Bluetooth: Perform a power cycle when receiving hardware error event
[deliverable/linux.git] / net / bluetooth / hci_event.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI event handling. */
26
27 #include <asm/unaligned.h>
28
29 #include <net/bluetooth/bluetooth.h>
30 #include <net/bluetooth/hci_core.h>
31 #include <net/bluetooth/mgmt.h>
32
33 #include "hci_request.h"
34 #include "hci_debugfs.h"
35 #include "a2mp.h"
36 #include "amp.h"
37 #include "smp.h"
38
39 #define ZERO_KEY "\x00\x00\x00\x00\x00\x00\x00\x00" \
40 "\x00\x00\x00\x00\x00\x00\x00\x00"
41
42 /* Handle HCI Event packets */
43
44 static void hci_cc_inquiry_cancel(struct hci_dev *hdev, struct sk_buff *skb)
45 {
46 __u8 status = *((__u8 *) skb->data);
47
48 BT_DBG("%s status 0x%2.2x", hdev->name, status);
49
50 if (status)
51 return;
52
53 clear_bit(HCI_INQUIRY, &hdev->flags);
54 smp_mb__after_atomic(); /* wake_up_bit advises about this barrier */
55 wake_up_bit(&hdev->flags, HCI_INQUIRY);
56
57 hci_dev_lock(hdev);
58 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
59 hci_dev_unlock(hdev);
60
61 hci_conn_check_pending(hdev);
62 }
63
64 static void hci_cc_periodic_inq(struct hci_dev *hdev, struct sk_buff *skb)
65 {
66 __u8 status = *((__u8 *) skb->data);
67
68 BT_DBG("%s status 0x%2.2x", hdev->name, status);
69
70 if (status)
71 return;
72
73 set_bit(HCI_PERIODIC_INQ, &hdev->dev_flags);
74 }
75
76 static void hci_cc_exit_periodic_inq(struct hci_dev *hdev, struct sk_buff *skb)
77 {
78 __u8 status = *((__u8 *) skb->data);
79
80 BT_DBG("%s status 0x%2.2x", hdev->name, status);
81
82 if (status)
83 return;
84
85 clear_bit(HCI_PERIODIC_INQ, &hdev->dev_flags);
86
87 hci_conn_check_pending(hdev);
88 }
89
90 static void hci_cc_remote_name_req_cancel(struct hci_dev *hdev,
91 struct sk_buff *skb)
92 {
93 BT_DBG("%s", hdev->name);
94 }
95
96 static void hci_cc_role_discovery(struct hci_dev *hdev, struct sk_buff *skb)
97 {
98 struct hci_rp_role_discovery *rp = (void *) skb->data;
99 struct hci_conn *conn;
100
101 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
102
103 if (rp->status)
104 return;
105
106 hci_dev_lock(hdev);
107
108 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle));
109 if (conn)
110 conn->role = rp->role;
111
112 hci_dev_unlock(hdev);
113 }
114
115 static void hci_cc_read_link_policy(struct hci_dev *hdev, struct sk_buff *skb)
116 {
117 struct hci_rp_read_link_policy *rp = (void *) skb->data;
118 struct hci_conn *conn;
119
120 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
121
122 if (rp->status)
123 return;
124
125 hci_dev_lock(hdev);
126
127 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle));
128 if (conn)
129 conn->link_policy = __le16_to_cpu(rp->policy);
130
131 hci_dev_unlock(hdev);
132 }
133
134 static void hci_cc_write_link_policy(struct hci_dev *hdev, struct sk_buff *skb)
135 {
136 struct hci_rp_write_link_policy *rp = (void *) skb->data;
137 struct hci_conn *conn;
138 void *sent;
139
140 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
141
142 if (rp->status)
143 return;
144
145 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LINK_POLICY);
146 if (!sent)
147 return;
148
149 hci_dev_lock(hdev);
150
151 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle));
152 if (conn)
153 conn->link_policy = get_unaligned_le16(sent + 2);
154
155 hci_dev_unlock(hdev);
156 }
157
158 static void hci_cc_read_def_link_policy(struct hci_dev *hdev,
159 struct sk_buff *skb)
160 {
161 struct hci_rp_read_def_link_policy *rp = (void *) skb->data;
162
163 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
164
165 if (rp->status)
166 return;
167
168 hdev->link_policy = __le16_to_cpu(rp->policy);
169 }
170
171 static void hci_cc_write_def_link_policy(struct hci_dev *hdev,
172 struct sk_buff *skb)
173 {
174 __u8 status = *((__u8 *) skb->data);
175 void *sent;
176
177 BT_DBG("%s status 0x%2.2x", hdev->name, status);
178
179 if (status)
180 return;
181
182 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_DEF_LINK_POLICY);
183 if (!sent)
184 return;
185
186 hdev->link_policy = get_unaligned_le16(sent);
187 }
188
189 static void hci_cc_reset(struct hci_dev *hdev, struct sk_buff *skb)
190 {
191 __u8 status = *((__u8 *) skb->data);
192
193 BT_DBG("%s status 0x%2.2x", hdev->name, status);
194
195 clear_bit(HCI_RESET, &hdev->flags);
196
197 if (status)
198 return;
199
200 /* Reset all non-persistent flags */
201 hdev->dev_flags &= ~HCI_PERSISTENT_MASK;
202
203 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
204
205 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
206 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
207
208 memset(hdev->adv_data, 0, sizeof(hdev->adv_data));
209 hdev->adv_data_len = 0;
210
211 memset(hdev->scan_rsp_data, 0, sizeof(hdev->scan_rsp_data));
212 hdev->scan_rsp_data_len = 0;
213
214 hdev->le_scan_type = LE_SCAN_PASSIVE;
215
216 hdev->ssp_debug_mode = 0;
217
218 hci_bdaddr_list_clear(&hdev->le_white_list);
219 }
220
221 static void hci_cc_read_stored_link_key(struct hci_dev *hdev,
222 struct sk_buff *skb)
223 {
224 struct hci_rp_read_stored_link_key *rp = (void *)skb->data;
225 struct hci_cp_read_stored_link_key *sent;
226
227 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
228
229 sent = hci_sent_cmd_data(hdev, HCI_OP_READ_STORED_LINK_KEY);
230 if (!sent)
231 return;
232
233 if (!rp->status && sent->read_all == 0x01) {
234 hdev->stored_max_keys = rp->max_keys;
235 hdev->stored_num_keys = rp->num_keys;
236 }
237 }
238
239 static void hci_cc_delete_stored_link_key(struct hci_dev *hdev,
240 struct sk_buff *skb)
241 {
242 struct hci_rp_delete_stored_link_key *rp = (void *)skb->data;
243
244 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
245
246 if (rp->status)
247 return;
248
249 if (rp->num_keys <= hdev->stored_num_keys)
250 hdev->stored_num_keys -= rp->num_keys;
251 else
252 hdev->stored_num_keys = 0;
253 }
254
255 static void hci_cc_write_local_name(struct hci_dev *hdev, struct sk_buff *skb)
256 {
257 __u8 status = *((__u8 *) skb->data);
258 void *sent;
259
260 BT_DBG("%s status 0x%2.2x", hdev->name, status);
261
262 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LOCAL_NAME);
263 if (!sent)
264 return;
265
266 hci_dev_lock(hdev);
267
268 if (test_bit(HCI_MGMT, &hdev->dev_flags))
269 mgmt_set_local_name_complete(hdev, sent, status);
270 else if (!status)
271 memcpy(hdev->dev_name, sent, HCI_MAX_NAME_LENGTH);
272
273 hci_dev_unlock(hdev);
274 }
275
276 static void hci_cc_read_local_name(struct hci_dev *hdev, struct sk_buff *skb)
277 {
278 struct hci_rp_read_local_name *rp = (void *) skb->data;
279
280 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
281
282 if (rp->status)
283 return;
284
285 if (test_bit(HCI_SETUP, &hdev->dev_flags) ||
286 test_bit(HCI_CONFIG, &hdev->dev_flags))
287 memcpy(hdev->dev_name, rp->name, HCI_MAX_NAME_LENGTH);
288 }
289
290 static void hci_cc_write_auth_enable(struct hci_dev *hdev, struct sk_buff *skb)
291 {
292 __u8 status = *((__u8 *) skb->data);
293 void *sent;
294
295 BT_DBG("%s status 0x%2.2x", hdev->name, status);
296
297 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_AUTH_ENABLE);
298 if (!sent)
299 return;
300
301 hci_dev_lock(hdev);
302
303 if (!status) {
304 __u8 param = *((__u8 *) sent);
305
306 if (param == AUTH_ENABLED)
307 set_bit(HCI_AUTH, &hdev->flags);
308 else
309 clear_bit(HCI_AUTH, &hdev->flags);
310 }
311
312 if (test_bit(HCI_MGMT, &hdev->dev_flags))
313 mgmt_auth_enable_complete(hdev, status);
314
315 hci_dev_unlock(hdev);
316 }
317
318 static void hci_cc_write_encrypt_mode(struct hci_dev *hdev, struct sk_buff *skb)
319 {
320 __u8 status = *((__u8 *) skb->data);
321 __u8 param;
322 void *sent;
323
324 BT_DBG("%s status 0x%2.2x", hdev->name, status);
325
326 if (status)
327 return;
328
329 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_ENCRYPT_MODE);
330 if (!sent)
331 return;
332
333 param = *((__u8 *) sent);
334
335 if (param)
336 set_bit(HCI_ENCRYPT, &hdev->flags);
337 else
338 clear_bit(HCI_ENCRYPT, &hdev->flags);
339 }
340
341 static void hci_cc_write_scan_enable(struct hci_dev *hdev, struct sk_buff *skb)
342 {
343 __u8 status = *((__u8 *) skb->data);
344 __u8 param;
345 void *sent;
346
347 BT_DBG("%s status 0x%2.2x", hdev->name, status);
348
349 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SCAN_ENABLE);
350 if (!sent)
351 return;
352
353 param = *((__u8 *) sent);
354
355 hci_dev_lock(hdev);
356
357 if (status) {
358 hdev->discov_timeout = 0;
359 goto done;
360 }
361
362 if (param & SCAN_INQUIRY)
363 set_bit(HCI_ISCAN, &hdev->flags);
364 else
365 clear_bit(HCI_ISCAN, &hdev->flags);
366
367 if (param & SCAN_PAGE)
368 set_bit(HCI_PSCAN, &hdev->flags);
369 else
370 clear_bit(HCI_PSCAN, &hdev->flags);
371
372 done:
373 hci_dev_unlock(hdev);
374 }
375
376 static void hci_cc_read_class_of_dev(struct hci_dev *hdev, struct sk_buff *skb)
377 {
378 struct hci_rp_read_class_of_dev *rp = (void *) skb->data;
379
380 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
381
382 if (rp->status)
383 return;
384
385 memcpy(hdev->dev_class, rp->dev_class, 3);
386
387 BT_DBG("%s class 0x%.2x%.2x%.2x", hdev->name,
388 hdev->dev_class[2], hdev->dev_class[1], hdev->dev_class[0]);
389 }
390
391 static void hci_cc_write_class_of_dev(struct hci_dev *hdev, struct sk_buff *skb)
392 {
393 __u8 status = *((__u8 *) skb->data);
394 void *sent;
395
396 BT_DBG("%s status 0x%2.2x", hdev->name, status);
397
398 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_CLASS_OF_DEV);
399 if (!sent)
400 return;
401
402 hci_dev_lock(hdev);
403
404 if (status == 0)
405 memcpy(hdev->dev_class, sent, 3);
406
407 if (test_bit(HCI_MGMT, &hdev->dev_flags))
408 mgmt_set_class_of_dev_complete(hdev, sent, status);
409
410 hci_dev_unlock(hdev);
411 }
412
413 static void hci_cc_read_voice_setting(struct hci_dev *hdev, struct sk_buff *skb)
414 {
415 struct hci_rp_read_voice_setting *rp = (void *) skb->data;
416 __u16 setting;
417
418 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
419
420 if (rp->status)
421 return;
422
423 setting = __le16_to_cpu(rp->voice_setting);
424
425 if (hdev->voice_setting == setting)
426 return;
427
428 hdev->voice_setting = setting;
429
430 BT_DBG("%s voice setting 0x%4.4x", hdev->name, setting);
431
432 if (hdev->notify)
433 hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING);
434 }
435
436 static void hci_cc_write_voice_setting(struct hci_dev *hdev,
437 struct sk_buff *skb)
438 {
439 __u8 status = *((__u8 *) skb->data);
440 __u16 setting;
441 void *sent;
442
443 BT_DBG("%s status 0x%2.2x", hdev->name, status);
444
445 if (status)
446 return;
447
448 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_VOICE_SETTING);
449 if (!sent)
450 return;
451
452 setting = get_unaligned_le16(sent);
453
454 if (hdev->voice_setting == setting)
455 return;
456
457 hdev->voice_setting = setting;
458
459 BT_DBG("%s voice setting 0x%4.4x", hdev->name, setting);
460
461 if (hdev->notify)
462 hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING);
463 }
464
465 static void hci_cc_read_num_supported_iac(struct hci_dev *hdev,
466 struct sk_buff *skb)
467 {
468 struct hci_rp_read_num_supported_iac *rp = (void *) skb->data;
469
470 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
471
472 if (rp->status)
473 return;
474
475 hdev->num_iac = rp->num_iac;
476
477 BT_DBG("%s num iac %d", hdev->name, hdev->num_iac);
478 }
479
480 static void hci_cc_write_ssp_mode(struct hci_dev *hdev, struct sk_buff *skb)
481 {
482 __u8 status = *((__u8 *) skb->data);
483 struct hci_cp_write_ssp_mode *sent;
484
485 BT_DBG("%s status 0x%2.2x", hdev->name, status);
486
487 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SSP_MODE);
488 if (!sent)
489 return;
490
491 hci_dev_lock(hdev);
492
493 if (!status) {
494 if (sent->mode)
495 hdev->features[1][0] |= LMP_HOST_SSP;
496 else
497 hdev->features[1][0] &= ~LMP_HOST_SSP;
498 }
499
500 if (test_bit(HCI_MGMT, &hdev->dev_flags))
501 mgmt_ssp_enable_complete(hdev, sent->mode, status);
502 else if (!status) {
503 if (sent->mode)
504 set_bit(HCI_SSP_ENABLED, &hdev->dev_flags);
505 else
506 clear_bit(HCI_SSP_ENABLED, &hdev->dev_flags);
507 }
508
509 hci_dev_unlock(hdev);
510 }
511
512 static void hci_cc_write_sc_support(struct hci_dev *hdev, struct sk_buff *skb)
513 {
514 u8 status = *((u8 *) skb->data);
515 struct hci_cp_write_sc_support *sent;
516
517 BT_DBG("%s status 0x%2.2x", hdev->name, status);
518
519 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SC_SUPPORT);
520 if (!sent)
521 return;
522
523 hci_dev_lock(hdev);
524
525 if (!status) {
526 if (sent->support)
527 hdev->features[1][0] |= LMP_HOST_SC;
528 else
529 hdev->features[1][0] &= ~LMP_HOST_SC;
530 }
531
532 if (!test_bit(HCI_MGMT, &hdev->dev_flags) && !status) {
533 if (sent->support)
534 set_bit(HCI_SC_ENABLED, &hdev->dev_flags);
535 else
536 clear_bit(HCI_SC_ENABLED, &hdev->dev_flags);
537 }
538
539 hci_dev_unlock(hdev);
540 }
541
542 static void hci_cc_read_local_version(struct hci_dev *hdev, struct sk_buff *skb)
543 {
544 struct hci_rp_read_local_version *rp = (void *) skb->data;
545
546 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
547
548 if (rp->status)
549 return;
550
551 if (test_bit(HCI_SETUP, &hdev->dev_flags) ||
552 test_bit(HCI_CONFIG, &hdev->dev_flags)) {
553 hdev->hci_ver = rp->hci_ver;
554 hdev->hci_rev = __le16_to_cpu(rp->hci_rev);
555 hdev->lmp_ver = rp->lmp_ver;
556 hdev->manufacturer = __le16_to_cpu(rp->manufacturer);
557 hdev->lmp_subver = __le16_to_cpu(rp->lmp_subver);
558 }
559 }
560
561 static void hci_cc_read_local_commands(struct hci_dev *hdev,
562 struct sk_buff *skb)
563 {
564 struct hci_rp_read_local_commands *rp = (void *) skb->data;
565
566 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
567
568 if (rp->status)
569 return;
570
571 if (test_bit(HCI_SETUP, &hdev->dev_flags) ||
572 test_bit(HCI_CONFIG, &hdev->dev_flags))
573 memcpy(hdev->commands, rp->commands, sizeof(hdev->commands));
574 }
575
576 static void hci_cc_read_local_features(struct hci_dev *hdev,
577 struct sk_buff *skb)
578 {
579 struct hci_rp_read_local_features *rp = (void *) skb->data;
580
581 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
582
583 if (rp->status)
584 return;
585
586 memcpy(hdev->features, rp->features, 8);
587
588 /* Adjust default settings according to features
589 * supported by device. */
590
591 if (hdev->features[0][0] & LMP_3SLOT)
592 hdev->pkt_type |= (HCI_DM3 | HCI_DH3);
593
594 if (hdev->features[0][0] & LMP_5SLOT)
595 hdev->pkt_type |= (HCI_DM5 | HCI_DH5);
596
597 if (hdev->features[0][1] & LMP_HV2) {
598 hdev->pkt_type |= (HCI_HV2);
599 hdev->esco_type |= (ESCO_HV2);
600 }
601
602 if (hdev->features[0][1] & LMP_HV3) {
603 hdev->pkt_type |= (HCI_HV3);
604 hdev->esco_type |= (ESCO_HV3);
605 }
606
607 if (lmp_esco_capable(hdev))
608 hdev->esco_type |= (ESCO_EV3);
609
610 if (hdev->features[0][4] & LMP_EV4)
611 hdev->esco_type |= (ESCO_EV4);
612
613 if (hdev->features[0][4] & LMP_EV5)
614 hdev->esco_type |= (ESCO_EV5);
615
616 if (hdev->features[0][5] & LMP_EDR_ESCO_2M)
617 hdev->esco_type |= (ESCO_2EV3);
618
619 if (hdev->features[0][5] & LMP_EDR_ESCO_3M)
620 hdev->esco_type |= (ESCO_3EV3);
621
622 if (hdev->features[0][5] & LMP_EDR_3S_ESCO)
623 hdev->esco_type |= (ESCO_2EV5 | ESCO_3EV5);
624 }
625
626 static void hci_cc_read_local_ext_features(struct hci_dev *hdev,
627 struct sk_buff *skb)
628 {
629 struct hci_rp_read_local_ext_features *rp = (void *) skb->data;
630
631 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
632
633 if (rp->status)
634 return;
635
636 if (hdev->max_page < rp->max_page)
637 hdev->max_page = rp->max_page;
638
639 if (rp->page < HCI_MAX_PAGES)
640 memcpy(hdev->features[rp->page], rp->features, 8);
641 }
642
643 static void hci_cc_read_flow_control_mode(struct hci_dev *hdev,
644 struct sk_buff *skb)
645 {
646 struct hci_rp_read_flow_control_mode *rp = (void *) skb->data;
647
648 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
649
650 if (rp->status)
651 return;
652
653 hdev->flow_ctl_mode = rp->mode;
654 }
655
656 static void hci_cc_read_buffer_size(struct hci_dev *hdev, struct sk_buff *skb)
657 {
658 struct hci_rp_read_buffer_size *rp = (void *) skb->data;
659
660 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
661
662 if (rp->status)
663 return;
664
665 hdev->acl_mtu = __le16_to_cpu(rp->acl_mtu);
666 hdev->sco_mtu = rp->sco_mtu;
667 hdev->acl_pkts = __le16_to_cpu(rp->acl_max_pkt);
668 hdev->sco_pkts = __le16_to_cpu(rp->sco_max_pkt);
669
670 if (test_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks)) {
671 hdev->sco_mtu = 64;
672 hdev->sco_pkts = 8;
673 }
674
675 hdev->acl_cnt = hdev->acl_pkts;
676 hdev->sco_cnt = hdev->sco_pkts;
677
678 BT_DBG("%s acl mtu %d:%d sco mtu %d:%d", hdev->name, hdev->acl_mtu,
679 hdev->acl_pkts, hdev->sco_mtu, hdev->sco_pkts);
680 }
681
682 static void hci_cc_read_bd_addr(struct hci_dev *hdev, struct sk_buff *skb)
683 {
684 struct hci_rp_read_bd_addr *rp = (void *) skb->data;
685
686 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
687
688 if (rp->status)
689 return;
690
691 if (test_bit(HCI_INIT, &hdev->flags))
692 bacpy(&hdev->bdaddr, &rp->bdaddr);
693
694 if (test_bit(HCI_SETUP, &hdev->dev_flags))
695 bacpy(&hdev->setup_addr, &rp->bdaddr);
696 }
697
698 static void hci_cc_read_page_scan_activity(struct hci_dev *hdev,
699 struct sk_buff *skb)
700 {
701 struct hci_rp_read_page_scan_activity *rp = (void *) skb->data;
702
703 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
704
705 if (rp->status)
706 return;
707
708 if (test_bit(HCI_INIT, &hdev->flags)) {
709 hdev->page_scan_interval = __le16_to_cpu(rp->interval);
710 hdev->page_scan_window = __le16_to_cpu(rp->window);
711 }
712 }
713
714 static void hci_cc_write_page_scan_activity(struct hci_dev *hdev,
715 struct sk_buff *skb)
716 {
717 u8 status = *((u8 *) skb->data);
718 struct hci_cp_write_page_scan_activity *sent;
719
720 BT_DBG("%s status 0x%2.2x", hdev->name, status);
721
722 if (status)
723 return;
724
725 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY);
726 if (!sent)
727 return;
728
729 hdev->page_scan_interval = __le16_to_cpu(sent->interval);
730 hdev->page_scan_window = __le16_to_cpu(sent->window);
731 }
732
733 static void hci_cc_read_page_scan_type(struct hci_dev *hdev,
734 struct sk_buff *skb)
735 {
736 struct hci_rp_read_page_scan_type *rp = (void *) skb->data;
737
738 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
739
740 if (rp->status)
741 return;
742
743 if (test_bit(HCI_INIT, &hdev->flags))
744 hdev->page_scan_type = rp->type;
745 }
746
747 static void hci_cc_write_page_scan_type(struct hci_dev *hdev,
748 struct sk_buff *skb)
749 {
750 u8 status = *((u8 *) skb->data);
751 u8 *type;
752
753 BT_DBG("%s status 0x%2.2x", hdev->name, status);
754
755 if (status)
756 return;
757
758 type = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_TYPE);
759 if (type)
760 hdev->page_scan_type = *type;
761 }
762
763 static void hci_cc_read_data_block_size(struct hci_dev *hdev,
764 struct sk_buff *skb)
765 {
766 struct hci_rp_read_data_block_size *rp = (void *) skb->data;
767
768 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
769
770 if (rp->status)
771 return;
772
773 hdev->block_mtu = __le16_to_cpu(rp->max_acl_len);
774 hdev->block_len = __le16_to_cpu(rp->block_len);
775 hdev->num_blocks = __le16_to_cpu(rp->num_blocks);
776
777 hdev->block_cnt = hdev->num_blocks;
778
779 BT_DBG("%s blk mtu %d cnt %d len %d", hdev->name, hdev->block_mtu,
780 hdev->block_cnt, hdev->block_len);
781 }
782
783 static void hci_cc_read_clock(struct hci_dev *hdev, struct sk_buff *skb)
784 {
785 struct hci_rp_read_clock *rp = (void *) skb->data;
786 struct hci_cp_read_clock *cp;
787 struct hci_conn *conn;
788
789 BT_DBG("%s", hdev->name);
790
791 if (skb->len < sizeof(*rp))
792 return;
793
794 if (rp->status)
795 return;
796
797 hci_dev_lock(hdev);
798
799 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_CLOCK);
800 if (!cp)
801 goto unlock;
802
803 if (cp->which == 0x00) {
804 hdev->clock = le32_to_cpu(rp->clock);
805 goto unlock;
806 }
807
808 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle));
809 if (conn) {
810 conn->clock = le32_to_cpu(rp->clock);
811 conn->clock_accuracy = le16_to_cpu(rp->accuracy);
812 }
813
814 unlock:
815 hci_dev_unlock(hdev);
816 }
817
818 static void hci_cc_read_local_amp_info(struct hci_dev *hdev,
819 struct sk_buff *skb)
820 {
821 struct hci_rp_read_local_amp_info *rp = (void *) skb->data;
822
823 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
824
825 if (rp->status)
826 goto a2mp_rsp;
827
828 hdev->amp_status = rp->amp_status;
829 hdev->amp_total_bw = __le32_to_cpu(rp->total_bw);
830 hdev->amp_max_bw = __le32_to_cpu(rp->max_bw);
831 hdev->amp_min_latency = __le32_to_cpu(rp->min_latency);
832 hdev->amp_max_pdu = __le32_to_cpu(rp->max_pdu);
833 hdev->amp_type = rp->amp_type;
834 hdev->amp_pal_cap = __le16_to_cpu(rp->pal_cap);
835 hdev->amp_assoc_size = __le16_to_cpu(rp->max_assoc_size);
836 hdev->amp_be_flush_to = __le32_to_cpu(rp->be_flush_to);
837 hdev->amp_max_flush_to = __le32_to_cpu(rp->max_flush_to);
838
839 a2mp_rsp:
840 a2mp_send_getinfo_rsp(hdev);
841 }
842
843 static void hci_cc_read_local_amp_assoc(struct hci_dev *hdev,
844 struct sk_buff *skb)
845 {
846 struct hci_rp_read_local_amp_assoc *rp = (void *) skb->data;
847 struct amp_assoc *assoc = &hdev->loc_assoc;
848 size_t rem_len, frag_len;
849
850 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
851
852 if (rp->status)
853 goto a2mp_rsp;
854
855 frag_len = skb->len - sizeof(*rp);
856 rem_len = __le16_to_cpu(rp->rem_len);
857
858 if (rem_len > frag_len) {
859 BT_DBG("frag_len %zu rem_len %zu", frag_len, rem_len);
860
861 memcpy(assoc->data + assoc->offset, rp->frag, frag_len);
862 assoc->offset += frag_len;
863
864 /* Read other fragments */
865 amp_read_loc_assoc_frag(hdev, rp->phy_handle);
866
867 return;
868 }
869
870 memcpy(assoc->data + assoc->offset, rp->frag, rem_len);
871 assoc->len = assoc->offset + rem_len;
872 assoc->offset = 0;
873
874 a2mp_rsp:
875 /* Send A2MP Rsp when all fragments are received */
876 a2mp_send_getampassoc_rsp(hdev, rp->status);
877 a2mp_send_create_phy_link_req(hdev, rp->status);
878 }
879
880 static void hci_cc_read_inq_rsp_tx_power(struct hci_dev *hdev,
881 struct sk_buff *skb)
882 {
883 struct hci_rp_read_inq_rsp_tx_power *rp = (void *) skb->data;
884
885 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
886
887 if (rp->status)
888 return;
889
890 hdev->inq_tx_power = rp->tx_power;
891 }
892
893 static void hci_cc_pin_code_reply(struct hci_dev *hdev, struct sk_buff *skb)
894 {
895 struct hci_rp_pin_code_reply *rp = (void *) skb->data;
896 struct hci_cp_pin_code_reply *cp;
897 struct hci_conn *conn;
898
899 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
900
901 hci_dev_lock(hdev);
902
903 if (test_bit(HCI_MGMT, &hdev->dev_flags))
904 mgmt_pin_code_reply_complete(hdev, &rp->bdaddr, rp->status);
905
906 if (rp->status)
907 goto unlock;
908
909 cp = hci_sent_cmd_data(hdev, HCI_OP_PIN_CODE_REPLY);
910 if (!cp)
911 goto unlock;
912
913 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr);
914 if (conn)
915 conn->pin_length = cp->pin_len;
916
917 unlock:
918 hci_dev_unlock(hdev);
919 }
920
921 static void hci_cc_pin_code_neg_reply(struct hci_dev *hdev, struct sk_buff *skb)
922 {
923 struct hci_rp_pin_code_neg_reply *rp = (void *) skb->data;
924
925 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
926
927 hci_dev_lock(hdev);
928
929 if (test_bit(HCI_MGMT, &hdev->dev_flags))
930 mgmt_pin_code_neg_reply_complete(hdev, &rp->bdaddr,
931 rp->status);
932
933 hci_dev_unlock(hdev);
934 }
935
936 static void hci_cc_le_read_buffer_size(struct hci_dev *hdev,
937 struct sk_buff *skb)
938 {
939 struct hci_rp_le_read_buffer_size *rp = (void *) skb->data;
940
941 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
942
943 if (rp->status)
944 return;
945
946 hdev->le_mtu = __le16_to_cpu(rp->le_mtu);
947 hdev->le_pkts = rp->le_max_pkt;
948
949 hdev->le_cnt = hdev->le_pkts;
950
951 BT_DBG("%s le mtu %d:%d", hdev->name, hdev->le_mtu, hdev->le_pkts);
952 }
953
954 static void hci_cc_le_read_local_features(struct hci_dev *hdev,
955 struct sk_buff *skb)
956 {
957 struct hci_rp_le_read_local_features *rp = (void *) skb->data;
958
959 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
960
961 if (rp->status)
962 return;
963
964 memcpy(hdev->le_features, rp->features, 8);
965 }
966
967 static void hci_cc_le_read_adv_tx_power(struct hci_dev *hdev,
968 struct sk_buff *skb)
969 {
970 struct hci_rp_le_read_adv_tx_power *rp = (void *) skb->data;
971
972 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
973
974 if (rp->status)
975 return;
976
977 hdev->adv_tx_power = rp->tx_power;
978 }
979
980 static void hci_cc_user_confirm_reply(struct hci_dev *hdev, struct sk_buff *skb)
981 {
982 struct hci_rp_user_confirm_reply *rp = (void *) skb->data;
983
984 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
985
986 hci_dev_lock(hdev);
987
988 if (test_bit(HCI_MGMT, &hdev->dev_flags))
989 mgmt_user_confirm_reply_complete(hdev, &rp->bdaddr, ACL_LINK, 0,
990 rp->status);
991
992 hci_dev_unlock(hdev);
993 }
994
995 static void hci_cc_user_confirm_neg_reply(struct hci_dev *hdev,
996 struct sk_buff *skb)
997 {
998 struct hci_rp_user_confirm_reply *rp = (void *) skb->data;
999
1000 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
1001
1002 hci_dev_lock(hdev);
1003
1004 if (test_bit(HCI_MGMT, &hdev->dev_flags))
1005 mgmt_user_confirm_neg_reply_complete(hdev, &rp->bdaddr,
1006 ACL_LINK, 0, rp->status);
1007
1008 hci_dev_unlock(hdev);
1009 }
1010
1011 static void hci_cc_user_passkey_reply(struct hci_dev *hdev, struct sk_buff *skb)
1012 {
1013 struct hci_rp_user_confirm_reply *rp = (void *) skb->data;
1014
1015 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
1016
1017 hci_dev_lock(hdev);
1018
1019 if (test_bit(HCI_MGMT, &hdev->dev_flags))
1020 mgmt_user_passkey_reply_complete(hdev, &rp->bdaddr, ACL_LINK,
1021 0, rp->status);
1022
1023 hci_dev_unlock(hdev);
1024 }
1025
1026 static void hci_cc_user_passkey_neg_reply(struct hci_dev *hdev,
1027 struct sk_buff *skb)
1028 {
1029 struct hci_rp_user_confirm_reply *rp = (void *) skb->data;
1030
1031 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
1032
1033 hci_dev_lock(hdev);
1034
1035 if (test_bit(HCI_MGMT, &hdev->dev_flags))
1036 mgmt_user_passkey_neg_reply_complete(hdev, &rp->bdaddr,
1037 ACL_LINK, 0, rp->status);
1038
1039 hci_dev_unlock(hdev);
1040 }
1041
1042 static void hci_cc_read_local_oob_data(struct hci_dev *hdev,
1043 struct sk_buff *skb)
1044 {
1045 struct hci_rp_read_local_oob_data *rp = (void *) skb->data;
1046
1047 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
1048
1049 hci_dev_lock(hdev);
1050 mgmt_read_local_oob_data_complete(hdev, rp->hash, rp->rand, NULL, NULL,
1051 rp->status);
1052 hci_dev_unlock(hdev);
1053 }
1054
1055 static void hci_cc_read_local_oob_ext_data(struct hci_dev *hdev,
1056 struct sk_buff *skb)
1057 {
1058 struct hci_rp_read_local_oob_ext_data *rp = (void *) skb->data;
1059
1060 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
1061
1062 hci_dev_lock(hdev);
1063 mgmt_read_local_oob_data_complete(hdev, rp->hash192, rp->rand192,
1064 rp->hash256, rp->rand256,
1065 rp->status);
1066 hci_dev_unlock(hdev);
1067 }
1068
1069
1070 static void hci_cc_le_set_random_addr(struct hci_dev *hdev, struct sk_buff *skb)
1071 {
1072 __u8 status = *((__u8 *) skb->data);
1073 bdaddr_t *sent;
1074
1075 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1076
1077 if (status)
1078 return;
1079
1080 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_RANDOM_ADDR);
1081 if (!sent)
1082 return;
1083
1084 hci_dev_lock(hdev);
1085
1086 bacpy(&hdev->random_addr, sent);
1087
1088 hci_dev_unlock(hdev);
1089 }
1090
1091 static void hci_cc_le_set_adv_enable(struct hci_dev *hdev, struct sk_buff *skb)
1092 {
1093 __u8 *sent, status = *((__u8 *) skb->data);
1094
1095 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1096
1097 if (status)
1098 return;
1099
1100 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_ENABLE);
1101 if (!sent)
1102 return;
1103
1104 hci_dev_lock(hdev);
1105
1106 /* If we're doing connection initiation as peripheral. Set a
1107 * timeout in case something goes wrong.
1108 */
1109 if (*sent) {
1110 struct hci_conn *conn;
1111
1112 set_bit(HCI_LE_ADV, &hdev->dev_flags);
1113
1114 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1115 if (conn)
1116 queue_delayed_work(hdev->workqueue,
1117 &conn->le_conn_timeout,
1118 conn->conn_timeout);
1119 } else {
1120 clear_bit(HCI_LE_ADV, &hdev->dev_flags);
1121 }
1122
1123 hci_dev_unlock(hdev);
1124 }
1125
1126 static void hci_cc_le_set_scan_param(struct hci_dev *hdev, struct sk_buff *skb)
1127 {
1128 struct hci_cp_le_set_scan_param *cp;
1129 __u8 status = *((__u8 *) skb->data);
1130
1131 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1132
1133 if (status)
1134 return;
1135
1136 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_SCAN_PARAM);
1137 if (!cp)
1138 return;
1139
1140 hci_dev_lock(hdev);
1141
1142 hdev->le_scan_type = cp->type;
1143
1144 hci_dev_unlock(hdev);
1145 }
1146
1147 static bool has_pending_adv_report(struct hci_dev *hdev)
1148 {
1149 struct discovery_state *d = &hdev->discovery;
1150
1151 return bacmp(&d->last_adv_addr, BDADDR_ANY);
1152 }
1153
1154 static void clear_pending_adv_report(struct hci_dev *hdev)
1155 {
1156 struct discovery_state *d = &hdev->discovery;
1157
1158 bacpy(&d->last_adv_addr, BDADDR_ANY);
1159 d->last_adv_data_len = 0;
1160 }
1161
1162 static void store_pending_adv_report(struct hci_dev *hdev, bdaddr_t *bdaddr,
1163 u8 bdaddr_type, s8 rssi, u32 flags,
1164 u8 *data, u8 len)
1165 {
1166 struct discovery_state *d = &hdev->discovery;
1167
1168 bacpy(&d->last_adv_addr, bdaddr);
1169 d->last_adv_addr_type = bdaddr_type;
1170 d->last_adv_rssi = rssi;
1171 d->last_adv_flags = flags;
1172 memcpy(d->last_adv_data, data, len);
1173 d->last_adv_data_len = len;
1174 }
1175
1176 static void hci_cc_le_set_scan_enable(struct hci_dev *hdev,
1177 struct sk_buff *skb)
1178 {
1179 struct hci_cp_le_set_scan_enable *cp;
1180 __u8 status = *((__u8 *) skb->data);
1181
1182 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1183
1184 if (status)
1185 return;
1186
1187 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_SCAN_ENABLE);
1188 if (!cp)
1189 return;
1190
1191 hci_dev_lock(hdev);
1192
1193 switch (cp->enable) {
1194 case LE_SCAN_ENABLE:
1195 set_bit(HCI_LE_SCAN, &hdev->dev_flags);
1196 if (hdev->le_scan_type == LE_SCAN_ACTIVE)
1197 clear_pending_adv_report(hdev);
1198 break;
1199
1200 case LE_SCAN_DISABLE:
1201 /* We do this here instead of when setting DISCOVERY_STOPPED
1202 * since the latter would potentially require waiting for
1203 * inquiry to stop too.
1204 */
1205 if (has_pending_adv_report(hdev)) {
1206 struct discovery_state *d = &hdev->discovery;
1207
1208 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK,
1209 d->last_adv_addr_type, NULL,
1210 d->last_adv_rssi, d->last_adv_flags,
1211 d->last_adv_data,
1212 d->last_adv_data_len, NULL, 0);
1213 }
1214
1215 /* Cancel this timer so that we don't try to disable scanning
1216 * when it's already disabled.
1217 */
1218 cancel_delayed_work(&hdev->le_scan_disable);
1219
1220 clear_bit(HCI_LE_SCAN, &hdev->dev_flags);
1221
1222 /* The HCI_LE_SCAN_INTERRUPTED flag indicates that we
1223 * interrupted scanning due to a connect request. Mark
1224 * therefore discovery as stopped. If this was not
1225 * because of a connect request advertising might have
1226 * been disabled because of active scanning, so
1227 * re-enable it again if necessary.
1228 */
1229 if (test_and_clear_bit(HCI_LE_SCAN_INTERRUPTED,
1230 &hdev->dev_flags))
1231 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1232 else if (!test_bit(HCI_LE_ADV, &hdev->dev_flags) &&
1233 hdev->discovery.state == DISCOVERY_FINDING)
1234 mgmt_reenable_advertising(hdev);
1235
1236 break;
1237
1238 default:
1239 BT_ERR("Used reserved LE_Scan_Enable param %d", cp->enable);
1240 break;
1241 }
1242
1243 hci_dev_unlock(hdev);
1244 }
1245
1246 static void hci_cc_le_read_white_list_size(struct hci_dev *hdev,
1247 struct sk_buff *skb)
1248 {
1249 struct hci_rp_le_read_white_list_size *rp = (void *) skb->data;
1250
1251 BT_DBG("%s status 0x%2.2x size %u", hdev->name, rp->status, rp->size);
1252
1253 if (rp->status)
1254 return;
1255
1256 hdev->le_white_list_size = rp->size;
1257 }
1258
1259 static void hci_cc_le_clear_white_list(struct hci_dev *hdev,
1260 struct sk_buff *skb)
1261 {
1262 __u8 status = *((__u8 *) skb->data);
1263
1264 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1265
1266 if (status)
1267 return;
1268
1269 hci_bdaddr_list_clear(&hdev->le_white_list);
1270 }
1271
1272 static void hci_cc_le_add_to_white_list(struct hci_dev *hdev,
1273 struct sk_buff *skb)
1274 {
1275 struct hci_cp_le_add_to_white_list *sent;
1276 __u8 status = *((__u8 *) skb->data);
1277
1278 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1279
1280 if (status)
1281 return;
1282
1283 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_WHITE_LIST);
1284 if (!sent)
1285 return;
1286
1287 hci_bdaddr_list_add(&hdev->le_white_list, &sent->bdaddr,
1288 sent->bdaddr_type);
1289 }
1290
1291 static void hci_cc_le_del_from_white_list(struct hci_dev *hdev,
1292 struct sk_buff *skb)
1293 {
1294 struct hci_cp_le_del_from_white_list *sent;
1295 __u8 status = *((__u8 *) skb->data);
1296
1297 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1298
1299 if (status)
1300 return;
1301
1302 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_DEL_FROM_WHITE_LIST);
1303 if (!sent)
1304 return;
1305
1306 hci_bdaddr_list_del(&hdev->le_white_list, &sent->bdaddr,
1307 sent->bdaddr_type);
1308 }
1309
1310 static void hci_cc_le_read_supported_states(struct hci_dev *hdev,
1311 struct sk_buff *skb)
1312 {
1313 struct hci_rp_le_read_supported_states *rp = (void *) skb->data;
1314
1315 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
1316
1317 if (rp->status)
1318 return;
1319
1320 memcpy(hdev->le_states, rp->le_states, 8);
1321 }
1322
1323 static void hci_cc_le_read_def_data_len(struct hci_dev *hdev,
1324 struct sk_buff *skb)
1325 {
1326 struct hci_rp_le_read_def_data_len *rp = (void *) skb->data;
1327
1328 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
1329
1330 if (rp->status)
1331 return;
1332
1333 hdev->le_def_tx_len = le16_to_cpu(rp->tx_len);
1334 hdev->le_def_tx_time = le16_to_cpu(rp->tx_time);
1335 }
1336
1337 static void hci_cc_le_write_def_data_len(struct hci_dev *hdev,
1338 struct sk_buff *skb)
1339 {
1340 struct hci_cp_le_write_def_data_len *sent;
1341 __u8 status = *((__u8 *) skb->data);
1342
1343 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1344
1345 if (status)
1346 return;
1347
1348 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN);
1349 if (!sent)
1350 return;
1351
1352 hdev->le_def_tx_len = le16_to_cpu(sent->tx_len);
1353 hdev->le_def_tx_time = le16_to_cpu(sent->tx_time);
1354 }
1355
1356 static void hci_cc_le_read_max_data_len(struct hci_dev *hdev,
1357 struct sk_buff *skb)
1358 {
1359 struct hci_rp_le_read_max_data_len *rp = (void *) skb->data;
1360
1361 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
1362
1363 if (rp->status)
1364 return;
1365
1366 hdev->le_max_tx_len = le16_to_cpu(rp->tx_len);
1367 hdev->le_max_tx_time = le16_to_cpu(rp->tx_time);
1368 hdev->le_max_rx_len = le16_to_cpu(rp->rx_len);
1369 hdev->le_max_rx_time = le16_to_cpu(rp->rx_time);
1370 }
1371
1372 static void hci_cc_write_le_host_supported(struct hci_dev *hdev,
1373 struct sk_buff *skb)
1374 {
1375 struct hci_cp_write_le_host_supported *sent;
1376 __u8 status = *((__u8 *) skb->data);
1377
1378 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1379
1380 if (status)
1381 return;
1382
1383 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED);
1384 if (!sent)
1385 return;
1386
1387 hci_dev_lock(hdev);
1388
1389 if (sent->le) {
1390 hdev->features[1][0] |= LMP_HOST_LE;
1391 set_bit(HCI_LE_ENABLED, &hdev->dev_flags);
1392 } else {
1393 hdev->features[1][0] &= ~LMP_HOST_LE;
1394 clear_bit(HCI_LE_ENABLED, &hdev->dev_flags);
1395 clear_bit(HCI_ADVERTISING, &hdev->dev_flags);
1396 }
1397
1398 if (sent->simul)
1399 hdev->features[1][0] |= LMP_HOST_LE_BREDR;
1400 else
1401 hdev->features[1][0] &= ~LMP_HOST_LE_BREDR;
1402
1403 hci_dev_unlock(hdev);
1404 }
1405
1406 static void hci_cc_set_adv_param(struct hci_dev *hdev, struct sk_buff *skb)
1407 {
1408 struct hci_cp_le_set_adv_param *cp;
1409 u8 status = *((u8 *) skb->data);
1410
1411 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1412
1413 if (status)
1414 return;
1415
1416 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_PARAM);
1417 if (!cp)
1418 return;
1419
1420 hci_dev_lock(hdev);
1421 hdev->adv_addr_type = cp->own_address_type;
1422 hci_dev_unlock(hdev);
1423 }
1424
1425 static void hci_cc_write_remote_amp_assoc(struct hci_dev *hdev,
1426 struct sk_buff *skb)
1427 {
1428 struct hci_rp_write_remote_amp_assoc *rp = (void *) skb->data;
1429
1430 BT_DBG("%s status 0x%2.2x phy_handle 0x%2.2x",
1431 hdev->name, rp->status, rp->phy_handle);
1432
1433 if (rp->status)
1434 return;
1435
1436 amp_write_rem_assoc_continue(hdev, rp->phy_handle);
1437 }
1438
1439 static void hci_cc_read_rssi(struct hci_dev *hdev, struct sk_buff *skb)
1440 {
1441 struct hci_rp_read_rssi *rp = (void *) skb->data;
1442 struct hci_conn *conn;
1443
1444 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
1445
1446 if (rp->status)
1447 return;
1448
1449 hci_dev_lock(hdev);
1450
1451 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle));
1452 if (conn)
1453 conn->rssi = rp->rssi;
1454
1455 hci_dev_unlock(hdev);
1456 }
1457
1458 static void hci_cc_read_tx_power(struct hci_dev *hdev, struct sk_buff *skb)
1459 {
1460 struct hci_cp_read_tx_power *sent;
1461 struct hci_rp_read_tx_power *rp = (void *) skb->data;
1462 struct hci_conn *conn;
1463
1464 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
1465
1466 if (rp->status)
1467 return;
1468
1469 sent = hci_sent_cmd_data(hdev, HCI_OP_READ_TX_POWER);
1470 if (!sent)
1471 return;
1472
1473 hci_dev_lock(hdev);
1474
1475 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle));
1476 if (!conn)
1477 goto unlock;
1478
1479 switch (sent->type) {
1480 case 0x00:
1481 conn->tx_power = rp->tx_power;
1482 break;
1483 case 0x01:
1484 conn->max_tx_power = rp->tx_power;
1485 break;
1486 }
1487
1488 unlock:
1489 hci_dev_unlock(hdev);
1490 }
1491
1492 static void hci_cs_inquiry(struct hci_dev *hdev, __u8 status)
1493 {
1494 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1495
1496 if (status) {
1497 hci_conn_check_pending(hdev);
1498 return;
1499 }
1500
1501 set_bit(HCI_INQUIRY, &hdev->flags);
1502 }
1503
1504 static void hci_cs_create_conn(struct hci_dev *hdev, __u8 status)
1505 {
1506 struct hci_cp_create_conn *cp;
1507 struct hci_conn *conn;
1508
1509 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1510
1511 cp = hci_sent_cmd_data(hdev, HCI_OP_CREATE_CONN);
1512 if (!cp)
1513 return;
1514
1515 hci_dev_lock(hdev);
1516
1517 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr);
1518
1519 BT_DBG("%s bdaddr %pMR hcon %p", hdev->name, &cp->bdaddr, conn);
1520
1521 if (status) {
1522 if (conn && conn->state == BT_CONNECT) {
1523 if (status != 0x0c || conn->attempt > 2) {
1524 conn->state = BT_CLOSED;
1525 hci_proto_connect_cfm(conn, status);
1526 hci_conn_del(conn);
1527 } else
1528 conn->state = BT_CONNECT2;
1529 }
1530 } else {
1531 if (!conn) {
1532 conn = hci_conn_add(hdev, ACL_LINK, &cp->bdaddr,
1533 HCI_ROLE_MASTER);
1534 if (!conn)
1535 BT_ERR("No memory for new connection");
1536 }
1537 }
1538
1539 hci_dev_unlock(hdev);
1540 }
1541
1542 static void hci_cs_add_sco(struct hci_dev *hdev, __u8 status)
1543 {
1544 struct hci_cp_add_sco *cp;
1545 struct hci_conn *acl, *sco;
1546 __u16 handle;
1547
1548 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1549
1550 if (!status)
1551 return;
1552
1553 cp = hci_sent_cmd_data(hdev, HCI_OP_ADD_SCO);
1554 if (!cp)
1555 return;
1556
1557 handle = __le16_to_cpu(cp->handle);
1558
1559 BT_DBG("%s handle 0x%4.4x", hdev->name, handle);
1560
1561 hci_dev_lock(hdev);
1562
1563 acl = hci_conn_hash_lookup_handle(hdev, handle);
1564 if (acl) {
1565 sco = acl->link;
1566 if (sco) {
1567 sco->state = BT_CLOSED;
1568
1569 hci_proto_connect_cfm(sco, status);
1570 hci_conn_del(sco);
1571 }
1572 }
1573
1574 hci_dev_unlock(hdev);
1575 }
1576
1577 static void hci_cs_auth_requested(struct hci_dev *hdev, __u8 status)
1578 {
1579 struct hci_cp_auth_requested *cp;
1580 struct hci_conn *conn;
1581
1582 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1583
1584 if (!status)
1585 return;
1586
1587 cp = hci_sent_cmd_data(hdev, HCI_OP_AUTH_REQUESTED);
1588 if (!cp)
1589 return;
1590
1591 hci_dev_lock(hdev);
1592
1593 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
1594 if (conn) {
1595 if (conn->state == BT_CONFIG) {
1596 hci_proto_connect_cfm(conn, status);
1597 hci_conn_drop(conn);
1598 }
1599 }
1600
1601 hci_dev_unlock(hdev);
1602 }
1603
1604 static void hci_cs_set_conn_encrypt(struct hci_dev *hdev, __u8 status)
1605 {
1606 struct hci_cp_set_conn_encrypt *cp;
1607 struct hci_conn *conn;
1608
1609 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1610
1611 if (!status)
1612 return;
1613
1614 cp = hci_sent_cmd_data(hdev, HCI_OP_SET_CONN_ENCRYPT);
1615 if (!cp)
1616 return;
1617
1618 hci_dev_lock(hdev);
1619
1620 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
1621 if (conn) {
1622 if (conn->state == BT_CONFIG) {
1623 hci_proto_connect_cfm(conn, status);
1624 hci_conn_drop(conn);
1625 }
1626 }
1627
1628 hci_dev_unlock(hdev);
1629 }
1630
1631 static int hci_outgoing_auth_needed(struct hci_dev *hdev,
1632 struct hci_conn *conn)
1633 {
1634 if (conn->state != BT_CONFIG || !conn->out)
1635 return 0;
1636
1637 if (conn->pending_sec_level == BT_SECURITY_SDP)
1638 return 0;
1639
1640 /* Only request authentication for SSP connections or non-SSP
1641 * devices with sec_level MEDIUM or HIGH or if MITM protection
1642 * is requested.
1643 */
1644 if (!hci_conn_ssp_enabled(conn) && !(conn->auth_type & 0x01) &&
1645 conn->pending_sec_level != BT_SECURITY_FIPS &&
1646 conn->pending_sec_level != BT_SECURITY_HIGH &&
1647 conn->pending_sec_level != BT_SECURITY_MEDIUM)
1648 return 0;
1649
1650 return 1;
1651 }
1652
1653 static int hci_resolve_name(struct hci_dev *hdev,
1654 struct inquiry_entry *e)
1655 {
1656 struct hci_cp_remote_name_req cp;
1657
1658 memset(&cp, 0, sizeof(cp));
1659
1660 bacpy(&cp.bdaddr, &e->data.bdaddr);
1661 cp.pscan_rep_mode = e->data.pscan_rep_mode;
1662 cp.pscan_mode = e->data.pscan_mode;
1663 cp.clock_offset = e->data.clock_offset;
1664
1665 return hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp);
1666 }
1667
1668 static bool hci_resolve_next_name(struct hci_dev *hdev)
1669 {
1670 struct discovery_state *discov = &hdev->discovery;
1671 struct inquiry_entry *e;
1672
1673 if (list_empty(&discov->resolve))
1674 return false;
1675
1676 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED);
1677 if (!e)
1678 return false;
1679
1680 if (hci_resolve_name(hdev, e) == 0) {
1681 e->name_state = NAME_PENDING;
1682 return true;
1683 }
1684
1685 return false;
1686 }
1687
1688 static void hci_check_pending_name(struct hci_dev *hdev, struct hci_conn *conn,
1689 bdaddr_t *bdaddr, u8 *name, u8 name_len)
1690 {
1691 struct discovery_state *discov = &hdev->discovery;
1692 struct inquiry_entry *e;
1693
1694 /* Update the mgmt connected state if necessary. Be careful with
1695 * conn objects that exist but are not (yet) connected however.
1696 * Only those in BT_CONFIG or BT_CONNECTED states can be
1697 * considered connected.
1698 */
1699 if (conn &&
1700 (conn->state == BT_CONFIG || conn->state == BT_CONNECTED) &&
1701 !test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags))
1702 mgmt_device_connected(hdev, conn, 0, name, name_len);
1703
1704 if (discov->state == DISCOVERY_STOPPED)
1705 return;
1706
1707 if (discov->state == DISCOVERY_STOPPING)
1708 goto discov_complete;
1709
1710 if (discov->state != DISCOVERY_RESOLVING)
1711 return;
1712
1713 e = hci_inquiry_cache_lookup_resolve(hdev, bdaddr, NAME_PENDING);
1714 /* If the device was not found in a list of found devices names of which
1715 * are pending. there is no need to continue resolving a next name as it
1716 * will be done upon receiving another Remote Name Request Complete
1717 * Event */
1718 if (!e)
1719 return;
1720
1721 list_del(&e->list);
1722 if (name) {
1723 e->name_state = NAME_KNOWN;
1724 mgmt_remote_name(hdev, bdaddr, ACL_LINK, 0x00,
1725 e->data.rssi, name, name_len);
1726 } else {
1727 e->name_state = NAME_NOT_KNOWN;
1728 }
1729
1730 if (hci_resolve_next_name(hdev))
1731 return;
1732
1733 discov_complete:
1734 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1735 }
1736
1737 static void hci_cs_remote_name_req(struct hci_dev *hdev, __u8 status)
1738 {
1739 struct hci_cp_remote_name_req *cp;
1740 struct hci_conn *conn;
1741
1742 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1743
1744 /* If successful wait for the name req complete event before
1745 * checking for the need to do authentication */
1746 if (!status)
1747 return;
1748
1749 cp = hci_sent_cmd_data(hdev, HCI_OP_REMOTE_NAME_REQ);
1750 if (!cp)
1751 return;
1752
1753 hci_dev_lock(hdev);
1754
1755 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr);
1756
1757 if (test_bit(HCI_MGMT, &hdev->dev_flags))
1758 hci_check_pending_name(hdev, conn, &cp->bdaddr, NULL, 0);
1759
1760 if (!conn)
1761 goto unlock;
1762
1763 if (!hci_outgoing_auth_needed(hdev, conn))
1764 goto unlock;
1765
1766 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1767 struct hci_cp_auth_requested auth_cp;
1768
1769 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1770
1771 auth_cp.handle = __cpu_to_le16(conn->handle);
1772 hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED,
1773 sizeof(auth_cp), &auth_cp);
1774 }
1775
1776 unlock:
1777 hci_dev_unlock(hdev);
1778 }
1779
1780 static void hci_cs_read_remote_features(struct hci_dev *hdev, __u8 status)
1781 {
1782 struct hci_cp_read_remote_features *cp;
1783 struct hci_conn *conn;
1784
1785 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1786
1787 if (!status)
1788 return;
1789
1790 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_FEATURES);
1791 if (!cp)
1792 return;
1793
1794 hci_dev_lock(hdev);
1795
1796 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
1797 if (conn) {
1798 if (conn->state == BT_CONFIG) {
1799 hci_proto_connect_cfm(conn, status);
1800 hci_conn_drop(conn);
1801 }
1802 }
1803
1804 hci_dev_unlock(hdev);
1805 }
1806
1807 static void hci_cs_read_remote_ext_features(struct hci_dev *hdev, __u8 status)
1808 {
1809 struct hci_cp_read_remote_ext_features *cp;
1810 struct hci_conn *conn;
1811
1812 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1813
1814 if (!status)
1815 return;
1816
1817 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES);
1818 if (!cp)
1819 return;
1820
1821 hci_dev_lock(hdev);
1822
1823 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
1824 if (conn) {
1825 if (conn->state == BT_CONFIG) {
1826 hci_proto_connect_cfm(conn, status);
1827 hci_conn_drop(conn);
1828 }
1829 }
1830
1831 hci_dev_unlock(hdev);
1832 }
1833
1834 static void hci_cs_setup_sync_conn(struct hci_dev *hdev, __u8 status)
1835 {
1836 struct hci_cp_setup_sync_conn *cp;
1837 struct hci_conn *acl, *sco;
1838 __u16 handle;
1839
1840 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1841
1842 if (!status)
1843 return;
1844
1845 cp = hci_sent_cmd_data(hdev, HCI_OP_SETUP_SYNC_CONN);
1846 if (!cp)
1847 return;
1848
1849 handle = __le16_to_cpu(cp->handle);
1850
1851 BT_DBG("%s handle 0x%4.4x", hdev->name, handle);
1852
1853 hci_dev_lock(hdev);
1854
1855 acl = hci_conn_hash_lookup_handle(hdev, handle);
1856 if (acl) {
1857 sco = acl->link;
1858 if (sco) {
1859 sco->state = BT_CLOSED;
1860
1861 hci_proto_connect_cfm(sco, status);
1862 hci_conn_del(sco);
1863 }
1864 }
1865
1866 hci_dev_unlock(hdev);
1867 }
1868
1869 static void hci_cs_sniff_mode(struct hci_dev *hdev, __u8 status)
1870 {
1871 struct hci_cp_sniff_mode *cp;
1872 struct hci_conn *conn;
1873
1874 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1875
1876 if (!status)
1877 return;
1878
1879 cp = hci_sent_cmd_data(hdev, HCI_OP_SNIFF_MODE);
1880 if (!cp)
1881 return;
1882
1883 hci_dev_lock(hdev);
1884
1885 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
1886 if (conn) {
1887 clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags);
1888
1889 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags))
1890 hci_sco_setup(conn, status);
1891 }
1892
1893 hci_dev_unlock(hdev);
1894 }
1895
1896 static void hci_cs_exit_sniff_mode(struct hci_dev *hdev, __u8 status)
1897 {
1898 struct hci_cp_exit_sniff_mode *cp;
1899 struct hci_conn *conn;
1900
1901 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1902
1903 if (!status)
1904 return;
1905
1906 cp = hci_sent_cmd_data(hdev, HCI_OP_EXIT_SNIFF_MODE);
1907 if (!cp)
1908 return;
1909
1910 hci_dev_lock(hdev);
1911
1912 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
1913 if (conn) {
1914 clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags);
1915
1916 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags))
1917 hci_sco_setup(conn, status);
1918 }
1919
1920 hci_dev_unlock(hdev);
1921 }
1922
1923 static void hci_cs_disconnect(struct hci_dev *hdev, u8 status)
1924 {
1925 struct hci_cp_disconnect *cp;
1926 struct hci_conn *conn;
1927
1928 if (!status)
1929 return;
1930
1931 cp = hci_sent_cmd_data(hdev, HCI_OP_DISCONNECT);
1932 if (!cp)
1933 return;
1934
1935 hci_dev_lock(hdev);
1936
1937 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
1938 if (conn)
1939 mgmt_disconnect_failed(hdev, &conn->dst, conn->type,
1940 conn->dst_type, status);
1941
1942 hci_dev_unlock(hdev);
1943 }
1944
1945 static void hci_cs_create_phylink(struct hci_dev *hdev, u8 status)
1946 {
1947 struct hci_cp_create_phy_link *cp;
1948
1949 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1950
1951 cp = hci_sent_cmd_data(hdev, HCI_OP_CREATE_PHY_LINK);
1952 if (!cp)
1953 return;
1954
1955 hci_dev_lock(hdev);
1956
1957 if (status) {
1958 struct hci_conn *hcon;
1959
1960 hcon = hci_conn_hash_lookup_handle(hdev, cp->phy_handle);
1961 if (hcon)
1962 hci_conn_del(hcon);
1963 } else {
1964 amp_write_remote_assoc(hdev, cp->phy_handle);
1965 }
1966
1967 hci_dev_unlock(hdev);
1968 }
1969
1970 static void hci_cs_accept_phylink(struct hci_dev *hdev, u8 status)
1971 {
1972 struct hci_cp_accept_phy_link *cp;
1973
1974 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1975
1976 if (status)
1977 return;
1978
1979 cp = hci_sent_cmd_data(hdev, HCI_OP_ACCEPT_PHY_LINK);
1980 if (!cp)
1981 return;
1982
1983 amp_write_remote_assoc(hdev, cp->phy_handle);
1984 }
1985
1986 static void hci_cs_le_create_conn(struct hci_dev *hdev, u8 status)
1987 {
1988 struct hci_cp_le_create_conn *cp;
1989 struct hci_conn *conn;
1990
1991 BT_DBG("%s status 0x%2.2x", hdev->name, status);
1992
1993 /* All connection failure handling is taken care of by the
1994 * hci_le_conn_failed function which is triggered by the HCI
1995 * request completion callbacks used for connecting.
1996 */
1997 if (status)
1998 return;
1999
2000 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_CREATE_CONN);
2001 if (!cp)
2002 return;
2003
2004 hci_dev_lock(hdev);
2005
2006 conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, &cp->peer_addr);
2007 if (!conn)
2008 goto unlock;
2009
2010 /* Store the initiator and responder address information which
2011 * is needed for SMP. These values will not change during the
2012 * lifetime of the connection.
2013 */
2014 conn->init_addr_type = cp->own_address_type;
2015 if (cp->own_address_type == ADDR_LE_DEV_RANDOM)
2016 bacpy(&conn->init_addr, &hdev->random_addr);
2017 else
2018 bacpy(&conn->init_addr, &hdev->bdaddr);
2019
2020 conn->resp_addr_type = cp->peer_addr_type;
2021 bacpy(&conn->resp_addr, &cp->peer_addr);
2022
2023 /* We don't want the connection attempt to stick around
2024 * indefinitely since LE doesn't have a page timeout concept
2025 * like BR/EDR. Set a timer for any connection that doesn't use
2026 * the white list for connecting.
2027 */
2028 if (cp->filter_policy == HCI_LE_USE_PEER_ADDR)
2029 queue_delayed_work(conn->hdev->workqueue,
2030 &conn->le_conn_timeout,
2031 conn->conn_timeout);
2032
2033 unlock:
2034 hci_dev_unlock(hdev);
2035 }
2036
2037 static void hci_cs_le_start_enc(struct hci_dev *hdev, u8 status)
2038 {
2039 struct hci_cp_le_start_enc *cp;
2040 struct hci_conn *conn;
2041
2042 BT_DBG("%s status 0x%2.2x", hdev->name, status);
2043
2044 if (!status)
2045 return;
2046
2047 hci_dev_lock(hdev);
2048
2049 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_START_ENC);
2050 if (!cp)
2051 goto unlock;
2052
2053 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
2054 if (!conn)
2055 goto unlock;
2056
2057 if (conn->state != BT_CONNECTED)
2058 goto unlock;
2059
2060 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE);
2061 hci_conn_drop(conn);
2062
2063 unlock:
2064 hci_dev_unlock(hdev);
2065 }
2066
2067 static void hci_cs_switch_role(struct hci_dev *hdev, u8 status)
2068 {
2069 struct hci_cp_switch_role *cp;
2070 struct hci_conn *conn;
2071
2072 BT_DBG("%s status 0x%2.2x", hdev->name, status);
2073
2074 if (!status)
2075 return;
2076
2077 cp = hci_sent_cmd_data(hdev, HCI_OP_SWITCH_ROLE);
2078 if (!cp)
2079 return;
2080
2081 hci_dev_lock(hdev);
2082
2083 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr);
2084 if (conn)
2085 clear_bit(HCI_CONN_RSWITCH_PEND, &conn->flags);
2086
2087 hci_dev_unlock(hdev);
2088 }
2089
2090 static void hci_inquiry_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
2091 {
2092 __u8 status = *((__u8 *) skb->data);
2093 struct discovery_state *discov = &hdev->discovery;
2094 struct inquiry_entry *e;
2095
2096 BT_DBG("%s status 0x%2.2x", hdev->name, status);
2097
2098 hci_conn_check_pending(hdev);
2099
2100 if (!test_and_clear_bit(HCI_INQUIRY, &hdev->flags))
2101 return;
2102
2103 smp_mb__after_atomic(); /* wake_up_bit advises about this barrier */
2104 wake_up_bit(&hdev->flags, HCI_INQUIRY);
2105
2106 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
2107 return;
2108
2109 hci_dev_lock(hdev);
2110
2111 if (discov->state != DISCOVERY_FINDING)
2112 goto unlock;
2113
2114 if (list_empty(&discov->resolve)) {
2115 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2116 goto unlock;
2117 }
2118
2119 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED);
2120 if (e && hci_resolve_name(hdev, e) == 0) {
2121 e->name_state = NAME_PENDING;
2122 hci_discovery_set_state(hdev, DISCOVERY_RESOLVING);
2123 } else {
2124 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2125 }
2126
2127 unlock:
2128 hci_dev_unlock(hdev);
2129 }
2130
2131 static void hci_inquiry_result_evt(struct hci_dev *hdev, struct sk_buff *skb)
2132 {
2133 struct inquiry_data data;
2134 struct inquiry_info *info = (void *) (skb->data + 1);
2135 int num_rsp = *((__u8 *) skb->data);
2136
2137 BT_DBG("%s num_rsp %d", hdev->name, num_rsp);
2138
2139 if (!num_rsp)
2140 return;
2141
2142 if (test_bit(HCI_PERIODIC_INQ, &hdev->dev_flags))
2143 return;
2144
2145 hci_dev_lock(hdev);
2146
2147 for (; num_rsp; num_rsp--, info++) {
2148 u32 flags;
2149
2150 bacpy(&data.bdaddr, &info->bdaddr);
2151 data.pscan_rep_mode = info->pscan_rep_mode;
2152 data.pscan_period_mode = info->pscan_period_mode;
2153 data.pscan_mode = info->pscan_mode;
2154 memcpy(data.dev_class, info->dev_class, 3);
2155 data.clock_offset = info->clock_offset;
2156 data.rssi = HCI_RSSI_INVALID;
2157 data.ssp_mode = 0x00;
2158
2159 flags = hci_inquiry_cache_update(hdev, &data, false);
2160
2161 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00,
2162 info->dev_class, HCI_RSSI_INVALID,
2163 flags, NULL, 0, NULL, 0);
2164 }
2165
2166 hci_dev_unlock(hdev);
2167 }
2168
2169 static void hci_conn_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
2170 {
2171 struct hci_ev_conn_complete *ev = (void *) skb->data;
2172 struct hci_conn *conn;
2173
2174 BT_DBG("%s", hdev->name);
2175
2176 hci_dev_lock(hdev);
2177
2178 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr);
2179 if (!conn) {
2180 if (ev->link_type != SCO_LINK)
2181 goto unlock;
2182
2183 conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, &ev->bdaddr);
2184 if (!conn)
2185 goto unlock;
2186
2187 conn->type = SCO_LINK;
2188 }
2189
2190 if (!ev->status) {
2191 conn->handle = __le16_to_cpu(ev->handle);
2192
2193 if (conn->type == ACL_LINK) {
2194 conn->state = BT_CONFIG;
2195 hci_conn_hold(conn);
2196
2197 if (!conn->out && !hci_conn_ssp_enabled(conn) &&
2198 !hci_find_link_key(hdev, &ev->bdaddr))
2199 conn->disc_timeout = HCI_PAIRING_TIMEOUT;
2200 else
2201 conn->disc_timeout = HCI_DISCONN_TIMEOUT;
2202 } else
2203 conn->state = BT_CONNECTED;
2204
2205 hci_debugfs_create_conn(conn);
2206 hci_conn_add_sysfs(conn);
2207
2208 if (test_bit(HCI_AUTH, &hdev->flags))
2209 set_bit(HCI_CONN_AUTH, &conn->flags);
2210
2211 if (test_bit(HCI_ENCRYPT, &hdev->flags))
2212 set_bit(HCI_CONN_ENCRYPT, &conn->flags);
2213
2214 /* Get remote features */
2215 if (conn->type == ACL_LINK) {
2216 struct hci_cp_read_remote_features cp;
2217 cp.handle = ev->handle;
2218 hci_send_cmd(hdev, HCI_OP_READ_REMOTE_FEATURES,
2219 sizeof(cp), &cp);
2220
2221 hci_update_page_scan(hdev);
2222 }
2223
2224 /* Set packet type for incoming connection */
2225 if (!conn->out && hdev->hci_ver < BLUETOOTH_VER_2_0) {
2226 struct hci_cp_change_conn_ptype cp;
2227 cp.handle = ev->handle;
2228 cp.pkt_type = cpu_to_le16(conn->pkt_type);
2229 hci_send_cmd(hdev, HCI_OP_CHANGE_CONN_PTYPE, sizeof(cp),
2230 &cp);
2231 }
2232 } else {
2233 conn->state = BT_CLOSED;
2234 if (conn->type == ACL_LINK)
2235 mgmt_connect_failed(hdev, &conn->dst, conn->type,
2236 conn->dst_type, ev->status);
2237 }
2238
2239 if (conn->type == ACL_LINK)
2240 hci_sco_setup(conn, ev->status);
2241
2242 if (ev->status) {
2243 hci_proto_connect_cfm(conn, ev->status);
2244 hci_conn_del(conn);
2245 } else if (ev->link_type != ACL_LINK)
2246 hci_proto_connect_cfm(conn, ev->status);
2247
2248 unlock:
2249 hci_dev_unlock(hdev);
2250
2251 hci_conn_check_pending(hdev);
2252 }
2253
2254 static void hci_reject_conn(struct hci_dev *hdev, bdaddr_t *bdaddr)
2255 {
2256 struct hci_cp_reject_conn_req cp;
2257
2258 bacpy(&cp.bdaddr, bdaddr);
2259 cp.reason = HCI_ERROR_REJ_BAD_ADDR;
2260 hci_send_cmd(hdev, HCI_OP_REJECT_CONN_REQ, sizeof(cp), &cp);
2261 }
2262
2263 static void hci_conn_request_evt(struct hci_dev *hdev, struct sk_buff *skb)
2264 {
2265 struct hci_ev_conn_request *ev = (void *) skb->data;
2266 int mask = hdev->link_mode;
2267 struct inquiry_entry *ie;
2268 struct hci_conn *conn;
2269 __u8 flags = 0;
2270
2271 BT_DBG("%s bdaddr %pMR type 0x%x", hdev->name, &ev->bdaddr,
2272 ev->link_type);
2273
2274 mask |= hci_proto_connect_ind(hdev, &ev->bdaddr, ev->link_type,
2275 &flags);
2276
2277 if (!(mask & HCI_LM_ACCEPT)) {
2278 hci_reject_conn(hdev, &ev->bdaddr);
2279 return;
2280 }
2281
2282 if (hci_bdaddr_list_lookup(&hdev->blacklist, &ev->bdaddr,
2283 BDADDR_BREDR)) {
2284 hci_reject_conn(hdev, &ev->bdaddr);
2285 return;
2286 }
2287
2288 /* Require HCI_CONNECTABLE or a whitelist entry to accept the
2289 * connection. These features are only touched through mgmt so
2290 * only do the checks if HCI_MGMT is set.
2291 */
2292 if (test_bit(HCI_MGMT, &hdev->dev_flags) &&
2293 !test_bit(HCI_CONNECTABLE, &hdev->dev_flags) &&
2294 !hci_bdaddr_list_lookup(&hdev->whitelist, &ev->bdaddr,
2295 BDADDR_BREDR)) {
2296 hci_reject_conn(hdev, &ev->bdaddr);
2297 return;
2298 }
2299
2300 /* Connection accepted */
2301
2302 hci_dev_lock(hdev);
2303
2304 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr);
2305 if (ie)
2306 memcpy(ie->data.dev_class, ev->dev_class, 3);
2307
2308 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type,
2309 &ev->bdaddr);
2310 if (!conn) {
2311 conn = hci_conn_add(hdev, ev->link_type, &ev->bdaddr,
2312 HCI_ROLE_SLAVE);
2313 if (!conn) {
2314 BT_ERR("No memory for new connection");
2315 hci_dev_unlock(hdev);
2316 return;
2317 }
2318 }
2319
2320 memcpy(conn->dev_class, ev->dev_class, 3);
2321
2322 hci_dev_unlock(hdev);
2323
2324 if (ev->link_type == ACL_LINK ||
2325 (!(flags & HCI_PROTO_DEFER) && !lmp_esco_capable(hdev))) {
2326 struct hci_cp_accept_conn_req cp;
2327 conn->state = BT_CONNECT;
2328
2329 bacpy(&cp.bdaddr, &ev->bdaddr);
2330
2331 if (lmp_rswitch_capable(hdev) && (mask & HCI_LM_MASTER))
2332 cp.role = 0x00; /* Become master */
2333 else
2334 cp.role = 0x01; /* Remain slave */
2335
2336 hci_send_cmd(hdev, HCI_OP_ACCEPT_CONN_REQ, sizeof(cp), &cp);
2337 } else if (!(flags & HCI_PROTO_DEFER)) {
2338 struct hci_cp_accept_sync_conn_req cp;
2339 conn->state = BT_CONNECT;
2340
2341 bacpy(&cp.bdaddr, &ev->bdaddr);
2342 cp.pkt_type = cpu_to_le16(conn->pkt_type);
2343
2344 cp.tx_bandwidth = cpu_to_le32(0x00001f40);
2345 cp.rx_bandwidth = cpu_to_le32(0x00001f40);
2346 cp.max_latency = cpu_to_le16(0xffff);
2347 cp.content_format = cpu_to_le16(hdev->voice_setting);
2348 cp.retrans_effort = 0xff;
2349
2350 hci_send_cmd(hdev, HCI_OP_ACCEPT_SYNC_CONN_REQ, sizeof(cp),
2351 &cp);
2352 } else {
2353 conn->state = BT_CONNECT2;
2354 hci_proto_connect_cfm(conn, 0);
2355 }
2356 }
2357
2358 static u8 hci_to_mgmt_reason(u8 err)
2359 {
2360 switch (err) {
2361 case HCI_ERROR_CONNECTION_TIMEOUT:
2362 return MGMT_DEV_DISCONN_TIMEOUT;
2363 case HCI_ERROR_REMOTE_USER_TERM:
2364 case HCI_ERROR_REMOTE_LOW_RESOURCES:
2365 case HCI_ERROR_REMOTE_POWER_OFF:
2366 return MGMT_DEV_DISCONN_REMOTE;
2367 case HCI_ERROR_LOCAL_HOST_TERM:
2368 return MGMT_DEV_DISCONN_LOCAL_HOST;
2369 default:
2370 return MGMT_DEV_DISCONN_UNKNOWN;
2371 }
2372 }
2373
2374 static void hci_disconn_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
2375 {
2376 struct hci_ev_disconn_complete *ev = (void *) skb->data;
2377 u8 reason = hci_to_mgmt_reason(ev->reason);
2378 struct hci_conn_params *params;
2379 struct hci_conn *conn;
2380 bool mgmt_connected;
2381 u8 type;
2382
2383 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
2384
2385 hci_dev_lock(hdev);
2386
2387 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
2388 if (!conn)
2389 goto unlock;
2390
2391 if (ev->status) {
2392 mgmt_disconnect_failed(hdev, &conn->dst, conn->type,
2393 conn->dst_type, ev->status);
2394 goto unlock;
2395 }
2396
2397 conn->state = BT_CLOSED;
2398
2399 mgmt_connected = test_and_clear_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags);
2400 mgmt_device_disconnected(hdev, &conn->dst, conn->type, conn->dst_type,
2401 reason, mgmt_connected);
2402
2403 if (conn->type == ACL_LINK) {
2404 if (test_bit(HCI_CONN_FLUSH_KEY, &conn->flags))
2405 hci_remove_link_key(hdev, &conn->dst);
2406
2407 hci_update_page_scan(hdev);
2408 }
2409
2410 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
2411 if (params) {
2412 switch (params->auto_connect) {
2413 case HCI_AUTO_CONN_LINK_LOSS:
2414 if (ev->reason != HCI_ERROR_CONNECTION_TIMEOUT)
2415 break;
2416 /* Fall through */
2417
2418 case HCI_AUTO_CONN_DIRECT:
2419 case HCI_AUTO_CONN_ALWAYS:
2420 list_del_init(&params->action);
2421 list_add(&params->action, &hdev->pend_le_conns);
2422 hci_update_background_scan(hdev);
2423 break;
2424
2425 default:
2426 break;
2427 }
2428 }
2429
2430 type = conn->type;
2431
2432 hci_proto_disconn_cfm(conn, ev->reason);
2433 hci_conn_del(conn);
2434
2435 /* Re-enable advertising if necessary, since it might
2436 * have been disabled by the connection. From the
2437 * HCI_LE_Set_Advertise_Enable command description in
2438 * the core specification (v4.0):
2439 * "The Controller shall continue advertising until the Host
2440 * issues an LE_Set_Advertise_Enable command with
2441 * Advertising_Enable set to 0x00 (Advertising is disabled)
2442 * or until a connection is created or until the Advertising
2443 * is timed out due to Directed Advertising."
2444 */
2445 if (type == LE_LINK)
2446 mgmt_reenable_advertising(hdev);
2447
2448 unlock:
2449 hci_dev_unlock(hdev);
2450 }
2451
2452 static void hci_auth_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
2453 {
2454 struct hci_ev_auth_complete *ev = (void *) skb->data;
2455 struct hci_conn *conn;
2456
2457 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
2458
2459 hci_dev_lock(hdev);
2460
2461 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
2462 if (!conn)
2463 goto unlock;
2464
2465 if (!ev->status) {
2466 if (!hci_conn_ssp_enabled(conn) &&
2467 test_bit(HCI_CONN_REAUTH_PEND, &conn->flags)) {
2468 BT_INFO("re-auth of legacy device is not possible.");
2469 } else {
2470 set_bit(HCI_CONN_AUTH, &conn->flags);
2471 conn->sec_level = conn->pending_sec_level;
2472 }
2473 } else {
2474 mgmt_auth_failed(conn, ev->status);
2475 }
2476
2477 clear_bit(HCI_CONN_AUTH_PEND, &conn->flags);
2478 clear_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
2479
2480 if (conn->state == BT_CONFIG) {
2481 if (!ev->status && hci_conn_ssp_enabled(conn)) {
2482 struct hci_cp_set_conn_encrypt cp;
2483 cp.handle = ev->handle;
2484 cp.encrypt = 0x01;
2485 hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
2486 &cp);
2487 } else {
2488 conn->state = BT_CONNECTED;
2489 hci_proto_connect_cfm(conn, ev->status);
2490 hci_conn_drop(conn);
2491 }
2492 } else {
2493 hci_auth_cfm(conn, ev->status);
2494
2495 hci_conn_hold(conn);
2496 conn->disc_timeout = HCI_DISCONN_TIMEOUT;
2497 hci_conn_drop(conn);
2498 }
2499
2500 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
2501 if (!ev->status) {
2502 struct hci_cp_set_conn_encrypt cp;
2503 cp.handle = ev->handle;
2504 cp.encrypt = 0x01;
2505 hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
2506 &cp);
2507 } else {
2508 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
2509 hci_encrypt_cfm(conn, ev->status, 0x00);
2510 }
2511 }
2512
2513 unlock:
2514 hci_dev_unlock(hdev);
2515 }
2516
2517 static void hci_remote_name_evt(struct hci_dev *hdev, struct sk_buff *skb)
2518 {
2519 struct hci_ev_remote_name *ev = (void *) skb->data;
2520 struct hci_conn *conn;
2521
2522 BT_DBG("%s", hdev->name);
2523
2524 hci_conn_check_pending(hdev);
2525
2526 hci_dev_lock(hdev);
2527
2528 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
2529
2530 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
2531 goto check_auth;
2532
2533 if (ev->status == 0)
2534 hci_check_pending_name(hdev, conn, &ev->bdaddr, ev->name,
2535 strnlen(ev->name, HCI_MAX_NAME_LENGTH));
2536 else
2537 hci_check_pending_name(hdev, conn, &ev->bdaddr, NULL, 0);
2538
2539 check_auth:
2540 if (!conn)
2541 goto unlock;
2542
2543 if (!hci_outgoing_auth_needed(hdev, conn))
2544 goto unlock;
2545
2546 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
2547 struct hci_cp_auth_requested cp;
2548
2549 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
2550
2551 cp.handle = __cpu_to_le16(conn->handle);
2552 hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED, sizeof(cp), &cp);
2553 }
2554
2555 unlock:
2556 hci_dev_unlock(hdev);
2557 }
2558
2559 static void hci_encrypt_change_evt(struct hci_dev *hdev, struct sk_buff *skb)
2560 {
2561 struct hci_ev_encrypt_change *ev = (void *) skb->data;
2562 struct hci_conn *conn;
2563
2564 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
2565
2566 hci_dev_lock(hdev);
2567
2568 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
2569 if (!conn)
2570 goto unlock;
2571
2572 if (!ev->status) {
2573 if (ev->encrypt) {
2574 /* Encryption implies authentication */
2575 set_bit(HCI_CONN_AUTH, &conn->flags);
2576 set_bit(HCI_CONN_ENCRYPT, &conn->flags);
2577 conn->sec_level = conn->pending_sec_level;
2578
2579 /* P-256 authentication key implies FIPS */
2580 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256)
2581 set_bit(HCI_CONN_FIPS, &conn->flags);
2582
2583 if ((conn->type == ACL_LINK && ev->encrypt == 0x02) ||
2584 conn->type == LE_LINK)
2585 set_bit(HCI_CONN_AES_CCM, &conn->flags);
2586 } else {
2587 clear_bit(HCI_CONN_ENCRYPT, &conn->flags);
2588 clear_bit(HCI_CONN_AES_CCM, &conn->flags);
2589 }
2590 }
2591
2592 /* We should disregard the current RPA and generate a new one
2593 * whenever the encryption procedure fails.
2594 */
2595 if (ev->status && conn->type == LE_LINK)
2596 set_bit(HCI_RPA_EXPIRED, &hdev->dev_flags);
2597
2598 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
2599
2600 if (ev->status && conn->state == BT_CONNECTED) {
2601 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE);
2602 hci_conn_drop(conn);
2603 goto unlock;
2604 }
2605
2606 if (conn->state == BT_CONFIG) {
2607 if (!ev->status)
2608 conn->state = BT_CONNECTED;
2609
2610 /* In Secure Connections Only mode, do not allow any
2611 * connections that are not encrypted with AES-CCM
2612 * using a P-256 authenticated combination key.
2613 */
2614 if (test_bit(HCI_SC_ONLY, &hdev->dev_flags) &&
2615 (!test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
2616 conn->key_type != HCI_LK_AUTH_COMBINATION_P256)) {
2617 hci_proto_connect_cfm(conn, HCI_ERROR_AUTH_FAILURE);
2618 hci_conn_drop(conn);
2619 goto unlock;
2620 }
2621
2622 hci_proto_connect_cfm(conn, ev->status);
2623 hci_conn_drop(conn);
2624 } else
2625 hci_encrypt_cfm(conn, ev->status, ev->encrypt);
2626
2627 unlock:
2628 hci_dev_unlock(hdev);
2629 }
2630
2631 static void hci_change_link_key_complete_evt(struct hci_dev *hdev,
2632 struct sk_buff *skb)
2633 {
2634 struct hci_ev_change_link_key_complete *ev = (void *) skb->data;
2635 struct hci_conn *conn;
2636
2637 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
2638
2639 hci_dev_lock(hdev);
2640
2641 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
2642 if (conn) {
2643 if (!ev->status)
2644 set_bit(HCI_CONN_SECURE, &conn->flags);
2645
2646 clear_bit(HCI_CONN_AUTH_PEND, &conn->flags);
2647
2648 hci_key_change_cfm(conn, ev->status);
2649 }
2650
2651 hci_dev_unlock(hdev);
2652 }
2653
2654 static void hci_remote_features_evt(struct hci_dev *hdev,
2655 struct sk_buff *skb)
2656 {
2657 struct hci_ev_remote_features *ev = (void *) skb->data;
2658 struct hci_conn *conn;
2659
2660 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
2661
2662 hci_dev_lock(hdev);
2663
2664 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
2665 if (!conn)
2666 goto unlock;
2667
2668 if (!ev->status)
2669 memcpy(conn->features[0], ev->features, 8);
2670
2671 if (conn->state != BT_CONFIG)
2672 goto unlock;
2673
2674 if (!ev->status && lmp_ssp_capable(hdev) && lmp_ssp_capable(conn)) {
2675 struct hci_cp_read_remote_ext_features cp;
2676 cp.handle = ev->handle;
2677 cp.page = 0x01;
2678 hci_send_cmd(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES,
2679 sizeof(cp), &cp);
2680 goto unlock;
2681 }
2682
2683 if (!ev->status && !test_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) {
2684 struct hci_cp_remote_name_req cp;
2685 memset(&cp, 0, sizeof(cp));
2686 bacpy(&cp.bdaddr, &conn->dst);
2687 cp.pscan_rep_mode = 0x02;
2688 hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp);
2689 } else if (!test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags))
2690 mgmt_device_connected(hdev, conn, 0, NULL, 0);
2691
2692 if (!hci_outgoing_auth_needed(hdev, conn)) {
2693 conn->state = BT_CONNECTED;
2694 hci_proto_connect_cfm(conn, ev->status);
2695 hci_conn_drop(conn);
2696 }
2697
2698 unlock:
2699 hci_dev_unlock(hdev);
2700 }
2701
2702 static void hci_cmd_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
2703 {
2704 struct hci_ev_cmd_complete *ev = (void *) skb->data;
2705 u8 status = skb->data[sizeof(*ev)];
2706 __u16 opcode;
2707
2708 skb_pull(skb, sizeof(*ev));
2709
2710 opcode = __le16_to_cpu(ev->opcode);
2711
2712 switch (opcode) {
2713 case HCI_OP_INQUIRY_CANCEL:
2714 hci_cc_inquiry_cancel(hdev, skb);
2715 break;
2716
2717 case HCI_OP_PERIODIC_INQ:
2718 hci_cc_periodic_inq(hdev, skb);
2719 break;
2720
2721 case HCI_OP_EXIT_PERIODIC_INQ:
2722 hci_cc_exit_periodic_inq(hdev, skb);
2723 break;
2724
2725 case HCI_OP_REMOTE_NAME_REQ_CANCEL:
2726 hci_cc_remote_name_req_cancel(hdev, skb);
2727 break;
2728
2729 case HCI_OP_ROLE_DISCOVERY:
2730 hci_cc_role_discovery(hdev, skb);
2731 break;
2732
2733 case HCI_OP_READ_LINK_POLICY:
2734 hci_cc_read_link_policy(hdev, skb);
2735 break;
2736
2737 case HCI_OP_WRITE_LINK_POLICY:
2738 hci_cc_write_link_policy(hdev, skb);
2739 break;
2740
2741 case HCI_OP_READ_DEF_LINK_POLICY:
2742 hci_cc_read_def_link_policy(hdev, skb);
2743 break;
2744
2745 case HCI_OP_WRITE_DEF_LINK_POLICY:
2746 hci_cc_write_def_link_policy(hdev, skb);
2747 break;
2748
2749 case HCI_OP_RESET:
2750 hci_cc_reset(hdev, skb);
2751 break;
2752
2753 case HCI_OP_READ_STORED_LINK_KEY:
2754 hci_cc_read_stored_link_key(hdev, skb);
2755 break;
2756
2757 case HCI_OP_DELETE_STORED_LINK_KEY:
2758 hci_cc_delete_stored_link_key(hdev, skb);
2759 break;
2760
2761 case HCI_OP_WRITE_LOCAL_NAME:
2762 hci_cc_write_local_name(hdev, skb);
2763 break;
2764
2765 case HCI_OP_READ_LOCAL_NAME:
2766 hci_cc_read_local_name(hdev, skb);
2767 break;
2768
2769 case HCI_OP_WRITE_AUTH_ENABLE:
2770 hci_cc_write_auth_enable(hdev, skb);
2771 break;
2772
2773 case HCI_OP_WRITE_ENCRYPT_MODE:
2774 hci_cc_write_encrypt_mode(hdev, skb);
2775 break;
2776
2777 case HCI_OP_WRITE_SCAN_ENABLE:
2778 hci_cc_write_scan_enable(hdev, skb);
2779 break;
2780
2781 case HCI_OP_READ_CLASS_OF_DEV:
2782 hci_cc_read_class_of_dev(hdev, skb);
2783 break;
2784
2785 case HCI_OP_WRITE_CLASS_OF_DEV:
2786 hci_cc_write_class_of_dev(hdev, skb);
2787 break;
2788
2789 case HCI_OP_READ_VOICE_SETTING:
2790 hci_cc_read_voice_setting(hdev, skb);
2791 break;
2792
2793 case HCI_OP_WRITE_VOICE_SETTING:
2794 hci_cc_write_voice_setting(hdev, skb);
2795 break;
2796
2797 case HCI_OP_READ_NUM_SUPPORTED_IAC:
2798 hci_cc_read_num_supported_iac(hdev, skb);
2799 break;
2800
2801 case HCI_OP_WRITE_SSP_MODE:
2802 hci_cc_write_ssp_mode(hdev, skb);
2803 break;
2804
2805 case HCI_OP_WRITE_SC_SUPPORT:
2806 hci_cc_write_sc_support(hdev, skb);
2807 break;
2808
2809 case HCI_OP_READ_LOCAL_VERSION:
2810 hci_cc_read_local_version(hdev, skb);
2811 break;
2812
2813 case HCI_OP_READ_LOCAL_COMMANDS:
2814 hci_cc_read_local_commands(hdev, skb);
2815 break;
2816
2817 case HCI_OP_READ_LOCAL_FEATURES:
2818 hci_cc_read_local_features(hdev, skb);
2819 break;
2820
2821 case HCI_OP_READ_LOCAL_EXT_FEATURES:
2822 hci_cc_read_local_ext_features(hdev, skb);
2823 break;
2824
2825 case HCI_OP_READ_BUFFER_SIZE:
2826 hci_cc_read_buffer_size(hdev, skb);
2827 break;
2828
2829 case HCI_OP_READ_BD_ADDR:
2830 hci_cc_read_bd_addr(hdev, skb);
2831 break;
2832
2833 case HCI_OP_READ_PAGE_SCAN_ACTIVITY:
2834 hci_cc_read_page_scan_activity(hdev, skb);
2835 break;
2836
2837 case HCI_OP_WRITE_PAGE_SCAN_ACTIVITY:
2838 hci_cc_write_page_scan_activity(hdev, skb);
2839 break;
2840
2841 case HCI_OP_READ_PAGE_SCAN_TYPE:
2842 hci_cc_read_page_scan_type(hdev, skb);
2843 break;
2844
2845 case HCI_OP_WRITE_PAGE_SCAN_TYPE:
2846 hci_cc_write_page_scan_type(hdev, skb);
2847 break;
2848
2849 case HCI_OP_READ_DATA_BLOCK_SIZE:
2850 hci_cc_read_data_block_size(hdev, skb);
2851 break;
2852
2853 case HCI_OP_READ_FLOW_CONTROL_MODE:
2854 hci_cc_read_flow_control_mode(hdev, skb);
2855 break;
2856
2857 case HCI_OP_READ_LOCAL_AMP_INFO:
2858 hci_cc_read_local_amp_info(hdev, skb);
2859 break;
2860
2861 case HCI_OP_READ_CLOCK:
2862 hci_cc_read_clock(hdev, skb);
2863 break;
2864
2865 case HCI_OP_READ_LOCAL_AMP_ASSOC:
2866 hci_cc_read_local_amp_assoc(hdev, skb);
2867 break;
2868
2869 case HCI_OP_READ_INQ_RSP_TX_POWER:
2870 hci_cc_read_inq_rsp_tx_power(hdev, skb);
2871 break;
2872
2873 case HCI_OP_PIN_CODE_REPLY:
2874 hci_cc_pin_code_reply(hdev, skb);
2875 break;
2876
2877 case HCI_OP_PIN_CODE_NEG_REPLY:
2878 hci_cc_pin_code_neg_reply(hdev, skb);
2879 break;
2880
2881 case HCI_OP_READ_LOCAL_OOB_DATA:
2882 hci_cc_read_local_oob_data(hdev, skb);
2883 break;
2884
2885 case HCI_OP_READ_LOCAL_OOB_EXT_DATA:
2886 hci_cc_read_local_oob_ext_data(hdev, skb);
2887 break;
2888
2889 case HCI_OP_LE_READ_BUFFER_SIZE:
2890 hci_cc_le_read_buffer_size(hdev, skb);
2891 break;
2892
2893 case HCI_OP_LE_READ_LOCAL_FEATURES:
2894 hci_cc_le_read_local_features(hdev, skb);
2895 break;
2896
2897 case HCI_OP_LE_READ_ADV_TX_POWER:
2898 hci_cc_le_read_adv_tx_power(hdev, skb);
2899 break;
2900
2901 case HCI_OP_USER_CONFIRM_REPLY:
2902 hci_cc_user_confirm_reply(hdev, skb);
2903 break;
2904
2905 case HCI_OP_USER_CONFIRM_NEG_REPLY:
2906 hci_cc_user_confirm_neg_reply(hdev, skb);
2907 break;
2908
2909 case HCI_OP_USER_PASSKEY_REPLY:
2910 hci_cc_user_passkey_reply(hdev, skb);
2911 break;
2912
2913 case HCI_OP_USER_PASSKEY_NEG_REPLY:
2914 hci_cc_user_passkey_neg_reply(hdev, skb);
2915 break;
2916
2917 case HCI_OP_LE_SET_RANDOM_ADDR:
2918 hci_cc_le_set_random_addr(hdev, skb);
2919 break;
2920
2921 case HCI_OP_LE_SET_ADV_ENABLE:
2922 hci_cc_le_set_adv_enable(hdev, skb);
2923 break;
2924
2925 case HCI_OP_LE_SET_SCAN_PARAM:
2926 hci_cc_le_set_scan_param(hdev, skb);
2927 break;
2928
2929 case HCI_OP_LE_SET_SCAN_ENABLE:
2930 hci_cc_le_set_scan_enable(hdev, skb);
2931 break;
2932
2933 case HCI_OP_LE_READ_WHITE_LIST_SIZE:
2934 hci_cc_le_read_white_list_size(hdev, skb);
2935 break;
2936
2937 case HCI_OP_LE_CLEAR_WHITE_LIST:
2938 hci_cc_le_clear_white_list(hdev, skb);
2939 break;
2940
2941 case HCI_OP_LE_ADD_TO_WHITE_LIST:
2942 hci_cc_le_add_to_white_list(hdev, skb);
2943 break;
2944
2945 case HCI_OP_LE_DEL_FROM_WHITE_LIST:
2946 hci_cc_le_del_from_white_list(hdev, skb);
2947 break;
2948
2949 case HCI_OP_LE_READ_SUPPORTED_STATES:
2950 hci_cc_le_read_supported_states(hdev, skb);
2951 break;
2952
2953 case HCI_OP_LE_READ_DEF_DATA_LEN:
2954 hci_cc_le_read_def_data_len(hdev, skb);
2955 break;
2956
2957 case HCI_OP_LE_WRITE_DEF_DATA_LEN:
2958 hci_cc_le_write_def_data_len(hdev, skb);
2959 break;
2960
2961 case HCI_OP_LE_READ_MAX_DATA_LEN:
2962 hci_cc_le_read_max_data_len(hdev, skb);
2963 break;
2964
2965 case HCI_OP_WRITE_LE_HOST_SUPPORTED:
2966 hci_cc_write_le_host_supported(hdev, skb);
2967 break;
2968
2969 case HCI_OP_LE_SET_ADV_PARAM:
2970 hci_cc_set_adv_param(hdev, skb);
2971 break;
2972
2973 case HCI_OP_WRITE_REMOTE_AMP_ASSOC:
2974 hci_cc_write_remote_amp_assoc(hdev, skb);
2975 break;
2976
2977 case HCI_OP_READ_RSSI:
2978 hci_cc_read_rssi(hdev, skb);
2979 break;
2980
2981 case HCI_OP_READ_TX_POWER:
2982 hci_cc_read_tx_power(hdev, skb);
2983 break;
2984
2985 default:
2986 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
2987 break;
2988 }
2989
2990 if (opcode != HCI_OP_NOP)
2991 cancel_delayed_work(&hdev->cmd_timer);
2992
2993 hci_req_cmd_complete(hdev, opcode, status);
2994
2995 if (ev->ncmd && !test_bit(HCI_RESET, &hdev->flags)) {
2996 atomic_set(&hdev->cmd_cnt, 1);
2997 if (!skb_queue_empty(&hdev->cmd_q))
2998 queue_work(hdev->workqueue, &hdev->cmd_work);
2999 }
3000 }
3001
3002 static void hci_cmd_status_evt(struct hci_dev *hdev, struct sk_buff *skb)
3003 {
3004 struct hci_ev_cmd_status *ev = (void *) skb->data;
3005 __u16 opcode;
3006
3007 skb_pull(skb, sizeof(*ev));
3008
3009 opcode = __le16_to_cpu(ev->opcode);
3010
3011 switch (opcode) {
3012 case HCI_OP_INQUIRY:
3013 hci_cs_inquiry(hdev, ev->status);
3014 break;
3015
3016 case HCI_OP_CREATE_CONN:
3017 hci_cs_create_conn(hdev, ev->status);
3018 break;
3019
3020 case HCI_OP_DISCONNECT:
3021 hci_cs_disconnect(hdev, ev->status);
3022 break;
3023
3024 case HCI_OP_ADD_SCO:
3025 hci_cs_add_sco(hdev, ev->status);
3026 break;
3027
3028 case HCI_OP_AUTH_REQUESTED:
3029 hci_cs_auth_requested(hdev, ev->status);
3030 break;
3031
3032 case HCI_OP_SET_CONN_ENCRYPT:
3033 hci_cs_set_conn_encrypt(hdev, ev->status);
3034 break;
3035
3036 case HCI_OP_REMOTE_NAME_REQ:
3037 hci_cs_remote_name_req(hdev, ev->status);
3038 break;
3039
3040 case HCI_OP_READ_REMOTE_FEATURES:
3041 hci_cs_read_remote_features(hdev, ev->status);
3042 break;
3043
3044 case HCI_OP_READ_REMOTE_EXT_FEATURES:
3045 hci_cs_read_remote_ext_features(hdev, ev->status);
3046 break;
3047
3048 case HCI_OP_SETUP_SYNC_CONN:
3049 hci_cs_setup_sync_conn(hdev, ev->status);
3050 break;
3051
3052 case HCI_OP_CREATE_PHY_LINK:
3053 hci_cs_create_phylink(hdev, ev->status);
3054 break;
3055
3056 case HCI_OP_ACCEPT_PHY_LINK:
3057 hci_cs_accept_phylink(hdev, ev->status);
3058 break;
3059
3060 case HCI_OP_SNIFF_MODE:
3061 hci_cs_sniff_mode(hdev, ev->status);
3062 break;
3063
3064 case HCI_OP_EXIT_SNIFF_MODE:
3065 hci_cs_exit_sniff_mode(hdev, ev->status);
3066 break;
3067
3068 case HCI_OP_SWITCH_ROLE:
3069 hci_cs_switch_role(hdev, ev->status);
3070 break;
3071
3072 case HCI_OP_LE_CREATE_CONN:
3073 hci_cs_le_create_conn(hdev, ev->status);
3074 break;
3075
3076 case HCI_OP_LE_START_ENC:
3077 hci_cs_le_start_enc(hdev, ev->status);
3078 break;
3079
3080 default:
3081 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3082 break;
3083 }
3084
3085 if (opcode != HCI_OP_NOP)
3086 cancel_delayed_work(&hdev->cmd_timer);
3087
3088 if (ev->status ||
3089 (hdev->sent_cmd && !bt_cb(hdev->sent_cmd)->req.event))
3090 hci_req_cmd_complete(hdev, opcode, ev->status);
3091
3092 if (ev->ncmd && !test_bit(HCI_RESET, &hdev->flags)) {
3093 atomic_set(&hdev->cmd_cnt, 1);
3094 if (!skb_queue_empty(&hdev->cmd_q))
3095 queue_work(hdev->workqueue, &hdev->cmd_work);
3096 }
3097 }
3098
3099 static void hci_hardware_error_evt(struct hci_dev *hdev, struct sk_buff *skb)
3100 {
3101 struct hci_ev_hardware_error *ev = (void *) skb->data;
3102
3103 hdev->hw_error_code = ev->code;
3104
3105 queue_work(hdev->req_workqueue, &hdev->error_reset);
3106 }
3107
3108 static void hci_role_change_evt(struct hci_dev *hdev, struct sk_buff *skb)
3109 {
3110 struct hci_ev_role_change *ev = (void *) skb->data;
3111 struct hci_conn *conn;
3112
3113 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
3114
3115 hci_dev_lock(hdev);
3116
3117 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
3118 if (conn) {
3119 if (!ev->status)
3120 conn->role = ev->role;
3121
3122 clear_bit(HCI_CONN_RSWITCH_PEND, &conn->flags);
3123
3124 hci_role_switch_cfm(conn, ev->status, ev->role);
3125 }
3126
3127 hci_dev_unlock(hdev);
3128 }
3129
3130 static void hci_num_comp_pkts_evt(struct hci_dev *hdev, struct sk_buff *skb)
3131 {
3132 struct hci_ev_num_comp_pkts *ev = (void *) skb->data;
3133 int i;
3134
3135 if (hdev->flow_ctl_mode != HCI_FLOW_CTL_MODE_PACKET_BASED) {
3136 BT_ERR("Wrong event for mode %d", hdev->flow_ctl_mode);
3137 return;
3138 }
3139
3140 if (skb->len < sizeof(*ev) || skb->len < sizeof(*ev) +
3141 ev->num_hndl * sizeof(struct hci_comp_pkts_info)) {
3142 BT_DBG("%s bad parameters", hdev->name);
3143 return;
3144 }
3145
3146 BT_DBG("%s num_hndl %d", hdev->name, ev->num_hndl);
3147
3148 for (i = 0; i < ev->num_hndl; i++) {
3149 struct hci_comp_pkts_info *info = &ev->handles[i];
3150 struct hci_conn *conn;
3151 __u16 handle, count;
3152
3153 handle = __le16_to_cpu(info->handle);
3154 count = __le16_to_cpu(info->count);
3155
3156 conn = hci_conn_hash_lookup_handle(hdev, handle);
3157 if (!conn)
3158 continue;
3159
3160 conn->sent -= count;
3161
3162 switch (conn->type) {
3163 case ACL_LINK:
3164 hdev->acl_cnt += count;
3165 if (hdev->acl_cnt > hdev->acl_pkts)
3166 hdev->acl_cnt = hdev->acl_pkts;
3167 break;
3168
3169 case LE_LINK:
3170 if (hdev->le_pkts) {
3171 hdev->le_cnt += count;
3172 if (hdev->le_cnt > hdev->le_pkts)
3173 hdev->le_cnt = hdev->le_pkts;
3174 } else {
3175 hdev->acl_cnt += count;
3176 if (hdev->acl_cnt > hdev->acl_pkts)
3177 hdev->acl_cnt = hdev->acl_pkts;
3178 }
3179 break;
3180
3181 case SCO_LINK:
3182 hdev->sco_cnt += count;
3183 if (hdev->sco_cnt > hdev->sco_pkts)
3184 hdev->sco_cnt = hdev->sco_pkts;
3185 break;
3186
3187 default:
3188 BT_ERR("Unknown type %d conn %p", conn->type, conn);
3189 break;
3190 }
3191 }
3192
3193 queue_work(hdev->workqueue, &hdev->tx_work);
3194 }
3195
3196 static struct hci_conn *__hci_conn_lookup_handle(struct hci_dev *hdev,
3197 __u16 handle)
3198 {
3199 struct hci_chan *chan;
3200
3201 switch (hdev->dev_type) {
3202 case HCI_BREDR:
3203 return hci_conn_hash_lookup_handle(hdev, handle);
3204 case HCI_AMP:
3205 chan = hci_chan_lookup_handle(hdev, handle);
3206 if (chan)
3207 return chan->conn;
3208 break;
3209 default:
3210 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3211 break;
3212 }
3213
3214 return NULL;
3215 }
3216
3217 static void hci_num_comp_blocks_evt(struct hci_dev *hdev, struct sk_buff *skb)
3218 {
3219 struct hci_ev_num_comp_blocks *ev = (void *) skb->data;
3220 int i;
3221
3222 if (hdev->flow_ctl_mode != HCI_FLOW_CTL_MODE_BLOCK_BASED) {
3223 BT_ERR("Wrong event for mode %d", hdev->flow_ctl_mode);
3224 return;
3225 }
3226
3227 if (skb->len < sizeof(*ev) || skb->len < sizeof(*ev) +
3228 ev->num_hndl * sizeof(struct hci_comp_blocks_info)) {
3229 BT_DBG("%s bad parameters", hdev->name);
3230 return;
3231 }
3232
3233 BT_DBG("%s num_blocks %d num_hndl %d", hdev->name, ev->num_blocks,
3234 ev->num_hndl);
3235
3236 for (i = 0; i < ev->num_hndl; i++) {
3237 struct hci_comp_blocks_info *info = &ev->handles[i];
3238 struct hci_conn *conn = NULL;
3239 __u16 handle, block_count;
3240
3241 handle = __le16_to_cpu(info->handle);
3242 block_count = __le16_to_cpu(info->blocks);
3243
3244 conn = __hci_conn_lookup_handle(hdev, handle);
3245 if (!conn)
3246 continue;
3247
3248 conn->sent -= block_count;
3249
3250 switch (conn->type) {
3251 case ACL_LINK:
3252 case AMP_LINK:
3253 hdev->block_cnt += block_count;
3254 if (hdev->block_cnt > hdev->num_blocks)
3255 hdev->block_cnt = hdev->num_blocks;
3256 break;
3257
3258 default:
3259 BT_ERR("Unknown type %d conn %p", conn->type, conn);
3260 break;
3261 }
3262 }
3263
3264 queue_work(hdev->workqueue, &hdev->tx_work);
3265 }
3266
3267 static void hci_mode_change_evt(struct hci_dev *hdev, struct sk_buff *skb)
3268 {
3269 struct hci_ev_mode_change *ev = (void *) skb->data;
3270 struct hci_conn *conn;
3271
3272 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
3273
3274 hci_dev_lock(hdev);
3275
3276 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
3277 if (conn) {
3278 conn->mode = ev->mode;
3279
3280 if (!test_and_clear_bit(HCI_CONN_MODE_CHANGE_PEND,
3281 &conn->flags)) {
3282 if (conn->mode == HCI_CM_ACTIVE)
3283 set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
3284 else
3285 clear_bit(HCI_CONN_POWER_SAVE, &conn->flags);
3286 }
3287
3288 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags))
3289 hci_sco_setup(conn, ev->status);
3290 }
3291
3292 hci_dev_unlock(hdev);
3293 }
3294
3295 static void hci_pin_code_request_evt(struct hci_dev *hdev, struct sk_buff *skb)
3296 {
3297 struct hci_ev_pin_code_req *ev = (void *) skb->data;
3298 struct hci_conn *conn;
3299
3300 BT_DBG("%s", hdev->name);
3301
3302 hci_dev_lock(hdev);
3303
3304 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
3305 if (!conn)
3306 goto unlock;
3307
3308 if (conn->state == BT_CONNECTED) {
3309 hci_conn_hold(conn);
3310 conn->disc_timeout = HCI_PAIRING_TIMEOUT;
3311 hci_conn_drop(conn);
3312 }
3313
3314 if (!test_bit(HCI_BONDABLE, &hdev->dev_flags) &&
3315 !test_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags)) {
3316 hci_send_cmd(hdev, HCI_OP_PIN_CODE_NEG_REPLY,
3317 sizeof(ev->bdaddr), &ev->bdaddr);
3318 } else if (test_bit(HCI_MGMT, &hdev->dev_flags)) {
3319 u8 secure;
3320
3321 if (conn->pending_sec_level == BT_SECURITY_HIGH)
3322 secure = 1;
3323 else
3324 secure = 0;
3325
3326 mgmt_pin_code_request(hdev, &ev->bdaddr, secure);
3327 }
3328
3329 unlock:
3330 hci_dev_unlock(hdev);
3331 }
3332
3333 static void conn_set_key(struct hci_conn *conn, u8 key_type, u8 pin_len)
3334 {
3335 if (key_type == HCI_LK_CHANGED_COMBINATION)
3336 return;
3337
3338 conn->pin_length = pin_len;
3339 conn->key_type = key_type;
3340
3341 switch (key_type) {
3342 case HCI_LK_LOCAL_UNIT:
3343 case HCI_LK_REMOTE_UNIT:
3344 case HCI_LK_DEBUG_COMBINATION:
3345 return;
3346 case HCI_LK_COMBINATION:
3347 if (pin_len == 16)
3348 conn->pending_sec_level = BT_SECURITY_HIGH;
3349 else
3350 conn->pending_sec_level = BT_SECURITY_MEDIUM;
3351 break;
3352 case HCI_LK_UNAUTH_COMBINATION_P192:
3353 case HCI_LK_UNAUTH_COMBINATION_P256:
3354 conn->pending_sec_level = BT_SECURITY_MEDIUM;
3355 break;
3356 case HCI_LK_AUTH_COMBINATION_P192:
3357 conn->pending_sec_level = BT_SECURITY_HIGH;
3358 break;
3359 case HCI_LK_AUTH_COMBINATION_P256:
3360 conn->pending_sec_level = BT_SECURITY_FIPS;
3361 break;
3362 }
3363 }
3364
3365 static void hci_link_key_request_evt(struct hci_dev *hdev, struct sk_buff *skb)
3366 {
3367 struct hci_ev_link_key_req *ev = (void *) skb->data;
3368 struct hci_cp_link_key_reply cp;
3369 struct hci_conn *conn;
3370 struct link_key *key;
3371
3372 BT_DBG("%s", hdev->name);
3373
3374 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
3375 return;
3376
3377 hci_dev_lock(hdev);
3378
3379 key = hci_find_link_key(hdev, &ev->bdaddr);
3380 if (!key) {
3381 BT_DBG("%s link key not found for %pMR", hdev->name,
3382 &ev->bdaddr);
3383 goto not_found;
3384 }
3385
3386 BT_DBG("%s found key type %u for %pMR", hdev->name, key->type,
3387 &ev->bdaddr);
3388
3389 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
3390 if (conn) {
3391 clear_bit(HCI_CONN_NEW_LINK_KEY, &conn->flags);
3392
3393 if ((key->type == HCI_LK_UNAUTH_COMBINATION_P192 ||
3394 key->type == HCI_LK_UNAUTH_COMBINATION_P256) &&
3395 conn->auth_type != 0xff && (conn->auth_type & 0x01)) {
3396 BT_DBG("%s ignoring unauthenticated key", hdev->name);
3397 goto not_found;
3398 }
3399
3400 if (key->type == HCI_LK_COMBINATION && key->pin_len < 16 &&
3401 (conn->pending_sec_level == BT_SECURITY_HIGH ||
3402 conn->pending_sec_level == BT_SECURITY_FIPS)) {
3403 BT_DBG("%s ignoring key unauthenticated for high security",
3404 hdev->name);
3405 goto not_found;
3406 }
3407
3408 conn_set_key(conn, key->type, key->pin_len);
3409 }
3410
3411 bacpy(&cp.bdaddr, &ev->bdaddr);
3412 memcpy(cp.link_key, key->val, HCI_LINK_KEY_SIZE);
3413
3414 hci_send_cmd(hdev, HCI_OP_LINK_KEY_REPLY, sizeof(cp), &cp);
3415
3416 hci_dev_unlock(hdev);
3417
3418 return;
3419
3420 not_found:
3421 hci_send_cmd(hdev, HCI_OP_LINK_KEY_NEG_REPLY, 6, &ev->bdaddr);
3422 hci_dev_unlock(hdev);
3423 }
3424
3425 static void hci_link_key_notify_evt(struct hci_dev *hdev, struct sk_buff *skb)
3426 {
3427 struct hci_ev_link_key_notify *ev = (void *) skb->data;
3428 struct hci_conn *conn;
3429 struct link_key *key;
3430 bool persistent;
3431 u8 pin_len = 0;
3432
3433 BT_DBG("%s", hdev->name);
3434
3435 hci_dev_lock(hdev);
3436
3437 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
3438 if (!conn)
3439 goto unlock;
3440
3441 hci_conn_hold(conn);
3442 conn->disc_timeout = HCI_DISCONN_TIMEOUT;
3443 hci_conn_drop(conn);
3444
3445 set_bit(HCI_CONN_NEW_LINK_KEY, &conn->flags);
3446 conn_set_key(conn, ev->key_type, conn->pin_length);
3447
3448 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
3449 goto unlock;
3450
3451 key = hci_add_link_key(hdev, conn, &ev->bdaddr, ev->link_key,
3452 ev->key_type, pin_len, &persistent);
3453 if (!key)
3454 goto unlock;
3455
3456 /* Update connection information since adding the key will have
3457 * fixed up the type in the case of changed combination keys.
3458 */
3459 if (ev->key_type == HCI_LK_CHANGED_COMBINATION)
3460 conn_set_key(conn, key->type, key->pin_len);
3461
3462 mgmt_new_link_key(hdev, key, persistent);
3463
3464 /* Keep debug keys around only if the HCI_KEEP_DEBUG_KEYS flag
3465 * is set. If it's not set simply remove the key from the kernel
3466 * list (we've still notified user space about it but with
3467 * store_hint being 0).
3468 */
3469 if (key->type == HCI_LK_DEBUG_COMBINATION &&
3470 !test_bit(HCI_KEEP_DEBUG_KEYS, &hdev->dev_flags)) {
3471 list_del_rcu(&key->list);
3472 kfree_rcu(key, rcu);
3473 goto unlock;
3474 }
3475
3476 if (persistent)
3477 clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags);
3478 else
3479 set_bit(HCI_CONN_FLUSH_KEY, &conn->flags);
3480
3481 unlock:
3482 hci_dev_unlock(hdev);
3483 }
3484
3485 static void hci_clock_offset_evt(struct hci_dev *hdev, struct sk_buff *skb)
3486 {
3487 struct hci_ev_clock_offset *ev = (void *) skb->data;
3488 struct hci_conn *conn;
3489
3490 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
3491
3492 hci_dev_lock(hdev);
3493
3494 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
3495 if (conn && !ev->status) {
3496 struct inquiry_entry *ie;
3497
3498 ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
3499 if (ie) {
3500 ie->data.clock_offset = ev->clock_offset;
3501 ie->timestamp = jiffies;
3502 }
3503 }
3504
3505 hci_dev_unlock(hdev);
3506 }
3507
3508 static void hci_pkt_type_change_evt(struct hci_dev *hdev, struct sk_buff *skb)
3509 {
3510 struct hci_ev_pkt_type_change *ev = (void *) skb->data;
3511 struct hci_conn *conn;
3512
3513 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
3514
3515 hci_dev_lock(hdev);
3516
3517 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
3518 if (conn && !ev->status)
3519 conn->pkt_type = __le16_to_cpu(ev->pkt_type);
3520
3521 hci_dev_unlock(hdev);
3522 }
3523
3524 static void hci_pscan_rep_mode_evt(struct hci_dev *hdev, struct sk_buff *skb)
3525 {
3526 struct hci_ev_pscan_rep_mode *ev = (void *) skb->data;
3527 struct inquiry_entry *ie;
3528
3529 BT_DBG("%s", hdev->name);
3530
3531 hci_dev_lock(hdev);
3532
3533 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr);
3534 if (ie) {
3535 ie->data.pscan_rep_mode = ev->pscan_rep_mode;
3536 ie->timestamp = jiffies;
3537 }
3538
3539 hci_dev_unlock(hdev);
3540 }
3541
3542 static void hci_inquiry_result_with_rssi_evt(struct hci_dev *hdev,
3543 struct sk_buff *skb)
3544 {
3545 struct inquiry_data data;
3546 int num_rsp = *((__u8 *) skb->data);
3547
3548 BT_DBG("%s num_rsp %d", hdev->name, num_rsp);
3549
3550 if (!num_rsp)
3551 return;
3552
3553 if (test_bit(HCI_PERIODIC_INQ, &hdev->dev_flags))
3554 return;
3555
3556 hci_dev_lock(hdev);
3557
3558 if ((skb->len - 1) / num_rsp != sizeof(struct inquiry_info_with_rssi)) {
3559 struct inquiry_info_with_rssi_and_pscan_mode *info;
3560 info = (void *) (skb->data + 1);
3561
3562 for (; num_rsp; num_rsp--, info++) {
3563 u32 flags;
3564
3565 bacpy(&data.bdaddr, &info->bdaddr);
3566 data.pscan_rep_mode = info->pscan_rep_mode;
3567 data.pscan_period_mode = info->pscan_period_mode;
3568 data.pscan_mode = info->pscan_mode;
3569 memcpy(data.dev_class, info->dev_class, 3);
3570 data.clock_offset = info->clock_offset;
3571 data.rssi = info->rssi;
3572 data.ssp_mode = 0x00;
3573
3574 flags = hci_inquiry_cache_update(hdev, &data, false);
3575
3576 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00,
3577 info->dev_class, info->rssi,
3578 flags, NULL, 0, NULL, 0);
3579 }
3580 } else {
3581 struct inquiry_info_with_rssi *info = (void *) (skb->data + 1);
3582
3583 for (; num_rsp; num_rsp--, info++) {
3584 u32 flags;
3585
3586 bacpy(&data.bdaddr, &info->bdaddr);
3587 data.pscan_rep_mode = info->pscan_rep_mode;
3588 data.pscan_period_mode = info->pscan_period_mode;
3589 data.pscan_mode = 0x00;
3590 memcpy(data.dev_class, info->dev_class, 3);
3591 data.clock_offset = info->clock_offset;
3592 data.rssi = info->rssi;
3593 data.ssp_mode = 0x00;
3594
3595 flags = hci_inquiry_cache_update(hdev, &data, false);
3596
3597 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00,
3598 info->dev_class, info->rssi,
3599 flags, NULL, 0, NULL, 0);
3600 }
3601 }
3602
3603 hci_dev_unlock(hdev);
3604 }
3605
3606 static void hci_remote_ext_features_evt(struct hci_dev *hdev,
3607 struct sk_buff *skb)
3608 {
3609 struct hci_ev_remote_ext_features *ev = (void *) skb->data;
3610 struct hci_conn *conn;
3611
3612 BT_DBG("%s", hdev->name);
3613
3614 hci_dev_lock(hdev);
3615
3616 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
3617 if (!conn)
3618 goto unlock;
3619
3620 if (ev->page < HCI_MAX_PAGES)
3621 memcpy(conn->features[ev->page], ev->features, 8);
3622
3623 if (!ev->status && ev->page == 0x01) {
3624 struct inquiry_entry *ie;
3625
3626 ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
3627 if (ie)
3628 ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP);
3629
3630 if (ev->features[0] & LMP_HOST_SSP) {
3631 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
3632 } else {
3633 /* It is mandatory by the Bluetooth specification that
3634 * Extended Inquiry Results are only used when Secure
3635 * Simple Pairing is enabled, but some devices violate
3636 * this.
3637 *
3638 * To make these devices work, the internal SSP
3639 * enabled flag needs to be cleared if the remote host
3640 * features do not indicate SSP support */
3641 clear_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
3642 }
3643
3644 if (ev->features[0] & LMP_HOST_SC)
3645 set_bit(HCI_CONN_SC_ENABLED, &conn->flags);
3646 }
3647
3648 if (conn->state != BT_CONFIG)
3649 goto unlock;
3650
3651 if (!ev->status && !test_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) {
3652 struct hci_cp_remote_name_req cp;
3653 memset(&cp, 0, sizeof(cp));
3654 bacpy(&cp.bdaddr, &conn->dst);
3655 cp.pscan_rep_mode = 0x02;
3656 hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp);
3657 } else if (!test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags))
3658 mgmt_device_connected(hdev, conn, 0, NULL, 0);
3659
3660 if (!hci_outgoing_auth_needed(hdev, conn)) {
3661 conn->state = BT_CONNECTED;
3662 hci_proto_connect_cfm(conn, ev->status);
3663 hci_conn_drop(conn);
3664 }
3665
3666 unlock:
3667 hci_dev_unlock(hdev);
3668 }
3669
3670 static void hci_sync_conn_complete_evt(struct hci_dev *hdev,
3671 struct sk_buff *skb)
3672 {
3673 struct hci_ev_sync_conn_complete *ev = (void *) skb->data;
3674 struct hci_conn *conn;
3675
3676 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
3677
3678 hci_dev_lock(hdev);
3679
3680 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr);
3681 if (!conn) {
3682 if (ev->link_type == ESCO_LINK)
3683 goto unlock;
3684
3685 conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, &ev->bdaddr);
3686 if (!conn)
3687 goto unlock;
3688
3689 conn->type = SCO_LINK;
3690 }
3691
3692 switch (ev->status) {
3693 case 0x00:
3694 conn->handle = __le16_to_cpu(ev->handle);
3695 conn->state = BT_CONNECTED;
3696
3697 hci_debugfs_create_conn(conn);
3698 hci_conn_add_sysfs(conn);
3699 break;
3700
3701 case 0x10: /* Connection Accept Timeout */
3702 case 0x0d: /* Connection Rejected due to Limited Resources */
3703 case 0x11: /* Unsupported Feature or Parameter Value */
3704 case 0x1c: /* SCO interval rejected */
3705 case 0x1a: /* Unsupported Remote Feature */
3706 case 0x1f: /* Unspecified error */
3707 case 0x20: /* Unsupported LMP Parameter value */
3708 if (conn->out) {
3709 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
3710 (hdev->esco_type & EDR_ESCO_MASK);
3711 if (hci_setup_sync(conn, conn->link->handle))
3712 goto unlock;
3713 }
3714 /* fall through */
3715
3716 default:
3717 conn->state = BT_CLOSED;
3718 break;
3719 }
3720
3721 hci_proto_connect_cfm(conn, ev->status);
3722 if (ev->status)
3723 hci_conn_del(conn);
3724
3725 unlock:
3726 hci_dev_unlock(hdev);
3727 }
3728
3729 static inline size_t eir_get_length(u8 *eir, size_t eir_len)
3730 {
3731 size_t parsed = 0;
3732
3733 while (parsed < eir_len) {
3734 u8 field_len = eir[0];
3735
3736 if (field_len == 0)
3737 return parsed;
3738
3739 parsed += field_len + 1;
3740 eir += field_len + 1;
3741 }
3742
3743 return eir_len;
3744 }
3745
3746 static void hci_extended_inquiry_result_evt(struct hci_dev *hdev,
3747 struct sk_buff *skb)
3748 {
3749 struct inquiry_data data;
3750 struct extended_inquiry_info *info = (void *) (skb->data + 1);
3751 int num_rsp = *((__u8 *) skb->data);
3752 size_t eir_len;
3753
3754 BT_DBG("%s num_rsp %d", hdev->name, num_rsp);
3755
3756 if (!num_rsp)
3757 return;
3758
3759 if (test_bit(HCI_PERIODIC_INQ, &hdev->dev_flags))
3760 return;
3761
3762 hci_dev_lock(hdev);
3763
3764 for (; num_rsp; num_rsp--, info++) {
3765 u32 flags;
3766 bool name_known;
3767
3768 bacpy(&data.bdaddr, &info->bdaddr);
3769 data.pscan_rep_mode = info->pscan_rep_mode;
3770 data.pscan_period_mode = info->pscan_period_mode;
3771 data.pscan_mode = 0x00;
3772 memcpy(data.dev_class, info->dev_class, 3);
3773 data.clock_offset = info->clock_offset;
3774 data.rssi = info->rssi;
3775 data.ssp_mode = 0x01;
3776
3777 if (test_bit(HCI_MGMT, &hdev->dev_flags))
3778 name_known = eir_has_data_type(info->data,
3779 sizeof(info->data),
3780 EIR_NAME_COMPLETE);
3781 else
3782 name_known = true;
3783
3784 flags = hci_inquiry_cache_update(hdev, &data, name_known);
3785
3786 eir_len = eir_get_length(info->data, sizeof(info->data));
3787
3788 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00,
3789 info->dev_class, info->rssi,
3790 flags, info->data, eir_len, NULL, 0);
3791 }
3792
3793 hci_dev_unlock(hdev);
3794 }
3795
3796 static void hci_key_refresh_complete_evt(struct hci_dev *hdev,
3797 struct sk_buff *skb)
3798 {
3799 struct hci_ev_key_refresh_complete *ev = (void *) skb->data;
3800 struct hci_conn *conn;
3801
3802 BT_DBG("%s status 0x%2.2x handle 0x%4.4x", hdev->name, ev->status,
3803 __le16_to_cpu(ev->handle));
3804
3805 hci_dev_lock(hdev);
3806
3807 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
3808 if (!conn)
3809 goto unlock;
3810
3811 /* For BR/EDR the necessary steps are taken through the
3812 * auth_complete event.
3813 */
3814 if (conn->type != LE_LINK)
3815 goto unlock;
3816
3817 if (!ev->status)
3818 conn->sec_level = conn->pending_sec_level;
3819
3820 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
3821
3822 if (ev->status && conn->state == BT_CONNECTED) {
3823 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE);
3824 hci_conn_drop(conn);
3825 goto unlock;
3826 }
3827
3828 if (conn->state == BT_CONFIG) {
3829 if (!ev->status)
3830 conn->state = BT_CONNECTED;
3831
3832 hci_proto_connect_cfm(conn, ev->status);
3833 hci_conn_drop(conn);
3834 } else {
3835 hci_auth_cfm(conn, ev->status);
3836
3837 hci_conn_hold(conn);
3838 conn->disc_timeout = HCI_DISCONN_TIMEOUT;
3839 hci_conn_drop(conn);
3840 }
3841
3842 unlock:
3843 hci_dev_unlock(hdev);
3844 }
3845
3846 static u8 hci_get_auth_req(struct hci_conn *conn)
3847 {
3848 /* If remote requests no-bonding follow that lead */
3849 if (conn->remote_auth == HCI_AT_NO_BONDING ||
3850 conn->remote_auth == HCI_AT_NO_BONDING_MITM)
3851 return conn->remote_auth | (conn->auth_type & 0x01);
3852
3853 /* If both remote and local have enough IO capabilities, require
3854 * MITM protection
3855 */
3856 if (conn->remote_cap != HCI_IO_NO_INPUT_OUTPUT &&
3857 conn->io_capability != HCI_IO_NO_INPUT_OUTPUT)
3858 return conn->remote_auth | 0x01;
3859
3860 /* No MITM protection possible so ignore remote requirement */
3861 return (conn->remote_auth & ~0x01) | (conn->auth_type & 0x01);
3862 }
3863
3864 static u8 bredr_oob_data_present(struct hci_conn *conn)
3865 {
3866 struct hci_dev *hdev = conn->hdev;
3867 struct oob_data *data;
3868
3869 data = hci_find_remote_oob_data(hdev, &conn->dst, BDADDR_BREDR);
3870 if (!data)
3871 return 0x00;
3872
3873 /* When Secure Connections Only mode is enabled, then the P-256
3874 * values are required. If they are not available, then do not
3875 * declare that OOB data is present.
3876 */
3877 if (bredr_sc_enabled(hdev) &&
3878 test_bit(HCI_SC_ONLY, &hdev->dev_flags) &&
3879 (!memcmp(data->rand256, ZERO_KEY, 16) ||
3880 !memcmp(data->hash256, ZERO_KEY, 16)))
3881 return 0x00;
3882
3883 if (conn->out || test_bit(HCI_CONN_REMOTE_OOB, &conn->flags))
3884 return 0x01;
3885
3886 return 0x00;
3887 }
3888
3889 static void hci_io_capa_request_evt(struct hci_dev *hdev, struct sk_buff *skb)
3890 {
3891 struct hci_ev_io_capa_request *ev = (void *) skb->data;
3892 struct hci_conn *conn;
3893
3894 BT_DBG("%s", hdev->name);
3895
3896 hci_dev_lock(hdev);
3897
3898 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
3899 if (!conn)
3900 goto unlock;
3901
3902 hci_conn_hold(conn);
3903
3904 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
3905 goto unlock;
3906
3907 /* Allow pairing if we're pairable, the initiators of the
3908 * pairing or if the remote is not requesting bonding.
3909 */
3910 if (test_bit(HCI_BONDABLE, &hdev->dev_flags) ||
3911 test_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags) ||
3912 (conn->remote_auth & ~0x01) == HCI_AT_NO_BONDING) {
3913 struct hci_cp_io_capability_reply cp;
3914
3915 bacpy(&cp.bdaddr, &ev->bdaddr);
3916 /* Change the IO capability from KeyboardDisplay
3917 * to DisplayYesNo as it is not supported by BT spec. */
3918 cp.capability = (conn->io_capability == 0x04) ?
3919 HCI_IO_DISPLAY_YESNO : conn->io_capability;
3920
3921 /* If we are initiators, there is no remote information yet */
3922 if (conn->remote_auth == 0xff) {
3923 /* Request MITM protection if our IO caps allow it
3924 * except for the no-bonding case.
3925 */
3926 if (conn->io_capability != HCI_IO_NO_INPUT_OUTPUT &&
3927 conn->auth_type != HCI_AT_NO_BONDING)
3928 conn->auth_type |= 0x01;
3929 } else {
3930 conn->auth_type = hci_get_auth_req(conn);
3931 }
3932
3933 /* If we're not bondable, force one of the non-bondable
3934 * authentication requirement values.
3935 */
3936 if (!test_bit(HCI_BONDABLE, &hdev->dev_flags))
3937 conn->auth_type &= HCI_AT_NO_BONDING_MITM;
3938
3939 cp.authentication = conn->auth_type;
3940 cp.oob_data = bredr_oob_data_present(conn);
3941
3942 hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_REPLY,
3943 sizeof(cp), &cp);
3944 } else {
3945 struct hci_cp_io_capability_neg_reply cp;
3946
3947 bacpy(&cp.bdaddr, &ev->bdaddr);
3948 cp.reason = HCI_ERROR_PAIRING_NOT_ALLOWED;
3949
3950 hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_NEG_REPLY,
3951 sizeof(cp), &cp);
3952 }
3953
3954 unlock:
3955 hci_dev_unlock(hdev);
3956 }
3957
3958 static void hci_io_capa_reply_evt(struct hci_dev *hdev, struct sk_buff *skb)
3959 {
3960 struct hci_ev_io_capa_reply *ev = (void *) skb->data;
3961 struct hci_conn *conn;
3962
3963 BT_DBG("%s", hdev->name);
3964
3965 hci_dev_lock(hdev);
3966
3967 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
3968 if (!conn)
3969 goto unlock;
3970
3971 conn->remote_cap = ev->capability;
3972 conn->remote_auth = ev->authentication;
3973 if (ev->oob_data)
3974 set_bit(HCI_CONN_REMOTE_OOB, &conn->flags);
3975
3976 unlock:
3977 hci_dev_unlock(hdev);
3978 }
3979
3980 static void hci_user_confirm_request_evt(struct hci_dev *hdev,
3981 struct sk_buff *skb)
3982 {
3983 struct hci_ev_user_confirm_req *ev = (void *) skb->data;
3984 int loc_mitm, rem_mitm, confirm_hint = 0;
3985 struct hci_conn *conn;
3986
3987 BT_DBG("%s", hdev->name);
3988
3989 hci_dev_lock(hdev);
3990
3991 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
3992 goto unlock;
3993
3994 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
3995 if (!conn)
3996 goto unlock;
3997
3998 loc_mitm = (conn->auth_type & 0x01);
3999 rem_mitm = (conn->remote_auth & 0x01);
4000
4001 /* If we require MITM but the remote device can't provide that
4002 * (it has NoInputNoOutput) then reject the confirmation
4003 * request. We check the security level here since it doesn't
4004 * necessarily match conn->auth_type.
4005 */
4006 if (conn->pending_sec_level > BT_SECURITY_MEDIUM &&
4007 conn->remote_cap == HCI_IO_NO_INPUT_OUTPUT) {
4008 BT_DBG("Rejecting request: remote device can't provide MITM");
4009 hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_NEG_REPLY,
4010 sizeof(ev->bdaddr), &ev->bdaddr);
4011 goto unlock;
4012 }
4013
4014 /* If no side requires MITM protection; auto-accept */
4015 if ((!loc_mitm || conn->remote_cap == HCI_IO_NO_INPUT_OUTPUT) &&
4016 (!rem_mitm || conn->io_capability == HCI_IO_NO_INPUT_OUTPUT)) {
4017
4018 /* If we're not the initiators request authorization to
4019 * proceed from user space (mgmt_user_confirm with
4020 * confirm_hint set to 1). The exception is if neither
4021 * side had MITM or if the local IO capability is
4022 * NoInputNoOutput, in which case we do auto-accept
4023 */
4024 if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags) &&
4025 conn->io_capability != HCI_IO_NO_INPUT_OUTPUT &&
4026 (loc_mitm || rem_mitm)) {
4027 BT_DBG("Confirming auto-accept as acceptor");
4028 confirm_hint = 1;
4029 goto confirm;
4030 }
4031
4032 BT_DBG("Auto-accept of user confirmation with %ums delay",
4033 hdev->auto_accept_delay);
4034
4035 if (hdev->auto_accept_delay > 0) {
4036 int delay = msecs_to_jiffies(hdev->auto_accept_delay);
4037 queue_delayed_work(conn->hdev->workqueue,
4038 &conn->auto_accept_work, delay);
4039 goto unlock;
4040 }
4041
4042 hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_REPLY,
4043 sizeof(ev->bdaddr), &ev->bdaddr);
4044 goto unlock;
4045 }
4046
4047 confirm:
4048 mgmt_user_confirm_request(hdev, &ev->bdaddr, ACL_LINK, 0,
4049 le32_to_cpu(ev->passkey), confirm_hint);
4050
4051 unlock:
4052 hci_dev_unlock(hdev);
4053 }
4054
4055 static void hci_user_passkey_request_evt(struct hci_dev *hdev,
4056 struct sk_buff *skb)
4057 {
4058 struct hci_ev_user_passkey_req *ev = (void *) skb->data;
4059
4060 BT_DBG("%s", hdev->name);
4061
4062 if (test_bit(HCI_MGMT, &hdev->dev_flags))
4063 mgmt_user_passkey_request(hdev, &ev->bdaddr, ACL_LINK, 0);
4064 }
4065
4066 static void hci_user_passkey_notify_evt(struct hci_dev *hdev,
4067 struct sk_buff *skb)
4068 {
4069 struct hci_ev_user_passkey_notify *ev = (void *) skb->data;
4070 struct hci_conn *conn;
4071
4072 BT_DBG("%s", hdev->name);
4073
4074 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
4075 if (!conn)
4076 return;
4077
4078 conn->passkey_notify = __le32_to_cpu(ev->passkey);
4079 conn->passkey_entered = 0;
4080
4081 if (test_bit(HCI_MGMT, &hdev->dev_flags))
4082 mgmt_user_passkey_notify(hdev, &conn->dst, conn->type,
4083 conn->dst_type, conn->passkey_notify,
4084 conn->passkey_entered);
4085 }
4086
4087 static void hci_keypress_notify_evt(struct hci_dev *hdev, struct sk_buff *skb)
4088 {
4089 struct hci_ev_keypress_notify *ev = (void *) skb->data;
4090 struct hci_conn *conn;
4091
4092 BT_DBG("%s", hdev->name);
4093
4094 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
4095 if (!conn)
4096 return;
4097
4098 switch (ev->type) {
4099 case HCI_KEYPRESS_STARTED:
4100 conn->passkey_entered = 0;
4101 return;
4102
4103 case HCI_KEYPRESS_ENTERED:
4104 conn->passkey_entered++;
4105 break;
4106
4107 case HCI_KEYPRESS_ERASED:
4108 conn->passkey_entered--;
4109 break;
4110
4111 case HCI_KEYPRESS_CLEARED:
4112 conn->passkey_entered = 0;
4113 break;
4114
4115 case HCI_KEYPRESS_COMPLETED:
4116 return;
4117 }
4118
4119 if (test_bit(HCI_MGMT, &hdev->dev_flags))
4120 mgmt_user_passkey_notify(hdev, &conn->dst, conn->type,
4121 conn->dst_type, conn->passkey_notify,
4122 conn->passkey_entered);
4123 }
4124
4125 static void hci_simple_pair_complete_evt(struct hci_dev *hdev,
4126 struct sk_buff *skb)
4127 {
4128 struct hci_ev_simple_pair_complete *ev = (void *) skb->data;
4129 struct hci_conn *conn;
4130
4131 BT_DBG("%s", hdev->name);
4132
4133 hci_dev_lock(hdev);
4134
4135 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
4136 if (!conn)
4137 goto unlock;
4138
4139 /* Reset the authentication requirement to unknown */
4140 conn->remote_auth = 0xff;
4141
4142 /* To avoid duplicate auth_failed events to user space we check
4143 * the HCI_CONN_AUTH_PEND flag which will be set if we
4144 * initiated the authentication. A traditional auth_complete
4145 * event gets always produced as initiator and is also mapped to
4146 * the mgmt_auth_failed event */
4147 if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags) && ev->status)
4148 mgmt_auth_failed(conn, ev->status);
4149
4150 hci_conn_drop(conn);
4151
4152 unlock:
4153 hci_dev_unlock(hdev);
4154 }
4155
4156 static void hci_remote_host_features_evt(struct hci_dev *hdev,
4157 struct sk_buff *skb)
4158 {
4159 struct hci_ev_remote_host_features *ev = (void *) skb->data;
4160 struct inquiry_entry *ie;
4161 struct hci_conn *conn;
4162
4163 BT_DBG("%s", hdev->name);
4164
4165 hci_dev_lock(hdev);
4166
4167 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
4168 if (conn)
4169 memcpy(conn->features[1], ev->features, 8);
4170
4171 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr);
4172 if (ie)
4173 ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP);
4174
4175 hci_dev_unlock(hdev);
4176 }
4177
4178 static void hci_remote_oob_data_request_evt(struct hci_dev *hdev,
4179 struct sk_buff *skb)
4180 {
4181 struct hci_ev_remote_oob_data_request *ev = (void *) skb->data;
4182 struct oob_data *data;
4183
4184 BT_DBG("%s", hdev->name);
4185
4186 hci_dev_lock(hdev);
4187
4188 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
4189 goto unlock;
4190
4191 data = hci_find_remote_oob_data(hdev, &ev->bdaddr, BDADDR_BREDR);
4192 if (!data) {
4193 struct hci_cp_remote_oob_data_neg_reply cp;
4194
4195 bacpy(&cp.bdaddr, &ev->bdaddr);
4196 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_NEG_REPLY,
4197 sizeof(cp), &cp);
4198 goto unlock;
4199 }
4200
4201 if (bredr_sc_enabled(hdev)) {
4202 struct hci_cp_remote_oob_ext_data_reply cp;
4203
4204 bacpy(&cp.bdaddr, &ev->bdaddr);
4205 if (test_bit(HCI_SC_ONLY, &hdev->dev_flags)) {
4206 memset(cp.hash192, 0, sizeof(cp.hash192));
4207 memset(cp.rand192, 0, sizeof(cp.rand192));
4208 } else {
4209 memcpy(cp.hash192, data->hash192, sizeof(cp.hash192));
4210 memcpy(cp.rand192, data->rand192, sizeof(cp.rand192));
4211 }
4212 memcpy(cp.hash256, data->hash256, sizeof(cp.hash256));
4213 memcpy(cp.rand256, data->rand256, sizeof(cp.rand256));
4214
4215 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_EXT_DATA_REPLY,
4216 sizeof(cp), &cp);
4217 } else {
4218 struct hci_cp_remote_oob_data_reply cp;
4219
4220 bacpy(&cp.bdaddr, &ev->bdaddr);
4221 memcpy(cp.hash, data->hash192, sizeof(cp.hash));
4222 memcpy(cp.rand, data->rand192, sizeof(cp.rand));
4223
4224 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_REPLY,
4225 sizeof(cp), &cp);
4226 }
4227
4228 unlock:
4229 hci_dev_unlock(hdev);
4230 }
4231
4232 static void hci_phy_link_complete_evt(struct hci_dev *hdev,
4233 struct sk_buff *skb)
4234 {
4235 struct hci_ev_phy_link_complete *ev = (void *) skb->data;
4236 struct hci_conn *hcon, *bredr_hcon;
4237
4238 BT_DBG("%s handle 0x%2.2x status 0x%2.2x", hdev->name, ev->phy_handle,
4239 ev->status);
4240
4241 hci_dev_lock(hdev);
4242
4243 hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle);
4244 if (!hcon) {
4245 hci_dev_unlock(hdev);
4246 return;
4247 }
4248
4249 if (ev->status) {
4250 hci_conn_del(hcon);
4251 hci_dev_unlock(hdev);
4252 return;
4253 }
4254
4255 bredr_hcon = hcon->amp_mgr->l2cap_conn->hcon;
4256
4257 hcon->state = BT_CONNECTED;
4258 bacpy(&hcon->dst, &bredr_hcon->dst);
4259
4260 hci_conn_hold(hcon);
4261 hcon->disc_timeout = HCI_DISCONN_TIMEOUT;
4262 hci_conn_drop(hcon);
4263
4264 hci_debugfs_create_conn(hcon);
4265 hci_conn_add_sysfs(hcon);
4266
4267 amp_physical_cfm(bredr_hcon, hcon);
4268
4269 hci_dev_unlock(hdev);
4270 }
4271
4272 static void hci_loglink_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
4273 {
4274 struct hci_ev_logical_link_complete *ev = (void *) skb->data;
4275 struct hci_conn *hcon;
4276 struct hci_chan *hchan;
4277 struct amp_mgr *mgr;
4278
4279 BT_DBG("%s log_handle 0x%4.4x phy_handle 0x%2.2x status 0x%2.2x",
4280 hdev->name, le16_to_cpu(ev->handle), ev->phy_handle,
4281 ev->status);
4282
4283 hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle);
4284 if (!hcon)
4285 return;
4286
4287 /* Create AMP hchan */
4288 hchan = hci_chan_create(hcon);
4289 if (!hchan)
4290 return;
4291
4292 hchan->handle = le16_to_cpu(ev->handle);
4293
4294 BT_DBG("hcon %p mgr %p hchan %p", hcon, hcon->amp_mgr, hchan);
4295
4296 mgr = hcon->amp_mgr;
4297 if (mgr && mgr->bredr_chan) {
4298 struct l2cap_chan *bredr_chan = mgr->bredr_chan;
4299
4300 l2cap_chan_lock(bredr_chan);
4301
4302 bredr_chan->conn->mtu = hdev->block_mtu;
4303 l2cap_logical_cfm(bredr_chan, hchan, 0);
4304 hci_conn_hold(hcon);
4305
4306 l2cap_chan_unlock(bredr_chan);
4307 }
4308 }
4309
4310 static void hci_disconn_loglink_complete_evt(struct hci_dev *hdev,
4311 struct sk_buff *skb)
4312 {
4313 struct hci_ev_disconn_logical_link_complete *ev = (void *) skb->data;
4314 struct hci_chan *hchan;
4315
4316 BT_DBG("%s log handle 0x%4.4x status 0x%2.2x", hdev->name,
4317 le16_to_cpu(ev->handle), ev->status);
4318
4319 if (ev->status)
4320 return;
4321
4322 hci_dev_lock(hdev);
4323
4324 hchan = hci_chan_lookup_handle(hdev, le16_to_cpu(ev->handle));
4325 if (!hchan)
4326 goto unlock;
4327
4328 amp_destroy_logical_link(hchan, ev->reason);
4329
4330 unlock:
4331 hci_dev_unlock(hdev);
4332 }
4333
4334 static void hci_disconn_phylink_complete_evt(struct hci_dev *hdev,
4335 struct sk_buff *skb)
4336 {
4337 struct hci_ev_disconn_phy_link_complete *ev = (void *) skb->data;
4338 struct hci_conn *hcon;
4339
4340 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
4341
4342 if (ev->status)
4343 return;
4344
4345 hci_dev_lock(hdev);
4346
4347 hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle);
4348 if (hcon) {
4349 hcon->state = BT_CLOSED;
4350 hci_conn_del(hcon);
4351 }
4352
4353 hci_dev_unlock(hdev);
4354 }
4355
4356 static void hci_le_conn_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
4357 {
4358 struct hci_ev_le_conn_complete *ev = (void *) skb->data;
4359 struct hci_conn_params *params;
4360 struct hci_conn *conn;
4361 struct smp_irk *irk;
4362 u8 addr_type;
4363
4364 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
4365
4366 hci_dev_lock(hdev);
4367
4368 /* All controllers implicitly stop advertising in the event of a
4369 * connection, so ensure that the state bit is cleared.
4370 */
4371 clear_bit(HCI_LE_ADV, &hdev->dev_flags);
4372
4373 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
4374 if (!conn) {
4375 conn = hci_conn_add(hdev, LE_LINK, &ev->bdaddr, ev->role);
4376 if (!conn) {
4377 BT_ERR("No memory for new connection");
4378 goto unlock;
4379 }
4380
4381 conn->dst_type = ev->bdaddr_type;
4382
4383 /* If we didn't have a hci_conn object previously
4384 * but we're in master role this must be something
4385 * initiated using a white list. Since white list based
4386 * connections are not "first class citizens" we don't
4387 * have full tracking of them. Therefore, we go ahead
4388 * with a "best effort" approach of determining the
4389 * initiator address based on the HCI_PRIVACY flag.
4390 */
4391 if (conn->out) {
4392 conn->resp_addr_type = ev->bdaddr_type;
4393 bacpy(&conn->resp_addr, &ev->bdaddr);
4394 if (test_bit(HCI_PRIVACY, &hdev->dev_flags)) {
4395 conn->init_addr_type = ADDR_LE_DEV_RANDOM;
4396 bacpy(&conn->init_addr, &hdev->rpa);
4397 } else {
4398 hci_copy_identity_address(hdev,
4399 &conn->init_addr,
4400 &conn->init_addr_type);
4401 }
4402 }
4403 } else {
4404 cancel_delayed_work(&conn->le_conn_timeout);
4405 }
4406
4407 if (!conn->out) {
4408 /* Set the responder (our side) address type based on
4409 * the advertising address type.
4410 */
4411 conn->resp_addr_type = hdev->adv_addr_type;
4412 if (hdev->adv_addr_type == ADDR_LE_DEV_RANDOM)
4413 bacpy(&conn->resp_addr, &hdev->random_addr);
4414 else
4415 bacpy(&conn->resp_addr, &hdev->bdaddr);
4416
4417 conn->init_addr_type = ev->bdaddr_type;
4418 bacpy(&conn->init_addr, &ev->bdaddr);
4419
4420 /* For incoming connections, set the default minimum
4421 * and maximum connection interval. They will be used
4422 * to check if the parameters are in range and if not
4423 * trigger the connection update procedure.
4424 */
4425 conn->le_conn_min_interval = hdev->le_conn_min_interval;
4426 conn->le_conn_max_interval = hdev->le_conn_max_interval;
4427 }
4428
4429 /* Lookup the identity address from the stored connection
4430 * address and address type.
4431 *
4432 * When establishing connections to an identity address, the
4433 * connection procedure will store the resolvable random
4434 * address first. Now if it can be converted back into the
4435 * identity address, start using the identity address from
4436 * now on.
4437 */
4438 irk = hci_get_irk(hdev, &conn->dst, conn->dst_type);
4439 if (irk) {
4440 bacpy(&conn->dst, &irk->bdaddr);
4441 conn->dst_type = irk->addr_type;
4442 }
4443
4444 if (ev->status) {
4445 hci_le_conn_failed(conn, ev->status);
4446 goto unlock;
4447 }
4448
4449 if (conn->dst_type == ADDR_LE_DEV_PUBLIC)
4450 addr_type = BDADDR_LE_PUBLIC;
4451 else
4452 addr_type = BDADDR_LE_RANDOM;
4453
4454 /* Drop the connection if the device is blocked */
4455 if (hci_bdaddr_list_lookup(&hdev->blacklist, &conn->dst, addr_type)) {
4456 hci_conn_drop(conn);
4457 goto unlock;
4458 }
4459
4460 if (!test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags))
4461 mgmt_device_connected(hdev, conn, 0, NULL, 0);
4462
4463 conn->sec_level = BT_SECURITY_LOW;
4464 conn->handle = __le16_to_cpu(ev->handle);
4465 conn->state = BT_CONNECTED;
4466
4467 conn->le_conn_interval = le16_to_cpu(ev->interval);
4468 conn->le_conn_latency = le16_to_cpu(ev->latency);
4469 conn->le_supv_timeout = le16_to_cpu(ev->supervision_timeout);
4470
4471 hci_debugfs_create_conn(conn);
4472 hci_conn_add_sysfs(conn);
4473
4474 hci_proto_connect_cfm(conn, ev->status);
4475
4476 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
4477 conn->dst_type);
4478 if (params) {
4479 list_del_init(&params->action);
4480 if (params->conn) {
4481 hci_conn_drop(params->conn);
4482 hci_conn_put(params->conn);
4483 params->conn = NULL;
4484 }
4485 }
4486
4487 unlock:
4488 hci_update_background_scan(hdev);
4489 hci_dev_unlock(hdev);
4490 }
4491
4492 static void hci_le_conn_update_complete_evt(struct hci_dev *hdev,
4493 struct sk_buff *skb)
4494 {
4495 struct hci_ev_le_conn_update_complete *ev = (void *) skb->data;
4496 struct hci_conn *conn;
4497
4498 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
4499
4500 if (ev->status)
4501 return;
4502
4503 hci_dev_lock(hdev);
4504
4505 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
4506 if (conn) {
4507 conn->le_conn_interval = le16_to_cpu(ev->interval);
4508 conn->le_conn_latency = le16_to_cpu(ev->latency);
4509 conn->le_supv_timeout = le16_to_cpu(ev->supervision_timeout);
4510 }
4511
4512 hci_dev_unlock(hdev);
4513 }
4514
4515 /* This function requires the caller holds hdev->lock */
4516 static struct hci_conn *check_pending_le_conn(struct hci_dev *hdev,
4517 bdaddr_t *addr,
4518 u8 addr_type, u8 adv_type)
4519 {
4520 struct hci_conn *conn;
4521 struct hci_conn_params *params;
4522
4523 /* If the event is not connectable don't proceed further */
4524 if (adv_type != LE_ADV_IND && adv_type != LE_ADV_DIRECT_IND)
4525 return NULL;
4526
4527 /* Ignore if the device is blocked */
4528 if (hci_bdaddr_list_lookup(&hdev->blacklist, addr, addr_type))
4529 return NULL;
4530
4531 /* Most controller will fail if we try to create new connections
4532 * while we have an existing one in slave role.
4533 */
4534 if (hdev->conn_hash.le_num_slave > 0)
4535 return NULL;
4536
4537 /* If we're not connectable only connect devices that we have in
4538 * our pend_le_conns list.
4539 */
4540 params = hci_pend_le_action_lookup(&hdev->pend_le_conns,
4541 addr, addr_type);
4542 if (!params)
4543 return NULL;
4544
4545 switch (params->auto_connect) {
4546 case HCI_AUTO_CONN_DIRECT:
4547 /* Only devices advertising with ADV_DIRECT_IND are
4548 * triggering a connection attempt. This is allowing
4549 * incoming connections from slave devices.
4550 */
4551 if (adv_type != LE_ADV_DIRECT_IND)
4552 return NULL;
4553 break;
4554 case HCI_AUTO_CONN_ALWAYS:
4555 /* Devices advertising with ADV_IND or ADV_DIRECT_IND
4556 * are triggering a connection attempt. This means
4557 * that incoming connectioms from slave device are
4558 * accepted and also outgoing connections to slave
4559 * devices are established when found.
4560 */
4561 break;
4562 default:
4563 return NULL;
4564 }
4565
4566 conn = hci_connect_le(hdev, addr, addr_type, BT_SECURITY_LOW,
4567 HCI_LE_AUTOCONN_TIMEOUT, HCI_ROLE_MASTER);
4568 if (!IS_ERR(conn)) {
4569 /* Store the pointer since we don't really have any
4570 * other owner of the object besides the params that
4571 * triggered it. This way we can abort the connection if
4572 * the parameters get removed and keep the reference
4573 * count consistent once the connection is established.
4574 */
4575 params->conn = hci_conn_get(conn);
4576 return conn;
4577 }
4578
4579 switch (PTR_ERR(conn)) {
4580 case -EBUSY:
4581 /* If hci_connect() returns -EBUSY it means there is already
4582 * an LE connection attempt going on. Since controllers don't
4583 * support more than one connection attempt at the time, we
4584 * don't consider this an error case.
4585 */
4586 break;
4587 default:
4588 BT_DBG("Failed to connect: err %ld", PTR_ERR(conn));
4589 return NULL;
4590 }
4591
4592 return NULL;
4593 }
4594
4595 static void process_adv_report(struct hci_dev *hdev, u8 type, bdaddr_t *bdaddr,
4596 u8 bdaddr_type, bdaddr_t *direct_addr,
4597 u8 direct_addr_type, s8 rssi, u8 *data, u8 len)
4598 {
4599 struct discovery_state *d = &hdev->discovery;
4600 struct smp_irk *irk;
4601 struct hci_conn *conn;
4602 bool match;
4603 u32 flags;
4604
4605 /* If the direct address is present, then this report is from
4606 * a LE Direct Advertising Report event. In that case it is
4607 * important to see if the address is matching the local
4608 * controller address.
4609 */
4610 if (direct_addr) {
4611 /* Only resolvable random addresses are valid for these
4612 * kind of reports and others can be ignored.
4613 */
4614 if (!hci_bdaddr_is_rpa(direct_addr, direct_addr_type))
4615 return;
4616
4617 /* If the controller is not using resolvable random
4618 * addresses, then this report can be ignored.
4619 */
4620 if (!test_bit(HCI_PRIVACY, &hdev->dev_flags))
4621 return;
4622
4623 /* If the local IRK of the controller does not match
4624 * with the resolvable random address provided, then
4625 * this report can be ignored.
4626 */
4627 if (!smp_irk_matches(hdev, hdev->irk, direct_addr))
4628 return;
4629 }
4630
4631 /* Check if we need to convert to identity address */
4632 irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
4633 if (irk) {
4634 bdaddr = &irk->bdaddr;
4635 bdaddr_type = irk->addr_type;
4636 }
4637
4638 /* Check if we have been requested to connect to this device */
4639 conn = check_pending_le_conn(hdev, bdaddr, bdaddr_type, type);
4640 if (conn && type == LE_ADV_IND) {
4641 /* Store report for later inclusion by
4642 * mgmt_device_connected
4643 */
4644 memcpy(conn->le_adv_data, data, len);
4645 conn->le_adv_data_len = len;
4646 }
4647
4648 /* Passive scanning shouldn't trigger any device found events,
4649 * except for devices marked as CONN_REPORT for which we do send
4650 * device found events.
4651 */
4652 if (hdev->le_scan_type == LE_SCAN_PASSIVE) {
4653 if (type == LE_ADV_DIRECT_IND)
4654 return;
4655
4656 if (!hci_pend_le_action_lookup(&hdev->pend_le_reports,
4657 bdaddr, bdaddr_type))
4658 return;
4659
4660 if (type == LE_ADV_NONCONN_IND || type == LE_ADV_SCAN_IND)
4661 flags = MGMT_DEV_FOUND_NOT_CONNECTABLE;
4662 else
4663 flags = 0;
4664 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL,
4665 rssi, flags, data, len, NULL, 0);
4666 return;
4667 }
4668
4669 /* When receiving non-connectable or scannable undirected
4670 * advertising reports, this means that the remote device is
4671 * not connectable and then clearly indicate this in the
4672 * device found event.
4673 *
4674 * When receiving a scan response, then there is no way to
4675 * know if the remote device is connectable or not. However
4676 * since scan responses are merged with a previously seen
4677 * advertising report, the flags field from that report
4678 * will be used.
4679 *
4680 * In the really unlikely case that a controller get confused
4681 * and just sends a scan response event, then it is marked as
4682 * not connectable as well.
4683 */
4684 if (type == LE_ADV_NONCONN_IND || type == LE_ADV_SCAN_IND ||
4685 type == LE_ADV_SCAN_RSP)
4686 flags = MGMT_DEV_FOUND_NOT_CONNECTABLE;
4687 else
4688 flags = 0;
4689
4690 /* If there's nothing pending either store the data from this
4691 * event or send an immediate device found event if the data
4692 * should not be stored for later.
4693 */
4694 if (!has_pending_adv_report(hdev)) {
4695 /* If the report will trigger a SCAN_REQ store it for
4696 * later merging.
4697 */
4698 if (type == LE_ADV_IND || type == LE_ADV_SCAN_IND) {
4699 store_pending_adv_report(hdev, bdaddr, bdaddr_type,
4700 rssi, flags, data, len);
4701 return;
4702 }
4703
4704 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL,
4705 rssi, flags, data, len, NULL, 0);
4706 return;
4707 }
4708
4709 /* Check if the pending report is for the same device as the new one */
4710 match = (!bacmp(bdaddr, &d->last_adv_addr) &&
4711 bdaddr_type == d->last_adv_addr_type);
4712
4713 /* If the pending data doesn't match this report or this isn't a
4714 * scan response (e.g. we got a duplicate ADV_IND) then force
4715 * sending of the pending data.
4716 */
4717 if (type != LE_ADV_SCAN_RSP || !match) {
4718 /* Send out whatever is in the cache, but skip duplicates */
4719 if (!match)
4720 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK,
4721 d->last_adv_addr_type, NULL,
4722 d->last_adv_rssi, d->last_adv_flags,
4723 d->last_adv_data,
4724 d->last_adv_data_len, NULL, 0);
4725
4726 /* If the new report will trigger a SCAN_REQ store it for
4727 * later merging.
4728 */
4729 if (type == LE_ADV_IND || type == LE_ADV_SCAN_IND) {
4730 store_pending_adv_report(hdev, bdaddr, bdaddr_type,
4731 rssi, flags, data, len);
4732 return;
4733 }
4734
4735 /* The advertising reports cannot be merged, so clear
4736 * the pending report and send out a device found event.
4737 */
4738 clear_pending_adv_report(hdev);
4739 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL,
4740 rssi, flags, data, len, NULL, 0);
4741 return;
4742 }
4743
4744 /* If we get here we've got a pending ADV_IND or ADV_SCAN_IND and
4745 * the new event is a SCAN_RSP. We can therefore proceed with
4746 * sending a merged device found event.
4747 */
4748 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK,
4749 d->last_adv_addr_type, NULL, rssi, d->last_adv_flags,
4750 d->last_adv_data, d->last_adv_data_len, data, len);
4751 clear_pending_adv_report(hdev);
4752 }
4753
4754 static void hci_le_adv_report_evt(struct hci_dev *hdev, struct sk_buff *skb)
4755 {
4756 u8 num_reports = skb->data[0];
4757 void *ptr = &skb->data[1];
4758
4759 hci_dev_lock(hdev);
4760
4761 while (num_reports--) {
4762 struct hci_ev_le_advertising_info *ev = ptr;
4763 s8 rssi;
4764
4765 rssi = ev->data[ev->length];
4766 process_adv_report(hdev, ev->evt_type, &ev->bdaddr,
4767 ev->bdaddr_type, NULL, 0, rssi,
4768 ev->data, ev->length);
4769
4770 ptr += sizeof(*ev) + ev->length + 1;
4771 }
4772
4773 hci_dev_unlock(hdev);
4774 }
4775
4776 static void hci_le_ltk_request_evt(struct hci_dev *hdev, struct sk_buff *skb)
4777 {
4778 struct hci_ev_le_ltk_req *ev = (void *) skb->data;
4779 struct hci_cp_le_ltk_reply cp;
4780 struct hci_cp_le_ltk_neg_reply neg;
4781 struct hci_conn *conn;
4782 struct smp_ltk *ltk;
4783
4784 BT_DBG("%s handle 0x%4.4x", hdev->name, __le16_to_cpu(ev->handle));
4785
4786 hci_dev_lock(hdev);
4787
4788 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
4789 if (conn == NULL)
4790 goto not_found;
4791
4792 ltk = hci_find_ltk(hdev, &conn->dst, conn->dst_type, conn->role);
4793 if (!ltk)
4794 goto not_found;
4795
4796 if (smp_ltk_is_sc(ltk)) {
4797 /* With SC both EDiv and Rand are set to zero */
4798 if (ev->ediv || ev->rand)
4799 goto not_found;
4800 } else {
4801 /* For non-SC keys check that EDiv and Rand match */
4802 if (ev->ediv != ltk->ediv || ev->rand != ltk->rand)
4803 goto not_found;
4804 }
4805
4806 memcpy(cp.ltk, ltk->val, sizeof(ltk->val));
4807 cp.handle = cpu_to_le16(conn->handle);
4808
4809 conn->pending_sec_level = smp_ltk_sec_level(ltk);
4810
4811 conn->enc_key_size = ltk->enc_size;
4812
4813 hci_send_cmd(hdev, HCI_OP_LE_LTK_REPLY, sizeof(cp), &cp);
4814
4815 /* Ref. Bluetooth Core SPEC pages 1975 and 2004. STK is a
4816 * temporary key used to encrypt a connection following
4817 * pairing. It is used during the Encrypted Session Setup to
4818 * distribute the keys. Later, security can be re-established
4819 * using a distributed LTK.
4820 */
4821 if (ltk->type == SMP_STK) {
4822 set_bit(HCI_CONN_STK_ENCRYPT, &conn->flags);
4823 list_del_rcu(&ltk->list);
4824 kfree_rcu(ltk, rcu);
4825 } else {
4826 clear_bit(HCI_CONN_STK_ENCRYPT, &conn->flags);
4827 }
4828
4829 hci_dev_unlock(hdev);
4830
4831 return;
4832
4833 not_found:
4834 neg.handle = ev->handle;
4835 hci_send_cmd(hdev, HCI_OP_LE_LTK_NEG_REPLY, sizeof(neg), &neg);
4836 hci_dev_unlock(hdev);
4837 }
4838
4839 static void send_conn_param_neg_reply(struct hci_dev *hdev, u16 handle,
4840 u8 reason)
4841 {
4842 struct hci_cp_le_conn_param_req_neg_reply cp;
4843
4844 cp.handle = cpu_to_le16(handle);
4845 cp.reason = reason;
4846
4847 hci_send_cmd(hdev, HCI_OP_LE_CONN_PARAM_REQ_NEG_REPLY, sizeof(cp),
4848 &cp);
4849 }
4850
4851 static void hci_le_remote_conn_param_req_evt(struct hci_dev *hdev,
4852 struct sk_buff *skb)
4853 {
4854 struct hci_ev_le_remote_conn_param_req *ev = (void *) skb->data;
4855 struct hci_cp_le_conn_param_req_reply cp;
4856 struct hci_conn *hcon;
4857 u16 handle, min, max, latency, timeout;
4858
4859 handle = le16_to_cpu(ev->handle);
4860 min = le16_to_cpu(ev->interval_min);
4861 max = le16_to_cpu(ev->interval_max);
4862 latency = le16_to_cpu(ev->latency);
4863 timeout = le16_to_cpu(ev->timeout);
4864
4865 hcon = hci_conn_hash_lookup_handle(hdev, handle);
4866 if (!hcon || hcon->state != BT_CONNECTED)
4867 return send_conn_param_neg_reply(hdev, handle,
4868 HCI_ERROR_UNKNOWN_CONN_ID);
4869
4870 if (hci_check_conn_params(min, max, latency, timeout))
4871 return send_conn_param_neg_reply(hdev, handle,
4872 HCI_ERROR_INVALID_LL_PARAMS);
4873
4874 if (hcon->role == HCI_ROLE_MASTER) {
4875 struct hci_conn_params *params;
4876 u8 store_hint;
4877
4878 hci_dev_lock(hdev);
4879
4880 params = hci_conn_params_lookup(hdev, &hcon->dst,
4881 hcon->dst_type);
4882 if (params) {
4883 params->conn_min_interval = min;
4884 params->conn_max_interval = max;
4885 params->conn_latency = latency;
4886 params->supervision_timeout = timeout;
4887 store_hint = 0x01;
4888 } else{
4889 store_hint = 0x00;
4890 }
4891
4892 hci_dev_unlock(hdev);
4893
4894 mgmt_new_conn_param(hdev, &hcon->dst, hcon->dst_type,
4895 store_hint, min, max, latency, timeout);
4896 }
4897
4898 cp.handle = ev->handle;
4899 cp.interval_min = ev->interval_min;
4900 cp.interval_max = ev->interval_max;
4901 cp.latency = ev->latency;
4902 cp.timeout = ev->timeout;
4903 cp.min_ce_len = 0;
4904 cp.max_ce_len = 0;
4905
4906 hci_send_cmd(hdev, HCI_OP_LE_CONN_PARAM_REQ_REPLY, sizeof(cp), &cp);
4907 }
4908
4909 static void hci_le_direct_adv_report_evt(struct hci_dev *hdev,
4910 struct sk_buff *skb)
4911 {
4912 u8 num_reports = skb->data[0];
4913 void *ptr = &skb->data[1];
4914
4915 hci_dev_lock(hdev);
4916
4917 while (num_reports--) {
4918 struct hci_ev_le_direct_adv_info *ev = ptr;
4919
4920 process_adv_report(hdev, ev->evt_type, &ev->bdaddr,
4921 ev->bdaddr_type, &ev->direct_addr,
4922 ev->direct_addr_type, ev->rssi, NULL, 0);
4923
4924 ptr += sizeof(*ev);
4925 }
4926
4927 hci_dev_unlock(hdev);
4928 }
4929
4930 static void hci_le_meta_evt(struct hci_dev *hdev, struct sk_buff *skb)
4931 {
4932 struct hci_ev_le_meta *le_ev = (void *) skb->data;
4933
4934 skb_pull(skb, sizeof(*le_ev));
4935
4936 switch (le_ev->subevent) {
4937 case HCI_EV_LE_CONN_COMPLETE:
4938 hci_le_conn_complete_evt(hdev, skb);
4939 break;
4940
4941 case HCI_EV_LE_CONN_UPDATE_COMPLETE:
4942 hci_le_conn_update_complete_evt(hdev, skb);
4943 break;
4944
4945 case HCI_EV_LE_ADVERTISING_REPORT:
4946 hci_le_adv_report_evt(hdev, skb);
4947 break;
4948
4949 case HCI_EV_LE_LTK_REQ:
4950 hci_le_ltk_request_evt(hdev, skb);
4951 break;
4952
4953 case HCI_EV_LE_REMOTE_CONN_PARAM_REQ:
4954 hci_le_remote_conn_param_req_evt(hdev, skb);
4955 break;
4956
4957 case HCI_EV_LE_DIRECT_ADV_REPORT:
4958 hci_le_direct_adv_report_evt(hdev, skb);
4959 break;
4960
4961 default:
4962 break;
4963 }
4964 }
4965
4966 static void hci_chan_selected_evt(struct hci_dev *hdev, struct sk_buff *skb)
4967 {
4968 struct hci_ev_channel_selected *ev = (void *) skb->data;
4969 struct hci_conn *hcon;
4970
4971 BT_DBG("%s handle 0x%2.2x", hdev->name, ev->phy_handle);
4972
4973 skb_pull(skb, sizeof(*ev));
4974
4975 hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle);
4976 if (!hcon)
4977 return;
4978
4979 amp_read_loc_assoc_final_data(hdev, hcon);
4980 }
4981
4982 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb)
4983 {
4984 struct hci_event_hdr *hdr = (void *) skb->data;
4985 __u8 event = hdr->evt;
4986
4987 hci_dev_lock(hdev);
4988
4989 /* Received events are (currently) only needed when a request is
4990 * ongoing so avoid unnecessary memory allocation.
4991 */
4992 if (hci_req_pending(hdev)) {
4993 kfree_skb(hdev->recv_evt);
4994 hdev->recv_evt = skb_clone(skb, GFP_KERNEL);
4995 }
4996
4997 hci_dev_unlock(hdev);
4998
4999 skb_pull(skb, HCI_EVENT_HDR_SIZE);
5000
5001 if (hdev->sent_cmd && bt_cb(hdev->sent_cmd)->req.event == event) {
5002 struct hci_command_hdr *cmd_hdr = (void *) hdev->sent_cmd->data;
5003 u16 opcode = __le16_to_cpu(cmd_hdr->opcode);
5004
5005 hci_req_cmd_complete(hdev, opcode, 0);
5006 }
5007
5008 switch (event) {
5009 case HCI_EV_INQUIRY_COMPLETE:
5010 hci_inquiry_complete_evt(hdev, skb);
5011 break;
5012
5013 case HCI_EV_INQUIRY_RESULT:
5014 hci_inquiry_result_evt(hdev, skb);
5015 break;
5016
5017 case HCI_EV_CONN_COMPLETE:
5018 hci_conn_complete_evt(hdev, skb);
5019 break;
5020
5021 case HCI_EV_CONN_REQUEST:
5022 hci_conn_request_evt(hdev, skb);
5023 break;
5024
5025 case HCI_EV_DISCONN_COMPLETE:
5026 hci_disconn_complete_evt(hdev, skb);
5027 break;
5028
5029 case HCI_EV_AUTH_COMPLETE:
5030 hci_auth_complete_evt(hdev, skb);
5031 break;
5032
5033 case HCI_EV_REMOTE_NAME:
5034 hci_remote_name_evt(hdev, skb);
5035 break;
5036
5037 case HCI_EV_ENCRYPT_CHANGE:
5038 hci_encrypt_change_evt(hdev, skb);
5039 break;
5040
5041 case HCI_EV_CHANGE_LINK_KEY_COMPLETE:
5042 hci_change_link_key_complete_evt(hdev, skb);
5043 break;
5044
5045 case HCI_EV_REMOTE_FEATURES:
5046 hci_remote_features_evt(hdev, skb);
5047 break;
5048
5049 case HCI_EV_CMD_COMPLETE:
5050 hci_cmd_complete_evt(hdev, skb);
5051 break;
5052
5053 case HCI_EV_CMD_STATUS:
5054 hci_cmd_status_evt(hdev, skb);
5055 break;
5056
5057 case HCI_EV_HARDWARE_ERROR:
5058 hci_hardware_error_evt(hdev, skb);
5059 break;
5060
5061 case HCI_EV_ROLE_CHANGE:
5062 hci_role_change_evt(hdev, skb);
5063 break;
5064
5065 case HCI_EV_NUM_COMP_PKTS:
5066 hci_num_comp_pkts_evt(hdev, skb);
5067 break;
5068
5069 case HCI_EV_MODE_CHANGE:
5070 hci_mode_change_evt(hdev, skb);
5071 break;
5072
5073 case HCI_EV_PIN_CODE_REQ:
5074 hci_pin_code_request_evt(hdev, skb);
5075 break;
5076
5077 case HCI_EV_LINK_KEY_REQ:
5078 hci_link_key_request_evt(hdev, skb);
5079 break;
5080
5081 case HCI_EV_LINK_KEY_NOTIFY:
5082 hci_link_key_notify_evt(hdev, skb);
5083 break;
5084
5085 case HCI_EV_CLOCK_OFFSET:
5086 hci_clock_offset_evt(hdev, skb);
5087 break;
5088
5089 case HCI_EV_PKT_TYPE_CHANGE:
5090 hci_pkt_type_change_evt(hdev, skb);
5091 break;
5092
5093 case HCI_EV_PSCAN_REP_MODE:
5094 hci_pscan_rep_mode_evt(hdev, skb);
5095 break;
5096
5097 case HCI_EV_INQUIRY_RESULT_WITH_RSSI:
5098 hci_inquiry_result_with_rssi_evt(hdev, skb);
5099 break;
5100
5101 case HCI_EV_REMOTE_EXT_FEATURES:
5102 hci_remote_ext_features_evt(hdev, skb);
5103 break;
5104
5105 case HCI_EV_SYNC_CONN_COMPLETE:
5106 hci_sync_conn_complete_evt(hdev, skb);
5107 break;
5108
5109 case HCI_EV_EXTENDED_INQUIRY_RESULT:
5110 hci_extended_inquiry_result_evt(hdev, skb);
5111 break;
5112
5113 case HCI_EV_KEY_REFRESH_COMPLETE:
5114 hci_key_refresh_complete_evt(hdev, skb);
5115 break;
5116
5117 case HCI_EV_IO_CAPA_REQUEST:
5118 hci_io_capa_request_evt(hdev, skb);
5119 break;
5120
5121 case HCI_EV_IO_CAPA_REPLY:
5122 hci_io_capa_reply_evt(hdev, skb);
5123 break;
5124
5125 case HCI_EV_USER_CONFIRM_REQUEST:
5126 hci_user_confirm_request_evt(hdev, skb);
5127 break;
5128
5129 case HCI_EV_USER_PASSKEY_REQUEST:
5130 hci_user_passkey_request_evt(hdev, skb);
5131 break;
5132
5133 case HCI_EV_USER_PASSKEY_NOTIFY:
5134 hci_user_passkey_notify_evt(hdev, skb);
5135 break;
5136
5137 case HCI_EV_KEYPRESS_NOTIFY:
5138 hci_keypress_notify_evt(hdev, skb);
5139 break;
5140
5141 case HCI_EV_SIMPLE_PAIR_COMPLETE:
5142 hci_simple_pair_complete_evt(hdev, skb);
5143 break;
5144
5145 case HCI_EV_REMOTE_HOST_FEATURES:
5146 hci_remote_host_features_evt(hdev, skb);
5147 break;
5148
5149 case HCI_EV_LE_META:
5150 hci_le_meta_evt(hdev, skb);
5151 break;
5152
5153 case HCI_EV_CHANNEL_SELECTED:
5154 hci_chan_selected_evt(hdev, skb);
5155 break;
5156
5157 case HCI_EV_REMOTE_OOB_DATA_REQUEST:
5158 hci_remote_oob_data_request_evt(hdev, skb);
5159 break;
5160
5161 case HCI_EV_PHY_LINK_COMPLETE:
5162 hci_phy_link_complete_evt(hdev, skb);
5163 break;
5164
5165 case HCI_EV_LOGICAL_LINK_COMPLETE:
5166 hci_loglink_complete_evt(hdev, skb);
5167 break;
5168
5169 case HCI_EV_DISCONN_LOGICAL_LINK_COMPLETE:
5170 hci_disconn_loglink_complete_evt(hdev, skb);
5171 break;
5172
5173 case HCI_EV_DISCONN_PHY_LINK_COMPLETE:
5174 hci_disconn_phylink_complete_evt(hdev, skb);
5175 break;
5176
5177 case HCI_EV_NUM_COMP_BLOCKS:
5178 hci_num_comp_blocks_evt(hdev, skb);
5179 break;
5180
5181 default:
5182 BT_DBG("%s event 0x%2.2x", hdev->name, event);
5183 break;
5184 }
5185
5186 kfree_skb(skb);
5187 hdev->stat.evt_rx++;
5188 }
This page took 0.202243 seconds and 5 git commands to generate.