Merge tag 'pci-v3.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
160
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 /*
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
173 */
174 #define SKIP_BUF_SIZE 1024
175
176 static void queue_con(struct ceph_connection *con);
177 static void con_work(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179
180 /*
181 * Nicely render a sockaddr as a string. An array of formatted
182 * strings is used, to approximate reentrancy.
183 */
184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
188
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191
192 static struct page *zero_page; /* used in certain error cases */
193
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 int i;
197 char *s;
198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200
201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 s = addr_str[i];
203
204 switch (ss->ss_family) {
205 case AF_INET:
206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 ntohs(in4->sin_port));
208 break;
209
210 case AF_INET6:
211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 ntohs(in6->sin6_port));
213 break;
214
215 default:
216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 ss->ss_family);
218 }
219
220 return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 ceph_encode_addr(&msgr->my_enc_addr);
228 }
229
230 /*
231 * work queue for all reading and writing to/from the socket.
232 */
233 static struct workqueue_struct *ceph_msgr_wq;
234
235 static int ceph_msgr_slab_init(void)
236 {
237 BUG_ON(ceph_msg_cache);
238 ceph_msg_cache = kmem_cache_create("ceph_msg",
239 sizeof (struct ceph_msg),
240 __alignof__(struct ceph_msg), 0, NULL);
241
242 if (!ceph_msg_cache)
243 return -ENOMEM;
244
245 BUG_ON(ceph_msg_data_cache);
246 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
247 sizeof (struct ceph_msg_data),
248 __alignof__(struct ceph_msg_data),
249 0, NULL);
250 if (ceph_msg_data_cache)
251 return 0;
252
253 kmem_cache_destroy(ceph_msg_cache);
254 ceph_msg_cache = NULL;
255
256 return -ENOMEM;
257 }
258
259 static void ceph_msgr_slab_exit(void)
260 {
261 BUG_ON(!ceph_msg_data_cache);
262 kmem_cache_destroy(ceph_msg_data_cache);
263 ceph_msg_data_cache = NULL;
264
265 BUG_ON(!ceph_msg_cache);
266 kmem_cache_destroy(ceph_msg_cache);
267 ceph_msg_cache = NULL;
268 }
269
270 static void _ceph_msgr_exit(void)
271 {
272 if (ceph_msgr_wq) {
273 destroy_workqueue(ceph_msgr_wq);
274 ceph_msgr_wq = NULL;
275 }
276
277 ceph_msgr_slab_exit();
278
279 BUG_ON(zero_page == NULL);
280 kunmap(zero_page);
281 page_cache_release(zero_page);
282 zero_page = NULL;
283 }
284
285 int ceph_msgr_init(void)
286 {
287 BUG_ON(zero_page != NULL);
288 zero_page = ZERO_PAGE(0);
289 page_cache_get(zero_page);
290
291 if (ceph_msgr_slab_init())
292 return -ENOMEM;
293
294 ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0);
295 if (ceph_msgr_wq)
296 return 0;
297
298 pr_err("msgr_init failed to create workqueue\n");
299 _ceph_msgr_exit();
300
301 return -ENOMEM;
302 }
303 EXPORT_SYMBOL(ceph_msgr_init);
304
305 void ceph_msgr_exit(void)
306 {
307 BUG_ON(ceph_msgr_wq == NULL);
308
309 _ceph_msgr_exit();
310 }
311 EXPORT_SYMBOL(ceph_msgr_exit);
312
313 void ceph_msgr_flush(void)
314 {
315 flush_workqueue(ceph_msgr_wq);
316 }
317 EXPORT_SYMBOL(ceph_msgr_flush);
318
319 /* Connection socket state transition functions */
320
321 static void con_sock_state_init(struct ceph_connection *con)
322 {
323 int old_state;
324
325 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
327 printk("%s: unexpected old state %d\n", __func__, old_state);
328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 CON_SOCK_STATE_CLOSED);
330 }
331
332 static void con_sock_state_connecting(struct ceph_connection *con)
333 {
334 int old_state;
335
336 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
337 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
338 printk("%s: unexpected old state %d\n", __func__, old_state);
339 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
340 CON_SOCK_STATE_CONNECTING);
341 }
342
343 static void con_sock_state_connected(struct ceph_connection *con)
344 {
345 int old_state;
346
347 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
348 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
349 printk("%s: unexpected old state %d\n", __func__, old_state);
350 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
351 CON_SOCK_STATE_CONNECTED);
352 }
353
354 static void con_sock_state_closing(struct ceph_connection *con)
355 {
356 int old_state;
357
358 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
359 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
360 old_state != CON_SOCK_STATE_CONNECTED &&
361 old_state != CON_SOCK_STATE_CLOSING))
362 printk("%s: unexpected old state %d\n", __func__, old_state);
363 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
364 CON_SOCK_STATE_CLOSING);
365 }
366
367 static void con_sock_state_closed(struct ceph_connection *con)
368 {
369 int old_state;
370
371 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
372 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
373 old_state != CON_SOCK_STATE_CLOSING &&
374 old_state != CON_SOCK_STATE_CONNECTING &&
375 old_state != CON_SOCK_STATE_CLOSED))
376 printk("%s: unexpected old state %d\n", __func__, old_state);
377 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
378 CON_SOCK_STATE_CLOSED);
379 }
380
381 /*
382 * socket callback functions
383 */
384
385 /* data available on socket, or listen socket received a connect */
386 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
387 {
388 struct ceph_connection *con = sk->sk_user_data;
389 if (atomic_read(&con->msgr->stopping)) {
390 return;
391 }
392
393 if (sk->sk_state != TCP_CLOSE_WAIT) {
394 dout("%s on %p state = %lu, queueing work\n", __func__,
395 con, con->state);
396 queue_con(con);
397 }
398 }
399
400 /* socket has buffer space for writing */
401 static void ceph_sock_write_space(struct sock *sk)
402 {
403 struct ceph_connection *con = sk->sk_user_data;
404
405 /* only queue to workqueue if there is data we want to write,
406 * and there is sufficient space in the socket buffer to accept
407 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
408 * doesn't get called again until try_write() fills the socket
409 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
410 * and net/core/stream.c:sk_stream_write_space().
411 */
412 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
413 if (sk_stream_is_writeable(sk)) {
414 dout("%s %p queueing write work\n", __func__, con);
415 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
416 queue_con(con);
417 }
418 } else {
419 dout("%s %p nothing to write\n", __func__, con);
420 }
421 }
422
423 /* socket's state has changed */
424 static void ceph_sock_state_change(struct sock *sk)
425 {
426 struct ceph_connection *con = sk->sk_user_data;
427
428 dout("%s %p state = %lu sk_state = %u\n", __func__,
429 con, con->state, sk->sk_state);
430
431 switch (sk->sk_state) {
432 case TCP_CLOSE:
433 dout("%s TCP_CLOSE\n", __func__);
434 case TCP_CLOSE_WAIT:
435 dout("%s TCP_CLOSE_WAIT\n", __func__);
436 con_sock_state_closing(con);
437 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
438 queue_con(con);
439 break;
440 case TCP_ESTABLISHED:
441 dout("%s TCP_ESTABLISHED\n", __func__);
442 con_sock_state_connected(con);
443 queue_con(con);
444 break;
445 default: /* Everything else is uninteresting */
446 break;
447 }
448 }
449
450 /*
451 * set up socket callbacks
452 */
453 static void set_sock_callbacks(struct socket *sock,
454 struct ceph_connection *con)
455 {
456 struct sock *sk = sock->sk;
457 sk->sk_user_data = con;
458 sk->sk_data_ready = ceph_sock_data_ready;
459 sk->sk_write_space = ceph_sock_write_space;
460 sk->sk_state_change = ceph_sock_state_change;
461 }
462
463
464 /*
465 * socket helpers
466 */
467
468 /*
469 * initiate connection to a remote socket.
470 */
471 static int ceph_tcp_connect(struct ceph_connection *con)
472 {
473 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
474 struct socket *sock;
475 int ret;
476
477 BUG_ON(con->sock);
478 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
479 IPPROTO_TCP, &sock);
480 if (ret)
481 return ret;
482 sock->sk->sk_allocation = GFP_NOFS;
483
484 #ifdef CONFIG_LOCKDEP
485 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
486 #endif
487
488 set_sock_callbacks(sock, con);
489
490 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
491
492 con_sock_state_connecting(con);
493 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
494 O_NONBLOCK);
495 if (ret == -EINPROGRESS) {
496 dout("connect %s EINPROGRESS sk_state = %u\n",
497 ceph_pr_addr(&con->peer_addr.in_addr),
498 sock->sk->sk_state);
499 } else if (ret < 0) {
500 pr_err("connect %s error %d\n",
501 ceph_pr_addr(&con->peer_addr.in_addr), ret);
502 sock_release(sock);
503 con->error_msg = "connect error";
504
505 return ret;
506 }
507 con->sock = sock;
508 return 0;
509 }
510
511 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
512 {
513 struct kvec iov = {buf, len};
514 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
515 int r;
516
517 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
518 if (r == -EAGAIN)
519 r = 0;
520 return r;
521 }
522
523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
524 int page_offset, size_t length)
525 {
526 void *kaddr;
527 int ret;
528
529 BUG_ON(page_offset + length > PAGE_SIZE);
530
531 kaddr = kmap(page);
532 BUG_ON(!kaddr);
533 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
534 kunmap(page);
535
536 return ret;
537 }
538
539 /*
540 * write something. @more is true if caller will be sending more data
541 * shortly.
542 */
543 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
544 size_t kvlen, size_t len, int more)
545 {
546 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
547 int r;
548
549 if (more)
550 msg.msg_flags |= MSG_MORE;
551 else
552 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
553
554 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
555 if (r == -EAGAIN)
556 r = 0;
557 return r;
558 }
559
560 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
561 int offset, size_t size, bool more)
562 {
563 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
564 int ret;
565
566 ret = kernel_sendpage(sock, page, offset, size, flags);
567 if (ret == -EAGAIN)
568 ret = 0;
569
570 return ret;
571 }
572
573
574 /*
575 * Shutdown/close the socket for the given connection.
576 */
577 static int con_close_socket(struct ceph_connection *con)
578 {
579 int rc = 0;
580
581 dout("con_close_socket on %p sock %p\n", con, con->sock);
582 if (con->sock) {
583 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
584 sock_release(con->sock);
585 con->sock = NULL;
586 }
587
588 /*
589 * Forcibly clear the SOCK_CLOSED flag. It gets set
590 * independent of the connection mutex, and we could have
591 * received a socket close event before we had the chance to
592 * shut the socket down.
593 */
594 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
595
596 con_sock_state_closed(con);
597 return rc;
598 }
599
600 /*
601 * Reset a connection. Discard all incoming and outgoing messages
602 * and clear *_seq state.
603 */
604 static void ceph_msg_remove(struct ceph_msg *msg)
605 {
606 list_del_init(&msg->list_head);
607 BUG_ON(msg->con == NULL);
608 msg->con->ops->put(msg->con);
609 msg->con = NULL;
610
611 ceph_msg_put(msg);
612 }
613 static void ceph_msg_remove_list(struct list_head *head)
614 {
615 while (!list_empty(head)) {
616 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
617 list_head);
618 ceph_msg_remove(msg);
619 }
620 }
621
622 static void reset_connection(struct ceph_connection *con)
623 {
624 /* reset connection, out_queue, msg_ and connect_seq */
625 /* discard existing out_queue and msg_seq */
626 dout("reset_connection %p\n", con);
627 ceph_msg_remove_list(&con->out_queue);
628 ceph_msg_remove_list(&con->out_sent);
629
630 if (con->in_msg) {
631 BUG_ON(con->in_msg->con != con);
632 con->in_msg->con = NULL;
633 ceph_msg_put(con->in_msg);
634 con->in_msg = NULL;
635 con->ops->put(con);
636 }
637
638 con->connect_seq = 0;
639 con->out_seq = 0;
640 if (con->out_msg) {
641 ceph_msg_put(con->out_msg);
642 con->out_msg = NULL;
643 }
644 con->in_seq = 0;
645 con->in_seq_acked = 0;
646 }
647
648 /*
649 * mark a peer down. drop any open connections.
650 */
651 void ceph_con_close(struct ceph_connection *con)
652 {
653 mutex_lock(&con->mutex);
654 dout("con_close %p peer %s\n", con,
655 ceph_pr_addr(&con->peer_addr.in_addr));
656 con->state = CON_STATE_CLOSED;
657
658 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
659 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
660 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
661 con_flag_clear(con, CON_FLAG_BACKOFF);
662
663 reset_connection(con);
664 con->peer_global_seq = 0;
665 cancel_delayed_work(&con->work);
666 con_close_socket(con);
667 mutex_unlock(&con->mutex);
668 }
669 EXPORT_SYMBOL(ceph_con_close);
670
671 /*
672 * Reopen a closed connection, with a new peer address.
673 */
674 void ceph_con_open(struct ceph_connection *con,
675 __u8 entity_type, __u64 entity_num,
676 struct ceph_entity_addr *addr)
677 {
678 mutex_lock(&con->mutex);
679 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
680
681 WARN_ON(con->state != CON_STATE_CLOSED);
682 con->state = CON_STATE_PREOPEN;
683
684 con->peer_name.type = (__u8) entity_type;
685 con->peer_name.num = cpu_to_le64(entity_num);
686
687 memcpy(&con->peer_addr, addr, sizeof(*addr));
688 con->delay = 0; /* reset backoff memory */
689 mutex_unlock(&con->mutex);
690 queue_con(con);
691 }
692 EXPORT_SYMBOL(ceph_con_open);
693
694 /*
695 * return true if this connection ever successfully opened
696 */
697 bool ceph_con_opened(struct ceph_connection *con)
698 {
699 return con->connect_seq > 0;
700 }
701
702 /*
703 * initialize a new connection.
704 */
705 void ceph_con_init(struct ceph_connection *con, void *private,
706 const struct ceph_connection_operations *ops,
707 struct ceph_messenger *msgr)
708 {
709 dout("con_init %p\n", con);
710 memset(con, 0, sizeof(*con));
711 con->private = private;
712 con->ops = ops;
713 con->msgr = msgr;
714
715 con_sock_state_init(con);
716
717 mutex_init(&con->mutex);
718 INIT_LIST_HEAD(&con->out_queue);
719 INIT_LIST_HEAD(&con->out_sent);
720 INIT_DELAYED_WORK(&con->work, con_work);
721
722 con->state = CON_STATE_CLOSED;
723 }
724 EXPORT_SYMBOL(ceph_con_init);
725
726
727 /*
728 * We maintain a global counter to order connection attempts. Get
729 * a unique seq greater than @gt.
730 */
731 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
732 {
733 u32 ret;
734
735 spin_lock(&msgr->global_seq_lock);
736 if (msgr->global_seq < gt)
737 msgr->global_seq = gt;
738 ret = ++msgr->global_seq;
739 spin_unlock(&msgr->global_seq_lock);
740 return ret;
741 }
742
743 static void con_out_kvec_reset(struct ceph_connection *con)
744 {
745 con->out_kvec_left = 0;
746 con->out_kvec_bytes = 0;
747 con->out_kvec_cur = &con->out_kvec[0];
748 }
749
750 static void con_out_kvec_add(struct ceph_connection *con,
751 size_t size, void *data)
752 {
753 int index;
754
755 index = con->out_kvec_left;
756 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
757
758 con->out_kvec[index].iov_len = size;
759 con->out_kvec[index].iov_base = data;
760 con->out_kvec_left++;
761 con->out_kvec_bytes += size;
762 }
763
764 #ifdef CONFIG_BLOCK
765
766 /*
767 * For a bio data item, a piece is whatever remains of the next
768 * entry in the current bio iovec, or the first entry in the next
769 * bio in the list.
770 */
771 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
772 size_t length)
773 {
774 struct ceph_msg_data *data = cursor->data;
775 struct bio *bio;
776
777 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
778
779 bio = data->bio;
780 BUG_ON(!bio);
781
782 cursor->resid = min(length, data->bio_length);
783 cursor->bio = bio;
784 cursor->bvec_iter = bio->bi_iter;
785 cursor->last_piece =
786 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
787 }
788
789 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
790 size_t *page_offset,
791 size_t *length)
792 {
793 struct ceph_msg_data *data = cursor->data;
794 struct bio *bio;
795 struct bio_vec bio_vec;
796
797 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
798
799 bio = cursor->bio;
800 BUG_ON(!bio);
801
802 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
803
804 *page_offset = (size_t) bio_vec.bv_offset;
805 BUG_ON(*page_offset >= PAGE_SIZE);
806 if (cursor->last_piece) /* pagelist offset is always 0 */
807 *length = cursor->resid;
808 else
809 *length = (size_t) bio_vec.bv_len;
810 BUG_ON(*length > cursor->resid);
811 BUG_ON(*page_offset + *length > PAGE_SIZE);
812
813 return bio_vec.bv_page;
814 }
815
816 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
817 size_t bytes)
818 {
819 struct bio *bio;
820 struct bio_vec bio_vec;
821
822 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
823
824 bio = cursor->bio;
825 BUG_ON(!bio);
826
827 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
828
829 /* Advance the cursor offset */
830
831 BUG_ON(cursor->resid < bytes);
832 cursor->resid -= bytes;
833
834 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
835
836 if (bytes < bio_vec.bv_len)
837 return false; /* more bytes to process in this segment */
838
839 /* Move on to the next segment, and possibly the next bio */
840
841 if (!cursor->bvec_iter.bi_size) {
842 bio = bio->bi_next;
843 cursor->bio = bio;
844 if (bio)
845 cursor->bvec_iter = bio->bi_iter;
846 else
847 memset(&cursor->bvec_iter, 0,
848 sizeof(cursor->bvec_iter));
849 }
850
851 if (!cursor->last_piece) {
852 BUG_ON(!cursor->resid);
853 BUG_ON(!bio);
854 /* A short read is OK, so use <= rather than == */
855 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
856 cursor->last_piece = true;
857 }
858
859 return true;
860 }
861 #endif /* CONFIG_BLOCK */
862
863 /*
864 * For a page array, a piece comes from the first page in the array
865 * that has not already been fully consumed.
866 */
867 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
868 size_t length)
869 {
870 struct ceph_msg_data *data = cursor->data;
871 int page_count;
872
873 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
874
875 BUG_ON(!data->pages);
876 BUG_ON(!data->length);
877
878 cursor->resid = min(length, data->length);
879 page_count = calc_pages_for(data->alignment, (u64)data->length);
880 cursor->page_offset = data->alignment & ~PAGE_MASK;
881 cursor->page_index = 0;
882 BUG_ON(page_count > (int)USHRT_MAX);
883 cursor->page_count = (unsigned short)page_count;
884 BUG_ON(length > SIZE_MAX - cursor->page_offset);
885 cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
886 }
887
888 static struct page *
889 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
890 size_t *page_offset, size_t *length)
891 {
892 struct ceph_msg_data *data = cursor->data;
893
894 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
895
896 BUG_ON(cursor->page_index >= cursor->page_count);
897 BUG_ON(cursor->page_offset >= PAGE_SIZE);
898
899 *page_offset = cursor->page_offset;
900 if (cursor->last_piece)
901 *length = cursor->resid;
902 else
903 *length = PAGE_SIZE - *page_offset;
904
905 return data->pages[cursor->page_index];
906 }
907
908 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
909 size_t bytes)
910 {
911 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
912
913 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
914
915 /* Advance the cursor page offset */
916
917 cursor->resid -= bytes;
918 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
919 if (!bytes || cursor->page_offset)
920 return false; /* more bytes to process in the current page */
921
922 /* Move on to the next page; offset is already at 0 */
923
924 BUG_ON(cursor->page_index >= cursor->page_count);
925 cursor->page_index++;
926 cursor->last_piece = cursor->resid <= PAGE_SIZE;
927
928 return true;
929 }
930
931 /*
932 * For a pagelist, a piece is whatever remains to be consumed in the
933 * first page in the list, or the front of the next page.
934 */
935 static void
936 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
937 size_t length)
938 {
939 struct ceph_msg_data *data = cursor->data;
940 struct ceph_pagelist *pagelist;
941 struct page *page;
942
943 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
944
945 pagelist = data->pagelist;
946 BUG_ON(!pagelist);
947
948 if (!length)
949 return; /* pagelist can be assigned but empty */
950
951 BUG_ON(list_empty(&pagelist->head));
952 page = list_first_entry(&pagelist->head, struct page, lru);
953
954 cursor->resid = min(length, pagelist->length);
955 cursor->page = page;
956 cursor->offset = 0;
957 cursor->last_piece = cursor->resid <= PAGE_SIZE;
958 }
959
960 static struct page *
961 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
962 size_t *page_offset, size_t *length)
963 {
964 struct ceph_msg_data *data = cursor->data;
965 struct ceph_pagelist *pagelist;
966
967 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
968
969 pagelist = data->pagelist;
970 BUG_ON(!pagelist);
971
972 BUG_ON(!cursor->page);
973 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
974
975 /* offset of first page in pagelist is always 0 */
976 *page_offset = cursor->offset & ~PAGE_MASK;
977 if (cursor->last_piece)
978 *length = cursor->resid;
979 else
980 *length = PAGE_SIZE - *page_offset;
981
982 return cursor->page;
983 }
984
985 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
986 size_t bytes)
987 {
988 struct ceph_msg_data *data = cursor->data;
989 struct ceph_pagelist *pagelist;
990
991 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
992
993 pagelist = data->pagelist;
994 BUG_ON(!pagelist);
995
996 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
997 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
998
999 /* Advance the cursor offset */
1000
1001 cursor->resid -= bytes;
1002 cursor->offset += bytes;
1003 /* offset of first page in pagelist is always 0 */
1004 if (!bytes || cursor->offset & ~PAGE_MASK)
1005 return false; /* more bytes to process in the current page */
1006
1007 /* Move on to the next page */
1008
1009 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1010 cursor->page = list_entry_next(cursor->page, lru);
1011 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1012
1013 return true;
1014 }
1015
1016 /*
1017 * Message data is handled (sent or received) in pieces, where each
1018 * piece resides on a single page. The network layer might not
1019 * consume an entire piece at once. A data item's cursor keeps
1020 * track of which piece is next to process and how much remains to
1021 * be processed in that piece. It also tracks whether the current
1022 * piece is the last one in the data item.
1023 */
1024 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1025 {
1026 size_t length = cursor->total_resid;
1027
1028 switch (cursor->data->type) {
1029 case CEPH_MSG_DATA_PAGELIST:
1030 ceph_msg_data_pagelist_cursor_init(cursor, length);
1031 break;
1032 case CEPH_MSG_DATA_PAGES:
1033 ceph_msg_data_pages_cursor_init(cursor, length);
1034 break;
1035 #ifdef CONFIG_BLOCK
1036 case CEPH_MSG_DATA_BIO:
1037 ceph_msg_data_bio_cursor_init(cursor, length);
1038 break;
1039 #endif /* CONFIG_BLOCK */
1040 case CEPH_MSG_DATA_NONE:
1041 default:
1042 /* BUG(); */
1043 break;
1044 }
1045 cursor->need_crc = true;
1046 }
1047
1048 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1049 {
1050 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1051 struct ceph_msg_data *data;
1052
1053 BUG_ON(!length);
1054 BUG_ON(length > msg->data_length);
1055 BUG_ON(list_empty(&msg->data));
1056
1057 cursor->data_head = &msg->data;
1058 cursor->total_resid = length;
1059 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1060 cursor->data = data;
1061
1062 __ceph_msg_data_cursor_init(cursor);
1063 }
1064
1065 /*
1066 * Return the page containing the next piece to process for a given
1067 * data item, and supply the page offset and length of that piece.
1068 * Indicate whether this is the last piece in this data item.
1069 */
1070 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1071 size_t *page_offset, size_t *length,
1072 bool *last_piece)
1073 {
1074 struct page *page;
1075
1076 switch (cursor->data->type) {
1077 case CEPH_MSG_DATA_PAGELIST:
1078 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1079 break;
1080 case CEPH_MSG_DATA_PAGES:
1081 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1082 break;
1083 #ifdef CONFIG_BLOCK
1084 case CEPH_MSG_DATA_BIO:
1085 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1086 break;
1087 #endif /* CONFIG_BLOCK */
1088 case CEPH_MSG_DATA_NONE:
1089 default:
1090 page = NULL;
1091 break;
1092 }
1093 BUG_ON(!page);
1094 BUG_ON(*page_offset + *length > PAGE_SIZE);
1095 BUG_ON(!*length);
1096 if (last_piece)
1097 *last_piece = cursor->last_piece;
1098
1099 return page;
1100 }
1101
1102 /*
1103 * Returns true if the result moves the cursor on to the next piece
1104 * of the data item.
1105 */
1106 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1107 size_t bytes)
1108 {
1109 bool new_piece;
1110
1111 BUG_ON(bytes > cursor->resid);
1112 switch (cursor->data->type) {
1113 case CEPH_MSG_DATA_PAGELIST:
1114 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1115 break;
1116 case CEPH_MSG_DATA_PAGES:
1117 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1118 break;
1119 #ifdef CONFIG_BLOCK
1120 case CEPH_MSG_DATA_BIO:
1121 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1122 break;
1123 #endif /* CONFIG_BLOCK */
1124 case CEPH_MSG_DATA_NONE:
1125 default:
1126 BUG();
1127 break;
1128 }
1129 cursor->total_resid -= bytes;
1130
1131 if (!cursor->resid && cursor->total_resid) {
1132 WARN_ON(!cursor->last_piece);
1133 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1134 cursor->data = list_entry_next(cursor->data, links);
1135 __ceph_msg_data_cursor_init(cursor);
1136 new_piece = true;
1137 }
1138 cursor->need_crc = new_piece;
1139
1140 return new_piece;
1141 }
1142
1143 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1144 {
1145 BUG_ON(!msg);
1146 BUG_ON(!data_len);
1147
1148 /* Initialize data cursor */
1149
1150 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1151 }
1152
1153 /*
1154 * Prepare footer for currently outgoing message, and finish things
1155 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1156 */
1157 static void prepare_write_message_footer(struct ceph_connection *con)
1158 {
1159 struct ceph_msg *m = con->out_msg;
1160 int v = con->out_kvec_left;
1161
1162 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1163
1164 dout("prepare_write_message_footer %p\n", con);
1165 con->out_kvec_is_msg = true;
1166 con->out_kvec[v].iov_base = &m->footer;
1167 con->out_kvec[v].iov_len = sizeof(m->footer);
1168 con->out_kvec_bytes += sizeof(m->footer);
1169 con->out_kvec_left++;
1170 con->out_more = m->more_to_follow;
1171 con->out_msg_done = true;
1172 }
1173
1174 /*
1175 * Prepare headers for the next outgoing message.
1176 */
1177 static void prepare_write_message(struct ceph_connection *con)
1178 {
1179 struct ceph_msg *m;
1180 u32 crc;
1181
1182 con_out_kvec_reset(con);
1183 con->out_kvec_is_msg = true;
1184 con->out_msg_done = false;
1185
1186 /* Sneak an ack in there first? If we can get it into the same
1187 * TCP packet that's a good thing. */
1188 if (con->in_seq > con->in_seq_acked) {
1189 con->in_seq_acked = con->in_seq;
1190 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1191 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1192 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1193 &con->out_temp_ack);
1194 }
1195
1196 BUG_ON(list_empty(&con->out_queue));
1197 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1198 con->out_msg = m;
1199 BUG_ON(m->con != con);
1200
1201 /* put message on sent list */
1202 ceph_msg_get(m);
1203 list_move_tail(&m->list_head, &con->out_sent);
1204
1205 /*
1206 * only assign outgoing seq # if we haven't sent this message
1207 * yet. if it is requeued, resend with it's original seq.
1208 */
1209 if (m->needs_out_seq) {
1210 m->hdr.seq = cpu_to_le64(++con->out_seq);
1211 m->needs_out_seq = false;
1212 }
1213 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1214
1215 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1216 m, con->out_seq, le16_to_cpu(m->hdr.type),
1217 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1218 m->data_length);
1219 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1220
1221 /* tag + hdr + front + middle */
1222 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1223 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1224 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1225
1226 if (m->middle)
1227 con_out_kvec_add(con, m->middle->vec.iov_len,
1228 m->middle->vec.iov_base);
1229
1230 /* fill in crc (except data pages), footer */
1231 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1232 con->out_msg->hdr.crc = cpu_to_le32(crc);
1233 con->out_msg->footer.flags = 0;
1234
1235 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1236 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1237 if (m->middle) {
1238 crc = crc32c(0, m->middle->vec.iov_base,
1239 m->middle->vec.iov_len);
1240 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1241 } else
1242 con->out_msg->footer.middle_crc = 0;
1243 dout("%s front_crc %u middle_crc %u\n", __func__,
1244 le32_to_cpu(con->out_msg->footer.front_crc),
1245 le32_to_cpu(con->out_msg->footer.middle_crc));
1246
1247 /* is there a data payload? */
1248 con->out_msg->footer.data_crc = 0;
1249 if (m->data_length) {
1250 prepare_message_data(con->out_msg, m->data_length);
1251 con->out_more = 1; /* data + footer will follow */
1252 } else {
1253 /* no, queue up footer too and be done */
1254 prepare_write_message_footer(con);
1255 }
1256
1257 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1258 }
1259
1260 /*
1261 * Prepare an ack.
1262 */
1263 static void prepare_write_ack(struct ceph_connection *con)
1264 {
1265 dout("prepare_write_ack %p %llu -> %llu\n", con,
1266 con->in_seq_acked, con->in_seq);
1267 con->in_seq_acked = con->in_seq;
1268
1269 con_out_kvec_reset(con);
1270
1271 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1272
1273 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1274 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1275 &con->out_temp_ack);
1276
1277 con->out_more = 1; /* more will follow.. eventually.. */
1278 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1279 }
1280
1281 /*
1282 * Prepare to share the seq during handshake
1283 */
1284 static void prepare_write_seq(struct ceph_connection *con)
1285 {
1286 dout("prepare_write_seq %p %llu -> %llu\n", con,
1287 con->in_seq_acked, con->in_seq);
1288 con->in_seq_acked = con->in_seq;
1289
1290 con_out_kvec_reset(con);
1291
1292 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1293 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1294 &con->out_temp_ack);
1295
1296 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1297 }
1298
1299 /*
1300 * Prepare to write keepalive byte.
1301 */
1302 static void prepare_write_keepalive(struct ceph_connection *con)
1303 {
1304 dout("prepare_write_keepalive %p\n", con);
1305 con_out_kvec_reset(con);
1306 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1307 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1308 }
1309
1310 /*
1311 * Connection negotiation.
1312 */
1313
1314 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1315 int *auth_proto)
1316 {
1317 struct ceph_auth_handshake *auth;
1318
1319 if (!con->ops->get_authorizer) {
1320 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1321 con->out_connect.authorizer_len = 0;
1322 return NULL;
1323 }
1324
1325 /* Can't hold the mutex while getting authorizer */
1326 mutex_unlock(&con->mutex);
1327 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1328 mutex_lock(&con->mutex);
1329
1330 if (IS_ERR(auth))
1331 return auth;
1332 if (con->state != CON_STATE_NEGOTIATING)
1333 return ERR_PTR(-EAGAIN);
1334
1335 con->auth_reply_buf = auth->authorizer_reply_buf;
1336 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1337 return auth;
1338 }
1339
1340 /*
1341 * We connected to a peer and are saying hello.
1342 */
1343 static void prepare_write_banner(struct ceph_connection *con)
1344 {
1345 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1346 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1347 &con->msgr->my_enc_addr);
1348
1349 con->out_more = 0;
1350 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1351 }
1352
1353 static int prepare_write_connect(struct ceph_connection *con)
1354 {
1355 unsigned int global_seq = get_global_seq(con->msgr, 0);
1356 int proto;
1357 int auth_proto;
1358 struct ceph_auth_handshake *auth;
1359
1360 switch (con->peer_name.type) {
1361 case CEPH_ENTITY_TYPE_MON:
1362 proto = CEPH_MONC_PROTOCOL;
1363 break;
1364 case CEPH_ENTITY_TYPE_OSD:
1365 proto = CEPH_OSDC_PROTOCOL;
1366 break;
1367 case CEPH_ENTITY_TYPE_MDS:
1368 proto = CEPH_MDSC_PROTOCOL;
1369 break;
1370 default:
1371 BUG();
1372 }
1373
1374 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1375 con->connect_seq, global_seq, proto);
1376
1377 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1378 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1379 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1380 con->out_connect.global_seq = cpu_to_le32(global_seq);
1381 con->out_connect.protocol_version = cpu_to_le32(proto);
1382 con->out_connect.flags = 0;
1383
1384 auth_proto = CEPH_AUTH_UNKNOWN;
1385 auth = get_connect_authorizer(con, &auth_proto);
1386 if (IS_ERR(auth))
1387 return PTR_ERR(auth);
1388
1389 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1390 con->out_connect.authorizer_len = auth ?
1391 cpu_to_le32(auth->authorizer_buf_len) : 0;
1392
1393 con_out_kvec_add(con, sizeof (con->out_connect),
1394 &con->out_connect);
1395 if (auth && auth->authorizer_buf_len)
1396 con_out_kvec_add(con, auth->authorizer_buf_len,
1397 auth->authorizer_buf);
1398
1399 con->out_more = 0;
1400 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1401
1402 return 0;
1403 }
1404
1405 /*
1406 * write as much of pending kvecs to the socket as we can.
1407 * 1 -> done
1408 * 0 -> socket full, but more to do
1409 * <0 -> error
1410 */
1411 static int write_partial_kvec(struct ceph_connection *con)
1412 {
1413 int ret;
1414
1415 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1416 while (con->out_kvec_bytes > 0) {
1417 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1418 con->out_kvec_left, con->out_kvec_bytes,
1419 con->out_more);
1420 if (ret <= 0)
1421 goto out;
1422 con->out_kvec_bytes -= ret;
1423 if (con->out_kvec_bytes == 0)
1424 break; /* done */
1425
1426 /* account for full iov entries consumed */
1427 while (ret >= con->out_kvec_cur->iov_len) {
1428 BUG_ON(!con->out_kvec_left);
1429 ret -= con->out_kvec_cur->iov_len;
1430 con->out_kvec_cur++;
1431 con->out_kvec_left--;
1432 }
1433 /* and for a partially-consumed entry */
1434 if (ret) {
1435 con->out_kvec_cur->iov_len -= ret;
1436 con->out_kvec_cur->iov_base += ret;
1437 }
1438 }
1439 con->out_kvec_left = 0;
1440 con->out_kvec_is_msg = false;
1441 ret = 1;
1442 out:
1443 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1444 con->out_kvec_bytes, con->out_kvec_left, ret);
1445 return ret; /* done! */
1446 }
1447
1448 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1449 unsigned int page_offset,
1450 unsigned int length)
1451 {
1452 char *kaddr;
1453
1454 kaddr = kmap(page);
1455 BUG_ON(kaddr == NULL);
1456 crc = crc32c(crc, kaddr + page_offset, length);
1457 kunmap(page);
1458
1459 return crc;
1460 }
1461 /*
1462 * Write as much message data payload as we can. If we finish, queue
1463 * up the footer.
1464 * 1 -> done, footer is now queued in out_kvec[].
1465 * 0 -> socket full, but more to do
1466 * <0 -> error
1467 */
1468 static int write_partial_message_data(struct ceph_connection *con)
1469 {
1470 struct ceph_msg *msg = con->out_msg;
1471 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1472 bool do_datacrc = !con->msgr->nocrc;
1473 u32 crc;
1474
1475 dout("%s %p msg %p\n", __func__, con, msg);
1476
1477 if (list_empty(&msg->data))
1478 return -EINVAL;
1479
1480 /*
1481 * Iterate through each page that contains data to be
1482 * written, and send as much as possible for each.
1483 *
1484 * If we are calculating the data crc (the default), we will
1485 * need to map the page. If we have no pages, they have
1486 * been revoked, so use the zero page.
1487 */
1488 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1489 while (cursor->resid) {
1490 struct page *page;
1491 size_t page_offset;
1492 size_t length;
1493 bool last_piece;
1494 bool need_crc;
1495 int ret;
1496
1497 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1498 &last_piece);
1499 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1500 length, last_piece);
1501 if (ret <= 0) {
1502 if (do_datacrc)
1503 msg->footer.data_crc = cpu_to_le32(crc);
1504
1505 return ret;
1506 }
1507 if (do_datacrc && cursor->need_crc)
1508 crc = ceph_crc32c_page(crc, page, page_offset, length);
1509 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1510 }
1511
1512 dout("%s %p msg %p done\n", __func__, con, msg);
1513
1514 /* prepare and queue up footer, too */
1515 if (do_datacrc)
1516 msg->footer.data_crc = cpu_to_le32(crc);
1517 else
1518 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1519 con_out_kvec_reset(con);
1520 prepare_write_message_footer(con);
1521
1522 return 1; /* must return > 0 to indicate success */
1523 }
1524
1525 /*
1526 * write some zeros
1527 */
1528 static int write_partial_skip(struct ceph_connection *con)
1529 {
1530 int ret;
1531
1532 while (con->out_skip > 0) {
1533 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1534
1535 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1536 if (ret <= 0)
1537 goto out;
1538 con->out_skip -= ret;
1539 }
1540 ret = 1;
1541 out:
1542 return ret;
1543 }
1544
1545 /*
1546 * Prepare to read connection handshake, or an ack.
1547 */
1548 static void prepare_read_banner(struct ceph_connection *con)
1549 {
1550 dout("prepare_read_banner %p\n", con);
1551 con->in_base_pos = 0;
1552 }
1553
1554 static void prepare_read_connect(struct ceph_connection *con)
1555 {
1556 dout("prepare_read_connect %p\n", con);
1557 con->in_base_pos = 0;
1558 }
1559
1560 static void prepare_read_ack(struct ceph_connection *con)
1561 {
1562 dout("prepare_read_ack %p\n", con);
1563 con->in_base_pos = 0;
1564 }
1565
1566 static void prepare_read_seq(struct ceph_connection *con)
1567 {
1568 dout("prepare_read_seq %p\n", con);
1569 con->in_base_pos = 0;
1570 con->in_tag = CEPH_MSGR_TAG_SEQ;
1571 }
1572
1573 static void prepare_read_tag(struct ceph_connection *con)
1574 {
1575 dout("prepare_read_tag %p\n", con);
1576 con->in_base_pos = 0;
1577 con->in_tag = CEPH_MSGR_TAG_READY;
1578 }
1579
1580 /*
1581 * Prepare to read a message.
1582 */
1583 static int prepare_read_message(struct ceph_connection *con)
1584 {
1585 dout("prepare_read_message %p\n", con);
1586 BUG_ON(con->in_msg != NULL);
1587 con->in_base_pos = 0;
1588 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1589 return 0;
1590 }
1591
1592
1593 static int read_partial(struct ceph_connection *con,
1594 int end, int size, void *object)
1595 {
1596 while (con->in_base_pos < end) {
1597 int left = end - con->in_base_pos;
1598 int have = size - left;
1599 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1600 if (ret <= 0)
1601 return ret;
1602 con->in_base_pos += ret;
1603 }
1604 return 1;
1605 }
1606
1607
1608 /*
1609 * Read all or part of the connect-side handshake on a new connection
1610 */
1611 static int read_partial_banner(struct ceph_connection *con)
1612 {
1613 int size;
1614 int end;
1615 int ret;
1616
1617 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1618
1619 /* peer's banner */
1620 size = strlen(CEPH_BANNER);
1621 end = size;
1622 ret = read_partial(con, end, size, con->in_banner);
1623 if (ret <= 0)
1624 goto out;
1625
1626 size = sizeof (con->actual_peer_addr);
1627 end += size;
1628 ret = read_partial(con, end, size, &con->actual_peer_addr);
1629 if (ret <= 0)
1630 goto out;
1631
1632 size = sizeof (con->peer_addr_for_me);
1633 end += size;
1634 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1635 if (ret <= 0)
1636 goto out;
1637
1638 out:
1639 return ret;
1640 }
1641
1642 static int read_partial_connect(struct ceph_connection *con)
1643 {
1644 int size;
1645 int end;
1646 int ret;
1647
1648 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1649
1650 size = sizeof (con->in_reply);
1651 end = size;
1652 ret = read_partial(con, end, size, &con->in_reply);
1653 if (ret <= 0)
1654 goto out;
1655
1656 size = le32_to_cpu(con->in_reply.authorizer_len);
1657 end += size;
1658 ret = read_partial(con, end, size, con->auth_reply_buf);
1659 if (ret <= 0)
1660 goto out;
1661
1662 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1663 con, (int)con->in_reply.tag,
1664 le32_to_cpu(con->in_reply.connect_seq),
1665 le32_to_cpu(con->in_reply.global_seq));
1666 out:
1667 return ret;
1668
1669 }
1670
1671 /*
1672 * Verify the hello banner looks okay.
1673 */
1674 static int verify_hello(struct ceph_connection *con)
1675 {
1676 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1677 pr_err("connect to %s got bad banner\n",
1678 ceph_pr_addr(&con->peer_addr.in_addr));
1679 con->error_msg = "protocol error, bad banner";
1680 return -1;
1681 }
1682 return 0;
1683 }
1684
1685 static bool addr_is_blank(struct sockaddr_storage *ss)
1686 {
1687 switch (ss->ss_family) {
1688 case AF_INET:
1689 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1690 case AF_INET6:
1691 return
1692 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1693 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1694 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1695 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1696 }
1697 return false;
1698 }
1699
1700 static int addr_port(struct sockaddr_storage *ss)
1701 {
1702 switch (ss->ss_family) {
1703 case AF_INET:
1704 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1705 case AF_INET6:
1706 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1707 }
1708 return 0;
1709 }
1710
1711 static void addr_set_port(struct sockaddr_storage *ss, int p)
1712 {
1713 switch (ss->ss_family) {
1714 case AF_INET:
1715 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1716 break;
1717 case AF_INET6:
1718 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1719 break;
1720 }
1721 }
1722
1723 /*
1724 * Unlike other *_pton function semantics, zero indicates success.
1725 */
1726 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1727 char delim, const char **ipend)
1728 {
1729 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1730 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1731
1732 memset(ss, 0, sizeof(*ss));
1733
1734 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1735 ss->ss_family = AF_INET;
1736 return 0;
1737 }
1738
1739 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1740 ss->ss_family = AF_INET6;
1741 return 0;
1742 }
1743
1744 return -EINVAL;
1745 }
1746
1747 /*
1748 * Extract hostname string and resolve using kernel DNS facility.
1749 */
1750 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1751 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1752 struct sockaddr_storage *ss, char delim, const char **ipend)
1753 {
1754 const char *end, *delim_p;
1755 char *colon_p, *ip_addr = NULL;
1756 int ip_len, ret;
1757
1758 /*
1759 * The end of the hostname occurs immediately preceding the delimiter or
1760 * the port marker (':') where the delimiter takes precedence.
1761 */
1762 delim_p = memchr(name, delim, namelen);
1763 colon_p = memchr(name, ':', namelen);
1764
1765 if (delim_p && colon_p)
1766 end = delim_p < colon_p ? delim_p : colon_p;
1767 else if (!delim_p && colon_p)
1768 end = colon_p;
1769 else {
1770 end = delim_p;
1771 if (!end) /* case: hostname:/ */
1772 end = name + namelen;
1773 }
1774
1775 if (end <= name)
1776 return -EINVAL;
1777
1778 /* do dns_resolve upcall */
1779 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1780 if (ip_len > 0)
1781 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1782 else
1783 ret = -ESRCH;
1784
1785 kfree(ip_addr);
1786
1787 *ipend = end;
1788
1789 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1790 ret, ret ? "failed" : ceph_pr_addr(ss));
1791
1792 return ret;
1793 }
1794 #else
1795 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1796 struct sockaddr_storage *ss, char delim, const char **ipend)
1797 {
1798 return -EINVAL;
1799 }
1800 #endif
1801
1802 /*
1803 * Parse a server name (IP or hostname). If a valid IP address is not found
1804 * then try to extract a hostname to resolve using userspace DNS upcall.
1805 */
1806 static int ceph_parse_server_name(const char *name, size_t namelen,
1807 struct sockaddr_storage *ss, char delim, const char **ipend)
1808 {
1809 int ret;
1810
1811 ret = ceph_pton(name, namelen, ss, delim, ipend);
1812 if (ret)
1813 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1814
1815 return ret;
1816 }
1817
1818 /*
1819 * Parse an ip[:port] list into an addr array. Use the default
1820 * monitor port if a port isn't specified.
1821 */
1822 int ceph_parse_ips(const char *c, const char *end,
1823 struct ceph_entity_addr *addr,
1824 int max_count, int *count)
1825 {
1826 int i, ret = -EINVAL;
1827 const char *p = c;
1828
1829 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1830 for (i = 0; i < max_count; i++) {
1831 const char *ipend;
1832 struct sockaddr_storage *ss = &addr[i].in_addr;
1833 int port;
1834 char delim = ',';
1835
1836 if (*p == '[') {
1837 delim = ']';
1838 p++;
1839 }
1840
1841 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1842 if (ret)
1843 goto bad;
1844 ret = -EINVAL;
1845
1846 p = ipend;
1847
1848 if (delim == ']') {
1849 if (*p != ']') {
1850 dout("missing matching ']'\n");
1851 goto bad;
1852 }
1853 p++;
1854 }
1855
1856 /* port? */
1857 if (p < end && *p == ':') {
1858 port = 0;
1859 p++;
1860 while (p < end && *p >= '0' && *p <= '9') {
1861 port = (port * 10) + (*p - '0');
1862 p++;
1863 }
1864 if (port == 0)
1865 port = CEPH_MON_PORT;
1866 else if (port > 65535)
1867 goto bad;
1868 } else {
1869 port = CEPH_MON_PORT;
1870 }
1871
1872 addr_set_port(ss, port);
1873
1874 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1875
1876 if (p == end)
1877 break;
1878 if (*p != ',')
1879 goto bad;
1880 p++;
1881 }
1882
1883 if (p != end)
1884 goto bad;
1885
1886 if (count)
1887 *count = i + 1;
1888 return 0;
1889
1890 bad:
1891 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1892 return ret;
1893 }
1894 EXPORT_SYMBOL(ceph_parse_ips);
1895
1896 static int process_banner(struct ceph_connection *con)
1897 {
1898 dout("process_banner on %p\n", con);
1899
1900 if (verify_hello(con) < 0)
1901 return -1;
1902
1903 ceph_decode_addr(&con->actual_peer_addr);
1904 ceph_decode_addr(&con->peer_addr_for_me);
1905
1906 /*
1907 * Make sure the other end is who we wanted. note that the other
1908 * end may not yet know their ip address, so if it's 0.0.0.0, give
1909 * them the benefit of the doubt.
1910 */
1911 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1912 sizeof(con->peer_addr)) != 0 &&
1913 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1914 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1915 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1916 ceph_pr_addr(&con->peer_addr.in_addr),
1917 (int)le32_to_cpu(con->peer_addr.nonce),
1918 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1919 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1920 con->error_msg = "wrong peer at address";
1921 return -1;
1922 }
1923
1924 /*
1925 * did we learn our address?
1926 */
1927 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1928 int port = addr_port(&con->msgr->inst.addr.in_addr);
1929
1930 memcpy(&con->msgr->inst.addr.in_addr,
1931 &con->peer_addr_for_me.in_addr,
1932 sizeof(con->peer_addr_for_me.in_addr));
1933 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1934 encode_my_addr(con->msgr);
1935 dout("process_banner learned my addr is %s\n",
1936 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1937 }
1938
1939 return 0;
1940 }
1941
1942 static int process_connect(struct ceph_connection *con)
1943 {
1944 u64 sup_feat = con->msgr->supported_features;
1945 u64 req_feat = con->msgr->required_features;
1946 u64 server_feat = ceph_sanitize_features(
1947 le64_to_cpu(con->in_reply.features));
1948 int ret;
1949
1950 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1951
1952 switch (con->in_reply.tag) {
1953 case CEPH_MSGR_TAG_FEATURES:
1954 pr_err("%s%lld %s feature set mismatch,"
1955 " my %llx < server's %llx, missing %llx\n",
1956 ENTITY_NAME(con->peer_name),
1957 ceph_pr_addr(&con->peer_addr.in_addr),
1958 sup_feat, server_feat, server_feat & ~sup_feat);
1959 con->error_msg = "missing required protocol features";
1960 reset_connection(con);
1961 return -1;
1962
1963 case CEPH_MSGR_TAG_BADPROTOVER:
1964 pr_err("%s%lld %s protocol version mismatch,"
1965 " my %d != server's %d\n",
1966 ENTITY_NAME(con->peer_name),
1967 ceph_pr_addr(&con->peer_addr.in_addr),
1968 le32_to_cpu(con->out_connect.protocol_version),
1969 le32_to_cpu(con->in_reply.protocol_version));
1970 con->error_msg = "protocol version mismatch";
1971 reset_connection(con);
1972 return -1;
1973
1974 case CEPH_MSGR_TAG_BADAUTHORIZER:
1975 con->auth_retry++;
1976 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1977 con->auth_retry);
1978 if (con->auth_retry == 2) {
1979 con->error_msg = "connect authorization failure";
1980 return -1;
1981 }
1982 con_out_kvec_reset(con);
1983 ret = prepare_write_connect(con);
1984 if (ret < 0)
1985 return ret;
1986 prepare_read_connect(con);
1987 break;
1988
1989 case CEPH_MSGR_TAG_RESETSESSION:
1990 /*
1991 * If we connected with a large connect_seq but the peer
1992 * has no record of a session with us (no connection, or
1993 * connect_seq == 0), they will send RESETSESION to indicate
1994 * that they must have reset their session, and may have
1995 * dropped messages.
1996 */
1997 dout("process_connect got RESET peer seq %u\n",
1998 le32_to_cpu(con->in_reply.connect_seq));
1999 pr_err("%s%lld %s connection reset\n",
2000 ENTITY_NAME(con->peer_name),
2001 ceph_pr_addr(&con->peer_addr.in_addr));
2002 reset_connection(con);
2003 con_out_kvec_reset(con);
2004 ret = prepare_write_connect(con);
2005 if (ret < 0)
2006 return ret;
2007 prepare_read_connect(con);
2008
2009 /* Tell ceph about it. */
2010 mutex_unlock(&con->mutex);
2011 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2012 if (con->ops->peer_reset)
2013 con->ops->peer_reset(con);
2014 mutex_lock(&con->mutex);
2015 if (con->state != CON_STATE_NEGOTIATING)
2016 return -EAGAIN;
2017 break;
2018
2019 case CEPH_MSGR_TAG_RETRY_SESSION:
2020 /*
2021 * If we sent a smaller connect_seq than the peer has, try
2022 * again with a larger value.
2023 */
2024 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2025 le32_to_cpu(con->out_connect.connect_seq),
2026 le32_to_cpu(con->in_reply.connect_seq));
2027 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2028 con_out_kvec_reset(con);
2029 ret = prepare_write_connect(con);
2030 if (ret < 0)
2031 return ret;
2032 prepare_read_connect(con);
2033 break;
2034
2035 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2036 /*
2037 * If we sent a smaller global_seq than the peer has, try
2038 * again with a larger value.
2039 */
2040 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2041 con->peer_global_seq,
2042 le32_to_cpu(con->in_reply.global_seq));
2043 get_global_seq(con->msgr,
2044 le32_to_cpu(con->in_reply.global_seq));
2045 con_out_kvec_reset(con);
2046 ret = prepare_write_connect(con);
2047 if (ret < 0)
2048 return ret;
2049 prepare_read_connect(con);
2050 break;
2051
2052 case CEPH_MSGR_TAG_SEQ:
2053 case CEPH_MSGR_TAG_READY:
2054 if (req_feat & ~server_feat) {
2055 pr_err("%s%lld %s protocol feature mismatch,"
2056 " my required %llx > server's %llx, need %llx\n",
2057 ENTITY_NAME(con->peer_name),
2058 ceph_pr_addr(&con->peer_addr.in_addr),
2059 req_feat, server_feat, req_feat & ~server_feat);
2060 con->error_msg = "missing required protocol features";
2061 reset_connection(con);
2062 return -1;
2063 }
2064
2065 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2066 con->state = CON_STATE_OPEN;
2067 con->auth_retry = 0; /* we authenticated; clear flag */
2068 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2069 con->connect_seq++;
2070 con->peer_features = server_feat;
2071 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2072 con->peer_global_seq,
2073 le32_to_cpu(con->in_reply.connect_seq),
2074 con->connect_seq);
2075 WARN_ON(con->connect_seq !=
2076 le32_to_cpu(con->in_reply.connect_seq));
2077
2078 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2079 con_flag_set(con, CON_FLAG_LOSSYTX);
2080
2081 con->delay = 0; /* reset backoff memory */
2082
2083 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2084 prepare_write_seq(con);
2085 prepare_read_seq(con);
2086 } else {
2087 prepare_read_tag(con);
2088 }
2089 break;
2090
2091 case CEPH_MSGR_TAG_WAIT:
2092 /*
2093 * If there is a connection race (we are opening
2094 * connections to each other), one of us may just have
2095 * to WAIT. This shouldn't happen if we are the
2096 * client.
2097 */
2098 pr_err("process_connect got WAIT as client\n");
2099 con->error_msg = "protocol error, got WAIT as client";
2100 return -1;
2101
2102 default:
2103 pr_err("connect protocol error, will retry\n");
2104 con->error_msg = "protocol error, garbage tag during connect";
2105 return -1;
2106 }
2107 return 0;
2108 }
2109
2110
2111 /*
2112 * read (part of) an ack
2113 */
2114 static int read_partial_ack(struct ceph_connection *con)
2115 {
2116 int size = sizeof (con->in_temp_ack);
2117 int end = size;
2118
2119 return read_partial(con, end, size, &con->in_temp_ack);
2120 }
2121
2122 /*
2123 * We can finally discard anything that's been acked.
2124 */
2125 static void process_ack(struct ceph_connection *con)
2126 {
2127 struct ceph_msg *m;
2128 u64 ack = le64_to_cpu(con->in_temp_ack);
2129 u64 seq;
2130
2131 while (!list_empty(&con->out_sent)) {
2132 m = list_first_entry(&con->out_sent, struct ceph_msg,
2133 list_head);
2134 seq = le64_to_cpu(m->hdr.seq);
2135 if (seq > ack)
2136 break;
2137 dout("got ack for seq %llu type %d at %p\n", seq,
2138 le16_to_cpu(m->hdr.type), m);
2139 m->ack_stamp = jiffies;
2140 ceph_msg_remove(m);
2141 }
2142 prepare_read_tag(con);
2143 }
2144
2145
2146 static int read_partial_message_section(struct ceph_connection *con,
2147 struct kvec *section,
2148 unsigned int sec_len, u32 *crc)
2149 {
2150 int ret, left;
2151
2152 BUG_ON(!section);
2153
2154 while (section->iov_len < sec_len) {
2155 BUG_ON(section->iov_base == NULL);
2156 left = sec_len - section->iov_len;
2157 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2158 section->iov_len, left);
2159 if (ret <= 0)
2160 return ret;
2161 section->iov_len += ret;
2162 }
2163 if (section->iov_len == sec_len)
2164 *crc = crc32c(0, section->iov_base, section->iov_len);
2165
2166 return 1;
2167 }
2168
2169 static int read_partial_msg_data(struct ceph_connection *con)
2170 {
2171 struct ceph_msg *msg = con->in_msg;
2172 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2173 const bool do_datacrc = !con->msgr->nocrc;
2174 struct page *page;
2175 size_t page_offset;
2176 size_t length;
2177 u32 crc = 0;
2178 int ret;
2179
2180 BUG_ON(!msg);
2181 if (list_empty(&msg->data))
2182 return -EIO;
2183
2184 if (do_datacrc)
2185 crc = con->in_data_crc;
2186 while (cursor->resid) {
2187 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2188 NULL);
2189 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2190 if (ret <= 0) {
2191 if (do_datacrc)
2192 con->in_data_crc = crc;
2193
2194 return ret;
2195 }
2196
2197 if (do_datacrc)
2198 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2199 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2200 }
2201 if (do_datacrc)
2202 con->in_data_crc = crc;
2203
2204 return 1; /* must return > 0 to indicate success */
2205 }
2206
2207 /*
2208 * read (part of) a message.
2209 */
2210 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2211
2212 static int read_partial_message(struct ceph_connection *con)
2213 {
2214 struct ceph_msg *m = con->in_msg;
2215 int size;
2216 int end;
2217 int ret;
2218 unsigned int front_len, middle_len, data_len;
2219 bool do_datacrc = !con->msgr->nocrc;
2220 u64 seq;
2221 u32 crc;
2222
2223 dout("read_partial_message con %p msg %p\n", con, m);
2224
2225 /* header */
2226 size = sizeof (con->in_hdr);
2227 end = size;
2228 ret = read_partial(con, end, size, &con->in_hdr);
2229 if (ret <= 0)
2230 return ret;
2231
2232 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2233 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2234 pr_err("read_partial_message bad hdr "
2235 " crc %u != expected %u\n",
2236 crc, con->in_hdr.crc);
2237 return -EBADMSG;
2238 }
2239
2240 front_len = le32_to_cpu(con->in_hdr.front_len);
2241 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2242 return -EIO;
2243 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2244 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2245 return -EIO;
2246 data_len = le32_to_cpu(con->in_hdr.data_len);
2247 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2248 return -EIO;
2249
2250 /* verify seq# */
2251 seq = le64_to_cpu(con->in_hdr.seq);
2252 if ((s64)seq - (s64)con->in_seq < 1) {
2253 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2254 ENTITY_NAME(con->peer_name),
2255 ceph_pr_addr(&con->peer_addr.in_addr),
2256 seq, con->in_seq + 1);
2257 con->in_base_pos = -front_len - middle_len - data_len -
2258 sizeof(m->footer);
2259 con->in_tag = CEPH_MSGR_TAG_READY;
2260 return 0;
2261 } else if ((s64)seq - (s64)con->in_seq > 1) {
2262 pr_err("read_partial_message bad seq %lld expected %lld\n",
2263 seq, con->in_seq + 1);
2264 con->error_msg = "bad message sequence # for incoming message";
2265 return -EBADMSG;
2266 }
2267
2268 /* allocate message? */
2269 if (!con->in_msg) {
2270 int skip = 0;
2271
2272 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2273 front_len, data_len);
2274 ret = ceph_con_in_msg_alloc(con, &skip);
2275 if (ret < 0)
2276 return ret;
2277
2278 BUG_ON(!con->in_msg ^ skip);
2279 if (con->in_msg && data_len > con->in_msg->data_length) {
2280 pr_warning("%s skipping long message (%u > %zd)\n",
2281 __func__, data_len, con->in_msg->data_length);
2282 ceph_msg_put(con->in_msg);
2283 con->in_msg = NULL;
2284 skip = 1;
2285 }
2286 if (skip) {
2287 /* skip this message */
2288 dout("alloc_msg said skip message\n");
2289 con->in_base_pos = -front_len - middle_len - data_len -
2290 sizeof(m->footer);
2291 con->in_tag = CEPH_MSGR_TAG_READY;
2292 con->in_seq++;
2293 return 0;
2294 }
2295
2296 BUG_ON(!con->in_msg);
2297 BUG_ON(con->in_msg->con != con);
2298 m = con->in_msg;
2299 m->front.iov_len = 0; /* haven't read it yet */
2300 if (m->middle)
2301 m->middle->vec.iov_len = 0;
2302
2303 /* prepare for data payload, if any */
2304
2305 if (data_len)
2306 prepare_message_data(con->in_msg, data_len);
2307 }
2308
2309 /* front */
2310 ret = read_partial_message_section(con, &m->front, front_len,
2311 &con->in_front_crc);
2312 if (ret <= 0)
2313 return ret;
2314
2315 /* middle */
2316 if (m->middle) {
2317 ret = read_partial_message_section(con, &m->middle->vec,
2318 middle_len,
2319 &con->in_middle_crc);
2320 if (ret <= 0)
2321 return ret;
2322 }
2323
2324 /* (page) data */
2325 if (data_len) {
2326 ret = read_partial_msg_data(con);
2327 if (ret <= 0)
2328 return ret;
2329 }
2330
2331 /* footer */
2332 size = sizeof (m->footer);
2333 end += size;
2334 ret = read_partial(con, end, size, &m->footer);
2335 if (ret <= 0)
2336 return ret;
2337
2338 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2339 m, front_len, m->footer.front_crc, middle_len,
2340 m->footer.middle_crc, data_len, m->footer.data_crc);
2341
2342 /* crc ok? */
2343 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2344 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2345 m, con->in_front_crc, m->footer.front_crc);
2346 return -EBADMSG;
2347 }
2348 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2349 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2350 m, con->in_middle_crc, m->footer.middle_crc);
2351 return -EBADMSG;
2352 }
2353 if (do_datacrc &&
2354 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2355 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2356 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2357 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2358 return -EBADMSG;
2359 }
2360
2361 return 1; /* done! */
2362 }
2363
2364 /*
2365 * Process message. This happens in the worker thread. The callback should
2366 * be careful not to do anything that waits on other incoming messages or it
2367 * may deadlock.
2368 */
2369 static void process_message(struct ceph_connection *con)
2370 {
2371 struct ceph_msg *msg;
2372
2373 BUG_ON(con->in_msg->con != con);
2374 con->in_msg->con = NULL;
2375 msg = con->in_msg;
2376 con->in_msg = NULL;
2377 con->ops->put(con);
2378
2379 /* if first message, set peer_name */
2380 if (con->peer_name.type == 0)
2381 con->peer_name = msg->hdr.src;
2382
2383 con->in_seq++;
2384 mutex_unlock(&con->mutex);
2385
2386 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2387 msg, le64_to_cpu(msg->hdr.seq),
2388 ENTITY_NAME(msg->hdr.src),
2389 le16_to_cpu(msg->hdr.type),
2390 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2391 le32_to_cpu(msg->hdr.front_len),
2392 le32_to_cpu(msg->hdr.data_len),
2393 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2394 con->ops->dispatch(con, msg);
2395
2396 mutex_lock(&con->mutex);
2397 }
2398
2399
2400 /*
2401 * Write something to the socket. Called in a worker thread when the
2402 * socket appears to be writeable and we have something ready to send.
2403 */
2404 static int try_write(struct ceph_connection *con)
2405 {
2406 int ret = 1;
2407
2408 dout("try_write start %p state %lu\n", con, con->state);
2409
2410 more:
2411 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2412
2413 /* open the socket first? */
2414 if (con->state == CON_STATE_PREOPEN) {
2415 BUG_ON(con->sock);
2416 con->state = CON_STATE_CONNECTING;
2417
2418 con_out_kvec_reset(con);
2419 prepare_write_banner(con);
2420 prepare_read_banner(con);
2421
2422 BUG_ON(con->in_msg);
2423 con->in_tag = CEPH_MSGR_TAG_READY;
2424 dout("try_write initiating connect on %p new state %lu\n",
2425 con, con->state);
2426 ret = ceph_tcp_connect(con);
2427 if (ret < 0) {
2428 con->error_msg = "connect error";
2429 goto out;
2430 }
2431 }
2432
2433 more_kvec:
2434 /* kvec data queued? */
2435 if (con->out_skip) {
2436 ret = write_partial_skip(con);
2437 if (ret <= 0)
2438 goto out;
2439 }
2440 if (con->out_kvec_left) {
2441 ret = write_partial_kvec(con);
2442 if (ret <= 0)
2443 goto out;
2444 }
2445
2446 /* msg pages? */
2447 if (con->out_msg) {
2448 if (con->out_msg_done) {
2449 ceph_msg_put(con->out_msg);
2450 con->out_msg = NULL; /* we're done with this one */
2451 goto do_next;
2452 }
2453
2454 ret = write_partial_message_data(con);
2455 if (ret == 1)
2456 goto more_kvec; /* we need to send the footer, too! */
2457 if (ret == 0)
2458 goto out;
2459 if (ret < 0) {
2460 dout("try_write write_partial_message_data err %d\n",
2461 ret);
2462 goto out;
2463 }
2464 }
2465
2466 do_next:
2467 if (con->state == CON_STATE_OPEN) {
2468 /* is anything else pending? */
2469 if (!list_empty(&con->out_queue)) {
2470 prepare_write_message(con);
2471 goto more;
2472 }
2473 if (con->in_seq > con->in_seq_acked) {
2474 prepare_write_ack(con);
2475 goto more;
2476 }
2477 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2478 prepare_write_keepalive(con);
2479 goto more;
2480 }
2481 }
2482
2483 /* Nothing to do! */
2484 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2485 dout("try_write nothing else to write.\n");
2486 ret = 0;
2487 out:
2488 dout("try_write done on %p ret %d\n", con, ret);
2489 return ret;
2490 }
2491
2492
2493
2494 /*
2495 * Read what we can from the socket.
2496 */
2497 static int try_read(struct ceph_connection *con)
2498 {
2499 int ret = -1;
2500
2501 more:
2502 dout("try_read start on %p state %lu\n", con, con->state);
2503 if (con->state != CON_STATE_CONNECTING &&
2504 con->state != CON_STATE_NEGOTIATING &&
2505 con->state != CON_STATE_OPEN)
2506 return 0;
2507
2508 BUG_ON(!con->sock);
2509
2510 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2511 con->in_base_pos);
2512
2513 if (con->state == CON_STATE_CONNECTING) {
2514 dout("try_read connecting\n");
2515 ret = read_partial_banner(con);
2516 if (ret <= 0)
2517 goto out;
2518 ret = process_banner(con);
2519 if (ret < 0)
2520 goto out;
2521
2522 con->state = CON_STATE_NEGOTIATING;
2523
2524 /*
2525 * Received banner is good, exchange connection info.
2526 * Do not reset out_kvec, as sending our banner raced
2527 * with receiving peer banner after connect completed.
2528 */
2529 ret = prepare_write_connect(con);
2530 if (ret < 0)
2531 goto out;
2532 prepare_read_connect(con);
2533
2534 /* Send connection info before awaiting response */
2535 goto out;
2536 }
2537
2538 if (con->state == CON_STATE_NEGOTIATING) {
2539 dout("try_read negotiating\n");
2540 ret = read_partial_connect(con);
2541 if (ret <= 0)
2542 goto out;
2543 ret = process_connect(con);
2544 if (ret < 0)
2545 goto out;
2546 goto more;
2547 }
2548
2549 WARN_ON(con->state != CON_STATE_OPEN);
2550
2551 if (con->in_base_pos < 0) {
2552 /*
2553 * skipping + discarding content.
2554 *
2555 * FIXME: there must be a better way to do this!
2556 */
2557 static char buf[SKIP_BUF_SIZE];
2558 int skip = min((int) sizeof (buf), -con->in_base_pos);
2559
2560 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2561 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2562 if (ret <= 0)
2563 goto out;
2564 con->in_base_pos += ret;
2565 if (con->in_base_pos)
2566 goto more;
2567 }
2568 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2569 /*
2570 * what's next?
2571 */
2572 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2573 if (ret <= 0)
2574 goto out;
2575 dout("try_read got tag %d\n", (int)con->in_tag);
2576 switch (con->in_tag) {
2577 case CEPH_MSGR_TAG_MSG:
2578 prepare_read_message(con);
2579 break;
2580 case CEPH_MSGR_TAG_ACK:
2581 prepare_read_ack(con);
2582 break;
2583 case CEPH_MSGR_TAG_CLOSE:
2584 con_close_socket(con);
2585 con->state = CON_STATE_CLOSED;
2586 goto out;
2587 default:
2588 goto bad_tag;
2589 }
2590 }
2591 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2592 ret = read_partial_message(con);
2593 if (ret <= 0) {
2594 switch (ret) {
2595 case -EBADMSG:
2596 con->error_msg = "bad crc";
2597 ret = -EIO;
2598 break;
2599 case -EIO:
2600 con->error_msg = "io error";
2601 break;
2602 }
2603 goto out;
2604 }
2605 if (con->in_tag == CEPH_MSGR_TAG_READY)
2606 goto more;
2607 process_message(con);
2608 if (con->state == CON_STATE_OPEN)
2609 prepare_read_tag(con);
2610 goto more;
2611 }
2612 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2613 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2614 /*
2615 * the final handshake seq exchange is semantically
2616 * equivalent to an ACK
2617 */
2618 ret = read_partial_ack(con);
2619 if (ret <= 0)
2620 goto out;
2621 process_ack(con);
2622 goto more;
2623 }
2624
2625 out:
2626 dout("try_read done on %p ret %d\n", con, ret);
2627 return ret;
2628
2629 bad_tag:
2630 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2631 con->error_msg = "protocol error, garbage tag";
2632 ret = -1;
2633 goto out;
2634 }
2635
2636
2637 /*
2638 * Atomically queue work on a connection after the specified delay.
2639 * Bump @con reference to avoid races with connection teardown.
2640 * Returns 0 if work was queued, or an error code otherwise.
2641 */
2642 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2643 {
2644 if (!con->ops->get(con)) {
2645 dout("%s %p ref count 0\n", __func__, con);
2646
2647 return -ENOENT;
2648 }
2649
2650 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2651 dout("%s %p - already queued\n", __func__, con);
2652 con->ops->put(con);
2653
2654 return -EBUSY;
2655 }
2656
2657 dout("%s %p %lu\n", __func__, con, delay);
2658
2659 return 0;
2660 }
2661
2662 static void queue_con(struct ceph_connection *con)
2663 {
2664 (void) queue_con_delay(con, 0);
2665 }
2666
2667 static bool con_sock_closed(struct ceph_connection *con)
2668 {
2669 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2670 return false;
2671
2672 #define CASE(x) \
2673 case CON_STATE_ ## x: \
2674 con->error_msg = "socket closed (con state " #x ")"; \
2675 break;
2676
2677 switch (con->state) {
2678 CASE(CLOSED);
2679 CASE(PREOPEN);
2680 CASE(CONNECTING);
2681 CASE(NEGOTIATING);
2682 CASE(OPEN);
2683 CASE(STANDBY);
2684 default:
2685 pr_warning("%s con %p unrecognized state %lu\n",
2686 __func__, con, con->state);
2687 con->error_msg = "unrecognized con state";
2688 BUG();
2689 break;
2690 }
2691 #undef CASE
2692
2693 return true;
2694 }
2695
2696 static bool con_backoff(struct ceph_connection *con)
2697 {
2698 int ret;
2699
2700 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2701 return false;
2702
2703 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2704 if (ret) {
2705 dout("%s: con %p FAILED to back off %lu\n", __func__,
2706 con, con->delay);
2707 BUG_ON(ret == -ENOENT);
2708 con_flag_set(con, CON_FLAG_BACKOFF);
2709 }
2710
2711 return true;
2712 }
2713
2714 /* Finish fault handling; con->mutex must *not* be held here */
2715
2716 static void con_fault_finish(struct ceph_connection *con)
2717 {
2718 /*
2719 * in case we faulted due to authentication, invalidate our
2720 * current tickets so that we can get new ones.
2721 */
2722 if (con->auth_retry && con->ops->invalidate_authorizer) {
2723 dout("calling invalidate_authorizer()\n");
2724 con->ops->invalidate_authorizer(con);
2725 }
2726
2727 if (con->ops->fault)
2728 con->ops->fault(con);
2729 }
2730
2731 /*
2732 * Do some work on a connection. Drop a connection ref when we're done.
2733 */
2734 static void con_work(struct work_struct *work)
2735 {
2736 struct ceph_connection *con = container_of(work, struct ceph_connection,
2737 work.work);
2738 bool fault;
2739
2740 mutex_lock(&con->mutex);
2741 while (true) {
2742 int ret;
2743
2744 if ((fault = con_sock_closed(con))) {
2745 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2746 break;
2747 }
2748 if (con_backoff(con)) {
2749 dout("%s: con %p BACKOFF\n", __func__, con);
2750 break;
2751 }
2752 if (con->state == CON_STATE_STANDBY) {
2753 dout("%s: con %p STANDBY\n", __func__, con);
2754 break;
2755 }
2756 if (con->state == CON_STATE_CLOSED) {
2757 dout("%s: con %p CLOSED\n", __func__, con);
2758 BUG_ON(con->sock);
2759 break;
2760 }
2761 if (con->state == CON_STATE_PREOPEN) {
2762 dout("%s: con %p PREOPEN\n", __func__, con);
2763 BUG_ON(con->sock);
2764 }
2765
2766 ret = try_read(con);
2767 if (ret < 0) {
2768 if (ret == -EAGAIN)
2769 continue;
2770 con->error_msg = "socket error on read";
2771 fault = true;
2772 break;
2773 }
2774
2775 ret = try_write(con);
2776 if (ret < 0) {
2777 if (ret == -EAGAIN)
2778 continue;
2779 con->error_msg = "socket error on write";
2780 fault = true;
2781 }
2782
2783 break; /* If we make it to here, we're done */
2784 }
2785 if (fault)
2786 con_fault(con);
2787 mutex_unlock(&con->mutex);
2788
2789 if (fault)
2790 con_fault_finish(con);
2791
2792 con->ops->put(con);
2793 }
2794
2795 /*
2796 * Generic error/fault handler. A retry mechanism is used with
2797 * exponential backoff
2798 */
2799 static void con_fault(struct ceph_connection *con)
2800 {
2801 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2802 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2803 dout("fault %p state %lu to peer %s\n",
2804 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2805
2806 WARN_ON(con->state != CON_STATE_CONNECTING &&
2807 con->state != CON_STATE_NEGOTIATING &&
2808 con->state != CON_STATE_OPEN);
2809
2810 con_close_socket(con);
2811
2812 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2813 dout("fault on LOSSYTX channel, marking CLOSED\n");
2814 con->state = CON_STATE_CLOSED;
2815 return;
2816 }
2817
2818 if (con->in_msg) {
2819 BUG_ON(con->in_msg->con != con);
2820 con->in_msg->con = NULL;
2821 ceph_msg_put(con->in_msg);
2822 con->in_msg = NULL;
2823 con->ops->put(con);
2824 }
2825
2826 /* Requeue anything that hasn't been acked */
2827 list_splice_init(&con->out_sent, &con->out_queue);
2828
2829 /* If there are no messages queued or keepalive pending, place
2830 * the connection in a STANDBY state */
2831 if (list_empty(&con->out_queue) &&
2832 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2833 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2834 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2835 con->state = CON_STATE_STANDBY;
2836 } else {
2837 /* retry after a delay. */
2838 con->state = CON_STATE_PREOPEN;
2839 if (con->delay == 0)
2840 con->delay = BASE_DELAY_INTERVAL;
2841 else if (con->delay < MAX_DELAY_INTERVAL)
2842 con->delay *= 2;
2843 con_flag_set(con, CON_FLAG_BACKOFF);
2844 queue_con(con);
2845 }
2846 }
2847
2848
2849
2850 /*
2851 * initialize a new messenger instance
2852 */
2853 void ceph_messenger_init(struct ceph_messenger *msgr,
2854 struct ceph_entity_addr *myaddr,
2855 u64 supported_features,
2856 u64 required_features,
2857 bool nocrc)
2858 {
2859 msgr->supported_features = supported_features;
2860 msgr->required_features = required_features;
2861
2862 spin_lock_init(&msgr->global_seq_lock);
2863
2864 if (myaddr)
2865 msgr->inst.addr = *myaddr;
2866
2867 /* select a random nonce */
2868 msgr->inst.addr.type = 0;
2869 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2870 encode_my_addr(msgr);
2871 msgr->nocrc = nocrc;
2872
2873 atomic_set(&msgr->stopping, 0);
2874
2875 dout("%s %p\n", __func__, msgr);
2876 }
2877 EXPORT_SYMBOL(ceph_messenger_init);
2878
2879 static void clear_standby(struct ceph_connection *con)
2880 {
2881 /* come back from STANDBY? */
2882 if (con->state == CON_STATE_STANDBY) {
2883 dout("clear_standby %p and ++connect_seq\n", con);
2884 con->state = CON_STATE_PREOPEN;
2885 con->connect_seq++;
2886 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2887 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2888 }
2889 }
2890
2891 /*
2892 * Queue up an outgoing message on the given connection.
2893 */
2894 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2895 {
2896 /* set src+dst */
2897 msg->hdr.src = con->msgr->inst.name;
2898 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2899 msg->needs_out_seq = true;
2900
2901 mutex_lock(&con->mutex);
2902
2903 if (con->state == CON_STATE_CLOSED) {
2904 dout("con_send %p closed, dropping %p\n", con, msg);
2905 ceph_msg_put(msg);
2906 mutex_unlock(&con->mutex);
2907 return;
2908 }
2909
2910 BUG_ON(msg->con != NULL);
2911 msg->con = con->ops->get(con);
2912 BUG_ON(msg->con == NULL);
2913
2914 BUG_ON(!list_empty(&msg->list_head));
2915 list_add_tail(&msg->list_head, &con->out_queue);
2916 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2917 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2918 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2919 le32_to_cpu(msg->hdr.front_len),
2920 le32_to_cpu(msg->hdr.middle_len),
2921 le32_to_cpu(msg->hdr.data_len));
2922
2923 clear_standby(con);
2924 mutex_unlock(&con->mutex);
2925
2926 /* if there wasn't anything waiting to send before, queue
2927 * new work */
2928 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2929 queue_con(con);
2930 }
2931 EXPORT_SYMBOL(ceph_con_send);
2932
2933 /*
2934 * Revoke a message that was previously queued for send
2935 */
2936 void ceph_msg_revoke(struct ceph_msg *msg)
2937 {
2938 struct ceph_connection *con = msg->con;
2939
2940 if (!con)
2941 return; /* Message not in our possession */
2942
2943 mutex_lock(&con->mutex);
2944 if (!list_empty(&msg->list_head)) {
2945 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2946 list_del_init(&msg->list_head);
2947 BUG_ON(msg->con == NULL);
2948 msg->con->ops->put(msg->con);
2949 msg->con = NULL;
2950 msg->hdr.seq = 0;
2951
2952 ceph_msg_put(msg);
2953 }
2954 if (con->out_msg == msg) {
2955 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2956 con->out_msg = NULL;
2957 if (con->out_kvec_is_msg) {
2958 con->out_skip = con->out_kvec_bytes;
2959 con->out_kvec_is_msg = false;
2960 }
2961 msg->hdr.seq = 0;
2962
2963 ceph_msg_put(msg);
2964 }
2965 mutex_unlock(&con->mutex);
2966 }
2967
2968 /*
2969 * Revoke a message that we may be reading data into
2970 */
2971 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2972 {
2973 struct ceph_connection *con;
2974
2975 BUG_ON(msg == NULL);
2976 if (!msg->con) {
2977 dout("%s msg %p null con\n", __func__, msg);
2978
2979 return; /* Message not in our possession */
2980 }
2981
2982 con = msg->con;
2983 mutex_lock(&con->mutex);
2984 if (con->in_msg == msg) {
2985 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2986 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2987 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2988
2989 /* skip rest of message */
2990 dout("%s %p msg %p revoked\n", __func__, con, msg);
2991 con->in_base_pos = con->in_base_pos -
2992 sizeof(struct ceph_msg_header) -
2993 front_len -
2994 middle_len -
2995 data_len -
2996 sizeof(struct ceph_msg_footer);
2997 ceph_msg_put(con->in_msg);
2998 con->in_msg = NULL;
2999 con->in_tag = CEPH_MSGR_TAG_READY;
3000 con->in_seq++;
3001 } else {
3002 dout("%s %p in_msg %p msg %p no-op\n",
3003 __func__, con, con->in_msg, msg);
3004 }
3005 mutex_unlock(&con->mutex);
3006 }
3007
3008 /*
3009 * Queue a keepalive byte to ensure the tcp connection is alive.
3010 */
3011 void ceph_con_keepalive(struct ceph_connection *con)
3012 {
3013 dout("con_keepalive %p\n", con);
3014 mutex_lock(&con->mutex);
3015 clear_standby(con);
3016 mutex_unlock(&con->mutex);
3017 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3018 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3019 queue_con(con);
3020 }
3021 EXPORT_SYMBOL(ceph_con_keepalive);
3022
3023 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3024 {
3025 struct ceph_msg_data *data;
3026
3027 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3028 return NULL;
3029
3030 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3031 if (data)
3032 data->type = type;
3033 INIT_LIST_HEAD(&data->links);
3034
3035 return data;
3036 }
3037
3038 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3039 {
3040 if (!data)
3041 return;
3042
3043 WARN_ON(!list_empty(&data->links));
3044 if (data->type == CEPH_MSG_DATA_PAGELIST) {
3045 ceph_pagelist_release(data->pagelist);
3046 kfree(data->pagelist);
3047 }
3048 kmem_cache_free(ceph_msg_data_cache, data);
3049 }
3050
3051 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3052 size_t length, size_t alignment)
3053 {
3054 struct ceph_msg_data *data;
3055
3056 BUG_ON(!pages);
3057 BUG_ON(!length);
3058
3059 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3060 BUG_ON(!data);
3061 data->pages = pages;
3062 data->length = length;
3063 data->alignment = alignment & ~PAGE_MASK;
3064
3065 list_add_tail(&data->links, &msg->data);
3066 msg->data_length += length;
3067 }
3068 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3069
3070 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3071 struct ceph_pagelist *pagelist)
3072 {
3073 struct ceph_msg_data *data;
3074
3075 BUG_ON(!pagelist);
3076 BUG_ON(!pagelist->length);
3077
3078 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3079 BUG_ON(!data);
3080 data->pagelist = pagelist;
3081
3082 list_add_tail(&data->links, &msg->data);
3083 msg->data_length += pagelist->length;
3084 }
3085 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3086
3087 #ifdef CONFIG_BLOCK
3088 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3089 size_t length)
3090 {
3091 struct ceph_msg_data *data;
3092
3093 BUG_ON(!bio);
3094
3095 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3096 BUG_ON(!data);
3097 data->bio = bio;
3098 data->bio_length = length;
3099
3100 list_add_tail(&data->links, &msg->data);
3101 msg->data_length += length;
3102 }
3103 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3104 #endif /* CONFIG_BLOCK */
3105
3106 /*
3107 * construct a new message with given type, size
3108 * the new msg has a ref count of 1.
3109 */
3110 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3111 bool can_fail)
3112 {
3113 struct ceph_msg *m;
3114
3115 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3116 if (m == NULL)
3117 goto out;
3118
3119 m->hdr.type = cpu_to_le16(type);
3120 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3121 m->hdr.front_len = cpu_to_le32(front_len);
3122
3123 INIT_LIST_HEAD(&m->list_head);
3124 kref_init(&m->kref);
3125 INIT_LIST_HEAD(&m->data);
3126
3127 /* front */
3128 if (front_len) {
3129 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3130 if (m->front.iov_base == NULL) {
3131 dout("ceph_msg_new can't allocate %d bytes\n",
3132 front_len);
3133 goto out2;
3134 }
3135 } else {
3136 m->front.iov_base = NULL;
3137 }
3138 m->front_alloc_len = m->front.iov_len = front_len;
3139
3140 dout("ceph_msg_new %p front %d\n", m, front_len);
3141 return m;
3142
3143 out2:
3144 ceph_msg_put(m);
3145 out:
3146 if (!can_fail) {
3147 pr_err("msg_new can't create type %d front %d\n", type,
3148 front_len);
3149 WARN_ON(1);
3150 } else {
3151 dout("msg_new can't create type %d front %d\n", type,
3152 front_len);
3153 }
3154 return NULL;
3155 }
3156 EXPORT_SYMBOL(ceph_msg_new);
3157
3158 /*
3159 * Allocate "middle" portion of a message, if it is needed and wasn't
3160 * allocated by alloc_msg. This allows us to read a small fixed-size
3161 * per-type header in the front and then gracefully fail (i.e.,
3162 * propagate the error to the caller based on info in the front) when
3163 * the middle is too large.
3164 */
3165 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3166 {
3167 int type = le16_to_cpu(msg->hdr.type);
3168 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3169
3170 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3171 ceph_msg_type_name(type), middle_len);
3172 BUG_ON(!middle_len);
3173 BUG_ON(msg->middle);
3174
3175 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3176 if (!msg->middle)
3177 return -ENOMEM;
3178 return 0;
3179 }
3180
3181 /*
3182 * Allocate a message for receiving an incoming message on a
3183 * connection, and save the result in con->in_msg. Uses the
3184 * connection's private alloc_msg op if available.
3185 *
3186 * Returns 0 on success, or a negative error code.
3187 *
3188 * On success, if we set *skip = 1:
3189 * - the next message should be skipped and ignored.
3190 * - con->in_msg == NULL
3191 * or if we set *skip = 0:
3192 * - con->in_msg is non-null.
3193 * On error (ENOMEM, EAGAIN, ...),
3194 * - con->in_msg == NULL
3195 */
3196 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3197 {
3198 struct ceph_msg_header *hdr = &con->in_hdr;
3199 int middle_len = le32_to_cpu(hdr->middle_len);
3200 struct ceph_msg *msg;
3201 int ret = 0;
3202
3203 BUG_ON(con->in_msg != NULL);
3204 BUG_ON(!con->ops->alloc_msg);
3205
3206 mutex_unlock(&con->mutex);
3207 msg = con->ops->alloc_msg(con, hdr, skip);
3208 mutex_lock(&con->mutex);
3209 if (con->state != CON_STATE_OPEN) {
3210 if (msg)
3211 ceph_msg_put(msg);
3212 return -EAGAIN;
3213 }
3214 if (msg) {
3215 BUG_ON(*skip);
3216 con->in_msg = msg;
3217 con->in_msg->con = con->ops->get(con);
3218 BUG_ON(con->in_msg->con == NULL);
3219 } else {
3220 /*
3221 * Null message pointer means either we should skip
3222 * this message or we couldn't allocate memory. The
3223 * former is not an error.
3224 */
3225 if (*skip)
3226 return 0;
3227 con->error_msg = "error allocating memory for incoming message";
3228
3229 return -ENOMEM;
3230 }
3231 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3232
3233 if (middle_len && !con->in_msg->middle) {
3234 ret = ceph_alloc_middle(con, con->in_msg);
3235 if (ret < 0) {
3236 ceph_msg_put(con->in_msg);
3237 con->in_msg = NULL;
3238 }
3239 }
3240
3241 return ret;
3242 }
3243
3244
3245 /*
3246 * Free a generically kmalloc'd message.
3247 */
3248 void ceph_msg_kfree(struct ceph_msg *m)
3249 {
3250 dout("msg_kfree %p\n", m);
3251 ceph_kvfree(m->front.iov_base);
3252 kmem_cache_free(ceph_msg_cache, m);
3253 }
3254
3255 /*
3256 * Drop a msg ref. Destroy as needed.
3257 */
3258 void ceph_msg_last_put(struct kref *kref)
3259 {
3260 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3261 LIST_HEAD(data);
3262 struct list_head *links;
3263 struct list_head *next;
3264
3265 dout("ceph_msg_put last one on %p\n", m);
3266 WARN_ON(!list_empty(&m->list_head));
3267
3268 /* drop middle, data, if any */
3269 if (m->middle) {
3270 ceph_buffer_put(m->middle);
3271 m->middle = NULL;
3272 }
3273
3274 list_splice_init(&m->data, &data);
3275 list_for_each_safe(links, next, &data) {
3276 struct ceph_msg_data *data;
3277
3278 data = list_entry(links, struct ceph_msg_data, links);
3279 list_del_init(links);
3280 ceph_msg_data_destroy(data);
3281 }
3282 m->data_length = 0;
3283
3284 if (m->pool)
3285 ceph_msgpool_put(m->pool, m);
3286 else
3287 ceph_msg_kfree(m);
3288 }
3289 EXPORT_SYMBOL(ceph_msg_last_put);
3290
3291 void ceph_msg_dump(struct ceph_msg *msg)
3292 {
3293 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3294 msg->front_alloc_len, msg->data_length);
3295 print_hex_dump(KERN_DEBUG, "header: ",
3296 DUMP_PREFIX_OFFSET, 16, 1,
3297 &msg->hdr, sizeof(msg->hdr), true);
3298 print_hex_dump(KERN_DEBUG, " front: ",
3299 DUMP_PREFIX_OFFSET, 16, 1,
3300 msg->front.iov_base, msg->front.iov_len, true);
3301 if (msg->middle)
3302 print_hex_dump(KERN_DEBUG, "middle: ",
3303 DUMP_PREFIX_OFFSET, 16, 1,
3304 msg->middle->vec.iov_base,
3305 msg->middle->vec.iov_len, true);
3306 print_hex_dump(KERN_DEBUG, "footer: ",
3307 DUMP_PREFIX_OFFSET, 16, 1,
3308 &msg->footer, sizeof(msg->footer), true);
3309 }
3310 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.10379 seconds and 5 git commands to generate.