zs_mm);
292 }
293 static void zs_zpool_unmap(void *pool, unsigned long handle)
294 {
295 zs_unmap_object(pool, handle);
296 }
297
298 static u64 zs_zpool_total_size(void *pool)
299 {
300 return zs_get_total_pages(pool) << PAGE_SHIFT;
301 }
302
303 static struct zpool_driver zs_zpool_driver = {
304 .type = "zsmalloc",
305 .owner = THIS_MODULE,
306 .create = zs_zpool_create,
307 .destroy = zs_zpool_destroy,
308 .malloc = zs_zpool_malloc,
309 .free = zs_zpool_free,
310 .shrink = zs_zpool_shrink,
311 .map = zs_zpool_map,
312 .unmap = zs_zpool_unmap,
313 .total_size = zs_zpool_total_size,
314 };
315
316 MODULE_ALIAS("zpool-zsmalloc");
317 #endif /* CONFIG_ZPOOL */
318
319 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
320 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
321
322 static int is_first_page(struct page *page)
323 {
324 return PagePrivate(page);
325 }
326
327 static int is_last_page(struct page *page)
328 {
329 return PagePrivate2(page);
330 }
331
332 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
333 enum fullness_group *fullness)
334 {
335 unsigned long m;
336 BUG_ON(!is_first_page(page));
337
338 m = (unsigned long)page->mapping;
339 *fullness = m & FULLNESS_MASK;
340 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
341 }
342
343 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
344 enum fullness_group fullness)
345 {
346 unsigned long m;
347 BUG_ON(!is_first_page(page));
348
349 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
350 (fullness & FULLNESS_MASK);
351 page->mapping = (struct address_space *)m;
352 }
353
354 /*
355 * zsmalloc divides the pool into various size classes where each
356 * class maintains a list of zspages where each zspage is divided
357 * into equal sized chunks. Each allocation falls into one of these
358 * classes depending on its size. This function returns index of the
359 * size class which has chunk size big enough to hold the give size.
360 */
361 static int get_size_class_index(int size)
362 {
363 int idx = 0;
364
365 if (likely(size > ZS_MIN_ALLOC_SIZE))
366 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
367 ZS_SIZE_CLASS_DELTA);
368
369 return idx;
370 }
371
372 /*
373 * For each size class, zspages are divided into different groups
374 * depending on how "full" they are. This was done so that we could
375 * easily find empty or nearly empty zspages when we try to shrink
376 * the pool (not yet implemented). This function returns fullness
377 * status of the given page.
378 */
379 static enum fullness_group get_fullness_group(struct page *page)
380 {
381 int inuse, max_objects;
382 enum fullness_group fg;
383 BUG_ON(!is_first_page(page));
384
385 inuse = page->inuse;
386 max_objects = page->objects;
387
388 if (inuse == 0)
389 fg = ZS_EMPTY;
390 else if (inuse == max_objects)
391 fg = ZS_FULL;
392 else if (inuse <= max_objects / fullness_threshold_frac)
393 fg = ZS_ALMOST_EMPTY;
394 else
395 fg = ZS_ALMOST_FULL;
396
397 return fg;
398 }
399
400 /*
401 * Each size class maintains various freelists and zspages are assigned
402 * to one of these freelists based on the number of live objects they
403 * have. This functions inserts the given zspage into the freelist
404 * identified by <class, fullness_group>.
405 */
406 static void insert_zspage(struct page *page, struct size_class *class,
407 enum fullness_group fullness)
408 {
409 struct page **head;
410
411 BUG_ON(!is_first_page(page));
412
413 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
414 return;
415
416 head = &class->fullness_list[fullness];
417 if (*head)
418 list_add_tail(&page->lru, &(*head)->lru);
419
420 *head = page;
421 }
422
423 /*
424 * This function removes the given zspage from the freelist identified
425 * by <class, fullness_group>.
426 */
427 static void remove_zspage(struct page *page, struct size_class *class,
428 enum fullness_group fullness)
429 {
430 struct page **head;
431
432 BUG_ON(!is_first_page(page));
433
434 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
435 return;
436
437 head = &class->fullness_list[fullness];
438 BUG_ON(!*head);
439 if (list_empty(&(*head)->lru))
440 *head = NULL;
441 else if (*head == page)
442 *head = (struct page *)list_entry((*head)->lru.next,
443 struct page, lru);
444
445 list_del_init(&page->lru);
446 }
447
448 /*
449 * Each size class maintains zspages in different fullness groups depending
450 * on the number of live objects they contain. When allocating or freeing
451 * objects, the fullness status of the page can change, say, from ALMOST_FULL
452 * to ALMOST_EMPTY when freeing an object. This function checks if such
453 * a status change has occurred for the given page and accordingly moves the
454 * page from the freelist of the old fullness group to that of the new
455 * fullness group.
456 */
457 static enum fullness_group fix_fullness_group(struct zs_pool *pool,
458 struct page *page)
459 {
460 int class_idx;
461 struct size_class *class;
462 enum fullness_group currfg, newfg;
463
464 BUG_ON(!is_first_page(page));
465
466 get_zspage_mapping(page, &class_idx, &currfg);
467 newfg = get_fullness_group(page);
468 if (newfg == currfg)
469 goto out;
470
471 class = pool->size_class[class_idx];
472 remove_zspage(page, class, currfg);
473 insert_zspage(page, class, newfg);
474 set_zspage_mapping(page, class_idx, newfg);
475
476 out:
477 return newfg;
478 }
479
480 /*
481 * We have to decide on how many pages to link together
482 * to form a zspage for each size class. This is important
483 * to reduce wastage due to unusable space left at end of
484 * each zspage which is given as:
485 * wastage = Zp - Zp % size_class
486 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
487 *
488 * For example, for size class of 3/8 * PAGE_SIZE, we should
489 * link together 3 PAGE_SIZE sized pages to form a zspage
490 * since then we can perfectly fit in 8 such objects.
491 */
492 static int get_pages_per_zspage(int class_size)
493 {
494 int i, max_usedpc = 0;
495 /* zspage order which gives maximum used size per KB */
496 int max_usedpc_order = 1;
497
498 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
499 int zspage_size;
500 int waste, usedpc;
501
502 zspage_size = i * PAGE_SIZE;
503 waste = zspage_size % class_size;
504 usedpc = (zspage_size - waste) * 100 / zspage_size;
505
506 if (usedpc > max_usedpc) {
507 max_usedpc = usedpc;
508 max_usedpc_order = i;
509 }
510 }
511
512 return max_usedpc_order;
513 }
514
515 /*
516 * A single 'zspage' is composed of many system pages which are
517 * linked together using fields in struct page. This function finds
518 * the first/head page, given any component page of a zspage.
519 */
520 static struct page *get_first_page(struct page *page)
521 {
522 if (is_first_page(page))
523 return page;
524 else
525 return page->first_page;
526 }
527
528 static struct page *get_next_page(struct page *page)
529 {
530 struct page *next;
531
532 if (is_last_page(page))
533 next = NULL;
534 else if (is_first_page(page))
535 next = (struct page *)page_private(page);
536 else
537 next = list_entry(page->lru.next, struct page, lru);
538
539 return next;
540 }
541
542 /*
543 * Encode <page, obj_idx> as a single handle value.
544 * On hardware platforms with physical memory starting at 0x0 the pfn
545 * could be 0 so we ensure that the handle will never be 0 by adjusting the
546 * encoded obj_idx value before encoding.
547 */
548 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
549 {
550 unsigned long handle;
551
552 if (!page) {
553 BUG_ON(obj_idx);
554 return NULL;
555 }
556
557 handle = page_to_pfn(page) << OBJ_INDEX_BITS;
558 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
559
560 return (void *)handle;
561 }
562
563 /*
564 * Decode <page, obj_idx> pair from the given object handle. We adjust the
565 * decoded obj_idx back to its original value since it was adjusted in
566 * obj_location_to_handle().
567 */
568 static void obj_handle_to_location(unsigned long handle, struct page **page,
569 unsigned long *obj_idx)
570 {
571 *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
572 *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
573 }
574
575 static unsigned long obj_idx_to_offset(struct page *page,
576 unsigned long obj_idx, int class_size)
577 {
578 unsigned long off = 0;
579
580 if (!is_first_page(page))
581 off = page->index;
582
583 return off + obj_idx * class_size;
584 }
585
586 static void reset_page(struct page *page)
587 {
588 clear_bit(PG_private, &page->flags);
589 clear_bit(PG_private_2, &page->flags);
590 set_page_private(page, 0);
591 page->mapping = NULL;
592 page->freelist = NULL;
593 page_mapcount_reset(page);
594 }
595
596 static void free_zspage(struct page *first_page)
597 {
598 struct page *nextp, *tmp, *head_extra;
599
600 BUG_ON(!is_first_page(first_page));
601 BUG_ON(first_page->inuse);
602
603 head_extra = (struct page *)page_private(first_page);
604
605 reset_page(first_page);
606 __free_page(first_page);
607
608 /* zspage with only 1 system page */
609 if (!head_extra)
610 return;
611
612 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
613 list_del(&nextp->lru);
614 reset_page(nextp);
615 __free_page(nextp);
616 }
617 reset_page(head_extra);
618 __free_page(head_extra);
619 }
620
621 /* Initialize a newly allocated zspage */
622 static void init_zspage(struct page *first_page, struct size_class *class)
623 {
624 unsigned long off = 0;
625 struct page *page = first_page;
626
627 BUG_ON(!is_first_page(first_page));
628 while (page) {
629 struct page *next_page;
630 struct link_free *link;
631 unsigned int i = 1;
632 void *vaddr;
633
634 /*
635 * page->index stores offset of first object starting
636 * in the page. For the first page, this is always 0,
637 * so we use first_page->index (aka ->freelist) to store
638 * head of corresponding zspage's freelist.
639 */
640 if (page != first_page)
641 page->index = off;
642
643 vaddr = kmap_atomic(page);
644 link = (struct link_free *)vaddr + off / sizeof(*link);
645
646 while ((off += class->size) < PAGE_SIZE) {
647 link->next = obj_location_to_handle(page, i++);
648 link += class->size / sizeof(*link);
649 }
650
651 /*
652 * We now come to the last (full or partial) object on this
653 * page, which must point to the first object on the next
654 * page (if present)
655 */
656 next_page = get_next_page(page);
657 link->next = obj_location_to_handle(next_page, 0);
658 kunmap_atomic(vaddr);
659 page = next_page;
660 off %= PAGE_SIZE;
661 }
662 }
663
664 /*
665 * Allocate a zspage for the given size class
666 */
667 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
668 {
669 int i, error;
670 struct page *first_page = NULL, *uninitialized_var(prev_page);
671
672 /*
673 * Allocate individual pages and link them together as:
674 * 1. first page->private = first sub-page
675 * 2. all sub-pages are linked together using page->lru
676 * 3. each sub-page is linked to the first page using page->first_page
677 *
678 * For each size class, First/Head pages are linked together using
679 * page->lru. Also, we set PG_private to identify the first page
680 * (i.e. no other sub-page has this flag set) and PG_private_2 to
681 * identify the last page.
682 */
683 error = -ENOMEM;
684 for (i = 0; i < class->pages_per_zspage; i++) {
685 struct page *page;
686
687 page = alloc_page(flags);
688 if (!page)
689 goto cleanup;
690
691 INIT_LIST_HEAD(&page->lru);
692 if (i == 0) { /* first page */
693 SetPagePrivate(page);
694 set_page_private(page, 0);
695 first_page = page;
696 first_page->inuse = 0;
697 }
698 if (i == 1)
699 set_page_private(first_page, (unsigned long)page);
700 if (i >= 1)
701 page->first_page = first_page;
702 if (i >= 2)
703 list_add(&page->lru, &prev_page->lru);
704 if (i == class->pages_per_zspage - 1) /* last page */
705 SetPagePrivate2(page);
706 prev_page = page;
707 }
708
709 init_zspage(first_page, class);
710
711 first_page->freelist = obj_location_to_handle(first_page, 0);
712 /* Maximum number of objects we can store in this zspage */
713 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
714
715 error = 0; /* Success */
716
717 cleanup:
718 if (unlikely(error) && first_page) {
719 free_zspage(first_page);
720 first_page = NULL;
721 }
722
723 return first_page;
724 }
725
726 static struct page *find_get_zspage(struct size_class *class)
727 {
728 int i;
729 struct page *page;
730
731 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
732 page = class->fullness_list[i];
733 if (page)
734 break;
735 }
736
737 return page;
738 }
739
740 #ifdef CONFIG_PGTABLE_MAPPING
741 static inline int __zs_cpu_up(struct mapping_area *area)
742 {
743 /*
744 * Make sure we don't leak memory if a cpu UP notification
745 * and zs_init() race and both call zs_cpu_up() on the same cpu
746 */
747 if (area->vm)
748 return 0;
749 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
750 if (!area->vm)
751 return -ENOMEM;
752 return 0;
753 }
754
755 static inline void __zs_cpu_down(struct mapping_area *area)
756 {
757 if (area->vm)
758 free_vm_area(area->vm);
759 area->vm = NULL;
760 }
761
762 static inline void *__zs_map_object(struct mapping_area *area,
763 struct page *pages[2], int off, int size)
764 {
765 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
766 area->vm_addr = area->vm->addr;
767 return area->vm_addr + off;
768 }
769
770 static inline void __zs_unmap_object(struct mapping_area *area,
771 struct page *pages[2], int off, int size)
772 {
773 unsigned long addr = (unsigned long)area->vm_addr;
774
775 unmap_kernel_range(addr, PAGE_SIZE * 2);
776 }
777
778 #else /* CONFIG_PGTABLE_MAPPING */
779
780 static inline int __zs_cpu_up(struct mapping_area *area)
781 {
782 /*
783 * Make sure we don't leak memory if a cpu UP notification
784 * and zs_init() race and both call zs_cpu_up() on the same cpu
785 */
786 if (area->vm_buf)
787 return 0;
788 area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
789 if (!area->vm_buf)
790 return -ENOMEM;
791 return 0;
792 }
793
794 static inline void __zs_cpu_down(struct mapping_area *area)
795 {
796 if (area->vm_buf)
797 free_page((unsigned long)area->vm_buf);
798 area->vm_buf = NULL;
799 }
800
801 static void *__zs_map_object(struct mapping_area *area,
802 struct page *pages[2], int off, int size)
803 {
804 int sizes[2];
805 void *addr;
806 char *buf = area->vm_buf;
807
808 /* disable page faults to match kmap_atomic() return conditions */
809 pagefault_disable();
810
811 /* no read fastpath */
812 if (area->vm_mm == ZS_MM_WO)
813 goto out;
814
815 sizes[0] = PAGE_SIZE - off;
816 sizes[1] = size - sizes[0];
817
818 /* copy object to per-cpu buffer */
819 addr = kmap_atomic(pages[0]);
820 memcpy(buf, addr + off, sizes[0]);
821 kunmap_atomic(addr);
822 addr = kmap_atomic(pages[1]);
823 memcpy(buf + sizes[0], addr, sizes[1]);
824 kunmap_atomic(addr);
825 out:
826 return area->vm_buf;
827 }
828
829 static void __zs_unmap_object(struct mapping_area *area,
830 struct page *pages[2], int off, int size)
831 {
832 int sizes[2];
833 void *addr;
834 char *buf = area->vm_buf;
835
836 /* no write fastpath */
837 if (area->vm_mm == ZS_MM_RO)
838 goto out;
839
840 sizes[0] = PAGE_SIZE - off;
841 sizes[1] = size - sizes[0];
842
843 /* copy per-cpu buffer to object */
844 addr = kmap_atomic(pages[0]);
845 memcpy(addr + off, buf, sizes[0]);
846 kunmap_atomic(addr);
847 addr = kmap_atomic(pages[1]);
848 memcpy(addr, buf + sizes[0], sizes[1]);
849 kunmap_atomic(addr);
850
851 out:
852 /* enable page faults to match kunmap_atomic() return conditions */
853 pagefault_enable();
854 }
855
856 #endif /* CONFIG_PGTABLE_MAPPING */
857
858 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
859 void *pcpu)
860 {
861 int ret, cpu = (long)pcpu;
862 struct mapping_area *area;
863
864 switch (action) {
865 case CPU_UP_PREPARE:
866 area = &per_cpu(zs_map_area, cpu);
867 ret = __zs_cpu_up(area);
868 if (ret)
869 return notifier_from_errno(ret);
870 break;
871 case CPU_DEAD:
872 case CPU_UP_CANCELED:
873 area = &per_cpu(zs_map_area, cpu);
874 __zs_cpu_down(area);
875 break;
876 }
877
878 return NOTIFY_OK;
879 }
880
881 static struct notifier_block zs_cpu_nb = {
882 .notifier_call = zs_cpu_notifier
883 };
884
885 static void zs_unregister_cpu_notifier(void)
886 {
887 int cpu;
888
889 cpu_notifier_register_begin();
890
891 for_each_online_cpu(cpu)
892 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
893 __unregister_cpu_notifier(&zs_cpu_nb);
894
895 cpu_notifier_register_done();
896 }
897
898 static int zs_register_cpu_notifier(void)
899 {
900 int cpu, uninitialized_var(ret);
901
902 cpu_notifier_register_begin();
903
904 __register_cpu_notifier(&zs_cpu_nb);
905 for_each_online_cpu(cpu) {
906 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
907 if (notifier_to_errno(ret))
908 break;
909 }
910
911 cpu_notifier_register_done();
912 return notifier_to_errno(ret);
913 }
914
915 static void __exit zs_exit(void)
916 {
917 #ifdef CONFIG_ZPOOL
918 zpool_unregister_driver(&zs_zpool_driver);
919 #endif
920 zs_unregister_cpu_notifier();
921 }
922
923 static int __init zs_init(void)
924 {
925 int ret = zs_register_cpu_notifier();
926
927 if (ret) {
928 zs_unregister_cpu_notifier();
929 return ret;
930 }
931
932 #ifdef CONFIG_ZPOOL
933 zpool_register_driver(&zs_zpool_driver);
934 #endif
935 return 0;
936 }
937
938 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
939 {
940 return pages_per_zspage * PAGE_SIZE / size;
941 }
942
943 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
944 {
945 if (prev->pages_per_zspage != pages_per_zspage)
946 return false;
947
948 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
949 != get_maxobj_per_zspage(size, pages_per_zspage))
950 return false;
951
952 return true;
953 }
954
955 /**
956 * zs_create_pool - Creates an allocation pool to work from.
957 * @flags: allocation flags used to allocate pool metadata
958 *
959 * This function must be called before anything when using
960 * the zsmalloc allocator.
961 *
962 * On success, a pointer to the newly created pool is returned,
963 * otherwise NULL.
964 */
965 struct zs_pool *zs_create_pool(gfp_t flags)
966 {
967 int i, ovhd_size;
968 struct zs_pool *pool;
969
970 ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
971 pool = kzalloc(ovhd_size, GFP_KERNEL);
972 if (!pool)
973 return NULL;
974
975 /*
976 * Iterate reversly, because, size of size_class that we want to use
977 * for merging should be larger or equal to current size.
978 */
979 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
980 int size;
981 int pages_per_zspage;
982 struct size_class *class;
983 struct size_class *prev_class;
984
985 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
986 if (size > ZS_MAX_ALLOC_SIZE)
987 size = ZS_MAX_ALLOC_SIZE;
988 pages_per_zspage = get_pages_per_zspage(size);
989
990 /*
991 * size_class is used for normal zsmalloc operation such
992 * as alloc/free for that size. Although it is natural that we
993 * have one size_class for each size, there is a chance that we
994 * can get more memory utilization if we use one size_class for
995 * many different sizes whose size_class have same
996 * characteristics. So, we makes size_class point to
997 * previous size_class if possible.
998 */
999 if (i < ZS_SIZE_CLASSES - 1) {
1000 prev_class = pool->size_class[i + 1];
1001 if (can_merge(prev_class, size, pages_per_zspage)) {
1002 pool->size_class[i] = prev_class;
1003 continue;
1004 }
1005 }
1006
1007 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1008 if (!class)
1009 goto err;
1010
1011 class->size = size;
1012 class->index = i;
1013 class->pages_per_zspage = pages_per_zspage;
1014 spin_lock_init(&class->lock);
1015 pool->size_class[i] = class;
1016 }
1017
1018 pool->flags = flags;
1019
1020 return pool;
1021
1022 err:
1023 zs_destroy_pool(pool);
1024 return NULL;
1025 }
1026 EXPORT_SYMBOL_GPL(zs_create_pool);
1027
1028 void zs_destroy_pool(struct zs_pool *pool)
1029 {
1030 int i;
1031
1032 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1033 int fg;
1034 struct size_class *class = pool->size_class[i];
1035
1036 if (!class)
1037 continue;
1038
1039 if (class->index != i)
1040 continue;
1041
1042 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1043 if (class->fullness_list[fg]) {
1044 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1045 class->size, fg);
1046 }
1047 }
1048 kfree(class);
1049 }
1050 kfree(pool);
1051 }
1052 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1053
1054 /**
1055 * zs_malloc - Allocate block of given size from pool.
1056 * @pool: pool to allocate from
1057 * @size: size of block to allocate
1058 *
1059 * On success, handle to the allocated object is returned,
1060 * otherwise 0.
1061 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1062 */
1063 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1064 {
1065 unsigned long obj;
1066 struct link_free *link;
1067 struct size_class *class;
1068 void *vaddr;
1069
1070 struct page *first_page, *m_page;
1071 unsigned long m_objidx, m_offset;
1072
1073 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1074 return 0;
1075
1076 class = pool->size_class[get_size_class_index(size)];
1077
1078 spin_lock(&class->lock);
1079 first_page = find_get_zspage(class);
1080
1081 if (!first_page) {
1082 spin_unlock(&class->lock);
1083 first_page = alloc_zspage(class, pool->flags);
1084 if (unlikely(!first_page))
1085 return 0;
1086
1087 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1088 atomic_long_add(class->pages_per_zspage,
1089 &pool->pages_allocated);
1090 spin_lock(&class->lock);
1091 }
1092
1093 obj = (unsigned long)first_page->freelist;
1094 obj_handle_to_location(obj, &m_page, &m_objidx);
1095 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1096
1097 vaddr = kmap_atomic(m_page);
1098 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1099 first_page->freelist = link->next;
1100 memset(link, POISON_INUSE, sizeof(*link));
1101 kunmap_atomic(vaddr);
1102
1103 first_page->inuse++;
1104 /* Now move the zspage to another fullness group, if required */
1105 fix_fullness_group(pool, first_page);
1106 spin_unlock(&class->lock);
1107
1108 return obj;
1109 }
1110 EXPORT_SYMBOL_GPL(zs_malloc);
1111
1112 void zs_free(struct zs_pool *pool, unsigned long obj)
1113 {
1114 struct link_free *link;
1115 struct page *first_page, *f_page;
1116 unsigned long f_objidx, f_offset;
1117 void *vaddr;
1118
1119 int class_idx;
1120 struct size_class *class;
1121 enum fullness_group fullness;
1122
1123 if (unlikely(!obj))
1124 return;
1125
1126 obj_handle_to_location(obj, &f_page, &f_objidx);
1127 first_page = get_first_page(f_page);
1128
1129 get_zspage_mapping(first_page, &class_idx, &fullness);
1130 class = pool->size_class[class_idx];
1131 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1132
1133 spin_lock(&class->lock);
1134
1135 /* Insert this object in containing zspage's freelist */
1136 vaddr = kmap_atomic(f_page);
1137 link = (struct link_free *)(vaddr + f_offset);
1138 link->next = first_page->freelist;
1139 kunmap_atomic(vaddr);
1140 first_page->freelist = (void *)obj;
1141
1142 first_page->inuse--;
1143 fullness = fix_fullness_group(pool, first_page);
1144 spin_unlock(&class->lock);
1145
1146 if (fullness == ZS_EMPTY) {
1147 atomic_long_sub(class->pages_per_zspage,
1148 &pool->pages_allocated);
1149 free_zspage(first_page);
1150 }
1151 }
1152 EXPORT_SYMBOL_GPL(zs_free);
1153
1154 /**
1155 * zs_map_object - get address of allocated object from handle.
1156 * @pool: pool from which the object was allocated
1157 * @handle: handle returned from zs_malloc
1158 *
1159 * Before using an object allocated from zs_malloc, it must be mapped using
1160 * this function. When done with the object, it must be unmapped using
1161 * zs_unmap_object.
1162 *
1163 * Only one object can be mapped per cpu at a time. There is no protection
1164 * against nested mappings.
1165 *
1166 * This function returns with preemption and page faults disabled.
1167 */
1168 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1169 enum zs_mapmode mm)
1170 {
1171 struct page *page;
1172 unsigned long obj_idx, off;
1173
1174 unsigned int class_idx;
1175 enum fullness_group fg;
1176 struct size_class *class;
1177 struct mapping_area *area;
1178 struct page *pages[2];
1179
1180 BUG_ON(!handle);
1181
1182 /*
1183 * Because we use per-cpu mapping areas shared among the
1184 * pools/users, we can't allow mapping in interrupt context
1185 * because it can corrupt another users mappings.
1186 */
1187 BUG_ON(in_interrupt());
1188
1189 obj_handle_to_location(handle, &page, &obj_idx);
1190 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1191 class = pool->size_class[class_idx];
1192 off = obj_idx_to_offset(page, obj_idx, class->size);
1193
1194 area = &get_cpu_var(zs_map_area);
1195 area->vm_mm = mm;
1196 if (off + class->size <= PAGE_SIZE) {
1197 /* this object is contained entirely within a page */
1198 area->vm_addr = kmap_atomic(page);
1199 return area->vm_addr + off;
1200 }
1201
1202 /* this object spans two pages */
1203 pages[0] = page;
1204 pages[1] = get_next_page(page);
1205 BUG_ON(!pages[1]);
1206
1207 return __zs_map_object(area, pages, off, class->size);
1208 }
1209 EXPORT_SYMBOL_GPL(zs_map_object);
1210
1211 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1212 {
1213 struct page *page;
1214 unsigned long obj_idx, off;
1215
1216 unsigned int class_idx;
1217 enum fullness_group fg;
1218 struct size_class *class;
1219 struct mapping_area *area;
1220
1221 BUG_ON(!handle);
1222
1223 obj_handle_to_location(handle, &page, &obj_idx);
1224 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1225 class = pool->size_class[class_idx];
1226 off = obj_idx_to_offset(page, obj_idx, class->size);
1227
1228 area = this_cpu_ptr(&zs_map_area);
1229 if (off + class->size <= PAGE_SIZE)
1230 kunmap_atomic(area->vm_addr);
1231 else {
1232 struct page *pages[2];
1233
1234 pages[0] = page;
1235 pages[1] = get_next_page(page);
1236 BUG_ON(!pages[1]);
1237
1238 __zs_unmap_object(area, pages, off, class->size);
1239 }
1240 put_cpu_var(zs_map_area);
1241 }
1242 EXPORT_SYMBOL_GPL(zs_unmap_object);
1243
1244 unsigned long zs_get_total_pages(struct zs_pool *pool)
1245 {
1246 return atomic_long_read(&pool->pages_allocated);
1247 }
1248 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1249
1250 module_init(zs_init);
1251 module_exit(zs_exit);
1252
1253 MODULE_LICENSE("Dual BSD/GPL");
1254 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
This page took 0.058663 seconds and 6 git commands to generate.