batman-adv: make batadv_test_bit() return 0 or 1 only
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /*
33 * We track the state of the socket on a given connection using
34 * values defined below. The transition to a new socket state is
35 * handled by a function which verifies we aren't coming from an
36 * unexpected state.
37 *
38 * --------
39 * | NEW* | transient initial state
40 * --------
41 * | con_sock_state_init()
42 * v
43 * ----------
44 * | CLOSED | initialized, but no socket (and no
45 * ---------- TCP connection)
46 * ^ \
47 * | \ con_sock_state_connecting()
48 * | ----------------------
49 * | \
50 * + con_sock_state_closed() \
51 * |+--------------------------- \
52 * | \ \ \
53 * | ----------- \ \
54 * | | CLOSING | socket event; \ \
55 * | ----------- await close \ \
56 * | ^ \ |
57 * | | \ |
58 * | + con_sock_state_closing() \ |
59 * | / \ | |
60 * | / --------------- | |
61 * | / \ v v
62 * | / --------------
63 * | / -----------------| CONNECTING | socket created, TCP
64 * | | / -------------- connect initiated
65 * | | | con_sock_state_connected()
66 * | | v
67 * -------------
68 * | CONNECTED | TCP connection established
69 * -------------
70 *
71 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72 */
73
74 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
79
80 /*
81 * connection states
82 */
83 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
84 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
89
90 /*
91 * ceph_connection flag bits
92 */
93 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
94 * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
99
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108
109 /*
110 * When skipping (ignoring) a block of input we read it into a "skip
111 * buffer," which is this many bytes in size.
112 */
113 #define SKIP_BUF_SIZE 1024
114
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118
119 /*
120 * Nicely render a sockaddr as a string. An array of formatted
121 * strings is used, to approximate reentrancy.
122 */
123 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
124 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
127
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130
131 static struct page *zero_page; /* used in certain error cases */
132
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135 int i;
136 char *s;
137 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139
140 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141 s = addr_str[i];
142
143 switch (ss->ss_family) {
144 case AF_INET:
145 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146 ntohs(in4->sin_port));
147 break;
148
149 case AF_INET6:
150 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151 ntohs(in6->sin6_port));
152 break;
153
154 default:
155 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156 ss->ss_family);
157 }
158
159 return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162
163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166 ceph_encode_addr(&msgr->my_enc_addr);
167 }
168
169 /*
170 * work queue for all reading and writing to/from the socket.
171 */
172 static struct workqueue_struct *ceph_msgr_wq;
173
174 void _ceph_msgr_exit(void)
175 {
176 if (ceph_msgr_wq) {
177 destroy_workqueue(ceph_msgr_wq);
178 ceph_msgr_wq = NULL;
179 }
180
181 BUG_ON(zero_page == NULL);
182 kunmap(zero_page);
183 page_cache_release(zero_page);
184 zero_page = NULL;
185 }
186
187 int ceph_msgr_init(void)
188 {
189 BUG_ON(zero_page != NULL);
190 zero_page = ZERO_PAGE(0);
191 page_cache_get(zero_page);
192
193 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194 if (ceph_msgr_wq)
195 return 0;
196
197 pr_err("msgr_init failed to create workqueue\n");
198 _ceph_msgr_exit();
199
200 return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203
204 void ceph_msgr_exit(void)
205 {
206 BUG_ON(ceph_msgr_wq == NULL);
207
208 _ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211
212 void ceph_msgr_flush(void)
213 {
214 flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217
218 /* Connection socket state transition functions */
219
220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222 int old_state;
223
224 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226 printk("%s: unexpected old state %d\n", __func__, old_state);
227 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
228 CON_SOCK_STATE_CLOSED);
229 }
230
231 static void con_sock_state_connecting(struct ceph_connection *con)
232 {
233 int old_state;
234
235 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
236 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237 printk("%s: unexpected old state %d\n", __func__, old_state);
238 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
239 CON_SOCK_STATE_CONNECTING);
240 }
241
242 static void con_sock_state_connected(struct ceph_connection *con)
243 {
244 int old_state;
245
246 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248 printk("%s: unexpected old state %d\n", __func__, old_state);
249 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
250 CON_SOCK_STATE_CONNECTED);
251 }
252
253 static void con_sock_state_closing(struct ceph_connection *con)
254 {
255 int old_state;
256
257 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259 old_state != CON_SOCK_STATE_CONNECTED &&
260 old_state != CON_SOCK_STATE_CLOSING))
261 printk("%s: unexpected old state %d\n", __func__, old_state);
262 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
263 CON_SOCK_STATE_CLOSING);
264 }
265
266 static void con_sock_state_closed(struct ceph_connection *con)
267 {
268 int old_state;
269
270 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272 old_state != CON_SOCK_STATE_CLOSING &&
273 old_state != CON_SOCK_STATE_CONNECTING &&
274 old_state != CON_SOCK_STATE_CLOSED))
275 printk("%s: unexpected old state %d\n", __func__, old_state);
276 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
277 CON_SOCK_STATE_CLOSED);
278 }
279
280 /*
281 * socket callback functions
282 */
283
284 /* data available on socket, or listen socket received a connect */
285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
286 {
287 struct ceph_connection *con = sk->sk_user_data;
288 if (atomic_read(&con->msgr->stopping)) {
289 return;
290 }
291
292 if (sk->sk_state != TCP_CLOSE_WAIT) {
293 dout("%s on %p state = %lu, queueing work\n", __func__,
294 con, con->state);
295 queue_con(con);
296 }
297 }
298
299 /* socket has buffer space for writing */
300 static void ceph_sock_write_space(struct sock *sk)
301 {
302 struct ceph_connection *con = sk->sk_user_data;
303
304 /* only queue to workqueue if there is data we want to write,
305 * and there is sufficient space in the socket buffer to accept
306 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
307 * doesn't get called again until try_write() fills the socket
308 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309 * and net/core/stream.c:sk_stream_write_space().
310 */
311 if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313 dout("%s %p queueing write work\n", __func__, con);
314 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315 queue_con(con);
316 }
317 } else {
318 dout("%s %p nothing to write\n", __func__, con);
319 }
320 }
321
322 /* socket's state has changed */
323 static void ceph_sock_state_change(struct sock *sk)
324 {
325 struct ceph_connection *con = sk->sk_user_data;
326
327 dout("%s %p state = %lu sk_state = %u\n", __func__,
328 con, con->state, sk->sk_state);
329
330 switch (sk->sk_state) {
331 case TCP_CLOSE:
332 dout("%s TCP_CLOSE\n", __func__);
333 case TCP_CLOSE_WAIT:
334 dout("%s TCP_CLOSE_WAIT\n", __func__);
335 con_sock_state_closing(con);
336 set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
337 queue_con(con);
338 break;
339 case TCP_ESTABLISHED:
340 dout("%s TCP_ESTABLISHED\n", __func__);
341 con_sock_state_connected(con);
342 queue_con(con);
343 break;
344 default: /* Everything else is uninteresting */
345 break;
346 }
347 }
348
349 /*
350 * set up socket callbacks
351 */
352 static void set_sock_callbacks(struct socket *sock,
353 struct ceph_connection *con)
354 {
355 struct sock *sk = sock->sk;
356 sk->sk_user_data = con;
357 sk->sk_data_ready = ceph_sock_data_ready;
358 sk->sk_write_space = ceph_sock_write_space;
359 sk->sk_state_change = ceph_sock_state_change;
360 }
361
362
363 /*
364 * socket helpers
365 */
366
367 /*
368 * initiate connection to a remote socket.
369 */
370 static int ceph_tcp_connect(struct ceph_connection *con)
371 {
372 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373 struct socket *sock;
374 int ret;
375
376 BUG_ON(con->sock);
377 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378 IPPROTO_TCP, &sock);
379 if (ret)
380 return ret;
381 sock->sk->sk_allocation = GFP_NOFS;
382
383 #ifdef CONFIG_LOCKDEP
384 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
386
387 set_sock_callbacks(sock, con);
388
389 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
390
391 con_sock_state_connecting(con);
392 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393 O_NONBLOCK);
394 if (ret == -EINPROGRESS) {
395 dout("connect %s EINPROGRESS sk_state = %u\n",
396 ceph_pr_addr(&con->peer_addr.in_addr),
397 sock->sk->sk_state);
398 } else if (ret < 0) {
399 pr_err("connect %s error %d\n",
400 ceph_pr_addr(&con->peer_addr.in_addr), ret);
401 sock_release(sock);
402 con->error_msg = "connect error";
403
404 return ret;
405 }
406 con->sock = sock;
407 return 0;
408 }
409
410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
411 {
412 struct kvec iov = {buf, len};
413 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414 int r;
415
416 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417 if (r == -EAGAIN)
418 r = 0;
419 return r;
420 }
421
422 /*
423 * write something. @more is true if caller will be sending more data
424 * shortly.
425 */
426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427 size_t kvlen, size_t len, int more)
428 {
429 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430 int r;
431
432 if (more)
433 msg.msg_flags |= MSG_MORE;
434 else
435 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
436
437 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438 if (r == -EAGAIN)
439 r = 0;
440 return r;
441 }
442
443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444 int offset, size_t size, int more)
445 {
446 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447 int ret;
448
449 ret = kernel_sendpage(sock, page, offset, size, flags);
450 if (ret == -EAGAIN)
451 ret = 0;
452
453 return ret;
454 }
455
456
457 /*
458 * Shutdown/close the socket for the given connection.
459 */
460 static int con_close_socket(struct ceph_connection *con)
461 {
462 int rc = 0;
463
464 dout("con_close_socket on %p sock %p\n", con, con->sock);
465 if (con->sock) {
466 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467 sock_release(con->sock);
468 con->sock = NULL;
469 }
470
471 /*
472 * Forcibly clear the SOCK_CLOSED flag. It gets set
473 * independent of the connection mutex, and we could have
474 * received a socket close event before we had the chance to
475 * shut the socket down.
476 */
477 clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
478
479 con_sock_state_closed(con);
480 return rc;
481 }
482
483 /*
484 * Reset a connection. Discard all incoming and outgoing messages
485 * and clear *_seq state.
486 */
487 static void ceph_msg_remove(struct ceph_msg *msg)
488 {
489 list_del_init(&msg->list_head);
490 BUG_ON(msg->con == NULL);
491 msg->con->ops->put(msg->con);
492 msg->con = NULL;
493
494 ceph_msg_put(msg);
495 }
496 static void ceph_msg_remove_list(struct list_head *head)
497 {
498 while (!list_empty(head)) {
499 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500 list_head);
501 ceph_msg_remove(msg);
502 }
503 }
504
505 static void reset_connection(struct ceph_connection *con)
506 {
507 /* reset connection, out_queue, msg_ and connect_seq */
508 /* discard existing out_queue and msg_seq */
509 ceph_msg_remove_list(&con->out_queue);
510 ceph_msg_remove_list(&con->out_sent);
511
512 if (con->in_msg) {
513 BUG_ON(con->in_msg->con != con);
514 con->in_msg->con = NULL;
515 ceph_msg_put(con->in_msg);
516 con->in_msg = NULL;
517 con->ops->put(con);
518 }
519
520 con->connect_seq = 0;
521 con->out_seq = 0;
522 if (con->out_msg) {
523 ceph_msg_put(con->out_msg);
524 con->out_msg = NULL;
525 }
526 con->in_seq = 0;
527 con->in_seq_acked = 0;
528 }
529
530 /*
531 * mark a peer down. drop any open connections.
532 */
533 void ceph_con_close(struct ceph_connection *con)
534 {
535 mutex_lock(&con->mutex);
536 dout("con_close %p peer %s\n", con,
537 ceph_pr_addr(&con->peer_addr.in_addr));
538 con->state = CON_STATE_CLOSED;
539
540 clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
541 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
542 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
543 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
544 clear_bit(CON_FLAG_BACKOFF, &con->flags);
545
546 reset_connection(con);
547 con->peer_global_seq = 0;
548 cancel_delayed_work(&con->work);
549 con_close_socket(con);
550 mutex_unlock(&con->mutex);
551 }
552 EXPORT_SYMBOL(ceph_con_close);
553
554 /*
555 * Reopen a closed connection, with a new peer address.
556 */
557 void ceph_con_open(struct ceph_connection *con,
558 __u8 entity_type, __u64 entity_num,
559 struct ceph_entity_addr *addr)
560 {
561 mutex_lock(&con->mutex);
562 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
563
564 BUG_ON(con->state != CON_STATE_CLOSED);
565 con->state = CON_STATE_PREOPEN;
566
567 con->peer_name.type = (__u8) entity_type;
568 con->peer_name.num = cpu_to_le64(entity_num);
569
570 memcpy(&con->peer_addr, addr, sizeof(*addr));
571 con->delay = 0; /* reset backoff memory */
572 mutex_unlock(&con->mutex);
573 queue_con(con);
574 }
575 EXPORT_SYMBOL(ceph_con_open);
576
577 /*
578 * return true if this connection ever successfully opened
579 */
580 bool ceph_con_opened(struct ceph_connection *con)
581 {
582 return con->connect_seq > 0;
583 }
584
585 /*
586 * initialize a new connection.
587 */
588 void ceph_con_init(struct ceph_connection *con, void *private,
589 const struct ceph_connection_operations *ops,
590 struct ceph_messenger *msgr)
591 {
592 dout("con_init %p\n", con);
593 memset(con, 0, sizeof(*con));
594 con->private = private;
595 con->ops = ops;
596 con->msgr = msgr;
597
598 con_sock_state_init(con);
599
600 mutex_init(&con->mutex);
601 INIT_LIST_HEAD(&con->out_queue);
602 INIT_LIST_HEAD(&con->out_sent);
603 INIT_DELAYED_WORK(&con->work, con_work);
604
605 con->state = CON_STATE_CLOSED;
606 }
607 EXPORT_SYMBOL(ceph_con_init);
608
609
610 /*
611 * We maintain a global counter to order connection attempts. Get
612 * a unique seq greater than @gt.
613 */
614 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
615 {
616 u32 ret;
617
618 spin_lock(&msgr->global_seq_lock);
619 if (msgr->global_seq < gt)
620 msgr->global_seq = gt;
621 ret = ++msgr->global_seq;
622 spin_unlock(&msgr->global_seq_lock);
623 return ret;
624 }
625
626 static void con_out_kvec_reset(struct ceph_connection *con)
627 {
628 con->out_kvec_left = 0;
629 con->out_kvec_bytes = 0;
630 con->out_kvec_cur = &con->out_kvec[0];
631 }
632
633 static void con_out_kvec_add(struct ceph_connection *con,
634 size_t size, void *data)
635 {
636 int index;
637
638 index = con->out_kvec_left;
639 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
640
641 con->out_kvec[index].iov_len = size;
642 con->out_kvec[index].iov_base = data;
643 con->out_kvec_left++;
644 con->out_kvec_bytes += size;
645 }
646
647 #ifdef CONFIG_BLOCK
648 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
649 {
650 if (!bio) {
651 *iter = NULL;
652 *seg = 0;
653 return;
654 }
655 *iter = bio;
656 *seg = bio->bi_idx;
657 }
658
659 static void iter_bio_next(struct bio **bio_iter, int *seg)
660 {
661 if (*bio_iter == NULL)
662 return;
663
664 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
665
666 (*seg)++;
667 if (*seg == (*bio_iter)->bi_vcnt)
668 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
669 }
670 #endif
671
672 static void prepare_write_message_data(struct ceph_connection *con)
673 {
674 struct ceph_msg *msg = con->out_msg;
675
676 BUG_ON(!msg);
677 BUG_ON(!msg->hdr.data_len);
678
679 /* initialize page iterator */
680 con->out_msg_pos.page = 0;
681 if (msg->pages)
682 con->out_msg_pos.page_pos = msg->page_alignment;
683 else
684 con->out_msg_pos.page_pos = 0;
685 #ifdef CONFIG_BLOCK
686 if (msg->bio)
687 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
688 #endif
689 con->out_msg_pos.data_pos = 0;
690 con->out_msg_pos.did_page_crc = false;
691 con->out_more = 1; /* data + footer will follow */
692 }
693
694 /*
695 * Prepare footer for currently outgoing message, and finish things
696 * off. Assumes out_kvec* are already valid.. we just add on to the end.
697 */
698 static void prepare_write_message_footer(struct ceph_connection *con)
699 {
700 struct ceph_msg *m = con->out_msg;
701 int v = con->out_kvec_left;
702
703 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
704
705 dout("prepare_write_message_footer %p\n", con);
706 con->out_kvec_is_msg = true;
707 con->out_kvec[v].iov_base = &m->footer;
708 con->out_kvec[v].iov_len = sizeof(m->footer);
709 con->out_kvec_bytes += sizeof(m->footer);
710 con->out_kvec_left++;
711 con->out_more = m->more_to_follow;
712 con->out_msg_done = true;
713 }
714
715 /*
716 * Prepare headers for the next outgoing message.
717 */
718 static void prepare_write_message(struct ceph_connection *con)
719 {
720 struct ceph_msg *m;
721 u32 crc;
722
723 con_out_kvec_reset(con);
724 con->out_kvec_is_msg = true;
725 con->out_msg_done = false;
726
727 /* Sneak an ack in there first? If we can get it into the same
728 * TCP packet that's a good thing. */
729 if (con->in_seq > con->in_seq_acked) {
730 con->in_seq_acked = con->in_seq;
731 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
733 con_out_kvec_add(con, sizeof (con->out_temp_ack),
734 &con->out_temp_ack);
735 }
736
737 BUG_ON(list_empty(&con->out_queue));
738 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
739 con->out_msg = m;
740 BUG_ON(m->con != con);
741
742 /* put message on sent list */
743 ceph_msg_get(m);
744 list_move_tail(&m->list_head, &con->out_sent);
745
746 /*
747 * only assign outgoing seq # if we haven't sent this message
748 * yet. if it is requeued, resend with it's original seq.
749 */
750 if (m->needs_out_seq) {
751 m->hdr.seq = cpu_to_le64(++con->out_seq);
752 m->needs_out_seq = false;
753 }
754 #ifdef CONFIG_BLOCK
755 else
756 m->bio_iter = NULL;
757 #endif
758
759 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
760 m, con->out_seq, le16_to_cpu(m->hdr.type),
761 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
762 le32_to_cpu(m->hdr.data_len),
763 m->nr_pages);
764 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
765
766 /* tag + hdr + front + middle */
767 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
768 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
769 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
770
771 if (m->middle)
772 con_out_kvec_add(con, m->middle->vec.iov_len,
773 m->middle->vec.iov_base);
774
775 /* fill in crc (except data pages), footer */
776 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
777 con->out_msg->hdr.crc = cpu_to_le32(crc);
778 con->out_msg->footer.flags = 0;
779
780 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
781 con->out_msg->footer.front_crc = cpu_to_le32(crc);
782 if (m->middle) {
783 crc = crc32c(0, m->middle->vec.iov_base,
784 m->middle->vec.iov_len);
785 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
786 } else
787 con->out_msg->footer.middle_crc = 0;
788 dout("%s front_crc %u middle_crc %u\n", __func__,
789 le32_to_cpu(con->out_msg->footer.front_crc),
790 le32_to_cpu(con->out_msg->footer.middle_crc));
791
792 /* is there a data payload? */
793 con->out_msg->footer.data_crc = 0;
794 if (m->hdr.data_len)
795 prepare_write_message_data(con);
796 else
797 /* no, queue up footer too and be done */
798 prepare_write_message_footer(con);
799
800 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
801 }
802
803 /*
804 * Prepare an ack.
805 */
806 static void prepare_write_ack(struct ceph_connection *con)
807 {
808 dout("prepare_write_ack %p %llu -> %llu\n", con,
809 con->in_seq_acked, con->in_seq);
810 con->in_seq_acked = con->in_seq;
811
812 con_out_kvec_reset(con);
813
814 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
815
816 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
817 con_out_kvec_add(con, sizeof (con->out_temp_ack),
818 &con->out_temp_ack);
819
820 con->out_more = 1; /* more will follow.. eventually.. */
821 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
822 }
823
824 /*
825 * Prepare to write keepalive byte.
826 */
827 static void prepare_write_keepalive(struct ceph_connection *con)
828 {
829 dout("prepare_write_keepalive %p\n", con);
830 con_out_kvec_reset(con);
831 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
832 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
833 }
834
835 /*
836 * Connection negotiation.
837 */
838
839 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
840 int *auth_proto)
841 {
842 struct ceph_auth_handshake *auth;
843
844 if (!con->ops->get_authorizer) {
845 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
846 con->out_connect.authorizer_len = 0;
847 return NULL;
848 }
849
850 /* Can't hold the mutex while getting authorizer */
851 mutex_unlock(&con->mutex);
852 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
853 mutex_lock(&con->mutex);
854
855 if (IS_ERR(auth))
856 return auth;
857 if (con->state != CON_STATE_NEGOTIATING)
858 return ERR_PTR(-EAGAIN);
859
860 con->auth_reply_buf = auth->authorizer_reply_buf;
861 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
862 return auth;
863 }
864
865 /*
866 * We connected to a peer and are saying hello.
867 */
868 static void prepare_write_banner(struct ceph_connection *con)
869 {
870 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
871 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
872 &con->msgr->my_enc_addr);
873
874 con->out_more = 0;
875 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
876 }
877
878 static int prepare_write_connect(struct ceph_connection *con)
879 {
880 unsigned int global_seq = get_global_seq(con->msgr, 0);
881 int proto;
882 int auth_proto;
883 struct ceph_auth_handshake *auth;
884
885 switch (con->peer_name.type) {
886 case CEPH_ENTITY_TYPE_MON:
887 proto = CEPH_MONC_PROTOCOL;
888 break;
889 case CEPH_ENTITY_TYPE_OSD:
890 proto = CEPH_OSDC_PROTOCOL;
891 break;
892 case CEPH_ENTITY_TYPE_MDS:
893 proto = CEPH_MDSC_PROTOCOL;
894 break;
895 default:
896 BUG();
897 }
898
899 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
900 con->connect_seq, global_seq, proto);
901
902 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
903 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
904 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
905 con->out_connect.global_seq = cpu_to_le32(global_seq);
906 con->out_connect.protocol_version = cpu_to_le32(proto);
907 con->out_connect.flags = 0;
908
909 auth_proto = CEPH_AUTH_UNKNOWN;
910 auth = get_connect_authorizer(con, &auth_proto);
911 if (IS_ERR(auth))
912 return PTR_ERR(auth);
913
914 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
915 con->out_connect.authorizer_len = auth ?
916 cpu_to_le32(auth->authorizer_buf_len) : 0;
917
918 con_out_kvec_add(con, sizeof (con->out_connect),
919 &con->out_connect);
920 if (auth && auth->authorizer_buf_len)
921 con_out_kvec_add(con, auth->authorizer_buf_len,
922 auth->authorizer_buf);
923
924 con->out_more = 0;
925 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
926
927 return 0;
928 }
929
930 /*
931 * write as much of pending kvecs to the socket as we can.
932 * 1 -> done
933 * 0 -> socket full, but more to do
934 * <0 -> error
935 */
936 static int write_partial_kvec(struct ceph_connection *con)
937 {
938 int ret;
939
940 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
941 while (con->out_kvec_bytes > 0) {
942 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
943 con->out_kvec_left, con->out_kvec_bytes,
944 con->out_more);
945 if (ret <= 0)
946 goto out;
947 con->out_kvec_bytes -= ret;
948 if (con->out_kvec_bytes == 0)
949 break; /* done */
950
951 /* account for full iov entries consumed */
952 while (ret >= con->out_kvec_cur->iov_len) {
953 BUG_ON(!con->out_kvec_left);
954 ret -= con->out_kvec_cur->iov_len;
955 con->out_kvec_cur++;
956 con->out_kvec_left--;
957 }
958 /* and for a partially-consumed entry */
959 if (ret) {
960 con->out_kvec_cur->iov_len -= ret;
961 con->out_kvec_cur->iov_base += ret;
962 }
963 }
964 con->out_kvec_left = 0;
965 con->out_kvec_is_msg = false;
966 ret = 1;
967 out:
968 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
969 con->out_kvec_bytes, con->out_kvec_left, ret);
970 return ret; /* done! */
971 }
972
973 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
974 size_t len, size_t sent, bool in_trail)
975 {
976 struct ceph_msg *msg = con->out_msg;
977
978 BUG_ON(!msg);
979 BUG_ON(!sent);
980
981 con->out_msg_pos.data_pos += sent;
982 con->out_msg_pos.page_pos += sent;
983 if (sent < len)
984 return;
985
986 BUG_ON(sent != len);
987 con->out_msg_pos.page_pos = 0;
988 con->out_msg_pos.page++;
989 con->out_msg_pos.did_page_crc = false;
990 if (in_trail)
991 list_move_tail(&page->lru,
992 &msg->trail->head);
993 else if (msg->pagelist)
994 list_move_tail(&page->lru,
995 &msg->pagelist->head);
996 #ifdef CONFIG_BLOCK
997 else if (msg->bio)
998 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
999 #endif
1000 }
1001
1002 /*
1003 * Write as much message data payload as we can. If we finish, queue
1004 * up the footer.
1005 * 1 -> done, footer is now queued in out_kvec[].
1006 * 0 -> socket full, but more to do
1007 * <0 -> error
1008 */
1009 static int write_partial_msg_pages(struct ceph_connection *con)
1010 {
1011 struct ceph_msg *msg = con->out_msg;
1012 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1013 size_t len;
1014 bool do_datacrc = !con->msgr->nocrc;
1015 int ret;
1016 int total_max_write;
1017 bool in_trail = false;
1018 const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1019 const size_t trail_off = data_len - trail_len;
1020
1021 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1022 con, msg, con->out_msg_pos.page, msg->nr_pages,
1023 con->out_msg_pos.page_pos);
1024
1025 /*
1026 * Iterate through each page that contains data to be
1027 * written, and send as much as possible for each.
1028 *
1029 * If we are calculating the data crc (the default), we will
1030 * need to map the page. If we have no pages, they have
1031 * been revoked, so use the zero page.
1032 */
1033 while (data_len > con->out_msg_pos.data_pos) {
1034 struct page *page = NULL;
1035 int max_write = PAGE_SIZE;
1036 int bio_offset = 0;
1037
1038 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1039 if (!in_trail)
1040 total_max_write = trail_off - con->out_msg_pos.data_pos;
1041
1042 if (in_trail) {
1043 total_max_write = data_len - con->out_msg_pos.data_pos;
1044
1045 page = list_first_entry(&msg->trail->head,
1046 struct page, lru);
1047 } else if (msg->pages) {
1048 page = msg->pages[con->out_msg_pos.page];
1049 } else if (msg->pagelist) {
1050 page = list_first_entry(&msg->pagelist->head,
1051 struct page, lru);
1052 #ifdef CONFIG_BLOCK
1053 } else if (msg->bio) {
1054 struct bio_vec *bv;
1055
1056 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1057 page = bv->bv_page;
1058 bio_offset = bv->bv_offset;
1059 max_write = bv->bv_len;
1060 #endif
1061 } else {
1062 page = zero_page;
1063 }
1064 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1065 total_max_write);
1066
1067 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1068 void *base;
1069 u32 crc = le32_to_cpu(msg->footer.data_crc);
1070 char *kaddr;
1071
1072 kaddr = kmap(page);
1073 BUG_ON(kaddr == NULL);
1074 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1075 crc = crc32c(crc, base, len);
1076 msg->footer.data_crc = cpu_to_le32(crc);
1077 con->out_msg_pos.did_page_crc = true;
1078 }
1079 ret = ceph_tcp_sendpage(con->sock, page,
1080 con->out_msg_pos.page_pos + bio_offset,
1081 len, 1);
1082
1083 if (do_datacrc)
1084 kunmap(page);
1085
1086 if (ret <= 0)
1087 goto out;
1088
1089 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1090 }
1091
1092 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1093
1094 /* prepare and queue up footer, too */
1095 if (!do_datacrc)
1096 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1097 con_out_kvec_reset(con);
1098 prepare_write_message_footer(con);
1099 ret = 1;
1100 out:
1101 return ret;
1102 }
1103
1104 /*
1105 * write some zeros
1106 */
1107 static int write_partial_skip(struct ceph_connection *con)
1108 {
1109 int ret;
1110
1111 while (con->out_skip > 0) {
1112 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1113
1114 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1115 if (ret <= 0)
1116 goto out;
1117 con->out_skip -= ret;
1118 }
1119 ret = 1;
1120 out:
1121 return ret;
1122 }
1123
1124 /*
1125 * Prepare to read connection handshake, or an ack.
1126 */
1127 static void prepare_read_banner(struct ceph_connection *con)
1128 {
1129 dout("prepare_read_banner %p\n", con);
1130 con->in_base_pos = 0;
1131 }
1132
1133 static void prepare_read_connect(struct ceph_connection *con)
1134 {
1135 dout("prepare_read_connect %p\n", con);
1136 con->in_base_pos = 0;
1137 }
1138
1139 static void prepare_read_ack(struct ceph_connection *con)
1140 {
1141 dout("prepare_read_ack %p\n", con);
1142 con->in_base_pos = 0;
1143 }
1144
1145 static void prepare_read_tag(struct ceph_connection *con)
1146 {
1147 dout("prepare_read_tag %p\n", con);
1148 con->in_base_pos = 0;
1149 con->in_tag = CEPH_MSGR_TAG_READY;
1150 }
1151
1152 /*
1153 * Prepare to read a message.
1154 */
1155 static int prepare_read_message(struct ceph_connection *con)
1156 {
1157 dout("prepare_read_message %p\n", con);
1158 BUG_ON(con->in_msg != NULL);
1159 con->in_base_pos = 0;
1160 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1161 return 0;
1162 }
1163
1164
1165 static int read_partial(struct ceph_connection *con,
1166 int end, int size, void *object)
1167 {
1168 while (con->in_base_pos < end) {
1169 int left = end - con->in_base_pos;
1170 int have = size - left;
1171 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1172 if (ret <= 0)
1173 return ret;
1174 con->in_base_pos += ret;
1175 }
1176 return 1;
1177 }
1178
1179
1180 /*
1181 * Read all or part of the connect-side handshake on a new connection
1182 */
1183 static int read_partial_banner(struct ceph_connection *con)
1184 {
1185 int size;
1186 int end;
1187 int ret;
1188
1189 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1190
1191 /* peer's banner */
1192 size = strlen(CEPH_BANNER);
1193 end = size;
1194 ret = read_partial(con, end, size, con->in_banner);
1195 if (ret <= 0)
1196 goto out;
1197
1198 size = sizeof (con->actual_peer_addr);
1199 end += size;
1200 ret = read_partial(con, end, size, &con->actual_peer_addr);
1201 if (ret <= 0)
1202 goto out;
1203
1204 size = sizeof (con->peer_addr_for_me);
1205 end += size;
1206 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1207 if (ret <= 0)
1208 goto out;
1209
1210 out:
1211 return ret;
1212 }
1213
1214 static int read_partial_connect(struct ceph_connection *con)
1215 {
1216 int size;
1217 int end;
1218 int ret;
1219
1220 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1221
1222 size = sizeof (con->in_reply);
1223 end = size;
1224 ret = read_partial(con, end, size, &con->in_reply);
1225 if (ret <= 0)
1226 goto out;
1227
1228 size = le32_to_cpu(con->in_reply.authorizer_len);
1229 end += size;
1230 ret = read_partial(con, end, size, con->auth_reply_buf);
1231 if (ret <= 0)
1232 goto out;
1233
1234 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1235 con, (int)con->in_reply.tag,
1236 le32_to_cpu(con->in_reply.connect_seq),
1237 le32_to_cpu(con->in_reply.global_seq));
1238 out:
1239 return ret;
1240
1241 }
1242
1243 /*
1244 * Verify the hello banner looks okay.
1245 */
1246 static int verify_hello(struct ceph_connection *con)
1247 {
1248 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1249 pr_err("connect to %s got bad banner\n",
1250 ceph_pr_addr(&con->peer_addr.in_addr));
1251 con->error_msg = "protocol error, bad banner";
1252 return -1;
1253 }
1254 return 0;
1255 }
1256
1257 static bool addr_is_blank(struct sockaddr_storage *ss)
1258 {
1259 switch (ss->ss_family) {
1260 case AF_INET:
1261 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1262 case AF_INET6:
1263 return
1264 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1265 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1266 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1267 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1268 }
1269 return false;
1270 }
1271
1272 static int addr_port(struct sockaddr_storage *ss)
1273 {
1274 switch (ss->ss_family) {
1275 case AF_INET:
1276 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1277 case AF_INET6:
1278 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1279 }
1280 return 0;
1281 }
1282
1283 static void addr_set_port(struct sockaddr_storage *ss, int p)
1284 {
1285 switch (ss->ss_family) {
1286 case AF_INET:
1287 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1288 break;
1289 case AF_INET6:
1290 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1291 break;
1292 }
1293 }
1294
1295 /*
1296 * Unlike other *_pton function semantics, zero indicates success.
1297 */
1298 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1299 char delim, const char **ipend)
1300 {
1301 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1302 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1303
1304 memset(ss, 0, sizeof(*ss));
1305
1306 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1307 ss->ss_family = AF_INET;
1308 return 0;
1309 }
1310
1311 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1312 ss->ss_family = AF_INET6;
1313 return 0;
1314 }
1315
1316 return -EINVAL;
1317 }
1318
1319 /*
1320 * Extract hostname string and resolve using kernel DNS facility.
1321 */
1322 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1323 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1324 struct sockaddr_storage *ss, char delim, const char **ipend)
1325 {
1326 const char *end, *delim_p;
1327 char *colon_p, *ip_addr = NULL;
1328 int ip_len, ret;
1329
1330 /*
1331 * The end of the hostname occurs immediately preceding the delimiter or
1332 * the port marker (':') where the delimiter takes precedence.
1333 */
1334 delim_p = memchr(name, delim, namelen);
1335 colon_p = memchr(name, ':', namelen);
1336
1337 if (delim_p && colon_p)
1338 end = delim_p < colon_p ? delim_p : colon_p;
1339 else if (!delim_p && colon_p)
1340 end = colon_p;
1341 else {
1342 end = delim_p;
1343 if (!end) /* case: hostname:/ */
1344 end = name + namelen;
1345 }
1346
1347 if (end <= name)
1348 return -EINVAL;
1349
1350 /* do dns_resolve upcall */
1351 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1352 if (ip_len > 0)
1353 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1354 else
1355 ret = -ESRCH;
1356
1357 kfree(ip_addr);
1358
1359 *ipend = end;
1360
1361 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1362 ret, ret ? "failed" : ceph_pr_addr(ss));
1363
1364 return ret;
1365 }
1366 #else
1367 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1368 struct sockaddr_storage *ss, char delim, const char **ipend)
1369 {
1370 return -EINVAL;
1371 }
1372 #endif
1373
1374 /*
1375 * Parse a server name (IP or hostname). If a valid IP address is not found
1376 * then try to extract a hostname to resolve using userspace DNS upcall.
1377 */
1378 static int ceph_parse_server_name(const char *name, size_t namelen,
1379 struct sockaddr_storage *ss, char delim, const char **ipend)
1380 {
1381 int ret;
1382
1383 ret = ceph_pton(name, namelen, ss, delim, ipend);
1384 if (ret)
1385 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1386
1387 return ret;
1388 }
1389
1390 /*
1391 * Parse an ip[:port] list into an addr array. Use the default
1392 * monitor port if a port isn't specified.
1393 */
1394 int ceph_parse_ips(const char *c, const char *end,
1395 struct ceph_entity_addr *addr,
1396 int max_count, int *count)
1397 {
1398 int i, ret = -EINVAL;
1399 const char *p = c;
1400
1401 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1402 for (i = 0; i < max_count; i++) {
1403 const char *ipend;
1404 struct sockaddr_storage *ss = &addr[i].in_addr;
1405 int port;
1406 char delim = ',';
1407
1408 if (*p == '[') {
1409 delim = ']';
1410 p++;
1411 }
1412
1413 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1414 if (ret)
1415 goto bad;
1416 ret = -EINVAL;
1417
1418 p = ipend;
1419
1420 if (delim == ']') {
1421 if (*p != ']') {
1422 dout("missing matching ']'\n");
1423 goto bad;
1424 }
1425 p++;
1426 }
1427
1428 /* port? */
1429 if (p < end && *p == ':') {
1430 port = 0;
1431 p++;
1432 while (p < end && *p >= '0' && *p <= '9') {
1433 port = (port * 10) + (*p - '0');
1434 p++;
1435 }
1436 if (port > 65535 || port == 0)
1437 goto bad;
1438 } else {
1439 port = CEPH_MON_PORT;
1440 }
1441
1442 addr_set_port(ss, port);
1443
1444 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1445
1446 if (p == end)
1447 break;
1448 if (*p != ',')
1449 goto bad;
1450 p++;
1451 }
1452
1453 if (p != end)
1454 goto bad;
1455
1456 if (count)
1457 *count = i + 1;
1458 return 0;
1459
1460 bad:
1461 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1462 return ret;
1463 }
1464 EXPORT_SYMBOL(ceph_parse_ips);
1465
1466 static int process_banner(struct ceph_connection *con)
1467 {
1468 dout("process_banner on %p\n", con);
1469
1470 if (verify_hello(con) < 0)
1471 return -1;
1472
1473 ceph_decode_addr(&con->actual_peer_addr);
1474 ceph_decode_addr(&con->peer_addr_for_me);
1475
1476 /*
1477 * Make sure the other end is who we wanted. note that the other
1478 * end may not yet know their ip address, so if it's 0.0.0.0, give
1479 * them the benefit of the doubt.
1480 */
1481 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1482 sizeof(con->peer_addr)) != 0 &&
1483 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1484 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1485 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1486 ceph_pr_addr(&con->peer_addr.in_addr),
1487 (int)le32_to_cpu(con->peer_addr.nonce),
1488 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1489 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1490 con->error_msg = "wrong peer at address";
1491 return -1;
1492 }
1493
1494 /*
1495 * did we learn our address?
1496 */
1497 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1498 int port = addr_port(&con->msgr->inst.addr.in_addr);
1499
1500 memcpy(&con->msgr->inst.addr.in_addr,
1501 &con->peer_addr_for_me.in_addr,
1502 sizeof(con->peer_addr_for_me.in_addr));
1503 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1504 encode_my_addr(con->msgr);
1505 dout("process_banner learned my addr is %s\n",
1506 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1507 }
1508
1509 return 0;
1510 }
1511
1512 static void fail_protocol(struct ceph_connection *con)
1513 {
1514 reset_connection(con);
1515 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1516 con->state = CON_STATE_CLOSED;
1517 }
1518
1519 static int process_connect(struct ceph_connection *con)
1520 {
1521 u64 sup_feat = con->msgr->supported_features;
1522 u64 req_feat = con->msgr->required_features;
1523 u64 server_feat = le64_to_cpu(con->in_reply.features);
1524 int ret;
1525
1526 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1527
1528 switch (con->in_reply.tag) {
1529 case CEPH_MSGR_TAG_FEATURES:
1530 pr_err("%s%lld %s feature set mismatch,"
1531 " my %llx < server's %llx, missing %llx\n",
1532 ENTITY_NAME(con->peer_name),
1533 ceph_pr_addr(&con->peer_addr.in_addr),
1534 sup_feat, server_feat, server_feat & ~sup_feat);
1535 con->error_msg = "missing required protocol features";
1536 fail_protocol(con);
1537 return -1;
1538
1539 case CEPH_MSGR_TAG_BADPROTOVER:
1540 pr_err("%s%lld %s protocol version mismatch,"
1541 " my %d != server's %d\n",
1542 ENTITY_NAME(con->peer_name),
1543 ceph_pr_addr(&con->peer_addr.in_addr),
1544 le32_to_cpu(con->out_connect.protocol_version),
1545 le32_to_cpu(con->in_reply.protocol_version));
1546 con->error_msg = "protocol version mismatch";
1547 fail_protocol(con);
1548 return -1;
1549
1550 case CEPH_MSGR_TAG_BADAUTHORIZER:
1551 con->auth_retry++;
1552 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1553 con->auth_retry);
1554 if (con->auth_retry == 2) {
1555 con->error_msg = "connect authorization failure";
1556 return -1;
1557 }
1558 con->auth_retry = 1;
1559 con_out_kvec_reset(con);
1560 ret = prepare_write_connect(con);
1561 if (ret < 0)
1562 return ret;
1563 prepare_read_connect(con);
1564 break;
1565
1566 case CEPH_MSGR_TAG_RESETSESSION:
1567 /*
1568 * If we connected with a large connect_seq but the peer
1569 * has no record of a session with us (no connection, or
1570 * connect_seq == 0), they will send RESETSESION to indicate
1571 * that they must have reset their session, and may have
1572 * dropped messages.
1573 */
1574 dout("process_connect got RESET peer seq %u\n",
1575 le32_to_cpu(con->in_reply.connect_seq));
1576 pr_err("%s%lld %s connection reset\n",
1577 ENTITY_NAME(con->peer_name),
1578 ceph_pr_addr(&con->peer_addr.in_addr));
1579 reset_connection(con);
1580 con_out_kvec_reset(con);
1581 ret = prepare_write_connect(con);
1582 if (ret < 0)
1583 return ret;
1584 prepare_read_connect(con);
1585
1586 /* Tell ceph about it. */
1587 mutex_unlock(&con->mutex);
1588 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1589 if (con->ops->peer_reset)
1590 con->ops->peer_reset(con);
1591 mutex_lock(&con->mutex);
1592 if (con->state != CON_STATE_NEGOTIATING)
1593 return -EAGAIN;
1594 break;
1595
1596 case CEPH_MSGR_TAG_RETRY_SESSION:
1597 /*
1598 * If we sent a smaller connect_seq than the peer has, try
1599 * again with a larger value.
1600 */
1601 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1602 le32_to_cpu(con->out_connect.connect_seq),
1603 le32_to_cpu(con->in_reply.connect_seq));
1604 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1605 con_out_kvec_reset(con);
1606 ret = prepare_write_connect(con);
1607 if (ret < 0)
1608 return ret;
1609 prepare_read_connect(con);
1610 break;
1611
1612 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1613 /*
1614 * If we sent a smaller global_seq than the peer has, try
1615 * again with a larger value.
1616 */
1617 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1618 con->peer_global_seq,
1619 le32_to_cpu(con->in_reply.global_seq));
1620 get_global_seq(con->msgr,
1621 le32_to_cpu(con->in_reply.global_seq));
1622 con_out_kvec_reset(con);
1623 ret = prepare_write_connect(con);
1624 if (ret < 0)
1625 return ret;
1626 prepare_read_connect(con);
1627 break;
1628
1629 case CEPH_MSGR_TAG_READY:
1630 if (req_feat & ~server_feat) {
1631 pr_err("%s%lld %s protocol feature mismatch,"
1632 " my required %llx > server's %llx, need %llx\n",
1633 ENTITY_NAME(con->peer_name),
1634 ceph_pr_addr(&con->peer_addr.in_addr),
1635 req_feat, server_feat, req_feat & ~server_feat);
1636 con->error_msg = "missing required protocol features";
1637 fail_protocol(con);
1638 return -1;
1639 }
1640
1641 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1642 con->state = CON_STATE_OPEN;
1643
1644 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1645 con->connect_seq++;
1646 con->peer_features = server_feat;
1647 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1648 con->peer_global_seq,
1649 le32_to_cpu(con->in_reply.connect_seq),
1650 con->connect_seq);
1651 WARN_ON(con->connect_seq !=
1652 le32_to_cpu(con->in_reply.connect_seq));
1653
1654 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1655 set_bit(CON_FLAG_LOSSYTX, &con->flags);
1656
1657 con->delay = 0; /* reset backoff memory */
1658
1659 prepare_read_tag(con);
1660 break;
1661
1662 case CEPH_MSGR_TAG_WAIT:
1663 /*
1664 * If there is a connection race (we are opening
1665 * connections to each other), one of us may just have
1666 * to WAIT. This shouldn't happen if we are the
1667 * client.
1668 */
1669 pr_err("process_connect got WAIT as client\n");
1670 con->error_msg = "protocol error, got WAIT as client";
1671 return -1;
1672
1673 default:
1674 pr_err("connect protocol error, will retry\n");
1675 con->error_msg = "protocol error, garbage tag during connect";
1676 return -1;
1677 }
1678 return 0;
1679 }
1680
1681
1682 /*
1683 * read (part of) an ack
1684 */
1685 static int read_partial_ack(struct ceph_connection *con)
1686 {
1687 int size = sizeof (con->in_temp_ack);
1688 int end = size;
1689
1690 return read_partial(con, end, size, &con->in_temp_ack);
1691 }
1692
1693
1694 /*
1695 * We can finally discard anything that's been acked.
1696 */
1697 static void process_ack(struct ceph_connection *con)
1698 {
1699 struct ceph_msg *m;
1700 u64 ack = le64_to_cpu(con->in_temp_ack);
1701 u64 seq;
1702
1703 while (!list_empty(&con->out_sent)) {
1704 m = list_first_entry(&con->out_sent, struct ceph_msg,
1705 list_head);
1706 seq = le64_to_cpu(m->hdr.seq);
1707 if (seq > ack)
1708 break;
1709 dout("got ack for seq %llu type %d at %p\n", seq,
1710 le16_to_cpu(m->hdr.type), m);
1711 m->ack_stamp = jiffies;
1712 ceph_msg_remove(m);
1713 }
1714 prepare_read_tag(con);
1715 }
1716
1717
1718
1719
1720 static int read_partial_message_section(struct ceph_connection *con,
1721 struct kvec *section,
1722 unsigned int sec_len, u32 *crc)
1723 {
1724 int ret, left;
1725
1726 BUG_ON(!section);
1727
1728 while (section->iov_len < sec_len) {
1729 BUG_ON(section->iov_base == NULL);
1730 left = sec_len - section->iov_len;
1731 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1732 section->iov_len, left);
1733 if (ret <= 0)
1734 return ret;
1735 section->iov_len += ret;
1736 }
1737 if (section->iov_len == sec_len)
1738 *crc = crc32c(0, section->iov_base, section->iov_len);
1739
1740 return 1;
1741 }
1742
1743 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1744
1745 static int read_partial_message_pages(struct ceph_connection *con,
1746 struct page **pages,
1747 unsigned int data_len, bool do_datacrc)
1748 {
1749 void *p;
1750 int ret;
1751 int left;
1752
1753 left = min((int)(data_len - con->in_msg_pos.data_pos),
1754 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1755 /* (page) data */
1756 BUG_ON(pages == NULL);
1757 p = kmap(pages[con->in_msg_pos.page]);
1758 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1759 left);
1760 if (ret > 0 && do_datacrc)
1761 con->in_data_crc =
1762 crc32c(con->in_data_crc,
1763 p + con->in_msg_pos.page_pos, ret);
1764 kunmap(pages[con->in_msg_pos.page]);
1765 if (ret <= 0)
1766 return ret;
1767 con->in_msg_pos.data_pos += ret;
1768 con->in_msg_pos.page_pos += ret;
1769 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1770 con->in_msg_pos.page_pos = 0;
1771 con->in_msg_pos.page++;
1772 }
1773
1774 return ret;
1775 }
1776
1777 #ifdef CONFIG_BLOCK
1778 static int read_partial_message_bio(struct ceph_connection *con,
1779 struct bio **bio_iter, int *bio_seg,
1780 unsigned int data_len, bool do_datacrc)
1781 {
1782 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1783 void *p;
1784 int ret, left;
1785
1786 left = min((int)(data_len - con->in_msg_pos.data_pos),
1787 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1788
1789 p = kmap(bv->bv_page) + bv->bv_offset;
1790
1791 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1792 left);
1793 if (ret > 0 && do_datacrc)
1794 con->in_data_crc =
1795 crc32c(con->in_data_crc,
1796 p + con->in_msg_pos.page_pos, ret);
1797 kunmap(bv->bv_page);
1798 if (ret <= 0)
1799 return ret;
1800 con->in_msg_pos.data_pos += ret;
1801 con->in_msg_pos.page_pos += ret;
1802 if (con->in_msg_pos.page_pos == bv->bv_len) {
1803 con->in_msg_pos.page_pos = 0;
1804 iter_bio_next(bio_iter, bio_seg);
1805 }
1806
1807 return ret;
1808 }
1809 #endif
1810
1811 /*
1812 * read (part of) a message.
1813 */
1814 static int read_partial_message(struct ceph_connection *con)
1815 {
1816 struct ceph_msg *m = con->in_msg;
1817 int size;
1818 int end;
1819 int ret;
1820 unsigned int front_len, middle_len, data_len;
1821 bool do_datacrc = !con->msgr->nocrc;
1822 u64 seq;
1823 u32 crc;
1824
1825 dout("read_partial_message con %p msg %p\n", con, m);
1826
1827 /* header */
1828 size = sizeof (con->in_hdr);
1829 end = size;
1830 ret = read_partial(con, end, size, &con->in_hdr);
1831 if (ret <= 0)
1832 return ret;
1833
1834 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1835 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1836 pr_err("read_partial_message bad hdr "
1837 " crc %u != expected %u\n",
1838 crc, con->in_hdr.crc);
1839 return -EBADMSG;
1840 }
1841
1842 front_len = le32_to_cpu(con->in_hdr.front_len);
1843 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1844 return -EIO;
1845 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1846 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1847 return -EIO;
1848 data_len = le32_to_cpu(con->in_hdr.data_len);
1849 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1850 return -EIO;
1851
1852 /* verify seq# */
1853 seq = le64_to_cpu(con->in_hdr.seq);
1854 if ((s64)seq - (s64)con->in_seq < 1) {
1855 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1856 ENTITY_NAME(con->peer_name),
1857 ceph_pr_addr(&con->peer_addr.in_addr),
1858 seq, con->in_seq + 1);
1859 con->in_base_pos = -front_len - middle_len - data_len -
1860 sizeof(m->footer);
1861 con->in_tag = CEPH_MSGR_TAG_READY;
1862 return 0;
1863 } else if ((s64)seq - (s64)con->in_seq > 1) {
1864 pr_err("read_partial_message bad seq %lld expected %lld\n",
1865 seq, con->in_seq + 1);
1866 con->error_msg = "bad message sequence # for incoming message";
1867 return -EBADMSG;
1868 }
1869
1870 /* allocate message? */
1871 if (!con->in_msg) {
1872 int skip = 0;
1873
1874 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1875 con->in_hdr.front_len, con->in_hdr.data_len);
1876 ret = ceph_con_in_msg_alloc(con, &skip);
1877 if (ret < 0)
1878 return ret;
1879 if (skip) {
1880 /* skip this message */
1881 dout("alloc_msg said skip message\n");
1882 BUG_ON(con->in_msg);
1883 con->in_base_pos = -front_len - middle_len - data_len -
1884 sizeof(m->footer);
1885 con->in_tag = CEPH_MSGR_TAG_READY;
1886 con->in_seq++;
1887 return 0;
1888 }
1889
1890 BUG_ON(!con->in_msg);
1891 BUG_ON(con->in_msg->con != con);
1892 m = con->in_msg;
1893 m->front.iov_len = 0; /* haven't read it yet */
1894 if (m->middle)
1895 m->middle->vec.iov_len = 0;
1896
1897 con->in_msg_pos.page = 0;
1898 if (m->pages)
1899 con->in_msg_pos.page_pos = m->page_alignment;
1900 else
1901 con->in_msg_pos.page_pos = 0;
1902 con->in_msg_pos.data_pos = 0;
1903
1904 #ifdef CONFIG_BLOCK
1905 if (m->bio)
1906 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1907 #endif
1908 }
1909
1910 /* front */
1911 ret = read_partial_message_section(con, &m->front, front_len,
1912 &con->in_front_crc);
1913 if (ret <= 0)
1914 return ret;
1915
1916 /* middle */
1917 if (m->middle) {
1918 ret = read_partial_message_section(con, &m->middle->vec,
1919 middle_len,
1920 &con->in_middle_crc);
1921 if (ret <= 0)
1922 return ret;
1923 }
1924
1925 /* (page) data */
1926 while (con->in_msg_pos.data_pos < data_len) {
1927 if (m->pages) {
1928 ret = read_partial_message_pages(con, m->pages,
1929 data_len, do_datacrc);
1930 if (ret <= 0)
1931 return ret;
1932 #ifdef CONFIG_BLOCK
1933 } else if (m->bio) {
1934 BUG_ON(!m->bio_iter);
1935 ret = read_partial_message_bio(con,
1936 &m->bio_iter, &m->bio_seg,
1937 data_len, do_datacrc);
1938 if (ret <= 0)
1939 return ret;
1940 #endif
1941 } else {
1942 BUG_ON(1);
1943 }
1944 }
1945
1946 /* footer */
1947 size = sizeof (m->footer);
1948 end += size;
1949 ret = read_partial(con, end, size, &m->footer);
1950 if (ret <= 0)
1951 return ret;
1952
1953 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1954 m, front_len, m->footer.front_crc, middle_len,
1955 m->footer.middle_crc, data_len, m->footer.data_crc);
1956
1957 /* crc ok? */
1958 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1959 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1960 m, con->in_front_crc, m->footer.front_crc);
1961 return -EBADMSG;
1962 }
1963 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1964 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1965 m, con->in_middle_crc, m->footer.middle_crc);
1966 return -EBADMSG;
1967 }
1968 if (do_datacrc &&
1969 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1970 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1971 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1972 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1973 return -EBADMSG;
1974 }
1975
1976 return 1; /* done! */
1977 }
1978
1979 /*
1980 * Process message. This happens in the worker thread. The callback should
1981 * be careful not to do anything that waits on other incoming messages or it
1982 * may deadlock.
1983 */
1984 static void process_message(struct ceph_connection *con)
1985 {
1986 struct ceph_msg *msg;
1987
1988 BUG_ON(con->in_msg->con != con);
1989 con->in_msg->con = NULL;
1990 msg = con->in_msg;
1991 con->in_msg = NULL;
1992 con->ops->put(con);
1993
1994 /* if first message, set peer_name */
1995 if (con->peer_name.type == 0)
1996 con->peer_name = msg->hdr.src;
1997
1998 con->in_seq++;
1999 mutex_unlock(&con->mutex);
2000
2001 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2002 msg, le64_to_cpu(msg->hdr.seq),
2003 ENTITY_NAME(msg->hdr.src),
2004 le16_to_cpu(msg->hdr.type),
2005 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2006 le32_to_cpu(msg->hdr.front_len),
2007 le32_to_cpu(msg->hdr.data_len),
2008 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2009 con->ops->dispatch(con, msg);
2010
2011 mutex_lock(&con->mutex);
2012 }
2013
2014
2015 /*
2016 * Write something to the socket. Called in a worker thread when the
2017 * socket appears to be writeable and we have something ready to send.
2018 */
2019 static int try_write(struct ceph_connection *con)
2020 {
2021 int ret = 1;
2022
2023 dout("try_write start %p state %lu\n", con, con->state);
2024
2025 more:
2026 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2027
2028 /* open the socket first? */
2029 if (con->state == CON_STATE_PREOPEN) {
2030 BUG_ON(con->sock);
2031 con->state = CON_STATE_CONNECTING;
2032
2033 con_out_kvec_reset(con);
2034 prepare_write_banner(con);
2035 prepare_read_banner(con);
2036
2037 BUG_ON(con->in_msg);
2038 con->in_tag = CEPH_MSGR_TAG_READY;
2039 dout("try_write initiating connect on %p new state %lu\n",
2040 con, con->state);
2041 ret = ceph_tcp_connect(con);
2042 if (ret < 0) {
2043 con->error_msg = "connect error";
2044 goto out;
2045 }
2046 }
2047
2048 more_kvec:
2049 /* kvec data queued? */
2050 if (con->out_skip) {
2051 ret = write_partial_skip(con);
2052 if (ret <= 0)
2053 goto out;
2054 }
2055 if (con->out_kvec_left) {
2056 ret = write_partial_kvec(con);
2057 if (ret <= 0)
2058 goto out;
2059 }
2060
2061 /* msg pages? */
2062 if (con->out_msg) {
2063 if (con->out_msg_done) {
2064 ceph_msg_put(con->out_msg);
2065 con->out_msg = NULL; /* we're done with this one */
2066 goto do_next;
2067 }
2068
2069 ret = write_partial_msg_pages(con);
2070 if (ret == 1)
2071 goto more_kvec; /* we need to send the footer, too! */
2072 if (ret == 0)
2073 goto out;
2074 if (ret < 0) {
2075 dout("try_write write_partial_msg_pages err %d\n",
2076 ret);
2077 goto out;
2078 }
2079 }
2080
2081 do_next:
2082 if (con->state == CON_STATE_OPEN) {
2083 /* is anything else pending? */
2084 if (!list_empty(&con->out_queue)) {
2085 prepare_write_message(con);
2086 goto more;
2087 }
2088 if (con->in_seq > con->in_seq_acked) {
2089 prepare_write_ack(con);
2090 goto more;
2091 }
2092 if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2093 &con->flags)) {
2094 prepare_write_keepalive(con);
2095 goto more;
2096 }
2097 }
2098
2099 /* Nothing to do! */
2100 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2101 dout("try_write nothing else to write.\n");
2102 ret = 0;
2103 out:
2104 dout("try_write done on %p ret %d\n", con, ret);
2105 return ret;
2106 }
2107
2108
2109
2110 /*
2111 * Read what we can from the socket.
2112 */
2113 static int try_read(struct ceph_connection *con)
2114 {
2115 int ret = -1;
2116
2117 more:
2118 dout("try_read start on %p state %lu\n", con, con->state);
2119 if (con->state != CON_STATE_CONNECTING &&
2120 con->state != CON_STATE_NEGOTIATING &&
2121 con->state != CON_STATE_OPEN)
2122 return 0;
2123
2124 BUG_ON(!con->sock);
2125
2126 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2127 con->in_base_pos);
2128
2129 if (con->state == CON_STATE_CONNECTING) {
2130 dout("try_read connecting\n");
2131 ret = read_partial_banner(con);
2132 if (ret <= 0)
2133 goto out;
2134 ret = process_banner(con);
2135 if (ret < 0)
2136 goto out;
2137
2138 BUG_ON(con->state != CON_STATE_CONNECTING);
2139 con->state = CON_STATE_NEGOTIATING;
2140
2141 /*
2142 * Received banner is good, exchange connection info.
2143 * Do not reset out_kvec, as sending our banner raced
2144 * with receiving peer banner after connect completed.
2145 */
2146 ret = prepare_write_connect(con);
2147 if (ret < 0)
2148 goto out;
2149 prepare_read_connect(con);
2150
2151 /* Send connection info before awaiting response */
2152 goto out;
2153 }
2154
2155 if (con->state == CON_STATE_NEGOTIATING) {
2156 dout("try_read negotiating\n");
2157 ret = read_partial_connect(con);
2158 if (ret <= 0)
2159 goto out;
2160 ret = process_connect(con);
2161 if (ret < 0)
2162 goto out;
2163 goto more;
2164 }
2165
2166 BUG_ON(con->state != CON_STATE_OPEN);
2167
2168 if (con->in_base_pos < 0) {
2169 /*
2170 * skipping + discarding content.
2171 *
2172 * FIXME: there must be a better way to do this!
2173 */
2174 static char buf[SKIP_BUF_SIZE];
2175 int skip = min((int) sizeof (buf), -con->in_base_pos);
2176
2177 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2178 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2179 if (ret <= 0)
2180 goto out;
2181 con->in_base_pos += ret;
2182 if (con->in_base_pos)
2183 goto more;
2184 }
2185 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2186 /*
2187 * what's next?
2188 */
2189 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2190 if (ret <= 0)
2191 goto out;
2192 dout("try_read got tag %d\n", (int)con->in_tag);
2193 switch (con->in_tag) {
2194 case CEPH_MSGR_TAG_MSG:
2195 prepare_read_message(con);
2196 break;
2197 case CEPH_MSGR_TAG_ACK:
2198 prepare_read_ack(con);
2199 break;
2200 case CEPH_MSGR_TAG_CLOSE:
2201 con_close_socket(con);
2202 con->state = CON_STATE_CLOSED;
2203 goto out;
2204 default:
2205 goto bad_tag;
2206 }
2207 }
2208 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2209 ret = read_partial_message(con);
2210 if (ret <= 0) {
2211 switch (ret) {
2212 case -EBADMSG:
2213 con->error_msg = "bad crc";
2214 ret = -EIO;
2215 break;
2216 case -EIO:
2217 con->error_msg = "io error";
2218 break;
2219 }
2220 goto out;
2221 }
2222 if (con->in_tag == CEPH_MSGR_TAG_READY)
2223 goto more;
2224 process_message(con);
2225 if (con->state == CON_STATE_OPEN)
2226 prepare_read_tag(con);
2227 goto more;
2228 }
2229 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2230 ret = read_partial_ack(con);
2231 if (ret <= 0)
2232 goto out;
2233 process_ack(con);
2234 goto more;
2235 }
2236
2237 out:
2238 dout("try_read done on %p ret %d\n", con, ret);
2239 return ret;
2240
2241 bad_tag:
2242 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2243 con->error_msg = "protocol error, garbage tag";
2244 ret = -1;
2245 goto out;
2246 }
2247
2248
2249 /*
2250 * Atomically queue work on a connection. Bump @con reference to
2251 * avoid races with connection teardown.
2252 */
2253 static void queue_con(struct ceph_connection *con)
2254 {
2255 if (!con->ops->get(con)) {
2256 dout("queue_con %p ref count 0\n", con);
2257 return;
2258 }
2259
2260 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2261 dout("queue_con %p - already queued\n", con);
2262 con->ops->put(con);
2263 } else {
2264 dout("queue_con %p\n", con);
2265 }
2266 }
2267
2268 /*
2269 * Do some work on a connection. Drop a connection ref when we're done.
2270 */
2271 static void con_work(struct work_struct *work)
2272 {
2273 struct ceph_connection *con = container_of(work, struct ceph_connection,
2274 work.work);
2275 int ret;
2276
2277 mutex_lock(&con->mutex);
2278 restart:
2279 if (test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags)) {
2280 switch (con->state) {
2281 case CON_STATE_CONNECTING:
2282 con->error_msg = "connection failed";
2283 break;
2284 case CON_STATE_NEGOTIATING:
2285 con->error_msg = "negotiation failed";
2286 break;
2287 case CON_STATE_OPEN:
2288 con->error_msg = "socket closed";
2289 break;
2290 default:
2291 dout("unrecognized con state %d\n", (int)con->state);
2292 con->error_msg = "unrecognized con state";
2293 BUG();
2294 }
2295 goto fault;
2296 }
2297
2298 if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2299 dout("con_work %p backing off\n", con);
2300 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2301 round_jiffies_relative(con->delay))) {
2302 dout("con_work %p backoff %lu\n", con, con->delay);
2303 mutex_unlock(&con->mutex);
2304 return;
2305 } else {
2306 con->ops->put(con);
2307 dout("con_work %p FAILED to back off %lu\n", con,
2308 con->delay);
2309 }
2310 }
2311
2312 if (con->state == CON_STATE_STANDBY) {
2313 dout("con_work %p STANDBY\n", con);
2314 goto done;
2315 }
2316 if (con->state == CON_STATE_CLOSED) {
2317 dout("con_work %p CLOSED\n", con);
2318 BUG_ON(con->sock);
2319 goto done;
2320 }
2321 if (con->state == CON_STATE_PREOPEN) {
2322 dout("con_work OPENING\n");
2323 BUG_ON(con->sock);
2324 }
2325
2326 ret = try_read(con);
2327 if (ret == -EAGAIN)
2328 goto restart;
2329 if (ret < 0) {
2330 con->error_msg = "socket error on read";
2331 goto fault;
2332 }
2333
2334 ret = try_write(con);
2335 if (ret == -EAGAIN)
2336 goto restart;
2337 if (ret < 0) {
2338 con->error_msg = "socket error on write";
2339 goto fault;
2340 }
2341
2342 done:
2343 mutex_unlock(&con->mutex);
2344 done_unlocked:
2345 con->ops->put(con);
2346 return;
2347
2348 fault:
2349 ceph_fault(con); /* error/fault path */
2350 goto done_unlocked;
2351 }
2352
2353
2354 /*
2355 * Generic error/fault handler. A retry mechanism is used with
2356 * exponential backoff
2357 */
2358 static void ceph_fault(struct ceph_connection *con)
2359 __releases(con->mutex)
2360 {
2361 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2362 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2363 dout("fault %p state %lu to peer %s\n",
2364 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2365
2366 BUG_ON(con->state != CON_STATE_CONNECTING &&
2367 con->state != CON_STATE_NEGOTIATING &&
2368 con->state != CON_STATE_OPEN);
2369
2370 con_close_socket(con);
2371
2372 if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2373 dout("fault on LOSSYTX channel, marking CLOSED\n");
2374 con->state = CON_STATE_CLOSED;
2375 goto out_unlock;
2376 }
2377
2378 if (con->in_msg) {
2379 BUG_ON(con->in_msg->con != con);
2380 con->in_msg->con = NULL;
2381 ceph_msg_put(con->in_msg);
2382 con->in_msg = NULL;
2383 con->ops->put(con);
2384 }
2385
2386 /* Requeue anything that hasn't been acked */
2387 list_splice_init(&con->out_sent, &con->out_queue);
2388
2389 /* If there are no messages queued or keepalive pending, place
2390 * the connection in a STANDBY state */
2391 if (list_empty(&con->out_queue) &&
2392 !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2393 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2394 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2395 con->state = CON_STATE_STANDBY;
2396 } else {
2397 /* retry after a delay. */
2398 con->state = CON_STATE_PREOPEN;
2399 if (con->delay == 0)
2400 con->delay = BASE_DELAY_INTERVAL;
2401 else if (con->delay < MAX_DELAY_INTERVAL)
2402 con->delay *= 2;
2403 con->ops->get(con);
2404 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2405 round_jiffies_relative(con->delay))) {
2406 dout("fault queued %p delay %lu\n", con, con->delay);
2407 } else {
2408 con->ops->put(con);
2409 dout("fault failed to queue %p delay %lu, backoff\n",
2410 con, con->delay);
2411 /*
2412 * In many cases we see a socket state change
2413 * while con_work is running and end up
2414 * queuing (non-delayed) work, such that we
2415 * can't backoff with a delay. Set a flag so
2416 * that when con_work restarts we schedule the
2417 * delay then.
2418 */
2419 set_bit(CON_FLAG_BACKOFF, &con->flags);
2420 }
2421 }
2422
2423 out_unlock:
2424 mutex_unlock(&con->mutex);
2425 /*
2426 * in case we faulted due to authentication, invalidate our
2427 * current tickets so that we can get new ones.
2428 */
2429 if (con->auth_retry && con->ops->invalidate_authorizer) {
2430 dout("calling invalidate_authorizer()\n");
2431 con->ops->invalidate_authorizer(con);
2432 }
2433
2434 if (con->ops->fault)
2435 con->ops->fault(con);
2436 }
2437
2438
2439
2440 /*
2441 * initialize a new messenger instance
2442 */
2443 void ceph_messenger_init(struct ceph_messenger *msgr,
2444 struct ceph_entity_addr *myaddr,
2445 u32 supported_features,
2446 u32 required_features,
2447 bool nocrc)
2448 {
2449 msgr->supported_features = supported_features;
2450 msgr->required_features = required_features;
2451
2452 spin_lock_init(&msgr->global_seq_lock);
2453
2454 if (myaddr)
2455 msgr->inst.addr = *myaddr;
2456
2457 /* select a random nonce */
2458 msgr->inst.addr.type = 0;
2459 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2460 encode_my_addr(msgr);
2461 msgr->nocrc = nocrc;
2462
2463 atomic_set(&msgr->stopping, 0);
2464
2465 dout("%s %p\n", __func__, msgr);
2466 }
2467 EXPORT_SYMBOL(ceph_messenger_init);
2468
2469 static void clear_standby(struct ceph_connection *con)
2470 {
2471 /* come back from STANDBY? */
2472 if (con->state == CON_STATE_STANDBY) {
2473 dout("clear_standby %p and ++connect_seq\n", con);
2474 con->state = CON_STATE_PREOPEN;
2475 con->connect_seq++;
2476 WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2477 WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2478 }
2479 }
2480
2481 /*
2482 * Queue up an outgoing message on the given connection.
2483 */
2484 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2485 {
2486 /* set src+dst */
2487 msg->hdr.src = con->msgr->inst.name;
2488 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2489 msg->needs_out_seq = true;
2490
2491 mutex_lock(&con->mutex);
2492
2493 if (con->state == CON_STATE_CLOSED) {
2494 dout("con_send %p closed, dropping %p\n", con, msg);
2495 ceph_msg_put(msg);
2496 mutex_unlock(&con->mutex);
2497 return;
2498 }
2499
2500 BUG_ON(msg->con != NULL);
2501 msg->con = con->ops->get(con);
2502 BUG_ON(msg->con == NULL);
2503
2504 BUG_ON(!list_empty(&msg->list_head));
2505 list_add_tail(&msg->list_head, &con->out_queue);
2506 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2507 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2508 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2509 le32_to_cpu(msg->hdr.front_len),
2510 le32_to_cpu(msg->hdr.middle_len),
2511 le32_to_cpu(msg->hdr.data_len));
2512
2513 clear_standby(con);
2514 mutex_unlock(&con->mutex);
2515
2516 /* if there wasn't anything waiting to send before, queue
2517 * new work */
2518 if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2519 queue_con(con);
2520 }
2521 EXPORT_SYMBOL(ceph_con_send);
2522
2523 /*
2524 * Revoke a message that was previously queued for send
2525 */
2526 void ceph_msg_revoke(struct ceph_msg *msg)
2527 {
2528 struct ceph_connection *con = msg->con;
2529
2530 if (!con)
2531 return; /* Message not in our possession */
2532
2533 mutex_lock(&con->mutex);
2534 if (!list_empty(&msg->list_head)) {
2535 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2536 list_del_init(&msg->list_head);
2537 BUG_ON(msg->con == NULL);
2538 msg->con->ops->put(msg->con);
2539 msg->con = NULL;
2540 msg->hdr.seq = 0;
2541
2542 ceph_msg_put(msg);
2543 }
2544 if (con->out_msg == msg) {
2545 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2546 con->out_msg = NULL;
2547 if (con->out_kvec_is_msg) {
2548 con->out_skip = con->out_kvec_bytes;
2549 con->out_kvec_is_msg = false;
2550 }
2551 msg->hdr.seq = 0;
2552
2553 ceph_msg_put(msg);
2554 }
2555 mutex_unlock(&con->mutex);
2556 }
2557
2558 /*
2559 * Revoke a message that we may be reading data into
2560 */
2561 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2562 {
2563 struct ceph_connection *con;
2564
2565 BUG_ON(msg == NULL);
2566 if (!msg->con) {
2567 dout("%s msg %p null con\n", __func__, msg);
2568
2569 return; /* Message not in our possession */
2570 }
2571
2572 con = msg->con;
2573 mutex_lock(&con->mutex);
2574 if (con->in_msg == msg) {
2575 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2576 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2577 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2578
2579 /* skip rest of message */
2580 dout("%s %p msg %p revoked\n", __func__, con, msg);
2581 con->in_base_pos = con->in_base_pos -
2582 sizeof(struct ceph_msg_header) -
2583 front_len -
2584 middle_len -
2585 data_len -
2586 sizeof(struct ceph_msg_footer);
2587 ceph_msg_put(con->in_msg);
2588 con->in_msg = NULL;
2589 con->in_tag = CEPH_MSGR_TAG_READY;
2590 con->in_seq++;
2591 } else {
2592 dout("%s %p in_msg %p msg %p no-op\n",
2593 __func__, con, con->in_msg, msg);
2594 }
2595 mutex_unlock(&con->mutex);
2596 }
2597
2598 /*
2599 * Queue a keepalive byte to ensure the tcp connection is alive.
2600 */
2601 void ceph_con_keepalive(struct ceph_connection *con)
2602 {
2603 dout("con_keepalive %p\n", con);
2604 mutex_lock(&con->mutex);
2605 clear_standby(con);
2606 mutex_unlock(&con->mutex);
2607 if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2608 test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2609 queue_con(con);
2610 }
2611 EXPORT_SYMBOL(ceph_con_keepalive);
2612
2613
2614 /*
2615 * construct a new message with given type, size
2616 * the new msg has a ref count of 1.
2617 */
2618 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2619 bool can_fail)
2620 {
2621 struct ceph_msg *m;
2622
2623 m = kmalloc(sizeof(*m), flags);
2624 if (m == NULL)
2625 goto out;
2626 kref_init(&m->kref);
2627
2628 m->con = NULL;
2629 INIT_LIST_HEAD(&m->list_head);
2630
2631 m->hdr.tid = 0;
2632 m->hdr.type = cpu_to_le16(type);
2633 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2634 m->hdr.version = 0;
2635 m->hdr.front_len = cpu_to_le32(front_len);
2636 m->hdr.middle_len = 0;
2637 m->hdr.data_len = 0;
2638 m->hdr.data_off = 0;
2639 m->hdr.reserved = 0;
2640 m->footer.front_crc = 0;
2641 m->footer.middle_crc = 0;
2642 m->footer.data_crc = 0;
2643 m->footer.flags = 0;
2644 m->front_max = front_len;
2645 m->front_is_vmalloc = false;
2646 m->more_to_follow = false;
2647 m->ack_stamp = 0;
2648 m->pool = NULL;
2649
2650 /* middle */
2651 m->middle = NULL;
2652
2653 /* data */
2654 m->nr_pages = 0;
2655 m->page_alignment = 0;
2656 m->pages = NULL;
2657 m->pagelist = NULL;
2658 m->bio = NULL;
2659 m->bio_iter = NULL;
2660 m->bio_seg = 0;
2661 m->trail = NULL;
2662
2663 /* front */
2664 if (front_len) {
2665 if (front_len > PAGE_CACHE_SIZE) {
2666 m->front.iov_base = __vmalloc(front_len, flags,
2667 PAGE_KERNEL);
2668 m->front_is_vmalloc = true;
2669 } else {
2670 m->front.iov_base = kmalloc(front_len, flags);
2671 }
2672 if (m->front.iov_base == NULL) {
2673 dout("ceph_msg_new can't allocate %d bytes\n",
2674 front_len);
2675 goto out2;
2676 }
2677 } else {
2678 m->front.iov_base = NULL;
2679 }
2680 m->front.iov_len = front_len;
2681
2682 dout("ceph_msg_new %p front %d\n", m, front_len);
2683 return m;
2684
2685 out2:
2686 ceph_msg_put(m);
2687 out:
2688 if (!can_fail) {
2689 pr_err("msg_new can't create type %d front %d\n", type,
2690 front_len);
2691 WARN_ON(1);
2692 } else {
2693 dout("msg_new can't create type %d front %d\n", type,
2694 front_len);
2695 }
2696 return NULL;
2697 }
2698 EXPORT_SYMBOL(ceph_msg_new);
2699
2700 /*
2701 * Allocate "middle" portion of a message, if it is needed and wasn't
2702 * allocated by alloc_msg. This allows us to read a small fixed-size
2703 * per-type header in the front and then gracefully fail (i.e.,
2704 * propagate the error to the caller based on info in the front) when
2705 * the middle is too large.
2706 */
2707 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2708 {
2709 int type = le16_to_cpu(msg->hdr.type);
2710 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2711
2712 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2713 ceph_msg_type_name(type), middle_len);
2714 BUG_ON(!middle_len);
2715 BUG_ON(msg->middle);
2716
2717 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2718 if (!msg->middle)
2719 return -ENOMEM;
2720 return 0;
2721 }
2722
2723 /*
2724 * Allocate a message for receiving an incoming message on a
2725 * connection, and save the result in con->in_msg. Uses the
2726 * connection's private alloc_msg op if available.
2727 *
2728 * Returns 0 on success, or a negative error code.
2729 *
2730 * On success, if we set *skip = 1:
2731 * - the next message should be skipped and ignored.
2732 * - con->in_msg == NULL
2733 * or if we set *skip = 0:
2734 * - con->in_msg is non-null.
2735 * On error (ENOMEM, EAGAIN, ...),
2736 * - con->in_msg == NULL
2737 */
2738 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2739 {
2740 struct ceph_msg_header *hdr = &con->in_hdr;
2741 int type = le16_to_cpu(hdr->type);
2742 int front_len = le32_to_cpu(hdr->front_len);
2743 int middle_len = le32_to_cpu(hdr->middle_len);
2744 int ret = 0;
2745
2746 BUG_ON(con->in_msg != NULL);
2747
2748 if (con->ops->alloc_msg) {
2749 struct ceph_msg *msg;
2750
2751 mutex_unlock(&con->mutex);
2752 msg = con->ops->alloc_msg(con, hdr, skip);
2753 mutex_lock(&con->mutex);
2754 if (con->state != CON_STATE_OPEN) {
2755 ceph_msg_put(msg);
2756 return -EAGAIN;
2757 }
2758 con->in_msg = msg;
2759 if (con->in_msg) {
2760 con->in_msg->con = con->ops->get(con);
2761 BUG_ON(con->in_msg->con == NULL);
2762 }
2763 if (*skip) {
2764 con->in_msg = NULL;
2765 return 0;
2766 }
2767 if (!con->in_msg) {
2768 con->error_msg =
2769 "error allocating memory for incoming message";
2770 return -ENOMEM;
2771 }
2772 }
2773 if (!con->in_msg) {
2774 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2775 if (!con->in_msg) {
2776 pr_err("unable to allocate msg type %d len %d\n",
2777 type, front_len);
2778 return -ENOMEM;
2779 }
2780 con->in_msg->con = con->ops->get(con);
2781 BUG_ON(con->in_msg->con == NULL);
2782 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2783 }
2784 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2785
2786 if (middle_len && !con->in_msg->middle) {
2787 ret = ceph_alloc_middle(con, con->in_msg);
2788 if (ret < 0) {
2789 ceph_msg_put(con->in_msg);
2790 con->in_msg = NULL;
2791 }
2792 }
2793
2794 return ret;
2795 }
2796
2797
2798 /*
2799 * Free a generically kmalloc'd message.
2800 */
2801 void ceph_msg_kfree(struct ceph_msg *m)
2802 {
2803 dout("msg_kfree %p\n", m);
2804 if (m->front_is_vmalloc)
2805 vfree(m->front.iov_base);
2806 else
2807 kfree(m->front.iov_base);
2808 kfree(m);
2809 }
2810
2811 /*
2812 * Drop a msg ref. Destroy as needed.
2813 */
2814 void ceph_msg_last_put(struct kref *kref)
2815 {
2816 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2817
2818 dout("ceph_msg_put last one on %p\n", m);
2819 WARN_ON(!list_empty(&m->list_head));
2820
2821 /* drop middle, data, if any */
2822 if (m->middle) {
2823 ceph_buffer_put(m->middle);
2824 m->middle = NULL;
2825 }
2826 m->nr_pages = 0;
2827 m->pages = NULL;
2828
2829 if (m->pagelist) {
2830 ceph_pagelist_release(m->pagelist);
2831 kfree(m->pagelist);
2832 m->pagelist = NULL;
2833 }
2834
2835 m->trail = NULL;
2836
2837 if (m->pool)
2838 ceph_msgpool_put(m->pool, m);
2839 else
2840 ceph_msg_kfree(m);
2841 }
2842 EXPORT_SYMBOL(ceph_msg_last_put);
2843
2844 void ceph_msg_dump(struct ceph_msg *msg)
2845 {
2846 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2847 msg->front_max, msg->nr_pages);
2848 print_hex_dump(KERN_DEBUG, "header: ",
2849 DUMP_PREFIX_OFFSET, 16, 1,
2850 &msg->hdr, sizeof(msg->hdr), true);
2851 print_hex_dump(KERN_DEBUG, " front: ",
2852 DUMP_PREFIX_OFFSET, 16, 1,
2853 msg->front.iov_base, msg->front.iov_len, true);
2854 if (msg->middle)
2855 print_hex_dump(KERN_DEBUG, "middle: ",
2856 DUMP_PREFIX_OFFSET, 16, 1,
2857 msg->middle->vec.iov_base,
2858 msg->middle->vec.iov_len, true);
2859 print_hex_dump(KERN_DEBUG, "footer: ",
2860 DUMP_PREFIX_OFFSET, 16, 1,
2861 &msg->footer, sizeof(msg->footer), true);
2862 }
2863 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.092309 seconds and 5 git commands to generate.