ASoC: rsnd: move priv member settings to upper side
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
160
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 /*
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
173 */
174 #define SKIP_BUF_SIZE 1024
175
176 static void queue_con(struct ceph_connection *con);
177 static void con_work(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179
180 /*
181 * Nicely render a sockaddr as a string. An array of formatted
182 * strings is used, to approximate reentrancy.
183 */
184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
188
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191
192 static struct page *zero_page; /* used in certain error cases */
193
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 int i;
197 char *s;
198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200
201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 s = addr_str[i];
203
204 switch (ss->ss_family) {
205 case AF_INET:
206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 ntohs(in4->sin_port));
208 break;
209
210 case AF_INET6:
211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 ntohs(in6->sin6_port));
213 break;
214
215 default:
216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 ss->ss_family);
218 }
219
220 return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 ceph_encode_addr(&msgr->my_enc_addr);
228 }
229
230 /*
231 * work queue for all reading and writing to/from the socket.
232 */
233 static struct workqueue_struct *ceph_msgr_wq;
234
235 static int ceph_msgr_slab_init(void)
236 {
237 BUG_ON(ceph_msg_cache);
238 ceph_msg_cache = kmem_cache_create("ceph_msg",
239 sizeof (struct ceph_msg),
240 __alignof__(struct ceph_msg), 0, NULL);
241
242 if (!ceph_msg_cache)
243 return -ENOMEM;
244
245 BUG_ON(ceph_msg_data_cache);
246 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
247 sizeof (struct ceph_msg_data),
248 __alignof__(struct ceph_msg_data),
249 0, NULL);
250 if (ceph_msg_data_cache)
251 return 0;
252
253 kmem_cache_destroy(ceph_msg_cache);
254 ceph_msg_cache = NULL;
255
256 return -ENOMEM;
257 }
258
259 static void ceph_msgr_slab_exit(void)
260 {
261 BUG_ON(!ceph_msg_data_cache);
262 kmem_cache_destroy(ceph_msg_data_cache);
263 ceph_msg_data_cache = NULL;
264
265 BUG_ON(!ceph_msg_cache);
266 kmem_cache_destroy(ceph_msg_cache);
267 ceph_msg_cache = NULL;
268 }
269
270 static void _ceph_msgr_exit(void)
271 {
272 if (ceph_msgr_wq) {
273 destroy_workqueue(ceph_msgr_wq);
274 ceph_msgr_wq = NULL;
275 }
276
277 ceph_msgr_slab_exit();
278
279 BUG_ON(zero_page == NULL);
280 kunmap(zero_page);
281 page_cache_release(zero_page);
282 zero_page = NULL;
283 }
284
285 int ceph_msgr_init(void)
286 {
287 BUG_ON(zero_page != NULL);
288 zero_page = ZERO_PAGE(0);
289 page_cache_get(zero_page);
290
291 if (ceph_msgr_slab_init())
292 return -ENOMEM;
293
294 ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0);
295 if (ceph_msgr_wq)
296 return 0;
297
298 pr_err("msgr_init failed to create workqueue\n");
299 _ceph_msgr_exit();
300
301 return -ENOMEM;
302 }
303 EXPORT_SYMBOL(ceph_msgr_init);
304
305 void ceph_msgr_exit(void)
306 {
307 BUG_ON(ceph_msgr_wq == NULL);
308
309 _ceph_msgr_exit();
310 }
311 EXPORT_SYMBOL(ceph_msgr_exit);
312
313 void ceph_msgr_flush(void)
314 {
315 flush_workqueue(ceph_msgr_wq);
316 }
317 EXPORT_SYMBOL(ceph_msgr_flush);
318
319 /* Connection socket state transition functions */
320
321 static void con_sock_state_init(struct ceph_connection *con)
322 {
323 int old_state;
324
325 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
327 printk("%s: unexpected old state %d\n", __func__, old_state);
328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 CON_SOCK_STATE_CLOSED);
330 }
331
332 static void con_sock_state_connecting(struct ceph_connection *con)
333 {
334 int old_state;
335
336 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
337 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
338 printk("%s: unexpected old state %d\n", __func__, old_state);
339 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
340 CON_SOCK_STATE_CONNECTING);
341 }
342
343 static void con_sock_state_connected(struct ceph_connection *con)
344 {
345 int old_state;
346
347 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
348 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
349 printk("%s: unexpected old state %d\n", __func__, old_state);
350 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
351 CON_SOCK_STATE_CONNECTED);
352 }
353
354 static void con_sock_state_closing(struct ceph_connection *con)
355 {
356 int old_state;
357
358 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
359 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
360 old_state != CON_SOCK_STATE_CONNECTED &&
361 old_state != CON_SOCK_STATE_CLOSING))
362 printk("%s: unexpected old state %d\n", __func__, old_state);
363 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
364 CON_SOCK_STATE_CLOSING);
365 }
366
367 static void con_sock_state_closed(struct ceph_connection *con)
368 {
369 int old_state;
370
371 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
372 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
373 old_state != CON_SOCK_STATE_CLOSING &&
374 old_state != CON_SOCK_STATE_CONNECTING &&
375 old_state != CON_SOCK_STATE_CLOSED))
376 printk("%s: unexpected old state %d\n", __func__, old_state);
377 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
378 CON_SOCK_STATE_CLOSED);
379 }
380
381 /*
382 * socket callback functions
383 */
384
385 /* data available on socket, or listen socket received a connect */
386 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
387 {
388 struct ceph_connection *con = sk->sk_user_data;
389 if (atomic_read(&con->msgr->stopping)) {
390 return;
391 }
392
393 if (sk->sk_state != TCP_CLOSE_WAIT) {
394 dout("%s on %p state = %lu, queueing work\n", __func__,
395 con, con->state);
396 queue_con(con);
397 }
398 }
399
400 /* socket has buffer space for writing */
401 static void ceph_sock_write_space(struct sock *sk)
402 {
403 struct ceph_connection *con = sk->sk_user_data;
404
405 /* only queue to workqueue if there is data we want to write,
406 * and there is sufficient space in the socket buffer to accept
407 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
408 * doesn't get called again until try_write() fills the socket
409 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
410 * and net/core/stream.c:sk_stream_write_space().
411 */
412 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
413 if (sk_stream_is_writeable(sk)) {
414 dout("%s %p queueing write work\n", __func__, con);
415 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
416 queue_con(con);
417 }
418 } else {
419 dout("%s %p nothing to write\n", __func__, con);
420 }
421 }
422
423 /* socket's state has changed */
424 static void ceph_sock_state_change(struct sock *sk)
425 {
426 struct ceph_connection *con = sk->sk_user_data;
427
428 dout("%s %p state = %lu sk_state = %u\n", __func__,
429 con, con->state, sk->sk_state);
430
431 switch (sk->sk_state) {
432 case TCP_CLOSE:
433 dout("%s TCP_CLOSE\n", __func__);
434 case TCP_CLOSE_WAIT:
435 dout("%s TCP_CLOSE_WAIT\n", __func__);
436 con_sock_state_closing(con);
437 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
438 queue_con(con);
439 break;
440 case TCP_ESTABLISHED:
441 dout("%s TCP_ESTABLISHED\n", __func__);
442 con_sock_state_connected(con);
443 queue_con(con);
444 break;
445 default: /* Everything else is uninteresting */
446 break;
447 }
448 }
449
450 /*
451 * set up socket callbacks
452 */
453 static void set_sock_callbacks(struct socket *sock,
454 struct ceph_connection *con)
455 {
456 struct sock *sk = sock->sk;
457 sk->sk_user_data = con;
458 sk->sk_data_ready = ceph_sock_data_ready;
459 sk->sk_write_space = ceph_sock_write_space;
460 sk->sk_state_change = ceph_sock_state_change;
461 }
462
463
464 /*
465 * socket helpers
466 */
467
468 /*
469 * initiate connection to a remote socket.
470 */
471 static int ceph_tcp_connect(struct ceph_connection *con)
472 {
473 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
474 struct socket *sock;
475 int ret;
476
477 BUG_ON(con->sock);
478 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
479 IPPROTO_TCP, &sock);
480 if (ret)
481 return ret;
482 sock->sk->sk_allocation = GFP_NOFS;
483
484 #ifdef CONFIG_LOCKDEP
485 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
486 #endif
487
488 set_sock_callbacks(sock, con);
489
490 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
491
492 con_sock_state_connecting(con);
493 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
494 O_NONBLOCK);
495 if (ret == -EINPROGRESS) {
496 dout("connect %s EINPROGRESS sk_state = %u\n",
497 ceph_pr_addr(&con->peer_addr.in_addr),
498 sock->sk->sk_state);
499 } else if (ret < 0) {
500 pr_err("connect %s error %d\n",
501 ceph_pr_addr(&con->peer_addr.in_addr), ret);
502 sock_release(sock);
503 con->error_msg = "connect error";
504
505 return ret;
506 }
507 con->sock = sock;
508 return 0;
509 }
510
511 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
512 {
513 struct kvec iov = {buf, len};
514 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
515 int r;
516
517 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
518 if (r == -EAGAIN)
519 r = 0;
520 return r;
521 }
522
523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
524 int page_offset, size_t length)
525 {
526 void *kaddr;
527 int ret;
528
529 BUG_ON(page_offset + length > PAGE_SIZE);
530
531 kaddr = kmap(page);
532 BUG_ON(!kaddr);
533 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
534 kunmap(page);
535
536 return ret;
537 }
538
539 /*
540 * write something. @more is true if caller will be sending more data
541 * shortly.
542 */
543 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
544 size_t kvlen, size_t len, int more)
545 {
546 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
547 int r;
548
549 if (more)
550 msg.msg_flags |= MSG_MORE;
551 else
552 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
553
554 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
555 if (r == -EAGAIN)
556 r = 0;
557 return r;
558 }
559
560 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
561 int offset, size_t size, bool more)
562 {
563 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
564 int ret;
565
566 ret = kernel_sendpage(sock, page, offset, size, flags);
567 if (ret == -EAGAIN)
568 ret = 0;
569
570 return ret;
571 }
572
573
574 /*
575 * Shutdown/close the socket for the given connection.
576 */
577 static int con_close_socket(struct ceph_connection *con)
578 {
579 int rc = 0;
580
581 dout("con_close_socket on %p sock %p\n", con, con->sock);
582 if (con->sock) {
583 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
584 sock_release(con->sock);
585 con->sock = NULL;
586 }
587
588 /*
589 * Forcibly clear the SOCK_CLOSED flag. It gets set
590 * independent of the connection mutex, and we could have
591 * received a socket close event before we had the chance to
592 * shut the socket down.
593 */
594 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
595
596 con_sock_state_closed(con);
597 return rc;
598 }
599
600 /*
601 * Reset a connection. Discard all incoming and outgoing messages
602 * and clear *_seq state.
603 */
604 static void ceph_msg_remove(struct ceph_msg *msg)
605 {
606 list_del_init(&msg->list_head);
607 BUG_ON(msg->con == NULL);
608 msg->con->ops->put(msg->con);
609 msg->con = NULL;
610
611 ceph_msg_put(msg);
612 }
613 static void ceph_msg_remove_list(struct list_head *head)
614 {
615 while (!list_empty(head)) {
616 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
617 list_head);
618 ceph_msg_remove(msg);
619 }
620 }
621
622 static void reset_connection(struct ceph_connection *con)
623 {
624 /* reset connection, out_queue, msg_ and connect_seq */
625 /* discard existing out_queue and msg_seq */
626 dout("reset_connection %p\n", con);
627 ceph_msg_remove_list(&con->out_queue);
628 ceph_msg_remove_list(&con->out_sent);
629
630 if (con->in_msg) {
631 BUG_ON(con->in_msg->con != con);
632 con->in_msg->con = NULL;
633 ceph_msg_put(con->in_msg);
634 con->in_msg = NULL;
635 con->ops->put(con);
636 }
637
638 con->connect_seq = 0;
639 con->out_seq = 0;
640 if (con->out_msg) {
641 ceph_msg_put(con->out_msg);
642 con->out_msg = NULL;
643 }
644 con->in_seq = 0;
645 con->in_seq_acked = 0;
646 }
647
648 /*
649 * mark a peer down. drop any open connections.
650 */
651 void ceph_con_close(struct ceph_connection *con)
652 {
653 mutex_lock(&con->mutex);
654 dout("con_close %p peer %s\n", con,
655 ceph_pr_addr(&con->peer_addr.in_addr));
656 con->state = CON_STATE_CLOSED;
657
658 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
659 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
660 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
661 con_flag_clear(con, CON_FLAG_BACKOFF);
662
663 reset_connection(con);
664 con->peer_global_seq = 0;
665 cancel_delayed_work(&con->work);
666 con_close_socket(con);
667 mutex_unlock(&con->mutex);
668 }
669 EXPORT_SYMBOL(ceph_con_close);
670
671 /*
672 * Reopen a closed connection, with a new peer address.
673 */
674 void ceph_con_open(struct ceph_connection *con,
675 __u8 entity_type, __u64 entity_num,
676 struct ceph_entity_addr *addr)
677 {
678 mutex_lock(&con->mutex);
679 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
680
681 WARN_ON(con->state != CON_STATE_CLOSED);
682 con->state = CON_STATE_PREOPEN;
683
684 con->peer_name.type = (__u8) entity_type;
685 con->peer_name.num = cpu_to_le64(entity_num);
686
687 memcpy(&con->peer_addr, addr, sizeof(*addr));
688 con->delay = 0; /* reset backoff memory */
689 mutex_unlock(&con->mutex);
690 queue_con(con);
691 }
692 EXPORT_SYMBOL(ceph_con_open);
693
694 /*
695 * return true if this connection ever successfully opened
696 */
697 bool ceph_con_opened(struct ceph_connection *con)
698 {
699 return con->connect_seq > 0;
700 }
701
702 /*
703 * initialize a new connection.
704 */
705 void ceph_con_init(struct ceph_connection *con, void *private,
706 const struct ceph_connection_operations *ops,
707 struct ceph_messenger *msgr)
708 {
709 dout("con_init %p\n", con);
710 memset(con, 0, sizeof(*con));
711 con->private = private;
712 con->ops = ops;
713 con->msgr = msgr;
714
715 con_sock_state_init(con);
716
717 mutex_init(&con->mutex);
718 INIT_LIST_HEAD(&con->out_queue);
719 INIT_LIST_HEAD(&con->out_sent);
720 INIT_DELAYED_WORK(&con->work, con_work);
721
722 con->state = CON_STATE_CLOSED;
723 }
724 EXPORT_SYMBOL(ceph_con_init);
725
726
727 /*
728 * We maintain a global counter to order connection attempts. Get
729 * a unique seq greater than @gt.
730 */
731 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
732 {
733 u32 ret;
734
735 spin_lock(&msgr->global_seq_lock);
736 if (msgr->global_seq < gt)
737 msgr->global_seq = gt;
738 ret = ++msgr->global_seq;
739 spin_unlock(&msgr->global_seq_lock);
740 return ret;
741 }
742
743 static void con_out_kvec_reset(struct ceph_connection *con)
744 {
745 con->out_kvec_left = 0;
746 con->out_kvec_bytes = 0;
747 con->out_kvec_cur = &con->out_kvec[0];
748 }
749
750 static void con_out_kvec_add(struct ceph_connection *con,
751 size_t size, void *data)
752 {
753 int index;
754
755 index = con->out_kvec_left;
756 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
757
758 con->out_kvec[index].iov_len = size;
759 con->out_kvec[index].iov_base = data;
760 con->out_kvec_left++;
761 con->out_kvec_bytes += size;
762 }
763
764 #ifdef CONFIG_BLOCK
765
766 /*
767 * For a bio data item, a piece is whatever remains of the next
768 * entry in the current bio iovec, or the first entry in the next
769 * bio in the list.
770 */
771 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
772 size_t length)
773 {
774 struct ceph_msg_data *data = cursor->data;
775 struct bio *bio;
776
777 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
778
779 bio = data->bio;
780 BUG_ON(!bio);
781
782 cursor->resid = min(length, data->bio_length);
783 cursor->bio = bio;
784 cursor->bvec_iter = bio->bi_iter;
785 cursor->last_piece =
786 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
787 }
788
789 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
790 size_t *page_offset,
791 size_t *length)
792 {
793 struct ceph_msg_data *data = cursor->data;
794 struct bio *bio;
795 struct bio_vec bio_vec;
796
797 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
798
799 bio = cursor->bio;
800 BUG_ON(!bio);
801
802 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
803
804 *page_offset = (size_t) bio_vec.bv_offset;
805 BUG_ON(*page_offset >= PAGE_SIZE);
806 if (cursor->last_piece) /* pagelist offset is always 0 */
807 *length = cursor->resid;
808 else
809 *length = (size_t) bio_vec.bv_len;
810 BUG_ON(*length > cursor->resid);
811 BUG_ON(*page_offset + *length > PAGE_SIZE);
812
813 return bio_vec.bv_page;
814 }
815
816 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
817 size_t bytes)
818 {
819 struct bio *bio;
820 struct bio_vec bio_vec;
821
822 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
823
824 bio = cursor->bio;
825 BUG_ON(!bio);
826
827 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
828
829 /* Advance the cursor offset */
830
831 BUG_ON(cursor->resid < bytes);
832 cursor->resid -= bytes;
833
834 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
835
836 if (bytes < bio_vec.bv_len)
837 return false; /* more bytes to process in this segment */
838
839 /* Move on to the next segment, and possibly the next bio */
840
841 if (!cursor->bvec_iter.bi_size) {
842 bio = bio->bi_next;
843 cursor->bvec_iter = bio->bi_iter;
844 }
845 cursor->bio = bio;
846
847 if (!cursor->last_piece) {
848 BUG_ON(!cursor->resid);
849 BUG_ON(!bio);
850 /* A short read is OK, so use <= rather than == */
851 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
852 cursor->last_piece = true;
853 }
854
855 return true;
856 }
857 #endif /* CONFIG_BLOCK */
858
859 /*
860 * For a page array, a piece comes from the first page in the array
861 * that has not already been fully consumed.
862 */
863 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
864 size_t length)
865 {
866 struct ceph_msg_data *data = cursor->data;
867 int page_count;
868
869 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
870
871 BUG_ON(!data->pages);
872 BUG_ON(!data->length);
873
874 cursor->resid = min(length, data->length);
875 page_count = calc_pages_for(data->alignment, (u64)data->length);
876 cursor->page_offset = data->alignment & ~PAGE_MASK;
877 cursor->page_index = 0;
878 BUG_ON(page_count > (int)USHRT_MAX);
879 cursor->page_count = (unsigned short)page_count;
880 BUG_ON(length > SIZE_MAX - cursor->page_offset);
881 cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
882 }
883
884 static struct page *
885 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
886 size_t *page_offset, size_t *length)
887 {
888 struct ceph_msg_data *data = cursor->data;
889
890 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
891
892 BUG_ON(cursor->page_index >= cursor->page_count);
893 BUG_ON(cursor->page_offset >= PAGE_SIZE);
894
895 *page_offset = cursor->page_offset;
896 if (cursor->last_piece)
897 *length = cursor->resid;
898 else
899 *length = PAGE_SIZE - *page_offset;
900
901 return data->pages[cursor->page_index];
902 }
903
904 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
905 size_t bytes)
906 {
907 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
908
909 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
910
911 /* Advance the cursor page offset */
912
913 cursor->resid -= bytes;
914 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
915 if (!bytes || cursor->page_offset)
916 return false; /* more bytes to process in the current page */
917
918 /* Move on to the next page; offset is already at 0 */
919
920 BUG_ON(cursor->page_index >= cursor->page_count);
921 cursor->page_index++;
922 cursor->last_piece = cursor->resid <= PAGE_SIZE;
923
924 return true;
925 }
926
927 /*
928 * For a pagelist, a piece is whatever remains to be consumed in the
929 * first page in the list, or the front of the next page.
930 */
931 static void
932 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
933 size_t length)
934 {
935 struct ceph_msg_data *data = cursor->data;
936 struct ceph_pagelist *pagelist;
937 struct page *page;
938
939 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
940
941 pagelist = data->pagelist;
942 BUG_ON(!pagelist);
943
944 if (!length)
945 return; /* pagelist can be assigned but empty */
946
947 BUG_ON(list_empty(&pagelist->head));
948 page = list_first_entry(&pagelist->head, struct page, lru);
949
950 cursor->resid = min(length, pagelist->length);
951 cursor->page = page;
952 cursor->offset = 0;
953 cursor->last_piece = cursor->resid <= PAGE_SIZE;
954 }
955
956 static struct page *
957 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
958 size_t *page_offset, size_t *length)
959 {
960 struct ceph_msg_data *data = cursor->data;
961 struct ceph_pagelist *pagelist;
962
963 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
964
965 pagelist = data->pagelist;
966 BUG_ON(!pagelist);
967
968 BUG_ON(!cursor->page);
969 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
970
971 /* offset of first page in pagelist is always 0 */
972 *page_offset = cursor->offset & ~PAGE_MASK;
973 if (cursor->last_piece)
974 *length = cursor->resid;
975 else
976 *length = PAGE_SIZE - *page_offset;
977
978 return cursor->page;
979 }
980
981 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
982 size_t bytes)
983 {
984 struct ceph_msg_data *data = cursor->data;
985 struct ceph_pagelist *pagelist;
986
987 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
988
989 pagelist = data->pagelist;
990 BUG_ON(!pagelist);
991
992 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
993 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
994
995 /* Advance the cursor offset */
996
997 cursor->resid -= bytes;
998 cursor->offset += bytes;
999 /* offset of first page in pagelist is always 0 */
1000 if (!bytes || cursor->offset & ~PAGE_MASK)
1001 return false; /* more bytes to process in the current page */
1002
1003 /* Move on to the next page */
1004
1005 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1006 cursor->page = list_entry_next(cursor->page, lru);
1007 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1008
1009 return true;
1010 }
1011
1012 /*
1013 * Message data is handled (sent or received) in pieces, where each
1014 * piece resides on a single page. The network layer might not
1015 * consume an entire piece at once. A data item's cursor keeps
1016 * track of which piece is next to process and how much remains to
1017 * be processed in that piece. It also tracks whether the current
1018 * piece is the last one in the data item.
1019 */
1020 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1021 {
1022 size_t length = cursor->total_resid;
1023
1024 switch (cursor->data->type) {
1025 case CEPH_MSG_DATA_PAGELIST:
1026 ceph_msg_data_pagelist_cursor_init(cursor, length);
1027 break;
1028 case CEPH_MSG_DATA_PAGES:
1029 ceph_msg_data_pages_cursor_init(cursor, length);
1030 break;
1031 #ifdef CONFIG_BLOCK
1032 case CEPH_MSG_DATA_BIO:
1033 ceph_msg_data_bio_cursor_init(cursor, length);
1034 break;
1035 #endif /* CONFIG_BLOCK */
1036 case CEPH_MSG_DATA_NONE:
1037 default:
1038 /* BUG(); */
1039 break;
1040 }
1041 cursor->need_crc = true;
1042 }
1043
1044 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1045 {
1046 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1047 struct ceph_msg_data *data;
1048
1049 BUG_ON(!length);
1050 BUG_ON(length > msg->data_length);
1051 BUG_ON(list_empty(&msg->data));
1052
1053 cursor->data_head = &msg->data;
1054 cursor->total_resid = length;
1055 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1056 cursor->data = data;
1057
1058 __ceph_msg_data_cursor_init(cursor);
1059 }
1060
1061 /*
1062 * Return the page containing the next piece to process for a given
1063 * data item, and supply the page offset and length of that piece.
1064 * Indicate whether this is the last piece in this data item.
1065 */
1066 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1067 size_t *page_offset, size_t *length,
1068 bool *last_piece)
1069 {
1070 struct page *page;
1071
1072 switch (cursor->data->type) {
1073 case CEPH_MSG_DATA_PAGELIST:
1074 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1075 break;
1076 case CEPH_MSG_DATA_PAGES:
1077 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1078 break;
1079 #ifdef CONFIG_BLOCK
1080 case CEPH_MSG_DATA_BIO:
1081 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1082 break;
1083 #endif /* CONFIG_BLOCK */
1084 case CEPH_MSG_DATA_NONE:
1085 default:
1086 page = NULL;
1087 break;
1088 }
1089 BUG_ON(!page);
1090 BUG_ON(*page_offset + *length > PAGE_SIZE);
1091 BUG_ON(!*length);
1092 if (last_piece)
1093 *last_piece = cursor->last_piece;
1094
1095 return page;
1096 }
1097
1098 /*
1099 * Returns true if the result moves the cursor on to the next piece
1100 * of the data item.
1101 */
1102 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1103 size_t bytes)
1104 {
1105 bool new_piece;
1106
1107 BUG_ON(bytes > cursor->resid);
1108 switch (cursor->data->type) {
1109 case CEPH_MSG_DATA_PAGELIST:
1110 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1111 break;
1112 case CEPH_MSG_DATA_PAGES:
1113 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1114 break;
1115 #ifdef CONFIG_BLOCK
1116 case CEPH_MSG_DATA_BIO:
1117 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1118 break;
1119 #endif /* CONFIG_BLOCK */
1120 case CEPH_MSG_DATA_NONE:
1121 default:
1122 BUG();
1123 break;
1124 }
1125 cursor->total_resid -= bytes;
1126
1127 if (!cursor->resid && cursor->total_resid) {
1128 WARN_ON(!cursor->last_piece);
1129 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1130 cursor->data = list_entry_next(cursor->data, links);
1131 __ceph_msg_data_cursor_init(cursor);
1132 new_piece = true;
1133 }
1134 cursor->need_crc = new_piece;
1135
1136 return new_piece;
1137 }
1138
1139 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1140 {
1141 BUG_ON(!msg);
1142 BUG_ON(!data_len);
1143
1144 /* Initialize data cursor */
1145
1146 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1147 }
1148
1149 /*
1150 * Prepare footer for currently outgoing message, and finish things
1151 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1152 */
1153 static void prepare_write_message_footer(struct ceph_connection *con)
1154 {
1155 struct ceph_msg *m = con->out_msg;
1156 int v = con->out_kvec_left;
1157
1158 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1159
1160 dout("prepare_write_message_footer %p\n", con);
1161 con->out_kvec_is_msg = true;
1162 con->out_kvec[v].iov_base = &m->footer;
1163 con->out_kvec[v].iov_len = sizeof(m->footer);
1164 con->out_kvec_bytes += sizeof(m->footer);
1165 con->out_kvec_left++;
1166 con->out_more = m->more_to_follow;
1167 con->out_msg_done = true;
1168 }
1169
1170 /*
1171 * Prepare headers for the next outgoing message.
1172 */
1173 static void prepare_write_message(struct ceph_connection *con)
1174 {
1175 struct ceph_msg *m;
1176 u32 crc;
1177
1178 con_out_kvec_reset(con);
1179 con->out_kvec_is_msg = true;
1180 con->out_msg_done = false;
1181
1182 /* Sneak an ack in there first? If we can get it into the same
1183 * TCP packet that's a good thing. */
1184 if (con->in_seq > con->in_seq_acked) {
1185 con->in_seq_acked = con->in_seq;
1186 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1187 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1188 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1189 &con->out_temp_ack);
1190 }
1191
1192 BUG_ON(list_empty(&con->out_queue));
1193 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1194 con->out_msg = m;
1195 BUG_ON(m->con != con);
1196
1197 /* put message on sent list */
1198 ceph_msg_get(m);
1199 list_move_tail(&m->list_head, &con->out_sent);
1200
1201 /*
1202 * only assign outgoing seq # if we haven't sent this message
1203 * yet. if it is requeued, resend with it's original seq.
1204 */
1205 if (m->needs_out_seq) {
1206 m->hdr.seq = cpu_to_le64(++con->out_seq);
1207 m->needs_out_seq = false;
1208 }
1209 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1210
1211 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1212 m, con->out_seq, le16_to_cpu(m->hdr.type),
1213 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1214 m->data_length);
1215 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1216
1217 /* tag + hdr + front + middle */
1218 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1219 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1220 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1221
1222 if (m->middle)
1223 con_out_kvec_add(con, m->middle->vec.iov_len,
1224 m->middle->vec.iov_base);
1225
1226 /* fill in crc (except data pages), footer */
1227 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1228 con->out_msg->hdr.crc = cpu_to_le32(crc);
1229 con->out_msg->footer.flags = 0;
1230
1231 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1232 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1233 if (m->middle) {
1234 crc = crc32c(0, m->middle->vec.iov_base,
1235 m->middle->vec.iov_len);
1236 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1237 } else
1238 con->out_msg->footer.middle_crc = 0;
1239 dout("%s front_crc %u middle_crc %u\n", __func__,
1240 le32_to_cpu(con->out_msg->footer.front_crc),
1241 le32_to_cpu(con->out_msg->footer.middle_crc));
1242
1243 /* is there a data payload? */
1244 con->out_msg->footer.data_crc = 0;
1245 if (m->data_length) {
1246 prepare_message_data(con->out_msg, m->data_length);
1247 con->out_more = 1; /* data + footer will follow */
1248 } else {
1249 /* no, queue up footer too and be done */
1250 prepare_write_message_footer(con);
1251 }
1252
1253 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1254 }
1255
1256 /*
1257 * Prepare an ack.
1258 */
1259 static void prepare_write_ack(struct ceph_connection *con)
1260 {
1261 dout("prepare_write_ack %p %llu -> %llu\n", con,
1262 con->in_seq_acked, con->in_seq);
1263 con->in_seq_acked = con->in_seq;
1264
1265 con_out_kvec_reset(con);
1266
1267 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1268
1269 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1270 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1271 &con->out_temp_ack);
1272
1273 con->out_more = 1; /* more will follow.. eventually.. */
1274 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1275 }
1276
1277 /*
1278 * Prepare to share the seq during handshake
1279 */
1280 static void prepare_write_seq(struct ceph_connection *con)
1281 {
1282 dout("prepare_write_seq %p %llu -> %llu\n", con,
1283 con->in_seq_acked, con->in_seq);
1284 con->in_seq_acked = con->in_seq;
1285
1286 con_out_kvec_reset(con);
1287
1288 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1289 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1290 &con->out_temp_ack);
1291
1292 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1293 }
1294
1295 /*
1296 * Prepare to write keepalive byte.
1297 */
1298 static void prepare_write_keepalive(struct ceph_connection *con)
1299 {
1300 dout("prepare_write_keepalive %p\n", con);
1301 con_out_kvec_reset(con);
1302 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1303 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1304 }
1305
1306 /*
1307 * Connection negotiation.
1308 */
1309
1310 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1311 int *auth_proto)
1312 {
1313 struct ceph_auth_handshake *auth;
1314
1315 if (!con->ops->get_authorizer) {
1316 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1317 con->out_connect.authorizer_len = 0;
1318 return NULL;
1319 }
1320
1321 /* Can't hold the mutex while getting authorizer */
1322 mutex_unlock(&con->mutex);
1323 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1324 mutex_lock(&con->mutex);
1325
1326 if (IS_ERR(auth))
1327 return auth;
1328 if (con->state != CON_STATE_NEGOTIATING)
1329 return ERR_PTR(-EAGAIN);
1330
1331 con->auth_reply_buf = auth->authorizer_reply_buf;
1332 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1333 return auth;
1334 }
1335
1336 /*
1337 * We connected to a peer and are saying hello.
1338 */
1339 static void prepare_write_banner(struct ceph_connection *con)
1340 {
1341 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1342 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1343 &con->msgr->my_enc_addr);
1344
1345 con->out_more = 0;
1346 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1347 }
1348
1349 static int prepare_write_connect(struct ceph_connection *con)
1350 {
1351 unsigned int global_seq = get_global_seq(con->msgr, 0);
1352 int proto;
1353 int auth_proto;
1354 struct ceph_auth_handshake *auth;
1355
1356 switch (con->peer_name.type) {
1357 case CEPH_ENTITY_TYPE_MON:
1358 proto = CEPH_MONC_PROTOCOL;
1359 break;
1360 case CEPH_ENTITY_TYPE_OSD:
1361 proto = CEPH_OSDC_PROTOCOL;
1362 break;
1363 case CEPH_ENTITY_TYPE_MDS:
1364 proto = CEPH_MDSC_PROTOCOL;
1365 break;
1366 default:
1367 BUG();
1368 }
1369
1370 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1371 con->connect_seq, global_seq, proto);
1372
1373 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1374 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1375 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1376 con->out_connect.global_seq = cpu_to_le32(global_seq);
1377 con->out_connect.protocol_version = cpu_to_le32(proto);
1378 con->out_connect.flags = 0;
1379
1380 auth_proto = CEPH_AUTH_UNKNOWN;
1381 auth = get_connect_authorizer(con, &auth_proto);
1382 if (IS_ERR(auth))
1383 return PTR_ERR(auth);
1384
1385 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1386 con->out_connect.authorizer_len = auth ?
1387 cpu_to_le32(auth->authorizer_buf_len) : 0;
1388
1389 con_out_kvec_add(con, sizeof (con->out_connect),
1390 &con->out_connect);
1391 if (auth && auth->authorizer_buf_len)
1392 con_out_kvec_add(con, auth->authorizer_buf_len,
1393 auth->authorizer_buf);
1394
1395 con->out_more = 0;
1396 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1397
1398 return 0;
1399 }
1400
1401 /*
1402 * write as much of pending kvecs to the socket as we can.
1403 * 1 -> done
1404 * 0 -> socket full, but more to do
1405 * <0 -> error
1406 */
1407 static int write_partial_kvec(struct ceph_connection *con)
1408 {
1409 int ret;
1410
1411 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1412 while (con->out_kvec_bytes > 0) {
1413 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1414 con->out_kvec_left, con->out_kvec_bytes,
1415 con->out_more);
1416 if (ret <= 0)
1417 goto out;
1418 con->out_kvec_bytes -= ret;
1419 if (con->out_kvec_bytes == 0)
1420 break; /* done */
1421
1422 /* account for full iov entries consumed */
1423 while (ret >= con->out_kvec_cur->iov_len) {
1424 BUG_ON(!con->out_kvec_left);
1425 ret -= con->out_kvec_cur->iov_len;
1426 con->out_kvec_cur++;
1427 con->out_kvec_left--;
1428 }
1429 /* and for a partially-consumed entry */
1430 if (ret) {
1431 con->out_kvec_cur->iov_len -= ret;
1432 con->out_kvec_cur->iov_base += ret;
1433 }
1434 }
1435 con->out_kvec_left = 0;
1436 con->out_kvec_is_msg = false;
1437 ret = 1;
1438 out:
1439 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1440 con->out_kvec_bytes, con->out_kvec_left, ret);
1441 return ret; /* done! */
1442 }
1443
1444 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1445 unsigned int page_offset,
1446 unsigned int length)
1447 {
1448 char *kaddr;
1449
1450 kaddr = kmap(page);
1451 BUG_ON(kaddr == NULL);
1452 crc = crc32c(crc, kaddr + page_offset, length);
1453 kunmap(page);
1454
1455 return crc;
1456 }
1457 /*
1458 * Write as much message data payload as we can. If we finish, queue
1459 * up the footer.
1460 * 1 -> done, footer is now queued in out_kvec[].
1461 * 0 -> socket full, but more to do
1462 * <0 -> error
1463 */
1464 static int write_partial_message_data(struct ceph_connection *con)
1465 {
1466 struct ceph_msg *msg = con->out_msg;
1467 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1468 bool do_datacrc = !con->msgr->nocrc;
1469 u32 crc;
1470
1471 dout("%s %p msg %p\n", __func__, con, msg);
1472
1473 if (list_empty(&msg->data))
1474 return -EINVAL;
1475
1476 /*
1477 * Iterate through each page that contains data to be
1478 * written, and send as much as possible for each.
1479 *
1480 * If we are calculating the data crc (the default), we will
1481 * need to map the page. If we have no pages, they have
1482 * been revoked, so use the zero page.
1483 */
1484 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1485 while (cursor->resid) {
1486 struct page *page;
1487 size_t page_offset;
1488 size_t length;
1489 bool last_piece;
1490 bool need_crc;
1491 int ret;
1492
1493 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1494 &last_piece);
1495 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1496 length, last_piece);
1497 if (ret <= 0) {
1498 if (do_datacrc)
1499 msg->footer.data_crc = cpu_to_le32(crc);
1500
1501 return ret;
1502 }
1503 if (do_datacrc && cursor->need_crc)
1504 crc = ceph_crc32c_page(crc, page, page_offset, length);
1505 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1506 }
1507
1508 dout("%s %p msg %p done\n", __func__, con, msg);
1509
1510 /* prepare and queue up footer, too */
1511 if (do_datacrc)
1512 msg->footer.data_crc = cpu_to_le32(crc);
1513 else
1514 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1515 con_out_kvec_reset(con);
1516 prepare_write_message_footer(con);
1517
1518 return 1; /* must return > 0 to indicate success */
1519 }
1520
1521 /*
1522 * write some zeros
1523 */
1524 static int write_partial_skip(struct ceph_connection *con)
1525 {
1526 int ret;
1527
1528 while (con->out_skip > 0) {
1529 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1530
1531 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1532 if (ret <= 0)
1533 goto out;
1534 con->out_skip -= ret;
1535 }
1536 ret = 1;
1537 out:
1538 return ret;
1539 }
1540
1541 /*
1542 * Prepare to read connection handshake, or an ack.
1543 */
1544 static void prepare_read_banner(struct ceph_connection *con)
1545 {
1546 dout("prepare_read_banner %p\n", con);
1547 con->in_base_pos = 0;
1548 }
1549
1550 static void prepare_read_connect(struct ceph_connection *con)
1551 {
1552 dout("prepare_read_connect %p\n", con);
1553 con->in_base_pos = 0;
1554 }
1555
1556 static void prepare_read_ack(struct ceph_connection *con)
1557 {
1558 dout("prepare_read_ack %p\n", con);
1559 con->in_base_pos = 0;
1560 }
1561
1562 static void prepare_read_seq(struct ceph_connection *con)
1563 {
1564 dout("prepare_read_seq %p\n", con);
1565 con->in_base_pos = 0;
1566 con->in_tag = CEPH_MSGR_TAG_SEQ;
1567 }
1568
1569 static void prepare_read_tag(struct ceph_connection *con)
1570 {
1571 dout("prepare_read_tag %p\n", con);
1572 con->in_base_pos = 0;
1573 con->in_tag = CEPH_MSGR_TAG_READY;
1574 }
1575
1576 /*
1577 * Prepare to read a message.
1578 */
1579 static int prepare_read_message(struct ceph_connection *con)
1580 {
1581 dout("prepare_read_message %p\n", con);
1582 BUG_ON(con->in_msg != NULL);
1583 con->in_base_pos = 0;
1584 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1585 return 0;
1586 }
1587
1588
1589 static int read_partial(struct ceph_connection *con,
1590 int end, int size, void *object)
1591 {
1592 while (con->in_base_pos < end) {
1593 int left = end - con->in_base_pos;
1594 int have = size - left;
1595 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1596 if (ret <= 0)
1597 return ret;
1598 con->in_base_pos += ret;
1599 }
1600 return 1;
1601 }
1602
1603
1604 /*
1605 * Read all or part of the connect-side handshake on a new connection
1606 */
1607 static int read_partial_banner(struct ceph_connection *con)
1608 {
1609 int size;
1610 int end;
1611 int ret;
1612
1613 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1614
1615 /* peer's banner */
1616 size = strlen(CEPH_BANNER);
1617 end = size;
1618 ret = read_partial(con, end, size, con->in_banner);
1619 if (ret <= 0)
1620 goto out;
1621
1622 size = sizeof (con->actual_peer_addr);
1623 end += size;
1624 ret = read_partial(con, end, size, &con->actual_peer_addr);
1625 if (ret <= 0)
1626 goto out;
1627
1628 size = sizeof (con->peer_addr_for_me);
1629 end += size;
1630 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1631 if (ret <= 0)
1632 goto out;
1633
1634 out:
1635 return ret;
1636 }
1637
1638 static int read_partial_connect(struct ceph_connection *con)
1639 {
1640 int size;
1641 int end;
1642 int ret;
1643
1644 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1645
1646 size = sizeof (con->in_reply);
1647 end = size;
1648 ret = read_partial(con, end, size, &con->in_reply);
1649 if (ret <= 0)
1650 goto out;
1651
1652 size = le32_to_cpu(con->in_reply.authorizer_len);
1653 end += size;
1654 ret = read_partial(con, end, size, con->auth_reply_buf);
1655 if (ret <= 0)
1656 goto out;
1657
1658 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1659 con, (int)con->in_reply.tag,
1660 le32_to_cpu(con->in_reply.connect_seq),
1661 le32_to_cpu(con->in_reply.global_seq));
1662 out:
1663 return ret;
1664
1665 }
1666
1667 /*
1668 * Verify the hello banner looks okay.
1669 */
1670 static int verify_hello(struct ceph_connection *con)
1671 {
1672 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1673 pr_err("connect to %s got bad banner\n",
1674 ceph_pr_addr(&con->peer_addr.in_addr));
1675 con->error_msg = "protocol error, bad banner";
1676 return -1;
1677 }
1678 return 0;
1679 }
1680
1681 static bool addr_is_blank(struct sockaddr_storage *ss)
1682 {
1683 switch (ss->ss_family) {
1684 case AF_INET:
1685 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1686 case AF_INET6:
1687 return
1688 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1689 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1690 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1691 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1692 }
1693 return false;
1694 }
1695
1696 static int addr_port(struct sockaddr_storage *ss)
1697 {
1698 switch (ss->ss_family) {
1699 case AF_INET:
1700 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1701 case AF_INET6:
1702 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1703 }
1704 return 0;
1705 }
1706
1707 static void addr_set_port(struct sockaddr_storage *ss, int p)
1708 {
1709 switch (ss->ss_family) {
1710 case AF_INET:
1711 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1712 break;
1713 case AF_INET6:
1714 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1715 break;
1716 }
1717 }
1718
1719 /*
1720 * Unlike other *_pton function semantics, zero indicates success.
1721 */
1722 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1723 char delim, const char **ipend)
1724 {
1725 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1726 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1727
1728 memset(ss, 0, sizeof(*ss));
1729
1730 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1731 ss->ss_family = AF_INET;
1732 return 0;
1733 }
1734
1735 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1736 ss->ss_family = AF_INET6;
1737 return 0;
1738 }
1739
1740 return -EINVAL;
1741 }
1742
1743 /*
1744 * Extract hostname string and resolve using kernel DNS facility.
1745 */
1746 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1747 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1748 struct sockaddr_storage *ss, char delim, const char **ipend)
1749 {
1750 const char *end, *delim_p;
1751 char *colon_p, *ip_addr = NULL;
1752 int ip_len, ret;
1753
1754 /*
1755 * The end of the hostname occurs immediately preceding the delimiter or
1756 * the port marker (':') where the delimiter takes precedence.
1757 */
1758 delim_p = memchr(name, delim, namelen);
1759 colon_p = memchr(name, ':', namelen);
1760
1761 if (delim_p && colon_p)
1762 end = delim_p < colon_p ? delim_p : colon_p;
1763 else if (!delim_p && colon_p)
1764 end = colon_p;
1765 else {
1766 end = delim_p;
1767 if (!end) /* case: hostname:/ */
1768 end = name + namelen;
1769 }
1770
1771 if (end <= name)
1772 return -EINVAL;
1773
1774 /* do dns_resolve upcall */
1775 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1776 if (ip_len > 0)
1777 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1778 else
1779 ret = -ESRCH;
1780
1781 kfree(ip_addr);
1782
1783 *ipend = end;
1784
1785 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1786 ret, ret ? "failed" : ceph_pr_addr(ss));
1787
1788 return ret;
1789 }
1790 #else
1791 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1792 struct sockaddr_storage *ss, char delim, const char **ipend)
1793 {
1794 return -EINVAL;
1795 }
1796 #endif
1797
1798 /*
1799 * Parse a server name (IP or hostname). If a valid IP address is not found
1800 * then try to extract a hostname to resolve using userspace DNS upcall.
1801 */
1802 static int ceph_parse_server_name(const char *name, size_t namelen,
1803 struct sockaddr_storage *ss, char delim, const char **ipend)
1804 {
1805 int ret;
1806
1807 ret = ceph_pton(name, namelen, ss, delim, ipend);
1808 if (ret)
1809 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1810
1811 return ret;
1812 }
1813
1814 /*
1815 * Parse an ip[:port] list into an addr array. Use the default
1816 * monitor port if a port isn't specified.
1817 */
1818 int ceph_parse_ips(const char *c, const char *end,
1819 struct ceph_entity_addr *addr,
1820 int max_count, int *count)
1821 {
1822 int i, ret = -EINVAL;
1823 const char *p = c;
1824
1825 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1826 for (i = 0; i < max_count; i++) {
1827 const char *ipend;
1828 struct sockaddr_storage *ss = &addr[i].in_addr;
1829 int port;
1830 char delim = ',';
1831
1832 if (*p == '[') {
1833 delim = ']';
1834 p++;
1835 }
1836
1837 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1838 if (ret)
1839 goto bad;
1840 ret = -EINVAL;
1841
1842 p = ipend;
1843
1844 if (delim == ']') {
1845 if (*p != ']') {
1846 dout("missing matching ']'\n");
1847 goto bad;
1848 }
1849 p++;
1850 }
1851
1852 /* port? */
1853 if (p < end && *p == ':') {
1854 port = 0;
1855 p++;
1856 while (p < end && *p >= '0' && *p <= '9') {
1857 port = (port * 10) + (*p - '0');
1858 p++;
1859 }
1860 if (port == 0)
1861 port = CEPH_MON_PORT;
1862 else if (port > 65535)
1863 goto bad;
1864 } else {
1865 port = CEPH_MON_PORT;
1866 }
1867
1868 addr_set_port(ss, port);
1869
1870 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1871
1872 if (p == end)
1873 break;
1874 if (*p != ',')
1875 goto bad;
1876 p++;
1877 }
1878
1879 if (p != end)
1880 goto bad;
1881
1882 if (count)
1883 *count = i + 1;
1884 return 0;
1885
1886 bad:
1887 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1888 return ret;
1889 }
1890 EXPORT_SYMBOL(ceph_parse_ips);
1891
1892 static int process_banner(struct ceph_connection *con)
1893 {
1894 dout("process_banner on %p\n", con);
1895
1896 if (verify_hello(con) < 0)
1897 return -1;
1898
1899 ceph_decode_addr(&con->actual_peer_addr);
1900 ceph_decode_addr(&con->peer_addr_for_me);
1901
1902 /*
1903 * Make sure the other end is who we wanted. note that the other
1904 * end may not yet know their ip address, so if it's 0.0.0.0, give
1905 * them the benefit of the doubt.
1906 */
1907 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1908 sizeof(con->peer_addr)) != 0 &&
1909 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1910 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1911 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1912 ceph_pr_addr(&con->peer_addr.in_addr),
1913 (int)le32_to_cpu(con->peer_addr.nonce),
1914 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1915 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1916 con->error_msg = "wrong peer at address";
1917 return -1;
1918 }
1919
1920 /*
1921 * did we learn our address?
1922 */
1923 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1924 int port = addr_port(&con->msgr->inst.addr.in_addr);
1925
1926 memcpy(&con->msgr->inst.addr.in_addr,
1927 &con->peer_addr_for_me.in_addr,
1928 sizeof(con->peer_addr_for_me.in_addr));
1929 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1930 encode_my_addr(con->msgr);
1931 dout("process_banner learned my addr is %s\n",
1932 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1933 }
1934
1935 return 0;
1936 }
1937
1938 static int process_connect(struct ceph_connection *con)
1939 {
1940 u64 sup_feat = con->msgr->supported_features;
1941 u64 req_feat = con->msgr->required_features;
1942 u64 server_feat = ceph_sanitize_features(
1943 le64_to_cpu(con->in_reply.features));
1944 int ret;
1945
1946 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1947
1948 switch (con->in_reply.tag) {
1949 case CEPH_MSGR_TAG_FEATURES:
1950 pr_err("%s%lld %s feature set mismatch,"
1951 " my %llx < server's %llx, missing %llx\n",
1952 ENTITY_NAME(con->peer_name),
1953 ceph_pr_addr(&con->peer_addr.in_addr),
1954 sup_feat, server_feat, server_feat & ~sup_feat);
1955 con->error_msg = "missing required protocol features";
1956 reset_connection(con);
1957 return -1;
1958
1959 case CEPH_MSGR_TAG_BADPROTOVER:
1960 pr_err("%s%lld %s protocol version mismatch,"
1961 " my %d != server's %d\n",
1962 ENTITY_NAME(con->peer_name),
1963 ceph_pr_addr(&con->peer_addr.in_addr),
1964 le32_to_cpu(con->out_connect.protocol_version),
1965 le32_to_cpu(con->in_reply.protocol_version));
1966 con->error_msg = "protocol version mismatch";
1967 reset_connection(con);
1968 return -1;
1969
1970 case CEPH_MSGR_TAG_BADAUTHORIZER:
1971 con->auth_retry++;
1972 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1973 con->auth_retry);
1974 if (con->auth_retry == 2) {
1975 con->error_msg = "connect authorization failure";
1976 return -1;
1977 }
1978 con_out_kvec_reset(con);
1979 ret = prepare_write_connect(con);
1980 if (ret < 0)
1981 return ret;
1982 prepare_read_connect(con);
1983 break;
1984
1985 case CEPH_MSGR_TAG_RESETSESSION:
1986 /*
1987 * If we connected with a large connect_seq but the peer
1988 * has no record of a session with us (no connection, or
1989 * connect_seq == 0), they will send RESETSESION to indicate
1990 * that they must have reset their session, and may have
1991 * dropped messages.
1992 */
1993 dout("process_connect got RESET peer seq %u\n",
1994 le32_to_cpu(con->in_reply.connect_seq));
1995 pr_err("%s%lld %s connection reset\n",
1996 ENTITY_NAME(con->peer_name),
1997 ceph_pr_addr(&con->peer_addr.in_addr));
1998 reset_connection(con);
1999 con_out_kvec_reset(con);
2000 ret = prepare_write_connect(con);
2001 if (ret < 0)
2002 return ret;
2003 prepare_read_connect(con);
2004
2005 /* Tell ceph about it. */
2006 mutex_unlock(&con->mutex);
2007 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2008 if (con->ops->peer_reset)
2009 con->ops->peer_reset(con);
2010 mutex_lock(&con->mutex);
2011 if (con->state != CON_STATE_NEGOTIATING)
2012 return -EAGAIN;
2013 break;
2014
2015 case CEPH_MSGR_TAG_RETRY_SESSION:
2016 /*
2017 * If we sent a smaller connect_seq than the peer has, try
2018 * again with a larger value.
2019 */
2020 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2021 le32_to_cpu(con->out_connect.connect_seq),
2022 le32_to_cpu(con->in_reply.connect_seq));
2023 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2024 con_out_kvec_reset(con);
2025 ret = prepare_write_connect(con);
2026 if (ret < 0)
2027 return ret;
2028 prepare_read_connect(con);
2029 break;
2030
2031 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2032 /*
2033 * If we sent a smaller global_seq than the peer has, try
2034 * again with a larger value.
2035 */
2036 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2037 con->peer_global_seq,
2038 le32_to_cpu(con->in_reply.global_seq));
2039 get_global_seq(con->msgr,
2040 le32_to_cpu(con->in_reply.global_seq));
2041 con_out_kvec_reset(con);
2042 ret = prepare_write_connect(con);
2043 if (ret < 0)
2044 return ret;
2045 prepare_read_connect(con);
2046 break;
2047
2048 case CEPH_MSGR_TAG_SEQ:
2049 case CEPH_MSGR_TAG_READY:
2050 if (req_feat & ~server_feat) {
2051 pr_err("%s%lld %s protocol feature mismatch,"
2052 " my required %llx > server's %llx, need %llx\n",
2053 ENTITY_NAME(con->peer_name),
2054 ceph_pr_addr(&con->peer_addr.in_addr),
2055 req_feat, server_feat, req_feat & ~server_feat);
2056 con->error_msg = "missing required protocol features";
2057 reset_connection(con);
2058 return -1;
2059 }
2060
2061 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2062 con->state = CON_STATE_OPEN;
2063 con->auth_retry = 0; /* we authenticated; clear flag */
2064 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2065 con->connect_seq++;
2066 con->peer_features = server_feat;
2067 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2068 con->peer_global_seq,
2069 le32_to_cpu(con->in_reply.connect_seq),
2070 con->connect_seq);
2071 WARN_ON(con->connect_seq !=
2072 le32_to_cpu(con->in_reply.connect_seq));
2073
2074 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2075 con_flag_set(con, CON_FLAG_LOSSYTX);
2076
2077 con->delay = 0; /* reset backoff memory */
2078
2079 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2080 prepare_write_seq(con);
2081 prepare_read_seq(con);
2082 } else {
2083 prepare_read_tag(con);
2084 }
2085 break;
2086
2087 case CEPH_MSGR_TAG_WAIT:
2088 /*
2089 * If there is a connection race (we are opening
2090 * connections to each other), one of us may just have
2091 * to WAIT. This shouldn't happen if we are the
2092 * client.
2093 */
2094 pr_err("process_connect got WAIT as client\n");
2095 con->error_msg = "protocol error, got WAIT as client";
2096 return -1;
2097
2098 default:
2099 pr_err("connect protocol error, will retry\n");
2100 con->error_msg = "protocol error, garbage tag during connect";
2101 return -1;
2102 }
2103 return 0;
2104 }
2105
2106
2107 /*
2108 * read (part of) an ack
2109 */
2110 static int read_partial_ack(struct ceph_connection *con)
2111 {
2112 int size = sizeof (con->in_temp_ack);
2113 int end = size;
2114
2115 return read_partial(con, end, size, &con->in_temp_ack);
2116 }
2117
2118 /*
2119 * We can finally discard anything that's been acked.
2120 */
2121 static void process_ack(struct ceph_connection *con)
2122 {
2123 struct ceph_msg *m;
2124 u64 ack = le64_to_cpu(con->in_temp_ack);
2125 u64 seq;
2126
2127 while (!list_empty(&con->out_sent)) {
2128 m = list_first_entry(&con->out_sent, struct ceph_msg,
2129 list_head);
2130 seq = le64_to_cpu(m->hdr.seq);
2131 if (seq > ack)
2132 break;
2133 dout("got ack for seq %llu type %d at %p\n", seq,
2134 le16_to_cpu(m->hdr.type), m);
2135 m->ack_stamp = jiffies;
2136 ceph_msg_remove(m);
2137 }
2138 prepare_read_tag(con);
2139 }
2140
2141
2142 static int read_partial_message_section(struct ceph_connection *con,
2143 struct kvec *section,
2144 unsigned int sec_len, u32 *crc)
2145 {
2146 int ret, left;
2147
2148 BUG_ON(!section);
2149
2150 while (section->iov_len < sec_len) {
2151 BUG_ON(section->iov_base == NULL);
2152 left = sec_len - section->iov_len;
2153 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2154 section->iov_len, left);
2155 if (ret <= 0)
2156 return ret;
2157 section->iov_len += ret;
2158 }
2159 if (section->iov_len == sec_len)
2160 *crc = crc32c(0, section->iov_base, section->iov_len);
2161
2162 return 1;
2163 }
2164
2165 static int read_partial_msg_data(struct ceph_connection *con)
2166 {
2167 struct ceph_msg *msg = con->in_msg;
2168 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2169 const bool do_datacrc = !con->msgr->nocrc;
2170 struct page *page;
2171 size_t page_offset;
2172 size_t length;
2173 u32 crc = 0;
2174 int ret;
2175
2176 BUG_ON(!msg);
2177 if (list_empty(&msg->data))
2178 return -EIO;
2179
2180 if (do_datacrc)
2181 crc = con->in_data_crc;
2182 while (cursor->resid) {
2183 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2184 NULL);
2185 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2186 if (ret <= 0) {
2187 if (do_datacrc)
2188 con->in_data_crc = crc;
2189
2190 return ret;
2191 }
2192
2193 if (do_datacrc)
2194 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2195 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2196 }
2197 if (do_datacrc)
2198 con->in_data_crc = crc;
2199
2200 return 1; /* must return > 0 to indicate success */
2201 }
2202
2203 /*
2204 * read (part of) a message.
2205 */
2206 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2207
2208 static int read_partial_message(struct ceph_connection *con)
2209 {
2210 struct ceph_msg *m = con->in_msg;
2211 int size;
2212 int end;
2213 int ret;
2214 unsigned int front_len, middle_len, data_len;
2215 bool do_datacrc = !con->msgr->nocrc;
2216 u64 seq;
2217 u32 crc;
2218
2219 dout("read_partial_message con %p msg %p\n", con, m);
2220
2221 /* header */
2222 size = sizeof (con->in_hdr);
2223 end = size;
2224 ret = read_partial(con, end, size, &con->in_hdr);
2225 if (ret <= 0)
2226 return ret;
2227
2228 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2229 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2230 pr_err("read_partial_message bad hdr "
2231 " crc %u != expected %u\n",
2232 crc, con->in_hdr.crc);
2233 return -EBADMSG;
2234 }
2235
2236 front_len = le32_to_cpu(con->in_hdr.front_len);
2237 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2238 return -EIO;
2239 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2240 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2241 return -EIO;
2242 data_len = le32_to_cpu(con->in_hdr.data_len);
2243 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2244 return -EIO;
2245
2246 /* verify seq# */
2247 seq = le64_to_cpu(con->in_hdr.seq);
2248 if ((s64)seq - (s64)con->in_seq < 1) {
2249 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2250 ENTITY_NAME(con->peer_name),
2251 ceph_pr_addr(&con->peer_addr.in_addr),
2252 seq, con->in_seq + 1);
2253 con->in_base_pos = -front_len - middle_len - data_len -
2254 sizeof(m->footer);
2255 con->in_tag = CEPH_MSGR_TAG_READY;
2256 return 0;
2257 } else if ((s64)seq - (s64)con->in_seq > 1) {
2258 pr_err("read_partial_message bad seq %lld expected %lld\n",
2259 seq, con->in_seq + 1);
2260 con->error_msg = "bad message sequence # for incoming message";
2261 return -EBADMSG;
2262 }
2263
2264 /* allocate message? */
2265 if (!con->in_msg) {
2266 int skip = 0;
2267
2268 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2269 front_len, data_len);
2270 ret = ceph_con_in_msg_alloc(con, &skip);
2271 if (ret < 0)
2272 return ret;
2273
2274 BUG_ON(!con->in_msg ^ skip);
2275 if (con->in_msg && data_len > con->in_msg->data_length) {
2276 pr_warning("%s skipping long message (%u > %zd)\n",
2277 __func__, data_len, con->in_msg->data_length);
2278 ceph_msg_put(con->in_msg);
2279 con->in_msg = NULL;
2280 skip = 1;
2281 }
2282 if (skip) {
2283 /* skip this message */
2284 dout("alloc_msg said skip message\n");
2285 con->in_base_pos = -front_len - middle_len - data_len -
2286 sizeof(m->footer);
2287 con->in_tag = CEPH_MSGR_TAG_READY;
2288 con->in_seq++;
2289 return 0;
2290 }
2291
2292 BUG_ON(!con->in_msg);
2293 BUG_ON(con->in_msg->con != con);
2294 m = con->in_msg;
2295 m->front.iov_len = 0; /* haven't read it yet */
2296 if (m->middle)
2297 m->middle->vec.iov_len = 0;
2298
2299 /* prepare for data payload, if any */
2300
2301 if (data_len)
2302 prepare_message_data(con->in_msg, data_len);
2303 }
2304
2305 /* front */
2306 ret = read_partial_message_section(con, &m->front, front_len,
2307 &con->in_front_crc);
2308 if (ret <= 0)
2309 return ret;
2310
2311 /* middle */
2312 if (m->middle) {
2313 ret = read_partial_message_section(con, &m->middle->vec,
2314 middle_len,
2315 &con->in_middle_crc);
2316 if (ret <= 0)
2317 return ret;
2318 }
2319
2320 /* (page) data */
2321 if (data_len) {
2322 ret = read_partial_msg_data(con);
2323 if (ret <= 0)
2324 return ret;
2325 }
2326
2327 /* footer */
2328 size = sizeof (m->footer);
2329 end += size;
2330 ret = read_partial(con, end, size, &m->footer);
2331 if (ret <= 0)
2332 return ret;
2333
2334 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2335 m, front_len, m->footer.front_crc, middle_len,
2336 m->footer.middle_crc, data_len, m->footer.data_crc);
2337
2338 /* crc ok? */
2339 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2340 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2341 m, con->in_front_crc, m->footer.front_crc);
2342 return -EBADMSG;
2343 }
2344 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2345 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2346 m, con->in_middle_crc, m->footer.middle_crc);
2347 return -EBADMSG;
2348 }
2349 if (do_datacrc &&
2350 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2351 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2352 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2353 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2354 return -EBADMSG;
2355 }
2356
2357 return 1; /* done! */
2358 }
2359
2360 /*
2361 * Process message. This happens in the worker thread. The callback should
2362 * be careful not to do anything that waits on other incoming messages or it
2363 * may deadlock.
2364 */
2365 static void process_message(struct ceph_connection *con)
2366 {
2367 struct ceph_msg *msg;
2368
2369 BUG_ON(con->in_msg->con != con);
2370 con->in_msg->con = NULL;
2371 msg = con->in_msg;
2372 con->in_msg = NULL;
2373 con->ops->put(con);
2374
2375 /* if first message, set peer_name */
2376 if (con->peer_name.type == 0)
2377 con->peer_name = msg->hdr.src;
2378
2379 con->in_seq++;
2380 mutex_unlock(&con->mutex);
2381
2382 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2383 msg, le64_to_cpu(msg->hdr.seq),
2384 ENTITY_NAME(msg->hdr.src),
2385 le16_to_cpu(msg->hdr.type),
2386 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2387 le32_to_cpu(msg->hdr.front_len),
2388 le32_to_cpu(msg->hdr.data_len),
2389 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2390 con->ops->dispatch(con, msg);
2391
2392 mutex_lock(&con->mutex);
2393 }
2394
2395
2396 /*
2397 * Write something to the socket. Called in a worker thread when the
2398 * socket appears to be writeable and we have something ready to send.
2399 */
2400 static int try_write(struct ceph_connection *con)
2401 {
2402 int ret = 1;
2403
2404 dout("try_write start %p state %lu\n", con, con->state);
2405
2406 more:
2407 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2408
2409 /* open the socket first? */
2410 if (con->state == CON_STATE_PREOPEN) {
2411 BUG_ON(con->sock);
2412 con->state = CON_STATE_CONNECTING;
2413
2414 con_out_kvec_reset(con);
2415 prepare_write_banner(con);
2416 prepare_read_banner(con);
2417
2418 BUG_ON(con->in_msg);
2419 con->in_tag = CEPH_MSGR_TAG_READY;
2420 dout("try_write initiating connect on %p new state %lu\n",
2421 con, con->state);
2422 ret = ceph_tcp_connect(con);
2423 if (ret < 0) {
2424 con->error_msg = "connect error";
2425 goto out;
2426 }
2427 }
2428
2429 more_kvec:
2430 /* kvec data queued? */
2431 if (con->out_skip) {
2432 ret = write_partial_skip(con);
2433 if (ret <= 0)
2434 goto out;
2435 }
2436 if (con->out_kvec_left) {
2437 ret = write_partial_kvec(con);
2438 if (ret <= 0)
2439 goto out;
2440 }
2441
2442 /* msg pages? */
2443 if (con->out_msg) {
2444 if (con->out_msg_done) {
2445 ceph_msg_put(con->out_msg);
2446 con->out_msg = NULL; /* we're done with this one */
2447 goto do_next;
2448 }
2449
2450 ret = write_partial_message_data(con);
2451 if (ret == 1)
2452 goto more_kvec; /* we need to send the footer, too! */
2453 if (ret == 0)
2454 goto out;
2455 if (ret < 0) {
2456 dout("try_write write_partial_message_data err %d\n",
2457 ret);
2458 goto out;
2459 }
2460 }
2461
2462 do_next:
2463 if (con->state == CON_STATE_OPEN) {
2464 /* is anything else pending? */
2465 if (!list_empty(&con->out_queue)) {
2466 prepare_write_message(con);
2467 goto more;
2468 }
2469 if (con->in_seq > con->in_seq_acked) {
2470 prepare_write_ack(con);
2471 goto more;
2472 }
2473 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2474 prepare_write_keepalive(con);
2475 goto more;
2476 }
2477 }
2478
2479 /* Nothing to do! */
2480 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2481 dout("try_write nothing else to write.\n");
2482 ret = 0;
2483 out:
2484 dout("try_write done on %p ret %d\n", con, ret);
2485 return ret;
2486 }
2487
2488
2489
2490 /*
2491 * Read what we can from the socket.
2492 */
2493 static int try_read(struct ceph_connection *con)
2494 {
2495 int ret = -1;
2496
2497 more:
2498 dout("try_read start on %p state %lu\n", con, con->state);
2499 if (con->state != CON_STATE_CONNECTING &&
2500 con->state != CON_STATE_NEGOTIATING &&
2501 con->state != CON_STATE_OPEN)
2502 return 0;
2503
2504 BUG_ON(!con->sock);
2505
2506 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2507 con->in_base_pos);
2508
2509 if (con->state == CON_STATE_CONNECTING) {
2510 dout("try_read connecting\n");
2511 ret = read_partial_banner(con);
2512 if (ret <= 0)
2513 goto out;
2514 ret = process_banner(con);
2515 if (ret < 0)
2516 goto out;
2517
2518 con->state = CON_STATE_NEGOTIATING;
2519
2520 /*
2521 * Received banner is good, exchange connection info.
2522 * Do not reset out_kvec, as sending our banner raced
2523 * with receiving peer banner after connect completed.
2524 */
2525 ret = prepare_write_connect(con);
2526 if (ret < 0)
2527 goto out;
2528 prepare_read_connect(con);
2529
2530 /* Send connection info before awaiting response */
2531 goto out;
2532 }
2533
2534 if (con->state == CON_STATE_NEGOTIATING) {
2535 dout("try_read negotiating\n");
2536 ret = read_partial_connect(con);
2537 if (ret <= 0)
2538 goto out;
2539 ret = process_connect(con);
2540 if (ret < 0)
2541 goto out;
2542 goto more;
2543 }
2544
2545 WARN_ON(con->state != CON_STATE_OPEN);
2546
2547 if (con->in_base_pos < 0) {
2548 /*
2549 * skipping + discarding content.
2550 *
2551 * FIXME: there must be a better way to do this!
2552 */
2553 static char buf[SKIP_BUF_SIZE];
2554 int skip = min((int) sizeof (buf), -con->in_base_pos);
2555
2556 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2557 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2558 if (ret <= 0)
2559 goto out;
2560 con->in_base_pos += ret;
2561 if (con->in_base_pos)
2562 goto more;
2563 }
2564 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2565 /*
2566 * what's next?
2567 */
2568 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2569 if (ret <= 0)
2570 goto out;
2571 dout("try_read got tag %d\n", (int)con->in_tag);
2572 switch (con->in_tag) {
2573 case CEPH_MSGR_TAG_MSG:
2574 prepare_read_message(con);
2575 break;
2576 case CEPH_MSGR_TAG_ACK:
2577 prepare_read_ack(con);
2578 break;
2579 case CEPH_MSGR_TAG_CLOSE:
2580 con_close_socket(con);
2581 con->state = CON_STATE_CLOSED;
2582 goto out;
2583 default:
2584 goto bad_tag;
2585 }
2586 }
2587 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2588 ret = read_partial_message(con);
2589 if (ret <= 0) {
2590 switch (ret) {
2591 case -EBADMSG:
2592 con->error_msg = "bad crc";
2593 ret = -EIO;
2594 break;
2595 case -EIO:
2596 con->error_msg = "io error";
2597 break;
2598 }
2599 goto out;
2600 }
2601 if (con->in_tag == CEPH_MSGR_TAG_READY)
2602 goto more;
2603 process_message(con);
2604 if (con->state == CON_STATE_OPEN)
2605 prepare_read_tag(con);
2606 goto more;
2607 }
2608 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2609 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2610 /*
2611 * the final handshake seq exchange is semantically
2612 * equivalent to an ACK
2613 */
2614 ret = read_partial_ack(con);
2615 if (ret <= 0)
2616 goto out;
2617 process_ack(con);
2618 goto more;
2619 }
2620
2621 out:
2622 dout("try_read done on %p ret %d\n", con, ret);
2623 return ret;
2624
2625 bad_tag:
2626 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2627 con->error_msg = "protocol error, garbage tag";
2628 ret = -1;
2629 goto out;
2630 }
2631
2632
2633 /*
2634 * Atomically queue work on a connection after the specified delay.
2635 * Bump @con reference to avoid races with connection teardown.
2636 * Returns 0 if work was queued, or an error code otherwise.
2637 */
2638 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2639 {
2640 if (!con->ops->get(con)) {
2641 dout("%s %p ref count 0\n", __func__, con);
2642
2643 return -ENOENT;
2644 }
2645
2646 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2647 dout("%s %p - already queued\n", __func__, con);
2648 con->ops->put(con);
2649
2650 return -EBUSY;
2651 }
2652
2653 dout("%s %p %lu\n", __func__, con, delay);
2654
2655 return 0;
2656 }
2657
2658 static void queue_con(struct ceph_connection *con)
2659 {
2660 (void) queue_con_delay(con, 0);
2661 }
2662
2663 static bool con_sock_closed(struct ceph_connection *con)
2664 {
2665 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2666 return false;
2667
2668 #define CASE(x) \
2669 case CON_STATE_ ## x: \
2670 con->error_msg = "socket closed (con state " #x ")"; \
2671 break;
2672
2673 switch (con->state) {
2674 CASE(CLOSED);
2675 CASE(PREOPEN);
2676 CASE(CONNECTING);
2677 CASE(NEGOTIATING);
2678 CASE(OPEN);
2679 CASE(STANDBY);
2680 default:
2681 pr_warning("%s con %p unrecognized state %lu\n",
2682 __func__, con, con->state);
2683 con->error_msg = "unrecognized con state";
2684 BUG();
2685 break;
2686 }
2687 #undef CASE
2688
2689 return true;
2690 }
2691
2692 static bool con_backoff(struct ceph_connection *con)
2693 {
2694 int ret;
2695
2696 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2697 return false;
2698
2699 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2700 if (ret) {
2701 dout("%s: con %p FAILED to back off %lu\n", __func__,
2702 con, con->delay);
2703 BUG_ON(ret == -ENOENT);
2704 con_flag_set(con, CON_FLAG_BACKOFF);
2705 }
2706
2707 return true;
2708 }
2709
2710 /* Finish fault handling; con->mutex must *not* be held here */
2711
2712 static void con_fault_finish(struct ceph_connection *con)
2713 {
2714 /*
2715 * in case we faulted due to authentication, invalidate our
2716 * current tickets so that we can get new ones.
2717 */
2718 if (con->auth_retry && con->ops->invalidate_authorizer) {
2719 dout("calling invalidate_authorizer()\n");
2720 con->ops->invalidate_authorizer(con);
2721 }
2722
2723 if (con->ops->fault)
2724 con->ops->fault(con);
2725 }
2726
2727 /*
2728 * Do some work on a connection. Drop a connection ref when we're done.
2729 */
2730 static void con_work(struct work_struct *work)
2731 {
2732 struct ceph_connection *con = container_of(work, struct ceph_connection,
2733 work.work);
2734 bool fault;
2735
2736 mutex_lock(&con->mutex);
2737 while (true) {
2738 int ret;
2739
2740 if ((fault = con_sock_closed(con))) {
2741 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2742 break;
2743 }
2744 if (con_backoff(con)) {
2745 dout("%s: con %p BACKOFF\n", __func__, con);
2746 break;
2747 }
2748 if (con->state == CON_STATE_STANDBY) {
2749 dout("%s: con %p STANDBY\n", __func__, con);
2750 break;
2751 }
2752 if (con->state == CON_STATE_CLOSED) {
2753 dout("%s: con %p CLOSED\n", __func__, con);
2754 BUG_ON(con->sock);
2755 break;
2756 }
2757 if (con->state == CON_STATE_PREOPEN) {
2758 dout("%s: con %p PREOPEN\n", __func__, con);
2759 BUG_ON(con->sock);
2760 }
2761
2762 ret = try_read(con);
2763 if (ret < 0) {
2764 if (ret == -EAGAIN)
2765 continue;
2766 con->error_msg = "socket error on read";
2767 fault = true;
2768 break;
2769 }
2770
2771 ret = try_write(con);
2772 if (ret < 0) {
2773 if (ret == -EAGAIN)
2774 continue;
2775 con->error_msg = "socket error on write";
2776 fault = true;
2777 }
2778
2779 break; /* If we make it to here, we're done */
2780 }
2781 if (fault)
2782 con_fault(con);
2783 mutex_unlock(&con->mutex);
2784
2785 if (fault)
2786 con_fault_finish(con);
2787
2788 con->ops->put(con);
2789 }
2790
2791 /*
2792 * Generic error/fault handler. A retry mechanism is used with
2793 * exponential backoff
2794 */
2795 static void con_fault(struct ceph_connection *con)
2796 {
2797 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2798 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2799 dout("fault %p state %lu to peer %s\n",
2800 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2801
2802 WARN_ON(con->state != CON_STATE_CONNECTING &&
2803 con->state != CON_STATE_NEGOTIATING &&
2804 con->state != CON_STATE_OPEN);
2805
2806 con_close_socket(con);
2807
2808 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2809 dout("fault on LOSSYTX channel, marking CLOSED\n");
2810 con->state = CON_STATE_CLOSED;
2811 return;
2812 }
2813
2814 if (con->in_msg) {
2815 BUG_ON(con->in_msg->con != con);
2816 con->in_msg->con = NULL;
2817 ceph_msg_put(con->in_msg);
2818 con->in_msg = NULL;
2819 con->ops->put(con);
2820 }
2821
2822 /* Requeue anything that hasn't been acked */
2823 list_splice_init(&con->out_sent, &con->out_queue);
2824
2825 /* If there are no messages queued or keepalive pending, place
2826 * the connection in a STANDBY state */
2827 if (list_empty(&con->out_queue) &&
2828 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2829 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2830 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2831 con->state = CON_STATE_STANDBY;
2832 } else {
2833 /* retry after a delay. */
2834 con->state = CON_STATE_PREOPEN;
2835 if (con->delay == 0)
2836 con->delay = BASE_DELAY_INTERVAL;
2837 else if (con->delay < MAX_DELAY_INTERVAL)
2838 con->delay *= 2;
2839 con_flag_set(con, CON_FLAG_BACKOFF);
2840 queue_con(con);
2841 }
2842 }
2843
2844
2845
2846 /*
2847 * initialize a new messenger instance
2848 */
2849 void ceph_messenger_init(struct ceph_messenger *msgr,
2850 struct ceph_entity_addr *myaddr,
2851 u64 supported_features,
2852 u64 required_features,
2853 bool nocrc)
2854 {
2855 msgr->supported_features = supported_features;
2856 msgr->required_features = required_features;
2857
2858 spin_lock_init(&msgr->global_seq_lock);
2859
2860 if (myaddr)
2861 msgr->inst.addr = *myaddr;
2862
2863 /* select a random nonce */
2864 msgr->inst.addr.type = 0;
2865 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2866 encode_my_addr(msgr);
2867 msgr->nocrc = nocrc;
2868
2869 atomic_set(&msgr->stopping, 0);
2870
2871 dout("%s %p\n", __func__, msgr);
2872 }
2873 EXPORT_SYMBOL(ceph_messenger_init);
2874
2875 static void clear_standby(struct ceph_connection *con)
2876 {
2877 /* come back from STANDBY? */
2878 if (con->state == CON_STATE_STANDBY) {
2879 dout("clear_standby %p and ++connect_seq\n", con);
2880 con->state = CON_STATE_PREOPEN;
2881 con->connect_seq++;
2882 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2883 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2884 }
2885 }
2886
2887 /*
2888 * Queue up an outgoing message on the given connection.
2889 */
2890 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2891 {
2892 /* set src+dst */
2893 msg->hdr.src = con->msgr->inst.name;
2894 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2895 msg->needs_out_seq = true;
2896
2897 mutex_lock(&con->mutex);
2898
2899 if (con->state == CON_STATE_CLOSED) {
2900 dout("con_send %p closed, dropping %p\n", con, msg);
2901 ceph_msg_put(msg);
2902 mutex_unlock(&con->mutex);
2903 return;
2904 }
2905
2906 BUG_ON(msg->con != NULL);
2907 msg->con = con->ops->get(con);
2908 BUG_ON(msg->con == NULL);
2909
2910 BUG_ON(!list_empty(&msg->list_head));
2911 list_add_tail(&msg->list_head, &con->out_queue);
2912 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2913 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2914 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2915 le32_to_cpu(msg->hdr.front_len),
2916 le32_to_cpu(msg->hdr.middle_len),
2917 le32_to_cpu(msg->hdr.data_len));
2918
2919 clear_standby(con);
2920 mutex_unlock(&con->mutex);
2921
2922 /* if there wasn't anything waiting to send before, queue
2923 * new work */
2924 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2925 queue_con(con);
2926 }
2927 EXPORT_SYMBOL(ceph_con_send);
2928
2929 /*
2930 * Revoke a message that was previously queued for send
2931 */
2932 void ceph_msg_revoke(struct ceph_msg *msg)
2933 {
2934 struct ceph_connection *con = msg->con;
2935
2936 if (!con)
2937 return; /* Message not in our possession */
2938
2939 mutex_lock(&con->mutex);
2940 if (!list_empty(&msg->list_head)) {
2941 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2942 list_del_init(&msg->list_head);
2943 BUG_ON(msg->con == NULL);
2944 msg->con->ops->put(msg->con);
2945 msg->con = NULL;
2946 msg->hdr.seq = 0;
2947
2948 ceph_msg_put(msg);
2949 }
2950 if (con->out_msg == msg) {
2951 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2952 con->out_msg = NULL;
2953 if (con->out_kvec_is_msg) {
2954 con->out_skip = con->out_kvec_bytes;
2955 con->out_kvec_is_msg = false;
2956 }
2957 msg->hdr.seq = 0;
2958
2959 ceph_msg_put(msg);
2960 }
2961 mutex_unlock(&con->mutex);
2962 }
2963
2964 /*
2965 * Revoke a message that we may be reading data into
2966 */
2967 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2968 {
2969 struct ceph_connection *con;
2970
2971 BUG_ON(msg == NULL);
2972 if (!msg->con) {
2973 dout("%s msg %p null con\n", __func__, msg);
2974
2975 return; /* Message not in our possession */
2976 }
2977
2978 con = msg->con;
2979 mutex_lock(&con->mutex);
2980 if (con->in_msg == msg) {
2981 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2982 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2983 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2984
2985 /* skip rest of message */
2986 dout("%s %p msg %p revoked\n", __func__, con, msg);
2987 con->in_base_pos = con->in_base_pos -
2988 sizeof(struct ceph_msg_header) -
2989 front_len -
2990 middle_len -
2991 data_len -
2992 sizeof(struct ceph_msg_footer);
2993 ceph_msg_put(con->in_msg);
2994 con->in_msg = NULL;
2995 con->in_tag = CEPH_MSGR_TAG_READY;
2996 con->in_seq++;
2997 } else {
2998 dout("%s %p in_msg %p msg %p no-op\n",
2999 __func__, con, con->in_msg, msg);
3000 }
3001 mutex_unlock(&con->mutex);
3002 }
3003
3004 /*
3005 * Queue a keepalive byte to ensure the tcp connection is alive.
3006 */
3007 void ceph_con_keepalive(struct ceph_connection *con)
3008 {
3009 dout("con_keepalive %p\n", con);
3010 mutex_lock(&con->mutex);
3011 clear_standby(con);
3012 mutex_unlock(&con->mutex);
3013 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3014 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3015 queue_con(con);
3016 }
3017 EXPORT_SYMBOL(ceph_con_keepalive);
3018
3019 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3020 {
3021 struct ceph_msg_data *data;
3022
3023 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3024 return NULL;
3025
3026 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3027 if (data)
3028 data->type = type;
3029 INIT_LIST_HEAD(&data->links);
3030
3031 return data;
3032 }
3033
3034 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3035 {
3036 if (!data)
3037 return;
3038
3039 WARN_ON(!list_empty(&data->links));
3040 if (data->type == CEPH_MSG_DATA_PAGELIST) {
3041 ceph_pagelist_release(data->pagelist);
3042 kfree(data->pagelist);
3043 }
3044 kmem_cache_free(ceph_msg_data_cache, data);
3045 }
3046
3047 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3048 size_t length, size_t alignment)
3049 {
3050 struct ceph_msg_data *data;
3051
3052 BUG_ON(!pages);
3053 BUG_ON(!length);
3054
3055 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3056 BUG_ON(!data);
3057 data->pages = pages;
3058 data->length = length;
3059 data->alignment = alignment & ~PAGE_MASK;
3060
3061 list_add_tail(&data->links, &msg->data);
3062 msg->data_length += length;
3063 }
3064 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3065
3066 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3067 struct ceph_pagelist *pagelist)
3068 {
3069 struct ceph_msg_data *data;
3070
3071 BUG_ON(!pagelist);
3072 BUG_ON(!pagelist->length);
3073
3074 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3075 BUG_ON(!data);
3076 data->pagelist = pagelist;
3077
3078 list_add_tail(&data->links, &msg->data);
3079 msg->data_length += pagelist->length;
3080 }
3081 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3082
3083 #ifdef CONFIG_BLOCK
3084 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3085 size_t length)
3086 {
3087 struct ceph_msg_data *data;
3088
3089 BUG_ON(!bio);
3090
3091 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3092 BUG_ON(!data);
3093 data->bio = bio;
3094 data->bio_length = length;
3095
3096 list_add_tail(&data->links, &msg->data);
3097 msg->data_length += length;
3098 }
3099 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3100 #endif /* CONFIG_BLOCK */
3101
3102 /*
3103 * construct a new message with given type, size
3104 * the new msg has a ref count of 1.
3105 */
3106 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3107 bool can_fail)
3108 {
3109 struct ceph_msg *m;
3110
3111 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3112 if (m == NULL)
3113 goto out;
3114
3115 m->hdr.type = cpu_to_le16(type);
3116 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3117 m->hdr.front_len = cpu_to_le32(front_len);
3118
3119 INIT_LIST_HEAD(&m->list_head);
3120 kref_init(&m->kref);
3121 INIT_LIST_HEAD(&m->data);
3122
3123 /* front */
3124 if (front_len) {
3125 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3126 if (m->front.iov_base == NULL) {
3127 dout("ceph_msg_new can't allocate %d bytes\n",
3128 front_len);
3129 goto out2;
3130 }
3131 } else {
3132 m->front.iov_base = NULL;
3133 }
3134 m->front_alloc_len = m->front.iov_len = front_len;
3135
3136 dout("ceph_msg_new %p front %d\n", m, front_len);
3137 return m;
3138
3139 out2:
3140 ceph_msg_put(m);
3141 out:
3142 if (!can_fail) {
3143 pr_err("msg_new can't create type %d front %d\n", type,
3144 front_len);
3145 WARN_ON(1);
3146 } else {
3147 dout("msg_new can't create type %d front %d\n", type,
3148 front_len);
3149 }
3150 return NULL;
3151 }
3152 EXPORT_SYMBOL(ceph_msg_new);
3153
3154 /*
3155 * Allocate "middle" portion of a message, if it is needed and wasn't
3156 * allocated by alloc_msg. This allows us to read a small fixed-size
3157 * per-type header in the front and then gracefully fail (i.e.,
3158 * propagate the error to the caller based on info in the front) when
3159 * the middle is too large.
3160 */
3161 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3162 {
3163 int type = le16_to_cpu(msg->hdr.type);
3164 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3165
3166 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3167 ceph_msg_type_name(type), middle_len);
3168 BUG_ON(!middle_len);
3169 BUG_ON(msg->middle);
3170
3171 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3172 if (!msg->middle)
3173 return -ENOMEM;
3174 return 0;
3175 }
3176
3177 /*
3178 * Allocate a message for receiving an incoming message on a
3179 * connection, and save the result in con->in_msg. Uses the
3180 * connection's private alloc_msg op if available.
3181 *
3182 * Returns 0 on success, or a negative error code.
3183 *
3184 * On success, if we set *skip = 1:
3185 * - the next message should be skipped and ignored.
3186 * - con->in_msg == NULL
3187 * or if we set *skip = 0:
3188 * - con->in_msg is non-null.
3189 * On error (ENOMEM, EAGAIN, ...),
3190 * - con->in_msg == NULL
3191 */
3192 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3193 {
3194 struct ceph_msg_header *hdr = &con->in_hdr;
3195 int middle_len = le32_to_cpu(hdr->middle_len);
3196 struct ceph_msg *msg;
3197 int ret = 0;
3198
3199 BUG_ON(con->in_msg != NULL);
3200 BUG_ON(!con->ops->alloc_msg);
3201
3202 mutex_unlock(&con->mutex);
3203 msg = con->ops->alloc_msg(con, hdr, skip);
3204 mutex_lock(&con->mutex);
3205 if (con->state != CON_STATE_OPEN) {
3206 if (msg)
3207 ceph_msg_put(msg);
3208 return -EAGAIN;
3209 }
3210 if (msg) {
3211 BUG_ON(*skip);
3212 con->in_msg = msg;
3213 con->in_msg->con = con->ops->get(con);
3214 BUG_ON(con->in_msg->con == NULL);
3215 } else {
3216 /*
3217 * Null message pointer means either we should skip
3218 * this message or we couldn't allocate memory. The
3219 * former is not an error.
3220 */
3221 if (*skip)
3222 return 0;
3223 con->error_msg = "error allocating memory for incoming message";
3224
3225 return -ENOMEM;
3226 }
3227 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3228
3229 if (middle_len && !con->in_msg->middle) {
3230 ret = ceph_alloc_middle(con, con->in_msg);
3231 if (ret < 0) {
3232 ceph_msg_put(con->in_msg);
3233 con->in_msg = NULL;
3234 }
3235 }
3236
3237 return ret;
3238 }
3239
3240
3241 /*
3242 * Free a generically kmalloc'd message.
3243 */
3244 void ceph_msg_kfree(struct ceph_msg *m)
3245 {
3246 dout("msg_kfree %p\n", m);
3247 ceph_kvfree(m->front.iov_base);
3248 kmem_cache_free(ceph_msg_cache, m);
3249 }
3250
3251 /*
3252 * Drop a msg ref. Destroy as needed.
3253 */
3254 void ceph_msg_last_put(struct kref *kref)
3255 {
3256 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3257 LIST_HEAD(data);
3258 struct list_head *links;
3259 struct list_head *next;
3260
3261 dout("ceph_msg_put last one on %p\n", m);
3262 WARN_ON(!list_empty(&m->list_head));
3263
3264 /* drop middle, data, if any */
3265 if (m->middle) {
3266 ceph_buffer_put(m->middle);
3267 m->middle = NULL;
3268 }
3269
3270 list_splice_init(&m->data, &data);
3271 list_for_each_safe(links, next, &data) {
3272 struct ceph_msg_data *data;
3273
3274 data = list_entry(links, struct ceph_msg_data, links);
3275 list_del_init(links);
3276 ceph_msg_data_destroy(data);
3277 }
3278 m->data_length = 0;
3279
3280 if (m->pool)
3281 ceph_msgpool_put(m->pool, m);
3282 else
3283 ceph_msg_kfree(m);
3284 }
3285 EXPORT_SYMBOL(ceph_msg_last_put);
3286
3287 void ceph_msg_dump(struct ceph_msg *msg)
3288 {
3289 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3290 msg->front_alloc_len, msg->data_length);
3291 print_hex_dump(KERN_DEBUG, "header: ",
3292 DUMP_PREFIX_OFFSET, 16, 1,
3293 &msg->hdr, sizeof(msg->hdr), true);
3294 print_hex_dump(KERN_DEBUG, " front: ",
3295 DUMP_PREFIX_OFFSET, 16, 1,
3296 msg->front.iov_base, msg->front.iov_len, true);
3297 if (msg->middle)
3298 print_hex_dump(KERN_DEBUG, "middle: ",
3299 DUMP_PREFIX_OFFSET, 16, 1,
3300 msg->middle->vec.iov_base,
3301 msg->middle->vec.iov_len, true);
3302 print_hex_dump(KERN_DEBUG, "footer: ",
3303 DUMP_PREFIX_OFFSET, 16, 1,
3304 &msg->footer, sizeof(msg->footer), true);
3305 }
3306 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.10165 seconds and 5 git commands to generate.