d7f49b63ab0fd17b82828f60278b5f8a99664a1d
[deliverable/linux.git] / net / bridge / br_netfilter.c
1 /*
2 * Handle firewalling
3 * Linux ethernet bridge
4 *
5 * Authors:
6 * Lennert Buytenhek <buytenh@gnu.org>
7 * Bart De Schuymer <bdschuym@pandora.be>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 *
14 * Lennert dedicates this file to Kerstin Wurdinger.
15 */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/ip.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_arp.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_pppox.h>
27 #include <linux/ppp_defs.h>
28 #include <linux/netfilter_bridge.h>
29 #include <linux/netfilter_ipv4.h>
30 #include <linux/netfilter_ipv6.h>
31 #include <linux/netfilter_arp.h>
32 #include <linux/in_route.h>
33 #include <linux/inetdevice.h>
34
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/route.h>
38
39 #include <asm/uaccess.h>
40 #include "br_private.h"
41 #ifdef CONFIG_SYSCTL
42 #include <linux/sysctl.h>
43 #endif
44
45 #define skb_origaddr(skb) (((struct bridge_skb_cb *) \
46 (skb->nf_bridge->data))->daddr.ipv4)
47 #define store_orig_dstaddr(skb) (skb_origaddr(skb) = ip_hdr(skb)->daddr)
48 #define dnat_took_place(skb) (skb_origaddr(skb) != ip_hdr(skb)->daddr)
49
50 #ifdef CONFIG_SYSCTL
51 static struct ctl_table_header *brnf_sysctl_header;
52 static int brnf_call_iptables __read_mostly = 1;
53 static int brnf_call_ip6tables __read_mostly = 1;
54 static int brnf_call_arptables __read_mostly = 1;
55 static int brnf_filter_vlan_tagged __read_mostly = 0;
56 static int brnf_filter_pppoe_tagged __read_mostly = 0;
57 #else
58 #define brnf_call_iptables 1
59 #define brnf_call_ip6tables 1
60 #define brnf_call_arptables 1
61 #define brnf_filter_vlan_tagged 0
62 #define brnf_filter_pppoe_tagged 0
63 #endif
64
65 #define IS_IP(skb) \
66 (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
67
68 #define IS_IPV6(skb) \
69 (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
70
71 #define IS_ARP(skb) \
72 (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
73
74 static inline __be16 vlan_proto(const struct sk_buff *skb)
75 {
76 if (vlan_tx_tag_present(skb))
77 return skb->protocol;
78 else if (skb->protocol == htons(ETH_P_8021Q))
79 return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
80 else
81 return 0;
82 }
83
84 #define IS_VLAN_IP(skb) \
85 (vlan_proto(skb) == htons(ETH_P_IP) && \
86 brnf_filter_vlan_tagged)
87
88 #define IS_VLAN_IPV6(skb) \
89 (vlan_proto(skb) == htons(ETH_P_IPV6) && \
90 brnf_filter_vlan_tagged)
91
92 #define IS_VLAN_ARP(skb) \
93 (vlan_proto(skb) == htons(ETH_P_ARP) && \
94 brnf_filter_vlan_tagged)
95
96 static inline __be16 pppoe_proto(const struct sk_buff *skb)
97 {
98 return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
99 sizeof(struct pppoe_hdr)));
100 }
101
102 #define IS_PPPOE_IP(skb) \
103 (skb->protocol == htons(ETH_P_PPP_SES) && \
104 pppoe_proto(skb) == htons(PPP_IP) && \
105 brnf_filter_pppoe_tagged)
106
107 #define IS_PPPOE_IPV6(skb) \
108 (skb->protocol == htons(ETH_P_PPP_SES) && \
109 pppoe_proto(skb) == htons(PPP_IPV6) && \
110 brnf_filter_pppoe_tagged)
111
112 static void fake_update_pmtu(struct dst_entry *dst, u32 mtu)
113 {
114 }
115
116 static u32 *fake_cow_metrics(struct dst_entry *dst, unsigned long old)
117 {
118 return NULL;
119 }
120
121 static struct neighbour *fake_neigh_lookup(const struct dst_entry *dst, const void *daddr)
122 {
123 return NULL;
124 }
125
126 static unsigned int fake_mtu(const struct dst_entry *dst)
127 {
128 return dst->dev->mtu;
129 }
130
131 static struct dst_ops fake_dst_ops = {
132 .family = AF_INET,
133 .protocol = cpu_to_be16(ETH_P_IP),
134 .update_pmtu = fake_update_pmtu,
135 .cow_metrics = fake_cow_metrics,
136 .neigh_lookup = fake_neigh_lookup,
137 .mtu = fake_mtu,
138 };
139
140 /*
141 * Initialize bogus route table used to keep netfilter happy.
142 * Currently, we fill in the PMTU entry because netfilter
143 * refragmentation needs it, and the rt_flags entry because
144 * ipt_REJECT needs it. Future netfilter modules might
145 * require us to fill additional fields.
146 */
147 static const u32 br_dst_default_metrics[RTAX_MAX] = {
148 [RTAX_MTU - 1] = 1500,
149 };
150
151 void br_netfilter_rtable_init(struct net_bridge *br)
152 {
153 struct rtable *rt = &br->fake_rtable;
154
155 atomic_set(&rt->dst.__refcnt, 1);
156 rt->dst.dev = br->dev;
157 rt->dst.path = &rt->dst;
158 dst_init_metrics(&rt->dst, br_dst_default_metrics, true);
159 rt->dst.flags = DST_NOXFRM | DST_NOPEER | DST_FAKE_RTABLE;
160 rt->dst.ops = &fake_dst_ops;
161 }
162
163 static inline struct rtable *bridge_parent_rtable(const struct net_device *dev)
164 {
165 struct net_bridge_port *port;
166
167 port = br_port_get_rcu(dev);
168 return port ? &port->br->fake_rtable : NULL;
169 }
170
171 static inline struct net_device *bridge_parent(const struct net_device *dev)
172 {
173 struct net_bridge_port *port;
174
175 port = br_port_get_rcu(dev);
176 return port ? port->br->dev : NULL;
177 }
178
179 static inline struct nf_bridge_info *nf_bridge_alloc(struct sk_buff *skb)
180 {
181 skb->nf_bridge = kzalloc(sizeof(struct nf_bridge_info), GFP_ATOMIC);
182 if (likely(skb->nf_bridge))
183 atomic_set(&(skb->nf_bridge->use), 1);
184
185 return skb->nf_bridge;
186 }
187
188 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
189 {
190 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
191
192 if (atomic_read(&nf_bridge->use) > 1) {
193 struct nf_bridge_info *tmp = nf_bridge_alloc(skb);
194
195 if (tmp) {
196 memcpy(tmp, nf_bridge, sizeof(struct nf_bridge_info));
197 atomic_set(&tmp->use, 1);
198 }
199 nf_bridge_put(nf_bridge);
200 nf_bridge = tmp;
201 }
202 return nf_bridge;
203 }
204
205 static inline void nf_bridge_push_encap_header(struct sk_buff *skb)
206 {
207 unsigned int len = nf_bridge_encap_header_len(skb);
208
209 skb_push(skb, len);
210 skb->network_header -= len;
211 }
212
213 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
214 {
215 unsigned int len = nf_bridge_encap_header_len(skb);
216
217 skb_pull(skb, len);
218 skb->network_header += len;
219 }
220
221 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
222 {
223 unsigned int len = nf_bridge_encap_header_len(skb);
224
225 skb_pull_rcsum(skb, len);
226 skb->network_header += len;
227 }
228
229 static inline void nf_bridge_save_header(struct sk_buff *skb)
230 {
231 int header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
232
233 skb_copy_from_linear_data_offset(skb, -header_size,
234 skb->nf_bridge->data, header_size);
235 }
236
237 static inline void nf_bridge_update_protocol(struct sk_buff *skb)
238 {
239 if (skb->nf_bridge->mask & BRNF_8021Q)
240 skb->protocol = htons(ETH_P_8021Q);
241 else if (skb->nf_bridge->mask & BRNF_PPPoE)
242 skb->protocol = htons(ETH_P_PPP_SES);
243 }
244
245 /* When handing a packet over to the IP layer
246 * check whether we have a skb that is in the
247 * expected format
248 */
249
250 static int br_parse_ip_options(struct sk_buff *skb)
251 {
252 struct ip_options *opt;
253 const struct iphdr *iph;
254 struct net_device *dev = skb->dev;
255 u32 len;
256
257 iph = ip_hdr(skb);
258 opt = &(IPCB(skb)->opt);
259
260 /* Basic sanity checks */
261 if (iph->ihl < 5 || iph->version != 4)
262 goto inhdr_error;
263
264 if (!pskb_may_pull(skb, iph->ihl*4))
265 goto inhdr_error;
266
267 iph = ip_hdr(skb);
268 if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
269 goto inhdr_error;
270
271 len = ntohs(iph->tot_len);
272 if (skb->len < len) {
273 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INTRUNCATEDPKTS);
274 goto drop;
275 } else if (len < (iph->ihl*4))
276 goto inhdr_error;
277
278 if (pskb_trim_rcsum(skb, len)) {
279 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);
280 goto drop;
281 }
282
283 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
284 if (iph->ihl == 5)
285 return 0;
286
287 opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
288 if (ip_options_compile(dev_net(dev), opt, skb))
289 goto inhdr_error;
290
291 /* Check correct handling of SRR option */
292 if (unlikely(opt->srr)) {
293 struct in_device *in_dev = __in_dev_get_rcu(dev);
294 if (in_dev && !IN_DEV_SOURCE_ROUTE(in_dev))
295 goto drop;
296
297 if (ip_options_rcv_srr(skb))
298 goto drop;
299 }
300
301 return 0;
302
303 inhdr_error:
304 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
305 drop:
306 return -1;
307 }
308
309 /* Fill in the header for fragmented IP packets handled by
310 * the IPv4 connection tracking code.
311 */
312 int nf_bridge_copy_header(struct sk_buff *skb)
313 {
314 int err;
315 unsigned int header_size;
316
317 nf_bridge_update_protocol(skb);
318 header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
319 err = skb_cow_head(skb, header_size);
320 if (err)
321 return err;
322
323 skb_copy_to_linear_data_offset(skb, -header_size,
324 skb->nf_bridge->data, header_size);
325 __skb_push(skb, nf_bridge_encap_header_len(skb));
326 return 0;
327 }
328
329 /* PF_BRIDGE/PRE_ROUTING *********************************************/
330 /* Undo the changes made for ip6tables PREROUTING and continue the
331 * bridge PRE_ROUTING hook. */
332 static int br_nf_pre_routing_finish_ipv6(struct sk_buff *skb)
333 {
334 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
335 struct rtable *rt;
336
337 if (nf_bridge->mask & BRNF_PKT_TYPE) {
338 skb->pkt_type = PACKET_OTHERHOST;
339 nf_bridge->mask ^= BRNF_PKT_TYPE;
340 }
341 nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
342
343 rt = bridge_parent_rtable(nf_bridge->physindev);
344 if (!rt) {
345 kfree_skb(skb);
346 return 0;
347 }
348 skb_dst_set_noref(skb, &rt->dst);
349
350 skb->dev = nf_bridge->physindev;
351 nf_bridge_update_protocol(skb);
352 nf_bridge_push_encap_header(skb);
353 NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
354 br_handle_frame_finish, 1);
355
356 return 0;
357 }
358
359 /* Obtain the correct destination MAC address, while preserving the original
360 * source MAC address. If we already know this address, we just copy it. If we
361 * don't, we use the neighbour framework to find out. In both cases, we make
362 * sure that br_handle_frame_finish() is called afterwards.
363 */
364 static int br_nf_pre_routing_finish_bridge(struct sk_buff *skb)
365 {
366 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
367 struct neighbour *neigh;
368 struct dst_entry *dst;
369
370 skb->dev = bridge_parent(skb->dev);
371 if (!skb->dev)
372 goto free_skb;
373 dst = skb_dst(skb);
374 neigh = dst_get_neighbour_noref(dst);
375 if (neigh->hh.hh_len) {
376 neigh_hh_bridge(&neigh->hh, skb);
377 skb->dev = nf_bridge->physindev;
378 return br_handle_frame_finish(skb);
379 } else {
380 /* the neighbour function below overwrites the complete
381 * MAC header, so we save the Ethernet source address and
382 * protocol number. */
383 skb_copy_from_linear_data_offset(skb, -(ETH_HLEN-ETH_ALEN), skb->nf_bridge->data, ETH_HLEN-ETH_ALEN);
384 /* tell br_dev_xmit to continue with forwarding */
385 nf_bridge->mask |= BRNF_BRIDGED_DNAT;
386 return neigh->output(neigh, skb);
387 }
388 free_skb:
389 kfree_skb(skb);
390 return 0;
391 }
392
393 /* This requires some explaining. If DNAT has taken place,
394 * we will need to fix up the destination Ethernet address.
395 *
396 * There are two cases to consider:
397 * 1. The packet was DNAT'ed to a device in the same bridge
398 * port group as it was received on. We can still bridge
399 * the packet.
400 * 2. The packet was DNAT'ed to a different device, either
401 * a non-bridged device or another bridge port group.
402 * The packet will need to be routed.
403 *
404 * The correct way of distinguishing between these two cases is to
405 * call ip_route_input() and to look at skb->dst->dev, which is
406 * changed to the destination device if ip_route_input() succeeds.
407 *
408 * Let's first consider the case that ip_route_input() succeeds:
409 *
410 * If the output device equals the logical bridge device the packet
411 * came in on, we can consider this bridging. The corresponding MAC
412 * address will be obtained in br_nf_pre_routing_finish_bridge.
413 * Otherwise, the packet is considered to be routed and we just
414 * change the destination MAC address so that the packet will
415 * later be passed up to the IP stack to be routed. For a redirected
416 * packet, ip_route_input() will give back the localhost as output device,
417 * which differs from the bridge device.
418 *
419 * Let's now consider the case that ip_route_input() fails:
420 *
421 * This can be because the destination address is martian, in which case
422 * the packet will be dropped.
423 * If IP forwarding is disabled, ip_route_input() will fail, while
424 * ip_route_output_key() can return success. The source
425 * address for ip_route_output_key() is set to zero, so ip_route_output_key()
426 * thinks we're handling a locally generated packet and won't care
427 * if IP forwarding is enabled. If the output device equals the logical bridge
428 * device, we proceed as if ip_route_input() succeeded. If it differs from the
429 * logical bridge port or if ip_route_output_key() fails we drop the packet.
430 */
431 static int br_nf_pre_routing_finish(struct sk_buff *skb)
432 {
433 struct net_device *dev = skb->dev;
434 struct iphdr *iph = ip_hdr(skb);
435 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
436 struct rtable *rt;
437 int err;
438
439 if (nf_bridge->mask & BRNF_PKT_TYPE) {
440 skb->pkt_type = PACKET_OTHERHOST;
441 nf_bridge->mask ^= BRNF_PKT_TYPE;
442 }
443 nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
444 if (dnat_took_place(skb)) {
445 if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
446 struct in_device *in_dev = __in_dev_get_rcu(dev);
447
448 /* If err equals -EHOSTUNREACH the error is due to a
449 * martian destination or due to the fact that
450 * forwarding is disabled. For most martian packets,
451 * ip_route_output_key() will fail. It won't fail for 2 types of
452 * martian destinations: loopback destinations and destination
453 * 0.0.0.0. In both cases the packet will be dropped because the
454 * destination is the loopback device and not the bridge. */
455 if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
456 goto free_skb;
457
458 rt = ip_route_output(dev_net(dev), iph->daddr, 0,
459 RT_TOS(iph->tos), 0);
460 if (!IS_ERR(rt)) {
461 /* - Bridged-and-DNAT'ed traffic doesn't
462 * require ip_forwarding. */
463 if (rt->dst.dev == dev) {
464 skb_dst_set(skb, &rt->dst);
465 goto bridged_dnat;
466 }
467 ip_rt_put(rt);
468 }
469 free_skb:
470 kfree_skb(skb);
471 return 0;
472 } else {
473 if (skb_dst(skb)->dev == dev) {
474 bridged_dnat:
475 skb->dev = nf_bridge->physindev;
476 nf_bridge_update_protocol(skb);
477 nf_bridge_push_encap_header(skb);
478 NF_HOOK_THRESH(NFPROTO_BRIDGE,
479 NF_BR_PRE_ROUTING,
480 skb, skb->dev, NULL,
481 br_nf_pre_routing_finish_bridge,
482 1);
483 return 0;
484 }
485 memcpy(eth_hdr(skb)->h_dest, dev->dev_addr, ETH_ALEN);
486 skb->pkt_type = PACKET_HOST;
487 }
488 } else {
489 rt = bridge_parent_rtable(nf_bridge->physindev);
490 if (!rt) {
491 kfree_skb(skb);
492 return 0;
493 }
494 skb_dst_set_noref(skb, &rt->dst);
495 }
496
497 skb->dev = nf_bridge->physindev;
498 nf_bridge_update_protocol(skb);
499 nf_bridge_push_encap_header(skb);
500 NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
501 br_handle_frame_finish, 1);
502
503 return 0;
504 }
505
506 /* Some common code for IPv4/IPv6 */
507 static struct net_device *setup_pre_routing(struct sk_buff *skb)
508 {
509 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
510
511 if (skb->pkt_type == PACKET_OTHERHOST) {
512 skb->pkt_type = PACKET_HOST;
513 nf_bridge->mask |= BRNF_PKT_TYPE;
514 }
515
516 nf_bridge->mask |= BRNF_NF_BRIDGE_PREROUTING;
517 nf_bridge->physindev = skb->dev;
518 skb->dev = bridge_parent(skb->dev);
519 if (skb->protocol == htons(ETH_P_8021Q))
520 nf_bridge->mask |= BRNF_8021Q;
521 else if (skb->protocol == htons(ETH_P_PPP_SES))
522 nf_bridge->mask |= BRNF_PPPoE;
523
524 return skb->dev;
525 }
526
527 /* We only check the length. A bridge shouldn't do any hop-by-hop stuff anyway */
528 static int check_hbh_len(struct sk_buff *skb)
529 {
530 unsigned char *raw = (u8 *)(ipv6_hdr(skb) + 1);
531 u32 pkt_len;
532 const unsigned char *nh = skb_network_header(skb);
533 int off = raw - nh;
534 int len = (raw[1] + 1) << 3;
535
536 if ((raw + len) - skb->data > skb_headlen(skb))
537 goto bad;
538
539 off += 2;
540 len -= 2;
541
542 while (len > 0) {
543 int optlen = nh[off + 1] + 2;
544
545 switch (nh[off]) {
546 case IPV6_TLV_PAD0:
547 optlen = 1;
548 break;
549
550 case IPV6_TLV_PADN:
551 break;
552
553 case IPV6_TLV_JUMBO:
554 if (nh[off + 1] != 4 || (off & 3) != 2)
555 goto bad;
556 pkt_len = ntohl(*(__be32 *) (nh + off + 2));
557 if (pkt_len <= IPV6_MAXPLEN ||
558 ipv6_hdr(skb)->payload_len)
559 goto bad;
560 if (pkt_len > skb->len - sizeof(struct ipv6hdr))
561 goto bad;
562 if (pskb_trim_rcsum(skb,
563 pkt_len + sizeof(struct ipv6hdr)))
564 goto bad;
565 nh = skb_network_header(skb);
566 break;
567 default:
568 if (optlen > len)
569 goto bad;
570 break;
571 }
572 off += optlen;
573 len -= optlen;
574 }
575 if (len == 0)
576 return 0;
577 bad:
578 return -1;
579
580 }
581
582 /* Replicate the checks that IPv6 does on packet reception and pass the packet
583 * to ip6tables, which doesn't support NAT, so things are fairly simple. */
584 static unsigned int br_nf_pre_routing_ipv6(unsigned int hook,
585 struct sk_buff *skb,
586 const struct net_device *in,
587 const struct net_device *out,
588 int (*okfn)(struct sk_buff *))
589 {
590 const struct ipv6hdr *hdr;
591 u32 pkt_len;
592
593 if (skb->len < sizeof(struct ipv6hdr))
594 return NF_DROP;
595
596 if (!pskb_may_pull(skb, sizeof(struct ipv6hdr)))
597 return NF_DROP;
598
599 hdr = ipv6_hdr(skb);
600
601 if (hdr->version != 6)
602 return NF_DROP;
603
604 pkt_len = ntohs(hdr->payload_len);
605
606 if (pkt_len || hdr->nexthdr != NEXTHDR_HOP) {
607 if (pkt_len + sizeof(struct ipv6hdr) > skb->len)
608 return NF_DROP;
609 if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr)))
610 return NF_DROP;
611 }
612 if (hdr->nexthdr == NEXTHDR_HOP && check_hbh_len(skb))
613 return NF_DROP;
614
615 nf_bridge_put(skb->nf_bridge);
616 if (!nf_bridge_alloc(skb))
617 return NF_DROP;
618 if (!setup_pre_routing(skb))
619 return NF_DROP;
620
621 skb->protocol = htons(ETH_P_IPV6);
622 NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
623 br_nf_pre_routing_finish_ipv6);
624
625 return NF_STOLEN;
626 }
627
628 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
629 * Replicate the checks that IPv4 does on packet reception.
630 * Set skb->dev to the bridge device (i.e. parent of the
631 * receiving device) to make netfilter happy, the REDIRECT
632 * target in particular. Save the original destination IP
633 * address to be able to detect DNAT afterwards. */
634 static unsigned int br_nf_pre_routing(unsigned int hook, struct sk_buff *skb,
635 const struct net_device *in,
636 const struct net_device *out,
637 int (*okfn)(struct sk_buff *))
638 {
639 struct net_bridge_port *p;
640 struct net_bridge *br;
641 __u32 len = nf_bridge_encap_header_len(skb);
642
643 if (unlikely(!pskb_may_pull(skb, len)))
644 return NF_DROP;
645
646 p = br_port_get_rcu(in);
647 if (p == NULL)
648 return NF_DROP;
649 br = p->br;
650
651 if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb)) {
652 if (!brnf_call_ip6tables && !br->nf_call_ip6tables)
653 return NF_ACCEPT;
654
655 nf_bridge_pull_encap_header_rcsum(skb);
656 return br_nf_pre_routing_ipv6(hook, skb, in, out, okfn);
657 }
658
659 if (!brnf_call_iptables && !br->nf_call_iptables)
660 return NF_ACCEPT;
661
662 if (!IS_IP(skb) && !IS_VLAN_IP(skb) && !IS_PPPOE_IP(skb))
663 return NF_ACCEPT;
664
665 nf_bridge_pull_encap_header_rcsum(skb);
666
667 if (br_parse_ip_options(skb))
668 return NF_DROP;
669
670 nf_bridge_put(skb->nf_bridge);
671 if (!nf_bridge_alloc(skb))
672 return NF_DROP;
673 if (!setup_pre_routing(skb))
674 return NF_DROP;
675 store_orig_dstaddr(skb);
676 skb->protocol = htons(ETH_P_IP);
677
678 NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
679 br_nf_pre_routing_finish);
680
681 return NF_STOLEN;
682 }
683
684
685 /* PF_BRIDGE/LOCAL_IN ************************************************/
686 /* The packet is locally destined, which requires a real
687 * dst_entry, so detach the fake one. On the way up, the
688 * packet would pass through PRE_ROUTING again (which already
689 * took place when the packet entered the bridge), but we
690 * register an IPv4 PRE_ROUTING 'sabotage' hook that will
691 * prevent this from happening. */
692 static unsigned int br_nf_local_in(unsigned int hook, struct sk_buff *skb,
693 const struct net_device *in,
694 const struct net_device *out,
695 int (*okfn)(struct sk_buff *))
696 {
697 br_drop_fake_rtable(skb);
698 return NF_ACCEPT;
699 }
700
701 /* PF_BRIDGE/FORWARD *************************************************/
702 static int br_nf_forward_finish(struct sk_buff *skb)
703 {
704 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
705 struct net_device *in;
706
707 if (!IS_ARP(skb) && !IS_VLAN_ARP(skb)) {
708 in = nf_bridge->physindev;
709 if (nf_bridge->mask & BRNF_PKT_TYPE) {
710 skb->pkt_type = PACKET_OTHERHOST;
711 nf_bridge->mask ^= BRNF_PKT_TYPE;
712 }
713 nf_bridge_update_protocol(skb);
714 } else {
715 in = *((struct net_device **)(skb->cb));
716 }
717 nf_bridge_push_encap_header(skb);
718
719 NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_FORWARD, skb, in,
720 skb->dev, br_forward_finish, 1);
721 return 0;
722 }
723
724
725 /* This is the 'purely bridged' case. For IP, we pass the packet to
726 * netfilter with indev and outdev set to the bridge device,
727 * but we are still able to filter on the 'real' indev/outdev
728 * because of the physdev module. For ARP, indev and outdev are the
729 * bridge ports. */
730 static unsigned int br_nf_forward_ip(unsigned int hook, struct sk_buff *skb,
731 const struct net_device *in,
732 const struct net_device *out,
733 int (*okfn)(struct sk_buff *))
734 {
735 struct nf_bridge_info *nf_bridge;
736 struct net_device *parent;
737 u_int8_t pf;
738
739 if (!skb->nf_bridge)
740 return NF_ACCEPT;
741
742 /* Need exclusive nf_bridge_info since we might have multiple
743 * different physoutdevs. */
744 if (!nf_bridge_unshare(skb))
745 return NF_DROP;
746
747 parent = bridge_parent(out);
748 if (!parent)
749 return NF_DROP;
750
751 if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
752 pf = PF_INET;
753 else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
754 pf = PF_INET6;
755 else
756 return NF_ACCEPT;
757
758 nf_bridge_pull_encap_header(skb);
759
760 nf_bridge = skb->nf_bridge;
761 if (skb->pkt_type == PACKET_OTHERHOST) {
762 skb->pkt_type = PACKET_HOST;
763 nf_bridge->mask |= BRNF_PKT_TYPE;
764 }
765
766 if (pf == PF_INET && br_parse_ip_options(skb))
767 return NF_DROP;
768
769 /* The physdev module checks on this */
770 nf_bridge->mask |= BRNF_BRIDGED;
771 nf_bridge->physoutdev = skb->dev;
772 if (pf == PF_INET)
773 skb->protocol = htons(ETH_P_IP);
774 else
775 skb->protocol = htons(ETH_P_IPV6);
776
777 NF_HOOK(pf, NF_INET_FORWARD, skb, bridge_parent(in), parent,
778 br_nf_forward_finish);
779
780 return NF_STOLEN;
781 }
782
783 static unsigned int br_nf_forward_arp(unsigned int hook, struct sk_buff *skb,
784 const struct net_device *in,
785 const struct net_device *out,
786 int (*okfn)(struct sk_buff *))
787 {
788 struct net_bridge_port *p;
789 struct net_bridge *br;
790 struct net_device **d = (struct net_device **)(skb->cb);
791
792 p = br_port_get_rcu(out);
793 if (p == NULL)
794 return NF_ACCEPT;
795 br = p->br;
796
797 if (!brnf_call_arptables && !br->nf_call_arptables)
798 return NF_ACCEPT;
799
800 if (!IS_ARP(skb)) {
801 if (!IS_VLAN_ARP(skb))
802 return NF_ACCEPT;
803 nf_bridge_pull_encap_header(skb);
804 }
805
806 if (arp_hdr(skb)->ar_pln != 4) {
807 if (IS_VLAN_ARP(skb))
808 nf_bridge_push_encap_header(skb);
809 return NF_ACCEPT;
810 }
811 *d = (struct net_device *)in;
812 NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, skb, (struct net_device *)in,
813 (struct net_device *)out, br_nf_forward_finish);
814
815 return NF_STOLEN;
816 }
817
818 #if IS_ENABLED(CONFIG_NF_CONNTRACK_IPV4)
819 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
820 {
821 int ret;
822
823 if (skb->nfct != NULL && skb->protocol == htons(ETH_P_IP) &&
824 skb->len + nf_bridge_mtu_reduction(skb) > skb->dev->mtu &&
825 !skb_is_gso(skb)) {
826 if (br_parse_ip_options(skb))
827 /* Drop invalid packet */
828 return NF_DROP;
829 ret = ip_fragment(skb, br_dev_queue_push_xmit);
830 } else
831 ret = br_dev_queue_push_xmit(skb);
832
833 return ret;
834 }
835 #else
836 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
837 {
838 return br_dev_queue_push_xmit(skb);
839 }
840 #endif
841
842 /* PF_BRIDGE/POST_ROUTING ********************************************/
843 static unsigned int br_nf_post_routing(unsigned int hook, struct sk_buff *skb,
844 const struct net_device *in,
845 const struct net_device *out,
846 int (*okfn)(struct sk_buff *))
847 {
848 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
849 struct net_device *realoutdev = bridge_parent(skb->dev);
850 u_int8_t pf;
851
852 if (!nf_bridge || !(nf_bridge->mask & BRNF_BRIDGED))
853 return NF_ACCEPT;
854
855 if (!realoutdev)
856 return NF_DROP;
857
858 if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
859 pf = PF_INET;
860 else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
861 pf = PF_INET6;
862 else
863 return NF_ACCEPT;
864
865 /* We assume any code from br_dev_queue_push_xmit onwards doesn't care
866 * about the value of skb->pkt_type. */
867 if (skb->pkt_type == PACKET_OTHERHOST) {
868 skb->pkt_type = PACKET_HOST;
869 nf_bridge->mask |= BRNF_PKT_TYPE;
870 }
871
872 nf_bridge_pull_encap_header(skb);
873 nf_bridge_save_header(skb);
874 if (pf == PF_INET)
875 skb->protocol = htons(ETH_P_IP);
876 else
877 skb->protocol = htons(ETH_P_IPV6);
878
879 NF_HOOK(pf, NF_INET_POST_ROUTING, skb, NULL, realoutdev,
880 br_nf_dev_queue_xmit);
881
882 return NF_STOLEN;
883 }
884
885 /* IP/SABOTAGE *****************************************************/
886 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
887 * for the second time. */
888 static unsigned int ip_sabotage_in(unsigned int hook, struct sk_buff *skb,
889 const struct net_device *in,
890 const struct net_device *out,
891 int (*okfn)(struct sk_buff *))
892 {
893 if (skb->nf_bridge &&
894 !(skb->nf_bridge->mask & BRNF_NF_BRIDGE_PREROUTING)) {
895 return NF_STOP;
896 }
897
898 return NF_ACCEPT;
899 }
900
901 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
902 * br_dev_queue_push_xmit is called afterwards */
903 static struct nf_hook_ops br_nf_ops[] __read_mostly = {
904 {
905 .hook = br_nf_pre_routing,
906 .owner = THIS_MODULE,
907 .pf = PF_BRIDGE,
908 .hooknum = NF_BR_PRE_ROUTING,
909 .priority = NF_BR_PRI_BRNF,
910 },
911 {
912 .hook = br_nf_local_in,
913 .owner = THIS_MODULE,
914 .pf = PF_BRIDGE,
915 .hooknum = NF_BR_LOCAL_IN,
916 .priority = NF_BR_PRI_BRNF,
917 },
918 {
919 .hook = br_nf_forward_ip,
920 .owner = THIS_MODULE,
921 .pf = PF_BRIDGE,
922 .hooknum = NF_BR_FORWARD,
923 .priority = NF_BR_PRI_BRNF - 1,
924 },
925 {
926 .hook = br_nf_forward_arp,
927 .owner = THIS_MODULE,
928 .pf = PF_BRIDGE,
929 .hooknum = NF_BR_FORWARD,
930 .priority = NF_BR_PRI_BRNF,
931 },
932 {
933 .hook = br_nf_post_routing,
934 .owner = THIS_MODULE,
935 .pf = PF_BRIDGE,
936 .hooknum = NF_BR_POST_ROUTING,
937 .priority = NF_BR_PRI_LAST,
938 },
939 {
940 .hook = ip_sabotage_in,
941 .owner = THIS_MODULE,
942 .pf = PF_INET,
943 .hooknum = NF_INET_PRE_ROUTING,
944 .priority = NF_IP_PRI_FIRST,
945 },
946 {
947 .hook = ip_sabotage_in,
948 .owner = THIS_MODULE,
949 .pf = PF_INET6,
950 .hooknum = NF_INET_PRE_ROUTING,
951 .priority = NF_IP6_PRI_FIRST,
952 },
953 };
954
955 #ifdef CONFIG_SYSCTL
956 static
957 int brnf_sysctl_call_tables(ctl_table * ctl, int write,
958 void __user * buffer, size_t * lenp, loff_t * ppos)
959 {
960 int ret;
961
962 ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
963
964 if (write && *(int *)(ctl->data))
965 *(int *)(ctl->data) = 1;
966 return ret;
967 }
968
969 static ctl_table brnf_table[] = {
970 {
971 .procname = "bridge-nf-call-arptables",
972 .data = &brnf_call_arptables,
973 .maxlen = sizeof(int),
974 .mode = 0644,
975 .proc_handler = brnf_sysctl_call_tables,
976 },
977 {
978 .procname = "bridge-nf-call-iptables",
979 .data = &brnf_call_iptables,
980 .maxlen = sizeof(int),
981 .mode = 0644,
982 .proc_handler = brnf_sysctl_call_tables,
983 },
984 {
985 .procname = "bridge-nf-call-ip6tables",
986 .data = &brnf_call_ip6tables,
987 .maxlen = sizeof(int),
988 .mode = 0644,
989 .proc_handler = brnf_sysctl_call_tables,
990 },
991 {
992 .procname = "bridge-nf-filter-vlan-tagged",
993 .data = &brnf_filter_vlan_tagged,
994 .maxlen = sizeof(int),
995 .mode = 0644,
996 .proc_handler = brnf_sysctl_call_tables,
997 },
998 {
999 .procname = "bridge-nf-filter-pppoe-tagged",
1000 .data = &brnf_filter_pppoe_tagged,
1001 .maxlen = sizeof(int),
1002 .mode = 0644,
1003 .proc_handler = brnf_sysctl_call_tables,
1004 },
1005 { }
1006 };
1007
1008 static struct ctl_path brnf_path[] = {
1009 { .procname = "net", },
1010 { .procname = "bridge", },
1011 { }
1012 };
1013 #endif
1014
1015 int __init br_netfilter_init(void)
1016 {
1017 int ret;
1018
1019 ret = dst_entries_init(&fake_dst_ops);
1020 if (ret < 0)
1021 return ret;
1022
1023 ret = nf_register_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1024 if (ret < 0) {
1025 dst_entries_destroy(&fake_dst_ops);
1026 return ret;
1027 }
1028 #ifdef CONFIG_SYSCTL
1029 brnf_sysctl_header = register_sysctl_paths(brnf_path, brnf_table);
1030 if (brnf_sysctl_header == NULL) {
1031 printk(KERN_WARNING
1032 "br_netfilter: can't register to sysctl.\n");
1033 nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1034 dst_entries_destroy(&fake_dst_ops);
1035 return -ENOMEM;
1036 }
1037 #endif
1038 printk(KERN_NOTICE "Bridge firewalling registered\n");
1039 return 0;
1040 }
1041
1042 void br_netfilter_fini(void)
1043 {
1044 nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1045 #ifdef CONFIG_SYSCTL
1046 unregister_sysctl_table(brnf_sysctl_header);
1047 #endif
1048 dst_entries_destroy(&fake_dst_ops);
1049 }
This page took 0.053748 seconds and 5 git commands to generate.