09ada79248748a7aae2afe41a2ec760a1a8721e8
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /*
33 * We track the state of the socket on a given connection using
34 * values defined below. The transition to a new socket state is
35 * handled by a function which verifies we aren't coming from an
36 * unexpected state.
37 *
38 * --------
39 * | NEW* | transient initial state
40 * --------
41 * | con_sock_state_init()
42 * v
43 * ----------
44 * | CLOSED | initialized, but no socket (and no
45 * ---------- TCP connection)
46 * ^ \
47 * | \ con_sock_state_connecting()
48 * | ----------------------
49 * | \
50 * + con_sock_state_closed() \
51 * |+--------------------------- \
52 * | \ \ \
53 * | ----------- \ \
54 * | | CLOSING | socket event; \ \
55 * | ----------- await close \ \
56 * | ^ \ |
57 * | | \ |
58 * | + con_sock_state_closing() \ |
59 * | / \ | |
60 * | / --------------- | |
61 * | / \ v v
62 * | / --------------
63 * | / -----------------| CONNECTING | socket created, TCP
64 * | | / -------------- connect initiated
65 * | | | con_sock_state_connected()
66 * | | v
67 * -------------
68 * | CONNECTED | TCP connection established
69 * -------------
70 *
71 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72 */
73
74 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
79
80 /* static tag bytes (protocol control messages) */
81 static char tag_msg = CEPH_MSGR_TAG_MSG;
82 static char tag_ack = CEPH_MSGR_TAG_ACK;
83 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
84
85 #ifdef CONFIG_LOCKDEP
86 static struct lock_class_key socket_class;
87 #endif
88
89 /*
90 * When skipping (ignoring) a block of input we read it into a "skip
91 * buffer," which is this many bytes in size.
92 */
93 #define SKIP_BUF_SIZE 1024
94
95 static void queue_con(struct ceph_connection *con);
96 static void con_work(struct work_struct *);
97 static void ceph_fault(struct ceph_connection *con);
98
99 /*
100 * Nicely render a sockaddr as a string. An array of formatted
101 * strings is used, to approximate reentrancy.
102 */
103 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
104 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
105 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
106 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
107
108 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
109 static atomic_t addr_str_seq = ATOMIC_INIT(0);
110
111 static struct page *zero_page; /* used in certain error cases */
112
113 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
114 {
115 int i;
116 char *s;
117 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
118 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
119
120 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
121 s = addr_str[i];
122
123 switch (ss->ss_family) {
124 case AF_INET:
125 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
126 ntohs(in4->sin_port));
127 break;
128
129 case AF_INET6:
130 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
131 ntohs(in6->sin6_port));
132 break;
133
134 default:
135 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
136 ss->ss_family);
137 }
138
139 return s;
140 }
141 EXPORT_SYMBOL(ceph_pr_addr);
142
143 static void encode_my_addr(struct ceph_messenger *msgr)
144 {
145 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
146 ceph_encode_addr(&msgr->my_enc_addr);
147 }
148
149 /*
150 * work queue for all reading and writing to/from the socket.
151 */
152 static struct workqueue_struct *ceph_msgr_wq;
153
154 void _ceph_msgr_exit(void)
155 {
156 if (ceph_msgr_wq) {
157 destroy_workqueue(ceph_msgr_wq);
158 ceph_msgr_wq = NULL;
159 }
160
161 BUG_ON(zero_page == NULL);
162 kunmap(zero_page);
163 page_cache_release(zero_page);
164 zero_page = NULL;
165 }
166
167 int ceph_msgr_init(void)
168 {
169 BUG_ON(zero_page != NULL);
170 zero_page = ZERO_PAGE(0);
171 page_cache_get(zero_page);
172
173 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
174 if (ceph_msgr_wq)
175 return 0;
176
177 pr_err("msgr_init failed to create workqueue\n");
178 _ceph_msgr_exit();
179
180 return -ENOMEM;
181 }
182 EXPORT_SYMBOL(ceph_msgr_init);
183
184 void ceph_msgr_exit(void)
185 {
186 BUG_ON(ceph_msgr_wq == NULL);
187
188 _ceph_msgr_exit();
189 }
190 EXPORT_SYMBOL(ceph_msgr_exit);
191
192 void ceph_msgr_flush(void)
193 {
194 flush_workqueue(ceph_msgr_wq);
195 }
196 EXPORT_SYMBOL(ceph_msgr_flush);
197
198 /* Connection socket state transition functions */
199
200 static void con_sock_state_init(struct ceph_connection *con)
201 {
202 int old_state;
203
204 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
205 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
206 printk("%s: unexpected old state %d\n", __func__, old_state);
207 }
208
209 static void con_sock_state_connecting(struct ceph_connection *con)
210 {
211 int old_state;
212
213 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
214 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
215 printk("%s: unexpected old state %d\n", __func__, old_state);
216 }
217
218 static void con_sock_state_connected(struct ceph_connection *con)
219 {
220 int old_state;
221
222 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
223 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
224 printk("%s: unexpected old state %d\n", __func__, old_state);
225 }
226
227 static void con_sock_state_closing(struct ceph_connection *con)
228 {
229 int old_state;
230
231 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
232 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
233 old_state != CON_SOCK_STATE_CONNECTED &&
234 old_state != CON_SOCK_STATE_CLOSING))
235 printk("%s: unexpected old state %d\n", __func__, old_state);
236 }
237
238 static void con_sock_state_closed(struct ceph_connection *con)
239 {
240 int old_state;
241
242 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
243 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
244 old_state != CON_SOCK_STATE_CLOSING &&
245 old_state != CON_SOCK_STATE_CONNECTING))
246 printk("%s: unexpected old state %d\n", __func__, old_state);
247 }
248
249 /*
250 * socket callback functions
251 */
252
253 /* data available on socket, or listen socket received a connect */
254 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
255 {
256 struct ceph_connection *con = sk->sk_user_data;
257
258 if (sk->sk_state != TCP_CLOSE_WAIT) {
259 dout("%s on %p state = %lu, queueing work\n", __func__,
260 con, con->state);
261 queue_con(con);
262 }
263 }
264
265 /* socket has buffer space for writing */
266 static void ceph_sock_write_space(struct sock *sk)
267 {
268 struct ceph_connection *con = sk->sk_user_data;
269
270 /* only queue to workqueue if there is data we want to write,
271 * and there is sufficient space in the socket buffer to accept
272 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
273 * doesn't get called again until try_write() fills the socket
274 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
275 * and net/core/stream.c:sk_stream_write_space().
276 */
277 if (test_bit(WRITE_PENDING, &con->flags)) {
278 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
279 dout("%s %p queueing write work\n", __func__, con);
280 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
281 queue_con(con);
282 }
283 } else {
284 dout("%s %p nothing to write\n", __func__, con);
285 }
286 }
287
288 /* socket's state has changed */
289 static void ceph_sock_state_change(struct sock *sk)
290 {
291 struct ceph_connection *con = sk->sk_user_data;
292
293 dout("%s %p state = %lu sk_state = %u\n", __func__,
294 con, con->state, sk->sk_state);
295
296 if (test_bit(CLOSED, &con->state))
297 return;
298
299 switch (sk->sk_state) {
300 case TCP_CLOSE:
301 dout("%s TCP_CLOSE\n", __func__);
302 case TCP_CLOSE_WAIT:
303 dout("%s TCP_CLOSE_WAIT\n", __func__);
304 con_sock_state_closing(con);
305 set_bit(SOCK_CLOSED, &con->flags);
306 queue_con(con);
307 break;
308 case TCP_ESTABLISHED:
309 dout("%s TCP_ESTABLISHED\n", __func__);
310 con_sock_state_connected(con);
311 queue_con(con);
312 break;
313 default: /* Everything else is uninteresting */
314 break;
315 }
316 }
317
318 /*
319 * set up socket callbacks
320 */
321 static void set_sock_callbacks(struct socket *sock,
322 struct ceph_connection *con)
323 {
324 struct sock *sk = sock->sk;
325 sk->sk_user_data = con;
326 sk->sk_data_ready = ceph_sock_data_ready;
327 sk->sk_write_space = ceph_sock_write_space;
328 sk->sk_state_change = ceph_sock_state_change;
329 }
330
331
332 /*
333 * socket helpers
334 */
335
336 /*
337 * initiate connection to a remote socket.
338 */
339 static int ceph_tcp_connect(struct ceph_connection *con)
340 {
341 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
342 struct socket *sock;
343 int ret;
344
345 BUG_ON(con->sock);
346 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
347 IPPROTO_TCP, &sock);
348 if (ret)
349 return ret;
350 sock->sk->sk_allocation = GFP_NOFS;
351
352 #ifdef CONFIG_LOCKDEP
353 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
354 #endif
355
356 set_sock_callbacks(sock, con);
357
358 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
359
360 con_sock_state_connecting(con);
361 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
362 O_NONBLOCK);
363 if (ret == -EINPROGRESS) {
364 dout("connect %s EINPROGRESS sk_state = %u\n",
365 ceph_pr_addr(&con->peer_addr.in_addr),
366 sock->sk->sk_state);
367 } else if (ret < 0) {
368 pr_err("connect %s error %d\n",
369 ceph_pr_addr(&con->peer_addr.in_addr), ret);
370 sock_release(sock);
371 con->error_msg = "connect error";
372
373 return ret;
374 }
375 con->sock = sock;
376 return 0;
377 }
378
379 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
380 {
381 struct kvec iov = {buf, len};
382 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
383 int r;
384
385 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
386 if (r == -EAGAIN)
387 r = 0;
388 return r;
389 }
390
391 /*
392 * write something. @more is true if caller will be sending more data
393 * shortly.
394 */
395 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
396 size_t kvlen, size_t len, int more)
397 {
398 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
399 int r;
400
401 if (more)
402 msg.msg_flags |= MSG_MORE;
403 else
404 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
405
406 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
407 if (r == -EAGAIN)
408 r = 0;
409 return r;
410 }
411
412 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
413 int offset, size_t size, int more)
414 {
415 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
416 int ret;
417
418 ret = kernel_sendpage(sock, page, offset, size, flags);
419 if (ret == -EAGAIN)
420 ret = 0;
421
422 return ret;
423 }
424
425
426 /*
427 * Shutdown/close the socket for the given connection.
428 */
429 static int con_close_socket(struct ceph_connection *con)
430 {
431 int rc;
432
433 dout("con_close_socket on %p sock %p\n", con, con->sock);
434 if (!con->sock)
435 return 0;
436 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
437 sock_release(con->sock);
438 con->sock = NULL;
439
440 /*
441 * Forcibly clear the SOCK_CLOSE flag. It gets set
442 * independent of the connection mutex, and we could have
443 * received a socket close event before we had the chance to
444 * shut the socket down.
445 */
446 clear_bit(SOCK_CLOSED, &con->flags);
447 con_sock_state_closed(con);
448 return rc;
449 }
450
451 /*
452 * Reset a connection. Discard all incoming and outgoing messages
453 * and clear *_seq state.
454 */
455 static void ceph_msg_remove(struct ceph_msg *msg)
456 {
457 list_del_init(&msg->list_head);
458 BUG_ON(msg->con == NULL);
459 msg->con->ops->put(msg->con);
460 msg->con = NULL;
461
462 ceph_msg_put(msg);
463 }
464 static void ceph_msg_remove_list(struct list_head *head)
465 {
466 while (!list_empty(head)) {
467 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
468 list_head);
469 ceph_msg_remove(msg);
470 }
471 }
472
473 static void reset_connection(struct ceph_connection *con)
474 {
475 /* reset connection, out_queue, msg_ and connect_seq */
476 /* discard existing out_queue and msg_seq */
477 ceph_msg_remove_list(&con->out_queue);
478 ceph_msg_remove_list(&con->out_sent);
479
480 if (con->in_msg) {
481 BUG_ON(con->in_msg->con != con);
482 con->in_msg->con = NULL;
483 ceph_msg_put(con->in_msg);
484 con->in_msg = NULL;
485 con->ops->put(con);
486 }
487
488 con->connect_seq = 0;
489 con->out_seq = 0;
490 if (con->out_msg) {
491 ceph_msg_put(con->out_msg);
492 con->out_msg = NULL;
493 }
494 con->in_seq = 0;
495 con->in_seq_acked = 0;
496 }
497
498 /*
499 * mark a peer down. drop any open connections.
500 */
501 void ceph_con_close(struct ceph_connection *con)
502 {
503 dout("con_close %p peer %s\n", con,
504 ceph_pr_addr(&con->peer_addr.in_addr));
505 clear_bit(NEGOTIATING, &con->state);
506 clear_bit(CONNECTING, &con->state);
507 clear_bit(CONNECTED, &con->state);
508 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
509 set_bit(CLOSED, &con->state);
510
511 clear_bit(LOSSYTX, &con->flags); /* so we retry next connect */
512 clear_bit(KEEPALIVE_PENDING, &con->flags);
513 clear_bit(WRITE_PENDING, &con->flags);
514
515 mutex_lock(&con->mutex);
516 reset_connection(con);
517 con->peer_global_seq = 0;
518 cancel_delayed_work(&con->work);
519 mutex_unlock(&con->mutex);
520 queue_con(con);
521 }
522 EXPORT_SYMBOL(ceph_con_close);
523
524 /*
525 * Reopen a closed connection, with a new peer address.
526 */
527 void ceph_con_open(struct ceph_connection *con,
528 __u8 entity_type, __u64 entity_num,
529 struct ceph_entity_addr *addr)
530 {
531 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
532 set_bit(OPENING, &con->state);
533 WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
534
535 con->peer_name.type = (__u8) entity_type;
536 con->peer_name.num = cpu_to_le64(entity_num);
537
538 memcpy(&con->peer_addr, addr, sizeof(*addr));
539 con->delay = 0; /* reset backoff memory */
540 queue_con(con);
541 }
542 EXPORT_SYMBOL(ceph_con_open);
543
544 /*
545 * return true if this connection ever successfully opened
546 */
547 bool ceph_con_opened(struct ceph_connection *con)
548 {
549 return con->connect_seq > 0;
550 }
551
552 /*
553 * initialize a new connection.
554 */
555 void ceph_con_init(struct ceph_connection *con, void *private,
556 const struct ceph_connection_operations *ops,
557 struct ceph_messenger *msgr)
558 {
559 dout("con_init %p\n", con);
560 memset(con, 0, sizeof(*con));
561 con->private = private;
562 con->ops = ops;
563 con->msgr = msgr;
564
565 con_sock_state_init(con);
566
567 mutex_init(&con->mutex);
568 INIT_LIST_HEAD(&con->out_queue);
569 INIT_LIST_HEAD(&con->out_sent);
570 INIT_DELAYED_WORK(&con->work, con_work);
571
572 set_bit(CLOSED, &con->state);
573 }
574 EXPORT_SYMBOL(ceph_con_init);
575
576
577 /*
578 * We maintain a global counter to order connection attempts. Get
579 * a unique seq greater than @gt.
580 */
581 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
582 {
583 u32 ret;
584
585 spin_lock(&msgr->global_seq_lock);
586 if (msgr->global_seq < gt)
587 msgr->global_seq = gt;
588 ret = ++msgr->global_seq;
589 spin_unlock(&msgr->global_seq_lock);
590 return ret;
591 }
592
593 static void con_out_kvec_reset(struct ceph_connection *con)
594 {
595 con->out_kvec_left = 0;
596 con->out_kvec_bytes = 0;
597 con->out_kvec_cur = &con->out_kvec[0];
598 }
599
600 static void con_out_kvec_add(struct ceph_connection *con,
601 size_t size, void *data)
602 {
603 int index;
604
605 index = con->out_kvec_left;
606 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
607
608 con->out_kvec[index].iov_len = size;
609 con->out_kvec[index].iov_base = data;
610 con->out_kvec_left++;
611 con->out_kvec_bytes += size;
612 }
613
614 #ifdef CONFIG_BLOCK
615 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
616 {
617 if (!bio) {
618 *iter = NULL;
619 *seg = 0;
620 return;
621 }
622 *iter = bio;
623 *seg = bio->bi_idx;
624 }
625
626 static void iter_bio_next(struct bio **bio_iter, int *seg)
627 {
628 if (*bio_iter == NULL)
629 return;
630
631 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
632
633 (*seg)++;
634 if (*seg == (*bio_iter)->bi_vcnt)
635 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
636 }
637 #endif
638
639 static void prepare_write_message_data(struct ceph_connection *con)
640 {
641 struct ceph_msg *msg = con->out_msg;
642
643 BUG_ON(!msg);
644 BUG_ON(!msg->hdr.data_len);
645
646 /* initialize page iterator */
647 con->out_msg_pos.page = 0;
648 if (msg->pages)
649 con->out_msg_pos.page_pos = msg->page_alignment;
650 else
651 con->out_msg_pos.page_pos = 0;
652 #ifdef CONFIG_BLOCK
653 if (msg->bio)
654 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
655 #endif
656 con->out_msg_pos.data_pos = 0;
657 con->out_msg_pos.did_page_crc = false;
658 con->out_more = 1; /* data + footer will follow */
659 }
660
661 /*
662 * Prepare footer for currently outgoing message, and finish things
663 * off. Assumes out_kvec* are already valid.. we just add on to the end.
664 */
665 static void prepare_write_message_footer(struct ceph_connection *con)
666 {
667 struct ceph_msg *m = con->out_msg;
668 int v = con->out_kvec_left;
669
670 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
671
672 dout("prepare_write_message_footer %p\n", con);
673 con->out_kvec_is_msg = true;
674 con->out_kvec[v].iov_base = &m->footer;
675 con->out_kvec[v].iov_len = sizeof(m->footer);
676 con->out_kvec_bytes += sizeof(m->footer);
677 con->out_kvec_left++;
678 con->out_more = m->more_to_follow;
679 con->out_msg_done = true;
680 }
681
682 /*
683 * Prepare headers for the next outgoing message.
684 */
685 static void prepare_write_message(struct ceph_connection *con)
686 {
687 struct ceph_msg *m;
688 u32 crc;
689
690 con_out_kvec_reset(con);
691 con->out_kvec_is_msg = true;
692 con->out_msg_done = false;
693
694 /* Sneak an ack in there first? If we can get it into the same
695 * TCP packet that's a good thing. */
696 if (con->in_seq > con->in_seq_acked) {
697 con->in_seq_acked = con->in_seq;
698 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
699 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
700 con_out_kvec_add(con, sizeof (con->out_temp_ack),
701 &con->out_temp_ack);
702 }
703
704 BUG_ON(list_empty(&con->out_queue));
705 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
706 con->out_msg = m;
707 BUG_ON(m->con != con);
708
709 /* put message on sent list */
710 ceph_msg_get(m);
711 list_move_tail(&m->list_head, &con->out_sent);
712
713 /*
714 * only assign outgoing seq # if we haven't sent this message
715 * yet. if it is requeued, resend with it's original seq.
716 */
717 if (m->needs_out_seq) {
718 m->hdr.seq = cpu_to_le64(++con->out_seq);
719 m->needs_out_seq = false;
720 }
721
722 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
723 m, con->out_seq, le16_to_cpu(m->hdr.type),
724 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
725 le32_to_cpu(m->hdr.data_len),
726 m->nr_pages);
727 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
728
729 /* tag + hdr + front + middle */
730 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
731 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
732 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
733
734 if (m->middle)
735 con_out_kvec_add(con, m->middle->vec.iov_len,
736 m->middle->vec.iov_base);
737
738 /* fill in crc (except data pages), footer */
739 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
740 con->out_msg->hdr.crc = cpu_to_le32(crc);
741 con->out_msg->footer.flags = 0;
742
743 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
744 con->out_msg->footer.front_crc = cpu_to_le32(crc);
745 if (m->middle) {
746 crc = crc32c(0, m->middle->vec.iov_base,
747 m->middle->vec.iov_len);
748 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
749 } else
750 con->out_msg->footer.middle_crc = 0;
751 dout("%s front_crc %u middle_crc %u\n", __func__,
752 le32_to_cpu(con->out_msg->footer.front_crc),
753 le32_to_cpu(con->out_msg->footer.middle_crc));
754
755 /* is there a data payload? */
756 con->out_msg->footer.data_crc = 0;
757 if (m->hdr.data_len)
758 prepare_write_message_data(con);
759 else
760 /* no, queue up footer too and be done */
761 prepare_write_message_footer(con);
762
763 set_bit(WRITE_PENDING, &con->flags);
764 }
765
766 /*
767 * Prepare an ack.
768 */
769 static void prepare_write_ack(struct ceph_connection *con)
770 {
771 dout("prepare_write_ack %p %llu -> %llu\n", con,
772 con->in_seq_acked, con->in_seq);
773 con->in_seq_acked = con->in_seq;
774
775 con_out_kvec_reset(con);
776
777 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
778
779 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
780 con_out_kvec_add(con, sizeof (con->out_temp_ack),
781 &con->out_temp_ack);
782
783 con->out_more = 1; /* more will follow.. eventually.. */
784 set_bit(WRITE_PENDING, &con->flags);
785 }
786
787 /*
788 * Prepare to write keepalive byte.
789 */
790 static void prepare_write_keepalive(struct ceph_connection *con)
791 {
792 dout("prepare_write_keepalive %p\n", con);
793 con_out_kvec_reset(con);
794 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
795 set_bit(WRITE_PENDING, &con->flags);
796 }
797
798 /*
799 * Connection negotiation.
800 */
801
802 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
803 int *auth_proto)
804 {
805 struct ceph_auth_handshake *auth;
806
807 if (!con->ops->get_authorizer) {
808 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
809 con->out_connect.authorizer_len = 0;
810
811 return NULL;
812 }
813
814 /* Can't hold the mutex while getting authorizer */
815
816 mutex_unlock(&con->mutex);
817
818 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
819
820 mutex_lock(&con->mutex);
821
822 if (IS_ERR(auth))
823 return auth;
824 if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
825 return ERR_PTR(-EAGAIN);
826
827 con->auth_reply_buf = auth->authorizer_reply_buf;
828 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
829
830
831 return auth;
832 }
833
834 /*
835 * We connected to a peer and are saying hello.
836 */
837 static void prepare_write_banner(struct ceph_connection *con)
838 {
839 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
840 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
841 &con->msgr->my_enc_addr);
842
843 con->out_more = 0;
844 set_bit(WRITE_PENDING, &con->flags);
845 }
846
847 static int prepare_write_connect(struct ceph_connection *con)
848 {
849 unsigned int global_seq = get_global_seq(con->msgr, 0);
850 int proto;
851 int auth_proto;
852 struct ceph_auth_handshake *auth;
853
854 switch (con->peer_name.type) {
855 case CEPH_ENTITY_TYPE_MON:
856 proto = CEPH_MONC_PROTOCOL;
857 break;
858 case CEPH_ENTITY_TYPE_OSD:
859 proto = CEPH_OSDC_PROTOCOL;
860 break;
861 case CEPH_ENTITY_TYPE_MDS:
862 proto = CEPH_MDSC_PROTOCOL;
863 break;
864 default:
865 BUG();
866 }
867
868 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
869 con->connect_seq, global_seq, proto);
870
871 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
872 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
873 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
874 con->out_connect.global_seq = cpu_to_le32(global_seq);
875 con->out_connect.protocol_version = cpu_to_le32(proto);
876 con->out_connect.flags = 0;
877
878 auth_proto = CEPH_AUTH_UNKNOWN;
879 auth = get_connect_authorizer(con, &auth_proto);
880 if (IS_ERR(auth))
881 return PTR_ERR(auth);
882
883 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
884 con->out_connect.authorizer_len = auth ?
885 cpu_to_le32(auth->authorizer_buf_len) : 0;
886
887 con_out_kvec_reset(con);
888 con_out_kvec_add(con, sizeof (con->out_connect),
889 &con->out_connect);
890 if (auth && auth->authorizer_buf_len)
891 con_out_kvec_add(con, auth->authorizer_buf_len,
892 auth->authorizer_buf);
893
894 con->out_more = 0;
895 set_bit(WRITE_PENDING, &con->flags);
896
897 return 0;
898 }
899
900 /*
901 * write as much of pending kvecs to the socket as we can.
902 * 1 -> done
903 * 0 -> socket full, but more to do
904 * <0 -> error
905 */
906 static int write_partial_kvec(struct ceph_connection *con)
907 {
908 int ret;
909
910 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
911 while (con->out_kvec_bytes > 0) {
912 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
913 con->out_kvec_left, con->out_kvec_bytes,
914 con->out_more);
915 if (ret <= 0)
916 goto out;
917 con->out_kvec_bytes -= ret;
918 if (con->out_kvec_bytes == 0)
919 break; /* done */
920
921 /* account for full iov entries consumed */
922 while (ret >= con->out_kvec_cur->iov_len) {
923 BUG_ON(!con->out_kvec_left);
924 ret -= con->out_kvec_cur->iov_len;
925 con->out_kvec_cur++;
926 con->out_kvec_left--;
927 }
928 /* and for a partially-consumed entry */
929 if (ret) {
930 con->out_kvec_cur->iov_len -= ret;
931 con->out_kvec_cur->iov_base += ret;
932 }
933 }
934 con->out_kvec_left = 0;
935 con->out_kvec_is_msg = false;
936 ret = 1;
937 out:
938 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
939 con->out_kvec_bytes, con->out_kvec_left, ret);
940 return ret; /* done! */
941 }
942
943 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
944 size_t len, size_t sent, bool in_trail)
945 {
946 struct ceph_msg *msg = con->out_msg;
947
948 BUG_ON(!msg);
949 BUG_ON(!sent);
950
951 con->out_msg_pos.data_pos += sent;
952 con->out_msg_pos.page_pos += sent;
953 if (sent < len)
954 return;
955
956 BUG_ON(sent != len);
957 con->out_msg_pos.page_pos = 0;
958 con->out_msg_pos.page++;
959 con->out_msg_pos.did_page_crc = false;
960 if (in_trail)
961 list_move_tail(&page->lru,
962 &msg->trail->head);
963 else if (msg->pagelist)
964 list_move_tail(&page->lru,
965 &msg->pagelist->head);
966 #ifdef CONFIG_BLOCK
967 else if (msg->bio)
968 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
969 #endif
970 }
971
972 /*
973 * Write as much message data payload as we can. If we finish, queue
974 * up the footer.
975 * 1 -> done, footer is now queued in out_kvec[].
976 * 0 -> socket full, but more to do
977 * <0 -> error
978 */
979 static int write_partial_msg_pages(struct ceph_connection *con)
980 {
981 struct ceph_msg *msg = con->out_msg;
982 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
983 size_t len;
984 bool do_datacrc = !con->msgr->nocrc;
985 int ret;
986 int total_max_write;
987 bool in_trail = false;
988 const size_t trail_len = (msg->trail ? msg->trail->length : 0);
989 const size_t trail_off = data_len - trail_len;
990
991 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
992 con, msg, con->out_msg_pos.page, msg->nr_pages,
993 con->out_msg_pos.page_pos);
994
995 /*
996 * Iterate through each page that contains data to be
997 * written, and send as much as possible for each.
998 *
999 * If we are calculating the data crc (the default), we will
1000 * need to map the page. If we have no pages, they have
1001 * been revoked, so use the zero page.
1002 */
1003 while (data_len > con->out_msg_pos.data_pos) {
1004 struct page *page = NULL;
1005 int max_write = PAGE_SIZE;
1006 int bio_offset = 0;
1007
1008 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1009 if (!in_trail)
1010 total_max_write = trail_off - con->out_msg_pos.data_pos;
1011
1012 if (in_trail) {
1013 total_max_write = data_len - con->out_msg_pos.data_pos;
1014
1015 page = list_first_entry(&msg->trail->head,
1016 struct page, lru);
1017 } else if (msg->pages) {
1018 page = msg->pages[con->out_msg_pos.page];
1019 } else if (msg->pagelist) {
1020 page = list_first_entry(&msg->pagelist->head,
1021 struct page, lru);
1022 #ifdef CONFIG_BLOCK
1023 } else if (msg->bio) {
1024 struct bio_vec *bv;
1025
1026 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1027 page = bv->bv_page;
1028 bio_offset = bv->bv_offset;
1029 max_write = bv->bv_len;
1030 #endif
1031 } else {
1032 page = zero_page;
1033 }
1034 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1035 total_max_write);
1036
1037 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1038 void *base;
1039 u32 crc = le32_to_cpu(msg->footer.data_crc);
1040 char *kaddr;
1041
1042 kaddr = kmap(page);
1043 BUG_ON(kaddr == NULL);
1044 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1045 crc = crc32c(crc, base, len);
1046 msg->footer.data_crc = cpu_to_le32(crc);
1047 con->out_msg_pos.did_page_crc = true;
1048 }
1049 ret = ceph_tcp_sendpage(con->sock, page,
1050 con->out_msg_pos.page_pos + bio_offset,
1051 len, 1);
1052
1053 if (do_datacrc)
1054 kunmap(page);
1055
1056 if (ret <= 0)
1057 goto out;
1058
1059 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1060 }
1061
1062 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1063
1064 /* prepare and queue up footer, too */
1065 if (!do_datacrc)
1066 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1067 con_out_kvec_reset(con);
1068 prepare_write_message_footer(con);
1069 ret = 1;
1070 out:
1071 return ret;
1072 }
1073
1074 /*
1075 * write some zeros
1076 */
1077 static int write_partial_skip(struct ceph_connection *con)
1078 {
1079 int ret;
1080
1081 while (con->out_skip > 0) {
1082 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1083
1084 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1085 if (ret <= 0)
1086 goto out;
1087 con->out_skip -= ret;
1088 }
1089 ret = 1;
1090 out:
1091 return ret;
1092 }
1093
1094 /*
1095 * Prepare to read connection handshake, or an ack.
1096 */
1097 static void prepare_read_banner(struct ceph_connection *con)
1098 {
1099 dout("prepare_read_banner %p\n", con);
1100 con->in_base_pos = 0;
1101 }
1102
1103 static void prepare_read_connect(struct ceph_connection *con)
1104 {
1105 dout("prepare_read_connect %p\n", con);
1106 con->in_base_pos = 0;
1107 }
1108
1109 static void prepare_read_ack(struct ceph_connection *con)
1110 {
1111 dout("prepare_read_ack %p\n", con);
1112 con->in_base_pos = 0;
1113 }
1114
1115 static void prepare_read_tag(struct ceph_connection *con)
1116 {
1117 dout("prepare_read_tag %p\n", con);
1118 con->in_base_pos = 0;
1119 con->in_tag = CEPH_MSGR_TAG_READY;
1120 }
1121
1122 /*
1123 * Prepare to read a message.
1124 */
1125 static int prepare_read_message(struct ceph_connection *con)
1126 {
1127 dout("prepare_read_message %p\n", con);
1128 BUG_ON(con->in_msg != NULL);
1129 con->in_base_pos = 0;
1130 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1131 return 0;
1132 }
1133
1134
1135 static int read_partial(struct ceph_connection *con,
1136 int end, int size, void *object)
1137 {
1138 while (con->in_base_pos < end) {
1139 int left = end - con->in_base_pos;
1140 int have = size - left;
1141 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1142 if (ret <= 0)
1143 return ret;
1144 con->in_base_pos += ret;
1145 }
1146 return 1;
1147 }
1148
1149
1150 /*
1151 * Read all or part of the connect-side handshake on a new connection
1152 */
1153 static int read_partial_banner(struct ceph_connection *con)
1154 {
1155 int size;
1156 int end;
1157 int ret;
1158
1159 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1160
1161 /* peer's banner */
1162 size = strlen(CEPH_BANNER);
1163 end = size;
1164 ret = read_partial(con, end, size, con->in_banner);
1165 if (ret <= 0)
1166 goto out;
1167
1168 size = sizeof (con->actual_peer_addr);
1169 end += size;
1170 ret = read_partial(con, end, size, &con->actual_peer_addr);
1171 if (ret <= 0)
1172 goto out;
1173
1174 size = sizeof (con->peer_addr_for_me);
1175 end += size;
1176 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1177 if (ret <= 0)
1178 goto out;
1179
1180 out:
1181 return ret;
1182 }
1183
1184 static int read_partial_connect(struct ceph_connection *con)
1185 {
1186 int size;
1187 int end;
1188 int ret;
1189
1190 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1191
1192 size = sizeof (con->in_reply);
1193 end = size;
1194 ret = read_partial(con, end, size, &con->in_reply);
1195 if (ret <= 0)
1196 goto out;
1197
1198 size = le32_to_cpu(con->in_reply.authorizer_len);
1199 end += size;
1200 ret = read_partial(con, end, size, con->auth_reply_buf);
1201 if (ret <= 0)
1202 goto out;
1203
1204 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1205 con, (int)con->in_reply.tag,
1206 le32_to_cpu(con->in_reply.connect_seq),
1207 le32_to_cpu(con->in_reply.global_seq));
1208 out:
1209 return ret;
1210
1211 }
1212
1213 /*
1214 * Verify the hello banner looks okay.
1215 */
1216 static int verify_hello(struct ceph_connection *con)
1217 {
1218 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1219 pr_err("connect to %s got bad banner\n",
1220 ceph_pr_addr(&con->peer_addr.in_addr));
1221 con->error_msg = "protocol error, bad banner";
1222 return -1;
1223 }
1224 return 0;
1225 }
1226
1227 static bool addr_is_blank(struct sockaddr_storage *ss)
1228 {
1229 switch (ss->ss_family) {
1230 case AF_INET:
1231 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1232 case AF_INET6:
1233 return
1234 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1235 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1236 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1237 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1238 }
1239 return false;
1240 }
1241
1242 static int addr_port(struct sockaddr_storage *ss)
1243 {
1244 switch (ss->ss_family) {
1245 case AF_INET:
1246 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1247 case AF_INET6:
1248 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1249 }
1250 return 0;
1251 }
1252
1253 static void addr_set_port(struct sockaddr_storage *ss, int p)
1254 {
1255 switch (ss->ss_family) {
1256 case AF_INET:
1257 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1258 break;
1259 case AF_INET6:
1260 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1261 break;
1262 }
1263 }
1264
1265 /*
1266 * Unlike other *_pton function semantics, zero indicates success.
1267 */
1268 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1269 char delim, const char **ipend)
1270 {
1271 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1272 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1273
1274 memset(ss, 0, sizeof(*ss));
1275
1276 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1277 ss->ss_family = AF_INET;
1278 return 0;
1279 }
1280
1281 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1282 ss->ss_family = AF_INET6;
1283 return 0;
1284 }
1285
1286 return -EINVAL;
1287 }
1288
1289 /*
1290 * Extract hostname string and resolve using kernel DNS facility.
1291 */
1292 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1293 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1294 struct sockaddr_storage *ss, char delim, const char **ipend)
1295 {
1296 const char *end, *delim_p;
1297 char *colon_p, *ip_addr = NULL;
1298 int ip_len, ret;
1299
1300 /*
1301 * The end of the hostname occurs immediately preceding the delimiter or
1302 * the port marker (':') where the delimiter takes precedence.
1303 */
1304 delim_p = memchr(name, delim, namelen);
1305 colon_p = memchr(name, ':', namelen);
1306
1307 if (delim_p && colon_p)
1308 end = delim_p < colon_p ? delim_p : colon_p;
1309 else if (!delim_p && colon_p)
1310 end = colon_p;
1311 else {
1312 end = delim_p;
1313 if (!end) /* case: hostname:/ */
1314 end = name + namelen;
1315 }
1316
1317 if (end <= name)
1318 return -EINVAL;
1319
1320 /* do dns_resolve upcall */
1321 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1322 if (ip_len > 0)
1323 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1324 else
1325 ret = -ESRCH;
1326
1327 kfree(ip_addr);
1328
1329 *ipend = end;
1330
1331 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1332 ret, ret ? "failed" : ceph_pr_addr(ss));
1333
1334 return ret;
1335 }
1336 #else
1337 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1338 struct sockaddr_storage *ss, char delim, const char **ipend)
1339 {
1340 return -EINVAL;
1341 }
1342 #endif
1343
1344 /*
1345 * Parse a server name (IP or hostname). If a valid IP address is not found
1346 * then try to extract a hostname to resolve using userspace DNS upcall.
1347 */
1348 static int ceph_parse_server_name(const char *name, size_t namelen,
1349 struct sockaddr_storage *ss, char delim, const char **ipend)
1350 {
1351 int ret;
1352
1353 ret = ceph_pton(name, namelen, ss, delim, ipend);
1354 if (ret)
1355 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1356
1357 return ret;
1358 }
1359
1360 /*
1361 * Parse an ip[:port] list into an addr array. Use the default
1362 * monitor port if a port isn't specified.
1363 */
1364 int ceph_parse_ips(const char *c, const char *end,
1365 struct ceph_entity_addr *addr,
1366 int max_count, int *count)
1367 {
1368 int i, ret = -EINVAL;
1369 const char *p = c;
1370
1371 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1372 for (i = 0; i < max_count; i++) {
1373 const char *ipend;
1374 struct sockaddr_storage *ss = &addr[i].in_addr;
1375 int port;
1376 char delim = ',';
1377
1378 if (*p == '[') {
1379 delim = ']';
1380 p++;
1381 }
1382
1383 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1384 if (ret)
1385 goto bad;
1386 ret = -EINVAL;
1387
1388 p = ipend;
1389
1390 if (delim == ']') {
1391 if (*p != ']') {
1392 dout("missing matching ']'\n");
1393 goto bad;
1394 }
1395 p++;
1396 }
1397
1398 /* port? */
1399 if (p < end && *p == ':') {
1400 port = 0;
1401 p++;
1402 while (p < end && *p >= '0' && *p <= '9') {
1403 port = (port * 10) + (*p - '0');
1404 p++;
1405 }
1406 if (port > 65535 || port == 0)
1407 goto bad;
1408 } else {
1409 port = CEPH_MON_PORT;
1410 }
1411
1412 addr_set_port(ss, port);
1413
1414 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1415
1416 if (p == end)
1417 break;
1418 if (*p != ',')
1419 goto bad;
1420 p++;
1421 }
1422
1423 if (p != end)
1424 goto bad;
1425
1426 if (count)
1427 *count = i + 1;
1428 return 0;
1429
1430 bad:
1431 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1432 return ret;
1433 }
1434 EXPORT_SYMBOL(ceph_parse_ips);
1435
1436 static int process_banner(struct ceph_connection *con)
1437 {
1438 dout("process_banner on %p\n", con);
1439
1440 if (verify_hello(con) < 0)
1441 return -1;
1442
1443 ceph_decode_addr(&con->actual_peer_addr);
1444 ceph_decode_addr(&con->peer_addr_for_me);
1445
1446 /*
1447 * Make sure the other end is who we wanted. note that the other
1448 * end may not yet know their ip address, so if it's 0.0.0.0, give
1449 * them the benefit of the doubt.
1450 */
1451 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1452 sizeof(con->peer_addr)) != 0 &&
1453 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1454 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1455 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1456 ceph_pr_addr(&con->peer_addr.in_addr),
1457 (int)le32_to_cpu(con->peer_addr.nonce),
1458 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1459 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1460 con->error_msg = "wrong peer at address";
1461 return -1;
1462 }
1463
1464 /*
1465 * did we learn our address?
1466 */
1467 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1468 int port = addr_port(&con->msgr->inst.addr.in_addr);
1469
1470 memcpy(&con->msgr->inst.addr.in_addr,
1471 &con->peer_addr_for_me.in_addr,
1472 sizeof(con->peer_addr_for_me.in_addr));
1473 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1474 encode_my_addr(con->msgr);
1475 dout("process_banner learned my addr is %s\n",
1476 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1477 }
1478
1479 return 0;
1480 }
1481
1482 static void fail_protocol(struct ceph_connection *con)
1483 {
1484 reset_connection(con);
1485 set_bit(CLOSED, &con->state); /* in case there's queued work */
1486 }
1487
1488 static int process_connect(struct ceph_connection *con)
1489 {
1490 u64 sup_feat = con->msgr->supported_features;
1491 u64 req_feat = con->msgr->required_features;
1492 u64 server_feat = le64_to_cpu(con->in_reply.features);
1493 int ret;
1494
1495 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1496
1497 switch (con->in_reply.tag) {
1498 case CEPH_MSGR_TAG_FEATURES:
1499 pr_err("%s%lld %s feature set mismatch,"
1500 " my %llx < server's %llx, missing %llx\n",
1501 ENTITY_NAME(con->peer_name),
1502 ceph_pr_addr(&con->peer_addr.in_addr),
1503 sup_feat, server_feat, server_feat & ~sup_feat);
1504 con->error_msg = "missing required protocol features";
1505 fail_protocol(con);
1506 return -1;
1507
1508 case CEPH_MSGR_TAG_BADPROTOVER:
1509 pr_err("%s%lld %s protocol version mismatch,"
1510 " my %d != server's %d\n",
1511 ENTITY_NAME(con->peer_name),
1512 ceph_pr_addr(&con->peer_addr.in_addr),
1513 le32_to_cpu(con->out_connect.protocol_version),
1514 le32_to_cpu(con->in_reply.protocol_version));
1515 con->error_msg = "protocol version mismatch";
1516 fail_protocol(con);
1517 return -1;
1518
1519 case CEPH_MSGR_TAG_BADAUTHORIZER:
1520 con->auth_retry++;
1521 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1522 con->auth_retry);
1523 if (con->auth_retry == 2) {
1524 con->error_msg = "connect authorization failure";
1525 return -1;
1526 }
1527 con->auth_retry = 1;
1528 ret = prepare_write_connect(con);
1529 if (ret < 0)
1530 return ret;
1531 prepare_read_connect(con);
1532 break;
1533
1534 case CEPH_MSGR_TAG_RESETSESSION:
1535 /*
1536 * If we connected with a large connect_seq but the peer
1537 * has no record of a session with us (no connection, or
1538 * connect_seq == 0), they will send RESETSESION to indicate
1539 * that they must have reset their session, and may have
1540 * dropped messages.
1541 */
1542 dout("process_connect got RESET peer seq %u\n",
1543 le32_to_cpu(con->in_connect.connect_seq));
1544 pr_err("%s%lld %s connection reset\n",
1545 ENTITY_NAME(con->peer_name),
1546 ceph_pr_addr(&con->peer_addr.in_addr));
1547 reset_connection(con);
1548 ret = prepare_write_connect(con);
1549 if (ret < 0)
1550 return ret;
1551 prepare_read_connect(con);
1552
1553 /* Tell ceph about it. */
1554 mutex_unlock(&con->mutex);
1555 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1556 if (con->ops->peer_reset)
1557 con->ops->peer_reset(con);
1558 mutex_lock(&con->mutex);
1559 if (test_bit(CLOSED, &con->state) ||
1560 test_bit(OPENING, &con->state))
1561 return -EAGAIN;
1562 break;
1563
1564 case CEPH_MSGR_TAG_RETRY_SESSION:
1565 /*
1566 * If we sent a smaller connect_seq than the peer has, try
1567 * again with a larger value.
1568 */
1569 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1570 le32_to_cpu(con->out_connect.connect_seq),
1571 le32_to_cpu(con->in_connect.connect_seq));
1572 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1573 ret = prepare_write_connect(con);
1574 if (ret < 0)
1575 return ret;
1576 prepare_read_connect(con);
1577 break;
1578
1579 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1580 /*
1581 * If we sent a smaller global_seq than the peer has, try
1582 * again with a larger value.
1583 */
1584 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1585 con->peer_global_seq,
1586 le32_to_cpu(con->in_connect.global_seq));
1587 get_global_seq(con->msgr,
1588 le32_to_cpu(con->in_connect.global_seq));
1589 ret = prepare_write_connect(con);
1590 if (ret < 0)
1591 return ret;
1592 prepare_read_connect(con);
1593 break;
1594
1595 case CEPH_MSGR_TAG_READY:
1596 if (req_feat & ~server_feat) {
1597 pr_err("%s%lld %s protocol feature mismatch,"
1598 " my required %llx > server's %llx, need %llx\n",
1599 ENTITY_NAME(con->peer_name),
1600 ceph_pr_addr(&con->peer_addr.in_addr),
1601 req_feat, server_feat, req_feat & ~server_feat);
1602 con->error_msg = "missing required protocol features";
1603 fail_protocol(con);
1604 return -1;
1605 }
1606 clear_bit(NEGOTIATING, &con->state);
1607 set_bit(CONNECTED, &con->state);
1608 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1609 con->connect_seq++;
1610 con->peer_features = server_feat;
1611 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1612 con->peer_global_seq,
1613 le32_to_cpu(con->in_reply.connect_seq),
1614 con->connect_seq);
1615 WARN_ON(con->connect_seq !=
1616 le32_to_cpu(con->in_reply.connect_seq));
1617
1618 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1619 set_bit(LOSSYTX, &con->flags);
1620
1621 prepare_read_tag(con);
1622 break;
1623
1624 case CEPH_MSGR_TAG_WAIT:
1625 /*
1626 * If there is a connection race (we are opening
1627 * connections to each other), one of us may just have
1628 * to WAIT. This shouldn't happen if we are the
1629 * client.
1630 */
1631 pr_err("process_connect got WAIT as client\n");
1632 con->error_msg = "protocol error, got WAIT as client";
1633 return -1;
1634
1635 default:
1636 pr_err("connect protocol error, will retry\n");
1637 con->error_msg = "protocol error, garbage tag during connect";
1638 return -1;
1639 }
1640 return 0;
1641 }
1642
1643
1644 /*
1645 * read (part of) an ack
1646 */
1647 static int read_partial_ack(struct ceph_connection *con)
1648 {
1649 int size = sizeof (con->in_temp_ack);
1650 int end = size;
1651
1652 return read_partial(con, end, size, &con->in_temp_ack);
1653 }
1654
1655
1656 /*
1657 * We can finally discard anything that's been acked.
1658 */
1659 static void process_ack(struct ceph_connection *con)
1660 {
1661 struct ceph_msg *m;
1662 u64 ack = le64_to_cpu(con->in_temp_ack);
1663 u64 seq;
1664
1665 while (!list_empty(&con->out_sent)) {
1666 m = list_first_entry(&con->out_sent, struct ceph_msg,
1667 list_head);
1668 seq = le64_to_cpu(m->hdr.seq);
1669 if (seq > ack)
1670 break;
1671 dout("got ack for seq %llu type %d at %p\n", seq,
1672 le16_to_cpu(m->hdr.type), m);
1673 m->ack_stamp = jiffies;
1674 ceph_msg_remove(m);
1675 }
1676 prepare_read_tag(con);
1677 }
1678
1679
1680
1681
1682 static int read_partial_message_section(struct ceph_connection *con,
1683 struct kvec *section,
1684 unsigned int sec_len, u32 *crc)
1685 {
1686 int ret, left;
1687
1688 BUG_ON(!section);
1689
1690 while (section->iov_len < sec_len) {
1691 BUG_ON(section->iov_base == NULL);
1692 left = sec_len - section->iov_len;
1693 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1694 section->iov_len, left);
1695 if (ret <= 0)
1696 return ret;
1697 section->iov_len += ret;
1698 }
1699 if (section->iov_len == sec_len)
1700 *crc = crc32c(0, section->iov_base, section->iov_len);
1701
1702 return 1;
1703 }
1704
1705 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1706 struct ceph_msg_header *hdr);
1707
1708
1709 static int read_partial_message_pages(struct ceph_connection *con,
1710 struct page **pages,
1711 unsigned int data_len, bool do_datacrc)
1712 {
1713 void *p;
1714 int ret;
1715 int left;
1716
1717 left = min((int)(data_len - con->in_msg_pos.data_pos),
1718 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1719 /* (page) data */
1720 BUG_ON(pages == NULL);
1721 p = kmap(pages[con->in_msg_pos.page]);
1722 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1723 left);
1724 if (ret > 0 && do_datacrc)
1725 con->in_data_crc =
1726 crc32c(con->in_data_crc,
1727 p + con->in_msg_pos.page_pos, ret);
1728 kunmap(pages[con->in_msg_pos.page]);
1729 if (ret <= 0)
1730 return ret;
1731 con->in_msg_pos.data_pos += ret;
1732 con->in_msg_pos.page_pos += ret;
1733 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1734 con->in_msg_pos.page_pos = 0;
1735 con->in_msg_pos.page++;
1736 }
1737
1738 return ret;
1739 }
1740
1741 #ifdef CONFIG_BLOCK
1742 static int read_partial_message_bio(struct ceph_connection *con,
1743 struct bio **bio_iter, int *bio_seg,
1744 unsigned int data_len, bool do_datacrc)
1745 {
1746 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1747 void *p;
1748 int ret, left;
1749
1750 left = min((int)(data_len - con->in_msg_pos.data_pos),
1751 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1752
1753 p = kmap(bv->bv_page) + bv->bv_offset;
1754
1755 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1756 left);
1757 if (ret > 0 && do_datacrc)
1758 con->in_data_crc =
1759 crc32c(con->in_data_crc,
1760 p + con->in_msg_pos.page_pos, ret);
1761 kunmap(bv->bv_page);
1762 if (ret <= 0)
1763 return ret;
1764 con->in_msg_pos.data_pos += ret;
1765 con->in_msg_pos.page_pos += ret;
1766 if (con->in_msg_pos.page_pos == bv->bv_len) {
1767 con->in_msg_pos.page_pos = 0;
1768 iter_bio_next(bio_iter, bio_seg);
1769 }
1770
1771 return ret;
1772 }
1773 #endif
1774
1775 /*
1776 * read (part of) a message.
1777 */
1778 static int read_partial_message(struct ceph_connection *con)
1779 {
1780 struct ceph_msg *m = con->in_msg;
1781 int size;
1782 int end;
1783 int ret;
1784 unsigned int front_len, middle_len, data_len;
1785 bool do_datacrc = !con->msgr->nocrc;
1786 u64 seq;
1787 u32 crc;
1788
1789 dout("read_partial_message con %p msg %p\n", con, m);
1790
1791 /* header */
1792 size = sizeof (con->in_hdr);
1793 end = size;
1794 ret = read_partial(con, end, size, &con->in_hdr);
1795 if (ret <= 0)
1796 return ret;
1797
1798 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1799 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1800 pr_err("read_partial_message bad hdr "
1801 " crc %u != expected %u\n",
1802 crc, con->in_hdr.crc);
1803 return -EBADMSG;
1804 }
1805
1806 front_len = le32_to_cpu(con->in_hdr.front_len);
1807 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1808 return -EIO;
1809 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1810 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1811 return -EIO;
1812 data_len = le32_to_cpu(con->in_hdr.data_len);
1813 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1814 return -EIO;
1815
1816 /* verify seq# */
1817 seq = le64_to_cpu(con->in_hdr.seq);
1818 if ((s64)seq - (s64)con->in_seq < 1) {
1819 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1820 ENTITY_NAME(con->peer_name),
1821 ceph_pr_addr(&con->peer_addr.in_addr),
1822 seq, con->in_seq + 1);
1823 con->in_base_pos = -front_len - middle_len - data_len -
1824 sizeof(m->footer);
1825 con->in_tag = CEPH_MSGR_TAG_READY;
1826 return 0;
1827 } else if ((s64)seq - (s64)con->in_seq > 1) {
1828 pr_err("read_partial_message bad seq %lld expected %lld\n",
1829 seq, con->in_seq + 1);
1830 con->error_msg = "bad message sequence # for incoming message";
1831 return -EBADMSG;
1832 }
1833
1834 /* allocate message? */
1835 if (!con->in_msg) {
1836 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1837 con->in_hdr.front_len, con->in_hdr.data_len);
1838 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1839 /* skip this message */
1840 dout("alloc_msg said skip message\n");
1841 BUG_ON(con->in_msg);
1842 con->in_base_pos = -front_len - middle_len - data_len -
1843 sizeof(m->footer);
1844 con->in_tag = CEPH_MSGR_TAG_READY;
1845 con->in_seq++;
1846 return 0;
1847 }
1848 if (!con->in_msg) {
1849 con->error_msg =
1850 "error allocating memory for incoming message";
1851 return -ENOMEM;
1852 }
1853
1854 BUG_ON(con->in_msg->con != con);
1855 m = con->in_msg;
1856 m->front.iov_len = 0; /* haven't read it yet */
1857 if (m->middle)
1858 m->middle->vec.iov_len = 0;
1859
1860 con->in_msg_pos.page = 0;
1861 if (m->pages)
1862 con->in_msg_pos.page_pos = m->page_alignment;
1863 else
1864 con->in_msg_pos.page_pos = 0;
1865 con->in_msg_pos.data_pos = 0;
1866 }
1867
1868 /* front */
1869 ret = read_partial_message_section(con, &m->front, front_len,
1870 &con->in_front_crc);
1871 if (ret <= 0)
1872 return ret;
1873
1874 /* middle */
1875 if (m->middle) {
1876 ret = read_partial_message_section(con, &m->middle->vec,
1877 middle_len,
1878 &con->in_middle_crc);
1879 if (ret <= 0)
1880 return ret;
1881 }
1882 #ifdef CONFIG_BLOCK
1883 if (m->bio && !m->bio_iter)
1884 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1885 #endif
1886
1887 /* (page) data */
1888 while (con->in_msg_pos.data_pos < data_len) {
1889 if (m->pages) {
1890 ret = read_partial_message_pages(con, m->pages,
1891 data_len, do_datacrc);
1892 if (ret <= 0)
1893 return ret;
1894 #ifdef CONFIG_BLOCK
1895 } else if (m->bio) {
1896
1897 ret = read_partial_message_bio(con,
1898 &m->bio_iter, &m->bio_seg,
1899 data_len, do_datacrc);
1900 if (ret <= 0)
1901 return ret;
1902 #endif
1903 } else {
1904 BUG_ON(1);
1905 }
1906 }
1907
1908 /* footer */
1909 size = sizeof (m->footer);
1910 end += size;
1911 ret = read_partial(con, end, size, &m->footer);
1912 if (ret <= 0)
1913 return ret;
1914
1915 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1916 m, front_len, m->footer.front_crc, middle_len,
1917 m->footer.middle_crc, data_len, m->footer.data_crc);
1918
1919 /* crc ok? */
1920 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1921 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1922 m, con->in_front_crc, m->footer.front_crc);
1923 return -EBADMSG;
1924 }
1925 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1926 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1927 m, con->in_middle_crc, m->footer.middle_crc);
1928 return -EBADMSG;
1929 }
1930 if (do_datacrc &&
1931 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1932 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1933 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1934 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1935 return -EBADMSG;
1936 }
1937
1938 return 1; /* done! */
1939 }
1940
1941 /*
1942 * Process message. This happens in the worker thread. The callback should
1943 * be careful not to do anything that waits on other incoming messages or it
1944 * may deadlock.
1945 */
1946 static void process_message(struct ceph_connection *con)
1947 {
1948 struct ceph_msg *msg;
1949
1950 BUG_ON(con->in_msg->con != con);
1951 con->in_msg->con = NULL;
1952 msg = con->in_msg;
1953 con->in_msg = NULL;
1954 con->ops->put(con);
1955
1956 /* if first message, set peer_name */
1957 if (con->peer_name.type == 0)
1958 con->peer_name = msg->hdr.src;
1959
1960 con->in_seq++;
1961 mutex_unlock(&con->mutex);
1962
1963 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1964 msg, le64_to_cpu(msg->hdr.seq),
1965 ENTITY_NAME(msg->hdr.src),
1966 le16_to_cpu(msg->hdr.type),
1967 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1968 le32_to_cpu(msg->hdr.front_len),
1969 le32_to_cpu(msg->hdr.data_len),
1970 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1971 con->ops->dispatch(con, msg);
1972
1973 mutex_lock(&con->mutex);
1974 prepare_read_tag(con);
1975 }
1976
1977
1978 /*
1979 * Write something to the socket. Called in a worker thread when the
1980 * socket appears to be writeable and we have something ready to send.
1981 */
1982 static int try_write(struct ceph_connection *con)
1983 {
1984 int ret = 1;
1985
1986 dout("try_write start %p state %lu\n", con, con->state);
1987
1988 more:
1989 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1990
1991 /* open the socket first? */
1992 if (con->sock == NULL) {
1993 set_bit(CONNECTING, &con->state);
1994
1995 con_out_kvec_reset(con);
1996 prepare_write_banner(con);
1997 prepare_read_banner(con);
1998
1999 BUG_ON(con->in_msg);
2000 con->in_tag = CEPH_MSGR_TAG_READY;
2001 dout("try_write initiating connect on %p new state %lu\n",
2002 con, con->state);
2003 ret = ceph_tcp_connect(con);
2004 if (ret < 0) {
2005 con->error_msg = "connect error";
2006 goto out;
2007 }
2008 }
2009
2010 more_kvec:
2011 /* kvec data queued? */
2012 if (con->out_skip) {
2013 ret = write_partial_skip(con);
2014 if (ret <= 0)
2015 goto out;
2016 }
2017 if (con->out_kvec_left) {
2018 ret = write_partial_kvec(con);
2019 if (ret <= 0)
2020 goto out;
2021 }
2022
2023 /* msg pages? */
2024 if (con->out_msg) {
2025 if (con->out_msg_done) {
2026 ceph_msg_put(con->out_msg);
2027 con->out_msg = NULL; /* we're done with this one */
2028 goto do_next;
2029 }
2030
2031 ret = write_partial_msg_pages(con);
2032 if (ret == 1)
2033 goto more_kvec; /* we need to send the footer, too! */
2034 if (ret == 0)
2035 goto out;
2036 if (ret < 0) {
2037 dout("try_write write_partial_msg_pages err %d\n",
2038 ret);
2039 goto out;
2040 }
2041 }
2042
2043 do_next:
2044 if (!test_bit(CONNECTING, &con->state) &&
2045 !test_bit(NEGOTIATING, &con->state)) {
2046 /* is anything else pending? */
2047 if (!list_empty(&con->out_queue)) {
2048 prepare_write_message(con);
2049 goto more;
2050 }
2051 if (con->in_seq > con->in_seq_acked) {
2052 prepare_write_ack(con);
2053 goto more;
2054 }
2055 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2056 prepare_write_keepalive(con);
2057 goto more;
2058 }
2059 }
2060
2061 /* Nothing to do! */
2062 clear_bit(WRITE_PENDING, &con->flags);
2063 dout("try_write nothing else to write.\n");
2064 ret = 0;
2065 out:
2066 dout("try_write done on %p ret %d\n", con, ret);
2067 return ret;
2068 }
2069
2070
2071
2072 /*
2073 * Read what we can from the socket.
2074 */
2075 static int try_read(struct ceph_connection *con)
2076 {
2077 int ret = -1;
2078
2079 if (!con->sock)
2080 return 0;
2081
2082 if (test_bit(STANDBY, &con->state))
2083 return 0;
2084
2085 dout("try_read start on %p\n", con);
2086
2087 more:
2088 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2089 con->in_base_pos);
2090
2091 /*
2092 * process_connect and process_message drop and re-take
2093 * con->mutex. make sure we handle a racing close or reopen.
2094 */
2095 if (test_bit(CLOSED, &con->state) ||
2096 test_bit(OPENING, &con->state)) {
2097 ret = -EAGAIN;
2098 goto out;
2099 }
2100
2101 if (test_bit(CONNECTING, &con->state)) {
2102 dout("try_read connecting\n");
2103 ret = read_partial_banner(con);
2104 if (ret <= 0)
2105 goto out;
2106 ret = process_banner(con);
2107 if (ret < 0)
2108 goto out;
2109
2110 clear_bit(CONNECTING, &con->state);
2111 set_bit(NEGOTIATING, &con->state);
2112
2113 /* Banner is good, exchange connection info */
2114 ret = prepare_write_connect(con);
2115 if (ret < 0)
2116 goto out;
2117 prepare_read_connect(con);
2118
2119 /* Send connection info before awaiting response */
2120 goto out;
2121 }
2122
2123 if (test_bit(NEGOTIATING, &con->state)) {
2124 dout("try_read negotiating\n");
2125 ret = read_partial_connect(con);
2126 if (ret <= 0)
2127 goto out;
2128 ret = process_connect(con);
2129 if (ret < 0)
2130 goto out;
2131 goto more;
2132 }
2133
2134 if (con->in_base_pos < 0) {
2135 /*
2136 * skipping + discarding content.
2137 *
2138 * FIXME: there must be a better way to do this!
2139 */
2140 static char buf[SKIP_BUF_SIZE];
2141 int skip = min((int) sizeof (buf), -con->in_base_pos);
2142
2143 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2144 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2145 if (ret <= 0)
2146 goto out;
2147 con->in_base_pos += ret;
2148 if (con->in_base_pos)
2149 goto more;
2150 }
2151 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2152 /*
2153 * what's next?
2154 */
2155 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2156 if (ret <= 0)
2157 goto out;
2158 dout("try_read got tag %d\n", (int)con->in_tag);
2159 switch (con->in_tag) {
2160 case CEPH_MSGR_TAG_MSG:
2161 prepare_read_message(con);
2162 break;
2163 case CEPH_MSGR_TAG_ACK:
2164 prepare_read_ack(con);
2165 break;
2166 case CEPH_MSGR_TAG_CLOSE:
2167 clear_bit(CONNECTED, &con->state);
2168 set_bit(CLOSED, &con->state); /* fixme */
2169 goto out;
2170 default:
2171 goto bad_tag;
2172 }
2173 }
2174 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2175 ret = read_partial_message(con);
2176 if (ret <= 0) {
2177 switch (ret) {
2178 case -EBADMSG:
2179 con->error_msg = "bad crc";
2180 ret = -EIO;
2181 break;
2182 case -EIO:
2183 con->error_msg = "io error";
2184 break;
2185 }
2186 goto out;
2187 }
2188 if (con->in_tag == CEPH_MSGR_TAG_READY)
2189 goto more;
2190 process_message(con);
2191 goto more;
2192 }
2193 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2194 ret = read_partial_ack(con);
2195 if (ret <= 0)
2196 goto out;
2197 process_ack(con);
2198 goto more;
2199 }
2200
2201 out:
2202 dout("try_read done on %p ret %d\n", con, ret);
2203 return ret;
2204
2205 bad_tag:
2206 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2207 con->error_msg = "protocol error, garbage tag";
2208 ret = -1;
2209 goto out;
2210 }
2211
2212
2213 /*
2214 * Atomically queue work on a connection. Bump @con reference to
2215 * avoid races with connection teardown.
2216 */
2217 static void queue_con(struct ceph_connection *con)
2218 {
2219 if (!con->ops->get(con)) {
2220 dout("queue_con %p ref count 0\n", con);
2221 return;
2222 }
2223
2224 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2225 dout("queue_con %p - already queued\n", con);
2226 con->ops->put(con);
2227 } else {
2228 dout("queue_con %p\n", con);
2229 }
2230 }
2231
2232 /*
2233 * Do some work on a connection. Drop a connection ref when we're done.
2234 */
2235 static void con_work(struct work_struct *work)
2236 {
2237 struct ceph_connection *con = container_of(work, struct ceph_connection,
2238 work.work);
2239 int ret;
2240
2241 mutex_lock(&con->mutex);
2242 restart:
2243 if (test_and_clear_bit(SOCK_CLOSED, &con->flags)) {
2244 if (test_and_clear_bit(CONNECTED, &con->state))
2245 con->error_msg = "socket closed";
2246 else if (test_and_clear_bit(NEGOTIATING, &con->state))
2247 con->error_msg = "negotiation failed";
2248 else if (test_and_clear_bit(CONNECTING, &con->state))
2249 con->error_msg = "connection failed";
2250 else
2251 con->error_msg = "unrecognized con state";
2252 goto fault;
2253 }
2254
2255 if (test_and_clear_bit(BACKOFF, &con->flags)) {
2256 dout("con_work %p backing off\n", con);
2257 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2258 round_jiffies_relative(con->delay))) {
2259 dout("con_work %p backoff %lu\n", con, con->delay);
2260 mutex_unlock(&con->mutex);
2261 return;
2262 } else {
2263 con->ops->put(con);
2264 dout("con_work %p FAILED to back off %lu\n", con,
2265 con->delay);
2266 }
2267 }
2268
2269 if (test_bit(STANDBY, &con->state)) {
2270 dout("con_work %p STANDBY\n", con);
2271 goto done;
2272 }
2273 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2274 dout("con_work CLOSED\n");
2275 con_close_socket(con);
2276 goto done;
2277 }
2278 if (test_and_clear_bit(OPENING, &con->state)) {
2279 /* reopen w/ new peer */
2280 dout("con_work OPENING\n");
2281 con_close_socket(con);
2282 }
2283
2284 ret = try_read(con);
2285 if (ret == -EAGAIN)
2286 goto restart;
2287 if (ret < 0)
2288 goto fault;
2289
2290 ret = try_write(con);
2291 if (ret == -EAGAIN)
2292 goto restart;
2293 if (ret < 0)
2294 goto fault;
2295
2296 done:
2297 mutex_unlock(&con->mutex);
2298 done_unlocked:
2299 con->ops->put(con);
2300 return;
2301
2302 fault:
2303 mutex_unlock(&con->mutex);
2304 ceph_fault(con); /* error/fault path */
2305 goto done_unlocked;
2306 }
2307
2308
2309 /*
2310 * Generic error/fault handler. A retry mechanism is used with
2311 * exponential backoff
2312 */
2313 static void ceph_fault(struct ceph_connection *con)
2314 {
2315 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2316 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2317 dout("fault %p state %lu to peer %s\n",
2318 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2319
2320 if (test_bit(LOSSYTX, &con->flags)) {
2321 dout("fault on LOSSYTX channel\n");
2322 goto out;
2323 }
2324
2325 mutex_lock(&con->mutex);
2326 if (test_bit(CLOSED, &con->state))
2327 goto out_unlock;
2328
2329 con_close_socket(con);
2330
2331 if (con->in_msg) {
2332 BUG_ON(con->in_msg->con != con);
2333 con->in_msg->con = NULL;
2334 ceph_msg_put(con->in_msg);
2335 con->in_msg = NULL;
2336 con->ops->put(con);
2337 }
2338
2339 /* Requeue anything that hasn't been acked */
2340 list_splice_init(&con->out_sent, &con->out_queue);
2341
2342 /* If there are no messages queued or keepalive pending, place
2343 * the connection in a STANDBY state */
2344 if (list_empty(&con->out_queue) &&
2345 !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2346 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2347 clear_bit(WRITE_PENDING, &con->flags);
2348 set_bit(STANDBY, &con->state);
2349 } else {
2350 /* retry after a delay. */
2351 if (con->delay == 0)
2352 con->delay = BASE_DELAY_INTERVAL;
2353 else if (con->delay < MAX_DELAY_INTERVAL)
2354 con->delay *= 2;
2355 con->ops->get(con);
2356 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2357 round_jiffies_relative(con->delay))) {
2358 dout("fault queued %p delay %lu\n", con, con->delay);
2359 } else {
2360 con->ops->put(con);
2361 dout("fault failed to queue %p delay %lu, backoff\n",
2362 con, con->delay);
2363 /*
2364 * In many cases we see a socket state change
2365 * while con_work is running and end up
2366 * queuing (non-delayed) work, such that we
2367 * can't backoff with a delay. Set a flag so
2368 * that when con_work restarts we schedule the
2369 * delay then.
2370 */
2371 set_bit(BACKOFF, &con->flags);
2372 }
2373 }
2374
2375 out_unlock:
2376 mutex_unlock(&con->mutex);
2377 out:
2378 /*
2379 * in case we faulted due to authentication, invalidate our
2380 * current tickets so that we can get new ones.
2381 */
2382 if (con->auth_retry && con->ops->invalidate_authorizer) {
2383 dout("calling invalidate_authorizer()\n");
2384 con->ops->invalidate_authorizer(con);
2385 }
2386
2387 if (con->ops->fault)
2388 con->ops->fault(con);
2389 }
2390
2391
2392
2393 /*
2394 * initialize a new messenger instance
2395 */
2396 void ceph_messenger_init(struct ceph_messenger *msgr,
2397 struct ceph_entity_addr *myaddr,
2398 u32 supported_features,
2399 u32 required_features,
2400 bool nocrc)
2401 {
2402 msgr->supported_features = supported_features;
2403 msgr->required_features = required_features;
2404
2405 spin_lock_init(&msgr->global_seq_lock);
2406
2407 if (myaddr)
2408 msgr->inst.addr = *myaddr;
2409
2410 /* select a random nonce */
2411 msgr->inst.addr.type = 0;
2412 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2413 encode_my_addr(msgr);
2414 msgr->nocrc = nocrc;
2415
2416 dout("%s %p\n", __func__, msgr);
2417 }
2418 EXPORT_SYMBOL(ceph_messenger_init);
2419
2420 static void clear_standby(struct ceph_connection *con)
2421 {
2422 /* come back from STANDBY? */
2423 if (test_and_clear_bit(STANDBY, &con->state)) {
2424 mutex_lock(&con->mutex);
2425 dout("clear_standby %p and ++connect_seq\n", con);
2426 con->connect_seq++;
2427 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2428 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2429 mutex_unlock(&con->mutex);
2430 }
2431 }
2432
2433 /*
2434 * Queue up an outgoing message on the given connection.
2435 */
2436 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2437 {
2438 if (test_bit(CLOSED, &con->state)) {
2439 dout("con_send %p closed, dropping %p\n", con, msg);
2440 ceph_msg_put(msg);
2441 return;
2442 }
2443
2444 /* set src+dst */
2445 msg->hdr.src = con->msgr->inst.name;
2446
2447 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2448
2449 msg->needs_out_seq = true;
2450
2451 /* queue */
2452 mutex_lock(&con->mutex);
2453
2454 BUG_ON(msg->con != NULL);
2455 msg->con = con->ops->get(con);
2456 BUG_ON(msg->con == NULL);
2457
2458 BUG_ON(!list_empty(&msg->list_head));
2459 list_add_tail(&msg->list_head, &con->out_queue);
2460 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2461 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2462 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2463 le32_to_cpu(msg->hdr.front_len),
2464 le32_to_cpu(msg->hdr.middle_len),
2465 le32_to_cpu(msg->hdr.data_len));
2466 mutex_unlock(&con->mutex);
2467
2468 /* if there wasn't anything waiting to send before, queue
2469 * new work */
2470 clear_standby(con);
2471 if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2472 queue_con(con);
2473 }
2474 EXPORT_SYMBOL(ceph_con_send);
2475
2476 /*
2477 * Revoke a message that was previously queued for send
2478 */
2479 void ceph_msg_revoke(struct ceph_msg *msg)
2480 {
2481 struct ceph_connection *con = msg->con;
2482
2483 if (!con)
2484 return; /* Message not in our possession */
2485
2486 mutex_lock(&con->mutex);
2487 if (!list_empty(&msg->list_head)) {
2488 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2489 list_del_init(&msg->list_head);
2490 BUG_ON(msg->con == NULL);
2491 msg->con->ops->put(msg->con);
2492 msg->con = NULL;
2493 msg->hdr.seq = 0;
2494
2495 ceph_msg_put(msg);
2496 }
2497 if (con->out_msg == msg) {
2498 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2499 con->out_msg = NULL;
2500 if (con->out_kvec_is_msg) {
2501 con->out_skip = con->out_kvec_bytes;
2502 con->out_kvec_is_msg = false;
2503 }
2504 msg->hdr.seq = 0;
2505
2506 ceph_msg_put(msg);
2507 }
2508 mutex_unlock(&con->mutex);
2509 }
2510
2511 /*
2512 * Revoke a message that we may be reading data into
2513 */
2514 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2515 {
2516 struct ceph_connection *con;
2517
2518 BUG_ON(msg == NULL);
2519 if (!msg->con) {
2520 dout("%s msg %p null con\n", __func__, msg);
2521
2522 return; /* Message not in our possession */
2523 }
2524
2525 con = msg->con;
2526 mutex_lock(&con->mutex);
2527 if (con->in_msg == msg) {
2528 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2529 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2530 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2531
2532 /* skip rest of message */
2533 dout("%s %p msg %p revoked\n", __func__, con, msg);
2534 con->in_base_pos = con->in_base_pos -
2535 sizeof(struct ceph_msg_header) -
2536 front_len -
2537 middle_len -
2538 data_len -
2539 sizeof(struct ceph_msg_footer);
2540 ceph_msg_put(con->in_msg);
2541 con->in_msg = NULL;
2542 con->in_tag = CEPH_MSGR_TAG_READY;
2543 con->in_seq++;
2544 } else {
2545 dout("%s %p in_msg %p msg %p no-op\n",
2546 __func__, con, con->in_msg, msg);
2547 }
2548 mutex_unlock(&con->mutex);
2549 }
2550
2551 /*
2552 * Queue a keepalive byte to ensure the tcp connection is alive.
2553 */
2554 void ceph_con_keepalive(struct ceph_connection *con)
2555 {
2556 dout("con_keepalive %p\n", con);
2557 clear_standby(con);
2558 if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2559 test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2560 queue_con(con);
2561 }
2562 EXPORT_SYMBOL(ceph_con_keepalive);
2563
2564
2565 /*
2566 * construct a new message with given type, size
2567 * the new msg has a ref count of 1.
2568 */
2569 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2570 bool can_fail)
2571 {
2572 struct ceph_msg *m;
2573
2574 m = kmalloc(sizeof(*m), flags);
2575 if (m == NULL)
2576 goto out;
2577 kref_init(&m->kref);
2578
2579 m->con = NULL;
2580 INIT_LIST_HEAD(&m->list_head);
2581
2582 m->hdr.tid = 0;
2583 m->hdr.type = cpu_to_le16(type);
2584 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2585 m->hdr.version = 0;
2586 m->hdr.front_len = cpu_to_le32(front_len);
2587 m->hdr.middle_len = 0;
2588 m->hdr.data_len = 0;
2589 m->hdr.data_off = 0;
2590 m->hdr.reserved = 0;
2591 m->footer.front_crc = 0;
2592 m->footer.middle_crc = 0;
2593 m->footer.data_crc = 0;
2594 m->footer.flags = 0;
2595 m->front_max = front_len;
2596 m->front_is_vmalloc = false;
2597 m->more_to_follow = false;
2598 m->ack_stamp = 0;
2599 m->pool = NULL;
2600
2601 /* middle */
2602 m->middle = NULL;
2603
2604 /* data */
2605 m->nr_pages = 0;
2606 m->page_alignment = 0;
2607 m->pages = NULL;
2608 m->pagelist = NULL;
2609 m->bio = NULL;
2610 m->bio_iter = NULL;
2611 m->bio_seg = 0;
2612 m->trail = NULL;
2613
2614 /* front */
2615 if (front_len) {
2616 if (front_len > PAGE_CACHE_SIZE) {
2617 m->front.iov_base = __vmalloc(front_len, flags,
2618 PAGE_KERNEL);
2619 m->front_is_vmalloc = true;
2620 } else {
2621 m->front.iov_base = kmalloc(front_len, flags);
2622 }
2623 if (m->front.iov_base == NULL) {
2624 dout("ceph_msg_new can't allocate %d bytes\n",
2625 front_len);
2626 goto out2;
2627 }
2628 } else {
2629 m->front.iov_base = NULL;
2630 }
2631 m->front.iov_len = front_len;
2632
2633 dout("ceph_msg_new %p front %d\n", m, front_len);
2634 return m;
2635
2636 out2:
2637 ceph_msg_put(m);
2638 out:
2639 if (!can_fail) {
2640 pr_err("msg_new can't create type %d front %d\n", type,
2641 front_len);
2642 WARN_ON(1);
2643 } else {
2644 dout("msg_new can't create type %d front %d\n", type,
2645 front_len);
2646 }
2647 return NULL;
2648 }
2649 EXPORT_SYMBOL(ceph_msg_new);
2650
2651 /*
2652 * Allocate "middle" portion of a message, if it is needed and wasn't
2653 * allocated by alloc_msg. This allows us to read a small fixed-size
2654 * per-type header in the front and then gracefully fail (i.e.,
2655 * propagate the error to the caller based on info in the front) when
2656 * the middle is too large.
2657 */
2658 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2659 {
2660 int type = le16_to_cpu(msg->hdr.type);
2661 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2662
2663 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2664 ceph_msg_type_name(type), middle_len);
2665 BUG_ON(!middle_len);
2666 BUG_ON(msg->middle);
2667
2668 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2669 if (!msg->middle)
2670 return -ENOMEM;
2671 return 0;
2672 }
2673
2674 /*
2675 * Allocate a message for receiving an incoming message on a
2676 * connection, and save the result in con->in_msg. Uses the
2677 * connection's private alloc_msg op if available.
2678 *
2679 * Returns true if the message should be skipped, false otherwise.
2680 * If true is returned (skip message), con->in_msg will be NULL.
2681 * If false is returned, con->in_msg will contain a pointer to the
2682 * newly-allocated message, or NULL in case of memory exhaustion.
2683 */
2684 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2685 struct ceph_msg_header *hdr)
2686 {
2687 int type = le16_to_cpu(hdr->type);
2688 int front_len = le32_to_cpu(hdr->front_len);
2689 int middle_len = le32_to_cpu(hdr->middle_len);
2690 int ret;
2691
2692 BUG_ON(con->in_msg != NULL);
2693
2694 if (con->ops->alloc_msg) {
2695 int skip = 0;
2696
2697 mutex_unlock(&con->mutex);
2698 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2699 mutex_lock(&con->mutex);
2700 if (con->in_msg) {
2701 con->in_msg->con = con->ops->get(con);
2702 BUG_ON(con->in_msg->con == NULL);
2703 }
2704 if (skip)
2705 con->in_msg = NULL;
2706
2707 if (!con->in_msg)
2708 return skip != 0;
2709 }
2710 if (!con->in_msg) {
2711 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2712 if (!con->in_msg) {
2713 pr_err("unable to allocate msg type %d len %d\n",
2714 type, front_len);
2715 return false;
2716 }
2717 con->in_msg->con = con->ops->get(con);
2718 BUG_ON(con->in_msg->con == NULL);
2719 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2720 }
2721 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2722
2723 if (middle_len && !con->in_msg->middle) {
2724 ret = ceph_alloc_middle(con, con->in_msg);
2725 if (ret < 0) {
2726 ceph_msg_put(con->in_msg);
2727 con->in_msg = NULL;
2728 }
2729 }
2730
2731 return false;
2732 }
2733
2734
2735 /*
2736 * Free a generically kmalloc'd message.
2737 */
2738 void ceph_msg_kfree(struct ceph_msg *m)
2739 {
2740 dout("msg_kfree %p\n", m);
2741 if (m->front_is_vmalloc)
2742 vfree(m->front.iov_base);
2743 else
2744 kfree(m->front.iov_base);
2745 kfree(m);
2746 }
2747
2748 /*
2749 * Drop a msg ref. Destroy as needed.
2750 */
2751 void ceph_msg_last_put(struct kref *kref)
2752 {
2753 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2754
2755 dout("ceph_msg_put last one on %p\n", m);
2756 WARN_ON(!list_empty(&m->list_head));
2757
2758 /* drop middle, data, if any */
2759 if (m->middle) {
2760 ceph_buffer_put(m->middle);
2761 m->middle = NULL;
2762 }
2763 m->nr_pages = 0;
2764 m->pages = NULL;
2765
2766 if (m->pagelist) {
2767 ceph_pagelist_release(m->pagelist);
2768 kfree(m->pagelist);
2769 m->pagelist = NULL;
2770 }
2771
2772 m->trail = NULL;
2773
2774 if (m->pool)
2775 ceph_msgpool_put(m->pool, m);
2776 else
2777 ceph_msg_kfree(m);
2778 }
2779 EXPORT_SYMBOL(ceph_msg_last_put);
2780
2781 void ceph_msg_dump(struct ceph_msg *msg)
2782 {
2783 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2784 msg->front_max, msg->nr_pages);
2785 print_hex_dump(KERN_DEBUG, "header: ",
2786 DUMP_PREFIX_OFFSET, 16, 1,
2787 &msg->hdr, sizeof(msg->hdr), true);
2788 print_hex_dump(KERN_DEBUG, " front: ",
2789 DUMP_PREFIX_OFFSET, 16, 1,
2790 msg->front.iov_base, msg->front.iov_len, true);
2791 if (msg->middle)
2792 print_hex_dump(KERN_DEBUG, "middle: ",
2793 DUMP_PREFIX_OFFSET, 16, 1,
2794 msg->middle->vec.iov_base,
2795 msg->middle->vec.iov_len, true);
2796 print_hex_dump(KERN_DEBUG, "footer: ",
2797 DUMP_PREFIX_OFFSET, 16, 1,
2798 &msg->footer, sizeof(msg->footer), true);
2799 }
2800 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.117409 seconds and 4 git commands to generate.