ceph: Convert to immutable biovecs
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 #define list_entry_next(pos, member) \
25 list_entry(pos->member.next, typeof(*pos), member)
26
27 /*
28 * Ceph uses the messenger to exchange ceph_msg messages with other
29 * hosts in the system. The messenger provides ordered and reliable
30 * delivery. We tolerate TCP disconnects by reconnecting (with
31 * exponential backoff) in the case of a fault (disconnection, bad
32 * crc, protocol error). Acks allow sent messages to be discarded by
33 * the sender.
34 */
35
36 /*
37 * We track the state of the socket on a given connection using
38 * values defined below. The transition to a new socket state is
39 * handled by a function which verifies we aren't coming from an
40 * unexpected state.
41 *
42 * --------
43 * | NEW* | transient initial state
44 * --------
45 * | con_sock_state_init()
46 * v
47 * ----------
48 * | CLOSED | initialized, but no socket (and no
49 * ---------- TCP connection)
50 * ^ \
51 * | \ con_sock_state_connecting()
52 * | ----------------------
53 * | \
54 * + con_sock_state_closed() \
55 * |+--------------------------- \
56 * | \ \ \
57 * | ----------- \ \
58 * | | CLOSING | socket event; \ \
59 * | ----------- await close \ \
60 * | ^ \ |
61 * | | \ |
62 * | + con_sock_state_closing() \ |
63 * | / \ | |
64 * | / --------------- | |
65 * | / \ v v
66 * | / --------------
67 * | / -----------------| CONNECTING | socket created, TCP
68 * | | / -------------- connect initiated
69 * | | | con_sock_state_connected()
70 * | | v
71 * -------------
72 * | CONNECTED | TCP connection established
73 * -------------
74 *
75 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76 */
77
78 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
83
84 /*
85 * connection states
86 */
87 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
88 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
93
94 /*
95 * ceph_connection flag bits
96 */
97 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
98 * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
103
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106 switch (con_flag) {
107 case CON_FLAG_LOSSYTX:
108 case CON_FLAG_KEEPALIVE_PENDING:
109 case CON_FLAG_WRITE_PENDING:
110 case CON_FLAG_SOCK_CLOSED:
111 case CON_FLAG_BACKOFF:
112 return true;
113 default:
114 return false;
115 }
116 }
117
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120 BUG_ON(!con_flag_valid(con_flag));
121
122 clear_bit(con_flag, &con->flags);
123 }
124
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127 BUG_ON(!con_flag_valid(con_flag));
128
129 set_bit(con_flag, &con->flags);
130 }
131
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134 BUG_ON(!con_flag_valid(con_flag));
135
136 return test_bit(con_flag, &con->flags);
137 }
138
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140 unsigned long con_flag)
141 {
142 BUG_ON(!con_flag_valid(con_flag));
143
144 return test_and_clear_bit(con_flag, &con->flags);
145 }
146
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148 unsigned long con_flag)
149 {
150 BUG_ON(!con_flag_valid(con_flag));
151
152 return test_and_set_bit(con_flag, &con->flags);
153 }
154
155 /* Slab caches for frequently-allocated structures */
156
157 static struct kmem_cache *ceph_msg_cache;
158 static struct kmem_cache *ceph_msg_data_cache;
159
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class;
167 #endif
168
169 /*
170 * When skipping (ignoring) a block of input we read it into a "skip
171 * buffer," which is this many bytes in size.
172 */
173 #define SKIP_BUF_SIZE 1024
174
175 static void queue_con(struct ceph_connection *con);
176 static void con_work(struct work_struct *);
177 static void con_fault(struct ceph_connection *con);
178
179 /*
180 * Nicely render a sockaddr as a string. An array of formatted
181 * strings is used, to approximate reentrancy.
182 */
183 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
184 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
185 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
186 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
187
188 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
189 static atomic_t addr_str_seq = ATOMIC_INIT(0);
190
191 static struct page *zero_page; /* used in certain error cases */
192
193 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
194 {
195 int i;
196 char *s;
197 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
198 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
199
200 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
201 s = addr_str[i];
202
203 switch (ss->ss_family) {
204 case AF_INET:
205 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
206 ntohs(in4->sin_port));
207 break;
208
209 case AF_INET6:
210 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
211 ntohs(in6->sin6_port));
212 break;
213
214 default:
215 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
216 ss->ss_family);
217 }
218
219 return s;
220 }
221 EXPORT_SYMBOL(ceph_pr_addr);
222
223 static void encode_my_addr(struct ceph_messenger *msgr)
224 {
225 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
226 ceph_encode_addr(&msgr->my_enc_addr);
227 }
228
229 /*
230 * work queue for all reading and writing to/from the socket.
231 */
232 static struct workqueue_struct *ceph_msgr_wq;
233
234 static int ceph_msgr_slab_init(void)
235 {
236 BUG_ON(ceph_msg_cache);
237 ceph_msg_cache = kmem_cache_create("ceph_msg",
238 sizeof (struct ceph_msg),
239 __alignof__(struct ceph_msg), 0, NULL);
240
241 if (!ceph_msg_cache)
242 return -ENOMEM;
243
244 BUG_ON(ceph_msg_data_cache);
245 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
246 sizeof (struct ceph_msg_data),
247 __alignof__(struct ceph_msg_data),
248 0, NULL);
249 if (ceph_msg_data_cache)
250 return 0;
251
252 kmem_cache_destroy(ceph_msg_cache);
253 ceph_msg_cache = NULL;
254
255 return -ENOMEM;
256 }
257
258 static void ceph_msgr_slab_exit(void)
259 {
260 BUG_ON(!ceph_msg_data_cache);
261 kmem_cache_destroy(ceph_msg_data_cache);
262 ceph_msg_data_cache = NULL;
263
264 BUG_ON(!ceph_msg_cache);
265 kmem_cache_destroy(ceph_msg_cache);
266 ceph_msg_cache = NULL;
267 }
268
269 static void _ceph_msgr_exit(void)
270 {
271 if (ceph_msgr_wq) {
272 destroy_workqueue(ceph_msgr_wq);
273 ceph_msgr_wq = NULL;
274 }
275
276 ceph_msgr_slab_exit();
277
278 BUG_ON(zero_page == NULL);
279 kunmap(zero_page);
280 page_cache_release(zero_page);
281 zero_page = NULL;
282 }
283
284 int ceph_msgr_init(void)
285 {
286 BUG_ON(zero_page != NULL);
287 zero_page = ZERO_PAGE(0);
288 page_cache_get(zero_page);
289
290 if (ceph_msgr_slab_init())
291 return -ENOMEM;
292
293 ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0);
294 if (ceph_msgr_wq)
295 return 0;
296
297 pr_err("msgr_init failed to create workqueue\n");
298 _ceph_msgr_exit();
299
300 return -ENOMEM;
301 }
302 EXPORT_SYMBOL(ceph_msgr_init);
303
304 void ceph_msgr_exit(void)
305 {
306 BUG_ON(ceph_msgr_wq == NULL);
307
308 _ceph_msgr_exit();
309 }
310 EXPORT_SYMBOL(ceph_msgr_exit);
311
312 void ceph_msgr_flush(void)
313 {
314 flush_workqueue(ceph_msgr_wq);
315 }
316 EXPORT_SYMBOL(ceph_msgr_flush);
317
318 /* Connection socket state transition functions */
319
320 static void con_sock_state_init(struct ceph_connection *con)
321 {
322 int old_state;
323
324 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
325 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
326 printk("%s: unexpected old state %d\n", __func__, old_state);
327 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
328 CON_SOCK_STATE_CLOSED);
329 }
330
331 static void con_sock_state_connecting(struct ceph_connection *con)
332 {
333 int old_state;
334
335 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
336 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
337 printk("%s: unexpected old state %d\n", __func__, old_state);
338 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
339 CON_SOCK_STATE_CONNECTING);
340 }
341
342 static void con_sock_state_connected(struct ceph_connection *con)
343 {
344 int old_state;
345
346 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
347 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
348 printk("%s: unexpected old state %d\n", __func__, old_state);
349 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
350 CON_SOCK_STATE_CONNECTED);
351 }
352
353 static void con_sock_state_closing(struct ceph_connection *con)
354 {
355 int old_state;
356
357 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
358 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
359 old_state != CON_SOCK_STATE_CONNECTED &&
360 old_state != CON_SOCK_STATE_CLOSING))
361 printk("%s: unexpected old state %d\n", __func__, old_state);
362 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
363 CON_SOCK_STATE_CLOSING);
364 }
365
366 static void con_sock_state_closed(struct ceph_connection *con)
367 {
368 int old_state;
369
370 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
371 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
372 old_state != CON_SOCK_STATE_CLOSING &&
373 old_state != CON_SOCK_STATE_CONNECTING &&
374 old_state != CON_SOCK_STATE_CLOSED))
375 printk("%s: unexpected old state %d\n", __func__, old_state);
376 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
377 CON_SOCK_STATE_CLOSED);
378 }
379
380 /*
381 * socket callback functions
382 */
383
384 /* data available on socket, or listen socket received a connect */
385 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
386 {
387 struct ceph_connection *con = sk->sk_user_data;
388 if (atomic_read(&con->msgr->stopping)) {
389 return;
390 }
391
392 if (sk->sk_state != TCP_CLOSE_WAIT) {
393 dout("%s on %p state = %lu, queueing work\n", __func__,
394 con, con->state);
395 queue_con(con);
396 }
397 }
398
399 /* socket has buffer space for writing */
400 static void ceph_sock_write_space(struct sock *sk)
401 {
402 struct ceph_connection *con = sk->sk_user_data;
403
404 /* only queue to workqueue if there is data we want to write,
405 * and there is sufficient space in the socket buffer to accept
406 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
407 * doesn't get called again until try_write() fills the socket
408 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
409 * and net/core/stream.c:sk_stream_write_space().
410 */
411 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
412 if (sk_stream_is_writeable(sk)) {
413 dout("%s %p queueing write work\n", __func__, con);
414 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
415 queue_con(con);
416 }
417 } else {
418 dout("%s %p nothing to write\n", __func__, con);
419 }
420 }
421
422 /* socket's state has changed */
423 static void ceph_sock_state_change(struct sock *sk)
424 {
425 struct ceph_connection *con = sk->sk_user_data;
426
427 dout("%s %p state = %lu sk_state = %u\n", __func__,
428 con, con->state, sk->sk_state);
429
430 switch (sk->sk_state) {
431 case TCP_CLOSE:
432 dout("%s TCP_CLOSE\n", __func__);
433 case TCP_CLOSE_WAIT:
434 dout("%s TCP_CLOSE_WAIT\n", __func__);
435 con_sock_state_closing(con);
436 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
437 queue_con(con);
438 break;
439 case TCP_ESTABLISHED:
440 dout("%s TCP_ESTABLISHED\n", __func__);
441 con_sock_state_connected(con);
442 queue_con(con);
443 break;
444 default: /* Everything else is uninteresting */
445 break;
446 }
447 }
448
449 /*
450 * set up socket callbacks
451 */
452 static void set_sock_callbacks(struct socket *sock,
453 struct ceph_connection *con)
454 {
455 struct sock *sk = sock->sk;
456 sk->sk_user_data = con;
457 sk->sk_data_ready = ceph_sock_data_ready;
458 sk->sk_write_space = ceph_sock_write_space;
459 sk->sk_state_change = ceph_sock_state_change;
460 }
461
462
463 /*
464 * socket helpers
465 */
466
467 /*
468 * initiate connection to a remote socket.
469 */
470 static int ceph_tcp_connect(struct ceph_connection *con)
471 {
472 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
473 struct socket *sock;
474 int ret;
475
476 BUG_ON(con->sock);
477 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
478 IPPROTO_TCP, &sock);
479 if (ret)
480 return ret;
481 sock->sk->sk_allocation = GFP_NOFS;
482
483 #ifdef CONFIG_LOCKDEP
484 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
485 #endif
486
487 set_sock_callbacks(sock, con);
488
489 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
490
491 con_sock_state_connecting(con);
492 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
493 O_NONBLOCK);
494 if (ret == -EINPROGRESS) {
495 dout("connect %s EINPROGRESS sk_state = %u\n",
496 ceph_pr_addr(&con->peer_addr.in_addr),
497 sock->sk->sk_state);
498 } else if (ret < 0) {
499 pr_err("connect %s error %d\n",
500 ceph_pr_addr(&con->peer_addr.in_addr), ret);
501 sock_release(sock);
502 con->error_msg = "connect error";
503
504 return ret;
505 }
506 con->sock = sock;
507 return 0;
508 }
509
510 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
511 {
512 struct kvec iov = {buf, len};
513 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
514 int r;
515
516 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
517 if (r == -EAGAIN)
518 r = 0;
519 return r;
520 }
521
522 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
523 int page_offset, size_t length)
524 {
525 void *kaddr;
526 int ret;
527
528 BUG_ON(page_offset + length > PAGE_SIZE);
529
530 kaddr = kmap(page);
531 BUG_ON(!kaddr);
532 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
533 kunmap(page);
534
535 return ret;
536 }
537
538 /*
539 * write something. @more is true if caller will be sending more data
540 * shortly.
541 */
542 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
543 size_t kvlen, size_t len, int more)
544 {
545 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
546 int r;
547
548 if (more)
549 msg.msg_flags |= MSG_MORE;
550 else
551 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
552
553 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
554 if (r == -EAGAIN)
555 r = 0;
556 return r;
557 }
558
559 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
560 int offset, size_t size, bool more)
561 {
562 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
563 int ret;
564
565 ret = kernel_sendpage(sock, page, offset, size, flags);
566 if (ret == -EAGAIN)
567 ret = 0;
568
569 return ret;
570 }
571
572
573 /*
574 * Shutdown/close the socket for the given connection.
575 */
576 static int con_close_socket(struct ceph_connection *con)
577 {
578 int rc = 0;
579
580 dout("con_close_socket on %p sock %p\n", con, con->sock);
581 if (con->sock) {
582 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
583 sock_release(con->sock);
584 con->sock = NULL;
585 }
586
587 /*
588 * Forcibly clear the SOCK_CLOSED flag. It gets set
589 * independent of the connection mutex, and we could have
590 * received a socket close event before we had the chance to
591 * shut the socket down.
592 */
593 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
594
595 con_sock_state_closed(con);
596 return rc;
597 }
598
599 /*
600 * Reset a connection. Discard all incoming and outgoing messages
601 * and clear *_seq state.
602 */
603 static void ceph_msg_remove(struct ceph_msg *msg)
604 {
605 list_del_init(&msg->list_head);
606 BUG_ON(msg->con == NULL);
607 msg->con->ops->put(msg->con);
608 msg->con = NULL;
609
610 ceph_msg_put(msg);
611 }
612 static void ceph_msg_remove_list(struct list_head *head)
613 {
614 while (!list_empty(head)) {
615 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
616 list_head);
617 ceph_msg_remove(msg);
618 }
619 }
620
621 static void reset_connection(struct ceph_connection *con)
622 {
623 /* reset connection, out_queue, msg_ and connect_seq */
624 /* discard existing out_queue and msg_seq */
625 dout("reset_connection %p\n", con);
626 ceph_msg_remove_list(&con->out_queue);
627 ceph_msg_remove_list(&con->out_sent);
628
629 if (con->in_msg) {
630 BUG_ON(con->in_msg->con != con);
631 con->in_msg->con = NULL;
632 ceph_msg_put(con->in_msg);
633 con->in_msg = NULL;
634 con->ops->put(con);
635 }
636
637 con->connect_seq = 0;
638 con->out_seq = 0;
639 if (con->out_msg) {
640 ceph_msg_put(con->out_msg);
641 con->out_msg = NULL;
642 }
643 con->in_seq = 0;
644 con->in_seq_acked = 0;
645 }
646
647 /*
648 * mark a peer down. drop any open connections.
649 */
650 void ceph_con_close(struct ceph_connection *con)
651 {
652 mutex_lock(&con->mutex);
653 dout("con_close %p peer %s\n", con,
654 ceph_pr_addr(&con->peer_addr.in_addr));
655 con->state = CON_STATE_CLOSED;
656
657 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
658 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
659 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
660 con_flag_clear(con, CON_FLAG_BACKOFF);
661
662 reset_connection(con);
663 con->peer_global_seq = 0;
664 cancel_delayed_work(&con->work);
665 con_close_socket(con);
666 mutex_unlock(&con->mutex);
667 }
668 EXPORT_SYMBOL(ceph_con_close);
669
670 /*
671 * Reopen a closed connection, with a new peer address.
672 */
673 void ceph_con_open(struct ceph_connection *con,
674 __u8 entity_type, __u64 entity_num,
675 struct ceph_entity_addr *addr)
676 {
677 mutex_lock(&con->mutex);
678 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
679
680 WARN_ON(con->state != CON_STATE_CLOSED);
681 con->state = CON_STATE_PREOPEN;
682
683 con->peer_name.type = (__u8) entity_type;
684 con->peer_name.num = cpu_to_le64(entity_num);
685
686 memcpy(&con->peer_addr, addr, sizeof(*addr));
687 con->delay = 0; /* reset backoff memory */
688 mutex_unlock(&con->mutex);
689 queue_con(con);
690 }
691 EXPORT_SYMBOL(ceph_con_open);
692
693 /*
694 * return true if this connection ever successfully opened
695 */
696 bool ceph_con_opened(struct ceph_connection *con)
697 {
698 return con->connect_seq > 0;
699 }
700
701 /*
702 * initialize a new connection.
703 */
704 void ceph_con_init(struct ceph_connection *con, void *private,
705 const struct ceph_connection_operations *ops,
706 struct ceph_messenger *msgr)
707 {
708 dout("con_init %p\n", con);
709 memset(con, 0, sizeof(*con));
710 con->private = private;
711 con->ops = ops;
712 con->msgr = msgr;
713
714 con_sock_state_init(con);
715
716 mutex_init(&con->mutex);
717 INIT_LIST_HEAD(&con->out_queue);
718 INIT_LIST_HEAD(&con->out_sent);
719 INIT_DELAYED_WORK(&con->work, con_work);
720
721 con->state = CON_STATE_CLOSED;
722 }
723 EXPORT_SYMBOL(ceph_con_init);
724
725
726 /*
727 * We maintain a global counter to order connection attempts. Get
728 * a unique seq greater than @gt.
729 */
730 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
731 {
732 u32 ret;
733
734 spin_lock(&msgr->global_seq_lock);
735 if (msgr->global_seq < gt)
736 msgr->global_seq = gt;
737 ret = ++msgr->global_seq;
738 spin_unlock(&msgr->global_seq_lock);
739 return ret;
740 }
741
742 static void con_out_kvec_reset(struct ceph_connection *con)
743 {
744 con->out_kvec_left = 0;
745 con->out_kvec_bytes = 0;
746 con->out_kvec_cur = &con->out_kvec[0];
747 }
748
749 static void con_out_kvec_add(struct ceph_connection *con,
750 size_t size, void *data)
751 {
752 int index;
753
754 index = con->out_kvec_left;
755 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
756
757 con->out_kvec[index].iov_len = size;
758 con->out_kvec[index].iov_base = data;
759 con->out_kvec_left++;
760 con->out_kvec_bytes += size;
761 }
762
763 #ifdef CONFIG_BLOCK
764
765 /*
766 * For a bio data item, a piece is whatever remains of the next
767 * entry in the current bio iovec, or the first entry in the next
768 * bio in the list.
769 */
770 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
771 size_t length)
772 {
773 struct ceph_msg_data *data = cursor->data;
774 struct bio *bio;
775
776 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
777
778 bio = data->bio;
779 BUG_ON(!bio);
780
781 cursor->resid = min(length, data->bio_length);
782 cursor->bio = bio;
783 cursor->bvec_iter = bio->bi_iter;
784 cursor->last_piece =
785 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
786 }
787
788 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
789 size_t *page_offset,
790 size_t *length)
791 {
792 struct ceph_msg_data *data = cursor->data;
793 struct bio *bio;
794 struct bio_vec bio_vec;
795
796 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
797
798 bio = cursor->bio;
799 BUG_ON(!bio);
800
801 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
802
803 *page_offset = (size_t) bio_vec.bv_offset;
804 BUG_ON(*page_offset >= PAGE_SIZE);
805 if (cursor->last_piece) /* pagelist offset is always 0 */
806 *length = cursor->resid;
807 else
808 *length = (size_t) bio_vec.bv_len;
809 BUG_ON(*length > cursor->resid);
810 BUG_ON(*page_offset + *length > PAGE_SIZE);
811
812 return bio_vec.bv_page;
813 }
814
815 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
816 size_t bytes)
817 {
818 struct bio *bio;
819 struct bio_vec bio_vec;
820
821 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
822
823 bio = cursor->bio;
824 BUG_ON(!bio);
825
826 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
827
828 /* Advance the cursor offset */
829
830 BUG_ON(cursor->resid < bytes);
831 cursor->resid -= bytes;
832
833 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
834
835 if (bytes < bio_vec.bv_len)
836 return false; /* more bytes to process in this segment */
837
838 /* Move on to the next segment, and possibly the next bio */
839
840 if (!cursor->bvec_iter.bi_size) {
841 bio = bio->bi_next;
842 cursor->bvec_iter = bio->bi_iter;
843 }
844 cursor->bio = bio;
845
846 if (!cursor->last_piece) {
847 BUG_ON(!cursor->resid);
848 BUG_ON(!bio);
849 /* A short read is OK, so use <= rather than == */
850 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
851 cursor->last_piece = true;
852 }
853
854 return true;
855 }
856 #endif /* CONFIG_BLOCK */
857
858 /*
859 * For a page array, a piece comes from the first page in the array
860 * that has not already been fully consumed.
861 */
862 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
863 size_t length)
864 {
865 struct ceph_msg_data *data = cursor->data;
866 int page_count;
867
868 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
869
870 BUG_ON(!data->pages);
871 BUG_ON(!data->length);
872
873 cursor->resid = min(length, data->length);
874 page_count = calc_pages_for(data->alignment, (u64)data->length);
875 cursor->page_offset = data->alignment & ~PAGE_MASK;
876 cursor->page_index = 0;
877 BUG_ON(page_count > (int)USHRT_MAX);
878 cursor->page_count = (unsigned short)page_count;
879 BUG_ON(length > SIZE_MAX - cursor->page_offset);
880 cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
881 }
882
883 static struct page *
884 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
885 size_t *page_offset, size_t *length)
886 {
887 struct ceph_msg_data *data = cursor->data;
888
889 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
890
891 BUG_ON(cursor->page_index >= cursor->page_count);
892 BUG_ON(cursor->page_offset >= PAGE_SIZE);
893
894 *page_offset = cursor->page_offset;
895 if (cursor->last_piece)
896 *length = cursor->resid;
897 else
898 *length = PAGE_SIZE - *page_offset;
899
900 return data->pages[cursor->page_index];
901 }
902
903 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
904 size_t bytes)
905 {
906 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
907
908 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
909
910 /* Advance the cursor page offset */
911
912 cursor->resid -= bytes;
913 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
914 if (!bytes || cursor->page_offset)
915 return false; /* more bytes to process in the current page */
916
917 /* Move on to the next page; offset is already at 0 */
918
919 BUG_ON(cursor->page_index >= cursor->page_count);
920 cursor->page_index++;
921 cursor->last_piece = cursor->resid <= PAGE_SIZE;
922
923 return true;
924 }
925
926 /*
927 * For a pagelist, a piece is whatever remains to be consumed in the
928 * first page in the list, or the front of the next page.
929 */
930 static void
931 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
932 size_t length)
933 {
934 struct ceph_msg_data *data = cursor->data;
935 struct ceph_pagelist *pagelist;
936 struct page *page;
937
938 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
939
940 pagelist = data->pagelist;
941 BUG_ON(!pagelist);
942
943 if (!length)
944 return; /* pagelist can be assigned but empty */
945
946 BUG_ON(list_empty(&pagelist->head));
947 page = list_first_entry(&pagelist->head, struct page, lru);
948
949 cursor->resid = min(length, pagelist->length);
950 cursor->page = page;
951 cursor->offset = 0;
952 cursor->last_piece = cursor->resid <= PAGE_SIZE;
953 }
954
955 static struct page *
956 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
957 size_t *page_offset, size_t *length)
958 {
959 struct ceph_msg_data *data = cursor->data;
960 struct ceph_pagelist *pagelist;
961
962 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
963
964 pagelist = data->pagelist;
965 BUG_ON(!pagelist);
966
967 BUG_ON(!cursor->page);
968 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
969
970 /* offset of first page in pagelist is always 0 */
971 *page_offset = cursor->offset & ~PAGE_MASK;
972 if (cursor->last_piece)
973 *length = cursor->resid;
974 else
975 *length = PAGE_SIZE - *page_offset;
976
977 return cursor->page;
978 }
979
980 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
981 size_t bytes)
982 {
983 struct ceph_msg_data *data = cursor->data;
984 struct ceph_pagelist *pagelist;
985
986 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
987
988 pagelist = data->pagelist;
989 BUG_ON(!pagelist);
990
991 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
992 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
993
994 /* Advance the cursor offset */
995
996 cursor->resid -= bytes;
997 cursor->offset += bytes;
998 /* offset of first page in pagelist is always 0 */
999 if (!bytes || cursor->offset & ~PAGE_MASK)
1000 return false; /* more bytes to process in the current page */
1001
1002 /* Move on to the next page */
1003
1004 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1005 cursor->page = list_entry_next(cursor->page, lru);
1006 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1007
1008 return true;
1009 }
1010
1011 /*
1012 * Message data is handled (sent or received) in pieces, where each
1013 * piece resides on a single page. The network layer might not
1014 * consume an entire piece at once. A data item's cursor keeps
1015 * track of which piece is next to process and how much remains to
1016 * be processed in that piece. It also tracks whether the current
1017 * piece is the last one in the data item.
1018 */
1019 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1020 {
1021 size_t length = cursor->total_resid;
1022
1023 switch (cursor->data->type) {
1024 case CEPH_MSG_DATA_PAGELIST:
1025 ceph_msg_data_pagelist_cursor_init(cursor, length);
1026 break;
1027 case CEPH_MSG_DATA_PAGES:
1028 ceph_msg_data_pages_cursor_init(cursor, length);
1029 break;
1030 #ifdef CONFIG_BLOCK
1031 case CEPH_MSG_DATA_BIO:
1032 ceph_msg_data_bio_cursor_init(cursor, length);
1033 break;
1034 #endif /* CONFIG_BLOCK */
1035 case CEPH_MSG_DATA_NONE:
1036 default:
1037 /* BUG(); */
1038 break;
1039 }
1040 cursor->need_crc = true;
1041 }
1042
1043 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1044 {
1045 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1046 struct ceph_msg_data *data;
1047
1048 BUG_ON(!length);
1049 BUG_ON(length > msg->data_length);
1050 BUG_ON(list_empty(&msg->data));
1051
1052 cursor->data_head = &msg->data;
1053 cursor->total_resid = length;
1054 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1055 cursor->data = data;
1056
1057 __ceph_msg_data_cursor_init(cursor);
1058 }
1059
1060 /*
1061 * Return the page containing the next piece to process for a given
1062 * data item, and supply the page offset and length of that piece.
1063 * Indicate whether this is the last piece in this data item.
1064 */
1065 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1066 size_t *page_offset, size_t *length,
1067 bool *last_piece)
1068 {
1069 struct page *page;
1070
1071 switch (cursor->data->type) {
1072 case CEPH_MSG_DATA_PAGELIST:
1073 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1074 break;
1075 case CEPH_MSG_DATA_PAGES:
1076 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1077 break;
1078 #ifdef CONFIG_BLOCK
1079 case CEPH_MSG_DATA_BIO:
1080 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1081 break;
1082 #endif /* CONFIG_BLOCK */
1083 case CEPH_MSG_DATA_NONE:
1084 default:
1085 page = NULL;
1086 break;
1087 }
1088 BUG_ON(!page);
1089 BUG_ON(*page_offset + *length > PAGE_SIZE);
1090 BUG_ON(!*length);
1091 if (last_piece)
1092 *last_piece = cursor->last_piece;
1093
1094 return page;
1095 }
1096
1097 /*
1098 * Returns true if the result moves the cursor on to the next piece
1099 * of the data item.
1100 */
1101 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1102 size_t bytes)
1103 {
1104 bool new_piece;
1105
1106 BUG_ON(bytes > cursor->resid);
1107 switch (cursor->data->type) {
1108 case CEPH_MSG_DATA_PAGELIST:
1109 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1110 break;
1111 case CEPH_MSG_DATA_PAGES:
1112 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1113 break;
1114 #ifdef CONFIG_BLOCK
1115 case CEPH_MSG_DATA_BIO:
1116 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1117 break;
1118 #endif /* CONFIG_BLOCK */
1119 case CEPH_MSG_DATA_NONE:
1120 default:
1121 BUG();
1122 break;
1123 }
1124 cursor->total_resid -= bytes;
1125
1126 if (!cursor->resid && cursor->total_resid) {
1127 WARN_ON(!cursor->last_piece);
1128 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1129 cursor->data = list_entry_next(cursor->data, links);
1130 __ceph_msg_data_cursor_init(cursor);
1131 new_piece = true;
1132 }
1133 cursor->need_crc = new_piece;
1134
1135 return new_piece;
1136 }
1137
1138 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1139 {
1140 BUG_ON(!msg);
1141 BUG_ON(!data_len);
1142
1143 /* Initialize data cursor */
1144
1145 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1146 }
1147
1148 /*
1149 * Prepare footer for currently outgoing message, and finish things
1150 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1151 */
1152 static void prepare_write_message_footer(struct ceph_connection *con)
1153 {
1154 struct ceph_msg *m = con->out_msg;
1155 int v = con->out_kvec_left;
1156
1157 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1158
1159 dout("prepare_write_message_footer %p\n", con);
1160 con->out_kvec_is_msg = true;
1161 con->out_kvec[v].iov_base = &m->footer;
1162 con->out_kvec[v].iov_len = sizeof(m->footer);
1163 con->out_kvec_bytes += sizeof(m->footer);
1164 con->out_kvec_left++;
1165 con->out_more = m->more_to_follow;
1166 con->out_msg_done = true;
1167 }
1168
1169 /*
1170 * Prepare headers for the next outgoing message.
1171 */
1172 static void prepare_write_message(struct ceph_connection *con)
1173 {
1174 struct ceph_msg *m;
1175 u32 crc;
1176
1177 con_out_kvec_reset(con);
1178 con->out_kvec_is_msg = true;
1179 con->out_msg_done = false;
1180
1181 /* Sneak an ack in there first? If we can get it into the same
1182 * TCP packet that's a good thing. */
1183 if (con->in_seq > con->in_seq_acked) {
1184 con->in_seq_acked = con->in_seq;
1185 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1186 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1187 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1188 &con->out_temp_ack);
1189 }
1190
1191 BUG_ON(list_empty(&con->out_queue));
1192 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1193 con->out_msg = m;
1194 BUG_ON(m->con != con);
1195
1196 /* put message on sent list */
1197 ceph_msg_get(m);
1198 list_move_tail(&m->list_head, &con->out_sent);
1199
1200 /*
1201 * only assign outgoing seq # if we haven't sent this message
1202 * yet. if it is requeued, resend with it's original seq.
1203 */
1204 if (m->needs_out_seq) {
1205 m->hdr.seq = cpu_to_le64(++con->out_seq);
1206 m->needs_out_seq = false;
1207 }
1208 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1209
1210 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1211 m, con->out_seq, le16_to_cpu(m->hdr.type),
1212 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1213 m->data_length);
1214 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1215
1216 /* tag + hdr + front + middle */
1217 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1218 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1219 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1220
1221 if (m->middle)
1222 con_out_kvec_add(con, m->middle->vec.iov_len,
1223 m->middle->vec.iov_base);
1224
1225 /* fill in crc (except data pages), footer */
1226 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1227 con->out_msg->hdr.crc = cpu_to_le32(crc);
1228 con->out_msg->footer.flags = 0;
1229
1230 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1231 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1232 if (m->middle) {
1233 crc = crc32c(0, m->middle->vec.iov_base,
1234 m->middle->vec.iov_len);
1235 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1236 } else
1237 con->out_msg->footer.middle_crc = 0;
1238 dout("%s front_crc %u middle_crc %u\n", __func__,
1239 le32_to_cpu(con->out_msg->footer.front_crc),
1240 le32_to_cpu(con->out_msg->footer.middle_crc));
1241
1242 /* is there a data payload? */
1243 con->out_msg->footer.data_crc = 0;
1244 if (m->data_length) {
1245 prepare_message_data(con->out_msg, m->data_length);
1246 con->out_more = 1; /* data + footer will follow */
1247 } else {
1248 /* no, queue up footer too and be done */
1249 prepare_write_message_footer(con);
1250 }
1251
1252 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1253 }
1254
1255 /*
1256 * Prepare an ack.
1257 */
1258 static void prepare_write_ack(struct ceph_connection *con)
1259 {
1260 dout("prepare_write_ack %p %llu -> %llu\n", con,
1261 con->in_seq_acked, con->in_seq);
1262 con->in_seq_acked = con->in_seq;
1263
1264 con_out_kvec_reset(con);
1265
1266 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1267
1268 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1269 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1270 &con->out_temp_ack);
1271
1272 con->out_more = 1; /* more will follow.. eventually.. */
1273 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1274 }
1275
1276 /*
1277 * Prepare to share the seq during handshake
1278 */
1279 static void prepare_write_seq(struct ceph_connection *con)
1280 {
1281 dout("prepare_write_seq %p %llu -> %llu\n", con,
1282 con->in_seq_acked, con->in_seq);
1283 con->in_seq_acked = con->in_seq;
1284
1285 con_out_kvec_reset(con);
1286
1287 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1288 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1289 &con->out_temp_ack);
1290
1291 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1292 }
1293
1294 /*
1295 * Prepare to write keepalive byte.
1296 */
1297 static void prepare_write_keepalive(struct ceph_connection *con)
1298 {
1299 dout("prepare_write_keepalive %p\n", con);
1300 con_out_kvec_reset(con);
1301 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1302 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1303 }
1304
1305 /*
1306 * Connection negotiation.
1307 */
1308
1309 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1310 int *auth_proto)
1311 {
1312 struct ceph_auth_handshake *auth;
1313
1314 if (!con->ops->get_authorizer) {
1315 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1316 con->out_connect.authorizer_len = 0;
1317 return NULL;
1318 }
1319
1320 /* Can't hold the mutex while getting authorizer */
1321 mutex_unlock(&con->mutex);
1322 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1323 mutex_lock(&con->mutex);
1324
1325 if (IS_ERR(auth))
1326 return auth;
1327 if (con->state != CON_STATE_NEGOTIATING)
1328 return ERR_PTR(-EAGAIN);
1329
1330 con->auth_reply_buf = auth->authorizer_reply_buf;
1331 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1332 return auth;
1333 }
1334
1335 /*
1336 * We connected to a peer and are saying hello.
1337 */
1338 static void prepare_write_banner(struct ceph_connection *con)
1339 {
1340 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1341 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1342 &con->msgr->my_enc_addr);
1343
1344 con->out_more = 0;
1345 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1346 }
1347
1348 static int prepare_write_connect(struct ceph_connection *con)
1349 {
1350 unsigned int global_seq = get_global_seq(con->msgr, 0);
1351 int proto;
1352 int auth_proto;
1353 struct ceph_auth_handshake *auth;
1354
1355 switch (con->peer_name.type) {
1356 case CEPH_ENTITY_TYPE_MON:
1357 proto = CEPH_MONC_PROTOCOL;
1358 break;
1359 case CEPH_ENTITY_TYPE_OSD:
1360 proto = CEPH_OSDC_PROTOCOL;
1361 break;
1362 case CEPH_ENTITY_TYPE_MDS:
1363 proto = CEPH_MDSC_PROTOCOL;
1364 break;
1365 default:
1366 BUG();
1367 }
1368
1369 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1370 con->connect_seq, global_seq, proto);
1371
1372 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1373 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1374 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1375 con->out_connect.global_seq = cpu_to_le32(global_seq);
1376 con->out_connect.protocol_version = cpu_to_le32(proto);
1377 con->out_connect.flags = 0;
1378
1379 auth_proto = CEPH_AUTH_UNKNOWN;
1380 auth = get_connect_authorizer(con, &auth_proto);
1381 if (IS_ERR(auth))
1382 return PTR_ERR(auth);
1383
1384 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1385 con->out_connect.authorizer_len = auth ?
1386 cpu_to_le32(auth->authorizer_buf_len) : 0;
1387
1388 con_out_kvec_add(con, sizeof (con->out_connect),
1389 &con->out_connect);
1390 if (auth && auth->authorizer_buf_len)
1391 con_out_kvec_add(con, auth->authorizer_buf_len,
1392 auth->authorizer_buf);
1393
1394 con->out_more = 0;
1395 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1396
1397 return 0;
1398 }
1399
1400 /*
1401 * write as much of pending kvecs to the socket as we can.
1402 * 1 -> done
1403 * 0 -> socket full, but more to do
1404 * <0 -> error
1405 */
1406 static int write_partial_kvec(struct ceph_connection *con)
1407 {
1408 int ret;
1409
1410 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1411 while (con->out_kvec_bytes > 0) {
1412 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1413 con->out_kvec_left, con->out_kvec_bytes,
1414 con->out_more);
1415 if (ret <= 0)
1416 goto out;
1417 con->out_kvec_bytes -= ret;
1418 if (con->out_kvec_bytes == 0)
1419 break; /* done */
1420
1421 /* account for full iov entries consumed */
1422 while (ret >= con->out_kvec_cur->iov_len) {
1423 BUG_ON(!con->out_kvec_left);
1424 ret -= con->out_kvec_cur->iov_len;
1425 con->out_kvec_cur++;
1426 con->out_kvec_left--;
1427 }
1428 /* and for a partially-consumed entry */
1429 if (ret) {
1430 con->out_kvec_cur->iov_len -= ret;
1431 con->out_kvec_cur->iov_base += ret;
1432 }
1433 }
1434 con->out_kvec_left = 0;
1435 con->out_kvec_is_msg = false;
1436 ret = 1;
1437 out:
1438 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1439 con->out_kvec_bytes, con->out_kvec_left, ret);
1440 return ret; /* done! */
1441 }
1442
1443 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1444 unsigned int page_offset,
1445 unsigned int length)
1446 {
1447 char *kaddr;
1448
1449 kaddr = kmap(page);
1450 BUG_ON(kaddr == NULL);
1451 crc = crc32c(crc, kaddr + page_offset, length);
1452 kunmap(page);
1453
1454 return crc;
1455 }
1456 /*
1457 * Write as much message data payload as we can. If we finish, queue
1458 * up the footer.
1459 * 1 -> done, footer is now queued in out_kvec[].
1460 * 0 -> socket full, but more to do
1461 * <0 -> error
1462 */
1463 static int write_partial_message_data(struct ceph_connection *con)
1464 {
1465 struct ceph_msg *msg = con->out_msg;
1466 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1467 bool do_datacrc = !con->msgr->nocrc;
1468 u32 crc;
1469
1470 dout("%s %p msg %p\n", __func__, con, msg);
1471
1472 if (list_empty(&msg->data))
1473 return -EINVAL;
1474
1475 /*
1476 * Iterate through each page that contains data to be
1477 * written, and send as much as possible for each.
1478 *
1479 * If we are calculating the data crc (the default), we will
1480 * need to map the page. If we have no pages, they have
1481 * been revoked, so use the zero page.
1482 */
1483 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1484 while (cursor->resid) {
1485 struct page *page;
1486 size_t page_offset;
1487 size_t length;
1488 bool last_piece;
1489 bool need_crc;
1490 int ret;
1491
1492 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1493 &last_piece);
1494 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1495 length, last_piece);
1496 if (ret <= 0) {
1497 if (do_datacrc)
1498 msg->footer.data_crc = cpu_to_le32(crc);
1499
1500 return ret;
1501 }
1502 if (do_datacrc && cursor->need_crc)
1503 crc = ceph_crc32c_page(crc, page, page_offset, length);
1504 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1505 }
1506
1507 dout("%s %p msg %p done\n", __func__, con, msg);
1508
1509 /* prepare and queue up footer, too */
1510 if (do_datacrc)
1511 msg->footer.data_crc = cpu_to_le32(crc);
1512 else
1513 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1514 con_out_kvec_reset(con);
1515 prepare_write_message_footer(con);
1516
1517 return 1; /* must return > 0 to indicate success */
1518 }
1519
1520 /*
1521 * write some zeros
1522 */
1523 static int write_partial_skip(struct ceph_connection *con)
1524 {
1525 int ret;
1526
1527 while (con->out_skip > 0) {
1528 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1529
1530 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1531 if (ret <= 0)
1532 goto out;
1533 con->out_skip -= ret;
1534 }
1535 ret = 1;
1536 out:
1537 return ret;
1538 }
1539
1540 /*
1541 * Prepare to read connection handshake, or an ack.
1542 */
1543 static void prepare_read_banner(struct ceph_connection *con)
1544 {
1545 dout("prepare_read_banner %p\n", con);
1546 con->in_base_pos = 0;
1547 }
1548
1549 static void prepare_read_connect(struct ceph_connection *con)
1550 {
1551 dout("prepare_read_connect %p\n", con);
1552 con->in_base_pos = 0;
1553 }
1554
1555 static void prepare_read_ack(struct ceph_connection *con)
1556 {
1557 dout("prepare_read_ack %p\n", con);
1558 con->in_base_pos = 0;
1559 }
1560
1561 static void prepare_read_seq(struct ceph_connection *con)
1562 {
1563 dout("prepare_read_seq %p\n", con);
1564 con->in_base_pos = 0;
1565 con->in_tag = CEPH_MSGR_TAG_SEQ;
1566 }
1567
1568 static void prepare_read_tag(struct ceph_connection *con)
1569 {
1570 dout("prepare_read_tag %p\n", con);
1571 con->in_base_pos = 0;
1572 con->in_tag = CEPH_MSGR_TAG_READY;
1573 }
1574
1575 /*
1576 * Prepare to read a message.
1577 */
1578 static int prepare_read_message(struct ceph_connection *con)
1579 {
1580 dout("prepare_read_message %p\n", con);
1581 BUG_ON(con->in_msg != NULL);
1582 con->in_base_pos = 0;
1583 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1584 return 0;
1585 }
1586
1587
1588 static int read_partial(struct ceph_connection *con,
1589 int end, int size, void *object)
1590 {
1591 while (con->in_base_pos < end) {
1592 int left = end - con->in_base_pos;
1593 int have = size - left;
1594 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1595 if (ret <= 0)
1596 return ret;
1597 con->in_base_pos += ret;
1598 }
1599 return 1;
1600 }
1601
1602
1603 /*
1604 * Read all or part of the connect-side handshake on a new connection
1605 */
1606 static int read_partial_banner(struct ceph_connection *con)
1607 {
1608 int size;
1609 int end;
1610 int ret;
1611
1612 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1613
1614 /* peer's banner */
1615 size = strlen(CEPH_BANNER);
1616 end = size;
1617 ret = read_partial(con, end, size, con->in_banner);
1618 if (ret <= 0)
1619 goto out;
1620
1621 size = sizeof (con->actual_peer_addr);
1622 end += size;
1623 ret = read_partial(con, end, size, &con->actual_peer_addr);
1624 if (ret <= 0)
1625 goto out;
1626
1627 size = sizeof (con->peer_addr_for_me);
1628 end += size;
1629 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1630 if (ret <= 0)
1631 goto out;
1632
1633 out:
1634 return ret;
1635 }
1636
1637 static int read_partial_connect(struct ceph_connection *con)
1638 {
1639 int size;
1640 int end;
1641 int ret;
1642
1643 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1644
1645 size = sizeof (con->in_reply);
1646 end = size;
1647 ret = read_partial(con, end, size, &con->in_reply);
1648 if (ret <= 0)
1649 goto out;
1650
1651 size = le32_to_cpu(con->in_reply.authorizer_len);
1652 end += size;
1653 ret = read_partial(con, end, size, con->auth_reply_buf);
1654 if (ret <= 0)
1655 goto out;
1656
1657 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1658 con, (int)con->in_reply.tag,
1659 le32_to_cpu(con->in_reply.connect_seq),
1660 le32_to_cpu(con->in_reply.global_seq));
1661 out:
1662 return ret;
1663
1664 }
1665
1666 /*
1667 * Verify the hello banner looks okay.
1668 */
1669 static int verify_hello(struct ceph_connection *con)
1670 {
1671 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1672 pr_err("connect to %s got bad banner\n",
1673 ceph_pr_addr(&con->peer_addr.in_addr));
1674 con->error_msg = "protocol error, bad banner";
1675 return -1;
1676 }
1677 return 0;
1678 }
1679
1680 static bool addr_is_blank(struct sockaddr_storage *ss)
1681 {
1682 switch (ss->ss_family) {
1683 case AF_INET:
1684 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1685 case AF_INET6:
1686 return
1687 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1688 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1689 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1690 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1691 }
1692 return false;
1693 }
1694
1695 static int addr_port(struct sockaddr_storage *ss)
1696 {
1697 switch (ss->ss_family) {
1698 case AF_INET:
1699 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1700 case AF_INET6:
1701 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1702 }
1703 return 0;
1704 }
1705
1706 static void addr_set_port(struct sockaddr_storage *ss, int p)
1707 {
1708 switch (ss->ss_family) {
1709 case AF_INET:
1710 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1711 break;
1712 case AF_INET6:
1713 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1714 break;
1715 }
1716 }
1717
1718 /*
1719 * Unlike other *_pton function semantics, zero indicates success.
1720 */
1721 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1722 char delim, const char **ipend)
1723 {
1724 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1725 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1726
1727 memset(ss, 0, sizeof(*ss));
1728
1729 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1730 ss->ss_family = AF_INET;
1731 return 0;
1732 }
1733
1734 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1735 ss->ss_family = AF_INET6;
1736 return 0;
1737 }
1738
1739 return -EINVAL;
1740 }
1741
1742 /*
1743 * Extract hostname string and resolve using kernel DNS facility.
1744 */
1745 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1746 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1747 struct sockaddr_storage *ss, char delim, const char **ipend)
1748 {
1749 const char *end, *delim_p;
1750 char *colon_p, *ip_addr = NULL;
1751 int ip_len, ret;
1752
1753 /*
1754 * The end of the hostname occurs immediately preceding the delimiter or
1755 * the port marker (':') where the delimiter takes precedence.
1756 */
1757 delim_p = memchr(name, delim, namelen);
1758 colon_p = memchr(name, ':', namelen);
1759
1760 if (delim_p && colon_p)
1761 end = delim_p < colon_p ? delim_p : colon_p;
1762 else if (!delim_p && colon_p)
1763 end = colon_p;
1764 else {
1765 end = delim_p;
1766 if (!end) /* case: hostname:/ */
1767 end = name + namelen;
1768 }
1769
1770 if (end <= name)
1771 return -EINVAL;
1772
1773 /* do dns_resolve upcall */
1774 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1775 if (ip_len > 0)
1776 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1777 else
1778 ret = -ESRCH;
1779
1780 kfree(ip_addr);
1781
1782 *ipend = end;
1783
1784 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1785 ret, ret ? "failed" : ceph_pr_addr(ss));
1786
1787 return ret;
1788 }
1789 #else
1790 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1791 struct sockaddr_storage *ss, char delim, const char **ipend)
1792 {
1793 return -EINVAL;
1794 }
1795 #endif
1796
1797 /*
1798 * Parse a server name (IP or hostname). If a valid IP address is not found
1799 * then try to extract a hostname to resolve using userspace DNS upcall.
1800 */
1801 static int ceph_parse_server_name(const char *name, size_t namelen,
1802 struct sockaddr_storage *ss, char delim, const char **ipend)
1803 {
1804 int ret;
1805
1806 ret = ceph_pton(name, namelen, ss, delim, ipend);
1807 if (ret)
1808 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1809
1810 return ret;
1811 }
1812
1813 /*
1814 * Parse an ip[:port] list into an addr array. Use the default
1815 * monitor port if a port isn't specified.
1816 */
1817 int ceph_parse_ips(const char *c, const char *end,
1818 struct ceph_entity_addr *addr,
1819 int max_count, int *count)
1820 {
1821 int i, ret = -EINVAL;
1822 const char *p = c;
1823
1824 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1825 for (i = 0; i < max_count; i++) {
1826 const char *ipend;
1827 struct sockaddr_storage *ss = &addr[i].in_addr;
1828 int port;
1829 char delim = ',';
1830
1831 if (*p == '[') {
1832 delim = ']';
1833 p++;
1834 }
1835
1836 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1837 if (ret)
1838 goto bad;
1839 ret = -EINVAL;
1840
1841 p = ipend;
1842
1843 if (delim == ']') {
1844 if (*p != ']') {
1845 dout("missing matching ']'\n");
1846 goto bad;
1847 }
1848 p++;
1849 }
1850
1851 /* port? */
1852 if (p < end && *p == ':') {
1853 port = 0;
1854 p++;
1855 while (p < end && *p >= '0' && *p <= '9') {
1856 port = (port * 10) + (*p - '0');
1857 p++;
1858 }
1859 if (port > 65535 || port == 0)
1860 goto bad;
1861 } else {
1862 port = CEPH_MON_PORT;
1863 }
1864
1865 addr_set_port(ss, port);
1866
1867 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1868
1869 if (p == end)
1870 break;
1871 if (*p != ',')
1872 goto bad;
1873 p++;
1874 }
1875
1876 if (p != end)
1877 goto bad;
1878
1879 if (count)
1880 *count = i + 1;
1881 return 0;
1882
1883 bad:
1884 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1885 return ret;
1886 }
1887 EXPORT_SYMBOL(ceph_parse_ips);
1888
1889 static int process_banner(struct ceph_connection *con)
1890 {
1891 dout("process_banner on %p\n", con);
1892
1893 if (verify_hello(con) < 0)
1894 return -1;
1895
1896 ceph_decode_addr(&con->actual_peer_addr);
1897 ceph_decode_addr(&con->peer_addr_for_me);
1898
1899 /*
1900 * Make sure the other end is who we wanted. note that the other
1901 * end may not yet know their ip address, so if it's 0.0.0.0, give
1902 * them the benefit of the doubt.
1903 */
1904 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1905 sizeof(con->peer_addr)) != 0 &&
1906 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1907 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1908 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1909 ceph_pr_addr(&con->peer_addr.in_addr),
1910 (int)le32_to_cpu(con->peer_addr.nonce),
1911 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1912 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1913 con->error_msg = "wrong peer at address";
1914 return -1;
1915 }
1916
1917 /*
1918 * did we learn our address?
1919 */
1920 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1921 int port = addr_port(&con->msgr->inst.addr.in_addr);
1922
1923 memcpy(&con->msgr->inst.addr.in_addr,
1924 &con->peer_addr_for_me.in_addr,
1925 sizeof(con->peer_addr_for_me.in_addr));
1926 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1927 encode_my_addr(con->msgr);
1928 dout("process_banner learned my addr is %s\n",
1929 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1930 }
1931
1932 return 0;
1933 }
1934
1935 static int process_connect(struct ceph_connection *con)
1936 {
1937 u64 sup_feat = con->msgr->supported_features;
1938 u64 req_feat = con->msgr->required_features;
1939 u64 server_feat = le64_to_cpu(con->in_reply.features);
1940 int ret;
1941
1942 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1943
1944 switch (con->in_reply.tag) {
1945 case CEPH_MSGR_TAG_FEATURES:
1946 pr_err("%s%lld %s feature set mismatch,"
1947 " my %llx < server's %llx, missing %llx\n",
1948 ENTITY_NAME(con->peer_name),
1949 ceph_pr_addr(&con->peer_addr.in_addr),
1950 sup_feat, server_feat, server_feat & ~sup_feat);
1951 con->error_msg = "missing required protocol features";
1952 reset_connection(con);
1953 return -1;
1954
1955 case CEPH_MSGR_TAG_BADPROTOVER:
1956 pr_err("%s%lld %s protocol version mismatch,"
1957 " my %d != server's %d\n",
1958 ENTITY_NAME(con->peer_name),
1959 ceph_pr_addr(&con->peer_addr.in_addr),
1960 le32_to_cpu(con->out_connect.protocol_version),
1961 le32_to_cpu(con->in_reply.protocol_version));
1962 con->error_msg = "protocol version mismatch";
1963 reset_connection(con);
1964 return -1;
1965
1966 case CEPH_MSGR_TAG_BADAUTHORIZER:
1967 con->auth_retry++;
1968 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1969 con->auth_retry);
1970 if (con->auth_retry == 2) {
1971 con->error_msg = "connect authorization failure";
1972 return -1;
1973 }
1974 con_out_kvec_reset(con);
1975 ret = prepare_write_connect(con);
1976 if (ret < 0)
1977 return ret;
1978 prepare_read_connect(con);
1979 break;
1980
1981 case CEPH_MSGR_TAG_RESETSESSION:
1982 /*
1983 * If we connected with a large connect_seq but the peer
1984 * has no record of a session with us (no connection, or
1985 * connect_seq == 0), they will send RESETSESION to indicate
1986 * that they must have reset their session, and may have
1987 * dropped messages.
1988 */
1989 dout("process_connect got RESET peer seq %u\n",
1990 le32_to_cpu(con->in_reply.connect_seq));
1991 pr_err("%s%lld %s connection reset\n",
1992 ENTITY_NAME(con->peer_name),
1993 ceph_pr_addr(&con->peer_addr.in_addr));
1994 reset_connection(con);
1995 con_out_kvec_reset(con);
1996 ret = prepare_write_connect(con);
1997 if (ret < 0)
1998 return ret;
1999 prepare_read_connect(con);
2000
2001 /* Tell ceph about it. */
2002 mutex_unlock(&con->mutex);
2003 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2004 if (con->ops->peer_reset)
2005 con->ops->peer_reset(con);
2006 mutex_lock(&con->mutex);
2007 if (con->state != CON_STATE_NEGOTIATING)
2008 return -EAGAIN;
2009 break;
2010
2011 case CEPH_MSGR_TAG_RETRY_SESSION:
2012 /*
2013 * If we sent a smaller connect_seq than the peer has, try
2014 * again with a larger value.
2015 */
2016 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2017 le32_to_cpu(con->out_connect.connect_seq),
2018 le32_to_cpu(con->in_reply.connect_seq));
2019 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2020 con_out_kvec_reset(con);
2021 ret = prepare_write_connect(con);
2022 if (ret < 0)
2023 return ret;
2024 prepare_read_connect(con);
2025 break;
2026
2027 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2028 /*
2029 * If we sent a smaller global_seq than the peer has, try
2030 * again with a larger value.
2031 */
2032 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2033 con->peer_global_seq,
2034 le32_to_cpu(con->in_reply.global_seq));
2035 get_global_seq(con->msgr,
2036 le32_to_cpu(con->in_reply.global_seq));
2037 con_out_kvec_reset(con);
2038 ret = prepare_write_connect(con);
2039 if (ret < 0)
2040 return ret;
2041 prepare_read_connect(con);
2042 break;
2043
2044 case CEPH_MSGR_TAG_SEQ:
2045 case CEPH_MSGR_TAG_READY:
2046 if (req_feat & ~server_feat) {
2047 pr_err("%s%lld %s protocol feature mismatch,"
2048 " my required %llx > server's %llx, need %llx\n",
2049 ENTITY_NAME(con->peer_name),
2050 ceph_pr_addr(&con->peer_addr.in_addr),
2051 req_feat, server_feat, req_feat & ~server_feat);
2052 con->error_msg = "missing required protocol features";
2053 reset_connection(con);
2054 return -1;
2055 }
2056
2057 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2058 con->state = CON_STATE_OPEN;
2059 con->auth_retry = 0; /* we authenticated; clear flag */
2060 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2061 con->connect_seq++;
2062 con->peer_features = server_feat;
2063 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2064 con->peer_global_seq,
2065 le32_to_cpu(con->in_reply.connect_seq),
2066 con->connect_seq);
2067 WARN_ON(con->connect_seq !=
2068 le32_to_cpu(con->in_reply.connect_seq));
2069
2070 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2071 con_flag_set(con, CON_FLAG_LOSSYTX);
2072
2073 con->delay = 0; /* reset backoff memory */
2074
2075 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2076 prepare_write_seq(con);
2077 prepare_read_seq(con);
2078 } else {
2079 prepare_read_tag(con);
2080 }
2081 break;
2082
2083 case CEPH_MSGR_TAG_WAIT:
2084 /*
2085 * If there is a connection race (we are opening
2086 * connections to each other), one of us may just have
2087 * to WAIT. This shouldn't happen if we are the
2088 * client.
2089 */
2090 pr_err("process_connect got WAIT as client\n");
2091 con->error_msg = "protocol error, got WAIT as client";
2092 return -1;
2093
2094 default:
2095 pr_err("connect protocol error, will retry\n");
2096 con->error_msg = "protocol error, garbage tag during connect";
2097 return -1;
2098 }
2099 return 0;
2100 }
2101
2102
2103 /*
2104 * read (part of) an ack
2105 */
2106 static int read_partial_ack(struct ceph_connection *con)
2107 {
2108 int size = sizeof (con->in_temp_ack);
2109 int end = size;
2110
2111 return read_partial(con, end, size, &con->in_temp_ack);
2112 }
2113
2114 /*
2115 * We can finally discard anything that's been acked.
2116 */
2117 static void process_ack(struct ceph_connection *con)
2118 {
2119 struct ceph_msg *m;
2120 u64 ack = le64_to_cpu(con->in_temp_ack);
2121 u64 seq;
2122
2123 while (!list_empty(&con->out_sent)) {
2124 m = list_first_entry(&con->out_sent, struct ceph_msg,
2125 list_head);
2126 seq = le64_to_cpu(m->hdr.seq);
2127 if (seq > ack)
2128 break;
2129 dout("got ack for seq %llu type %d at %p\n", seq,
2130 le16_to_cpu(m->hdr.type), m);
2131 m->ack_stamp = jiffies;
2132 ceph_msg_remove(m);
2133 }
2134 prepare_read_tag(con);
2135 }
2136
2137
2138 static int read_partial_message_section(struct ceph_connection *con,
2139 struct kvec *section,
2140 unsigned int sec_len, u32 *crc)
2141 {
2142 int ret, left;
2143
2144 BUG_ON(!section);
2145
2146 while (section->iov_len < sec_len) {
2147 BUG_ON(section->iov_base == NULL);
2148 left = sec_len - section->iov_len;
2149 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2150 section->iov_len, left);
2151 if (ret <= 0)
2152 return ret;
2153 section->iov_len += ret;
2154 }
2155 if (section->iov_len == sec_len)
2156 *crc = crc32c(0, section->iov_base, section->iov_len);
2157
2158 return 1;
2159 }
2160
2161 static int read_partial_msg_data(struct ceph_connection *con)
2162 {
2163 struct ceph_msg *msg = con->in_msg;
2164 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2165 const bool do_datacrc = !con->msgr->nocrc;
2166 struct page *page;
2167 size_t page_offset;
2168 size_t length;
2169 u32 crc = 0;
2170 int ret;
2171
2172 BUG_ON(!msg);
2173 if (list_empty(&msg->data))
2174 return -EIO;
2175
2176 if (do_datacrc)
2177 crc = con->in_data_crc;
2178 while (cursor->resid) {
2179 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2180 NULL);
2181 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2182 if (ret <= 0) {
2183 if (do_datacrc)
2184 con->in_data_crc = crc;
2185
2186 return ret;
2187 }
2188
2189 if (do_datacrc)
2190 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2191 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2192 }
2193 if (do_datacrc)
2194 con->in_data_crc = crc;
2195
2196 return 1; /* must return > 0 to indicate success */
2197 }
2198
2199 /*
2200 * read (part of) a message.
2201 */
2202 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2203
2204 static int read_partial_message(struct ceph_connection *con)
2205 {
2206 struct ceph_msg *m = con->in_msg;
2207 int size;
2208 int end;
2209 int ret;
2210 unsigned int front_len, middle_len, data_len;
2211 bool do_datacrc = !con->msgr->nocrc;
2212 u64 seq;
2213 u32 crc;
2214
2215 dout("read_partial_message con %p msg %p\n", con, m);
2216
2217 /* header */
2218 size = sizeof (con->in_hdr);
2219 end = size;
2220 ret = read_partial(con, end, size, &con->in_hdr);
2221 if (ret <= 0)
2222 return ret;
2223
2224 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2225 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2226 pr_err("read_partial_message bad hdr "
2227 " crc %u != expected %u\n",
2228 crc, con->in_hdr.crc);
2229 return -EBADMSG;
2230 }
2231
2232 front_len = le32_to_cpu(con->in_hdr.front_len);
2233 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2234 return -EIO;
2235 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2236 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2237 return -EIO;
2238 data_len = le32_to_cpu(con->in_hdr.data_len);
2239 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2240 return -EIO;
2241
2242 /* verify seq# */
2243 seq = le64_to_cpu(con->in_hdr.seq);
2244 if ((s64)seq - (s64)con->in_seq < 1) {
2245 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2246 ENTITY_NAME(con->peer_name),
2247 ceph_pr_addr(&con->peer_addr.in_addr),
2248 seq, con->in_seq + 1);
2249 con->in_base_pos = -front_len - middle_len - data_len -
2250 sizeof(m->footer);
2251 con->in_tag = CEPH_MSGR_TAG_READY;
2252 return 0;
2253 } else if ((s64)seq - (s64)con->in_seq > 1) {
2254 pr_err("read_partial_message bad seq %lld expected %lld\n",
2255 seq, con->in_seq + 1);
2256 con->error_msg = "bad message sequence # for incoming message";
2257 return -EBADMSG;
2258 }
2259
2260 /* allocate message? */
2261 if (!con->in_msg) {
2262 int skip = 0;
2263
2264 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2265 front_len, data_len);
2266 ret = ceph_con_in_msg_alloc(con, &skip);
2267 if (ret < 0)
2268 return ret;
2269
2270 BUG_ON(!con->in_msg ^ skip);
2271 if (con->in_msg && data_len > con->in_msg->data_length) {
2272 pr_warning("%s skipping long message (%u > %zd)\n",
2273 __func__, data_len, con->in_msg->data_length);
2274 ceph_msg_put(con->in_msg);
2275 con->in_msg = NULL;
2276 skip = 1;
2277 }
2278 if (skip) {
2279 /* skip this message */
2280 dout("alloc_msg said skip message\n");
2281 con->in_base_pos = -front_len - middle_len - data_len -
2282 sizeof(m->footer);
2283 con->in_tag = CEPH_MSGR_TAG_READY;
2284 con->in_seq++;
2285 return 0;
2286 }
2287
2288 BUG_ON(!con->in_msg);
2289 BUG_ON(con->in_msg->con != con);
2290 m = con->in_msg;
2291 m->front.iov_len = 0; /* haven't read it yet */
2292 if (m->middle)
2293 m->middle->vec.iov_len = 0;
2294
2295 /* prepare for data payload, if any */
2296
2297 if (data_len)
2298 prepare_message_data(con->in_msg, data_len);
2299 }
2300
2301 /* front */
2302 ret = read_partial_message_section(con, &m->front, front_len,
2303 &con->in_front_crc);
2304 if (ret <= 0)
2305 return ret;
2306
2307 /* middle */
2308 if (m->middle) {
2309 ret = read_partial_message_section(con, &m->middle->vec,
2310 middle_len,
2311 &con->in_middle_crc);
2312 if (ret <= 0)
2313 return ret;
2314 }
2315
2316 /* (page) data */
2317 if (data_len) {
2318 ret = read_partial_msg_data(con);
2319 if (ret <= 0)
2320 return ret;
2321 }
2322
2323 /* footer */
2324 size = sizeof (m->footer);
2325 end += size;
2326 ret = read_partial(con, end, size, &m->footer);
2327 if (ret <= 0)
2328 return ret;
2329
2330 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2331 m, front_len, m->footer.front_crc, middle_len,
2332 m->footer.middle_crc, data_len, m->footer.data_crc);
2333
2334 /* crc ok? */
2335 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2336 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2337 m, con->in_front_crc, m->footer.front_crc);
2338 return -EBADMSG;
2339 }
2340 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2341 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2342 m, con->in_middle_crc, m->footer.middle_crc);
2343 return -EBADMSG;
2344 }
2345 if (do_datacrc &&
2346 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2347 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2348 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2349 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2350 return -EBADMSG;
2351 }
2352
2353 return 1; /* done! */
2354 }
2355
2356 /*
2357 * Process message. This happens in the worker thread. The callback should
2358 * be careful not to do anything that waits on other incoming messages or it
2359 * may deadlock.
2360 */
2361 static void process_message(struct ceph_connection *con)
2362 {
2363 struct ceph_msg *msg;
2364
2365 BUG_ON(con->in_msg->con != con);
2366 con->in_msg->con = NULL;
2367 msg = con->in_msg;
2368 con->in_msg = NULL;
2369 con->ops->put(con);
2370
2371 /* if first message, set peer_name */
2372 if (con->peer_name.type == 0)
2373 con->peer_name = msg->hdr.src;
2374
2375 con->in_seq++;
2376 mutex_unlock(&con->mutex);
2377
2378 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2379 msg, le64_to_cpu(msg->hdr.seq),
2380 ENTITY_NAME(msg->hdr.src),
2381 le16_to_cpu(msg->hdr.type),
2382 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2383 le32_to_cpu(msg->hdr.front_len),
2384 le32_to_cpu(msg->hdr.data_len),
2385 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2386 con->ops->dispatch(con, msg);
2387
2388 mutex_lock(&con->mutex);
2389 }
2390
2391
2392 /*
2393 * Write something to the socket. Called in a worker thread when the
2394 * socket appears to be writeable and we have something ready to send.
2395 */
2396 static int try_write(struct ceph_connection *con)
2397 {
2398 int ret = 1;
2399
2400 dout("try_write start %p state %lu\n", con, con->state);
2401
2402 more:
2403 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2404
2405 /* open the socket first? */
2406 if (con->state == CON_STATE_PREOPEN) {
2407 BUG_ON(con->sock);
2408 con->state = CON_STATE_CONNECTING;
2409
2410 con_out_kvec_reset(con);
2411 prepare_write_banner(con);
2412 prepare_read_banner(con);
2413
2414 BUG_ON(con->in_msg);
2415 con->in_tag = CEPH_MSGR_TAG_READY;
2416 dout("try_write initiating connect on %p new state %lu\n",
2417 con, con->state);
2418 ret = ceph_tcp_connect(con);
2419 if (ret < 0) {
2420 con->error_msg = "connect error";
2421 goto out;
2422 }
2423 }
2424
2425 more_kvec:
2426 /* kvec data queued? */
2427 if (con->out_skip) {
2428 ret = write_partial_skip(con);
2429 if (ret <= 0)
2430 goto out;
2431 }
2432 if (con->out_kvec_left) {
2433 ret = write_partial_kvec(con);
2434 if (ret <= 0)
2435 goto out;
2436 }
2437
2438 /* msg pages? */
2439 if (con->out_msg) {
2440 if (con->out_msg_done) {
2441 ceph_msg_put(con->out_msg);
2442 con->out_msg = NULL; /* we're done with this one */
2443 goto do_next;
2444 }
2445
2446 ret = write_partial_message_data(con);
2447 if (ret == 1)
2448 goto more_kvec; /* we need to send the footer, too! */
2449 if (ret == 0)
2450 goto out;
2451 if (ret < 0) {
2452 dout("try_write write_partial_message_data err %d\n",
2453 ret);
2454 goto out;
2455 }
2456 }
2457
2458 do_next:
2459 if (con->state == CON_STATE_OPEN) {
2460 /* is anything else pending? */
2461 if (!list_empty(&con->out_queue)) {
2462 prepare_write_message(con);
2463 goto more;
2464 }
2465 if (con->in_seq > con->in_seq_acked) {
2466 prepare_write_ack(con);
2467 goto more;
2468 }
2469 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2470 prepare_write_keepalive(con);
2471 goto more;
2472 }
2473 }
2474
2475 /* Nothing to do! */
2476 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2477 dout("try_write nothing else to write.\n");
2478 ret = 0;
2479 out:
2480 dout("try_write done on %p ret %d\n", con, ret);
2481 return ret;
2482 }
2483
2484
2485
2486 /*
2487 * Read what we can from the socket.
2488 */
2489 static int try_read(struct ceph_connection *con)
2490 {
2491 int ret = -1;
2492
2493 more:
2494 dout("try_read start on %p state %lu\n", con, con->state);
2495 if (con->state != CON_STATE_CONNECTING &&
2496 con->state != CON_STATE_NEGOTIATING &&
2497 con->state != CON_STATE_OPEN)
2498 return 0;
2499
2500 BUG_ON(!con->sock);
2501
2502 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2503 con->in_base_pos);
2504
2505 if (con->state == CON_STATE_CONNECTING) {
2506 dout("try_read connecting\n");
2507 ret = read_partial_banner(con);
2508 if (ret <= 0)
2509 goto out;
2510 ret = process_banner(con);
2511 if (ret < 0)
2512 goto out;
2513
2514 con->state = CON_STATE_NEGOTIATING;
2515
2516 /*
2517 * Received banner is good, exchange connection info.
2518 * Do not reset out_kvec, as sending our banner raced
2519 * with receiving peer banner after connect completed.
2520 */
2521 ret = prepare_write_connect(con);
2522 if (ret < 0)
2523 goto out;
2524 prepare_read_connect(con);
2525
2526 /* Send connection info before awaiting response */
2527 goto out;
2528 }
2529
2530 if (con->state == CON_STATE_NEGOTIATING) {
2531 dout("try_read negotiating\n");
2532 ret = read_partial_connect(con);
2533 if (ret <= 0)
2534 goto out;
2535 ret = process_connect(con);
2536 if (ret < 0)
2537 goto out;
2538 goto more;
2539 }
2540
2541 WARN_ON(con->state != CON_STATE_OPEN);
2542
2543 if (con->in_base_pos < 0) {
2544 /*
2545 * skipping + discarding content.
2546 *
2547 * FIXME: there must be a better way to do this!
2548 */
2549 static char buf[SKIP_BUF_SIZE];
2550 int skip = min((int) sizeof (buf), -con->in_base_pos);
2551
2552 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2553 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2554 if (ret <= 0)
2555 goto out;
2556 con->in_base_pos += ret;
2557 if (con->in_base_pos)
2558 goto more;
2559 }
2560 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2561 /*
2562 * what's next?
2563 */
2564 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2565 if (ret <= 0)
2566 goto out;
2567 dout("try_read got tag %d\n", (int)con->in_tag);
2568 switch (con->in_tag) {
2569 case CEPH_MSGR_TAG_MSG:
2570 prepare_read_message(con);
2571 break;
2572 case CEPH_MSGR_TAG_ACK:
2573 prepare_read_ack(con);
2574 break;
2575 case CEPH_MSGR_TAG_CLOSE:
2576 con_close_socket(con);
2577 con->state = CON_STATE_CLOSED;
2578 goto out;
2579 default:
2580 goto bad_tag;
2581 }
2582 }
2583 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2584 ret = read_partial_message(con);
2585 if (ret <= 0) {
2586 switch (ret) {
2587 case -EBADMSG:
2588 con->error_msg = "bad crc";
2589 ret = -EIO;
2590 break;
2591 case -EIO:
2592 con->error_msg = "io error";
2593 break;
2594 }
2595 goto out;
2596 }
2597 if (con->in_tag == CEPH_MSGR_TAG_READY)
2598 goto more;
2599 process_message(con);
2600 if (con->state == CON_STATE_OPEN)
2601 prepare_read_tag(con);
2602 goto more;
2603 }
2604 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2605 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2606 /*
2607 * the final handshake seq exchange is semantically
2608 * equivalent to an ACK
2609 */
2610 ret = read_partial_ack(con);
2611 if (ret <= 0)
2612 goto out;
2613 process_ack(con);
2614 goto more;
2615 }
2616
2617 out:
2618 dout("try_read done on %p ret %d\n", con, ret);
2619 return ret;
2620
2621 bad_tag:
2622 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2623 con->error_msg = "protocol error, garbage tag";
2624 ret = -1;
2625 goto out;
2626 }
2627
2628
2629 /*
2630 * Atomically queue work on a connection after the specified delay.
2631 * Bump @con reference to avoid races with connection teardown.
2632 * Returns 0 if work was queued, or an error code otherwise.
2633 */
2634 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2635 {
2636 if (!con->ops->get(con)) {
2637 dout("%s %p ref count 0\n", __func__, con);
2638
2639 return -ENOENT;
2640 }
2641
2642 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2643 dout("%s %p - already queued\n", __func__, con);
2644 con->ops->put(con);
2645
2646 return -EBUSY;
2647 }
2648
2649 dout("%s %p %lu\n", __func__, con, delay);
2650
2651 return 0;
2652 }
2653
2654 static void queue_con(struct ceph_connection *con)
2655 {
2656 (void) queue_con_delay(con, 0);
2657 }
2658
2659 static bool con_sock_closed(struct ceph_connection *con)
2660 {
2661 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2662 return false;
2663
2664 #define CASE(x) \
2665 case CON_STATE_ ## x: \
2666 con->error_msg = "socket closed (con state " #x ")"; \
2667 break;
2668
2669 switch (con->state) {
2670 CASE(CLOSED);
2671 CASE(PREOPEN);
2672 CASE(CONNECTING);
2673 CASE(NEGOTIATING);
2674 CASE(OPEN);
2675 CASE(STANDBY);
2676 default:
2677 pr_warning("%s con %p unrecognized state %lu\n",
2678 __func__, con, con->state);
2679 con->error_msg = "unrecognized con state";
2680 BUG();
2681 break;
2682 }
2683 #undef CASE
2684
2685 return true;
2686 }
2687
2688 static bool con_backoff(struct ceph_connection *con)
2689 {
2690 int ret;
2691
2692 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2693 return false;
2694
2695 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2696 if (ret) {
2697 dout("%s: con %p FAILED to back off %lu\n", __func__,
2698 con, con->delay);
2699 BUG_ON(ret == -ENOENT);
2700 con_flag_set(con, CON_FLAG_BACKOFF);
2701 }
2702
2703 return true;
2704 }
2705
2706 /* Finish fault handling; con->mutex must *not* be held here */
2707
2708 static void con_fault_finish(struct ceph_connection *con)
2709 {
2710 /*
2711 * in case we faulted due to authentication, invalidate our
2712 * current tickets so that we can get new ones.
2713 */
2714 if (con->auth_retry && con->ops->invalidate_authorizer) {
2715 dout("calling invalidate_authorizer()\n");
2716 con->ops->invalidate_authorizer(con);
2717 }
2718
2719 if (con->ops->fault)
2720 con->ops->fault(con);
2721 }
2722
2723 /*
2724 * Do some work on a connection. Drop a connection ref when we're done.
2725 */
2726 static void con_work(struct work_struct *work)
2727 {
2728 struct ceph_connection *con = container_of(work, struct ceph_connection,
2729 work.work);
2730 bool fault;
2731
2732 mutex_lock(&con->mutex);
2733 while (true) {
2734 int ret;
2735
2736 if ((fault = con_sock_closed(con))) {
2737 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2738 break;
2739 }
2740 if (con_backoff(con)) {
2741 dout("%s: con %p BACKOFF\n", __func__, con);
2742 break;
2743 }
2744 if (con->state == CON_STATE_STANDBY) {
2745 dout("%s: con %p STANDBY\n", __func__, con);
2746 break;
2747 }
2748 if (con->state == CON_STATE_CLOSED) {
2749 dout("%s: con %p CLOSED\n", __func__, con);
2750 BUG_ON(con->sock);
2751 break;
2752 }
2753 if (con->state == CON_STATE_PREOPEN) {
2754 dout("%s: con %p PREOPEN\n", __func__, con);
2755 BUG_ON(con->sock);
2756 }
2757
2758 ret = try_read(con);
2759 if (ret < 0) {
2760 if (ret == -EAGAIN)
2761 continue;
2762 con->error_msg = "socket error on read";
2763 fault = true;
2764 break;
2765 }
2766
2767 ret = try_write(con);
2768 if (ret < 0) {
2769 if (ret == -EAGAIN)
2770 continue;
2771 con->error_msg = "socket error on write";
2772 fault = true;
2773 }
2774
2775 break; /* If we make it to here, we're done */
2776 }
2777 if (fault)
2778 con_fault(con);
2779 mutex_unlock(&con->mutex);
2780
2781 if (fault)
2782 con_fault_finish(con);
2783
2784 con->ops->put(con);
2785 }
2786
2787 /*
2788 * Generic error/fault handler. A retry mechanism is used with
2789 * exponential backoff
2790 */
2791 static void con_fault(struct ceph_connection *con)
2792 {
2793 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2794 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2795 dout("fault %p state %lu to peer %s\n",
2796 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2797
2798 WARN_ON(con->state != CON_STATE_CONNECTING &&
2799 con->state != CON_STATE_NEGOTIATING &&
2800 con->state != CON_STATE_OPEN);
2801
2802 con_close_socket(con);
2803
2804 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2805 dout("fault on LOSSYTX channel, marking CLOSED\n");
2806 con->state = CON_STATE_CLOSED;
2807 return;
2808 }
2809
2810 if (con->in_msg) {
2811 BUG_ON(con->in_msg->con != con);
2812 con->in_msg->con = NULL;
2813 ceph_msg_put(con->in_msg);
2814 con->in_msg = NULL;
2815 con->ops->put(con);
2816 }
2817
2818 /* Requeue anything that hasn't been acked */
2819 list_splice_init(&con->out_sent, &con->out_queue);
2820
2821 /* If there are no messages queued or keepalive pending, place
2822 * the connection in a STANDBY state */
2823 if (list_empty(&con->out_queue) &&
2824 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2825 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2826 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2827 con->state = CON_STATE_STANDBY;
2828 } else {
2829 /* retry after a delay. */
2830 con->state = CON_STATE_PREOPEN;
2831 if (con->delay == 0)
2832 con->delay = BASE_DELAY_INTERVAL;
2833 else if (con->delay < MAX_DELAY_INTERVAL)
2834 con->delay *= 2;
2835 con_flag_set(con, CON_FLAG_BACKOFF);
2836 queue_con(con);
2837 }
2838 }
2839
2840
2841
2842 /*
2843 * initialize a new messenger instance
2844 */
2845 void ceph_messenger_init(struct ceph_messenger *msgr,
2846 struct ceph_entity_addr *myaddr,
2847 u32 supported_features,
2848 u32 required_features,
2849 bool nocrc)
2850 {
2851 msgr->supported_features = supported_features;
2852 msgr->required_features = required_features;
2853
2854 spin_lock_init(&msgr->global_seq_lock);
2855
2856 if (myaddr)
2857 msgr->inst.addr = *myaddr;
2858
2859 /* select a random nonce */
2860 msgr->inst.addr.type = 0;
2861 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2862 encode_my_addr(msgr);
2863 msgr->nocrc = nocrc;
2864
2865 atomic_set(&msgr->stopping, 0);
2866
2867 dout("%s %p\n", __func__, msgr);
2868 }
2869 EXPORT_SYMBOL(ceph_messenger_init);
2870
2871 static void clear_standby(struct ceph_connection *con)
2872 {
2873 /* come back from STANDBY? */
2874 if (con->state == CON_STATE_STANDBY) {
2875 dout("clear_standby %p and ++connect_seq\n", con);
2876 con->state = CON_STATE_PREOPEN;
2877 con->connect_seq++;
2878 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2879 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2880 }
2881 }
2882
2883 /*
2884 * Queue up an outgoing message on the given connection.
2885 */
2886 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2887 {
2888 /* set src+dst */
2889 msg->hdr.src = con->msgr->inst.name;
2890 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2891 msg->needs_out_seq = true;
2892
2893 mutex_lock(&con->mutex);
2894
2895 if (con->state == CON_STATE_CLOSED) {
2896 dout("con_send %p closed, dropping %p\n", con, msg);
2897 ceph_msg_put(msg);
2898 mutex_unlock(&con->mutex);
2899 return;
2900 }
2901
2902 BUG_ON(msg->con != NULL);
2903 msg->con = con->ops->get(con);
2904 BUG_ON(msg->con == NULL);
2905
2906 BUG_ON(!list_empty(&msg->list_head));
2907 list_add_tail(&msg->list_head, &con->out_queue);
2908 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2909 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2910 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2911 le32_to_cpu(msg->hdr.front_len),
2912 le32_to_cpu(msg->hdr.middle_len),
2913 le32_to_cpu(msg->hdr.data_len));
2914
2915 clear_standby(con);
2916 mutex_unlock(&con->mutex);
2917
2918 /* if there wasn't anything waiting to send before, queue
2919 * new work */
2920 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2921 queue_con(con);
2922 }
2923 EXPORT_SYMBOL(ceph_con_send);
2924
2925 /*
2926 * Revoke a message that was previously queued for send
2927 */
2928 void ceph_msg_revoke(struct ceph_msg *msg)
2929 {
2930 struct ceph_connection *con = msg->con;
2931
2932 if (!con)
2933 return; /* Message not in our possession */
2934
2935 mutex_lock(&con->mutex);
2936 if (!list_empty(&msg->list_head)) {
2937 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2938 list_del_init(&msg->list_head);
2939 BUG_ON(msg->con == NULL);
2940 msg->con->ops->put(msg->con);
2941 msg->con = NULL;
2942 msg->hdr.seq = 0;
2943
2944 ceph_msg_put(msg);
2945 }
2946 if (con->out_msg == msg) {
2947 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2948 con->out_msg = NULL;
2949 if (con->out_kvec_is_msg) {
2950 con->out_skip = con->out_kvec_bytes;
2951 con->out_kvec_is_msg = false;
2952 }
2953 msg->hdr.seq = 0;
2954
2955 ceph_msg_put(msg);
2956 }
2957 mutex_unlock(&con->mutex);
2958 }
2959
2960 /*
2961 * Revoke a message that we may be reading data into
2962 */
2963 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2964 {
2965 struct ceph_connection *con;
2966
2967 BUG_ON(msg == NULL);
2968 if (!msg->con) {
2969 dout("%s msg %p null con\n", __func__, msg);
2970
2971 return; /* Message not in our possession */
2972 }
2973
2974 con = msg->con;
2975 mutex_lock(&con->mutex);
2976 if (con->in_msg == msg) {
2977 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2978 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2979 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2980
2981 /* skip rest of message */
2982 dout("%s %p msg %p revoked\n", __func__, con, msg);
2983 con->in_base_pos = con->in_base_pos -
2984 sizeof(struct ceph_msg_header) -
2985 front_len -
2986 middle_len -
2987 data_len -
2988 sizeof(struct ceph_msg_footer);
2989 ceph_msg_put(con->in_msg);
2990 con->in_msg = NULL;
2991 con->in_tag = CEPH_MSGR_TAG_READY;
2992 con->in_seq++;
2993 } else {
2994 dout("%s %p in_msg %p msg %p no-op\n",
2995 __func__, con, con->in_msg, msg);
2996 }
2997 mutex_unlock(&con->mutex);
2998 }
2999
3000 /*
3001 * Queue a keepalive byte to ensure the tcp connection is alive.
3002 */
3003 void ceph_con_keepalive(struct ceph_connection *con)
3004 {
3005 dout("con_keepalive %p\n", con);
3006 mutex_lock(&con->mutex);
3007 clear_standby(con);
3008 mutex_unlock(&con->mutex);
3009 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3010 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3011 queue_con(con);
3012 }
3013 EXPORT_SYMBOL(ceph_con_keepalive);
3014
3015 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3016 {
3017 struct ceph_msg_data *data;
3018
3019 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3020 return NULL;
3021
3022 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3023 if (data)
3024 data->type = type;
3025 INIT_LIST_HEAD(&data->links);
3026
3027 return data;
3028 }
3029
3030 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3031 {
3032 if (!data)
3033 return;
3034
3035 WARN_ON(!list_empty(&data->links));
3036 if (data->type == CEPH_MSG_DATA_PAGELIST) {
3037 ceph_pagelist_release(data->pagelist);
3038 kfree(data->pagelist);
3039 }
3040 kmem_cache_free(ceph_msg_data_cache, data);
3041 }
3042
3043 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3044 size_t length, size_t alignment)
3045 {
3046 struct ceph_msg_data *data;
3047
3048 BUG_ON(!pages);
3049 BUG_ON(!length);
3050
3051 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3052 BUG_ON(!data);
3053 data->pages = pages;
3054 data->length = length;
3055 data->alignment = alignment & ~PAGE_MASK;
3056
3057 list_add_tail(&data->links, &msg->data);
3058 msg->data_length += length;
3059 }
3060 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3061
3062 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3063 struct ceph_pagelist *pagelist)
3064 {
3065 struct ceph_msg_data *data;
3066
3067 BUG_ON(!pagelist);
3068 BUG_ON(!pagelist->length);
3069
3070 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3071 BUG_ON(!data);
3072 data->pagelist = pagelist;
3073
3074 list_add_tail(&data->links, &msg->data);
3075 msg->data_length += pagelist->length;
3076 }
3077 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3078
3079 #ifdef CONFIG_BLOCK
3080 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3081 size_t length)
3082 {
3083 struct ceph_msg_data *data;
3084
3085 BUG_ON(!bio);
3086
3087 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3088 BUG_ON(!data);
3089 data->bio = bio;
3090 data->bio_length = length;
3091
3092 list_add_tail(&data->links, &msg->data);
3093 msg->data_length += length;
3094 }
3095 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3096 #endif /* CONFIG_BLOCK */
3097
3098 /*
3099 * construct a new message with given type, size
3100 * the new msg has a ref count of 1.
3101 */
3102 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3103 bool can_fail)
3104 {
3105 struct ceph_msg *m;
3106
3107 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3108 if (m == NULL)
3109 goto out;
3110
3111 m->hdr.type = cpu_to_le16(type);
3112 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3113 m->hdr.front_len = cpu_to_le32(front_len);
3114
3115 INIT_LIST_HEAD(&m->list_head);
3116 kref_init(&m->kref);
3117 INIT_LIST_HEAD(&m->data);
3118
3119 /* front */
3120 m->front_max = front_len;
3121 if (front_len) {
3122 if (front_len > PAGE_CACHE_SIZE) {
3123 m->front.iov_base = __vmalloc(front_len, flags,
3124 PAGE_KERNEL);
3125 m->front_is_vmalloc = true;
3126 } else {
3127 m->front.iov_base = kmalloc(front_len, flags);
3128 }
3129 if (m->front.iov_base == NULL) {
3130 dout("ceph_msg_new can't allocate %d bytes\n",
3131 front_len);
3132 goto out2;
3133 }
3134 } else {
3135 m->front.iov_base = NULL;
3136 }
3137 m->front.iov_len = front_len;
3138
3139 dout("ceph_msg_new %p front %d\n", m, front_len);
3140 return m;
3141
3142 out2:
3143 ceph_msg_put(m);
3144 out:
3145 if (!can_fail) {
3146 pr_err("msg_new can't create type %d front %d\n", type,
3147 front_len);
3148 WARN_ON(1);
3149 } else {
3150 dout("msg_new can't create type %d front %d\n", type,
3151 front_len);
3152 }
3153 return NULL;
3154 }
3155 EXPORT_SYMBOL(ceph_msg_new);
3156
3157 /*
3158 * Allocate "middle" portion of a message, if it is needed and wasn't
3159 * allocated by alloc_msg. This allows us to read a small fixed-size
3160 * per-type header in the front and then gracefully fail (i.e.,
3161 * propagate the error to the caller based on info in the front) when
3162 * the middle is too large.
3163 */
3164 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3165 {
3166 int type = le16_to_cpu(msg->hdr.type);
3167 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3168
3169 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3170 ceph_msg_type_name(type), middle_len);
3171 BUG_ON(!middle_len);
3172 BUG_ON(msg->middle);
3173
3174 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3175 if (!msg->middle)
3176 return -ENOMEM;
3177 return 0;
3178 }
3179
3180 /*
3181 * Allocate a message for receiving an incoming message on a
3182 * connection, and save the result in con->in_msg. Uses the
3183 * connection's private alloc_msg op if available.
3184 *
3185 * Returns 0 on success, or a negative error code.
3186 *
3187 * On success, if we set *skip = 1:
3188 * - the next message should be skipped and ignored.
3189 * - con->in_msg == NULL
3190 * or if we set *skip = 0:
3191 * - con->in_msg is non-null.
3192 * On error (ENOMEM, EAGAIN, ...),
3193 * - con->in_msg == NULL
3194 */
3195 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3196 {
3197 struct ceph_msg_header *hdr = &con->in_hdr;
3198 int middle_len = le32_to_cpu(hdr->middle_len);
3199 struct ceph_msg *msg;
3200 int ret = 0;
3201
3202 BUG_ON(con->in_msg != NULL);
3203 BUG_ON(!con->ops->alloc_msg);
3204
3205 mutex_unlock(&con->mutex);
3206 msg = con->ops->alloc_msg(con, hdr, skip);
3207 mutex_lock(&con->mutex);
3208 if (con->state != CON_STATE_OPEN) {
3209 if (msg)
3210 ceph_msg_put(msg);
3211 return -EAGAIN;
3212 }
3213 if (msg) {
3214 BUG_ON(*skip);
3215 con->in_msg = msg;
3216 con->in_msg->con = con->ops->get(con);
3217 BUG_ON(con->in_msg->con == NULL);
3218 } else {
3219 /*
3220 * Null message pointer means either we should skip
3221 * this message or we couldn't allocate memory. The
3222 * former is not an error.
3223 */
3224 if (*skip)
3225 return 0;
3226 con->error_msg = "error allocating memory for incoming message";
3227
3228 return -ENOMEM;
3229 }
3230 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3231
3232 if (middle_len && !con->in_msg->middle) {
3233 ret = ceph_alloc_middle(con, con->in_msg);
3234 if (ret < 0) {
3235 ceph_msg_put(con->in_msg);
3236 con->in_msg = NULL;
3237 }
3238 }
3239
3240 return ret;
3241 }
3242
3243
3244 /*
3245 * Free a generically kmalloc'd message.
3246 */
3247 void ceph_msg_kfree(struct ceph_msg *m)
3248 {
3249 dout("msg_kfree %p\n", m);
3250 if (m->front_is_vmalloc)
3251 vfree(m->front.iov_base);
3252 else
3253 kfree(m->front.iov_base);
3254 kmem_cache_free(ceph_msg_cache, m);
3255 }
3256
3257 /*
3258 * Drop a msg ref. Destroy as needed.
3259 */
3260 void ceph_msg_last_put(struct kref *kref)
3261 {
3262 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3263 LIST_HEAD(data);
3264 struct list_head *links;
3265 struct list_head *next;
3266
3267 dout("ceph_msg_put last one on %p\n", m);
3268 WARN_ON(!list_empty(&m->list_head));
3269
3270 /* drop middle, data, if any */
3271 if (m->middle) {
3272 ceph_buffer_put(m->middle);
3273 m->middle = NULL;
3274 }
3275
3276 list_splice_init(&m->data, &data);
3277 list_for_each_safe(links, next, &data) {
3278 struct ceph_msg_data *data;
3279
3280 data = list_entry(links, struct ceph_msg_data, links);
3281 list_del_init(links);
3282 ceph_msg_data_destroy(data);
3283 }
3284 m->data_length = 0;
3285
3286 if (m->pool)
3287 ceph_msgpool_put(m->pool, m);
3288 else
3289 ceph_msg_kfree(m);
3290 }
3291 EXPORT_SYMBOL(ceph_msg_last_put);
3292
3293 void ceph_msg_dump(struct ceph_msg *msg)
3294 {
3295 pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
3296 msg->front_max, msg->data_length);
3297 print_hex_dump(KERN_DEBUG, "header: ",
3298 DUMP_PREFIX_OFFSET, 16, 1,
3299 &msg->hdr, sizeof(msg->hdr), true);
3300 print_hex_dump(KERN_DEBUG, " front: ",
3301 DUMP_PREFIX_OFFSET, 16, 1,
3302 msg->front.iov_base, msg->front.iov_len, true);
3303 if (msg->middle)
3304 print_hex_dump(KERN_DEBUG, "middle: ",
3305 DUMP_PREFIX_OFFSET, 16, 1,
3306 msg->middle->vec.iov_base,
3307 msg->middle->vec.iov_len, true);
3308 print_hex_dump(KERN_DEBUG, "footer: ",
3309 DUMP_PREFIX_OFFSET, 16, 1,
3310 &msg->footer, sizeof(msg->footer), true);
3311 }
3312 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.102917 seconds and 5 git commands to generate.