powerpc: Speed up clear_page by unrolling it
[deliverable/linux.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "smp.h"
41
42 static void hci_rx_work(struct work_struct *work);
43 static void hci_cmd_work(struct work_struct *work);
44 static void hci_tx_work(struct work_struct *work);
45
46 /* HCI device list */
47 LIST_HEAD(hci_dev_list);
48 DEFINE_RWLOCK(hci_dev_list_lock);
49
50 /* HCI callback list */
51 LIST_HEAD(hci_cb_list);
52 DEFINE_RWLOCK(hci_cb_list_lock);
53
54 /* HCI ID Numbering */
55 static DEFINE_IDA(hci_index_ida);
56
57 /* ----- HCI requests ----- */
58
59 #define HCI_REQ_DONE 0
60 #define HCI_REQ_PEND 1
61 #define HCI_REQ_CANCELED 2
62
63 #define hci_req_lock(d) mutex_lock(&d->req_lock)
64 #define hci_req_unlock(d) mutex_unlock(&d->req_lock)
65
66 /* ---- HCI notifications ---- */
67
68 static void hci_notify(struct hci_dev *hdev, int event)
69 {
70 hci_sock_dev_event(hdev, event);
71 }
72
73 /* ---- HCI debugfs entries ---- */
74
75 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
76 size_t count, loff_t *ppos)
77 {
78 struct hci_dev *hdev = file->private_data;
79 char buf[3];
80
81 buf[0] = test_bit(HCI_DUT_MODE, &hdev->dbg_flags) ? 'Y': 'N';
82 buf[1] = '\n';
83 buf[2] = '\0';
84 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
85 }
86
87 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
88 size_t count, loff_t *ppos)
89 {
90 struct hci_dev *hdev = file->private_data;
91 struct sk_buff *skb;
92 char buf[32];
93 size_t buf_size = min(count, (sizeof(buf)-1));
94 bool enable;
95 int err;
96
97 if (!test_bit(HCI_UP, &hdev->flags))
98 return -ENETDOWN;
99
100 if (copy_from_user(buf, user_buf, buf_size))
101 return -EFAULT;
102
103 buf[buf_size] = '\0';
104 if (strtobool(buf, &enable))
105 return -EINVAL;
106
107 if (enable == test_bit(HCI_DUT_MODE, &hdev->dbg_flags))
108 return -EALREADY;
109
110 hci_req_lock(hdev);
111 if (enable)
112 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
113 HCI_CMD_TIMEOUT);
114 else
115 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
116 HCI_CMD_TIMEOUT);
117 hci_req_unlock(hdev);
118
119 if (IS_ERR(skb))
120 return PTR_ERR(skb);
121
122 err = -bt_to_errno(skb->data[0]);
123 kfree_skb(skb);
124
125 if (err < 0)
126 return err;
127
128 change_bit(HCI_DUT_MODE, &hdev->dbg_flags);
129
130 return count;
131 }
132
133 static const struct file_operations dut_mode_fops = {
134 .open = simple_open,
135 .read = dut_mode_read,
136 .write = dut_mode_write,
137 .llseek = default_llseek,
138 };
139
140 static int features_show(struct seq_file *f, void *ptr)
141 {
142 struct hci_dev *hdev = f->private;
143 u8 p;
144
145 hci_dev_lock(hdev);
146 for (p = 0; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
147 seq_printf(f, "%2u: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x "
148 "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n", p,
149 hdev->features[p][0], hdev->features[p][1],
150 hdev->features[p][2], hdev->features[p][3],
151 hdev->features[p][4], hdev->features[p][5],
152 hdev->features[p][6], hdev->features[p][7]);
153 }
154 if (lmp_le_capable(hdev))
155 seq_printf(f, "LE: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x "
156 "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n",
157 hdev->le_features[0], hdev->le_features[1],
158 hdev->le_features[2], hdev->le_features[3],
159 hdev->le_features[4], hdev->le_features[5],
160 hdev->le_features[6], hdev->le_features[7]);
161 hci_dev_unlock(hdev);
162
163 return 0;
164 }
165
166 static int features_open(struct inode *inode, struct file *file)
167 {
168 return single_open(file, features_show, inode->i_private);
169 }
170
171 static const struct file_operations features_fops = {
172 .open = features_open,
173 .read = seq_read,
174 .llseek = seq_lseek,
175 .release = single_release,
176 };
177
178 static int blacklist_show(struct seq_file *f, void *p)
179 {
180 struct hci_dev *hdev = f->private;
181 struct bdaddr_list *b;
182
183 hci_dev_lock(hdev);
184 list_for_each_entry(b, &hdev->blacklist, list)
185 seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type);
186 hci_dev_unlock(hdev);
187
188 return 0;
189 }
190
191 static int blacklist_open(struct inode *inode, struct file *file)
192 {
193 return single_open(file, blacklist_show, inode->i_private);
194 }
195
196 static const struct file_operations blacklist_fops = {
197 .open = blacklist_open,
198 .read = seq_read,
199 .llseek = seq_lseek,
200 .release = single_release,
201 };
202
203 static int whitelist_show(struct seq_file *f, void *p)
204 {
205 struct hci_dev *hdev = f->private;
206 struct bdaddr_list *b;
207
208 hci_dev_lock(hdev);
209 list_for_each_entry(b, &hdev->whitelist, list)
210 seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type);
211 hci_dev_unlock(hdev);
212
213 return 0;
214 }
215
216 static int whitelist_open(struct inode *inode, struct file *file)
217 {
218 return single_open(file, whitelist_show, inode->i_private);
219 }
220
221 static const struct file_operations whitelist_fops = {
222 .open = whitelist_open,
223 .read = seq_read,
224 .llseek = seq_lseek,
225 .release = single_release,
226 };
227
228 static int uuids_show(struct seq_file *f, void *p)
229 {
230 struct hci_dev *hdev = f->private;
231 struct bt_uuid *uuid;
232
233 hci_dev_lock(hdev);
234 list_for_each_entry(uuid, &hdev->uuids, list) {
235 u8 i, val[16];
236
237 /* The Bluetooth UUID values are stored in big endian,
238 * but with reversed byte order. So convert them into
239 * the right order for the %pUb modifier.
240 */
241 for (i = 0; i < 16; i++)
242 val[i] = uuid->uuid[15 - i];
243
244 seq_printf(f, "%pUb\n", val);
245 }
246 hci_dev_unlock(hdev);
247
248 return 0;
249 }
250
251 static int uuids_open(struct inode *inode, struct file *file)
252 {
253 return single_open(file, uuids_show, inode->i_private);
254 }
255
256 static const struct file_operations uuids_fops = {
257 .open = uuids_open,
258 .read = seq_read,
259 .llseek = seq_lseek,
260 .release = single_release,
261 };
262
263 static int inquiry_cache_show(struct seq_file *f, void *p)
264 {
265 struct hci_dev *hdev = f->private;
266 struct discovery_state *cache = &hdev->discovery;
267 struct inquiry_entry *e;
268
269 hci_dev_lock(hdev);
270
271 list_for_each_entry(e, &cache->all, all) {
272 struct inquiry_data *data = &e->data;
273 seq_printf(f, "%pMR %d %d %d 0x%.2x%.2x%.2x 0x%.4x %d %d %u\n",
274 &data->bdaddr,
275 data->pscan_rep_mode, data->pscan_period_mode,
276 data->pscan_mode, data->dev_class[2],
277 data->dev_class[1], data->dev_class[0],
278 __le16_to_cpu(data->clock_offset),
279 data->rssi, data->ssp_mode, e->timestamp);
280 }
281
282 hci_dev_unlock(hdev);
283
284 return 0;
285 }
286
287 static int inquiry_cache_open(struct inode *inode, struct file *file)
288 {
289 return single_open(file, inquiry_cache_show, inode->i_private);
290 }
291
292 static const struct file_operations inquiry_cache_fops = {
293 .open = inquiry_cache_open,
294 .read = seq_read,
295 .llseek = seq_lseek,
296 .release = single_release,
297 };
298
299 static int link_keys_show(struct seq_file *f, void *ptr)
300 {
301 struct hci_dev *hdev = f->private;
302 struct list_head *p, *n;
303
304 hci_dev_lock(hdev);
305 list_for_each_safe(p, n, &hdev->link_keys) {
306 struct link_key *key = list_entry(p, struct link_key, list);
307 seq_printf(f, "%pMR %u %*phN %u\n", &key->bdaddr, key->type,
308 HCI_LINK_KEY_SIZE, key->val, key->pin_len);
309 }
310 hci_dev_unlock(hdev);
311
312 return 0;
313 }
314
315 static int link_keys_open(struct inode *inode, struct file *file)
316 {
317 return single_open(file, link_keys_show, inode->i_private);
318 }
319
320 static const struct file_operations link_keys_fops = {
321 .open = link_keys_open,
322 .read = seq_read,
323 .llseek = seq_lseek,
324 .release = single_release,
325 };
326
327 static int dev_class_show(struct seq_file *f, void *ptr)
328 {
329 struct hci_dev *hdev = f->private;
330
331 hci_dev_lock(hdev);
332 seq_printf(f, "0x%.2x%.2x%.2x\n", hdev->dev_class[2],
333 hdev->dev_class[1], hdev->dev_class[0]);
334 hci_dev_unlock(hdev);
335
336 return 0;
337 }
338
339 static int dev_class_open(struct inode *inode, struct file *file)
340 {
341 return single_open(file, dev_class_show, inode->i_private);
342 }
343
344 static const struct file_operations dev_class_fops = {
345 .open = dev_class_open,
346 .read = seq_read,
347 .llseek = seq_lseek,
348 .release = single_release,
349 };
350
351 static int voice_setting_get(void *data, u64 *val)
352 {
353 struct hci_dev *hdev = data;
354
355 hci_dev_lock(hdev);
356 *val = hdev->voice_setting;
357 hci_dev_unlock(hdev);
358
359 return 0;
360 }
361
362 DEFINE_SIMPLE_ATTRIBUTE(voice_setting_fops, voice_setting_get,
363 NULL, "0x%4.4llx\n");
364
365 static int auto_accept_delay_set(void *data, u64 val)
366 {
367 struct hci_dev *hdev = data;
368
369 hci_dev_lock(hdev);
370 hdev->auto_accept_delay = val;
371 hci_dev_unlock(hdev);
372
373 return 0;
374 }
375
376 static int auto_accept_delay_get(void *data, u64 *val)
377 {
378 struct hci_dev *hdev = data;
379
380 hci_dev_lock(hdev);
381 *val = hdev->auto_accept_delay;
382 hci_dev_unlock(hdev);
383
384 return 0;
385 }
386
387 DEFINE_SIMPLE_ATTRIBUTE(auto_accept_delay_fops, auto_accept_delay_get,
388 auto_accept_delay_set, "%llu\n");
389
390 static ssize_t force_sc_support_read(struct file *file, char __user *user_buf,
391 size_t count, loff_t *ppos)
392 {
393 struct hci_dev *hdev = file->private_data;
394 char buf[3];
395
396 buf[0] = test_bit(HCI_FORCE_SC, &hdev->dbg_flags) ? 'Y': 'N';
397 buf[1] = '\n';
398 buf[2] = '\0';
399 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
400 }
401
402 static ssize_t force_sc_support_write(struct file *file,
403 const char __user *user_buf,
404 size_t count, loff_t *ppos)
405 {
406 struct hci_dev *hdev = file->private_data;
407 char buf[32];
408 size_t buf_size = min(count, (sizeof(buf)-1));
409 bool enable;
410
411 if (test_bit(HCI_UP, &hdev->flags))
412 return -EBUSY;
413
414 if (copy_from_user(buf, user_buf, buf_size))
415 return -EFAULT;
416
417 buf[buf_size] = '\0';
418 if (strtobool(buf, &enable))
419 return -EINVAL;
420
421 if (enable == test_bit(HCI_FORCE_SC, &hdev->dbg_flags))
422 return -EALREADY;
423
424 change_bit(HCI_FORCE_SC, &hdev->dbg_flags);
425
426 return count;
427 }
428
429 static const struct file_operations force_sc_support_fops = {
430 .open = simple_open,
431 .read = force_sc_support_read,
432 .write = force_sc_support_write,
433 .llseek = default_llseek,
434 };
435
436 static ssize_t sc_only_mode_read(struct file *file, char __user *user_buf,
437 size_t count, loff_t *ppos)
438 {
439 struct hci_dev *hdev = file->private_data;
440 char buf[3];
441
442 buf[0] = test_bit(HCI_SC_ONLY, &hdev->dev_flags) ? 'Y': 'N';
443 buf[1] = '\n';
444 buf[2] = '\0';
445 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
446 }
447
448 static const struct file_operations sc_only_mode_fops = {
449 .open = simple_open,
450 .read = sc_only_mode_read,
451 .llseek = default_llseek,
452 };
453
454 static int idle_timeout_set(void *data, u64 val)
455 {
456 struct hci_dev *hdev = data;
457
458 if (val != 0 && (val < 500 || val > 3600000))
459 return -EINVAL;
460
461 hci_dev_lock(hdev);
462 hdev->idle_timeout = val;
463 hci_dev_unlock(hdev);
464
465 return 0;
466 }
467
468 static int idle_timeout_get(void *data, u64 *val)
469 {
470 struct hci_dev *hdev = data;
471
472 hci_dev_lock(hdev);
473 *val = hdev->idle_timeout;
474 hci_dev_unlock(hdev);
475
476 return 0;
477 }
478
479 DEFINE_SIMPLE_ATTRIBUTE(idle_timeout_fops, idle_timeout_get,
480 idle_timeout_set, "%llu\n");
481
482 static int rpa_timeout_set(void *data, u64 val)
483 {
484 struct hci_dev *hdev = data;
485
486 /* Require the RPA timeout to be at least 30 seconds and at most
487 * 24 hours.
488 */
489 if (val < 30 || val > (60 * 60 * 24))
490 return -EINVAL;
491
492 hci_dev_lock(hdev);
493 hdev->rpa_timeout = val;
494 hci_dev_unlock(hdev);
495
496 return 0;
497 }
498
499 static int rpa_timeout_get(void *data, u64 *val)
500 {
501 struct hci_dev *hdev = data;
502
503 hci_dev_lock(hdev);
504 *val = hdev->rpa_timeout;
505 hci_dev_unlock(hdev);
506
507 return 0;
508 }
509
510 DEFINE_SIMPLE_ATTRIBUTE(rpa_timeout_fops, rpa_timeout_get,
511 rpa_timeout_set, "%llu\n");
512
513 static int sniff_min_interval_set(void *data, u64 val)
514 {
515 struct hci_dev *hdev = data;
516
517 if (val == 0 || val % 2 || val > hdev->sniff_max_interval)
518 return -EINVAL;
519
520 hci_dev_lock(hdev);
521 hdev->sniff_min_interval = val;
522 hci_dev_unlock(hdev);
523
524 return 0;
525 }
526
527 static int sniff_min_interval_get(void *data, u64 *val)
528 {
529 struct hci_dev *hdev = data;
530
531 hci_dev_lock(hdev);
532 *val = hdev->sniff_min_interval;
533 hci_dev_unlock(hdev);
534
535 return 0;
536 }
537
538 DEFINE_SIMPLE_ATTRIBUTE(sniff_min_interval_fops, sniff_min_interval_get,
539 sniff_min_interval_set, "%llu\n");
540
541 static int sniff_max_interval_set(void *data, u64 val)
542 {
543 struct hci_dev *hdev = data;
544
545 if (val == 0 || val % 2 || val < hdev->sniff_min_interval)
546 return -EINVAL;
547
548 hci_dev_lock(hdev);
549 hdev->sniff_max_interval = val;
550 hci_dev_unlock(hdev);
551
552 return 0;
553 }
554
555 static int sniff_max_interval_get(void *data, u64 *val)
556 {
557 struct hci_dev *hdev = data;
558
559 hci_dev_lock(hdev);
560 *val = hdev->sniff_max_interval;
561 hci_dev_unlock(hdev);
562
563 return 0;
564 }
565
566 DEFINE_SIMPLE_ATTRIBUTE(sniff_max_interval_fops, sniff_max_interval_get,
567 sniff_max_interval_set, "%llu\n");
568
569 static int conn_info_min_age_set(void *data, u64 val)
570 {
571 struct hci_dev *hdev = data;
572
573 if (val == 0 || val > hdev->conn_info_max_age)
574 return -EINVAL;
575
576 hci_dev_lock(hdev);
577 hdev->conn_info_min_age = val;
578 hci_dev_unlock(hdev);
579
580 return 0;
581 }
582
583 static int conn_info_min_age_get(void *data, u64 *val)
584 {
585 struct hci_dev *hdev = data;
586
587 hci_dev_lock(hdev);
588 *val = hdev->conn_info_min_age;
589 hci_dev_unlock(hdev);
590
591 return 0;
592 }
593
594 DEFINE_SIMPLE_ATTRIBUTE(conn_info_min_age_fops, conn_info_min_age_get,
595 conn_info_min_age_set, "%llu\n");
596
597 static int conn_info_max_age_set(void *data, u64 val)
598 {
599 struct hci_dev *hdev = data;
600
601 if (val == 0 || val < hdev->conn_info_min_age)
602 return -EINVAL;
603
604 hci_dev_lock(hdev);
605 hdev->conn_info_max_age = val;
606 hci_dev_unlock(hdev);
607
608 return 0;
609 }
610
611 static int conn_info_max_age_get(void *data, u64 *val)
612 {
613 struct hci_dev *hdev = data;
614
615 hci_dev_lock(hdev);
616 *val = hdev->conn_info_max_age;
617 hci_dev_unlock(hdev);
618
619 return 0;
620 }
621
622 DEFINE_SIMPLE_ATTRIBUTE(conn_info_max_age_fops, conn_info_max_age_get,
623 conn_info_max_age_set, "%llu\n");
624
625 static int identity_show(struct seq_file *f, void *p)
626 {
627 struct hci_dev *hdev = f->private;
628 bdaddr_t addr;
629 u8 addr_type;
630
631 hci_dev_lock(hdev);
632
633 hci_copy_identity_address(hdev, &addr, &addr_type);
634
635 seq_printf(f, "%pMR (type %u) %*phN %pMR\n", &addr, addr_type,
636 16, hdev->irk, &hdev->rpa);
637
638 hci_dev_unlock(hdev);
639
640 return 0;
641 }
642
643 static int identity_open(struct inode *inode, struct file *file)
644 {
645 return single_open(file, identity_show, inode->i_private);
646 }
647
648 static const struct file_operations identity_fops = {
649 .open = identity_open,
650 .read = seq_read,
651 .llseek = seq_lseek,
652 .release = single_release,
653 };
654
655 static int random_address_show(struct seq_file *f, void *p)
656 {
657 struct hci_dev *hdev = f->private;
658
659 hci_dev_lock(hdev);
660 seq_printf(f, "%pMR\n", &hdev->random_addr);
661 hci_dev_unlock(hdev);
662
663 return 0;
664 }
665
666 static int random_address_open(struct inode *inode, struct file *file)
667 {
668 return single_open(file, random_address_show, inode->i_private);
669 }
670
671 static const struct file_operations random_address_fops = {
672 .open = random_address_open,
673 .read = seq_read,
674 .llseek = seq_lseek,
675 .release = single_release,
676 };
677
678 static int static_address_show(struct seq_file *f, void *p)
679 {
680 struct hci_dev *hdev = f->private;
681
682 hci_dev_lock(hdev);
683 seq_printf(f, "%pMR\n", &hdev->static_addr);
684 hci_dev_unlock(hdev);
685
686 return 0;
687 }
688
689 static int static_address_open(struct inode *inode, struct file *file)
690 {
691 return single_open(file, static_address_show, inode->i_private);
692 }
693
694 static const struct file_operations static_address_fops = {
695 .open = static_address_open,
696 .read = seq_read,
697 .llseek = seq_lseek,
698 .release = single_release,
699 };
700
701 static ssize_t force_static_address_read(struct file *file,
702 char __user *user_buf,
703 size_t count, loff_t *ppos)
704 {
705 struct hci_dev *hdev = file->private_data;
706 char buf[3];
707
708 buf[0] = test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) ? 'Y': 'N';
709 buf[1] = '\n';
710 buf[2] = '\0';
711 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
712 }
713
714 static ssize_t force_static_address_write(struct file *file,
715 const char __user *user_buf,
716 size_t count, loff_t *ppos)
717 {
718 struct hci_dev *hdev = file->private_data;
719 char buf[32];
720 size_t buf_size = min(count, (sizeof(buf)-1));
721 bool enable;
722
723 if (test_bit(HCI_UP, &hdev->flags))
724 return -EBUSY;
725
726 if (copy_from_user(buf, user_buf, buf_size))
727 return -EFAULT;
728
729 buf[buf_size] = '\0';
730 if (strtobool(buf, &enable))
731 return -EINVAL;
732
733 if (enable == test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags))
734 return -EALREADY;
735
736 change_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags);
737
738 return count;
739 }
740
741 static const struct file_operations force_static_address_fops = {
742 .open = simple_open,
743 .read = force_static_address_read,
744 .write = force_static_address_write,
745 .llseek = default_llseek,
746 };
747
748 static int white_list_show(struct seq_file *f, void *ptr)
749 {
750 struct hci_dev *hdev = f->private;
751 struct bdaddr_list *b;
752
753 hci_dev_lock(hdev);
754 list_for_each_entry(b, &hdev->le_white_list, list)
755 seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type);
756 hci_dev_unlock(hdev);
757
758 return 0;
759 }
760
761 static int white_list_open(struct inode *inode, struct file *file)
762 {
763 return single_open(file, white_list_show, inode->i_private);
764 }
765
766 static const struct file_operations white_list_fops = {
767 .open = white_list_open,
768 .read = seq_read,
769 .llseek = seq_lseek,
770 .release = single_release,
771 };
772
773 static int identity_resolving_keys_show(struct seq_file *f, void *ptr)
774 {
775 struct hci_dev *hdev = f->private;
776 struct list_head *p, *n;
777
778 hci_dev_lock(hdev);
779 list_for_each_safe(p, n, &hdev->identity_resolving_keys) {
780 struct smp_irk *irk = list_entry(p, struct smp_irk, list);
781 seq_printf(f, "%pMR (type %u) %*phN %pMR\n",
782 &irk->bdaddr, irk->addr_type,
783 16, irk->val, &irk->rpa);
784 }
785 hci_dev_unlock(hdev);
786
787 return 0;
788 }
789
790 static int identity_resolving_keys_open(struct inode *inode, struct file *file)
791 {
792 return single_open(file, identity_resolving_keys_show,
793 inode->i_private);
794 }
795
796 static const struct file_operations identity_resolving_keys_fops = {
797 .open = identity_resolving_keys_open,
798 .read = seq_read,
799 .llseek = seq_lseek,
800 .release = single_release,
801 };
802
803 static int long_term_keys_show(struct seq_file *f, void *ptr)
804 {
805 struct hci_dev *hdev = f->private;
806 struct list_head *p, *n;
807
808 hci_dev_lock(hdev);
809 list_for_each_safe(p, n, &hdev->long_term_keys) {
810 struct smp_ltk *ltk = list_entry(p, struct smp_ltk, list);
811 seq_printf(f, "%pMR (type %u) %u 0x%02x %u %.4x %.16llx %*phN\n",
812 &ltk->bdaddr, ltk->bdaddr_type, ltk->authenticated,
813 ltk->type, ltk->enc_size, __le16_to_cpu(ltk->ediv),
814 __le64_to_cpu(ltk->rand), 16, ltk->val);
815 }
816 hci_dev_unlock(hdev);
817
818 return 0;
819 }
820
821 static int long_term_keys_open(struct inode *inode, struct file *file)
822 {
823 return single_open(file, long_term_keys_show, inode->i_private);
824 }
825
826 static const struct file_operations long_term_keys_fops = {
827 .open = long_term_keys_open,
828 .read = seq_read,
829 .llseek = seq_lseek,
830 .release = single_release,
831 };
832
833 static int conn_min_interval_set(void *data, u64 val)
834 {
835 struct hci_dev *hdev = data;
836
837 if (val < 0x0006 || val > 0x0c80 || val > hdev->le_conn_max_interval)
838 return -EINVAL;
839
840 hci_dev_lock(hdev);
841 hdev->le_conn_min_interval = val;
842 hci_dev_unlock(hdev);
843
844 return 0;
845 }
846
847 static int conn_min_interval_get(void *data, u64 *val)
848 {
849 struct hci_dev *hdev = data;
850
851 hci_dev_lock(hdev);
852 *val = hdev->le_conn_min_interval;
853 hci_dev_unlock(hdev);
854
855 return 0;
856 }
857
858 DEFINE_SIMPLE_ATTRIBUTE(conn_min_interval_fops, conn_min_interval_get,
859 conn_min_interval_set, "%llu\n");
860
861 static int conn_max_interval_set(void *data, u64 val)
862 {
863 struct hci_dev *hdev = data;
864
865 if (val < 0x0006 || val > 0x0c80 || val < hdev->le_conn_min_interval)
866 return -EINVAL;
867
868 hci_dev_lock(hdev);
869 hdev->le_conn_max_interval = val;
870 hci_dev_unlock(hdev);
871
872 return 0;
873 }
874
875 static int conn_max_interval_get(void *data, u64 *val)
876 {
877 struct hci_dev *hdev = data;
878
879 hci_dev_lock(hdev);
880 *val = hdev->le_conn_max_interval;
881 hci_dev_unlock(hdev);
882
883 return 0;
884 }
885
886 DEFINE_SIMPLE_ATTRIBUTE(conn_max_interval_fops, conn_max_interval_get,
887 conn_max_interval_set, "%llu\n");
888
889 static int conn_latency_set(void *data, u64 val)
890 {
891 struct hci_dev *hdev = data;
892
893 if (val > 0x01f3)
894 return -EINVAL;
895
896 hci_dev_lock(hdev);
897 hdev->le_conn_latency = val;
898 hci_dev_unlock(hdev);
899
900 return 0;
901 }
902
903 static int conn_latency_get(void *data, u64 *val)
904 {
905 struct hci_dev *hdev = data;
906
907 hci_dev_lock(hdev);
908 *val = hdev->le_conn_latency;
909 hci_dev_unlock(hdev);
910
911 return 0;
912 }
913
914 DEFINE_SIMPLE_ATTRIBUTE(conn_latency_fops, conn_latency_get,
915 conn_latency_set, "%llu\n");
916
917 static int supervision_timeout_set(void *data, u64 val)
918 {
919 struct hci_dev *hdev = data;
920
921 if (val < 0x000a || val > 0x0c80)
922 return -EINVAL;
923
924 hci_dev_lock(hdev);
925 hdev->le_supv_timeout = val;
926 hci_dev_unlock(hdev);
927
928 return 0;
929 }
930
931 static int supervision_timeout_get(void *data, u64 *val)
932 {
933 struct hci_dev *hdev = data;
934
935 hci_dev_lock(hdev);
936 *val = hdev->le_supv_timeout;
937 hci_dev_unlock(hdev);
938
939 return 0;
940 }
941
942 DEFINE_SIMPLE_ATTRIBUTE(supervision_timeout_fops, supervision_timeout_get,
943 supervision_timeout_set, "%llu\n");
944
945 static int adv_channel_map_set(void *data, u64 val)
946 {
947 struct hci_dev *hdev = data;
948
949 if (val < 0x01 || val > 0x07)
950 return -EINVAL;
951
952 hci_dev_lock(hdev);
953 hdev->le_adv_channel_map = val;
954 hci_dev_unlock(hdev);
955
956 return 0;
957 }
958
959 static int adv_channel_map_get(void *data, u64 *val)
960 {
961 struct hci_dev *hdev = data;
962
963 hci_dev_lock(hdev);
964 *val = hdev->le_adv_channel_map;
965 hci_dev_unlock(hdev);
966
967 return 0;
968 }
969
970 DEFINE_SIMPLE_ATTRIBUTE(adv_channel_map_fops, adv_channel_map_get,
971 adv_channel_map_set, "%llu\n");
972
973 static int adv_min_interval_set(void *data, u64 val)
974 {
975 struct hci_dev *hdev = data;
976
977 if (val < 0x0020 || val > 0x4000 || val > hdev->le_adv_max_interval)
978 return -EINVAL;
979
980 hci_dev_lock(hdev);
981 hdev->le_adv_min_interval = val;
982 hci_dev_unlock(hdev);
983
984 return 0;
985 }
986
987 static int adv_min_interval_get(void *data, u64 *val)
988 {
989 struct hci_dev *hdev = data;
990
991 hci_dev_lock(hdev);
992 *val = hdev->le_adv_min_interval;
993 hci_dev_unlock(hdev);
994
995 return 0;
996 }
997
998 DEFINE_SIMPLE_ATTRIBUTE(adv_min_interval_fops, adv_min_interval_get,
999 adv_min_interval_set, "%llu\n");
1000
1001 static int adv_max_interval_set(void *data, u64 val)
1002 {
1003 struct hci_dev *hdev = data;
1004
1005 if (val < 0x0020 || val > 0x4000 || val < hdev->le_adv_min_interval)
1006 return -EINVAL;
1007
1008 hci_dev_lock(hdev);
1009 hdev->le_adv_max_interval = val;
1010 hci_dev_unlock(hdev);
1011
1012 return 0;
1013 }
1014
1015 static int adv_max_interval_get(void *data, u64 *val)
1016 {
1017 struct hci_dev *hdev = data;
1018
1019 hci_dev_lock(hdev);
1020 *val = hdev->le_adv_max_interval;
1021 hci_dev_unlock(hdev);
1022
1023 return 0;
1024 }
1025
1026 DEFINE_SIMPLE_ATTRIBUTE(adv_max_interval_fops, adv_max_interval_get,
1027 adv_max_interval_set, "%llu\n");
1028
1029 static int device_list_show(struct seq_file *f, void *ptr)
1030 {
1031 struct hci_dev *hdev = f->private;
1032 struct hci_conn_params *p;
1033
1034 hci_dev_lock(hdev);
1035 list_for_each_entry(p, &hdev->le_conn_params, list) {
1036 seq_printf(f, "%pMR %u %u\n", &p->addr, p->addr_type,
1037 p->auto_connect);
1038 }
1039 hci_dev_unlock(hdev);
1040
1041 return 0;
1042 }
1043
1044 static int device_list_open(struct inode *inode, struct file *file)
1045 {
1046 return single_open(file, device_list_show, inode->i_private);
1047 }
1048
1049 static const struct file_operations device_list_fops = {
1050 .open = device_list_open,
1051 .read = seq_read,
1052 .llseek = seq_lseek,
1053 .release = single_release,
1054 };
1055
1056 /* ---- HCI requests ---- */
1057
1058 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result)
1059 {
1060 BT_DBG("%s result 0x%2.2x", hdev->name, result);
1061
1062 if (hdev->req_status == HCI_REQ_PEND) {
1063 hdev->req_result = result;
1064 hdev->req_status = HCI_REQ_DONE;
1065 wake_up_interruptible(&hdev->req_wait_q);
1066 }
1067 }
1068
1069 static void hci_req_cancel(struct hci_dev *hdev, int err)
1070 {
1071 BT_DBG("%s err 0x%2.2x", hdev->name, err);
1072
1073 if (hdev->req_status == HCI_REQ_PEND) {
1074 hdev->req_result = err;
1075 hdev->req_status = HCI_REQ_CANCELED;
1076 wake_up_interruptible(&hdev->req_wait_q);
1077 }
1078 }
1079
1080 static struct sk_buff *hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode,
1081 u8 event)
1082 {
1083 struct hci_ev_cmd_complete *ev;
1084 struct hci_event_hdr *hdr;
1085 struct sk_buff *skb;
1086
1087 hci_dev_lock(hdev);
1088
1089 skb = hdev->recv_evt;
1090 hdev->recv_evt = NULL;
1091
1092 hci_dev_unlock(hdev);
1093
1094 if (!skb)
1095 return ERR_PTR(-ENODATA);
1096
1097 if (skb->len < sizeof(*hdr)) {
1098 BT_ERR("Too short HCI event");
1099 goto failed;
1100 }
1101
1102 hdr = (void *) skb->data;
1103 skb_pull(skb, HCI_EVENT_HDR_SIZE);
1104
1105 if (event) {
1106 if (hdr->evt != event)
1107 goto failed;
1108 return skb;
1109 }
1110
1111 if (hdr->evt != HCI_EV_CMD_COMPLETE) {
1112 BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt);
1113 goto failed;
1114 }
1115
1116 if (skb->len < sizeof(*ev)) {
1117 BT_ERR("Too short cmd_complete event");
1118 goto failed;
1119 }
1120
1121 ev = (void *) skb->data;
1122 skb_pull(skb, sizeof(*ev));
1123
1124 if (opcode == __le16_to_cpu(ev->opcode))
1125 return skb;
1126
1127 BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode,
1128 __le16_to_cpu(ev->opcode));
1129
1130 failed:
1131 kfree_skb(skb);
1132 return ERR_PTR(-ENODATA);
1133 }
1134
1135 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1136 const void *param, u8 event, u32 timeout)
1137 {
1138 DECLARE_WAITQUEUE(wait, current);
1139 struct hci_request req;
1140 int err = 0;
1141
1142 BT_DBG("%s", hdev->name);
1143
1144 hci_req_init(&req, hdev);
1145
1146 hci_req_add_ev(&req, opcode, plen, param, event);
1147
1148 hdev->req_status = HCI_REQ_PEND;
1149
1150 err = hci_req_run(&req, hci_req_sync_complete);
1151 if (err < 0)
1152 return ERR_PTR(err);
1153
1154 add_wait_queue(&hdev->req_wait_q, &wait);
1155 set_current_state(TASK_INTERRUPTIBLE);
1156
1157 schedule_timeout(timeout);
1158
1159 remove_wait_queue(&hdev->req_wait_q, &wait);
1160
1161 if (signal_pending(current))
1162 return ERR_PTR(-EINTR);
1163
1164 switch (hdev->req_status) {
1165 case HCI_REQ_DONE:
1166 err = -bt_to_errno(hdev->req_result);
1167 break;
1168
1169 case HCI_REQ_CANCELED:
1170 err = -hdev->req_result;
1171 break;
1172
1173 default:
1174 err = -ETIMEDOUT;
1175 break;
1176 }
1177
1178 hdev->req_status = hdev->req_result = 0;
1179
1180 BT_DBG("%s end: err %d", hdev->name, err);
1181
1182 if (err < 0)
1183 return ERR_PTR(err);
1184
1185 return hci_get_cmd_complete(hdev, opcode, event);
1186 }
1187 EXPORT_SYMBOL(__hci_cmd_sync_ev);
1188
1189 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1190 const void *param, u32 timeout)
1191 {
1192 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
1193 }
1194 EXPORT_SYMBOL(__hci_cmd_sync);
1195
1196 /* Execute request and wait for completion. */
1197 static int __hci_req_sync(struct hci_dev *hdev,
1198 void (*func)(struct hci_request *req,
1199 unsigned long opt),
1200 unsigned long opt, __u32 timeout)
1201 {
1202 struct hci_request req;
1203 DECLARE_WAITQUEUE(wait, current);
1204 int err = 0;
1205
1206 BT_DBG("%s start", hdev->name);
1207
1208 hci_req_init(&req, hdev);
1209
1210 hdev->req_status = HCI_REQ_PEND;
1211
1212 func(&req, opt);
1213
1214 err = hci_req_run(&req, hci_req_sync_complete);
1215 if (err < 0) {
1216 hdev->req_status = 0;
1217
1218 /* ENODATA means the HCI request command queue is empty.
1219 * This can happen when a request with conditionals doesn't
1220 * trigger any commands to be sent. This is normal behavior
1221 * and should not trigger an error return.
1222 */
1223 if (err == -ENODATA)
1224 return 0;
1225
1226 return err;
1227 }
1228
1229 add_wait_queue(&hdev->req_wait_q, &wait);
1230 set_current_state(TASK_INTERRUPTIBLE);
1231
1232 schedule_timeout(timeout);
1233
1234 remove_wait_queue(&hdev->req_wait_q, &wait);
1235
1236 if (signal_pending(current))
1237 return -EINTR;
1238
1239 switch (hdev->req_status) {
1240 case HCI_REQ_DONE:
1241 err = -bt_to_errno(hdev->req_result);
1242 break;
1243
1244 case HCI_REQ_CANCELED:
1245 err = -hdev->req_result;
1246 break;
1247
1248 default:
1249 err = -ETIMEDOUT;
1250 break;
1251 }
1252
1253 hdev->req_status = hdev->req_result = 0;
1254
1255 BT_DBG("%s end: err %d", hdev->name, err);
1256
1257 return err;
1258 }
1259
1260 static int hci_req_sync(struct hci_dev *hdev,
1261 void (*req)(struct hci_request *req,
1262 unsigned long opt),
1263 unsigned long opt, __u32 timeout)
1264 {
1265 int ret;
1266
1267 if (!test_bit(HCI_UP, &hdev->flags))
1268 return -ENETDOWN;
1269
1270 /* Serialize all requests */
1271 hci_req_lock(hdev);
1272 ret = __hci_req_sync(hdev, req, opt, timeout);
1273 hci_req_unlock(hdev);
1274
1275 return ret;
1276 }
1277
1278 static void hci_reset_req(struct hci_request *req, unsigned long opt)
1279 {
1280 BT_DBG("%s %ld", req->hdev->name, opt);
1281
1282 /* Reset device */
1283 set_bit(HCI_RESET, &req->hdev->flags);
1284 hci_req_add(req, HCI_OP_RESET, 0, NULL);
1285 }
1286
1287 static void bredr_init(struct hci_request *req)
1288 {
1289 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
1290
1291 /* Read Local Supported Features */
1292 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
1293
1294 /* Read Local Version */
1295 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
1296
1297 /* Read BD Address */
1298 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
1299 }
1300
1301 static void amp_init(struct hci_request *req)
1302 {
1303 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
1304
1305 /* Read Local Version */
1306 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
1307
1308 /* Read Local Supported Commands */
1309 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
1310
1311 /* Read Local Supported Features */
1312 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
1313
1314 /* Read Local AMP Info */
1315 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
1316
1317 /* Read Data Blk size */
1318 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
1319
1320 /* Read Flow Control Mode */
1321 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
1322
1323 /* Read Location Data */
1324 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
1325 }
1326
1327 static void hci_init1_req(struct hci_request *req, unsigned long opt)
1328 {
1329 struct hci_dev *hdev = req->hdev;
1330
1331 BT_DBG("%s %ld", hdev->name, opt);
1332
1333 /* Reset */
1334 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
1335 hci_reset_req(req, 0);
1336
1337 switch (hdev->dev_type) {
1338 case HCI_BREDR:
1339 bredr_init(req);
1340 break;
1341
1342 case HCI_AMP:
1343 amp_init(req);
1344 break;
1345
1346 default:
1347 BT_ERR("Unknown device type %d", hdev->dev_type);
1348 break;
1349 }
1350 }
1351
1352 static void bredr_setup(struct hci_request *req)
1353 {
1354 struct hci_dev *hdev = req->hdev;
1355
1356 __le16 param;
1357 __u8 flt_type;
1358
1359 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
1360 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
1361
1362 /* Read Class of Device */
1363 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
1364
1365 /* Read Local Name */
1366 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
1367
1368 /* Read Voice Setting */
1369 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
1370
1371 /* Read Number of Supported IAC */
1372 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
1373
1374 /* Read Current IAC LAP */
1375 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
1376
1377 /* Clear Event Filters */
1378 flt_type = HCI_FLT_CLEAR_ALL;
1379 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
1380
1381 /* Connection accept timeout ~20 secs */
1382 param = cpu_to_le16(0x7d00);
1383 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
1384
1385 /* AVM Berlin (31), aka "BlueFRITZ!", reports version 1.2,
1386 * but it does not support page scan related HCI commands.
1387 */
1388 if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1) {
1389 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
1390 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
1391 }
1392 }
1393
1394 static void le_setup(struct hci_request *req)
1395 {
1396 struct hci_dev *hdev = req->hdev;
1397
1398 /* Read LE Buffer Size */
1399 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
1400
1401 /* Read LE Local Supported Features */
1402 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
1403
1404 /* Read LE Supported States */
1405 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
1406
1407 /* Read LE White List Size */
1408 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
1409
1410 /* Clear LE White List */
1411 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
1412
1413 /* LE-only controllers have LE implicitly enabled */
1414 if (!lmp_bredr_capable(hdev))
1415 set_bit(HCI_LE_ENABLED, &hdev->dev_flags);
1416 }
1417
1418 static u8 hci_get_inquiry_mode(struct hci_dev *hdev)
1419 {
1420 if (lmp_ext_inq_capable(hdev))
1421 return 0x02;
1422
1423 if (lmp_inq_rssi_capable(hdev))
1424 return 0x01;
1425
1426 if (hdev->manufacturer == 11 && hdev->hci_rev == 0x00 &&
1427 hdev->lmp_subver == 0x0757)
1428 return 0x01;
1429
1430 if (hdev->manufacturer == 15) {
1431 if (hdev->hci_rev == 0x03 && hdev->lmp_subver == 0x6963)
1432 return 0x01;
1433 if (hdev->hci_rev == 0x09 && hdev->lmp_subver == 0x6963)
1434 return 0x01;
1435 if (hdev->hci_rev == 0x00 && hdev->lmp_subver == 0x6965)
1436 return 0x01;
1437 }
1438
1439 if (hdev->manufacturer == 31 && hdev->hci_rev == 0x2005 &&
1440 hdev->lmp_subver == 0x1805)
1441 return 0x01;
1442
1443 return 0x00;
1444 }
1445
1446 static void hci_setup_inquiry_mode(struct hci_request *req)
1447 {
1448 u8 mode;
1449
1450 mode = hci_get_inquiry_mode(req->hdev);
1451
1452 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
1453 }
1454
1455 static void hci_setup_event_mask(struct hci_request *req)
1456 {
1457 struct hci_dev *hdev = req->hdev;
1458
1459 /* The second byte is 0xff instead of 0x9f (two reserved bits
1460 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
1461 * command otherwise.
1462 */
1463 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
1464
1465 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
1466 * any event mask for pre 1.2 devices.
1467 */
1468 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
1469 return;
1470
1471 if (lmp_bredr_capable(hdev)) {
1472 events[4] |= 0x01; /* Flow Specification Complete */
1473 events[4] |= 0x02; /* Inquiry Result with RSSI */
1474 events[4] |= 0x04; /* Read Remote Extended Features Complete */
1475 events[5] |= 0x08; /* Synchronous Connection Complete */
1476 events[5] |= 0x10; /* Synchronous Connection Changed */
1477 } else {
1478 /* Use a different default for LE-only devices */
1479 memset(events, 0, sizeof(events));
1480 events[0] |= 0x10; /* Disconnection Complete */
1481 events[1] |= 0x08; /* Read Remote Version Information Complete */
1482 events[1] |= 0x20; /* Command Complete */
1483 events[1] |= 0x40; /* Command Status */
1484 events[1] |= 0x80; /* Hardware Error */
1485 events[2] |= 0x04; /* Number of Completed Packets */
1486 events[3] |= 0x02; /* Data Buffer Overflow */
1487
1488 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
1489 events[0] |= 0x80; /* Encryption Change */
1490 events[5] |= 0x80; /* Encryption Key Refresh Complete */
1491 }
1492 }
1493
1494 if (lmp_inq_rssi_capable(hdev))
1495 events[4] |= 0x02; /* Inquiry Result with RSSI */
1496
1497 if (lmp_sniffsubr_capable(hdev))
1498 events[5] |= 0x20; /* Sniff Subrating */
1499
1500 if (lmp_pause_enc_capable(hdev))
1501 events[5] |= 0x80; /* Encryption Key Refresh Complete */
1502
1503 if (lmp_ext_inq_capable(hdev))
1504 events[5] |= 0x40; /* Extended Inquiry Result */
1505
1506 if (lmp_no_flush_capable(hdev))
1507 events[7] |= 0x01; /* Enhanced Flush Complete */
1508
1509 if (lmp_lsto_capable(hdev))
1510 events[6] |= 0x80; /* Link Supervision Timeout Changed */
1511
1512 if (lmp_ssp_capable(hdev)) {
1513 events[6] |= 0x01; /* IO Capability Request */
1514 events[6] |= 0x02; /* IO Capability Response */
1515 events[6] |= 0x04; /* User Confirmation Request */
1516 events[6] |= 0x08; /* User Passkey Request */
1517 events[6] |= 0x10; /* Remote OOB Data Request */
1518 events[6] |= 0x20; /* Simple Pairing Complete */
1519 events[7] |= 0x04; /* User Passkey Notification */
1520 events[7] |= 0x08; /* Keypress Notification */
1521 events[7] |= 0x10; /* Remote Host Supported
1522 * Features Notification
1523 */
1524 }
1525
1526 if (lmp_le_capable(hdev))
1527 events[7] |= 0x20; /* LE Meta-Event */
1528
1529 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
1530 }
1531
1532 static void hci_init2_req(struct hci_request *req, unsigned long opt)
1533 {
1534 struct hci_dev *hdev = req->hdev;
1535
1536 if (lmp_bredr_capable(hdev))
1537 bredr_setup(req);
1538 else
1539 clear_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
1540
1541 if (lmp_le_capable(hdev))
1542 le_setup(req);
1543
1544 /* AVM Berlin (31), aka "BlueFRITZ!", doesn't support the read
1545 * local supported commands HCI command.
1546 */
1547 if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1)
1548 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
1549
1550 if (lmp_ssp_capable(hdev)) {
1551 /* When SSP is available, then the host features page
1552 * should also be available as well. However some
1553 * controllers list the max_page as 0 as long as SSP
1554 * has not been enabled. To achieve proper debugging
1555 * output, force the minimum max_page to 1 at least.
1556 */
1557 hdev->max_page = 0x01;
1558
1559 if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags)) {
1560 u8 mode = 0x01;
1561 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
1562 sizeof(mode), &mode);
1563 } else {
1564 struct hci_cp_write_eir cp;
1565
1566 memset(hdev->eir, 0, sizeof(hdev->eir));
1567 memset(&cp, 0, sizeof(cp));
1568
1569 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
1570 }
1571 }
1572
1573 if (lmp_inq_rssi_capable(hdev))
1574 hci_setup_inquiry_mode(req);
1575
1576 if (lmp_inq_tx_pwr_capable(hdev))
1577 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
1578
1579 if (lmp_ext_feat_capable(hdev)) {
1580 struct hci_cp_read_local_ext_features cp;
1581
1582 cp.page = 0x01;
1583 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
1584 sizeof(cp), &cp);
1585 }
1586
1587 if (test_bit(HCI_LINK_SECURITY, &hdev->dev_flags)) {
1588 u8 enable = 1;
1589 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
1590 &enable);
1591 }
1592 }
1593
1594 static void hci_setup_link_policy(struct hci_request *req)
1595 {
1596 struct hci_dev *hdev = req->hdev;
1597 struct hci_cp_write_def_link_policy cp;
1598 u16 link_policy = 0;
1599
1600 if (lmp_rswitch_capable(hdev))
1601 link_policy |= HCI_LP_RSWITCH;
1602 if (lmp_hold_capable(hdev))
1603 link_policy |= HCI_LP_HOLD;
1604 if (lmp_sniff_capable(hdev))
1605 link_policy |= HCI_LP_SNIFF;
1606 if (lmp_park_capable(hdev))
1607 link_policy |= HCI_LP_PARK;
1608
1609 cp.policy = cpu_to_le16(link_policy);
1610 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
1611 }
1612
1613 static void hci_set_le_support(struct hci_request *req)
1614 {
1615 struct hci_dev *hdev = req->hdev;
1616 struct hci_cp_write_le_host_supported cp;
1617
1618 /* LE-only devices do not support explicit enablement */
1619 if (!lmp_bredr_capable(hdev))
1620 return;
1621
1622 memset(&cp, 0, sizeof(cp));
1623
1624 if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) {
1625 cp.le = 0x01;
1626 cp.simul = 0x00;
1627 }
1628
1629 if (cp.le != lmp_host_le_capable(hdev))
1630 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
1631 &cp);
1632 }
1633
1634 static void hci_set_event_mask_page_2(struct hci_request *req)
1635 {
1636 struct hci_dev *hdev = req->hdev;
1637 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1638
1639 /* If Connectionless Slave Broadcast master role is supported
1640 * enable all necessary events for it.
1641 */
1642 if (lmp_csb_master_capable(hdev)) {
1643 events[1] |= 0x40; /* Triggered Clock Capture */
1644 events[1] |= 0x80; /* Synchronization Train Complete */
1645 events[2] |= 0x10; /* Slave Page Response Timeout */
1646 events[2] |= 0x20; /* CSB Channel Map Change */
1647 }
1648
1649 /* If Connectionless Slave Broadcast slave role is supported
1650 * enable all necessary events for it.
1651 */
1652 if (lmp_csb_slave_capable(hdev)) {
1653 events[2] |= 0x01; /* Synchronization Train Received */
1654 events[2] |= 0x02; /* CSB Receive */
1655 events[2] |= 0x04; /* CSB Timeout */
1656 events[2] |= 0x08; /* Truncated Page Complete */
1657 }
1658
1659 /* Enable Authenticated Payload Timeout Expired event if supported */
1660 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
1661 events[2] |= 0x80;
1662
1663 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
1664 }
1665
1666 static void hci_init3_req(struct hci_request *req, unsigned long opt)
1667 {
1668 struct hci_dev *hdev = req->hdev;
1669 u8 p;
1670
1671 hci_setup_event_mask(req);
1672
1673 /* Some Broadcom based Bluetooth controllers do not support the
1674 * Delete Stored Link Key command. They are clearly indicating its
1675 * absence in the bit mask of supported commands.
1676 *
1677 * Check the supported commands and only if the the command is marked
1678 * as supported send it. If not supported assume that the controller
1679 * does not have actual support for stored link keys which makes this
1680 * command redundant anyway.
1681 *
1682 * Some controllers indicate that they support handling deleting
1683 * stored link keys, but they don't. The quirk lets a driver
1684 * just disable this command.
1685 */
1686 if (hdev->commands[6] & 0x80 &&
1687 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
1688 struct hci_cp_delete_stored_link_key cp;
1689
1690 bacpy(&cp.bdaddr, BDADDR_ANY);
1691 cp.delete_all = 0x01;
1692 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
1693 sizeof(cp), &cp);
1694 }
1695
1696 if (hdev->commands[5] & 0x10)
1697 hci_setup_link_policy(req);
1698
1699 if (lmp_le_capable(hdev)) {
1700 u8 events[8];
1701
1702 memset(events, 0, sizeof(events));
1703 events[0] = 0x0f;
1704
1705 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
1706 events[0] |= 0x10; /* LE Long Term Key Request */
1707
1708 /* If controller supports the Connection Parameters Request
1709 * Link Layer Procedure, enable the corresponding event.
1710 */
1711 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
1712 events[0] |= 0x20; /* LE Remote Connection
1713 * Parameter Request
1714 */
1715
1716 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
1717 events);
1718
1719 if (hdev->commands[25] & 0x40) {
1720 /* Read LE Advertising Channel TX Power */
1721 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
1722 }
1723
1724 hci_set_le_support(req);
1725 }
1726
1727 /* Read features beyond page 1 if available */
1728 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
1729 struct hci_cp_read_local_ext_features cp;
1730
1731 cp.page = p;
1732 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
1733 sizeof(cp), &cp);
1734 }
1735 }
1736
1737 static void hci_init4_req(struct hci_request *req, unsigned long opt)
1738 {
1739 struct hci_dev *hdev = req->hdev;
1740
1741 /* Set event mask page 2 if the HCI command for it is supported */
1742 if (hdev->commands[22] & 0x04)
1743 hci_set_event_mask_page_2(req);
1744
1745 /* Read local codec list if the HCI command is supported */
1746 if (hdev->commands[29] & 0x20)
1747 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
1748
1749 /* Get MWS transport configuration if the HCI command is supported */
1750 if (hdev->commands[30] & 0x08)
1751 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
1752
1753 /* Check for Synchronization Train support */
1754 if (lmp_sync_train_capable(hdev))
1755 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
1756
1757 /* Enable Secure Connections if supported and configured */
1758 if ((lmp_sc_capable(hdev) ||
1759 test_bit(HCI_FORCE_SC, &hdev->dbg_flags)) &&
1760 test_bit(HCI_SC_ENABLED, &hdev->dev_flags)) {
1761 u8 support = 0x01;
1762 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
1763 sizeof(support), &support);
1764 }
1765 }
1766
1767 static int __hci_init(struct hci_dev *hdev)
1768 {
1769 int err;
1770
1771 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
1772 if (err < 0)
1773 return err;
1774
1775 /* The Device Under Test (DUT) mode is special and available for
1776 * all controller types. So just create it early on.
1777 */
1778 if (test_bit(HCI_SETUP, &hdev->dev_flags)) {
1779 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
1780 &dut_mode_fops);
1781 }
1782
1783 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
1784 * BR/EDR/LE type controllers. AMP controllers only need the
1785 * first stage init.
1786 */
1787 if (hdev->dev_type != HCI_BREDR)
1788 return 0;
1789
1790 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
1791 if (err < 0)
1792 return err;
1793
1794 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
1795 if (err < 0)
1796 return err;
1797
1798 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT);
1799 if (err < 0)
1800 return err;
1801
1802 /* Only create debugfs entries during the initial setup
1803 * phase and not every time the controller gets powered on.
1804 */
1805 if (!test_bit(HCI_SETUP, &hdev->dev_flags))
1806 return 0;
1807
1808 debugfs_create_file("features", 0444, hdev->debugfs, hdev,
1809 &features_fops);
1810 debugfs_create_u16("manufacturer", 0444, hdev->debugfs,
1811 &hdev->manufacturer);
1812 debugfs_create_u8("hci_version", 0444, hdev->debugfs, &hdev->hci_ver);
1813 debugfs_create_u16("hci_revision", 0444, hdev->debugfs, &hdev->hci_rev);
1814 debugfs_create_file("blacklist", 0444, hdev->debugfs, hdev,
1815 &blacklist_fops);
1816 debugfs_create_file("whitelist", 0444, hdev->debugfs, hdev,
1817 &whitelist_fops);
1818 debugfs_create_file("uuids", 0444, hdev->debugfs, hdev, &uuids_fops);
1819
1820 debugfs_create_file("conn_info_min_age", 0644, hdev->debugfs, hdev,
1821 &conn_info_min_age_fops);
1822 debugfs_create_file("conn_info_max_age", 0644, hdev->debugfs, hdev,
1823 &conn_info_max_age_fops);
1824
1825 if (lmp_bredr_capable(hdev)) {
1826 debugfs_create_file("inquiry_cache", 0444, hdev->debugfs,
1827 hdev, &inquiry_cache_fops);
1828 debugfs_create_file("link_keys", 0400, hdev->debugfs,
1829 hdev, &link_keys_fops);
1830 debugfs_create_file("dev_class", 0444, hdev->debugfs,
1831 hdev, &dev_class_fops);
1832 debugfs_create_file("voice_setting", 0444, hdev->debugfs,
1833 hdev, &voice_setting_fops);
1834 }
1835
1836 if (lmp_ssp_capable(hdev)) {
1837 debugfs_create_file("auto_accept_delay", 0644, hdev->debugfs,
1838 hdev, &auto_accept_delay_fops);
1839 debugfs_create_file("force_sc_support", 0644, hdev->debugfs,
1840 hdev, &force_sc_support_fops);
1841 debugfs_create_file("sc_only_mode", 0444, hdev->debugfs,
1842 hdev, &sc_only_mode_fops);
1843 }
1844
1845 if (lmp_sniff_capable(hdev)) {
1846 debugfs_create_file("idle_timeout", 0644, hdev->debugfs,
1847 hdev, &idle_timeout_fops);
1848 debugfs_create_file("sniff_min_interval", 0644, hdev->debugfs,
1849 hdev, &sniff_min_interval_fops);
1850 debugfs_create_file("sniff_max_interval", 0644, hdev->debugfs,
1851 hdev, &sniff_max_interval_fops);
1852 }
1853
1854 if (lmp_le_capable(hdev)) {
1855 debugfs_create_file("identity", 0400, hdev->debugfs,
1856 hdev, &identity_fops);
1857 debugfs_create_file("rpa_timeout", 0644, hdev->debugfs,
1858 hdev, &rpa_timeout_fops);
1859 debugfs_create_file("random_address", 0444, hdev->debugfs,
1860 hdev, &random_address_fops);
1861 debugfs_create_file("static_address", 0444, hdev->debugfs,
1862 hdev, &static_address_fops);
1863
1864 /* For controllers with a public address, provide a debug
1865 * option to force the usage of the configured static
1866 * address. By default the public address is used.
1867 */
1868 if (bacmp(&hdev->bdaddr, BDADDR_ANY))
1869 debugfs_create_file("force_static_address", 0644,
1870 hdev->debugfs, hdev,
1871 &force_static_address_fops);
1872
1873 debugfs_create_u8("white_list_size", 0444, hdev->debugfs,
1874 &hdev->le_white_list_size);
1875 debugfs_create_file("white_list", 0444, hdev->debugfs, hdev,
1876 &white_list_fops);
1877 debugfs_create_file("identity_resolving_keys", 0400,
1878 hdev->debugfs, hdev,
1879 &identity_resolving_keys_fops);
1880 debugfs_create_file("long_term_keys", 0400, hdev->debugfs,
1881 hdev, &long_term_keys_fops);
1882 debugfs_create_file("conn_min_interval", 0644, hdev->debugfs,
1883 hdev, &conn_min_interval_fops);
1884 debugfs_create_file("conn_max_interval", 0644, hdev->debugfs,
1885 hdev, &conn_max_interval_fops);
1886 debugfs_create_file("conn_latency", 0644, hdev->debugfs,
1887 hdev, &conn_latency_fops);
1888 debugfs_create_file("supervision_timeout", 0644, hdev->debugfs,
1889 hdev, &supervision_timeout_fops);
1890 debugfs_create_file("adv_channel_map", 0644, hdev->debugfs,
1891 hdev, &adv_channel_map_fops);
1892 debugfs_create_file("adv_min_interval", 0644, hdev->debugfs,
1893 hdev, &adv_min_interval_fops);
1894 debugfs_create_file("adv_max_interval", 0644, hdev->debugfs,
1895 hdev, &adv_max_interval_fops);
1896 debugfs_create_file("device_list", 0444, hdev->debugfs, hdev,
1897 &device_list_fops);
1898 debugfs_create_u16("discov_interleaved_timeout", 0644,
1899 hdev->debugfs,
1900 &hdev->discov_interleaved_timeout);
1901 }
1902
1903 return 0;
1904 }
1905
1906 static void hci_init0_req(struct hci_request *req, unsigned long opt)
1907 {
1908 struct hci_dev *hdev = req->hdev;
1909
1910 BT_DBG("%s %ld", hdev->name, opt);
1911
1912 /* Reset */
1913 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
1914 hci_reset_req(req, 0);
1915
1916 /* Read Local Version */
1917 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
1918
1919 /* Read BD Address */
1920 if (hdev->set_bdaddr)
1921 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
1922 }
1923
1924 static int __hci_unconf_init(struct hci_dev *hdev)
1925 {
1926 int err;
1927
1928 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
1929 return 0;
1930
1931 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT);
1932 if (err < 0)
1933 return err;
1934
1935 return 0;
1936 }
1937
1938 static void hci_scan_req(struct hci_request *req, unsigned long opt)
1939 {
1940 __u8 scan = opt;
1941
1942 BT_DBG("%s %x", req->hdev->name, scan);
1943
1944 /* Inquiry and Page scans */
1945 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1946 }
1947
1948 static void hci_auth_req(struct hci_request *req, unsigned long opt)
1949 {
1950 __u8 auth = opt;
1951
1952 BT_DBG("%s %x", req->hdev->name, auth);
1953
1954 /* Authentication */
1955 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1956 }
1957
1958 static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
1959 {
1960 __u8 encrypt = opt;
1961
1962 BT_DBG("%s %x", req->hdev->name, encrypt);
1963
1964 /* Encryption */
1965 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1966 }
1967
1968 static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
1969 {
1970 __le16 policy = cpu_to_le16(opt);
1971
1972 BT_DBG("%s %x", req->hdev->name, policy);
1973
1974 /* Default link policy */
1975 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1976 }
1977
1978 /* Get HCI device by index.
1979 * Device is held on return. */
1980 struct hci_dev *hci_dev_get(int index)
1981 {
1982 struct hci_dev *hdev = NULL, *d;
1983
1984 BT_DBG("%d", index);
1985
1986 if (index < 0)
1987 return NULL;
1988
1989 read_lock(&hci_dev_list_lock);
1990 list_for_each_entry(d, &hci_dev_list, list) {
1991 if (d->id == index) {
1992 hdev = hci_dev_hold(d);
1993 break;
1994 }
1995 }
1996 read_unlock(&hci_dev_list_lock);
1997 return hdev;
1998 }
1999
2000 /* ---- Inquiry support ---- */
2001
2002 bool hci_discovery_active(struct hci_dev *hdev)
2003 {
2004 struct discovery_state *discov = &hdev->discovery;
2005
2006 switch (discov->state) {
2007 case DISCOVERY_FINDING:
2008 case DISCOVERY_RESOLVING:
2009 return true;
2010
2011 default:
2012 return false;
2013 }
2014 }
2015
2016 void hci_discovery_set_state(struct hci_dev *hdev, int state)
2017 {
2018 int old_state = hdev->discovery.state;
2019
2020 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
2021
2022 if (old_state == state)
2023 return;
2024
2025 hdev->discovery.state = state;
2026
2027 switch (state) {
2028 case DISCOVERY_STOPPED:
2029 hci_update_background_scan(hdev);
2030
2031 if (old_state != DISCOVERY_STARTING)
2032 mgmt_discovering(hdev, 0);
2033 break;
2034 case DISCOVERY_STARTING:
2035 break;
2036 case DISCOVERY_FINDING:
2037 mgmt_discovering(hdev, 1);
2038 break;
2039 case DISCOVERY_RESOLVING:
2040 break;
2041 case DISCOVERY_STOPPING:
2042 break;
2043 }
2044 }
2045
2046 void hci_inquiry_cache_flush(struct hci_dev *hdev)
2047 {
2048 struct discovery_state *cache = &hdev->discovery;
2049 struct inquiry_entry *p, *n;
2050
2051 list_for_each_entry_safe(p, n, &cache->all, all) {
2052 list_del(&p->all);
2053 kfree(p);
2054 }
2055
2056 INIT_LIST_HEAD(&cache->unknown);
2057 INIT_LIST_HEAD(&cache->resolve);
2058 }
2059
2060 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
2061 bdaddr_t *bdaddr)
2062 {
2063 struct discovery_state *cache = &hdev->discovery;
2064 struct inquiry_entry *e;
2065
2066 BT_DBG("cache %p, %pMR", cache, bdaddr);
2067
2068 list_for_each_entry(e, &cache->all, all) {
2069 if (!bacmp(&e->data.bdaddr, bdaddr))
2070 return e;
2071 }
2072
2073 return NULL;
2074 }
2075
2076 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
2077 bdaddr_t *bdaddr)
2078 {
2079 struct discovery_state *cache = &hdev->discovery;
2080 struct inquiry_entry *e;
2081
2082 BT_DBG("cache %p, %pMR", cache, bdaddr);
2083
2084 list_for_each_entry(e, &cache->unknown, list) {
2085 if (!bacmp(&e->data.bdaddr, bdaddr))
2086 return e;
2087 }
2088
2089 return NULL;
2090 }
2091
2092 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
2093 bdaddr_t *bdaddr,
2094 int state)
2095 {
2096 struct discovery_state *cache = &hdev->discovery;
2097 struct inquiry_entry *e;
2098
2099 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
2100
2101 list_for_each_entry(e, &cache->resolve, list) {
2102 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
2103 return e;
2104 if (!bacmp(&e->data.bdaddr, bdaddr))
2105 return e;
2106 }
2107
2108 return NULL;
2109 }
2110
2111 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
2112 struct inquiry_entry *ie)
2113 {
2114 struct discovery_state *cache = &hdev->discovery;
2115 struct list_head *pos = &cache->resolve;
2116 struct inquiry_entry *p;
2117
2118 list_del(&ie->list);
2119
2120 list_for_each_entry(p, &cache->resolve, list) {
2121 if (p->name_state != NAME_PENDING &&
2122 abs(p->data.rssi) >= abs(ie->data.rssi))
2123 break;
2124 pos = &p->list;
2125 }
2126
2127 list_add(&ie->list, pos);
2128 }
2129
2130 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
2131 bool name_known)
2132 {
2133 struct discovery_state *cache = &hdev->discovery;
2134 struct inquiry_entry *ie;
2135 u32 flags = 0;
2136
2137 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
2138
2139 hci_remove_remote_oob_data(hdev, &data->bdaddr);
2140
2141 if (!data->ssp_mode)
2142 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
2143
2144 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
2145 if (ie) {
2146 if (!ie->data.ssp_mode)
2147 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
2148
2149 if (ie->name_state == NAME_NEEDED &&
2150 data->rssi != ie->data.rssi) {
2151 ie->data.rssi = data->rssi;
2152 hci_inquiry_cache_update_resolve(hdev, ie);
2153 }
2154
2155 goto update;
2156 }
2157
2158 /* Entry not in the cache. Add new one. */
2159 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
2160 if (!ie) {
2161 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
2162 goto done;
2163 }
2164
2165 list_add(&ie->all, &cache->all);
2166
2167 if (name_known) {
2168 ie->name_state = NAME_KNOWN;
2169 } else {
2170 ie->name_state = NAME_NOT_KNOWN;
2171 list_add(&ie->list, &cache->unknown);
2172 }
2173
2174 update:
2175 if (name_known && ie->name_state != NAME_KNOWN &&
2176 ie->name_state != NAME_PENDING) {
2177 ie->name_state = NAME_KNOWN;
2178 list_del(&ie->list);
2179 }
2180
2181 memcpy(&ie->data, data, sizeof(*data));
2182 ie->timestamp = jiffies;
2183 cache->timestamp = jiffies;
2184
2185 if (ie->name_state == NAME_NOT_KNOWN)
2186 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
2187
2188 done:
2189 return flags;
2190 }
2191
2192 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
2193 {
2194 struct discovery_state *cache = &hdev->discovery;
2195 struct inquiry_info *info = (struct inquiry_info *) buf;
2196 struct inquiry_entry *e;
2197 int copied = 0;
2198
2199 list_for_each_entry(e, &cache->all, all) {
2200 struct inquiry_data *data = &e->data;
2201
2202 if (copied >= num)
2203 break;
2204
2205 bacpy(&info->bdaddr, &data->bdaddr);
2206 info->pscan_rep_mode = data->pscan_rep_mode;
2207 info->pscan_period_mode = data->pscan_period_mode;
2208 info->pscan_mode = data->pscan_mode;
2209 memcpy(info->dev_class, data->dev_class, 3);
2210 info->clock_offset = data->clock_offset;
2211
2212 info++;
2213 copied++;
2214 }
2215
2216 BT_DBG("cache %p, copied %d", cache, copied);
2217 return copied;
2218 }
2219
2220 static void hci_inq_req(struct hci_request *req, unsigned long opt)
2221 {
2222 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
2223 struct hci_dev *hdev = req->hdev;
2224 struct hci_cp_inquiry cp;
2225
2226 BT_DBG("%s", hdev->name);
2227
2228 if (test_bit(HCI_INQUIRY, &hdev->flags))
2229 return;
2230
2231 /* Start Inquiry */
2232 memcpy(&cp.lap, &ir->lap, 3);
2233 cp.length = ir->length;
2234 cp.num_rsp = ir->num_rsp;
2235 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2236 }
2237
2238 int hci_inquiry(void __user *arg)
2239 {
2240 __u8 __user *ptr = arg;
2241 struct hci_inquiry_req ir;
2242 struct hci_dev *hdev;
2243 int err = 0, do_inquiry = 0, max_rsp;
2244 long timeo;
2245 __u8 *buf;
2246
2247 if (copy_from_user(&ir, ptr, sizeof(ir)))
2248 return -EFAULT;
2249
2250 hdev = hci_dev_get(ir.dev_id);
2251 if (!hdev)
2252 return -ENODEV;
2253
2254 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2255 err = -EBUSY;
2256 goto done;
2257 }
2258
2259 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
2260 err = -EOPNOTSUPP;
2261 goto done;
2262 }
2263
2264 if (hdev->dev_type != HCI_BREDR) {
2265 err = -EOPNOTSUPP;
2266 goto done;
2267 }
2268
2269 if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) {
2270 err = -EOPNOTSUPP;
2271 goto done;
2272 }
2273
2274 hci_dev_lock(hdev);
2275 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
2276 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
2277 hci_inquiry_cache_flush(hdev);
2278 do_inquiry = 1;
2279 }
2280 hci_dev_unlock(hdev);
2281
2282 timeo = ir.length * msecs_to_jiffies(2000);
2283
2284 if (do_inquiry) {
2285 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
2286 timeo);
2287 if (err < 0)
2288 goto done;
2289
2290 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
2291 * cleared). If it is interrupted by a signal, return -EINTR.
2292 */
2293 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
2294 TASK_INTERRUPTIBLE))
2295 return -EINTR;
2296 }
2297
2298 /* for unlimited number of responses we will use buffer with
2299 * 255 entries
2300 */
2301 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
2302
2303 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
2304 * copy it to the user space.
2305 */
2306 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
2307 if (!buf) {
2308 err = -ENOMEM;
2309 goto done;
2310 }
2311
2312 hci_dev_lock(hdev);
2313 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
2314 hci_dev_unlock(hdev);
2315
2316 BT_DBG("num_rsp %d", ir.num_rsp);
2317
2318 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
2319 ptr += sizeof(ir);
2320 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
2321 ir.num_rsp))
2322 err = -EFAULT;
2323 } else
2324 err = -EFAULT;
2325
2326 kfree(buf);
2327
2328 done:
2329 hci_dev_put(hdev);
2330 return err;
2331 }
2332
2333 static int hci_dev_do_open(struct hci_dev *hdev)
2334 {
2335 int ret = 0;
2336
2337 BT_DBG("%s %p", hdev->name, hdev);
2338
2339 hci_req_lock(hdev);
2340
2341 if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
2342 ret = -ENODEV;
2343 goto done;
2344 }
2345
2346 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
2347 !test_bit(HCI_CONFIG, &hdev->dev_flags)) {
2348 /* Check for rfkill but allow the HCI setup stage to
2349 * proceed (which in itself doesn't cause any RF activity).
2350 */
2351 if (test_bit(HCI_RFKILLED, &hdev->dev_flags)) {
2352 ret = -ERFKILL;
2353 goto done;
2354 }
2355
2356 /* Check for valid public address or a configured static
2357 * random adddress, but let the HCI setup proceed to
2358 * be able to determine if there is a public address
2359 * or not.
2360 *
2361 * In case of user channel usage, it is not important
2362 * if a public address or static random address is
2363 * available.
2364 *
2365 * This check is only valid for BR/EDR controllers
2366 * since AMP controllers do not have an address.
2367 */
2368 if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
2369 hdev->dev_type == HCI_BREDR &&
2370 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2371 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
2372 ret = -EADDRNOTAVAIL;
2373 goto done;
2374 }
2375 }
2376
2377 if (test_bit(HCI_UP, &hdev->flags)) {
2378 ret = -EALREADY;
2379 goto done;
2380 }
2381
2382 if (hdev->open(hdev)) {
2383 ret = -EIO;
2384 goto done;
2385 }
2386
2387 atomic_set(&hdev->cmd_cnt, 1);
2388 set_bit(HCI_INIT, &hdev->flags);
2389
2390 if (test_bit(HCI_SETUP, &hdev->dev_flags)) {
2391 if (hdev->setup)
2392 ret = hdev->setup(hdev);
2393
2394 /* The transport driver can set these quirks before
2395 * creating the HCI device or in its setup callback.
2396 *
2397 * In case any of them is set, the controller has to
2398 * start up as unconfigured.
2399 */
2400 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
2401 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
2402 set_bit(HCI_UNCONFIGURED, &hdev->dev_flags);
2403
2404 /* For an unconfigured controller it is required to
2405 * read at least the version information provided by
2406 * the Read Local Version Information command.
2407 *
2408 * If the set_bdaddr driver callback is provided, then
2409 * also the original Bluetooth public device address
2410 * will be read using the Read BD Address command.
2411 */
2412 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags))
2413 ret = __hci_unconf_init(hdev);
2414 }
2415
2416 if (test_bit(HCI_CONFIG, &hdev->dev_flags)) {
2417 /* If public address change is configured, ensure that
2418 * the address gets programmed. If the driver does not
2419 * support changing the public address, fail the power
2420 * on procedure.
2421 */
2422 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
2423 hdev->set_bdaddr)
2424 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
2425 else
2426 ret = -EADDRNOTAVAIL;
2427 }
2428
2429 if (!ret) {
2430 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) &&
2431 !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags))
2432 ret = __hci_init(hdev);
2433 }
2434
2435 clear_bit(HCI_INIT, &hdev->flags);
2436
2437 if (!ret) {
2438 hci_dev_hold(hdev);
2439 set_bit(HCI_RPA_EXPIRED, &hdev->dev_flags);
2440 set_bit(HCI_UP, &hdev->flags);
2441 hci_notify(hdev, HCI_DEV_UP);
2442 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
2443 !test_bit(HCI_CONFIG, &hdev->dev_flags) &&
2444 !test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) &&
2445 !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
2446 hdev->dev_type == HCI_BREDR) {
2447 hci_dev_lock(hdev);
2448 mgmt_powered(hdev, 1);
2449 hci_dev_unlock(hdev);
2450 }
2451 } else {
2452 /* Init failed, cleanup */
2453 flush_work(&hdev->tx_work);
2454 flush_work(&hdev->cmd_work);
2455 flush_work(&hdev->rx_work);
2456
2457 skb_queue_purge(&hdev->cmd_q);
2458 skb_queue_purge(&hdev->rx_q);
2459
2460 if (hdev->flush)
2461 hdev->flush(hdev);
2462
2463 if (hdev->sent_cmd) {
2464 kfree_skb(hdev->sent_cmd);
2465 hdev->sent_cmd = NULL;
2466 }
2467
2468 hdev->close(hdev);
2469 hdev->flags &= BIT(HCI_RAW);
2470 }
2471
2472 done:
2473 hci_req_unlock(hdev);
2474 return ret;
2475 }
2476
2477 /* ---- HCI ioctl helpers ---- */
2478
2479 int hci_dev_open(__u16 dev)
2480 {
2481 struct hci_dev *hdev;
2482 int err;
2483
2484 hdev = hci_dev_get(dev);
2485 if (!hdev)
2486 return -ENODEV;
2487
2488 /* Devices that are marked as unconfigured can only be powered
2489 * up as user channel. Trying to bring them up as normal devices
2490 * will result into a failure. Only user channel operation is
2491 * possible.
2492 *
2493 * When this function is called for a user channel, the flag
2494 * HCI_USER_CHANNEL will be set first before attempting to
2495 * open the device.
2496 */
2497 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) &&
2498 !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2499 err = -EOPNOTSUPP;
2500 goto done;
2501 }
2502
2503 /* We need to ensure that no other power on/off work is pending
2504 * before proceeding to call hci_dev_do_open. This is
2505 * particularly important if the setup procedure has not yet
2506 * completed.
2507 */
2508 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2509 cancel_delayed_work(&hdev->power_off);
2510
2511 /* After this call it is guaranteed that the setup procedure
2512 * has finished. This means that error conditions like RFKILL
2513 * or no valid public or static random address apply.
2514 */
2515 flush_workqueue(hdev->req_workqueue);
2516
2517 /* For controllers not using the management interface and that
2518 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
2519 * so that pairing works for them. Once the management interface
2520 * is in use this bit will be cleared again and userspace has
2521 * to explicitly enable it.
2522 */
2523 if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
2524 !test_bit(HCI_MGMT, &hdev->dev_flags))
2525 set_bit(HCI_BONDABLE, &hdev->dev_flags);
2526
2527 err = hci_dev_do_open(hdev);
2528
2529 done:
2530 hci_dev_put(hdev);
2531 return err;
2532 }
2533
2534 /* This function requires the caller holds hdev->lock */
2535 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
2536 {
2537 struct hci_conn_params *p;
2538
2539 list_for_each_entry(p, &hdev->le_conn_params, list) {
2540 if (p->conn) {
2541 hci_conn_drop(p->conn);
2542 p->conn = NULL;
2543 }
2544 list_del_init(&p->action);
2545 }
2546
2547 BT_DBG("All LE pending actions cleared");
2548 }
2549
2550 static int hci_dev_do_close(struct hci_dev *hdev)
2551 {
2552 BT_DBG("%s %p", hdev->name, hdev);
2553
2554 cancel_delayed_work(&hdev->power_off);
2555
2556 hci_req_cancel(hdev, ENODEV);
2557 hci_req_lock(hdev);
2558
2559 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
2560 cancel_delayed_work_sync(&hdev->cmd_timer);
2561 hci_req_unlock(hdev);
2562 return 0;
2563 }
2564
2565 /* Flush RX and TX works */
2566 flush_work(&hdev->tx_work);
2567 flush_work(&hdev->rx_work);
2568
2569 if (hdev->discov_timeout > 0) {
2570 cancel_delayed_work(&hdev->discov_off);
2571 hdev->discov_timeout = 0;
2572 clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
2573 clear_bit(HCI_LIMITED_DISCOVERABLE, &hdev->dev_flags);
2574 }
2575
2576 if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
2577 cancel_delayed_work(&hdev->service_cache);
2578
2579 cancel_delayed_work_sync(&hdev->le_scan_disable);
2580
2581 if (test_bit(HCI_MGMT, &hdev->dev_flags))
2582 cancel_delayed_work_sync(&hdev->rpa_expired);
2583
2584 hci_dev_lock(hdev);
2585 hci_inquiry_cache_flush(hdev);
2586 hci_pend_le_actions_clear(hdev);
2587 hci_conn_hash_flush(hdev);
2588 hci_dev_unlock(hdev);
2589
2590 hci_notify(hdev, HCI_DEV_DOWN);
2591
2592 if (hdev->flush)
2593 hdev->flush(hdev);
2594
2595 /* Reset device */
2596 skb_queue_purge(&hdev->cmd_q);
2597 atomic_set(&hdev->cmd_cnt, 1);
2598 if (!test_bit(HCI_AUTO_OFF, &hdev->dev_flags) &&
2599 !test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) &&
2600 test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2601 set_bit(HCI_INIT, &hdev->flags);
2602 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
2603 clear_bit(HCI_INIT, &hdev->flags);
2604 }
2605
2606 /* flush cmd work */
2607 flush_work(&hdev->cmd_work);
2608
2609 /* Drop queues */
2610 skb_queue_purge(&hdev->rx_q);
2611 skb_queue_purge(&hdev->cmd_q);
2612 skb_queue_purge(&hdev->raw_q);
2613
2614 /* Drop last sent command */
2615 if (hdev->sent_cmd) {
2616 cancel_delayed_work_sync(&hdev->cmd_timer);
2617 kfree_skb(hdev->sent_cmd);
2618 hdev->sent_cmd = NULL;
2619 }
2620
2621 kfree_skb(hdev->recv_evt);
2622 hdev->recv_evt = NULL;
2623
2624 /* After this point our queues are empty
2625 * and no tasks are scheduled. */
2626 hdev->close(hdev);
2627
2628 /* Clear flags */
2629 hdev->flags &= BIT(HCI_RAW);
2630 hdev->dev_flags &= ~HCI_PERSISTENT_MASK;
2631
2632 if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
2633 if (hdev->dev_type == HCI_BREDR) {
2634 hci_dev_lock(hdev);
2635 mgmt_powered(hdev, 0);
2636 hci_dev_unlock(hdev);
2637 }
2638 }
2639
2640 /* Controller radio is available but is currently powered down */
2641 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
2642
2643 memset(hdev->eir, 0, sizeof(hdev->eir));
2644 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
2645 bacpy(&hdev->random_addr, BDADDR_ANY);
2646
2647 hci_req_unlock(hdev);
2648
2649 hci_dev_put(hdev);
2650 return 0;
2651 }
2652
2653 int hci_dev_close(__u16 dev)
2654 {
2655 struct hci_dev *hdev;
2656 int err;
2657
2658 hdev = hci_dev_get(dev);
2659 if (!hdev)
2660 return -ENODEV;
2661
2662 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2663 err = -EBUSY;
2664 goto done;
2665 }
2666
2667 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2668 cancel_delayed_work(&hdev->power_off);
2669
2670 err = hci_dev_do_close(hdev);
2671
2672 done:
2673 hci_dev_put(hdev);
2674 return err;
2675 }
2676
2677 int hci_dev_reset(__u16 dev)
2678 {
2679 struct hci_dev *hdev;
2680 int ret = 0;
2681
2682 hdev = hci_dev_get(dev);
2683 if (!hdev)
2684 return -ENODEV;
2685
2686 hci_req_lock(hdev);
2687
2688 if (!test_bit(HCI_UP, &hdev->flags)) {
2689 ret = -ENETDOWN;
2690 goto done;
2691 }
2692
2693 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2694 ret = -EBUSY;
2695 goto done;
2696 }
2697
2698 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
2699 ret = -EOPNOTSUPP;
2700 goto done;
2701 }
2702
2703 /* Drop queues */
2704 skb_queue_purge(&hdev->rx_q);
2705 skb_queue_purge(&hdev->cmd_q);
2706
2707 hci_dev_lock(hdev);
2708 hci_inquiry_cache_flush(hdev);
2709 hci_conn_hash_flush(hdev);
2710 hci_dev_unlock(hdev);
2711
2712 if (hdev->flush)
2713 hdev->flush(hdev);
2714
2715 atomic_set(&hdev->cmd_cnt, 1);
2716 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
2717
2718 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
2719
2720 done:
2721 hci_req_unlock(hdev);
2722 hci_dev_put(hdev);
2723 return ret;
2724 }
2725
2726 int hci_dev_reset_stat(__u16 dev)
2727 {
2728 struct hci_dev *hdev;
2729 int ret = 0;
2730
2731 hdev = hci_dev_get(dev);
2732 if (!hdev)
2733 return -ENODEV;
2734
2735 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2736 ret = -EBUSY;
2737 goto done;
2738 }
2739
2740 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
2741 ret = -EOPNOTSUPP;
2742 goto done;
2743 }
2744
2745 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
2746
2747 done:
2748 hci_dev_put(hdev);
2749 return ret;
2750 }
2751
2752 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
2753 {
2754 bool conn_changed, discov_changed;
2755
2756 BT_DBG("%s scan 0x%02x", hdev->name, scan);
2757
2758 if ((scan & SCAN_PAGE))
2759 conn_changed = !test_and_set_bit(HCI_CONNECTABLE,
2760 &hdev->dev_flags);
2761 else
2762 conn_changed = test_and_clear_bit(HCI_CONNECTABLE,
2763 &hdev->dev_flags);
2764
2765 if ((scan & SCAN_INQUIRY)) {
2766 discov_changed = !test_and_set_bit(HCI_DISCOVERABLE,
2767 &hdev->dev_flags);
2768 } else {
2769 clear_bit(HCI_LIMITED_DISCOVERABLE, &hdev->dev_flags);
2770 discov_changed = test_and_clear_bit(HCI_DISCOVERABLE,
2771 &hdev->dev_flags);
2772 }
2773
2774 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
2775 return;
2776
2777 if (conn_changed || discov_changed) {
2778 /* In case this was disabled through mgmt */
2779 set_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
2780
2781 if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags))
2782 mgmt_update_adv_data(hdev);
2783
2784 mgmt_new_settings(hdev);
2785 }
2786 }
2787
2788 int hci_dev_cmd(unsigned int cmd, void __user *arg)
2789 {
2790 struct hci_dev *hdev;
2791 struct hci_dev_req dr;
2792 int err = 0;
2793
2794 if (copy_from_user(&dr, arg, sizeof(dr)))
2795 return -EFAULT;
2796
2797 hdev = hci_dev_get(dr.dev_id);
2798 if (!hdev)
2799 return -ENODEV;
2800
2801 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2802 err = -EBUSY;
2803 goto done;
2804 }
2805
2806 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
2807 err = -EOPNOTSUPP;
2808 goto done;
2809 }
2810
2811 if (hdev->dev_type != HCI_BREDR) {
2812 err = -EOPNOTSUPP;
2813 goto done;
2814 }
2815
2816 if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) {
2817 err = -EOPNOTSUPP;
2818 goto done;
2819 }
2820
2821 switch (cmd) {
2822 case HCISETAUTH:
2823 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2824 HCI_INIT_TIMEOUT);
2825 break;
2826
2827 case HCISETENCRYPT:
2828 if (!lmp_encrypt_capable(hdev)) {
2829 err = -EOPNOTSUPP;
2830 break;
2831 }
2832
2833 if (!test_bit(HCI_AUTH, &hdev->flags)) {
2834 /* Auth must be enabled first */
2835 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2836 HCI_INIT_TIMEOUT);
2837 if (err)
2838 break;
2839 }
2840
2841 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2842 HCI_INIT_TIMEOUT);
2843 break;
2844
2845 case HCISETSCAN:
2846 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2847 HCI_INIT_TIMEOUT);
2848
2849 /* Ensure that the connectable and discoverable states
2850 * get correctly modified as this was a non-mgmt change.
2851 */
2852 if (!err)
2853 hci_update_scan_state(hdev, dr.dev_opt);
2854 break;
2855
2856 case HCISETLINKPOL:
2857 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2858 HCI_INIT_TIMEOUT);
2859 break;
2860
2861 case HCISETLINKMODE:
2862 hdev->link_mode = ((__u16) dr.dev_opt) &
2863 (HCI_LM_MASTER | HCI_LM_ACCEPT);
2864 break;
2865
2866 case HCISETPTYPE:
2867 hdev->pkt_type = (__u16) dr.dev_opt;
2868 break;
2869
2870 case HCISETACLMTU:
2871 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
2872 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2873 break;
2874
2875 case HCISETSCOMTU:
2876 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
2877 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2878 break;
2879
2880 default:
2881 err = -EINVAL;
2882 break;
2883 }
2884
2885 done:
2886 hci_dev_put(hdev);
2887 return err;
2888 }
2889
2890 int hci_get_dev_list(void __user *arg)
2891 {
2892 struct hci_dev *hdev;
2893 struct hci_dev_list_req *dl;
2894 struct hci_dev_req *dr;
2895 int n = 0, size, err;
2896 __u16 dev_num;
2897
2898 if (get_user(dev_num, (__u16 __user *) arg))
2899 return -EFAULT;
2900
2901 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2902 return -EINVAL;
2903
2904 size = sizeof(*dl) + dev_num * sizeof(*dr);
2905
2906 dl = kzalloc(size, GFP_KERNEL);
2907 if (!dl)
2908 return -ENOMEM;
2909
2910 dr = dl->dev_req;
2911
2912 read_lock(&hci_dev_list_lock);
2913 list_for_each_entry(hdev, &hci_dev_list, list) {
2914 unsigned long flags = hdev->flags;
2915
2916 /* When the auto-off is configured it means the transport
2917 * is running, but in that case still indicate that the
2918 * device is actually down.
2919 */
2920 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2921 flags &= ~BIT(HCI_UP);
2922
2923 (dr + n)->dev_id = hdev->id;
2924 (dr + n)->dev_opt = flags;
2925
2926 if (++n >= dev_num)
2927 break;
2928 }
2929 read_unlock(&hci_dev_list_lock);
2930
2931 dl->dev_num = n;
2932 size = sizeof(*dl) + n * sizeof(*dr);
2933
2934 err = copy_to_user(arg, dl, size);
2935 kfree(dl);
2936
2937 return err ? -EFAULT : 0;
2938 }
2939
2940 int hci_get_dev_info(void __user *arg)
2941 {
2942 struct hci_dev *hdev;
2943 struct hci_dev_info di;
2944 unsigned long flags;
2945 int err = 0;
2946
2947 if (copy_from_user(&di, arg, sizeof(di)))
2948 return -EFAULT;
2949
2950 hdev = hci_dev_get(di.dev_id);
2951 if (!hdev)
2952 return -ENODEV;
2953
2954 /* When the auto-off is configured it means the transport
2955 * is running, but in that case still indicate that the
2956 * device is actually down.
2957 */
2958 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2959 flags = hdev->flags & ~BIT(HCI_UP);
2960 else
2961 flags = hdev->flags;
2962
2963 strcpy(di.name, hdev->name);
2964 di.bdaddr = hdev->bdaddr;
2965 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2966 di.flags = flags;
2967 di.pkt_type = hdev->pkt_type;
2968 if (lmp_bredr_capable(hdev)) {
2969 di.acl_mtu = hdev->acl_mtu;
2970 di.acl_pkts = hdev->acl_pkts;
2971 di.sco_mtu = hdev->sco_mtu;
2972 di.sco_pkts = hdev->sco_pkts;
2973 } else {
2974 di.acl_mtu = hdev->le_mtu;
2975 di.acl_pkts = hdev->le_pkts;
2976 di.sco_mtu = 0;
2977 di.sco_pkts = 0;
2978 }
2979 di.link_policy = hdev->link_policy;
2980 di.link_mode = hdev->link_mode;
2981
2982 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2983 memcpy(&di.features, &hdev->features, sizeof(di.features));
2984
2985 if (copy_to_user(arg, &di, sizeof(di)))
2986 err = -EFAULT;
2987
2988 hci_dev_put(hdev);
2989
2990 return err;
2991 }
2992
2993 /* ---- Interface to HCI drivers ---- */
2994
2995 static int hci_rfkill_set_block(void *data, bool blocked)
2996 {
2997 struct hci_dev *hdev = data;
2998
2999 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
3000
3001 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags))
3002 return -EBUSY;
3003
3004 if (blocked) {
3005 set_bit(HCI_RFKILLED, &hdev->dev_flags);
3006 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
3007 !test_bit(HCI_CONFIG, &hdev->dev_flags))
3008 hci_dev_do_close(hdev);
3009 } else {
3010 clear_bit(HCI_RFKILLED, &hdev->dev_flags);
3011 }
3012
3013 return 0;
3014 }
3015
3016 static const struct rfkill_ops hci_rfkill_ops = {
3017 .set_block = hci_rfkill_set_block,
3018 };
3019
3020 static void hci_power_on(struct work_struct *work)
3021 {
3022 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
3023 int err;
3024
3025 BT_DBG("%s", hdev->name);
3026
3027 err = hci_dev_do_open(hdev);
3028 if (err < 0) {
3029 mgmt_set_powered_failed(hdev, err);
3030 return;
3031 }
3032
3033 /* During the HCI setup phase, a few error conditions are
3034 * ignored and they need to be checked now. If they are still
3035 * valid, it is important to turn the device back off.
3036 */
3037 if (test_bit(HCI_RFKILLED, &hdev->dev_flags) ||
3038 test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) ||
3039 (hdev->dev_type == HCI_BREDR &&
3040 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3041 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
3042 clear_bit(HCI_AUTO_OFF, &hdev->dev_flags);
3043 hci_dev_do_close(hdev);
3044 } else if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
3045 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
3046 HCI_AUTO_OFF_TIMEOUT);
3047 }
3048
3049 if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags)) {
3050 /* For unconfigured devices, set the HCI_RAW flag
3051 * so that userspace can easily identify them.
3052 */
3053 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags))
3054 set_bit(HCI_RAW, &hdev->flags);
3055
3056 /* For fully configured devices, this will send
3057 * the Index Added event. For unconfigured devices,
3058 * it will send Unconfigued Index Added event.
3059 *
3060 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
3061 * and no event will be send.
3062 */
3063 mgmt_index_added(hdev);
3064 } else if (test_and_clear_bit(HCI_CONFIG, &hdev->dev_flags)) {
3065 /* When the controller is now configured, then it
3066 * is important to clear the HCI_RAW flag.
3067 */
3068 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags))
3069 clear_bit(HCI_RAW, &hdev->flags);
3070
3071 /* Powering on the controller with HCI_CONFIG set only
3072 * happens with the transition from unconfigured to
3073 * configured. This will send the Index Added event.
3074 */
3075 mgmt_index_added(hdev);
3076 }
3077 }
3078
3079 static void hci_power_off(struct work_struct *work)
3080 {
3081 struct hci_dev *hdev = container_of(work, struct hci_dev,
3082 power_off.work);
3083
3084 BT_DBG("%s", hdev->name);
3085
3086 hci_dev_do_close(hdev);
3087 }
3088
3089 static void hci_discov_off(struct work_struct *work)
3090 {
3091 struct hci_dev *hdev;
3092
3093 hdev = container_of(work, struct hci_dev, discov_off.work);
3094
3095 BT_DBG("%s", hdev->name);
3096
3097 mgmt_discoverable_timeout(hdev);
3098 }
3099
3100 void hci_uuids_clear(struct hci_dev *hdev)
3101 {
3102 struct bt_uuid *uuid, *tmp;
3103
3104 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
3105 list_del(&uuid->list);
3106 kfree(uuid);
3107 }
3108 }
3109
3110 void hci_link_keys_clear(struct hci_dev *hdev)
3111 {
3112 struct list_head *p, *n;
3113
3114 list_for_each_safe(p, n, &hdev->link_keys) {
3115 struct link_key *key;
3116
3117 key = list_entry(p, struct link_key, list);
3118
3119 list_del(p);
3120 kfree(key);
3121 }
3122 }
3123
3124 void hci_smp_ltks_clear(struct hci_dev *hdev)
3125 {
3126 struct smp_ltk *k, *tmp;
3127
3128 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
3129 list_del(&k->list);
3130 kfree(k);
3131 }
3132 }
3133
3134 void hci_smp_irks_clear(struct hci_dev *hdev)
3135 {
3136 struct smp_irk *k, *tmp;
3137
3138 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
3139 list_del(&k->list);
3140 kfree(k);
3141 }
3142 }
3143
3144 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
3145 {
3146 struct link_key *k;
3147
3148 list_for_each_entry(k, &hdev->link_keys, list)
3149 if (bacmp(bdaddr, &k->bdaddr) == 0)
3150 return k;
3151
3152 return NULL;
3153 }
3154
3155 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
3156 u8 key_type, u8 old_key_type)
3157 {
3158 /* Legacy key */
3159 if (key_type < 0x03)
3160 return true;
3161
3162 /* Debug keys are insecure so don't store them persistently */
3163 if (key_type == HCI_LK_DEBUG_COMBINATION)
3164 return false;
3165
3166 /* Changed combination key and there's no previous one */
3167 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
3168 return false;
3169
3170 /* Security mode 3 case */
3171 if (!conn)
3172 return true;
3173
3174 /* Neither local nor remote side had no-bonding as requirement */
3175 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
3176 return true;
3177
3178 /* Local side had dedicated bonding as requirement */
3179 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
3180 return true;
3181
3182 /* Remote side had dedicated bonding as requirement */
3183 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
3184 return true;
3185
3186 /* If none of the above criteria match, then don't store the key
3187 * persistently */
3188 return false;
3189 }
3190
3191 static u8 ltk_role(u8 type)
3192 {
3193 if (type == SMP_LTK)
3194 return HCI_ROLE_MASTER;
3195
3196 return HCI_ROLE_SLAVE;
3197 }
3198
3199 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, __le64 rand,
3200 u8 role)
3201 {
3202 struct smp_ltk *k;
3203
3204 list_for_each_entry(k, &hdev->long_term_keys, list) {
3205 if (k->ediv != ediv || k->rand != rand)
3206 continue;
3207
3208 if (ltk_role(k->type) != role)
3209 continue;
3210
3211 return k;
3212 }
3213
3214 return NULL;
3215 }
3216
3217 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
3218 u8 addr_type, u8 role)
3219 {
3220 struct smp_ltk *k;
3221
3222 list_for_each_entry(k, &hdev->long_term_keys, list)
3223 if (addr_type == k->bdaddr_type &&
3224 bacmp(bdaddr, &k->bdaddr) == 0 &&
3225 ltk_role(k->type) == role)
3226 return k;
3227
3228 return NULL;
3229 }
3230
3231 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
3232 {
3233 struct smp_irk *irk;
3234
3235 list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
3236 if (!bacmp(&irk->rpa, rpa))
3237 return irk;
3238 }
3239
3240 list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
3241 if (smp_irk_matches(hdev->tfm_aes, irk->val, rpa)) {
3242 bacpy(&irk->rpa, rpa);
3243 return irk;
3244 }
3245 }
3246
3247 return NULL;
3248 }
3249
3250 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
3251 u8 addr_type)
3252 {
3253 struct smp_irk *irk;
3254
3255 /* Identity Address must be public or static random */
3256 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
3257 return NULL;
3258
3259 list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
3260 if (addr_type == irk->addr_type &&
3261 bacmp(bdaddr, &irk->bdaddr) == 0)
3262 return irk;
3263 }
3264
3265 return NULL;
3266 }
3267
3268 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
3269 bdaddr_t *bdaddr, u8 *val, u8 type,
3270 u8 pin_len, bool *persistent)
3271 {
3272 struct link_key *key, *old_key;
3273 u8 old_key_type;
3274
3275 old_key = hci_find_link_key(hdev, bdaddr);
3276 if (old_key) {
3277 old_key_type = old_key->type;
3278 key = old_key;
3279 } else {
3280 old_key_type = conn ? conn->key_type : 0xff;
3281 key = kzalloc(sizeof(*key), GFP_KERNEL);
3282 if (!key)
3283 return NULL;
3284 list_add(&key->list, &hdev->link_keys);
3285 }
3286
3287 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
3288
3289 /* Some buggy controller combinations generate a changed
3290 * combination key for legacy pairing even when there's no
3291 * previous key */
3292 if (type == HCI_LK_CHANGED_COMBINATION &&
3293 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
3294 type = HCI_LK_COMBINATION;
3295 if (conn)
3296 conn->key_type = type;
3297 }
3298
3299 bacpy(&key->bdaddr, bdaddr);
3300 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
3301 key->pin_len = pin_len;
3302
3303 if (type == HCI_LK_CHANGED_COMBINATION)
3304 key->type = old_key_type;
3305 else
3306 key->type = type;
3307
3308 if (persistent)
3309 *persistent = hci_persistent_key(hdev, conn, type,
3310 old_key_type);
3311
3312 return key;
3313 }
3314
3315 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
3316 u8 addr_type, u8 type, u8 authenticated,
3317 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
3318 {
3319 struct smp_ltk *key, *old_key;
3320 u8 role = ltk_role(type);
3321
3322 old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type, role);
3323 if (old_key)
3324 key = old_key;
3325 else {
3326 key = kzalloc(sizeof(*key), GFP_KERNEL);
3327 if (!key)
3328 return NULL;
3329 list_add(&key->list, &hdev->long_term_keys);
3330 }
3331
3332 bacpy(&key->bdaddr, bdaddr);
3333 key->bdaddr_type = addr_type;
3334 memcpy(key->val, tk, sizeof(key->val));
3335 key->authenticated = authenticated;
3336 key->ediv = ediv;
3337 key->rand = rand;
3338 key->enc_size = enc_size;
3339 key->type = type;
3340
3341 return key;
3342 }
3343
3344 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
3345 u8 addr_type, u8 val[16], bdaddr_t *rpa)
3346 {
3347 struct smp_irk *irk;
3348
3349 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
3350 if (!irk) {
3351 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
3352 if (!irk)
3353 return NULL;
3354
3355 bacpy(&irk->bdaddr, bdaddr);
3356 irk->addr_type = addr_type;
3357
3358 list_add(&irk->list, &hdev->identity_resolving_keys);
3359 }
3360
3361 memcpy(irk->val, val, 16);
3362 bacpy(&irk->rpa, rpa);
3363
3364 return irk;
3365 }
3366
3367 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
3368 {
3369 struct link_key *key;
3370
3371 key = hci_find_link_key(hdev, bdaddr);
3372 if (!key)
3373 return -ENOENT;
3374
3375 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3376
3377 list_del(&key->list);
3378 kfree(key);
3379
3380 return 0;
3381 }
3382
3383 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
3384 {
3385 struct smp_ltk *k, *tmp;
3386 int removed = 0;
3387
3388 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
3389 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
3390 continue;
3391
3392 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3393
3394 list_del(&k->list);
3395 kfree(k);
3396 removed++;
3397 }
3398
3399 return removed ? 0 : -ENOENT;
3400 }
3401
3402 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
3403 {
3404 struct smp_irk *k, *tmp;
3405
3406 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
3407 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
3408 continue;
3409
3410 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3411
3412 list_del(&k->list);
3413 kfree(k);
3414 }
3415 }
3416
3417 /* HCI command timer function */
3418 static void hci_cmd_timeout(struct work_struct *work)
3419 {
3420 struct hci_dev *hdev = container_of(work, struct hci_dev,
3421 cmd_timer.work);
3422
3423 if (hdev->sent_cmd) {
3424 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
3425 u16 opcode = __le16_to_cpu(sent->opcode);
3426
3427 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
3428 } else {
3429 BT_ERR("%s command tx timeout", hdev->name);
3430 }
3431
3432 atomic_set(&hdev->cmd_cnt, 1);
3433 queue_work(hdev->workqueue, &hdev->cmd_work);
3434 }
3435
3436 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
3437 bdaddr_t *bdaddr)
3438 {
3439 struct oob_data *data;
3440
3441 list_for_each_entry(data, &hdev->remote_oob_data, list)
3442 if (bacmp(bdaddr, &data->bdaddr) == 0)
3443 return data;
3444
3445 return NULL;
3446 }
3447
3448 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
3449 {
3450 struct oob_data *data;
3451
3452 data = hci_find_remote_oob_data(hdev, bdaddr);
3453 if (!data)
3454 return -ENOENT;
3455
3456 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3457
3458 list_del(&data->list);
3459 kfree(data);
3460
3461 return 0;
3462 }
3463
3464 void hci_remote_oob_data_clear(struct hci_dev *hdev)
3465 {
3466 struct oob_data *data, *n;
3467
3468 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
3469 list_del(&data->list);
3470 kfree(data);
3471 }
3472 }
3473
3474 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
3475 u8 *hash, u8 *randomizer)
3476 {
3477 struct oob_data *data;
3478
3479 data = hci_find_remote_oob_data(hdev, bdaddr);
3480 if (!data) {
3481 data = kmalloc(sizeof(*data), GFP_KERNEL);
3482 if (!data)
3483 return -ENOMEM;
3484
3485 bacpy(&data->bdaddr, bdaddr);
3486 list_add(&data->list, &hdev->remote_oob_data);
3487 }
3488
3489 memcpy(data->hash192, hash, sizeof(data->hash192));
3490 memcpy(data->randomizer192, randomizer, sizeof(data->randomizer192));
3491
3492 memset(data->hash256, 0, sizeof(data->hash256));
3493 memset(data->randomizer256, 0, sizeof(data->randomizer256));
3494
3495 BT_DBG("%s for %pMR", hdev->name, bdaddr);
3496
3497 return 0;
3498 }
3499
3500 int hci_add_remote_oob_ext_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
3501 u8 *hash192, u8 *randomizer192,
3502 u8 *hash256, u8 *randomizer256)
3503 {
3504 struct oob_data *data;
3505
3506 data = hci_find_remote_oob_data(hdev, bdaddr);
3507 if (!data) {
3508 data = kmalloc(sizeof(*data), GFP_KERNEL);
3509 if (!data)
3510 return -ENOMEM;
3511
3512 bacpy(&data->bdaddr, bdaddr);
3513 list_add(&data->list, &hdev->remote_oob_data);
3514 }
3515
3516 memcpy(data->hash192, hash192, sizeof(data->hash192));
3517 memcpy(data->randomizer192, randomizer192, sizeof(data->randomizer192));
3518
3519 memcpy(data->hash256, hash256, sizeof(data->hash256));
3520 memcpy(data->randomizer256, randomizer256, sizeof(data->randomizer256));
3521
3522 BT_DBG("%s for %pMR", hdev->name, bdaddr);
3523
3524 return 0;
3525 }
3526
3527 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3528 bdaddr_t *bdaddr, u8 type)
3529 {
3530 struct bdaddr_list *b;
3531
3532 list_for_each_entry(b, bdaddr_list, list) {
3533 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3534 return b;
3535 }
3536
3537 return NULL;
3538 }
3539
3540 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3541 {
3542 struct list_head *p, *n;
3543
3544 list_for_each_safe(p, n, bdaddr_list) {
3545 struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list);
3546
3547 list_del(p);
3548 kfree(b);
3549 }
3550 }
3551
3552 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3553 {
3554 struct bdaddr_list *entry;
3555
3556 if (!bacmp(bdaddr, BDADDR_ANY))
3557 return -EBADF;
3558
3559 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3560 return -EEXIST;
3561
3562 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3563 if (!entry)
3564 return -ENOMEM;
3565
3566 bacpy(&entry->bdaddr, bdaddr);
3567 entry->bdaddr_type = type;
3568
3569 list_add(&entry->list, list);
3570
3571 return 0;
3572 }
3573
3574 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3575 {
3576 struct bdaddr_list *entry;
3577
3578 if (!bacmp(bdaddr, BDADDR_ANY)) {
3579 hci_bdaddr_list_clear(list);
3580 return 0;
3581 }
3582
3583 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3584 if (!entry)
3585 return -ENOENT;
3586
3587 list_del(&entry->list);
3588 kfree(entry);
3589
3590 return 0;
3591 }
3592
3593 /* This function requires the caller holds hdev->lock */
3594 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3595 bdaddr_t *addr, u8 addr_type)
3596 {
3597 struct hci_conn_params *params;
3598
3599 /* The conn params list only contains identity addresses */
3600 if (!hci_is_identity_address(addr, addr_type))
3601 return NULL;
3602
3603 list_for_each_entry(params, &hdev->le_conn_params, list) {
3604 if (bacmp(&params->addr, addr) == 0 &&
3605 params->addr_type == addr_type) {
3606 return params;
3607 }
3608 }
3609
3610 return NULL;
3611 }
3612
3613 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
3614 {
3615 struct hci_conn *conn;
3616
3617 conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, addr);
3618 if (!conn)
3619 return false;
3620
3621 if (conn->dst_type != type)
3622 return false;
3623
3624 if (conn->state != BT_CONNECTED)
3625 return false;
3626
3627 return true;
3628 }
3629
3630 /* This function requires the caller holds hdev->lock */
3631 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3632 bdaddr_t *addr, u8 addr_type)
3633 {
3634 struct hci_conn_params *param;
3635
3636 /* The list only contains identity addresses */
3637 if (!hci_is_identity_address(addr, addr_type))
3638 return NULL;
3639
3640 list_for_each_entry(param, list, action) {
3641 if (bacmp(&param->addr, addr) == 0 &&
3642 param->addr_type == addr_type)
3643 return param;
3644 }
3645
3646 return NULL;
3647 }
3648
3649 /* This function requires the caller holds hdev->lock */
3650 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3651 bdaddr_t *addr, u8 addr_type)
3652 {
3653 struct hci_conn_params *params;
3654
3655 if (!hci_is_identity_address(addr, addr_type))
3656 return NULL;
3657
3658 params = hci_conn_params_lookup(hdev, addr, addr_type);
3659 if (params)
3660 return params;
3661
3662 params = kzalloc(sizeof(*params), GFP_KERNEL);
3663 if (!params) {
3664 BT_ERR("Out of memory");
3665 return NULL;
3666 }
3667
3668 bacpy(&params->addr, addr);
3669 params->addr_type = addr_type;
3670
3671 list_add(&params->list, &hdev->le_conn_params);
3672 INIT_LIST_HEAD(&params->action);
3673
3674 params->conn_min_interval = hdev->le_conn_min_interval;
3675 params->conn_max_interval = hdev->le_conn_max_interval;
3676 params->conn_latency = hdev->le_conn_latency;
3677 params->supervision_timeout = hdev->le_supv_timeout;
3678 params->auto_connect = HCI_AUTO_CONN_DISABLED;
3679
3680 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3681
3682 return params;
3683 }
3684
3685 /* This function requires the caller holds hdev->lock */
3686 int hci_conn_params_set(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type,
3687 u8 auto_connect)
3688 {
3689 struct hci_conn_params *params;
3690
3691 params = hci_conn_params_add(hdev, addr, addr_type);
3692 if (!params)
3693 return -EIO;
3694
3695 if (params->auto_connect == auto_connect)
3696 return 0;
3697
3698 list_del_init(&params->action);
3699
3700 switch (auto_connect) {
3701 case HCI_AUTO_CONN_DISABLED:
3702 case HCI_AUTO_CONN_LINK_LOSS:
3703 hci_update_background_scan(hdev);
3704 break;
3705 case HCI_AUTO_CONN_REPORT:
3706 list_add(&params->action, &hdev->pend_le_reports);
3707 hci_update_background_scan(hdev);
3708 break;
3709 case HCI_AUTO_CONN_DIRECT:
3710 case HCI_AUTO_CONN_ALWAYS:
3711 if (!is_connected(hdev, addr, addr_type)) {
3712 list_add(&params->action, &hdev->pend_le_conns);
3713 hci_update_background_scan(hdev);
3714 }
3715 break;
3716 }
3717
3718 params->auto_connect = auto_connect;
3719
3720 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
3721 auto_connect);
3722
3723 return 0;
3724 }
3725
3726 /* This function requires the caller holds hdev->lock */
3727 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3728 {
3729 struct hci_conn_params *params;
3730
3731 params = hci_conn_params_lookup(hdev, addr, addr_type);
3732 if (!params)
3733 return;
3734
3735 if (params->conn)
3736 hci_conn_drop(params->conn);
3737
3738 list_del(&params->action);
3739 list_del(&params->list);
3740 kfree(params);
3741
3742 hci_update_background_scan(hdev);
3743
3744 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3745 }
3746
3747 /* This function requires the caller holds hdev->lock */
3748 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3749 {
3750 struct hci_conn_params *params, *tmp;
3751
3752 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3753 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3754 continue;
3755 list_del(&params->list);
3756 kfree(params);
3757 }
3758
3759 BT_DBG("All LE disabled connection parameters were removed");
3760 }
3761
3762 /* This function requires the caller holds hdev->lock */
3763 void hci_conn_params_clear_all(struct hci_dev *hdev)
3764 {
3765 struct hci_conn_params *params, *tmp;
3766
3767 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3768 if (params->conn)
3769 hci_conn_drop(params->conn);
3770 list_del(&params->action);
3771 list_del(&params->list);
3772 kfree(params);
3773 }
3774
3775 hci_update_background_scan(hdev);
3776
3777 BT_DBG("All LE connection parameters were removed");
3778 }
3779
3780 static void inquiry_complete(struct hci_dev *hdev, u8 status)
3781 {
3782 if (status) {
3783 BT_ERR("Failed to start inquiry: status %d", status);
3784
3785 hci_dev_lock(hdev);
3786 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3787 hci_dev_unlock(hdev);
3788 return;
3789 }
3790 }
3791
3792 static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status)
3793 {
3794 /* General inquiry access code (GIAC) */
3795 u8 lap[3] = { 0x33, 0x8b, 0x9e };
3796 struct hci_request req;
3797 struct hci_cp_inquiry cp;
3798 int err;
3799
3800 if (status) {
3801 BT_ERR("Failed to disable LE scanning: status %d", status);
3802 return;
3803 }
3804
3805 switch (hdev->discovery.type) {
3806 case DISCOV_TYPE_LE:
3807 hci_dev_lock(hdev);
3808 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3809 hci_dev_unlock(hdev);
3810 break;
3811
3812 case DISCOV_TYPE_INTERLEAVED:
3813 hci_req_init(&req, hdev);
3814
3815 memset(&cp, 0, sizeof(cp));
3816 memcpy(&cp.lap, lap, sizeof(cp.lap));
3817 cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN;
3818 hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp);
3819
3820 hci_dev_lock(hdev);
3821
3822 hci_inquiry_cache_flush(hdev);
3823
3824 err = hci_req_run(&req, inquiry_complete);
3825 if (err) {
3826 BT_ERR("Inquiry request failed: err %d", err);
3827 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3828 }
3829
3830 hci_dev_unlock(hdev);
3831 break;
3832 }
3833 }
3834
3835 static void le_scan_disable_work(struct work_struct *work)
3836 {
3837 struct hci_dev *hdev = container_of(work, struct hci_dev,
3838 le_scan_disable.work);
3839 struct hci_request req;
3840 int err;
3841
3842 BT_DBG("%s", hdev->name);
3843
3844 hci_req_init(&req, hdev);
3845
3846 hci_req_add_le_scan_disable(&req);
3847
3848 err = hci_req_run(&req, le_scan_disable_work_complete);
3849 if (err)
3850 BT_ERR("Disable LE scanning request failed: err %d", err);
3851 }
3852
3853 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
3854 {
3855 struct hci_dev *hdev = req->hdev;
3856
3857 /* If we're advertising or initiating an LE connection we can't
3858 * go ahead and change the random address at this time. This is
3859 * because the eventual initiator address used for the
3860 * subsequently created connection will be undefined (some
3861 * controllers use the new address and others the one we had
3862 * when the operation started).
3863 *
3864 * In this kind of scenario skip the update and let the random
3865 * address be updated at the next cycle.
3866 */
3867 if (test_bit(HCI_LE_ADV, &hdev->dev_flags) ||
3868 hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT)) {
3869 BT_DBG("Deferring random address update");
3870 return;
3871 }
3872
3873 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
3874 }
3875
3876 int hci_update_random_address(struct hci_request *req, bool require_privacy,
3877 u8 *own_addr_type)
3878 {
3879 struct hci_dev *hdev = req->hdev;
3880 int err;
3881
3882 /* If privacy is enabled use a resolvable private address. If
3883 * current RPA has expired or there is something else than
3884 * the current RPA in use, then generate a new one.
3885 */
3886 if (test_bit(HCI_PRIVACY, &hdev->dev_flags)) {
3887 int to;
3888
3889 *own_addr_type = ADDR_LE_DEV_RANDOM;
3890
3891 if (!test_and_clear_bit(HCI_RPA_EXPIRED, &hdev->dev_flags) &&
3892 !bacmp(&hdev->random_addr, &hdev->rpa))
3893 return 0;
3894
3895 err = smp_generate_rpa(hdev->tfm_aes, hdev->irk, &hdev->rpa);
3896 if (err < 0) {
3897 BT_ERR("%s failed to generate new RPA", hdev->name);
3898 return err;
3899 }
3900
3901 set_random_addr(req, &hdev->rpa);
3902
3903 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
3904 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
3905
3906 return 0;
3907 }
3908
3909 /* In case of required privacy without resolvable private address,
3910 * use an unresolvable private address. This is useful for active
3911 * scanning and non-connectable advertising.
3912 */
3913 if (require_privacy) {
3914 bdaddr_t urpa;
3915
3916 get_random_bytes(&urpa, 6);
3917 urpa.b[5] &= 0x3f; /* Clear two most significant bits */
3918
3919 *own_addr_type = ADDR_LE_DEV_RANDOM;
3920 set_random_addr(req, &urpa);
3921 return 0;
3922 }
3923
3924 /* If forcing static address is in use or there is no public
3925 * address use the static address as random address (but skip
3926 * the HCI command if the current random address is already the
3927 * static one.
3928 */
3929 if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) ||
3930 !bacmp(&hdev->bdaddr, BDADDR_ANY)) {
3931 *own_addr_type = ADDR_LE_DEV_RANDOM;
3932 if (bacmp(&hdev->static_addr, &hdev->random_addr))
3933 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
3934 &hdev->static_addr);
3935 return 0;
3936 }
3937
3938 /* Neither privacy nor static address is being used so use a
3939 * public address.
3940 */
3941 *own_addr_type = ADDR_LE_DEV_PUBLIC;
3942
3943 return 0;
3944 }
3945
3946 /* Copy the Identity Address of the controller.
3947 *
3948 * If the controller has a public BD_ADDR, then by default use that one.
3949 * If this is a LE only controller without a public address, default to
3950 * the static random address.
3951 *
3952 * For debugging purposes it is possible to force controllers with a
3953 * public address to use the static random address instead.
3954 */
3955 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3956 u8 *bdaddr_type)
3957 {
3958 if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) ||
3959 !bacmp(&hdev->bdaddr, BDADDR_ANY)) {
3960 bacpy(bdaddr, &hdev->static_addr);
3961 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3962 } else {
3963 bacpy(bdaddr, &hdev->bdaddr);
3964 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3965 }
3966 }
3967
3968 /* Alloc HCI device */
3969 struct hci_dev *hci_alloc_dev(void)
3970 {
3971 struct hci_dev *hdev;
3972
3973 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3974 if (!hdev)
3975 return NULL;
3976
3977 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3978 hdev->esco_type = (ESCO_HV1);
3979 hdev->link_mode = (HCI_LM_ACCEPT);
3980 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3981 hdev->io_capability = 0x03; /* No Input No Output */
3982 hdev->manufacturer = 0xffff; /* Default to internal use */
3983 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3984 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3985
3986 hdev->sniff_max_interval = 800;
3987 hdev->sniff_min_interval = 80;
3988
3989 hdev->le_adv_channel_map = 0x07;
3990 hdev->le_adv_min_interval = 0x0800;
3991 hdev->le_adv_max_interval = 0x0800;
3992 hdev->le_scan_interval = 0x0060;
3993 hdev->le_scan_window = 0x0030;
3994 hdev->le_conn_min_interval = 0x0028;
3995 hdev->le_conn_max_interval = 0x0038;
3996 hdev->le_conn_latency = 0x0000;
3997 hdev->le_supv_timeout = 0x002a;
3998
3999 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
4000 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
4001 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
4002 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
4003
4004 mutex_init(&hdev->lock);
4005 mutex_init(&hdev->req_lock);
4006
4007 INIT_LIST_HEAD(&hdev->mgmt_pending);
4008 INIT_LIST_HEAD(&hdev->blacklist);
4009 INIT_LIST_HEAD(&hdev->whitelist);
4010 INIT_LIST_HEAD(&hdev->uuids);
4011 INIT_LIST_HEAD(&hdev->link_keys);
4012 INIT_LIST_HEAD(&hdev->long_term_keys);
4013 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
4014 INIT_LIST_HEAD(&hdev->remote_oob_data);
4015 INIT_LIST_HEAD(&hdev->le_white_list);
4016 INIT_LIST_HEAD(&hdev->le_conn_params);
4017 INIT_LIST_HEAD(&hdev->pend_le_conns);
4018 INIT_LIST_HEAD(&hdev->pend_le_reports);
4019 INIT_LIST_HEAD(&hdev->conn_hash.list);
4020
4021 INIT_WORK(&hdev->rx_work, hci_rx_work);
4022 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
4023 INIT_WORK(&hdev->tx_work, hci_tx_work);
4024 INIT_WORK(&hdev->power_on, hci_power_on);
4025
4026 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
4027 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
4028 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
4029
4030 skb_queue_head_init(&hdev->rx_q);
4031 skb_queue_head_init(&hdev->cmd_q);
4032 skb_queue_head_init(&hdev->raw_q);
4033
4034 init_waitqueue_head(&hdev->req_wait_q);
4035
4036 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
4037
4038 hci_init_sysfs(hdev);
4039 discovery_init(hdev);
4040
4041 return hdev;
4042 }
4043 EXPORT_SYMBOL(hci_alloc_dev);
4044
4045 /* Free HCI device */
4046 void hci_free_dev(struct hci_dev *hdev)
4047 {
4048 /* will free via device release */
4049 put_device(&hdev->dev);
4050 }
4051 EXPORT_SYMBOL(hci_free_dev);
4052
4053 /* Register HCI device */
4054 int hci_register_dev(struct hci_dev *hdev)
4055 {
4056 int id, error;
4057
4058 if (!hdev->open || !hdev->close || !hdev->send)
4059 return -EINVAL;
4060
4061 /* Do not allow HCI_AMP devices to register at index 0,
4062 * so the index can be used as the AMP controller ID.
4063 */
4064 switch (hdev->dev_type) {
4065 case HCI_BREDR:
4066 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
4067 break;
4068 case HCI_AMP:
4069 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
4070 break;
4071 default:
4072 return -EINVAL;
4073 }
4074
4075 if (id < 0)
4076 return id;
4077
4078 sprintf(hdev->name, "hci%d", id);
4079 hdev->id = id;
4080
4081 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
4082
4083 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
4084 WQ_MEM_RECLAIM, 1, hdev->name);
4085 if (!hdev->workqueue) {
4086 error = -ENOMEM;
4087 goto err;
4088 }
4089
4090 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
4091 WQ_MEM_RECLAIM, 1, hdev->name);
4092 if (!hdev->req_workqueue) {
4093 destroy_workqueue(hdev->workqueue);
4094 error = -ENOMEM;
4095 goto err;
4096 }
4097
4098 if (!IS_ERR_OR_NULL(bt_debugfs))
4099 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
4100
4101 dev_set_name(&hdev->dev, "%s", hdev->name);
4102
4103 hdev->tfm_aes = crypto_alloc_blkcipher("ecb(aes)", 0,
4104 CRYPTO_ALG_ASYNC);
4105 if (IS_ERR(hdev->tfm_aes)) {
4106 BT_ERR("Unable to create crypto context");
4107 error = PTR_ERR(hdev->tfm_aes);
4108 hdev->tfm_aes = NULL;
4109 goto err_wqueue;
4110 }
4111
4112 error = device_add(&hdev->dev);
4113 if (error < 0)
4114 goto err_tfm;
4115
4116 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
4117 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
4118 hdev);
4119 if (hdev->rfkill) {
4120 if (rfkill_register(hdev->rfkill) < 0) {
4121 rfkill_destroy(hdev->rfkill);
4122 hdev->rfkill = NULL;
4123 }
4124 }
4125
4126 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
4127 set_bit(HCI_RFKILLED, &hdev->dev_flags);
4128
4129 set_bit(HCI_SETUP, &hdev->dev_flags);
4130 set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
4131
4132 if (hdev->dev_type == HCI_BREDR) {
4133 /* Assume BR/EDR support until proven otherwise (such as
4134 * through reading supported features during init.
4135 */
4136 set_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
4137 }
4138
4139 write_lock(&hci_dev_list_lock);
4140 list_add(&hdev->list, &hci_dev_list);
4141 write_unlock(&hci_dev_list_lock);
4142
4143 /* Devices that are marked for raw-only usage are unconfigured
4144 * and should not be included in normal operation.
4145 */
4146 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
4147 set_bit(HCI_UNCONFIGURED, &hdev->dev_flags);
4148
4149 hci_notify(hdev, HCI_DEV_REG);
4150 hci_dev_hold(hdev);
4151
4152 queue_work(hdev->req_workqueue, &hdev->power_on);
4153
4154 return id;
4155
4156 err_tfm:
4157 crypto_free_blkcipher(hdev->tfm_aes);
4158 err_wqueue:
4159 destroy_workqueue(hdev->workqueue);
4160 destroy_workqueue(hdev->req_workqueue);
4161 err:
4162 ida_simple_remove(&hci_index_ida, hdev->id);
4163
4164 return error;
4165 }
4166 EXPORT_SYMBOL(hci_register_dev);
4167
4168 /* Unregister HCI device */
4169 void hci_unregister_dev(struct hci_dev *hdev)
4170 {
4171 int i, id;
4172
4173 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
4174
4175 set_bit(HCI_UNREGISTER, &hdev->dev_flags);
4176
4177 id = hdev->id;
4178
4179 write_lock(&hci_dev_list_lock);
4180 list_del(&hdev->list);
4181 write_unlock(&hci_dev_list_lock);
4182
4183 hci_dev_do_close(hdev);
4184
4185 for (i = 0; i < NUM_REASSEMBLY; i++)
4186 kfree_skb(hdev->reassembly[i]);
4187
4188 cancel_work_sync(&hdev->power_on);
4189
4190 if (!test_bit(HCI_INIT, &hdev->flags) &&
4191 !test_bit(HCI_SETUP, &hdev->dev_flags) &&
4192 !test_bit(HCI_CONFIG, &hdev->dev_flags)) {
4193 hci_dev_lock(hdev);
4194 mgmt_index_removed(hdev);
4195 hci_dev_unlock(hdev);
4196 }
4197
4198 /* mgmt_index_removed should take care of emptying the
4199 * pending list */
4200 BUG_ON(!list_empty(&hdev->mgmt_pending));
4201
4202 hci_notify(hdev, HCI_DEV_UNREG);
4203
4204 if (hdev->rfkill) {
4205 rfkill_unregister(hdev->rfkill);
4206 rfkill_destroy(hdev->rfkill);
4207 }
4208
4209 if (hdev->tfm_aes)
4210 crypto_free_blkcipher(hdev->tfm_aes);
4211
4212 device_del(&hdev->dev);
4213
4214 debugfs_remove_recursive(hdev->debugfs);
4215
4216 destroy_workqueue(hdev->workqueue);
4217 destroy_workqueue(hdev->req_workqueue);
4218
4219 hci_dev_lock(hdev);
4220 hci_bdaddr_list_clear(&hdev->blacklist);
4221 hci_bdaddr_list_clear(&hdev->whitelist);
4222 hci_uuids_clear(hdev);
4223 hci_link_keys_clear(hdev);
4224 hci_smp_ltks_clear(hdev);
4225 hci_smp_irks_clear(hdev);
4226 hci_remote_oob_data_clear(hdev);
4227 hci_bdaddr_list_clear(&hdev->le_white_list);
4228 hci_conn_params_clear_all(hdev);
4229 hci_dev_unlock(hdev);
4230
4231 hci_dev_put(hdev);
4232
4233 ida_simple_remove(&hci_index_ida, id);
4234 }
4235 EXPORT_SYMBOL(hci_unregister_dev);
4236
4237 /* Suspend HCI device */
4238 int hci_suspend_dev(struct hci_dev *hdev)
4239 {
4240 hci_notify(hdev, HCI_DEV_SUSPEND);
4241 return 0;
4242 }
4243 EXPORT_SYMBOL(hci_suspend_dev);
4244
4245 /* Resume HCI device */
4246 int hci_resume_dev(struct hci_dev *hdev)
4247 {
4248 hci_notify(hdev, HCI_DEV_RESUME);
4249 return 0;
4250 }
4251 EXPORT_SYMBOL(hci_resume_dev);
4252
4253 /* Receive frame from HCI drivers */
4254 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
4255 {
4256 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
4257 && !test_bit(HCI_INIT, &hdev->flags))) {
4258 kfree_skb(skb);
4259 return -ENXIO;
4260 }
4261
4262 /* Incoming skb */
4263 bt_cb(skb)->incoming = 1;
4264
4265 /* Time stamp */
4266 __net_timestamp(skb);
4267
4268 skb_queue_tail(&hdev->rx_q, skb);
4269 queue_work(hdev->workqueue, &hdev->rx_work);
4270
4271 return 0;
4272 }
4273 EXPORT_SYMBOL(hci_recv_frame);
4274
4275 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
4276 int count, __u8 index)
4277 {
4278 int len = 0;
4279 int hlen = 0;
4280 int remain = count;
4281 struct sk_buff *skb;
4282 struct bt_skb_cb *scb;
4283
4284 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
4285 index >= NUM_REASSEMBLY)
4286 return -EILSEQ;
4287
4288 skb = hdev->reassembly[index];
4289
4290 if (!skb) {
4291 switch (type) {
4292 case HCI_ACLDATA_PKT:
4293 len = HCI_MAX_FRAME_SIZE;
4294 hlen = HCI_ACL_HDR_SIZE;
4295 break;
4296 case HCI_EVENT_PKT:
4297 len = HCI_MAX_EVENT_SIZE;
4298 hlen = HCI_EVENT_HDR_SIZE;
4299 break;
4300 case HCI_SCODATA_PKT:
4301 len = HCI_MAX_SCO_SIZE;
4302 hlen = HCI_SCO_HDR_SIZE;
4303 break;
4304 }
4305
4306 skb = bt_skb_alloc(len, GFP_ATOMIC);
4307 if (!skb)
4308 return -ENOMEM;
4309
4310 scb = (void *) skb->cb;
4311 scb->expect = hlen;
4312 scb->pkt_type = type;
4313
4314 hdev->reassembly[index] = skb;
4315 }
4316
4317 while (count) {
4318 scb = (void *) skb->cb;
4319 len = min_t(uint, scb->expect, count);
4320
4321 memcpy(skb_put(skb, len), data, len);
4322
4323 count -= len;
4324 data += len;
4325 scb->expect -= len;
4326 remain = count;
4327
4328 switch (type) {
4329 case HCI_EVENT_PKT:
4330 if (skb->len == HCI_EVENT_HDR_SIZE) {
4331 struct hci_event_hdr *h = hci_event_hdr(skb);
4332 scb->expect = h->plen;
4333
4334 if (skb_tailroom(skb) < scb->expect) {
4335 kfree_skb(skb);
4336 hdev->reassembly[index] = NULL;
4337 return -ENOMEM;
4338 }
4339 }
4340 break;
4341
4342 case HCI_ACLDATA_PKT:
4343 if (skb->len == HCI_ACL_HDR_SIZE) {
4344 struct hci_acl_hdr *h = hci_acl_hdr(skb);
4345 scb->expect = __le16_to_cpu(h->dlen);
4346
4347 if (skb_tailroom(skb) < scb->expect) {
4348 kfree_skb(skb);
4349 hdev->reassembly[index] = NULL;
4350 return -ENOMEM;
4351 }
4352 }
4353 break;
4354
4355 case HCI_SCODATA_PKT:
4356 if (skb->len == HCI_SCO_HDR_SIZE) {
4357 struct hci_sco_hdr *h = hci_sco_hdr(skb);
4358 scb->expect = h->dlen;
4359
4360 if (skb_tailroom(skb) < scb->expect) {
4361 kfree_skb(skb);
4362 hdev->reassembly[index] = NULL;
4363 return -ENOMEM;
4364 }
4365 }
4366 break;
4367 }
4368
4369 if (scb->expect == 0) {
4370 /* Complete frame */
4371
4372 bt_cb(skb)->pkt_type = type;
4373 hci_recv_frame(hdev, skb);
4374
4375 hdev->reassembly[index] = NULL;
4376 return remain;
4377 }
4378 }
4379
4380 return remain;
4381 }
4382
4383 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
4384 {
4385 int rem = 0;
4386
4387 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
4388 return -EILSEQ;
4389
4390 while (count) {
4391 rem = hci_reassembly(hdev, type, data, count, type - 1);
4392 if (rem < 0)
4393 return rem;
4394
4395 data += (count - rem);
4396 count = rem;
4397 }
4398
4399 return rem;
4400 }
4401 EXPORT_SYMBOL(hci_recv_fragment);
4402
4403 #define STREAM_REASSEMBLY 0
4404
4405 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
4406 {
4407 int type;
4408 int rem = 0;
4409
4410 while (count) {
4411 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
4412
4413 if (!skb) {
4414 struct { char type; } *pkt;
4415
4416 /* Start of the frame */
4417 pkt = data;
4418 type = pkt->type;
4419
4420 data++;
4421 count--;
4422 } else
4423 type = bt_cb(skb)->pkt_type;
4424
4425 rem = hci_reassembly(hdev, type, data, count,
4426 STREAM_REASSEMBLY);
4427 if (rem < 0)
4428 return rem;
4429
4430 data += (count - rem);
4431 count = rem;
4432 }
4433
4434 return rem;
4435 }
4436 EXPORT_SYMBOL(hci_recv_stream_fragment);
4437
4438 /* ---- Interface to upper protocols ---- */
4439
4440 int hci_register_cb(struct hci_cb *cb)
4441 {
4442 BT_DBG("%p name %s", cb, cb->name);
4443
4444 write_lock(&hci_cb_list_lock);
4445 list_add(&cb->list, &hci_cb_list);
4446 write_unlock(&hci_cb_list_lock);
4447
4448 return 0;
4449 }
4450 EXPORT_SYMBOL(hci_register_cb);
4451
4452 int hci_unregister_cb(struct hci_cb *cb)
4453 {
4454 BT_DBG("%p name %s", cb, cb->name);
4455
4456 write_lock(&hci_cb_list_lock);
4457 list_del(&cb->list);
4458 write_unlock(&hci_cb_list_lock);
4459
4460 return 0;
4461 }
4462 EXPORT_SYMBOL(hci_unregister_cb);
4463
4464 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4465 {
4466 int err;
4467
4468 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
4469
4470 /* Time stamp */
4471 __net_timestamp(skb);
4472
4473 /* Send copy to monitor */
4474 hci_send_to_monitor(hdev, skb);
4475
4476 if (atomic_read(&hdev->promisc)) {
4477 /* Send copy to the sockets */
4478 hci_send_to_sock(hdev, skb);
4479 }
4480
4481 /* Get rid of skb owner, prior to sending to the driver. */
4482 skb_orphan(skb);
4483
4484 err = hdev->send(hdev, skb);
4485 if (err < 0) {
4486 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
4487 kfree_skb(skb);
4488 }
4489 }
4490
4491 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
4492 {
4493 skb_queue_head_init(&req->cmd_q);
4494 req->hdev = hdev;
4495 req->err = 0;
4496 }
4497
4498 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
4499 {
4500 struct hci_dev *hdev = req->hdev;
4501 struct sk_buff *skb;
4502 unsigned long flags;
4503
4504 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
4505
4506 /* If an error occured during request building, remove all HCI
4507 * commands queued on the HCI request queue.
4508 */
4509 if (req->err) {
4510 skb_queue_purge(&req->cmd_q);
4511 return req->err;
4512 }
4513
4514 /* Do not allow empty requests */
4515 if (skb_queue_empty(&req->cmd_q))
4516 return -ENODATA;
4517
4518 skb = skb_peek_tail(&req->cmd_q);
4519 bt_cb(skb)->req.complete = complete;
4520
4521 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4522 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
4523 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4524
4525 queue_work(hdev->workqueue, &hdev->cmd_work);
4526
4527 return 0;
4528 }
4529
4530 bool hci_req_pending(struct hci_dev *hdev)
4531 {
4532 return (hdev->req_status == HCI_REQ_PEND);
4533 }
4534
4535 static struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode,
4536 u32 plen, const void *param)
4537 {
4538 int len = HCI_COMMAND_HDR_SIZE + plen;
4539 struct hci_command_hdr *hdr;
4540 struct sk_buff *skb;
4541
4542 skb = bt_skb_alloc(len, GFP_ATOMIC);
4543 if (!skb)
4544 return NULL;
4545
4546 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
4547 hdr->opcode = cpu_to_le16(opcode);
4548 hdr->plen = plen;
4549
4550 if (plen)
4551 memcpy(skb_put(skb, plen), param, plen);
4552
4553 BT_DBG("skb len %d", skb->len);
4554
4555 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
4556
4557 return skb;
4558 }
4559
4560 /* Send HCI command */
4561 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4562 const void *param)
4563 {
4564 struct sk_buff *skb;
4565
4566 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4567
4568 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4569 if (!skb) {
4570 BT_ERR("%s no memory for command", hdev->name);
4571 return -ENOMEM;
4572 }
4573
4574 /* Stand-alone HCI commands must be flaged as
4575 * single-command requests.
4576 */
4577 bt_cb(skb)->req.start = true;
4578
4579 skb_queue_tail(&hdev->cmd_q, skb);
4580 queue_work(hdev->workqueue, &hdev->cmd_work);
4581
4582 return 0;
4583 }
4584
4585 /* Queue a command to an asynchronous HCI request */
4586 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
4587 const void *param, u8 event)
4588 {
4589 struct hci_dev *hdev = req->hdev;
4590 struct sk_buff *skb;
4591
4592 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4593
4594 /* If an error occured during request building, there is no point in
4595 * queueing the HCI command. We can simply return.
4596 */
4597 if (req->err)
4598 return;
4599
4600 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4601 if (!skb) {
4602 BT_ERR("%s no memory for command (opcode 0x%4.4x)",
4603 hdev->name, opcode);
4604 req->err = -ENOMEM;
4605 return;
4606 }
4607
4608 if (skb_queue_empty(&req->cmd_q))
4609 bt_cb(skb)->req.start = true;
4610
4611 bt_cb(skb)->req.event = event;
4612
4613 skb_queue_tail(&req->cmd_q, skb);
4614 }
4615
4616 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
4617 const void *param)
4618 {
4619 hci_req_add_ev(req, opcode, plen, param, 0);
4620 }
4621
4622 /* Get data from the previously sent command */
4623 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4624 {
4625 struct hci_command_hdr *hdr;
4626
4627 if (!hdev->sent_cmd)
4628 return NULL;
4629
4630 hdr = (void *) hdev->sent_cmd->data;
4631
4632 if (hdr->opcode != cpu_to_le16(opcode))
4633 return NULL;
4634
4635 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4636
4637 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4638 }
4639
4640 /* Send ACL data */
4641 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4642 {
4643 struct hci_acl_hdr *hdr;
4644 int len = skb->len;
4645
4646 skb_push(skb, HCI_ACL_HDR_SIZE);
4647 skb_reset_transport_header(skb);
4648 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4649 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4650 hdr->dlen = cpu_to_le16(len);
4651 }
4652
4653 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4654 struct sk_buff *skb, __u16 flags)
4655 {
4656 struct hci_conn *conn = chan->conn;
4657 struct hci_dev *hdev = conn->hdev;
4658 struct sk_buff *list;
4659
4660 skb->len = skb_headlen(skb);
4661 skb->data_len = 0;
4662
4663 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
4664
4665 switch (hdev->dev_type) {
4666 case HCI_BREDR:
4667 hci_add_acl_hdr(skb, conn->handle, flags);
4668 break;
4669 case HCI_AMP:
4670 hci_add_acl_hdr(skb, chan->handle, flags);
4671 break;
4672 default:
4673 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
4674 return;
4675 }
4676
4677 list = skb_shinfo(skb)->frag_list;
4678 if (!list) {
4679 /* Non fragmented */
4680 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4681
4682 skb_queue_tail(queue, skb);
4683 } else {
4684 /* Fragmented */
4685 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4686
4687 skb_shinfo(skb)->frag_list = NULL;
4688
4689 /* Queue all fragments atomically */
4690 spin_lock(&queue->lock);
4691
4692 __skb_queue_tail(queue, skb);
4693
4694 flags &= ~ACL_START;
4695 flags |= ACL_CONT;
4696 do {
4697 skb = list; list = list->next;
4698
4699 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
4700 hci_add_acl_hdr(skb, conn->handle, flags);
4701
4702 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4703
4704 __skb_queue_tail(queue, skb);
4705 } while (list);
4706
4707 spin_unlock(&queue->lock);
4708 }
4709 }
4710
4711 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4712 {
4713 struct hci_dev *hdev = chan->conn->hdev;
4714
4715 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4716
4717 hci_queue_acl(chan, &chan->data_q, skb, flags);
4718
4719 queue_work(hdev->workqueue, &hdev->tx_work);
4720 }
4721
4722 /* Send SCO data */
4723 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4724 {
4725 struct hci_dev *hdev = conn->hdev;
4726 struct hci_sco_hdr hdr;
4727
4728 BT_DBG("%s len %d", hdev->name, skb->len);
4729
4730 hdr.handle = cpu_to_le16(conn->handle);
4731 hdr.dlen = skb->len;
4732
4733 skb_push(skb, HCI_SCO_HDR_SIZE);
4734 skb_reset_transport_header(skb);
4735 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4736
4737 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
4738
4739 skb_queue_tail(&conn->data_q, skb);
4740 queue_work(hdev->workqueue, &hdev->tx_work);
4741 }
4742
4743 /* ---- HCI TX task (outgoing data) ---- */
4744
4745 /* HCI Connection scheduler */
4746 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4747 int *quote)
4748 {
4749 struct hci_conn_hash *h = &hdev->conn_hash;
4750 struct hci_conn *conn = NULL, *c;
4751 unsigned int num = 0, min = ~0;
4752
4753 /* We don't have to lock device here. Connections are always
4754 * added and removed with TX task disabled. */
4755
4756 rcu_read_lock();
4757
4758 list_for_each_entry_rcu(c, &h->list, list) {
4759 if (c->type != type || skb_queue_empty(&c->data_q))
4760 continue;
4761
4762 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4763 continue;
4764
4765 num++;
4766
4767 if (c->sent < min) {
4768 min = c->sent;
4769 conn = c;
4770 }
4771
4772 if (hci_conn_num(hdev, type) == num)
4773 break;
4774 }
4775
4776 rcu_read_unlock();
4777
4778 if (conn) {
4779 int cnt, q;
4780
4781 switch (conn->type) {
4782 case ACL_LINK:
4783 cnt = hdev->acl_cnt;
4784 break;
4785 case SCO_LINK:
4786 case ESCO_LINK:
4787 cnt = hdev->sco_cnt;
4788 break;
4789 case LE_LINK:
4790 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4791 break;
4792 default:
4793 cnt = 0;
4794 BT_ERR("Unknown link type");
4795 }
4796
4797 q = cnt / num;
4798 *quote = q ? q : 1;
4799 } else
4800 *quote = 0;
4801
4802 BT_DBG("conn %p quote %d", conn, *quote);
4803 return conn;
4804 }
4805
4806 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4807 {
4808 struct hci_conn_hash *h = &hdev->conn_hash;
4809 struct hci_conn *c;
4810
4811 BT_ERR("%s link tx timeout", hdev->name);
4812
4813 rcu_read_lock();
4814
4815 /* Kill stalled connections */
4816 list_for_each_entry_rcu(c, &h->list, list) {
4817 if (c->type == type && c->sent) {
4818 BT_ERR("%s killing stalled connection %pMR",
4819 hdev->name, &c->dst);
4820 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4821 }
4822 }
4823
4824 rcu_read_unlock();
4825 }
4826
4827 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4828 int *quote)
4829 {
4830 struct hci_conn_hash *h = &hdev->conn_hash;
4831 struct hci_chan *chan = NULL;
4832 unsigned int num = 0, min = ~0, cur_prio = 0;
4833 struct hci_conn *conn;
4834 int cnt, q, conn_num = 0;
4835
4836 BT_DBG("%s", hdev->name);
4837
4838 rcu_read_lock();
4839
4840 list_for_each_entry_rcu(conn, &h->list, list) {
4841 struct hci_chan *tmp;
4842
4843 if (conn->type != type)
4844 continue;
4845
4846 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4847 continue;
4848
4849 conn_num++;
4850
4851 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4852 struct sk_buff *skb;
4853
4854 if (skb_queue_empty(&tmp->data_q))
4855 continue;
4856
4857 skb = skb_peek(&tmp->data_q);
4858 if (skb->priority < cur_prio)
4859 continue;
4860
4861 if (skb->priority > cur_prio) {
4862 num = 0;
4863 min = ~0;
4864 cur_prio = skb->priority;
4865 }
4866
4867 num++;
4868
4869 if (conn->sent < min) {
4870 min = conn->sent;
4871 chan = tmp;
4872 }
4873 }
4874
4875 if (hci_conn_num(hdev, type) == conn_num)
4876 break;
4877 }
4878
4879 rcu_read_unlock();
4880
4881 if (!chan)
4882 return NULL;
4883
4884 switch (chan->conn->type) {
4885 case ACL_LINK:
4886 cnt = hdev->acl_cnt;
4887 break;
4888 case AMP_LINK:
4889 cnt = hdev->block_cnt;
4890 break;
4891 case SCO_LINK:
4892 case ESCO_LINK:
4893 cnt = hdev->sco_cnt;
4894 break;
4895 case LE_LINK:
4896 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4897 break;
4898 default:
4899 cnt = 0;
4900 BT_ERR("Unknown link type");
4901 }
4902
4903 q = cnt / num;
4904 *quote = q ? q : 1;
4905 BT_DBG("chan %p quote %d", chan, *quote);
4906 return chan;
4907 }
4908
4909 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4910 {
4911 struct hci_conn_hash *h = &hdev->conn_hash;
4912 struct hci_conn *conn;
4913 int num = 0;
4914
4915 BT_DBG("%s", hdev->name);
4916
4917 rcu_read_lock();
4918
4919 list_for_each_entry_rcu(conn, &h->list, list) {
4920 struct hci_chan *chan;
4921
4922 if (conn->type != type)
4923 continue;
4924
4925 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4926 continue;
4927
4928 num++;
4929
4930 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4931 struct sk_buff *skb;
4932
4933 if (chan->sent) {
4934 chan->sent = 0;
4935 continue;
4936 }
4937
4938 if (skb_queue_empty(&chan->data_q))
4939 continue;
4940
4941 skb = skb_peek(&chan->data_q);
4942 if (skb->priority >= HCI_PRIO_MAX - 1)
4943 continue;
4944
4945 skb->priority = HCI_PRIO_MAX - 1;
4946
4947 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4948 skb->priority);
4949 }
4950
4951 if (hci_conn_num(hdev, type) == num)
4952 break;
4953 }
4954
4955 rcu_read_unlock();
4956
4957 }
4958
4959 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4960 {
4961 /* Calculate count of blocks used by this packet */
4962 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4963 }
4964
4965 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4966 {
4967 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
4968 /* ACL tx timeout must be longer than maximum
4969 * link supervision timeout (40.9 seconds) */
4970 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4971 HCI_ACL_TX_TIMEOUT))
4972 hci_link_tx_to(hdev, ACL_LINK);
4973 }
4974 }
4975
4976 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4977 {
4978 unsigned int cnt = hdev->acl_cnt;
4979 struct hci_chan *chan;
4980 struct sk_buff *skb;
4981 int quote;
4982
4983 __check_timeout(hdev, cnt);
4984
4985 while (hdev->acl_cnt &&
4986 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4987 u32 priority = (skb_peek(&chan->data_q))->priority;
4988 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4989 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4990 skb->len, skb->priority);
4991
4992 /* Stop if priority has changed */
4993 if (skb->priority < priority)
4994 break;
4995
4996 skb = skb_dequeue(&chan->data_q);
4997
4998 hci_conn_enter_active_mode(chan->conn,
4999 bt_cb(skb)->force_active);
5000
5001 hci_send_frame(hdev, skb);
5002 hdev->acl_last_tx = jiffies;
5003
5004 hdev->acl_cnt--;
5005 chan->sent++;
5006 chan->conn->sent++;
5007 }
5008 }
5009
5010 if (cnt != hdev->acl_cnt)
5011 hci_prio_recalculate(hdev, ACL_LINK);
5012 }
5013
5014 static void hci_sched_acl_blk(struct hci_dev *hdev)
5015 {
5016 unsigned int cnt = hdev->block_cnt;
5017 struct hci_chan *chan;
5018 struct sk_buff *skb;
5019 int quote;
5020 u8 type;
5021
5022 __check_timeout(hdev, cnt);
5023
5024 BT_DBG("%s", hdev->name);
5025
5026 if (hdev->dev_type == HCI_AMP)
5027 type = AMP_LINK;
5028 else
5029 type = ACL_LINK;
5030
5031 while (hdev->block_cnt > 0 &&
5032 (chan = hci_chan_sent(hdev, type, &quote))) {
5033 u32 priority = (skb_peek(&chan->data_q))->priority;
5034 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
5035 int blocks;
5036
5037 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
5038 skb->len, skb->priority);
5039
5040 /* Stop if priority has changed */
5041 if (skb->priority < priority)
5042 break;
5043
5044 skb = skb_dequeue(&chan->data_q);
5045
5046 blocks = __get_blocks(hdev, skb);
5047 if (blocks > hdev->block_cnt)
5048 return;
5049
5050 hci_conn_enter_active_mode(chan->conn,
5051 bt_cb(skb)->force_active);
5052
5053 hci_send_frame(hdev, skb);
5054 hdev->acl_last_tx = jiffies;
5055
5056 hdev->block_cnt -= blocks;
5057 quote -= blocks;
5058
5059 chan->sent += blocks;
5060 chan->conn->sent += blocks;
5061 }
5062 }
5063
5064 if (cnt != hdev->block_cnt)
5065 hci_prio_recalculate(hdev, type);
5066 }
5067
5068 static void hci_sched_acl(struct hci_dev *hdev)
5069 {
5070 BT_DBG("%s", hdev->name);
5071
5072 /* No ACL link over BR/EDR controller */
5073 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
5074 return;
5075
5076 /* No AMP link over AMP controller */
5077 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
5078 return;
5079
5080 switch (hdev->flow_ctl_mode) {
5081 case HCI_FLOW_CTL_MODE_PACKET_BASED:
5082 hci_sched_acl_pkt(hdev);
5083 break;
5084
5085 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
5086 hci_sched_acl_blk(hdev);
5087 break;
5088 }
5089 }
5090
5091 /* Schedule SCO */
5092 static void hci_sched_sco(struct hci_dev *hdev)
5093 {
5094 struct hci_conn *conn;
5095 struct sk_buff *skb;
5096 int quote;
5097
5098 BT_DBG("%s", hdev->name);
5099
5100 if (!hci_conn_num(hdev, SCO_LINK))
5101 return;
5102
5103 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
5104 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
5105 BT_DBG("skb %p len %d", skb, skb->len);
5106 hci_send_frame(hdev, skb);
5107
5108 conn->sent++;
5109 if (conn->sent == ~0)
5110 conn->sent = 0;
5111 }
5112 }
5113 }
5114
5115 static void hci_sched_esco(struct hci_dev *hdev)
5116 {
5117 struct hci_conn *conn;
5118 struct sk_buff *skb;
5119 int quote;
5120
5121 BT_DBG("%s", hdev->name);
5122
5123 if (!hci_conn_num(hdev, ESCO_LINK))
5124 return;
5125
5126 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
5127 &quote))) {
5128 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
5129 BT_DBG("skb %p len %d", skb, skb->len);
5130 hci_send_frame(hdev, skb);
5131
5132 conn->sent++;
5133 if (conn->sent == ~0)
5134 conn->sent = 0;
5135 }
5136 }
5137 }
5138
5139 static void hci_sched_le(struct hci_dev *hdev)
5140 {
5141 struct hci_chan *chan;
5142 struct sk_buff *skb;
5143 int quote, cnt, tmp;
5144
5145 BT_DBG("%s", hdev->name);
5146
5147 if (!hci_conn_num(hdev, LE_LINK))
5148 return;
5149
5150 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
5151 /* LE tx timeout must be longer than maximum
5152 * link supervision timeout (40.9 seconds) */
5153 if (!hdev->le_cnt && hdev->le_pkts &&
5154 time_after(jiffies, hdev->le_last_tx + HZ * 45))
5155 hci_link_tx_to(hdev, LE_LINK);
5156 }
5157
5158 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
5159 tmp = cnt;
5160 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
5161 u32 priority = (skb_peek(&chan->data_q))->priority;
5162 while (quote-- && (skb = skb_peek(&chan->data_q))) {
5163 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
5164 skb->len, skb->priority);
5165
5166 /* Stop if priority has changed */
5167 if (skb->priority < priority)
5168 break;
5169
5170 skb = skb_dequeue(&chan->data_q);
5171
5172 hci_send_frame(hdev, skb);
5173 hdev->le_last_tx = jiffies;
5174
5175 cnt--;
5176 chan->sent++;
5177 chan->conn->sent++;
5178 }
5179 }
5180
5181 if (hdev->le_pkts)
5182 hdev->le_cnt = cnt;
5183 else
5184 hdev->acl_cnt = cnt;
5185
5186 if (cnt != tmp)
5187 hci_prio_recalculate(hdev, LE_LINK);
5188 }
5189
5190 static void hci_tx_work(struct work_struct *work)
5191 {
5192 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
5193 struct sk_buff *skb;
5194
5195 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
5196 hdev->sco_cnt, hdev->le_cnt);
5197
5198 if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
5199 /* Schedule queues and send stuff to HCI driver */
5200 hci_sched_acl(hdev);
5201 hci_sched_sco(hdev);
5202 hci_sched_esco(hdev);
5203 hci_sched_le(hdev);
5204 }
5205
5206 /* Send next queued raw (unknown type) packet */
5207 while ((skb = skb_dequeue(&hdev->raw_q)))
5208 hci_send_frame(hdev, skb);
5209 }
5210
5211 /* ----- HCI RX task (incoming data processing) ----- */
5212
5213 /* ACL data packet */
5214 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
5215 {
5216 struct hci_acl_hdr *hdr = (void *) skb->data;
5217 struct hci_conn *conn;
5218 __u16 handle, flags;
5219
5220 skb_pull(skb, HCI_ACL_HDR_SIZE);
5221
5222 handle = __le16_to_cpu(hdr->handle);
5223 flags = hci_flags(handle);
5224 handle = hci_handle(handle);
5225
5226 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
5227 handle, flags);
5228
5229 hdev->stat.acl_rx++;
5230
5231 hci_dev_lock(hdev);
5232 conn = hci_conn_hash_lookup_handle(hdev, handle);
5233 hci_dev_unlock(hdev);
5234
5235 if (conn) {
5236 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
5237
5238 /* Send to upper protocol */
5239 l2cap_recv_acldata(conn, skb, flags);
5240 return;
5241 } else {
5242 BT_ERR("%s ACL packet for unknown connection handle %d",
5243 hdev->name, handle);
5244 }
5245
5246 kfree_skb(skb);
5247 }
5248
5249 /* SCO data packet */
5250 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
5251 {
5252 struct hci_sco_hdr *hdr = (void *) skb->data;
5253 struct hci_conn *conn;
5254 __u16 handle;
5255
5256 skb_pull(skb, HCI_SCO_HDR_SIZE);
5257
5258 handle = __le16_to_cpu(hdr->handle);
5259
5260 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
5261
5262 hdev->stat.sco_rx++;
5263
5264 hci_dev_lock(hdev);
5265 conn = hci_conn_hash_lookup_handle(hdev, handle);
5266 hci_dev_unlock(hdev);
5267
5268 if (conn) {
5269 /* Send to upper protocol */
5270 sco_recv_scodata(conn, skb);
5271 return;
5272 } else {
5273 BT_ERR("%s SCO packet for unknown connection handle %d",
5274 hdev->name, handle);
5275 }
5276
5277 kfree_skb(skb);
5278 }
5279
5280 static bool hci_req_is_complete(struct hci_dev *hdev)
5281 {
5282 struct sk_buff *skb;
5283
5284 skb = skb_peek(&hdev->cmd_q);
5285 if (!skb)
5286 return true;
5287
5288 return bt_cb(skb)->req.start;
5289 }
5290
5291 static void hci_resend_last(struct hci_dev *hdev)
5292 {
5293 struct hci_command_hdr *sent;
5294 struct sk_buff *skb;
5295 u16 opcode;
5296
5297 if (!hdev->sent_cmd)
5298 return;
5299
5300 sent = (void *) hdev->sent_cmd->data;
5301 opcode = __le16_to_cpu(sent->opcode);
5302 if (opcode == HCI_OP_RESET)
5303 return;
5304
5305 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
5306 if (!skb)
5307 return;
5308
5309 skb_queue_head(&hdev->cmd_q, skb);
5310 queue_work(hdev->workqueue, &hdev->cmd_work);
5311 }
5312
5313 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status)
5314 {
5315 hci_req_complete_t req_complete = NULL;
5316 struct sk_buff *skb;
5317 unsigned long flags;
5318
5319 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
5320
5321 /* If the completed command doesn't match the last one that was
5322 * sent we need to do special handling of it.
5323 */
5324 if (!hci_sent_cmd_data(hdev, opcode)) {
5325 /* Some CSR based controllers generate a spontaneous
5326 * reset complete event during init and any pending
5327 * command will never be completed. In such a case we
5328 * need to resend whatever was the last sent
5329 * command.
5330 */
5331 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
5332 hci_resend_last(hdev);
5333
5334 return;
5335 }
5336
5337 /* If the command succeeded and there's still more commands in
5338 * this request the request is not yet complete.
5339 */
5340 if (!status && !hci_req_is_complete(hdev))
5341 return;
5342
5343 /* If this was the last command in a request the complete
5344 * callback would be found in hdev->sent_cmd instead of the
5345 * command queue (hdev->cmd_q).
5346 */
5347 if (hdev->sent_cmd) {
5348 req_complete = bt_cb(hdev->sent_cmd)->req.complete;
5349
5350 if (req_complete) {
5351 /* We must set the complete callback to NULL to
5352 * avoid calling the callback more than once if
5353 * this function gets called again.
5354 */
5355 bt_cb(hdev->sent_cmd)->req.complete = NULL;
5356
5357 goto call_complete;
5358 }
5359 }
5360
5361 /* Remove all pending commands belonging to this request */
5362 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
5363 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
5364 if (bt_cb(skb)->req.start) {
5365 __skb_queue_head(&hdev->cmd_q, skb);
5366 break;
5367 }
5368
5369 req_complete = bt_cb(skb)->req.complete;
5370 kfree_skb(skb);
5371 }
5372 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
5373
5374 call_complete:
5375 if (req_complete)
5376 req_complete(hdev, status);
5377 }
5378
5379 static void hci_rx_work(struct work_struct *work)
5380 {
5381 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
5382 struct sk_buff *skb;
5383
5384 BT_DBG("%s", hdev->name);
5385
5386 while ((skb = skb_dequeue(&hdev->rx_q))) {
5387 /* Send copy to monitor */
5388 hci_send_to_monitor(hdev, skb);
5389
5390 if (atomic_read(&hdev->promisc)) {
5391 /* Send copy to the sockets */
5392 hci_send_to_sock(hdev, skb);
5393 }
5394
5395 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
5396 kfree_skb(skb);
5397 continue;
5398 }
5399
5400 if (test_bit(HCI_INIT, &hdev->flags)) {
5401 /* Don't process data packets in this states. */
5402 switch (bt_cb(skb)->pkt_type) {
5403 case HCI_ACLDATA_PKT:
5404 case HCI_SCODATA_PKT:
5405 kfree_skb(skb);
5406 continue;
5407 }
5408 }
5409
5410 /* Process frame */
5411 switch (bt_cb(skb)->pkt_type) {
5412 case HCI_EVENT_PKT:
5413 BT_DBG("%s Event packet", hdev->name);
5414 hci_event_packet(hdev, skb);
5415 break;
5416
5417 case HCI_ACLDATA_PKT:
5418 BT_DBG("%s ACL data packet", hdev->name);
5419 hci_acldata_packet(hdev, skb);
5420 break;
5421
5422 case HCI_SCODATA_PKT:
5423 BT_DBG("%s SCO data packet", hdev->name);
5424 hci_scodata_packet(hdev, skb);
5425 break;
5426
5427 default:
5428 kfree_skb(skb);
5429 break;
5430 }
5431 }
5432 }
5433
5434 static void hci_cmd_work(struct work_struct *work)
5435 {
5436 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
5437 struct sk_buff *skb;
5438
5439 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
5440 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
5441
5442 /* Send queued commands */
5443 if (atomic_read(&hdev->cmd_cnt)) {
5444 skb = skb_dequeue(&hdev->cmd_q);
5445 if (!skb)
5446 return;
5447
5448 kfree_skb(hdev->sent_cmd);
5449
5450 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
5451 if (hdev->sent_cmd) {
5452 atomic_dec(&hdev->cmd_cnt);
5453 hci_send_frame(hdev, skb);
5454 if (test_bit(HCI_RESET, &hdev->flags))
5455 cancel_delayed_work(&hdev->cmd_timer);
5456 else
5457 schedule_delayed_work(&hdev->cmd_timer,
5458 HCI_CMD_TIMEOUT);
5459 } else {
5460 skb_queue_head(&hdev->cmd_q, skb);
5461 queue_work(hdev->workqueue, &hdev->cmd_work);
5462 }
5463 }
5464 }
5465
5466 void hci_req_add_le_scan_disable(struct hci_request *req)
5467 {
5468 struct hci_cp_le_set_scan_enable cp;
5469
5470 memset(&cp, 0, sizeof(cp));
5471 cp.enable = LE_SCAN_DISABLE;
5472 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
5473 }
5474
5475 static void add_to_white_list(struct hci_request *req,
5476 struct hci_conn_params *params)
5477 {
5478 struct hci_cp_le_add_to_white_list cp;
5479
5480 cp.bdaddr_type = params->addr_type;
5481 bacpy(&cp.bdaddr, &params->addr);
5482
5483 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
5484 }
5485
5486 static u8 update_white_list(struct hci_request *req)
5487 {
5488 struct hci_dev *hdev = req->hdev;
5489 struct hci_conn_params *params;
5490 struct bdaddr_list *b;
5491 uint8_t white_list_entries = 0;
5492
5493 /* Go through the current white list programmed into the
5494 * controller one by one and check if that address is still
5495 * in the list of pending connections or list of devices to
5496 * report. If not present in either list, then queue the
5497 * command to remove it from the controller.
5498 */
5499 list_for_each_entry(b, &hdev->le_white_list, list) {
5500 struct hci_cp_le_del_from_white_list cp;
5501
5502 if (hci_pend_le_action_lookup(&hdev->pend_le_conns,
5503 &b->bdaddr, b->bdaddr_type) ||
5504 hci_pend_le_action_lookup(&hdev->pend_le_reports,
5505 &b->bdaddr, b->bdaddr_type)) {
5506 white_list_entries++;
5507 continue;
5508 }
5509
5510 cp.bdaddr_type = b->bdaddr_type;
5511 bacpy(&cp.bdaddr, &b->bdaddr);
5512
5513 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
5514 sizeof(cp), &cp);
5515 }
5516
5517 /* Since all no longer valid white list entries have been
5518 * removed, walk through the list of pending connections
5519 * and ensure that any new device gets programmed into
5520 * the controller.
5521 *
5522 * If the list of the devices is larger than the list of
5523 * available white list entries in the controller, then
5524 * just abort and return filer policy value to not use the
5525 * white list.
5526 */
5527 list_for_each_entry(params, &hdev->pend_le_conns, action) {
5528 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
5529 &params->addr, params->addr_type))
5530 continue;
5531
5532 if (white_list_entries >= hdev->le_white_list_size) {
5533 /* Select filter policy to accept all advertising */
5534 return 0x00;
5535 }
5536
5537 if (hci_find_irk_by_addr(hdev, &params->addr,
5538 params->addr_type)) {
5539 /* White list can not be used with RPAs */
5540 return 0x00;
5541 }
5542
5543 white_list_entries++;
5544 add_to_white_list(req, params);
5545 }
5546
5547 /* After adding all new pending connections, walk through
5548 * the list of pending reports and also add these to the
5549 * white list if there is still space.
5550 */
5551 list_for_each_entry(params, &hdev->pend_le_reports, action) {
5552 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
5553 &params->addr, params->addr_type))
5554 continue;
5555
5556 if (white_list_entries >= hdev->le_white_list_size) {
5557 /* Select filter policy to accept all advertising */
5558 return 0x00;
5559 }
5560
5561 if (hci_find_irk_by_addr(hdev, &params->addr,
5562 params->addr_type)) {
5563 /* White list can not be used with RPAs */
5564 return 0x00;
5565 }
5566
5567 white_list_entries++;
5568 add_to_white_list(req, params);
5569 }
5570
5571 /* Select filter policy to use white list */
5572 return 0x01;
5573 }
5574
5575 void hci_req_add_le_passive_scan(struct hci_request *req)
5576 {
5577 struct hci_cp_le_set_scan_param param_cp;
5578 struct hci_cp_le_set_scan_enable enable_cp;
5579 struct hci_dev *hdev = req->hdev;
5580 u8 own_addr_type;
5581 u8 filter_policy;
5582
5583 /* Set require_privacy to false since no SCAN_REQ are send
5584 * during passive scanning. Not using an unresolvable address
5585 * here is important so that peer devices using direct
5586 * advertising with our address will be correctly reported
5587 * by the controller.
5588 */
5589 if (hci_update_random_address(req, false, &own_addr_type))
5590 return;
5591
5592 /* Adding or removing entries from the white list must
5593 * happen before enabling scanning. The controller does
5594 * not allow white list modification while scanning.
5595 */
5596 filter_policy = update_white_list(req);
5597
5598 memset(&param_cp, 0, sizeof(param_cp));
5599 param_cp.type = LE_SCAN_PASSIVE;
5600 param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
5601 param_cp.window = cpu_to_le16(hdev->le_scan_window);
5602 param_cp.own_address_type = own_addr_type;
5603 param_cp.filter_policy = filter_policy;
5604 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
5605 &param_cp);
5606
5607 memset(&enable_cp, 0, sizeof(enable_cp));
5608 enable_cp.enable = LE_SCAN_ENABLE;
5609 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5610 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
5611 &enable_cp);
5612 }
5613
5614 static void update_background_scan_complete(struct hci_dev *hdev, u8 status)
5615 {
5616 if (status)
5617 BT_DBG("HCI request failed to update background scanning: "
5618 "status 0x%2.2x", status);
5619 }
5620
5621 /* This function controls the background scanning based on hdev->pend_le_conns
5622 * list. If there are pending LE connection we start the background scanning,
5623 * otherwise we stop it.
5624 *
5625 * This function requires the caller holds hdev->lock.
5626 */
5627 void hci_update_background_scan(struct hci_dev *hdev)
5628 {
5629 struct hci_request req;
5630 struct hci_conn *conn;
5631 int err;
5632
5633 if (!test_bit(HCI_UP, &hdev->flags) ||
5634 test_bit(HCI_INIT, &hdev->flags) ||
5635 test_bit(HCI_SETUP, &hdev->dev_flags) ||
5636 test_bit(HCI_CONFIG, &hdev->dev_flags) ||
5637 test_bit(HCI_AUTO_OFF, &hdev->dev_flags) ||
5638 test_bit(HCI_UNREGISTER, &hdev->dev_flags))
5639 return;
5640
5641 /* No point in doing scanning if LE support hasn't been enabled */
5642 if (!test_bit(HCI_LE_ENABLED, &hdev->dev_flags))
5643 return;
5644
5645 /* If discovery is active don't interfere with it */
5646 if (hdev->discovery.state != DISCOVERY_STOPPED)
5647 return;
5648
5649 hci_req_init(&req, hdev);
5650
5651 if (list_empty(&hdev->pend_le_conns) &&
5652 list_empty(&hdev->pend_le_reports)) {
5653 /* If there is no pending LE connections or devices
5654 * to be scanned for, we should stop the background
5655 * scanning.
5656 */
5657
5658 /* If controller is not scanning we are done. */
5659 if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags))
5660 return;
5661
5662 hci_req_add_le_scan_disable(&req);
5663
5664 BT_DBG("%s stopping background scanning", hdev->name);
5665 } else {
5666 /* If there is at least one pending LE connection, we should
5667 * keep the background scan running.
5668 */
5669
5670 /* If controller is connecting, we should not start scanning
5671 * since some controllers are not able to scan and connect at
5672 * the same time.
5673 */
5674 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
5675 if (conn)
5676 return;
5677
5678 /* If controller is currently scanning, we stop it to ensure we
5679 * don't miss any advertising (due to duplicates filter).
5680 */
5681 if (test_bit(HCI_LE_SCAN, &hdev->dev_flags))
5682 hci_req_add_le_scan_disable(&req);
5683
5684 hci_req_add_le_passive_scan(&req);
5685
5686 BT_DBG("%s starting background scanning", hdev->name);
5687 }
5688
5689 err = hci_req_run(&req, update_background_scan_complete);
5690 if (err)
5691 BT_ERR("Failed to run HCI request: err %d", err);
5692 }
This page took 0.231143 seconds and 5 git commands to generate.