zswap: dynamic pool creation
[deliverable/linux.git] / mm / zswap.c
1 /*
2 * zswap.c - zswap driver file
3 *
4 * zswap is a backend for frontswap that takes pages that are in the process
5 * of being swapped out and attempts to compress and store them in a
6 * RAM-based memory pool. This can result in a significant I/O reduction on
7 * the swap device and, in the case where decompressing from RAM is faster
8 * than reading from the swap device, can also improve workload performance.
9 *
10 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/highmem.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/frontswap.h>
33 #include <linux/rbtree.h>
34 #include <linux/swap.h>
35 #include <linux/crypto.h>
36 #include <linux/mempool.h>
37 #include <linux/zpool.h>
38
39 #include <linux/mm_types.h>
40 #include <linux/page-flags.h>
41 #include <linux/swapops.h>
42 #include <linux/writeback.h>
43 #include <linux/pagemap.h>
44
45 /*********************************
46 * statistics
47 **********************************/
48 /* Total bytes used by the compressed storage */
49 static u64 zswap_pool_total_size;
50 /* The number of compressed pages currently stored in zswap */
51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52
53 /*
54 * The statistics below are not protected from concurrent access for
55 * performance reasons so they may not be a 100% accurate. However,
56 * they do provide useful information on roughly how many times a
57 * certain event is occurring.
58 */
59
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Store failed because underlying allocator could not get memory */
69 static u64 zswap_reject_alloc_fail;
70 /* Store failed because the entry metadata could not be allocated (rare) */
71 static u64 zswap_reject_kmemcache_fail;
72 /* Duplicate store was encountered (rare) */
73 static u64 zswap_duplicate_entry;
74
75 /*********************************
76 * tunables
77 **********************************/
78
79 /* Enable/disable zswap (disabled by default) */
80 static bool zswap_enabled;
81 module_param_named(enabled, zswap_enabled, bool, 0644);
82
83 /* Compressor to be used by zswap (fixed at boot for now) */
84 #define ZSWAP_COMPRESSOR_DEFAULT "lzo"
85 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
86 module_param_named(compressor, zswap_compressor, charp, 0444);
87
88 /* The maximum percentage of memory that the compressed pool can occupy */
89 static unsigned int zswap_max_pool_percent = 20;
90 module_param_named(max_pool_percent,
91 zswap_max_pool_percent, uint, 0644);
92
93 /* Compressed storage to use */
94 #define ZSWAP_ZPOOL_DEFAULT "zbud"
95 static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
96 module_param_named(zpool, zswap_zpool_type, charp, 0444);
97
98 /* zpool is shared by all of zswap backend */
99 static struct zpool *zswap_pool;
100
101 /*********************************
102 * data structures
103 **********************************/
104
105 struct zswap_pool {
106 struct zpool *zpool;
107 struct crypto_comp * __percpu *tfm;
108 struct kref kref;
109 struct list_head list;
110 struct rcu_head rcu_head;
111 struct notifier_block notifier;
112 char tfm_name[CRYPTO_MAX_ALG_NAME];
113 };
114
115 /*
116 * struct zswap_entry
117 *
118 * This structure contains the metadata for tracking a single compressed
119 * page within zswap.
120 *
121 * rbnode - links the entry into red-black tree for the appropriate swap type
122 * offset - the swap offset for the entry. Index into the red-black tree.
123 * refcount - the number of outstanding reference to the entry. This is needed
124 * to protect against premature freeing of the entry by code
125 * concurrent calls to load, invalidate, and writeback. The lock
126 * for the zswap_tree structure that contains the entry must
127 * be held while changing the refcount. Since the lock must
128 * be held, there is no reason to also make refcount atomic.
129 * length - the length in bytes of the compressed page data. Needed during
130 * decompression
131 * pool - the zswap_pool the entry's data is in
132 * handle - zpool allocation handle that stores the compressed page data
133 */
134 struct zswap_entry {
135 struct rb_node rbnode;
136 pgoff_t offset;
137 int refcount;
138 unsigned int length;
139 struct zswap_pool *pool;
140 unsigned long handle;
141 };
142
143 struct zswap_header {
144 swp_entry_t swpentry;
145 };
146
147 /*
148 * The tree lock in the zswap_tree struct protects a few things:
149 * - the rbtree
150 * - the refcount field of each entry in the tree
151 */
152 struct zswap_tree {
153 struct rb_root rbroot;
154 spinlock_t lock;
155 };
156
157 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
158
159 /* RCU-protected iteration */
160 static LIST_HEAD(zswap_pools);
161 /* protects zswap_pools list modification */
162 static DEFINE_SPINLOCK(zswap_pools_lock);
163
164 /*********************************
165 * helpers and fwd declarations
166 **********************************/
167
168 #define zswap_pool_debug(msg, p) \
169 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
170 zpool_get_type((p)->zpool))
171
172 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
173 static int zswap_pool_get(struct zswap_pool *pool);
174 static void zswap_pool_put(struct zswap_pool *pool);
175
176 static const struct zpool_ops zswap_zpool_ops = {
177 .evict = zswap_writeback_entry
178 };
179
180 static bool zswap_is_full(void)
181 {
182 return totalram_pages * zswap_max_pool_percent / 100 <
183 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
184 }
185
186 static void zswap_update_total_size(void)
187 {
188 struct zswap_pool *pool;
189 u64 total = 0;
190
191 rcu_read_lock();
192
193 list_for_each_entry_rcu(pool, &zswap_pools, list)
194 total += zpool_get_total_size(pool->zpool);
195
196 rcu_read_unlock();
197
198 zswap_pool_total_size = total;
199 }
200
201 /*********************************
202 * zswap entry functions
203 **********************************/
204 static struct kmem_cache *zswap_entry_cache;
205
206 static int __init zswap_entry_cache_create(void)
207 {
208 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
209 return zswap_entry_cache == NULL;
210 }
211
212 static void __init zswap_entry_cache_destroy(void)
213 {
214 kmem_cache_destroy(zswap_entry_cache);
215 }
216
217 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
218 {
219 struct zswap_entry *entry;
220 entry = kmem_cache_alloc(zswap_entry_cache, gfp);
221 if (!entry)
222 return NULL;
223 entry->refcount = 1;
224 RB_CLEAR_NODE(&entry->rbnode);
225 return entry;
226 }
227
228 static void zswap_entry_cache_free(struct zswap_entry *entry)
229 {
230 kmem_cache_free(zswap_entry_cache, entry);
231 }
232
233 /*********************************
234 * rbtree functions
235 **********************************/
236 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
237 {
238 struct rb_node *node = root->rb_node;
239 struct zswap_entry *entry;
240
241 while (node) {
242 entry = rb_entry(node, struct zswap_entry, rbnode);
243 if (entry->offset > offset)
244 node = node->rb_left;
245 else if (entry->offset < offset)
246 node = node->rb_right;
247 else
248 return entry;
249 }
250 return NULL;
251 }
252
253 /*
254 * In the case that a entry with the same offset is found, a pointer to
255 * the existing entry is stored in dupentry and the function returns -EEXIST
256 */
257 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
258 struct zswap_entry **dupentry)
259 {
260 struct rb_node **link = &root->rb_node, *parent = NULL;
261 struct zswap_entry *myentry;
262
263 while (*link) {
264 parent = *link;
265 myentry = rb_entry(parent, struct zswap_entry, rbnode);
266 if (myentry->offset > entry->offset)
267 link = &(*link)->rb_left;
268 else if (myentry->offset < entry->offset)
269 link = &(*link)->rb_right;
270 else {
271 *dupentry = myentry;
272 return -EEXIST;
273 }
274 }
275 rb_link_node(&entry->rbnode, parent, link);
276 rb_insert_color(&entry->rbnode, root);
277 return 0;
278 }
279
280 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
281 {
282 if (!RB_EMPTY_NODE(&entry->rbnode)) {
283 rb_erase(&entry->rbnode, root);
284 RB_CLEAR_NODE(&entry->rbnode);
285 }
286 }
287
288 /*
289 * Carries out the common pattern of freeing and entry's zpool allocation,
290 * freeing the entry itself, and decrementing the number of stored pages.
291 */
292 static void zswap_free_entry(struct zswap_entry *entry)
293 {
294 zpool_free(entry->pool->zpool, entry->handle);
295 zswap_pool_put(entry->pool);
296 zswap_entry_cache_free(entry);
297 atomic_dec(&zswap_stored_pages);
298 zswap_update_total_size();
299 }
300
301 /* caller must hold the tree lock */
302 static void zswap_entry_get(struct zswap_entry *entry)
303 {
304 entry->refcount++;
305 }
306
307 /* caller must hold the tree lock
308 * remove from the tree and free it, if nobody reference the entry
309 */
310 static void zswap_entry_put(struct zswap_tree *tree,
311 struct zswap_entry *entry)
312 {
313 int refcount = --entry->refcount;
314
315 BUG_ON(refcount < 0);
316 if (refcount == 0) {
317 zswap_rb_erase(&tree->rbroot, entry);
318 zswap_free_entry(entry);
319 }
320 }
321
322 /* caller must hold the tree lock */
323 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
324 pgoff_t offset)
325 {
326 struct zswap_entry *entry = NULL;
327
328 entry = zswap_rb_search(root, offset);
329 if (entry)
330 zswap_entry_get(entry);
331
332 return entry;
333 }
334
335 /*********************************
336 * per-cpu code
337 **********************************/
338 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
339
340 static int __zswap_cpu_dstmem_notifier(unsigned long action, unsigned long cpu)
341 {
342 u8 *dst;
343
344 switch (action) {
345 case CPU_UP_PREPARE:
346 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
347 if (!dst) {
348 pr_err("can't allocate compressor buffer\n");
349 return NOTIFY_BAD;
350 }
351 per_cpu(zswap_dstmem, cpu) = dst;
352 break;
353 case CPU_DEAD:
354 case CPU_UP_CANCELED:
355 dst = per_cpu(zswap_dstmem, cpu);
356 kfree(dst);
357 per_cpu(zswap_dstmem, cpu) = NULL;
358 break;
359 default:
360 break;
361 }
362 return NOTIFY_OK;
363 }
364
365 static int zswap_cpu_dstmem_notifier(struct notifier_block *nb,
366 unsigned long action, void *pcpu)
367 {
368 return __zswap_cpu_dstmem_notifier(action, (unsigned long)pcpu);
369 }
370
371 static struct notifier_block zswap_dstmem_notifier = {
372 .notifier_call = zswap_cpu_dstmem_notifier,
373 };
374
375 static int __init zswap_cpu_dstmem_init(void)
376 {
377 unsigned long cpu;
378
379 cpu_notifier_register_begin();
380 for_each_online_cpu(cpu)
381 if (__zswap_cpu_dstmem_notifier(CPU_UP_PREPARE, cpu) ==
382 NOTIFY_BAD)
383 goto cleanup;
384 __register_cpu_notifier(&zswap_dstmem_notifier);
385 cpu_notifier_register_done();
386 return 0;
387
388 cleanup:
389 for_each_online_cpu(cpu)
390 __zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
391 cpu_notifier_register_done();
392 return -ENOMEM;
393 }
394
395 static void zswap_cpu_dstmem_destroy(void)
396 {
397 unsigned long cpu;
398
399 cpu_notifier_register_begin();
400 for_each_online_cpu(cpu)
401 __zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
402 __unregister_cpu_notifier(&zswap_dstmem_notifier);
403 cpu_notifier_register_done();
404 }
405
406 static int __zswap_cpu_comp_notifier(struct zswap_pool *pool,
407 unsigned long action, unsigned long cpu)
408 {
409 struct crypto_comp *tfm;
410
411 switch (action) {
412 case CPU_UP_PREPARE:
413 if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu)))
414 break;
415 tfm = crypto_alloc_comp(pool->tfm_name, 0, 0);
416 if (IS_ERR_OR_NULL(tfm)) {
417 pr_err("could not alloc crypto comp %s : %ld\n",
418 pool->tfm_name, PTR_ERR(tfm));
419 return NOTIFY_BAD;
420 }
421 *per_cpu_ptr(pool->tfm, cpu) = tfm;
422 break;
423 case CPU_DEAD:
424 case CPU_UP_CANCELED:
425 tfm = *per_cpu_ptr(pool->tfm, cpu);
426 if (!IS_ERR_OR_NULL(tfm))
427 crypto_free_comp(tfm);
428 *per_cpu_ptr(pool->tfm, cpu) = NULL;
429 break;
430 default:
431 break;
432 }
433 return NOTIFY_OK;
434 }
435
436 static int zswap_cpu_comp_notifier(struct notifier_block *nb,
437 unsigned long action, void *pcpu)
438 {
439 unsigned long cpu = (unsigned long)pcpu;
440 struct zswap_pool *pool = container_of(nb, typeof(*pool), notifier);
441
442 return __zswap_cpu_comp_notifier(pool, action, cpu);
443 }
444
445 static int zswap_cpu_comp_init(struct zswap_pool *pool)
446 {
447 unsigned long cpu;
448
449 memset(&pool->notifier, 0, sizeof(pool->notifier));
450 pool->notifier.notifier_call = zswap_cpu_comp_notifier;
451
452 cpu_notifier_register_begin();
453 for_each_online_cpu(cpu)
454 if (__zswap_cpu_comp_notifier(pool, CPU_UP_PREPARE, cpu) ==
455 NOTIFY_BAD)
456 goto cleanup;
457 __register_cpu_notifier(&pool->notifier);
458 cpu_notifier_register_done();
459 return 0;
460
461 cleanup:
462 for_each_online_cpu(cpu)
463 __zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
464 cpu_notifier_register_done();
465 return -ENOMEM;
466 }
467
468 static void zswap_cpu_comp_destroy(struct zswap_pool *pool)
469 {
470 unsigned long cpu;
471
472 cpu_notifier_register_begin();
473 for_each_online_cpu(cpu)
474 __zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
475 __unregister_cpu_notifier(&pool->notifier);
476 cpu_notifier_register_done();
477 }
478
479 /*********************************
480 * pool functions
481 **********************************/
482
483 static struct zswap_pool *__zswap_pool_current(void)
484 {
485 struct zswap_pool *pool;
486
487 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
488 WARN_ON(!pool);
489
490 return pool;
491 }
492
493 static struct zswap_pool *zswap_pool_current(void)
494 {
495 assert_spin_locked(&zswap_pools_lock);
496
497 return __zswap_pool_current();
498 }
499
500 static struct zswap_pool *zswap_pool_current_get(void)
501 {
502 struct zswap_pool *pool;
503
504 rcu_read_lock();
505
506 pool = __zswap_pool_current();
507 if (!pool || !zswap_pool_get(pool))
508 pool = NULL;
509
510 rcu_read_unlock();
511
512 return pool;
513 }
514
515 static struct zswap_pool *zswap_pool_last_get(void)
516 {
517 struct zswap_pool *pool, *last = NULL;
518
519 rcu_read_lock();
520
521 list_for_each_entry_rcu(pool, &zswap_pools, list)
522 last = pool;
523 if (!WARN_ON(!last) && !zswap_pool_get(last))
524 last = NULL;
525
526 rcu_read_unlock();
527
528 return last;
529 }
530
531 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
532 {
533 struct zswap_pool *pool;
534
535 assert_spin_locked(&zswap_pools_lock);
536
537 list_for_each_entry_rcu(pool, &zswap_pools, list) {
538 if (strncmp(pool->tfm_name, compressor, sizeof(pool->tfm_name)))
539 continue;
540 if (strncmp(zpool_get_type(pool->zpool), type,
541 sizeof(zswap_zpool_type)))
542 continue;
543 /* if we can't get it, it's about to be destroyed */
544 if (!zswap_pool_get(pool))
545 continue;
546 return pool;
547 }
548
549 return NULL;
550 }
551
552 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
553 {
554 struct zswap_pool *pool;
555 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN;
556
557 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
558 if (!pool) {
559 pr_err("pool alloc failed\n");
560 return NULL;
561 }
562
563 pool->zpool = zpool_create_pool(type, "zswap", gfp, &zswap_zpool_ops);
564 if (!pool->zpool) {
565 pr_err("%s zpool not available\n", type);
566 goto error;
567 }
568 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
569
570 strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
571 pool->tfm = alloc_percpu(struct crypto_comp *);
572 if (!pool->tfm) {
573 pr_err("percpu alloc failed\n");
574 goto error;
575 }
576
577 if (zswap_cpu_comp_init(pool))
578 goto error;
579 pr_debug("using %s compressor\n", pool->tfm_name);
580
581 /* being the current pool takes 1 ref; this func expects the
582 * caller to always add the new pool as the current pool
583 */
584 kref_init(&pool->kref);
585 INIT_LIST_HEAD(&pool->list);
586
587 zswap_pool_debug("created", pool);
588
589 return pool;
590
591 error:
592 free_percpu(pool->tfm);
593 if (pool->zpool)
594 zpool_destroy_pool(pool->zpool);
595 kfree(pool);
596 return NULL;
597 }
598
599 static struct zswap_pool *__zswap_pool_create_fallback(void)
600 {
601 if (!crypto_has_comp(zswap_compressor, 0, 0)) {
602 pr_err("compressor %s not available, using default %s\n",
603 zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT);
604 strncpy(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT,
605 sizeof(zswap_compressor));
606 }
607 if (!zpool_has_pool(zswap_zpool_type)) {
608 pr_err("zpool %s not available, using default %s\n",
609 zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT);
610 strncpy(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT,
611 sizeof(zswap_zpool_type));
612 }
613
614 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
615 }
616
617 static void zswap_pool_destroy(struct zswap_pool *pool)
618 {
619 zswap_pool_debug("destroying", pool);
620
621 zswap_cpu_comp_destroy(pool);
622 free_percpu(pool->tfm);
623 zpool_destroy_pool(pool->zpool);
624 kfree(pool);
625 }
626
627 static int __must_check zswap_pool_get(struct zswap_pool *pool)
628 {
629 return kref_get_unless_zero(&pool->kref);
630 }
631
632 static void __zswap_pool_release(struct rcu_head *head)
633 {
634 struct zswap_pool *pool = container_of(head, typeof(*pool), rcu_head);
635
636 /* nobody should have been able to get a kref... */
637 WARN_ON(kref_get_unless_zero(&pool->kref));
638
639 /* pool is now off zswap_pools list and has no references. */
640 zswap_pool_destroy(pool);
641 }
642
643 static void __zswap_pool_empty(struct kref *kref)
644 {
645 struct zswap_pool *pool;
646
647 pool = container_of(kref, typeof(*pool), kref);
648
649 spin_lock(&zswap_pools_lock);
650
651 WARN_ON(pool == zswap_pool_current());
652
653 list_del_rcu(&pool->list);
654 call_rcu(&pool->rcu_head, __zswap_pool_release);
655
656 spin_unlock(&zswap_pools_lock);
657 }
658
659 static void zswap_pool_put(struct zswap_pool *pool)
660 {
661 kref_put(&pool->kref, __zswap_pool_empty);
662 }
663
664 /*********************************
665 * writeback code
666 **********************************/
667 /* return enum for zswap_get_swap_cache_page */
668 enum zswap_get_swap_ret {
669 ZSWAP_SWAPCACHE_NEW,
670 ZSWAP_SWAPCACHE_EXIST,
671 ZSWAP_SWAPCACHE_FAIL,
672 };
673
674 /*
675 * zswap_get_swap_cache_page
676 *
677 * This is an adaption of read_swap_cache_async()
678 *
679 * This function tries to find a page with the given swap entry
680 * in the swapper_space address space (the swap cache). If the page
681 * is found, it is returned in retpage. Otherwise, a page is allocated,
682 * added to the swap cache, and returned in retpage.
683 *
684 * If success, the swap cache page is returned in retpage
685 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
686 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
687 * the new page is added to swapcache and locked
688 * Returns ZSWAP_SWAPCACHE_FAIL on error
689 */
690 static int zswap_get_swap_cache_page(swp_entry_t entry,
691 struct page **retpage)
692 {
693 bool page_was_allocated;
694
695 *retpage = __read_swap_cache_async(entry, GFP_KERNEL,
696 NULL, 0, &page_was_allocated);
697 if (page_was_allocated)
698 return ZSWAP_SWAPCACHE_NEW;
699 if (!*retpage)
700 return ZSWAP_SWAPCACHE_FAIL;
701 return ZSWAP_SWAPCACHE_EXIST;
702 }
703
704 /*
705 * Attempts to free an entry by adding a page to the swap cache,
706 * decompressing the entry data into the page, and issuing a
707 * bio write to write the page back to the swap device.
708 *
709 * This can be thought of as a "resumed writeback" of the page
710 * to the swap device. We are basically resuming the same swap
711 * writeback path that was intercepted with the frontswap_store()
712 * in the first place. After the page has been decompressed into
713 * the swap cache, the compressed version stored by zswap can be
714 * freed.
715 */
716 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
717 {
718 struct zswap_header *zhdr;
719 swp_entry_t swpentry;
720 struct zswap_tree *tree;
721 pgoff_t offset;
722 struct zswap_entry *entry;
723 struct page *page;
724 struct crypto_comp *tfm;
725 u8 *src, *dst;
726 unsigned int dlen;
727 int ret;
728 struct writeback_control wbc = {
729 .sync_mode = WB_SYNC_NONE,
730 };
731
732 /* extract swpentry from data */
733 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
734 swpentry = zhdr->swpentry; /* here */
735 zpool_unmap_handle(pool, handle);
736 tree = zswap_trees[swp_type(swpentry)];
737 offset = swp_offset(swpentry);
738
739 /* find and ref zswap entry */
740 spin_lock(&tree->lock);
741 entry = zswap_entry_find_get(&tree->rbroot, offset);
742 if (!entry) {
743 /* entry was invalidated */
744 spin_unlock(&tree->lock);
745 return 0;
746 }
747 spin_unlock(&tree->lock);
748 BUG_ON(offset != entry->offset);
749
750 /* try to allocate swap cache page */
751 switch (zswap_get_swap_cache_page(swpentry, &page)) {
752 case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
753 ret = -ENOMEM;
754 goto fail;
755
756 case ZSWAP_SWAPCACHE_EXIST:
757 /* page is already in the swap cache, ignore for now */
758 page_cache_release(page);
759 ret = -EEXIST;
760 goto fail;
761
762 case ZSWAP_SWAPCACHE_NEW: /* page is locked */
763 /* decompress */
764 dlen = PAGE_SIZE;
765 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
766 ZPOOL_MM_RO) + sizeof(struct zswap_header);
767 dst = kmap_atomic(page);
768 tfm = *get_cpu_ptr(entry->pool->tfm);
769 ret = crypto_comp_decompress(tfm, src, entry->length,
770 dst, &dlen);
771 put_cpu_ptr(entry->pool->tfm);
772 kunmap_atomic(dst);
773 zpool_unmap_handle(entry->pool->zpool, entry->handle);
774 BUG_ON(ret);
775 BUG_ON(dlen != PAGE_SIZE);
776
777 /* page is up to date */
778 SetPageUptodate(page);
779 }
780
781 /* move it to the tail of the inactive list after end_writeback */
782 SetPageReclaim(page);
783
784 /* start writeback */
785 __swap_writepage(page, &wbc, end_swap_bio_write);
786 page_cache_release(page);
787 zswap_written_back_pages++;
788
789 spin_lock(&tree->lock);
790 /* drop local reference */
791 zswap_entry_put(tree, entry);
792
793 /*
794 * There are two possible situations for entry here:
795 * (1) refcount is 1(normal case), entry is valid and on the tree
796 * (2) refcount is 0, entry is freed and not on the tree
797 * because invalidate happened during writeback
798 * search the tree and free the entry if find entry
799 */
800 if (entry == zswap_rb_search(&tree->rbroot, offset))
801 zswap_entry_put(tree, entry);
802 spin_unlock(&tree->lock);
803
804 goto end;
805
806 /*
807 * if we get here due to ZSWAP_SWAPCACHE_EXIST
808 * a load may happening concurrently
809 * it is safe and okay to not free the entry
810 * if we free the entry in the following put
811 * it it either okay to return !0
812 */
813 fail:
814 spin_lock(&tree->lock);
815 zswap_entry_put(tree, entry);
816 spin_unlock(&tree->lock);
817
818 end:
819 return ret;
820 }
821
822 static int zswap_shrink(void)
823 {
824 struct zswap_pool *pool;
825 int ret;
826
827 pool = zswap_pool_last_get();
828 if (!pool)
829 return -ENOENT;
830
831 ret = zpool_shrink(pool->zpool, 1, NULL);
832
833 zswap_pool_put(pool);
834
835 return ret;
836 }
837
838 /*********************************
839 * frontswap hooks
840 **********************************/
841 /* attempts to compress and store an single page */
842 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
843 struct page *page)
844 {
845 struct zswap_tree *tree = zswap_trees[type];
846 struct zswap_entry *entry, *dupentry;
847 struct crypto_comp *tfm;
848 int ret;
849 unsigned int dlen = PAGE_SIZE, len;
850 unsigned long handle;
851 char *buf;
852 u8 *src, *dst;
853 struct zswap_header *zhdr;
854
855 if (!zswap_enabled || !tree) {
856 ret = -ENODEV;
857 goto reject;
858 }
859
860 /* reclaim space if needed */
861 if (zswap_is_full()) {
862 zswap_pool_limit_hit++;
863 if (zswap_shrink()) {
864 zswap_reject_reclaim_fail++;
865 ret = -ENOMEM;
866 goto reject;
867 }
868 }
869
870 /* allocate entry */
871 entry = zswap_entry_cache_alloc(GFP_KERNEL);
872 if (!entry) {
873 zswap_reject_kmemcache_fail++;
874 ret = -ENOMEM;
875 goto reject;
876 }
877
878 /* if entry is successfully added, it keeps the reference */
879 entry->pool = zswap_pool_current_get();
880 if (!entry->pool) {
881 ret = -EINVAL;
882 goto freepage;
883 }
884
885 /* compress */
886 dst = get_cpu_var(zswap_dstmem);
887 tfm = *get_cpu_ptr(entry->pool->tfm);
888 src = kmap_atomic(page);
889 ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen);
890 kunmap_atomic(src);
891 put_cpu_ptr(entry->pool->tfm);
892 if (ret) {
893 ret = -EINVAL;
894 goto put_dstmem;
895 }
896
897 /* store */
898 len = dlen + sizeof(struct zswap_header);
899 ret = zpool_malloc(entry->pool->zpool, len,
900 __GFP_NORETRY | __GFP_NOWARN, &handle);
901 if (ret == -ENOSPC) {
902 zswap_reject_compress_poor++;
903 goto put_dstmem;
904 }
905 if (ret) {
906 zswap_reject_alloc_fail++;
907 goto put_dstmem;
908 }
909 zhdr = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW);
910 zhdr->swpentry = swp_entry(type, offset);
911 buf = (u8 *)(zhdr + 1);
912 memcpy(buf, dst, dlen);
913 zpool_unmap_handle(entry->pool->zpool, handle);
914 put_cpu_var(zswap_dstmem);
915
916 /* populate entry */
917 entry->offset = offset;
918 entry->handle = handle;
919 entry->length = dlen;
920
921 /* map */
922 spin_lock(&tree->lock);
923 do {
924 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
925 if (ret == -EEXIST) {
926 zswap_duplicate_entry++;
927 /* remove from rbtree */
928 zswap_rb_erase(&tree->rbroot, dupentry);
929 zswap_entry_put(tree, dupentry);
930 }
931 } while (ret == -EEXIST);
932 spin_unlock(&tree->lock);
933
934 /* update stats */
935 atomic_inc(&zswap_stored_pages);
936 zswap_update_total_size();
937
938 return 0;
939
940 put_dstmem:
941 put_cpu_var(zswap_dstmem);
942 zswap_pool_put(entry->pool);
943 freepage:
944 zswap_entry_cache_free(entry);
945 reject:
946 return ret;
947 }
948
949 /*
950 * returns 0 if the page was successfully decompressed
951 * return -1 on entry not found or error
952 */
953 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
954 struct page *page)
955 {
956 struct zswap_tree *tree = zswap_trees[type];
957 struct zswap_entry *entry;
958 struct crypto_comp *tfm;
959 u8 *src, *dst;
960 unsigned int dlen;
961 int ret;
962
963 /* find */
964 spin_lock(&tree->lock);
965 entry = zswap_entry_find_get(&tree->rbroot, offset);
966 if (!entry) {
967 /* entry was written back */
968 spin_unlock(&tree->lock);
969 return -1;
970 }
971 spin_unlock(&tree->lock);
972
973 /* decompress */
974 dlen = PAGE_SIZE;
975 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
976 ZPOOL_MM_RO) + sizeof(struct zswap_header);
977 dst = kmap_atomic(page);
978 tfm = *get_cpu_ptr(entry->pool->tfm);
979 ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen);
980 put_cpu_ptr(entry->pool->tfm);
981 kunmap_atomic(dst);
982 zpool_unmap_handle(entry->pool->zpool, entry->handle);
983 BUG_ON(ret);
984
985 spin_lock(&tree->lock);
986 zswap_entry_put(tree, entry);
987 spin_unlock(&tree->lock);
988
989 return 0;
990 }
991
992 /* frees an entry in zswap */
993 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
994 {
995 struct zswap_tree *tree = zswap_trees[type];
996 struct zswap_entry *entry;
997
998 /* find */
999 spin_lock(&tree->lock);
1000 entry = zswap_rb_search(&tree->rbroot, offset);
1001 if (!entry) {
1002 /* entry was written back */
1003 spin_unlock(&tree->lock);
1004 return;
1005 }
1006
1007 /* remove from rbtree */
1008 zswap_rb_erase(&tree->rbroot, entry);
1009
1010 /* drop the initial reference from entry creation */
1011 zswap_entry_put(tree, entry);
1012
1013 spin_unlock(&tree->lock);
1014 }
1015
1016 /* frees all zswap entries for the given swap type */
1017 static void zswap_frontswap_invalidate_area(unsigned type)
1018 {
1019 struct zswap_tree *tree = zswap_trees[type];
1020 struct zswap_entry *entry, *n;
1021
1022 if (!tree)
1023 return;
1024
1025 /* walk the tree and free everything */
1026 spin_lock(&tree->lock);
1027 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1028 zswap_free_entry(entry);
1029 tree->rbroot = RB_ROOT;
1030 spin_unlock(&tree->lock);
1031 kfree(tree);
1032 zswap_trees[type] = NULL;
1033 }
1034
1035 static void zswap_frontswap_init(unsigned type)
1036 {
1037 struct zswap_tree *tree;
1038
1039 tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
1040 if (!tree) {
1041 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1042 return;
1043 }
1044
1045 tree->rbroot = RB_ROOT;
1046 spin_lock_init(&tree->lock);
1047 zswap_trees[type] = tree;
1048 }
1049
1050 static struct frontswap_ops zswap_frontswap_ops = {
1051 .store = zswap_frontswap_store,
1052 .load = zswap_frontswap_load,
1053 .invalidate_page = zswap_frontswap_invalidate_page,
1054 .invalidate_area = zswap_frontswap_invalidate_area,
1055 .init = zswap_frontswap_init
1056 };
1057
1058 /*********************************
1059 * debugfs functions
1060 **********************************/
1061 #ifdef CONFIG_DEBUG_FS
1062 #include <linux/debugfs.h>
1063
1064 static struct dentry *zswap_debugfs_root;
1065
1066 static int __init zswap_debugfs_init(void)
1067 {
1068 if (!debugfs_initialized())
1069 return -ENODEV;
1070
1071 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1072 if (!zswap_debugfs_root)
1073 return -ENOMEM;
1074
1075 debugfs_create_u64("pool_limit_hit", S_IRUGO,
1076 zswap_debugfs_root, &zswap_pool_limit_hit);
1077 debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
1078 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1079 debugfs_create_u64("reject_alloc_fail", S_IRUGO,
1080 zswap_debugfs_root, &zswap_reject_alloc_fail);
1081 debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
1082 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1083 debugfs_create_u64("reject_compress_poor", S_IRUGO,
1084 zswap_debugfs_root, &zswap_reject_compress_poor);
1085 debugfs_create_u64("written_back_pages", S_IRUGO,
1086 zswap_debugfs_root, &zswap_written_back_pages);
1087 debugfs_create_u64("duplicate_entry", S_IRUGO,
1088 zswap_debugfs_root, &zswap_duplicate_entry);
1089 debugfs_create_u64("pool_total_size", S_IRUGO,
1090 zswap_debugfs_root, &zswap_pool_total_size);
1091 debugfs_create_atomic_t("stored_pages", S_IRUGO,
1092 zswap_debugfs_root, &zswap_stored_pages);
1093
1094 return 0;
1095 }
1096
1097 static void __exit zswap_debugfs_exit(void)
1098 {
1099 debugfs_remove_recursive(zswap_debugfs_root);
1100 }
1101 #else
1102 static int __init zswap_debugfs_init(void)
1103 {
1104 return 0;
1105 }
1106
1107 static void __exit zswap_debugfs_exit(void) { }
1108 #endif
1109
1110 /*********************************
1111 * module init and exit
1112 **********************************/
1113 static int __init init_zswap(void)
1114 {
1115 struct zswap_pool *pool;
1116
1117 if (zswap_entry_cache_create()) {
1118 pr_err("entry cache creation failed\n");
1119 goto cache_fail;
1120 }
1121
1122 if (zswap_cpu_dstmem_init()) {
1123 pr_err("dstmem alloc failed\n");
1124 goto dstmem_fail;
1125 }
1126
1127 pool = __zswap_pool_create_fallback();
1128 if (!pool) {
1129 pr_err("pool creation failed\n");
1130 goto pool_fail;
1131 }
1132 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1133 zpool_get_type(pool->zpool));
1134
1135 list_add(&pool->list, &zswap_pools);
1136
1137 frontswap_register_ops(&zswap_frontswap_ops);
1138 if (zswap_debugfs_init())
1139 pr_warn("debugfs initialization failed\n");
1140 return 0;
1141
1142 pool_fail:
1143 zswap_cpu_dstmem_destroy();
1144 dstmem_fail:
1145 zswap_entry_cache_destroy();
1146 cache_fail:
1147 return -ENOMEM;
1148 }
1149 /* must be late so crypto has time to come up */
1150 late_initcall(init_zswap);
1151
1152 MODULE_LICENSE("GPL");
1153 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1154 MODULE_DESCRIPTION("Compressed cache for swap pages");
This page took 0.055812 seconds and 6 git commands to generate.