crypto: compress - remove unused pcomp interface
[deliverable/linux.git] / net / ceph / crypto.c
1
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/err.h>
5 #include <linux/scatterlist.h>
6 #include <linux/slab.h>
7 #include <crypto/aes.h>
8 #include <crypto/skcipher.h>
9 #include <linux/key-type.h>
10
11 #include <keys/ceph-type.h>
12 #include <keys/user-type.h>
13 #include <linux/ceph/decode.h>
14 #include "crypto.h"
15
16 int ceph_crypto_key_clone(struct ceph_crypto_key *dst,
17 const struct ceph_crypto_key *src)
18 {
19 memcpy(dst, src, sizeof(struct ceph_crypto_key));
20 dst->key = kmemdup(src->key, src->len, GFP_NOFS);
21 if (!dst->key)
22 return -ENOMEM;
23 return 0;
24 }
25
26 int ceph_crypto_key_encode(struct ceph_crypto_key *key, void **p, void *end)
27 {
28 if (*p + sizeof(u16) + sizeof(key->created) +
29 sizeof(u16) + key->len > end)
30 return -ERANGE;
31 ceph_encode_16(p, key->type);
32 ceph_encode_copy(p, &key->created, sizeof(key->created));
33 ceph_encode_16(p, key->len);
34 ceph_encode_copy(p, key->key, key->len);
35 return 0;
36 }
37
38 int ceph_crypto_key_decode(struct ceph_crypto_key *key, void **p, void *end)
39 {
40 ceph_decode_need(p, end, 2*sizeof(u16) + sizeof(key->created), bad);
41 key->type = ceph_decode_16(p);
42 ceph_decode_copy(p, &key->created, sizeof(key->created));
43 key->len = ceph_decode_16(p);
44 ceph_decode_need(p, end, key->len, bad);
45 key->key = kmalloc(key->len, GFP_NOFS);
46 if (!key->key)
47 return -ENOMEM;
48 ceph_decode_copy(p, key->key, key->len);
49 return 0;
50
51 bad:
52 dout("failed to decode crypto key\n");
53 return -EINVAL;
54 }
55
56 int ceph_crypto_key_unarmor(struct ceph_crypto_key *key, const char *inkey)
57 {
58 int inlen = strlen(inkey);
59 int blen = inlen * 3 / 4;
60 void *buf, *p;
61 int ret;
62
63 dout("crypto_key_unarmor %s\n", inkey);
64 buf = kmalloc(blen, GFP_NOFS);
65 if (!buf)
66 return -ENOMEM;
67 blen = ceph_unarmor(buf, inkey, inkey+inlen);
68 if (blen < 0) {
69 kfree(buf);
70 return blen;
71 }
72
73 p = buf;
74 ret = ceph_crypto_key_decode(key, &p, p + blen);
75 kfree(buf);
76 if (ret)
77 return ret;
78 dout("crypto_key_unarmor key %p type %d len %d\n", key,
79 key->type, key->len);
80 return 0;
81 }
82
83 static struct crypto_skcipher *ceph_crypto_alloc_cipher(void)
84 {
85 return crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
86 }
87
88 static const u8 *aes_iv = (u8 *)CEPH_AES_IV;
89
90 /*
91 * Should be used for buffers allocated with ceph_kvmalloc().
92 * Currently these are encrypt out-buffer (ceph_buffer) and decrypt
93 * in-buffer (msg front).
94 *
95 * Dispose of @sgt with teardown_sgtable().
96 *
97 * @prealloc_sg is to avoid memory allocation inside sg_alloc_table()
98 * in cases where a single sg is sufficient. No attempt to reduce the
99 * number of sgs by squeezing physically contiguous pages together is
100 * made though, for simplicity.
101 */
102 static int setup_sgtable(struct sg_table *sgt, struct scatterlist *prealloc_sg,
103 const void *buf, unsigned int buf_len)
104 {
105 struct scatterlist *sg;
106 const bool is_vmalloc = is_vmalloc_addr(buf);
107 unsigned int off = offset_in_page(buf);
108 unsigned int chunk_cnt = 1;
109 unsigned int chunk_len = PAGE_ALIGN(off + buf_len);
110 int i;
111 int ret;
112
113 if (buf_len == 0) {
114 memset(sgt, 0, sizeof(*sgt));
115 return -EINVAL;
116 }
117
118 if (is_vmalloc) {
119 chunk_cnt = chunk_len >> PAGE_SHIFT;
120 chunk_len = PAGE_SIZE;
121 }
122
123 if (chunk_cnt > 1) {
124 ret = sg_alloc_table(sgt, chunk_cnt, GFP_NOFS);
125 if (ret)
126 return ret;
127 } else {
128 WARN_ON(chunk_cnt != 1);
129 sg_init_table(prealloc_sg, 1);
130 sgt->sgl = prealloc_sg;
131 sgt->nents = sgt->orig_nents = 1;
132 }
133
134 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) {
135 struct page *page;
136 unsigned int len = min(chunk_len - off, buf_len);
137
138 if (is_vmalloc)
139 page = vmalloc_to_page(buf);
140 else
141 page = virt_to_page(buf);
142
143 sg_set_page(sg, page, len, off);
144
145 off = 0;
146 buf += len;
147 buf_len -= len;
148 }
149 WARN_ON(buf_len != 0);
150
151 return 0;
152 }
153
154 static void teardown_sgtable(struct sg_table *sgt)
155 {
156 if (sgt->orig_nents > 1)
157 sg_free_table(sgt);
158 }
159
160 static int ceph_aes_encrypt(const void *key, int key_len,
161 void *dst, size_t *dst_len,
162 const void *src, size_t src_len)
163 {
164 struct scatterlist sg_in[2], prealloc_sg;
165 struct sg_table sg_out;
166 struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher();
167 SKCIPHER_REQUEST_ON_STACK(req, tfm);
168 int ret;
169 int ivsize = AES_BLOCK_SIZE;
170 char iv[ivsize];
171 size_t zero_padding = (0x10 - (src_len & 0x0f));
172 char pad[16];
173
174 if (IS_ERR(tfm))
175 return PTR_ERR(tfm);
176
177 memset(pad, zero_padding, zero_padding);
178
179 *dst_len = src_len + zero_padding;
180
181 sg_init_table(sg_in, 2);
182 sg_set_buf(&sg_in[0], src, src_len);
183 sg_set_buf(&sg_in[1], pad, zero_padding);
184 ret = setup_sgtable(&sg_out, &prealloc_sg, dst, *dst_len);
185 if (ret)
186 goto out_tfm;
187
188 crypto_skcipher_setkey((void *)tfm, key, key_len);
189 memcpy(iv, aes_iv, ivsize);
190
191 skcipher_request_set_tfm(req, tfm);
192 skcipher_request_set_callback(req, 0, NULL, NULL);
193 skcipher_request_set_crypt(req, sg_in, sg_out.sgl,
194 src_len + zero_padding, iv);
195
196 /*
197 print_hex_dump(KERN_ERR, "enc key: ", DUMP_PREFIX_NONE, 16, 1,
198 key, key_len, 1);
199 print_hex_dump(KERN_ERR, "enc src: ", DUMP_PREFIX_NONE, 16, 1,
200 src, src_len, 1);
201 print_hex_dump(KERN_ERR, "enc pad: ", DUMP_PREFIX_NONE, 16, 1,
202 pad, zero_padding, 1);
203 */
204 ret = crypto_skcipher_encrypt(req);
205 skcipher_request_zero(req);
206 if (ret < 0) {
207 pr_err("ceph_aes_crypt failed %d\n", ret);
208 goto out_sg;
209 }
210 /*
211 print_hex_dump(KERN_ERR, "enc out: ", DUMP_PREFIX_NONE, 16, 1,
212 dst, *dst_len, 1);
213 */
214
215 out_sg:
216 teardown_sgtable(&sg_out);
217 out_tfm:
218 crypto_free_skcipher(tfm);
219 return ret;
220 }
221
222 static int ceph_aes_encrypt2(const void *key, int key_len, void *dst,
223 size_t *dst_len,
224 const void *src1, size_t src1_len,
225 const void *src2, size_t src2_len)
226 {
227 struct scatterlist sg_in[3], prealloc_sg;
228 struct sg_table sg_out;
229 struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher();
230 SKCIPHER_REQUEST_ON_STACK(req, tfm);
231 int ret;
232 int ivsize = AES_BLOCK_SIZE;
233 char iv[ivsize];
234 size_t zero_padding = (0x10 - ((src1_len + src2_len) & 0x0f));
235 char pad[16];
236
237 if (IS_ERR(tfm))
238 return PTR_ERR(tfm);
239
240 memset(pad, zero_padding, zero_padding);
241
242 *dst_len = src1_len + src2_len + zero_padding;
243
244 sg_init_table(sg_in, 3);
245 sg_set_buf(&sg_in[0], src1, src1_len);
246 sg_set_buf(&sg_in[1], src2, src2_len);
247 sg_set_buf(&sg_in[2], pad, zero_padding);
248 ret = setup_sgtable(&sg_out, &prealloc_sg, dst, *dst_len);
249 if (ret)
250 goto out_tfm;
251
252 crypto_skcipher_setkey((void *)tfm, key, key_len);
253 memcpy(iv, aes_iv, ivsize);
254
255 skcipher_request_set_tfm(req, tfm);
256 skcipher_request_set_callback(req, 0, NULL, NULL);
257 skcipher_request_set_crypt(req, sg_in, sg_out.sgl,
258 src1_len + src2_len + zero_padding, iv);
259
260 /*
261 print_hex_dump(KERN_ERR, "enc key: ", DUMP_PREFIX_NONE, 16, 1,
262 key, key_len, 1);
263 print_hex_dump(KERN_ERR, "enc src1: ", DUMP_PREFIX_NONE, 16, 1,
264 src1, src1_len, 1);
265 print_hex_dump(KERN_ERR, "enc src2: ", DUMP_PREFIX_NONE, 16, 1,
266 src2, src2_len, 1);
267 print_hex_dump(KERN_ERR, "enc pad: ", DUMP_PREFIX_NONE, 16, 1,
268 pad, zero_padding, 1);
269 */
270 ret = crypto_skcipher_encrypt(req);
271 skcipher_request_zero(req);
272 if (ret < 0) {
273 pr_err("ceph_aes_crypt2 failed %d\n", ret);
274 goto out_sg;
275 }
276 /*
277 print_hex_dump(KERN_ERR, "enc out: ", DUMP_PREFIX_NONE, 16, 1,
278 dst, *dst_len, 1);
279 */
280
281 out_sg:
282 teardown_sgtable(&sg_out);
283 out_tfm:
284 crypto_free_skcipher(tfm);
285 return ret;
286 }
287
288 static int ceph_aes_decrypt(const void *key, int key_len,
289 void *dst, size_t *dst_len,
290 const void *src, size_t src_len)
291 {
292 struct sg_table sg_in;
293 struct scatterlist sg_out[2], prealloc_sg;
294 struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher();
295 SKCIPHER_REQUEST_ON_STACK(req, tfm);
296 char pad[16];
297 int ivsize = AES_BLOCK_SIZE;
298 char iv[16];
299 int ret;
300 int last_byte;
301
302 if (IS_ERR(tfm))
303 return PTR_ERR(tfm);
304
305 sg_init_table(sg_out, 2);
306 sg_set_buf(&sg_out[0], dst, *dst_len);
307 sg_set_buf(&sg_out[1], pad, sizeof(pad));
308 ret = setup_sgtable(&sg_in, &prealloc_sg, src, src_len);
309 if (ret)
310 goto out_tfm;
311
312 crypto_skcipher_setkey((void *)tfm, key, key_len);
313 memcpy(iv, aes_iv, ivsize);
314
315 skcipher_request_set_tfm(req, tfm);
316 skcipher_request_set_callback(req, 0, NULL, NULL);
317 skcipher_request_set_crypt(req, sg_in.sgl, sg_out,
318 src_len, iv);
319
320 /*
321 print_hex_dump(KERN_ERR, "dec key: ", DUMP_PREFIX_NONE, 16, 1,
322 key, key_len, 1);
323 print_hex_dump(KERN_ERR, "dec in: ", DUMP_PREFIX_NONE, 16, 1,
324 src, src_len, 1);
325 */
326 ret = crypto_skcipher_decrypt(req);
327 skcipher_request_zero(req);
328 if (ret < 0) {
329 pr_err("ceph_aes_decrypt failed %d\n", ret);
330 goto out_sg;
331 }
332
333 if (src_len <= *dst_len)
334 last_byte = ((char *)dst)[src_len - 1];
335 else
336 last_byte = pad[src_len - *dst_len - 1];
337 if (last_byte <= 16 && src_len >= last_byte) {
338 *dst_len = src_len - last_byte;
339 } else {
340 pr_err("ceph_aes_decrypt got bad padding %d on src len %d\n",
341 last_byte, (int)src_len);
342 return -EPERM; /* bad padding */
343 }
344 /*
345 print_hex_dump(KERN_ERR, "dec out: ", DUMP_PREFIX_NONE, 16, 1,
346 dst, *dst_len, 1);
347 */
348
349 out_sg:
350 teardown_sgtable(&sg_in);
351 out_tfm:
352 crypto_free_skcipher(tfm);
353 return ret;
354 }
355
356 static int ceph_aes_decrypt2(const void *key, int key_len,
357 void *dst1, size_t *dst1_len,
358 void *dst2, size_t *dst2_len,
359 const void *src, size_t src_len)
360 {
361 struct sg_table sg_in;
362 struct scatterlist sg_out[3], prealloc_sg;
363 struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher();
364 SKCIPHER_REQUEST_ON_STACK(req, tfm);
365 char pad[16];
366 int ivsize = AES_BLOCK_SIZE;
367 char iv[ivsize];
368 int ret;
369 int last_byte;
370
371 if (IS_ERR(tfm))
372 return PTR_ERR(tfm);
373
374 sg_init_table(sg_out, 3);
375 sg_set_buf(&sg_out[0], dst1, *dst1_len);
376 sg_set_buf(&sg_out[1], dst2, *dst2_len);
377 sg_set_buf(&sg_out[2], pad, sizeof(pad));
378 ret = setup_sgtable(&sg_in, &prealloc_sg, src, src_len);
379 if (ret)
380 goto out_tfm;
381
382 crypto_skcipher_setkey((void *)tfm, key, key_len);
383 memcpy(iv, aes_iv, ivsize);
384
385 skcipher_request_set_tfm(req, tfm);
386 skcipher_request_set_callback(req, 0, NULL, NULL);
387 skcipher_request_set_crypt(req, sg_in.sgl, sg_out,
388 src_len, iv);
389
390 /*
391 print_hex_dump(KERN_ERR, "dec key: ", DUMP_PREFIX_NONE, 16, 1,
392 key, key_len, 1);
393 print_hex_dump(KERN_ERR, "dec in: ", DUMP_PREFIX_NONE, 16, 1,
394 src, src_len, 1);
395 */
396 ret = crypto_skcipher_decrypt(req);
397 skcipher_request_zero(req);
398 if (ret < 0) {
399 pr_err("ceph_aes_decrypt failed %d\n", ret);
400 goto out_sg;
401 }
402
403 if (src_len <= *dst1_len)
404 last_byte = ((char *)dst1)[src_len - 1];
405 else if (src_len <= *dst1_len + *dst2_len)
406 last_byte = ((char *)dst2)[src_len - *dst1_len - 1];
407 else
408 last_byte = pad[src_len - *dst1_len - *dst2_len - 1];
409 if (last_byte <= 16 && src_len >= last_byte) {
410 src_len -= last_byte;
411 } else {
412 pr_err("ceph_aes_decrypt got bad padding %d on src len %d\n",
413 last_byte, (int)src_len);
414 return -EPERM; /* bad padding */
415 }
416
417 if (src_len < *dst1_len) {
418 *dst1_len = src_len;
419 *dst2_len = 0;
420 } else {
421 *dst2_len = src_len - *dst1_len;
422 }
423 /*
424 print_hex_dump(KERN_ERR, "dec out1: ", DUMP_PREFIX_NONE, 16, 1,
425 dst1, *dst1_len, 1);
426 print_hex_dump(KERN_ERR, "dec out2: ", DUMP_PREFIX_NONE, 16, 1,
427 dst2, *dst2_len, 1);
428 */
429
430 out_sg:
431 teardown_sgtable(&sg_in);
432 out_tfm:
433 crypto_free_skcipher(tfm);
434 return ret;
435 }
436
437
438 int ceph_decrypt(struct ceph_crypto_key *secret, void *dst, size_t *dst_len,
439 const void *src, size_t src_len)
440 {
441 switch (secret->type) {
442 case CEPH_CRYPTO_NONE:
443 if (*dst_len < src_len)
444 return -ERANGE;
445 memcpy(dst, src, src_len);
446 *dst_len = src_len;
447 return 0;
448
449 case CEPH_CRYPTO_AES:
450 return ceph_aes_decrypt(secret->key, secret->len, dst,
451 dst_len, src, src_len);
452
453 default:
454 return -EINVAL;
455 }
456 }
457
458 int ceph_decrypt2(struct ceph_crypto_key *secret,
459 void *dst1, size_t *dst1_len,
460 void *dst2, size_t *dst2_len,
461 const void *src, size_t src_len)
462 {
463 size_t t;
464
465 switch (secret->type) {
466 case CEPH_CRYPTO_NONE:
467 if (*dst1_len + *dst2_len < src_len)
468 return -ERANGE;
469 t = min(*dst1_len, src_len);
470 memcpy(dst1, src, t);
471 *dst1_len = t;
472 src += t;
473 src_len -= t;
474 if (src_len) {
475 t = min(*dst2_len, src_len);
476 memcpy(dst2, src, t);
477 *dst2_len = t;
478 }
479 return 0;
480
481 case CEPH_CRYPTO_AES:
482 return ceph_aes_decrypt2(secret->key, secret->len,
483 dst1, dst1_len, dst2, dst2_len,
484 src, src_len);
485
486 default:
487 return -EINVAL;
488 }
489 }
490
491 int ceph_encrypt(struct ceph_crypto_key *secret, void *dst, size_t *dst_len,
492 const void *src, size_t src_len)
493 {
494 switch (secret->type) {
495 case CEPH_CRYPTO_NONE:
496 if (*dst_len < src_len)
497 return -ERANGE;
498 memcpy(dst, src, src_len);
499 *dst_len = src_len;
500 return 0;
501
502 case CEPH_CRYPTO_AES:
503 return ceph_aes_encrypt(secret->key, secret->len, dst,
504 dst_len, src, src_len);
505
506 default:
507 return -EINVAL;
508 }
509 }
510
511 int ceph_encrypt2(struct ceph_crypto_key *secret, void *dst, size_t *dst_len,
512 const void *src1, size_t src1_len,
513 const void *src2, size_t src2_len)
514 {
515 switch (secret->type) {
516 case CEPH_CRYPTO_NONE:
517 if (*dst_len < src1_len + src2_len)
518 return -ERANGE;
519 memcpy(dst, src1, src1_len);
520 memcpy(dst + src1_len, src2, src2_len);
521 *dst_len = src1_len + src2_len;
522 return 0;
523
524 case CEPH_CRYPTO_AES:
525 return ceph_aes_encrypt2(secret->key, secret->len, dst, dst_len,
526 src1, src1_len, src2, src2_len);
527
528 default:
529 return -EINVAL;
530 }
531 }
532
533 static int ceph_key_preparse(struct key_preparsed_payload *prep)
534 {
535 struct ceph_crypto_key *ckey;
536 size_t datalen = prep->datalen;
537 int ret;
538 void *p;
539
540 ret = -EINVAL;
541 if (datalen <= 0 || datalen > 32767 || !prep->data)
542 goto err;
543
544 ret = -ENOMEM;
545 ckey = kmalloc(sizeof(*ckey), GFP_KERNEL);
546 if (!ckey)
547 goto err;
548
549 /* TODO ceph_crypto_key_decode should really take const input */
550 p = (void *)prep->data;
551 ret = ceph_crypto_key_decode(ckey, &p, (char*)prep->data+datalen);
552 if (ret < 0)
553 goto err_ckey;
554
555 prep->payload.data[0] = ckey;
556 prep->quotalen = datalen;
557 return 0;
558
559 err_ckey:
560 kfree(ckey);
561 err:
562 return ret;
563 }
564
565 static void ceph_key_free_preparse(struct key_preparsed_payload *prep)
566 {
567 struct ceph_crypto_key *ckey = prep->payload.data[0];
568 ceph_crypto_key_destroy(ckey);
569 kfree(ckey);
570 }
571
572 static void ceph_key_destroy(struct key *key)
573 {
574 struct ceph_crypto_key *ckey = key->payload.data[0];
575
576 ceph_crypto_key_destroy(ckey);
577 kfree(ckey);
578 }
579
580 struct key_type key_type_ceph = {
581 .name = "ceph",
582 .preparse = ceph_key_preparse,
583 .free_preparse = ceph_key_free_preparse,
584 .instantiate = generic_key_instantiate,
585 .destroy = ceph_key_destroy,
586 };
587
588 int ceph_crypto_init(void) {
589 return register_key_type(&key_type_ceph);
590 }
591
592 void ceph_crypto_shutdown(void) {
593 unregister_key_type(&key_type_ceph);
594 }
This page took 0.049667 seconds and 6 git commands to generate.