Merge tag 'platform-drivers-x86-v4.2-1' of git://git.infradead.org/users/dvhart/linux...
[deliverable/linux.git] / net / bluetooth / hci_sock.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI sockets. */
26
27 #include <linux/export.h>
28 #include <asm/unaligned.h>
29
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/hci_mon.h>
33 #include <net/bluetooth/mgmt.h>
34
35 #include "mgmt_util.h"
36
37 static LIST_HEAD(mgmt_chan_list);
38 static DEFINE_MUTEX(mgmt_chan_list_lock);
39
40 static atomic_t monitor_promisc = ATOMIC_INIT(0);
41
42 /* ----- HCI socket interface ----- */
43
44 /* Socket info */
45 #define hci_pi(sk) ((struct hci_pinfo *) sk)
46
47 struct hci_pinfo {
48 struct bt_sock bt;
49 struct hci_dev *hdev;
50 struct hci_filter filter;
51 __u32 cmsg_mask;
52 unsigned short channel;
53 unsigned long flags;
54 };
55
56 void hci_sock_set_flag(struct sock *sk, int nr)
57 {
58 set_bit(nr, &hci_pi(sk)->flags);
59 }
60
61 void hci_sock_clear_flag(struct sock *sk, int nr)
62 {
63 clear_bit(nr, &hci_pi(sk)->flags);
64 }
65
66 int hci_sock_test_flag(struct sock *sk, int nr)
67 {
68 return test_bit(nr, &hci_pi(sk)->flags);
69 }
70
71 unsigned short hci_sock_get_channel(struct sock *sk)
72 {
73 return hci_pi(sk)->channel;
74 }
75
76 static inline int hci_test_bit(int nr, const void *addr)
77 {
78 return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31));
79 }
80
81 /* Security filter */
82 #define HCI_SFLT_MAX_OGF 5
83
84 struct hci_sec_filter {
85 __u32 type_mask;
86 __u32 event_mask[2];
87 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
88 };
89
90 static const struct hci_sec_filter hci_sec_filter = {
91 /* Packet types */
92 0x10,
93 /* Events */
94 { 0x1000d9fe, 0x0000b00c },
95 /* Commands */
96 {
97 { 0x0 },
98 /* OGF_LINK_CTL */
99 { 0xbe000006, 0x00000001, 0x00000000, 0x00 },
100 /* OGF_LINK_POLICY */
101 { 0x00005200, 0x00000000, 0x00000000, 0x00 },
102 /* OGF_HOST_CTL */
103 { 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 },
104 /* OGF_INFO_PARAM */
105 { 0x000002be, 0x00000000, 0x00000000, 0x00 },
106 /* OGF_STATUS_PARAM */
107 { 0x000000ea, 0x00000000, 0x00000000, 0x00 }
108 }
109 };
110
111 static struct bt_sock_list hci_sk_list = {
112 .lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock)
113 };
114
115 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb)
116 {
117 struct hci_filter *flt;
118 int flt_type, flt_event;
119
120 /* Apply filter */
121 flt = &hci_pi(sk)->filter;
122
123 if (bt_cb(skb)->pkt_type == HCI_VENDOR_PKT)
124 flt_type = 0;
125 else
126 flt_type = bt_cb(skb)->pkt_type & HCI_FLT_TYPE_BITS;
127
128 if (!test_bit(flt_type, &flt->type_mask))
129 return true;
130
131 /* Extra filter for event packets only */
132 if (bt_cb(skb)->pkt_type != HCI_EVENT_PKT)
133 return false;
134
135 flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS);
136
137 if (!hci_test_bit(flt_event, &flt->event_mask))
138 return true;
139
140 /* Check filter only when opcode is set */
141 if (!flt->opcode)
142 return false;
143
144 if (flt_event == HCI_EV_CMD_COMPLETE &&
145 flt->opcode != get_unaligned((__le16 *)(skb->data + 3)))
146 return true;
147
148 if (flt_event == HCI_EV_CMD_STATUS &&
149 flt->opcode != get_unaligned((__le16 *)(skb->data + 4)))
150 return true;
151
152 return false;
153 }
154
155 /* Send frame to RAW socket */
156 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb)
157 {
158 struct sock *sk;
159 struct sk_buff *skb_copy = NULL;
160
161 BT_DBG("hdev %p len %d", hdev, skb->len);
162
163 read_lock(&hci_sk_list.lock);
164
165 sk_for_each(sk, &hci_sk_list.head) {
166 struct sk_buff *nskb;
167
168 if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev)
169 continue;
170
171 /* Don't send frame to the socket it came from */
172 if (skb->sk == sk)
173 continue;
174
175 if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) {
176 if (is_filtered_packet(sk, skb))
177 continue;
178 } else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
179 if (!bt_cb(skb)->incoming)
180 continue;
181 if (bt_cb(skb)->pkt_type != HCI_EVENT_PKT &&
182 bt_cb(skb)->pkt_type != HCI_ACLDATA_PKT &&
183 bt_cb(skb)->pkt_type != HCI_SCODATA_PKT)
184 continue;
185 } else {
186 /* Don't send frame to other channel types */
187 continue;
188 }
189
190 if (!skb_copy) {
191 /* Create a private copy with headroom */
192 skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true);
193 if (!skb_copy)
194 continue;
195
196 /* Put type byte before the data */
197 memcpy(skb_push(skb_copy, 1), &bt_cb(skb)->pkt_type, 1);
198 }
199
200 nskb = skb_clone(skb_copy, GFP_ATOMIC);
201 if (!nskb)
202 continue;
203
204 if (sock_queue_rcv_skb(sk, nskb))
205 kfree_skb(nskb);
206 }
207
208 read_unlock(&hci_sk_list.lock);
209
210 kfree_skb(skb_copy);
211 }
212
213 /* Send frame to sockets with specific channel */
214 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
215 int flag, struct sock *skip_sk)
216 {
217 struct sock *sk;
218
219 BT_DBG("channel %u len %d", channel, skb->len);
220
221 read_lock(&hci_sk_list.lock);
222
223 sk_for_each(sk, &hci_sk_list.head) {
224 struct sk_buff *nskb;
225
226 /* Ignore socket without the flag set */
227 if (!hci_sock_test_flag(sk, flag))
228 continue;
229
230 /* Skip the original socket */
231 if (sk == skip_sk)
232 continue;
233
234 if (sk->sk_state != BT_BOUND)
235 continue;
236
237 if (hci_pi(sk)->channel != channel)
238 continue;
239
240 nskb = skb_clone(skb, GFP_ATOMIC);
241 if (!nskb)
242 continue;
243
244 if (sock_queue_rcv_skb(sk, nskb))
245 kfree_skb(nskb);
246 }
247
248 read_unlock(&hci_sk_list.lock);
249 }
250
251 /* Send frame to monitor socket */
252 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb)
253 {
254 struct sk_buff *skb_copy = NULL;
255 struct hci_mon_hdr *hdr;
256 __le16 opcode;
257
258 if (!atomic_read(&monitor_promisc))
259 return;
260
261 BT_DBG("hdev %p len %d", hdev, skb->len);
262
263 switch (bt_cb(skb)->pkt_type) {
264 case HCI_COMMAND_PKT:
265 opcode = cpu_to_le16(HCI_MON_COMMAND_PKT);
266 break;
267 case HCI_EVENT_PKT:
268 opcode = cpu_to_le16(HCI_MON_EVENT_PKT);
269 break;
270 case HCI_ACLDATA_PKT:
271 if (bt_cb(skb)->incoming)
272 opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT);
273 else
274 opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT);
275 break;
276 case HCI_SCODATA_PKT:
277 if (bt_cb(skb)->incoming)
278 opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT);
279 else
280 opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT);
281 break;
282 default:
283 return;
284 }
285
286 /* Create a private copy with headroom */
287 skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true);
288 if (!skb_copy)
289 return;
290
291 /* Put header before the data */
292 hdr = (void *) skb_push(skb_copy, HCI_MON_HDR_SIZE);
293 hdr->opcode = opcode;
294 hdr->index = cpu_to_le16(hdev->id);
295 hdr->len = cpu_to_le16(skb->len);
296
297 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy,
298 HCI_SOCK_TRUSTED, NULL);
299 kfree_skb(skb_copy);
300 }
301
302 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event)
303 {
304 struct hci_mon_hdr *hdr;
305 struct hci_mon_new_index *ni;
306 struct sk_buff *skb;
307 __le16 opcode;
308
309 switch (event) {
310 case HCI_DEV_REG:
311 skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC);
312 if (!skb)
313 return NULL;
314
315 ni = (void *) skb_put(skb, HCI_MON_NEW_INDEX_SIZE);
316 ni->type = hdev->dev_type;
317 ni->bus = hdev->bus;
318 bacpy(&ni->bdaddr, &hdev->bdaddr);
319 memcpy(ni->name, hdev->name, 8);
320
321 opcode = cpu_to_le16(HCI_MON_NEW_INDEX);
322 break;
323
324 case HCI_DEV_UNREG:
325 skb = bt_skb_alloc(0, GFP_ATOMIC);
326 if (!skb)
327 return NULL;
328
329 opcode = cpu_to_le16(HCI_MON_DEL_INDEX);
330 break;
331
332 default:
333 return NULL;
334 }
335
336 __net_timestamp(skb);
337
338 hdr = (void *) skb_push(skb, HCI_MON_HDR_SIZE);
339 hdr->opcode = opcode;
340 hdr->index = cpu_to_le16(hdev->id);
341 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
342
343 return skb;
344 }
345
346 static void send_monitor_replay(struct sock *sk)
347 {
348 struct hci_dev *hdev;
349
350 read_lock(&hci_dev_list_lock);
351
352 list_for_each_entry(hdev, &hci_dev_list, list) {
353 struct sk_buff *skb;
354
355 skb = create_monitor_event(hdev, HCI_DEV_REG);
356 if (!skb)
357 continue;
358
359 if (sock_queue_rcv_skb(sk, skb))
360 kfree_skb(skb);
361 }
362
363 read_unlock(&hci_dev_list_lock);
364 }
365
366 /* Generate internal stack event */
367 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data)
368 {
369 struct hci_event_hdr *hdr;
370 struct hci_ev_stack_internal *ev;
371 struct sk_buff *skb;
372
373 skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC);
374 if (!skb)
375 return;
376
377 hdr = (void *) skb_put(skb, HCI_EVENT_HDR_SIZE);
378 hdr->evt = HCI_EV_STACK_INTERNAL;
379 hdr->plen = sizeof(*ev) + dlen;
380
381 ev = (void *) skb_put(skb, sizeof(*ev) + dlen);
382 ev->type = type;
383 memcpy(ev->data, data, dlen);
384
385 bt_cb(skb)->incoming = 1;
386 __net_timestamp(skb);
387
388 bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
389 hci_send_to_sock(hdev, skb);
390 kfree_skb(skb);
391 }
392
393 void hci_sock_dev_event(struct hci_dev *hdev, int event)
394 {
395 struct hci_ev_si_device ev;
396
397 BT_DBG("hdev %s event %d", hdev->name, event);
398
399 /* Send event to monitor */
400 if (atomic_read(&monitor_promisc)) {
401 struct sk_buff *skb;
402
403 skb = create_monitor_event(hdev, event);
404 if (skb) {
405 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
406 HCI_SOCK_TRUSTED, NULL);
407 kfree_skb(skb);
408 }
409 }
410
411 /* Send event to sockets */
412 ev.event = event;
413 ev.dev_id = hdev->id;
414 hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev);
415
416 if (event == HCI_DEV_UNREG) {
417 struct sock *sk;
418
419 /* Detach sockets from device */
420 read_lock(&hci_sk_list.lock);
421 sk_for_each(sk, &hci_sk_list.head) {
422 bh_lock_sock_nested(sk);
423 if (hci_pi(sk)->hdev == hdev) {
424 hci_pi(sk)->hdev = NULL;
425 sk->sk_err = EPIPE;
426 sk->sk_state = BT_OPEN;
427 sk->sk_state_change(sk);
428
429 hci_dev_put(hdev);
430 }
431 bh_unlock_sock(sk);
432 }
433 read_unlock(&hci_sk_list.lock);
434 }
435 }
436
437 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel)
438 {
439 struct hci_mgmt_chan *c;
440
441 list_for_each_entry(c, &mgmt_chan_list, list) {
442 if (c->channel == channel)
443 return c;
444 }
445
446 return NULL;
447 }
448
449 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel)
450 {
451 struct hci_mgmt_chan *c;
452
453 mutex_lock(&mgmt_chan_list_lock);
454 c = __hci_mgmt_chan_find(channel);
455 mutex_unlock(&mgmt_chan_list_lock);
456
457 return c;
458 }
459
460 int hci_mgmt_chan_register(struct hci_mgmt_chan *c)
461 {
462 if (c->channel < HCI_CHANNEL_CONTROL)
463 return -EINVAL;
464
465 mutex_lock(&mgmt_chan_list_lock);
466 if (__hci_mgmt_chan_find(c->channel)) {
467 mutex_unlock(&mgmt_chan_list_lock);
468 return -EALREADY;
469 }
470
471 list_add_tail(&c->list, &mgmt_chan_list);
472
473 mutex_unlock(&mgmt_chan_list_lock);
474
475 return 0;
476 }
477 EXPORT_SYMBOL(hci_mgmt_chan_register);
478
479 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c)
480 {
481 mutex_lock(&mgmt_chan_list_lock);
482 list_del(&c->list);
483 mutex_unlock(&mgmt_chan_list_lock);
484 }
485 EXPORT_SYMBOL(hci_mgmt_chan_unregister);
486
487 static int hci_sock_release(struct socket *sock)
488 {
489 struct sock *sk = sock->sk;
490 struct hci_dev *hdev;
491
492 BT_DBG("sock %p sk %p", sock, sk);
493
494 if (!sk)
495 return 0;
496
497 hdev = hci_pi(sk)->hdev;
498
499 if (hci_pi(sk)->channel == HCI_CHANNEL_MONITOR)
500 atomic_dec(&monitor_promisc);
501
502 bt_sock_unlink(&hci_sk_list, sk);
503
504 if (hdev) {
505 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
506 hci_dev_close(hdev->id);
507 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
508 mgmt_index_added(hdev);
509 }
510
511 atomic_dec(&hdev->promisc);
512 hci_dev_put(hdev);
513 }
514
515 sock_orphan(sk);
516
517 skb_queue_purge(&sk->sk_receive_queue);
518 skb_queue_purge(&sk->sk_write_queue);
519
520 sock_put(sk);
521 return 0;
522 }
523
524 static int hci_sock_blacklist_add(struct hci_dev *hdev, void __user *arg)
525 {
526 bdaddr_t bdaddr;
527 int err;
528
529 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
530 return -EFAULT;
531
532 hci_dev_lock(hdev);
533
534 err = hci_bdaddr_list_add(&hdev->blacklist, &bdaddr, BDADDR_BREDR);
535
536 hci_dev_unlock(hdev);
537
538 return err;
539 }
540
541 static int hci_sock_blacklist_del(struct hci_dev *hdev, void __user *arg)
542 {
543 bdaddr_t bdaddr;
544 int err;
545
546 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
547 return -EFAULT;
548
549 hci_dev_lock(hdev);
550
551 err = hci_bdaddr_list_del(&hdev->blacklist, &bdaddr, BDADDR_BREDR);
552
553 hci_dev_unlock(hdev);
554
555 return err;
556 }
557
558 /* Ioctls that require bound socket */
559 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd,
560 unsigned long arg)
561 {
562 struct hci_dev *hdev = hci_pi(sk)->hdev;
563
564 if (!hdev)
565 return -EBADFD;
566
567 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
568 return -EBUSY;
569
570 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
571 return -EOPNOTSUPP;
572
573 if (hdev->dev_type != HCI_BREDR)
574 return -EOPNOTSUPP;
575
576 switch (cmd) {
577 case HCISETRAW:
578 if (!capable(CAP_NET_ADMIN))
579 return -EPERM;
580 return -EOPNOTSUPP;
581
582 case HCIGETCONNINFO:
583 return hci_get_conn_info(hdev, (void __user *) arg);
584
585 case HCIGETAUTHINFO:
586 return hci_get_auth_info(hdev, (void __user *) arg);
587
588 case HCIBLOCKADDR:
589 if (!capable(CAP_NET_ADMIN))
590 return -EPERM;
591 return hci_sock_blacklist_add(hdev, (void __user *) arg);
592
593 case HCIUNBLOCKADDR:
594 if (!capable(CAP_NET_ADMIN))
595 return -EPERM;
596 return hci_sock_blacklist_del(hdev, (void __user *) arg);
597 }
598
599 return -ENOIOCTLCMD;
600 }
601
602 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd,
603 unsigned long arg)
604 {
605 void __user *argp = (void __user *) arg;
606 struct sock *sk = sock->sk;
607 int err;
608
609 BT_DBG("cmd %x arg %lx", cmd, arg);
610
611 lock_sock(sk);
612
613 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
614 err = -EBADFD;
615 goto done;
616 }
617
618 release_sock(sk);
619
620 switch (cmd) {
621 case HCIGETDEVLIST:
622 return hci_get_dev_list(argp);
623
624 case HCIGETDEVINFO:
625 return hci_get_dev_info(argp);
626
627 case HCIGETCONNLIST:
628 return hci_get_conn_list(argp);
629
630 case HCIDEVUP:
631 if (!capable(CAP_NET_ADMIN))
632 return -EPERM;
633 return hci_dev_open(arg);
634
635 case HCIDEVDOWN:
636 if (!capable(CAP_NET_ADMIN))
637 return -EPERM;
638 return hci_dev_close(arg);
639
640 case HCIDEVRESET:
641 if (!capable(CAP_NET_ADMIN))
642 return -EPERM;
643 return hci_dev_reset(arg);
644
645 case HCIDEVRESTAT:
646 if (!capable(CAP_NET_ADMIN))
647 return -EPERM;
648 return hci_dev_reset_stat(arg);
649
650 case HCISETSCAN:
651 case HCISETAUTH:
652 case HCISETENCRYPT:
653 case HCISETPTYPE:
654 case HCISETLINKPOL:
655 case HCISETLINKMODE:
656 case HCISETACLMTU:
657 case HCISETSCOMTU:
658 if (!capable(CAP_NET_ADMIN))
659 return -EPERM;
660 return hci_dev_cmd(cmd, argp);
661
662 case HCIINQUIRY:
663 return hci_inquiry(argp);
664 }
665
666 lock_sock(sk);
667
668 err = hci_sock_bound_ioctl(sk, cmd, arg);
669
670 done:
671 release_sock(sk);
672 return err;
673 }
674
675 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr,
676 int addr_len)
677 {
678 struct sockaddr_hci haddr;
679 struct sock *sk = sock->sk;
680 struct hci_dev *hdev = NULL;
681 int len, err = 0;
682
683 BT_DBG("sock %p sk %p", sock, sk);
684
685 if (!addr)
686 return -EINVAL;
687
688 memset(&haddr, 0, sizeof(haddr));
689 len = min_t(unsigned int, sizeof(haddr), addr_len);
690 memcpy(&haddr, addr, len);
691
692 if (haddr.hci_family != AF_BLUETOOTH)
693 return -EINVAL;
694
695 lock_sock(sk);
696
697 if (sk->sk_state == BT_BOUND) {
698 err = -EALREADY;
699 goto done;
700 }
701
702 switch (haddr.hci_channel) {
703 case HCI_CHANNEL_RAW:
704 if (hci_pi(sk)->hdev) {
705 err = -EALREADY;
706 goto done;
707 }
708
709 if (haddr.hci_dev != HCI_DEV_NONE) {
710 hdev = hci_dev_get(haddr.hci_dev);
711 if (!hdev) {
712 err = -ENODEV;
713 goto done;
714 }
715
716 atomic_inc(&hdev->promisc);
717 }
718
719 hci_pi(sk)->hdev = hdev;
720 break;
721
722 case HCI_CHANNEL_USER:
723 if (hci_pi(sk)->hdev) {
724 err = -EALREADY;
725 goto done;
726 }
727
728 if (haddr.hci_dev == HCI_DEV_NONE) {
729 err = -EINVAL;
730 goto done;
731 }
732
733 if (!capable(CAP_NET_ADMIN)) {
734 err = -EPERM;
735 goto done;
736 }
737
738 hdev = hci_dev_get(haddr.hci_dev);
739 if (!hdev) {
740 err = -ENODEV;
741 goto done;
742 }
743
744 if (test_bit(HCI_INIT, &hdev->flags) ||
745 hci_dev_test_flag(hdev, HCI_SETUP) ||
746 hci_dev_test_flag(hdev, HCI_CONFIG) ||
747 (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) &&
748 test_bit(HCI_UP, &hdev->flags))) {
749 err = -EBUSY;
750 hci_dev_put(hdev);
751 goto done;
752 }
753
754 if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) {
755 err = -EUSERS;
756 hci_dev_put(hdev);
757 goto done;
758 }
759
760 mgmt_index_removed(hdev);
761
762 err = hci_dev_open(hdev->id);
763 if (err) {
764 if (err == -EALREADY) {
765 /* In case the transport is already up and
766 * running, clear the error here.
767 *
768 * This can happen when opening an user
769 * channel and HCI_AUTO_OFF grace period
770 * is still active.
771 */
772 err = 0;
773 } else {
774 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
775 mgmt_index_added(hdev);
776 hci_dev_put(hdev);
777 goto done;
778 }
779 }
780
781 atomic_inc(&hdev->promisc);
782
783 hci_pi(sk)->hdev = hdev;
784 break;
785
786 case HCI_CHANNEL_MONITOR:
787 if (haddr.hci_dev != HCI_DEV_NONE) {
788 err = -EINVAL;
789 goto done;
790 }
791
792 if (!capable(CAP_NET_RAW)) {
793 err = -EPERM;
794 goto done;
795 }
796
797 /* The monitor interface is restricted to CAP_NET_RAW
798 * capabilities and with that implicitly trusted.
799 */
800 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
801
802 send_monitor_replay(sk);
803
804 atomic_inc(&monitor_promisc);
805 break;
806
807 default:
808 if (!hci_mgmt_chan_find(haddr.hci_channel)) {
809 err = -EINVAL;
810 goto done;
811 }
812
813 if (haddr.hci_dev != HCI_DEV_NONE) {
814 err = -EINVAL;
815 goto done;
816 }
817
818 /* Users with CAP_NET_ADMIN capabilities are allowed
819 * access to all management commands and events. For
820 * untrusted users the interface is restricted and
821 * also only untrusted events are sent.
822 */
823 if (capable(CAP_NET_ADMIN))
824 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
825
826 /* At the moment the index and unconfigured index events
827 * are enabled unconditionally. Setting them on each
828 * socket when binding keeps this functionality. They
829 * however might be cleared later and then sending of these
830 * events will be disabled, but that is then intentional.
831 *
832 * This also enables generic events that are safe to be
833 * received by untrusted users. Example for such events
834 * are changes to settings, class of device, name etc.
835 */
836 if (haddr.hci_channel == HCI_CHANNEL_CONTROL) {
837 hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS);
838 hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS);
839 hci_sock_set_flag(sk, HCI_MGMT_GENERIC_EVENTS);
840 }
841 break;
842 }
843
844
845 hci_pi(sk)->channel = haddr.hci_channel;
846 sk->sk_state = BT_BOUND;
847
848 done:
849 release_sock(sk);
850 return err;
851 }
852
853 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr,
854 int *addr_len, int peer)
855 {
856 struct sockaddr_hci *haddr = (struct sockaddr_hci *) addr;
857 struct sock *sk = sock->sk;
858 struct hci_dev *hdev;
859 int err = 0;
860
861 BT_DBG("sock %p sk %p", sock, sk);
862
863 if (peer)
864 return -EOPNOTSUPP;
865
866 lock_sock(sk);
867
868 hdev = hci_pi(sk)->hdev;
869 if (!hdev) {
870 err = -EBADFD;
871 goto done;
872 }
873
874 *addr_len = sizeof(*haddr);
875 haddr->hci_family = AF_BLUETOOTH;
876 haddr->hci_dev = hdev->id;
877 haddr->hci_channel= hci_pi(sk)->channel;
878
879 done:
880 release_sock(sk);
881 return err;
882 }
883
884 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg,
885 struct sk_buff *skb)
886 {
887 __u32 mask = hci_pi(sk)->cmsg_mask;
888
889 if (mask & HCI_CMSG_DIR) {
890 int incoming = bt_cb(skb)->incoming;
891 put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming),
892 &incoming);
893 }
894
895 if (mask & HCI_CMSG_TSTAMP) {
896 #ifdef CONFIG_COMPAT
897 struct compat_timeval ctv;
898 #endif
899 struct timeval tv;
900 void *data;
901 int len;
902
903 skb_get_timestamp(skb, &tv);
904
905 data = &tv;
906 len = sizeof(tv);
907 #ifdef CONFIG_COMPAT
908 if (!COMPAT_USE_64BIT_TIME &&
909 (msg->msg_flags & MSG_CMSG_COMPAT)) {
910 ctv.tv_sec = tv.tv_sec;
911 ctv.tv_usec = tv.tv_usec;
912 data = &ctv;
913 len = sizeof(ctv);
914 }
915 #endif
916
917 put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data);
918 }
919 }
920
921 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
922 int flags)
923 {
924 int noblock = flags & MSG_DONTWAIT;
925 struct sock *sk = sock->sk;
926 struct sk_buff *skb;
927 int copied, err;
928
929 BT_DBG("sock %p, sk %p", sock, sk);
930
931 if (flags & (MSG_OOB))
932 return -EOPNOTSUPP;
933
934 if (sk->sk_state == BT_CLOSED)
935 return 0;
936
937 skb = skb_recv_datagram(sk, flags, noblock, &err);
938 if (!skb)
939 return err;
940
941 copied = skb->len;
942 if (len < copied) {
943 msg->msg_flags |= MSG_TRUNC;
944 copied = len;
945 }
946
947 skb_reset_transport_header(skb);
948 err = skb_copy_datagram_msg(skb, 0, msg, copied);
949
950 switch (hci_pi(sk)->channel) {
951 case HCI_CHANNEL_RAW:
952 hci_sock_cmsg(sk, msg, skb);
953 break;
954 case HCI_CHANNEL_USER:
955 case HCI_CHANNEL_MONITOR:
956 sock_recv_timestamp(msg, sk, skb);
957 break;
958 default:
959 if (hci_mgmt_chan_find(hci_pi(sk)->channel))
960 sock_recv_timestamp(msg, sk, skb);
961 break;
962 }
963
964 skb_free_datagram(sk, skb);
965
966 return err ? : copied;
967 }
968
969 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk,
970 struct msghdr *msg, size_t msglen)
971 {
972 void *buf;
973 u8 *cp;
974 struct mgmt_hdr *hdr;
975 u16 opcode, index, len;
976 struct hci_dev *hdev = NULL;
977 const struct hci_mgmt_handler *handler;
978 bool var_len, no_hdev;
979 int err;
980
981 BT_DBG("got %zu bytes", msglen);
982
983 if (msglen < sizeof(*hdr))
984 return -EINVAL;
985
986 buf = kmalloc(msglen, GFP_KERNEL);
987 if (!buf)
988 return -ENOMEM;
989
990 if (memcpy_from_msg(buf, msg, msglen)) {
991 err = -EFAULT;
992 goto done;
993 }
994
995 hdr = buf;
996 opcode = __le16_to_cpu(hdr->opcode);
997 index = __le16_to_cpu(hdr->index);
998 len = __le16_to_cpu(hdr->len);
999
1000 if (len != msglen - sizeof(*hdr)) {
1001 err = -EINVAL;
1002 goto done;
1003 }
1004
1005 if (opcode >= chan->handler_count ||
1006 chan->handlers[opcode].func == NULL) {
1007 BT_DBG("Unknown op %u", opcode);
1008 err = mgmt_cmd_status(sk, index, opcode,
1009 MGMT_STATUS_UNKNOWN_COMMAND);
1010 goto done;
1011 }
1012
1013 handler = &chan->handlers[opcode];
1014
1015 if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) &&
1016 !(handler->flags & HCI_MGMT_UNTRUSTED)) {
1017 err = mgmt_cmd_status(sk, index, opcode,
1018 MGMT_STATUS_PERMISSION_DENIED);
1019 goto done;
1020 }
1021
1022 if (index != MGMT_INDEX_NONE) {
1023 hdev = hci_dev_get(index);
1024 if (!hdev) {
1025 err = mgmt_cmd_status(sk, index, opcode,
1026 MGMT_STATUS_INVALID_INDEX);
1027 goto done;
1028 }
1029
1030 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1031 hci_dev_test_flag(hdev, HCI_CONFIG) ||
1032 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1033 err = mgmt_cmd_status(sk, index, opcode,
1034 MGMT_STATUS_INVALID_INDEX);
1035 goto done;
1036 }
1037
1038 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1039 !(handler->flags & HCI_MGMT_UNCONFIGURED)) {
1040 err = mgmt_cmd_status(sk, index, opcode,
1041 MGMT_STATUS_INVALID_INDEX);
1042 goto done;
1043 }
1044 }
1045
1046 no_hdev = (handler->flags & HCI_MGMT_NO_HDEV);
1047 if (no_hdev != !hdev) {
1048 err = mgmt_cmd_status(sk, index, opcode,
1049 MGMT_STATUS_INVALID_INDEX);
1050 goto done;
1051 }
1052
1053 var_len = (handler->flags & HCI_MGMT_VAR_LEN);
1054 if ((var_len && len < handler->data_len) ||
1055 (!var_len && len != handler->data_len)) {
1056 err = mgmt_cmd_status(sk, index, opcode,
1057 MGMT_STATUS_INVALID_PARAMS);
1058 goto done;
1059 }
1060
1061 if (hdev && chan->hdev_init)
1062 chan->hdev_init(sk, hdev);
1063
1064 cp = buf + sizeof(*hdr);
1065
1066 err = handler->func(sk, hdev, cp, len);
1067 if (err < 0)
1068 goto done;
1069
1070 err = msglen;
1071
1072 done:
1073 if (hdev)
1074 hci_dev_put(hdev);
1075
1076 kfree(buf);
1077 return err;
1078 }
1079
1080 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg,
1081 size_t len)
1082 {
1083 struct sock *sk = sock->sk;
1084 struct hci_mgmt_chan *chan;
1085 struct hci_dev *hdev;
1086 struct sk_buff *skb;
1087 int err;
1088
1089 BT_DBG("sock %p sk %p", sock, sk);
1090
1091 if (msg->msg_flags & MSG_OOB)
1092 return -EOPNOTSUPP;
1093
1094 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_NOSIGNAL|MSG_ERRQUEUE))
1095 return -EINVAL;
1096
1097 if (len < 4 || len > HCI_MAX_FRAME_SIZE)
1098 return -EINVAL;
1099
1100 lock_sock(sk);
1101
1102 switch (hci_pi(sk)->channel) {
1103 case HCI_CHANNEL_RAW:
1104 case HCI_CHANNEL_USER:
1105 break;
1106 case HCI_CHANNEL_MONITOR:
1107 err = -EOPNOTSUPP;
1108 goto done;
1109 default:
1110 mutex_lock(&mgmt_chan_list_lock);
1111 chan = __hci_mgmt_chan_find(hci_pi(sk)->channel);
1112 if (chan)
1113 err = hci_mgmt_cmd(chan, sk, msg, len);
1114 else
1115 err = -EINVAL;
1116
1117 mutex_unlock(&mgmt_chan_list_lock);
1118 goto done;
1119 }
1120
1121 hdev = hci_pi(sk)->hdev;
1122 if (!hdev) {
1123 err = -EBADFD;
1124 goto done;
1125 }
1126
1127 if (!test_bit(HCI_UP, &hdev->flags)) {
1128 err = -ENETDOWN;
1129 goto done;
1130 }
1131
1132 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err);
1133 if (!skb)
1134 goto done;
1135
1136 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
1137 err = -EFAULT;
1138 goto drop;
1139 }
1140
1141 bt_cb(skb)->pkt_type = *((unsigned char *) skb->data);
1142 skb_pull(skb, 1);
1143
1144 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
1145 /* No permission check is needed for user channel
1146 * since that gets enforced when binding the socket.
1147 *
1148 * However check that the packet type is valid.
1149 */
1150 if (bt_cb(skb)->pkt_type != HCI_COMMAND_PKT &&
1151 bt_cb(skb)->pkt_type != HCI_ACLDATA_PKT &&
1152 bt_cb(skb)->pkt_type != HCI_SCODATA_PKT) {
1153 err = -EINVAL;
1154 goto drop;
1155 }
1156
1157 skb_queue_tail(&hdev->raw_q, skb);
1158 queue_work(hdev->workqueue, &hdev->tx_work);
1159 } else if (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT) {
1160 u16 opcode = get_unaligned_le16(skb->data);
1161 u16 ogf = hci_opcode_ogf(opcode);
1162 u16 ocf = hci_opcode_ocf(opcode);
1163
1164 if (((ogf > HCI_SFLT_MAX_OGF) ||
1165 !hci_test_bit(ocf & HCI_FLT_OCF_BITS,
1166 &hci_sec_filter.ocf_mask[ogf])) &&
1167 !capable(CAP_NET_RAW)) {
1168 err = -EPERM;
1169 goto drop;
1170 }
1171
1172 if (ogf == 0x3f) {
1173 skb_queue_tail(&hdev->raw_q, skb);
1174 queue_work(hdev->workqueue, &hdev->tx_work);
1175 } else {
1176 /* Stand-alone HCI commands must be flagged as
1177 * single-command requests.
1178 */
1179 bt_cb(skb)->req.start = true;
1180
1181 skb_queue_tail(&hdev->cmd_q, skb);
1182 queue_work(hdev->workqueue, &hdev->cmd_work);
1183 }
1184 } else {
1185 if (!capable(CAP_NET_RAW)) {
1186 err = -EPERM;
1187 goto drop;
1188 }
1189
1190 skb_queue_tail(&hdev->raw_q, skb);
1191 queue_work(hdev->workqueue, &hdev->tx_work);
1192 }
1193
1194 err = len;
1195
1196 done:
1197 release_sock(sk);
1198 return err;
1199
1200 drop:
1201 kfree_skb(skb);
1202 goto done;
1203 }
1204
1205 static int hci_sock_setsockopt(struct socket *sock, int level, int optname,
1206 char __user *optval, unsigned int len)
1207 {
1208 struct hci_ufilter uf = { .opcode = 0 };
1209 struct sock *sk = sock->sk;
1210 int err = 0, opt = 0;
1211
1212 BT_DBG("sk %p, opt %d", sk, optname);
1213
1214 lock_sock(sk);
1215
1216 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1217 err = -EBADFD;
1218 goto done;
1219 }
1220
1221 switch (optname) {
1222 case HCI_DATA_DIR:
1223 if (get_user(opt, (int __user *)optval)) {
1224 err = -EFAULT;
1225 break;
1226 }
1227
1228 if (opt)
1229 hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR;
1230 else
1231 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR;
1232 break;
1233
1234 case HCI_TIME_STAMP:
1235 if (get_user(opt, (int __user *)optval)) {
1236 err = -EFAULT;
1237 break;
1238 }
1239
1240 if (opt)
1241 hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP;
1242 else
1243 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP;
1244 break;
1245
1246 case HCI_FILTER:
1247 {
1248 struct hci_filter *f = &hci_pi(sk)->filter;
1249
1250 uf.type_mask = f->type_mask;
1251 uf.opcode = f->opcode;
1252 uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1253 uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1254 }
1255
1256 len = min_t(unsigned int, len, sizeof(uf));
1257 if (copy_from_user(&uf, optval, len)) {
1258 err = -EFAULT;
1259 break;
1260 }
1261
1262 if (!capable(CAP_NET_RAW)) {
1263 uf.type_mask &= hci_sec_filter.type_mask;
1264 uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0);
1265 uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1);
1266 }
1267
1268 {
1269 struct hci_filter *f = &hci_pi(sk)->filter;
1270
1271 f->type_mask = uf.type_mask;
1272 f->opcode = uf.opcode;
1273 *((u32 *) f->event_mask + 0) = uf.event_mask[0];
1274 *((u32 *) f->event_mask + 1) = uf.event_mask[1];
1275 }
1276 break;
1277
1278 default:
1279 err = -ENOPROTOOPT;
1280 break;
1281 }
1282
1283 done:
1284 release_sock(sk);
1285 return err;
1286 }
1287
1288 static int hci_sock_getsockopt(struct socket *sock, int level, int optname,
1289 char __user *optval, int __user *optlen)
1290 {
1291 struct hci_ufilter uf;
1292 struct sock *sk = sock->sk;
1293 int len, opt, err = 0;
1294
1295 BT_DBG("sk %p, opt %d", sk, optname);
1296
1297 if (get_user(len, optlen))
1298 return -EFAULT;
1299
1300 lock_sock(sk);
1301
1302 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1303 err = -EBADFD;
1304 goto done;
1305 }
1306
1307 switch (optname) {
1308 case HCI_DATA_DIR:
1309 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR)
1310 opt = 1;
1311 else
1312 opt = 0;
1313
1314 if (put_user(opt, optval))
1315 err = -EFAULT;
1316 break;
1317
1318 case HCI_TIME_STAMP:
1319 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP)
1320 opt = 1;
1321 else
1322 opt = 0;
1323
1324 if (put_user(opt, optval))
1325 err = -EFAULT;
1326 break;
1327
1328 case HCI_FILTER:
1329 {
1330 struct hci_filter *f = &hci_pi(sk)->filter;
1331
1332 memset(&uf, 0, sizeof(uf));
1333 uf.type_mask = f->type_mask;
1334 uf.opcode = f->opcode;
1335 uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1336 uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1337 }
1338
1339 len = min_t(unsigned int, len, sizeof(uf));
1340 if (copy_to_user(optval, &uf, len))
1341 err = -EFAULT;
1342 break;
1343
1344 default:
1345 err = -ENOPROTOOPT;
1346 break;
1347 }
1348
1349 done:
1350 release_sock(sk);
1351 return err;
1352 }
1353
1354 static const struct proto_ops hci_sock_ops = {
1355 .family = PF_BLUETOOTH,
1356 .owner = THIS_MODULE,
1357 .release = hci_sock_release,
1358 .bind = hci_sock_bind,
1359 .getname = hci_sock_getname,
1360 .sendmsg = hci_sock_sendmsg,
1361 .recvmsg = hci_sock_recvmsg,
1362 .ioctl = hci_sock_ioctl,
1363 .poll = datagram_poll,
1364 .listen = sock_no_listen,
1365 .shutdown = sock_no_shutdown,
1366 .setsockopt = hci_sock_setsockopt,
1367 .getsockopt = hci_sock_getsockopt,
1368 .connect = sock_no_connect,
1369 .socketpair = sock_no_socketpair,
1370 .accept = sock_no_accept,
1371 .mmap = sock_no_mmap
1372 };
1373
1374 static struct proto hci_sk_proto = {
1375 .name = "HCI",
1376 .owner = THIS_MODULE,
1377 .obj_size = sizeof(struct hci_pinfo)
1378 };
1379
1380 static int hci_sock_create(struct net *net, struct socket *sock, int protocol,
1381 int kern)
1382 {
1383 struct sock *sk;
1384
1385 BT_DBG("sock %p", sock);
1386
1387 if (sock->type != SOCK_RAW)
1388 return -ESOCKTNOSUPPORT;
1389
1390 sock->ops = &hci_sock_ops;
1391
1392 sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern);
1393 if (!sk)
1394 return -ENOMEM;
1395
1396 sock_init_data(sock, sk);
1397
1398 sock_reset_flag(sk, SOCK_ZAPPED);
1399
1400 sk->sk_protocol = protocol;
1401
1402 sock->state = SS_UNCONNECTED;
1403 sk->sk_state = BT_OPEN;
1404
1405 bt_sock_link(&hci_sk_list, sk);
1406 return 0;
1407 }
1408
1409 static const struct net_proto_family hci_sock_family_ops = {
1410 .family = PF_BLUETOOTH,
1411 .owner = THIS_MODULE,
1412 .create = hci_sock_create,
1413 };
1414
1415 int __init hci_sock_init(void)
1416 {
1417 int err;
1418
1419 BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr));
1420
1421 err = proto_register(&hci_sk_proto, 0);
1422 if (err < 0)
1423 return err;
1424
1425 err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops);
1426 if (err < 0) {
1427 BT_ERR("HCI socket registration failed");
1428 goto error;
1429 }
1430
1431 err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL);
1432 if (err < 0) {
1433 BT_ERR("Failed to create HCI proc file");
1434 bt_sock_unregister(BTPROTO_HCI);
1435 goto error;
1436 }
1437
1438 BT_INFO("HCI socket layer initialized");
1439
1440 return 0;
1441
1442 error:
1443 proto_unregister(&hci_sk_proto);
1444 return err;
1445 }
1446
1447 void hci_sock_cleanup(void)
1448 {
1449 bt_procfs_cleanup(&init_net, "hci");
1450 bt_sock_unregister(BTPROTO_HCI);
1451 proto_unregister(&hci_sk_proto);
1452 }
This page took 0.063751 seconds and 5 git commands to generate.