5e67be3fa2966fd39a50c051368611f9e43a43c4
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
33
34 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
35 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
36 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
37 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
38 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
39
40 /* static tag bytes (protocol control messages) */
41 static char tag_msg = CEPH_MSGR_TAG_MSG;
42 static char tag_ack = CEPH_MSGR_TAG_ACK;
43 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
44
45 #ifdef CONFIG_LOCKDEP
46 static struct lock_class_key socket_class;
47 #endif
48
49 /*
50 * When skipping (ignoring) a block of input we read it into a "skip
51 * buffer," which is this many bytes in size.
52 */
53 #define SKIP_BUF_SIZE 1024
54
55 static void queue_con(struct ceph_connection *con);
56 static void con_work(struct work_struct *);
57 static void ceph_fault(struct ceph_connection *con);
58
59 /*
60 * Nicely render a sockaddr as a string. An array of formatted
61 * strings is used, to approximate reentrancy.
62 */
63 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
64 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
65 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
66 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
67
68 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
69 static atomic_t addr_str_seq = ATOMIC_INIT(0);
70
71 static struct page *zero_page; /* used in certain error cases */
72
73 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
74 {
75 int i;
76 char *s;
77 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
78 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
79
80 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
81 s = addr_str[i];
82
83 switch (ss->ss_family) {
84 case AF_INET:
85 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
86 ntohs(in4->sin_port));
87 break;
88
89 case AF_INET6:
90 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
91 ntohs(in6->sin6_port));
92 break;
93
94 default:
95 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
96 ss->ss_family);
97 }
98
99 return s;
100 }
101 EXPORT_SYMBOL(ceph_pr_addr);
102
103 static void encode_my_addr(struct ceph_messenger *msgr)
104 {
105 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
106 ceph_encode_addr(&msgr->my_enc_addr);
107 }
108
109 /*
110 * work queue for all reading and writing to/from the socket.
111 */
112 static struct workqueue_struct *ceph_msgr_wq;
113
114 void _ceph_msgr_exit(void)
115 {
116 if (ceph_msgr_wq) {
117 destroy_workqueue(ceph_msgr_wq);
118 ceph_msgr_wq = NULL;
119 }
120
121 BUG_ON(zero_page == NULL);
122 kunmap(zero_page);
123 page_cache_release(zero_page);
124 zero_page = NULL;
125 }
126
127 int ceph_msgr_init(void)
128 {
129 BUG_ON(zero_page != NULL);
130 zero_page = ZERO_PAGE(0);
131 page_cache_get(zero_page);
132
133 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
134 if (ceph_msgr_wq)
135 return 0;
136
137 pr_err("msgr_init failed to create workqueue\n");
138 _ceph_msgr_exit();
139
140 return -ENOMEM;
141 }
142 EXPORT_SYMBOL(ceph_msgr_init);
143
144 void ceph_msgr_exit(void)
145 {
146 BUG_ON(ceph_msgr_wq == NULL);
147
148 _ceph_msgr_exit();
149 }
150 EXPORT_SYMBOL(ceph_msgr_exit);
151
152 void ceph_msgr_flush(void)
153 {
154 flush_workqueue(ceph_msgr_wq);
155 }
156 EXPORT_SYMBOL(ceph_msgr_flush);
157
158 /* Connection socket state transition functions */
159
160 static void con_sock_state_init(struct ceph_connection *con)
161 {
162 int old_state;
163
164 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
165 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
166 printk("%s: unexpected old state %d\n", __func__, old_state);
167 }
168
169 static void con_sock_state_connecting(struct ceph_connection *con)
170 {
171 int old_state;
172
173 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
174 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
175 printk("%s: unexpected old state %d\n", __func__, old_state);
176 }
177
178 static void con_sock_state_connected(struct ceph_connection *con)
179 {
180 int old_state;
181
182 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
183 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
184 printk("%s: unexpected old state %d\n", __func__, old_state);
185 }
186
187 static void con_sock_state_closing(struct ceph_connection *con)
188 {
189 int old_state;
190
191 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
192 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
193 old_state != CON_SOCK_STATE_CONNECTED &&
194 old_state != CON_SOCK_STATE_CLOSING))
195 printk("%s: unexpected old state %d\n", __func__, old_state);
196 }
197
198 static void con_sock_state_closed(struct ceph_connection *con)
199 {
200 int old_state;
201
202 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
203 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
204 old_state != CON_SOCK_STATE_CLOSING))
205 printk("%s: unexpected old state %d\n", __func__, old_state);
206 }
207
208 /*
209 * socket callback functions
210 */
211
212 /* data available on socket, or listen socket received a connect */
213 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
214 {
215 struct ceph_connection *con = sk->sk_user_data;
216
217 if (sk->sk_state != TCP_CLOSE_WAIT) {
218 dout("%s on %p state = %lu, queueing work\n", __func__,
219 con, con->state);
220 queue_con(con);
221 }
222 }
223
224 /* socket has buffer space for writing */
225 static void ceph_sock_write_space(struct sock *sk)
226 {
227 struct ceph_connection *con = sk->sk_user_data;
228
229 /* only queue to workqueue if there is data we want to write,
230 * and there is sufficient space in the socket buffer to accept
231 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
232 * doesn't get called again until try_write() fills the socket
233 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
234 * and net/core/stream.c:sk_stream_write_space().
235 */
236 if (test_bit(WRITE_PENDING, &con->flags)) {
237 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
238 dout("%s %p queueing write work\n", __func__, con);
239 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
240 queue_con(con);
241 }
242 } else {
243 dout("%s %p nothing to write\n", __func__, con);
244 }
245 }
246
247 /* socket's state has changed */
248 static void ceph_sock_state_change(struct sock *sk)
249 {
250 struct ceph_connection *con = sk->sk_user_data;
251
252 dout("%s %p state = %lu sk_state = %u\n", __func__,
253 con, con->state, sk->sk_state);
254
255 if (test_bit(CLOSED, &con->state))
256 return;
257
258 switch (sk->sk_state) {
259 case TCP_CLOSE:
260 dout("%s TCP_CLOSE\n", __func__);
261 case TCP_CLOSE_WAIT:
262 dout("%s TCP_CLOSE_WAIT\n", __func__);
263 con_sock_state_closing(con);
264 set_bit(SOCK_CLOSED, &con->flags);
265 queue_con(con);
266 break;
267 case TCP_ESTABLISHED:
268 dout("%s TCP_ESTABLISHED\n", __func__);
269 con_sock_state_connected(con);
270 queue_con(con);
271 break;
272 default: /* Everything else is uninteresting */
273 break;
274 }
275 }
276
277 /*
278 * set up socket callbacks
279 */
280 static void set_sock_callbacks(struct socket *sock,
281 struct ceph_connection *con)
282 {
283 struct sock *sk = sock->sk;
284 sk->sk_user_data = con;
285 sk->sk_data_ready = ceph_sock_data_ready;
286 sk->sk_write_space = ceph_sock_write_space;
287 sk->sk_state_change = ceph_sock_state_change;
288 }
289
290
291 /*
292 * socket helpers
293 */
294
295 /*
296 * initiate connection to a remote socket.
297 */
298 static int ceph_tcp_connect(struct ceph_connection *con)
299 {
300 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
301 struct socket *sock;
302 int ret;
303
304 BUG_ON(con->sock);
305 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
306 IPPROTO_TCP, &sock);
307 if (ret)
308 return ret;
309 sock->sk->sk_allocation = GFP_NOFS;
310
311 #ifdef CONFIG_LOCKDEP
312 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
313 #endif
314
315 set_sock_callbacks(sock, con);
316
317 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
318
319 con_sock_state_connecting(con);
320 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
321 O_NONBLOCK);
322 if (ret == -EINPROGRESS) {
323 dout("connect %s EINPROGRESS sk_state = %u\n",
324 ceph_pr_addr(&con->peer_addr.in_addr),
325 sock->sk->sk_state);
326 } else if (ret < 0) {
327 pr_err("connect %s error %d\n",
328 ceph_pr_addr(&con->peer_addr.in_addr), ret);
329 sock_release(sock);
330 con->error_msg = "connect error";
331
332 return ret;
333 }
334 con->sock = sock;
335 return 0;
336 }
337
338 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
339 {
340 struct kvec iov = {buf, len};
341 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
342 int r;
343
344 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
345 if (r == -EAGAIN)
346 r = 0;
347 return r;
348 }
349
350 /*
351 * write something. @more is true if caller will be sending more data
352 * shortly.
353 */
354 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
355 size_t kvlen, size_t len, int more)
356 {
357 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
358 int r;
359
360 if (more)
361 msg.msg_flags |= MSG_MORE;
362 else
363 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
364
365 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
366 if (r == -EAGAIN)
367 r = 0;
368 return r;
369 }
370
371 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
372 int offset, size_t size, int more)
373 {
374 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
375 int ret;
376
377 ret = kernel_sendpage(sock, page, offset, size, flags);
378 if (ret == -EAGAIN)
379 ret = 0;
380
381 return ret;
382 }
383
384
385 /*
386 * Shutdown/close the socket for the given connection.
387 */
388 static int con_close_socket(struct ceph_connection *con)
389 {
390 int rc;
391
392 dout("con_close_socket on %p sock %p\n", con, con->sock);
393 if (!con->sock)
394 return 0;
395 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
396 sock_release(con->sock);
397 con->sock = NULL;
398
399 /*
400 * Forcibly clear the SOCK_CLOSE flag. It gets set
401 * independent of the connection mutex, and we could have
402 * received a socket close event before we had the chance to
403 * shut the socket down.
404 */
405 clear_bit(SOCK_CLOSED, &con->flags);
406 con_sock_state_closed(con);
407 return rc;
408 }
409
410 /*
411 * Reset a connection. Discard all incoming and outgoing messages
412 * and clear *_seq state.
413 */
414 static void ceph_msg_remove(struct ceph_msg *msg)
415 {
416 list_del_init(&msg->list_head);
417 BUG_ON(msg->con == NULL);
418 msg->con->ops->put(msg->con);
419 msg->con = NULL;
420
421 ceph_msg_put(msg);
422 }
423 static void ceph_msg_remove_list(struct list_head *head)
424 {
425 while (!list_empty(head)) {
426 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
427 list_head);
428 ceph_msg_remove(msg);
429 }
430 }
431
432 static void reset_connection(struct ceph_connection *con)
433 {
434 /* reset connection, out_queue, msg_ and connect_seq */
435 /* discard existing out_queue and msg_seq */
436 ceph_msg_remove_list(&con->out_queue);
437 ceph_msg_remove_list(&con->out_sent);
438
439 if (con->in_msg) {
440 BUG_ON(con->in_msg->con != con);
441 con->in_msg->con = NULL;
442 ceph_msg_put(con->in_msg);
443 con->in_msg = NULL;
444 con->ops->put(con);
445 }
446
447 con->connect_seq = 0;
448 con->out_seq = 0;
449 if (con->out_msg) {
450 ceph_msg_put(con->out_msg);
451 con->out_msg = NULL;
452 }
453 con->in_seq = 0;
454 con->in_seq_acked = 0;
455 }
456
457 /*
458 * mark a peer down. drop any open connections.
459 */
460 void ceph_con_close(struct ceph_connection *con)
461 {
462 dout("con_close %p peer %s\n", con,
463 ceph_pr_addr(&con->peer_addr.in_addr));
464 clear_bit(NEGOTIATING, &con->state);
465 clear_bit(CONNECTING, &con->state);
466 clear_bit(CONNECTED, &con->state);
467 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
468 set_bit(CLOSED, &con->state);
469
470 clear_bit(LOSSYTX, &con->flags); /* so we retry next connect */
471 clear_bit(KEEPALIVE_PENDING, &con->flags);
472 clear_bit(WRITE_PENDING, &con->flags);
473
474 mutex_lock(&con->mutex);
475 reset_connection(con);
476 con->peer_global_seq = 0;
477 cancel_delayed_work(&con->work);
478 mutex_unlock(&con->mutex);
479 queue_con(con);
480 }
481 EXPORT_SYMBOL(ceph_con_close);
482
483 /*
484 * Reopen a closed connection, with a new peer address.
485 */
486 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
487 {
488 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
489 set_bit(OPENING, &con->state);
490 WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
491
492 memcpy(&con->peer_addr, addr, sizeof(*addr));
493 con->delay = 0; /* reset backoff memory */
494 queue_con(con);
495 }
496 EXPORT_SYMBOL(ceph_con_open);
497
498 /*
499 * return true if this connection ever successfully opened
500 */
501 bool ceph_con_opened(struct ceph_connection *con)
502 {
503 return con->connect_seq > 0;
504 }
505
506 /*
507 * initialize a new connection.
508 */
509 void ceph_con_init(struct ceph_connection *con, void *private,
510 const struct ceph_connection_operations *ops,
511 struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
512 {
513 dout("con_init %p\n", con);
514 memset(con, 0, sizeof(*con));
515 con->private = private;
516 con->ops = ops;
517 con->msgr = msgr;
518
519 con_sock_state_init(con);
520
521 con->peer_name.type = (__u8) entity_type;
522 con->peer_name.num = cpu_to_le64(entity_num);
523
524 mutex_init(&con->mutex);
525 INIT_LIST_HEAD(&con->out_queue);
526 INIT_LIST_HEAD(&con->out_sent);
527 INIT_DELAYED_WORK(&con->work, con_work);
528
529 set_bit(CLOSED, &con->state);
530 }
531 EXPORT_SYMBOL(ceph_con_init);
532
533
534 /*
535 * We maintain a global counter to order connection attempts. Get
536 * a unique seq greater than @gt.
537 */
538 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
539 {
540 u32 ret;
541
542 spin_lock(&msgr->global_seq_lock);
543 if (msgr->global_seq < gt)
544 msgr->global_seq = gt;
545 ret = ++msgr->global_seq;
546 spin_unlock(&msgr->global_seq_lock);
547 return ret;
548 }
549
550 static void con_out_kvec_reset(struct ceph_connection *con)
551 {
552 con->out_kvec_left = 0;
553 con->out_kvec_bytes = 0;
554 con->out_kvec_cur = &con->out_kvec[0];
555 }
556
557 static void con_out_kvec_add(struct ceph_connection *con,
558 size_t size, void *data)
559 {
560 int index;
561
562 index = con->out_kvec_left;
563 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
564
565 con->out_kvec[index].iov_len = size;
566 con->out_kvec[index].iov_base = data;
567 con->out_kvec_left++;
568 con->out_kvec_bytes += size;
569 }
570
571 #ifdef CONFIG_BLOCK
572 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
573 {
574 if (!bio) {
575 *iter = NULL;
576 *seg = 0;
577 return;
578 }
579 *iter = bio;
580 *seg = bio->bi_idx;
581 }
582
583 static void iter_bio_next(struct bio **bio_iter, int *seg)
584 {
585 if (*bio_iter == NULL)
586 return;
587
588 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
589
590 (*seg)++;
591 if (*seg == (*bio_iter)->bi_vcnt)
592 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
593 }
594 #endif
595
596 static void prepare_write_message_data(struct ceph_connection *con)
597 {
598 struct ceph_msg *msg = con->out_msg;
599
600 BUG_ON(!msg);
601 BUG_ON(!msg->hdr.data_len);
602
603 /* initialize page iterator */
604 con->out_msg_pos.page = 0;
605 if (msg->pages)
606 con->out_msg_pos.page_pos = msg->page_alignment;
607 else
608 con->out_msg_pos.page_pos = 0;
609 #ifdef CONFIG_BLOCK
610 if (msg->bio)
611 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
612 #endif
613 con->out_msg_pos.data_pos = 0;
614 con->out_msg_pos.did_page_crc = false;
615 con->out_more = 1; /* data + footer will follow */
616 }
617
618 /*
619 * Prepare footer for currently outgoing message, and finish things
620 * off. Assumes out_kvec* are already valid.. we just add on to the end.
621 */
622 static void prepare_write_message_footer(struct ceph_connection *con)
623 {
624 struct ceph_msg *m = con->out_msg;
625 int v = con->out_kvec_left;
626
627 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
628
629 dout("prepare_write_message_footer %p\n", con);
630 con->out_kvec_is_msg = true;
631 con->out_kvec[v].iov_base = &m->footer;
632 con->out_kvec[v].iov_len = sizeof(m->footer);
633 con->out_kvec_bytes += sizeof(m->footer);
634 con->out_kvec_left++;
635 con->out_more = m->more_to_follow;
636 con->out_msg_done = true;
637 }
638
639 /*
640 * Prepare headers for the next outgoing message.
641 */
642 static void prepare_write_message(struct ceph_connection *con)
643 {
644 struct ceph_msg *m;
645 u32 crc;
646
647 con_out_kvec_reset(con);
648 con->out_kvec_is_msg = true;
649 con->out_msg_done = false;
650
651 /* Sneak an ack in there first? If we can get it into the same
652 * TCP packet that's a good thing. */
653 if (con->in_seq > con->in_seq_acked) {
654 con->in_seq_acked = con->in_seq;
655 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
656 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
657 con_out_kvec_add(con, sizeof (con->out_temp_ack),
658 &con->out_temp_ack);
659 }
660
661 BUG_ON(list_empty(&con->out_queue));
662 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
663 con->out_msg = m;
664 BUG_ON(m->con != con);
665
666 /* put message on sent list */
667 ceph_msg_get(m);
668 list_move_tail(&m->list_head, &con->out_sent);
669
670 /*
671 * only assign outgoing seq # if we haven't sent this message
672 * yet. if it is requeued, resend with it's original seq.
673 */
674 if (m->needs_out_seq) {
675 m->hdr.seq = cpu_to_le64(++con->out_seq);
676 m->needs_out_seq = false;
677 }
678
679 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
680 m, con->out_seq, le16_to_cpu(m->hdr.type),
681 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
682 le32_to_cpu(m->hdr.data_len),
683 m->nr_pages);
684 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
685
686 /* tag + hdr + front + middle */
687 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
688 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
689 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
690
691 if (m->middle)
692 con_out_kvec_add(con, m->middle->vec.iov_len,
693 m->middle->vec.iov_base);
694
695 /* fill in crc (except data pages), footer */
696 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
697 con->out_msg->hdr.crc = cpu_to_le32(crc);
698 con->out_msg->footer.flags = 0;
699
700 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
701 con->out_msg->footer.front_crc = cpu_to_le32(crc);
702 if (m->middle) {
703 crc = crc32c(0, m->middle->vec.iov_base,
704 m->middle->vec.iov_len);
705 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
706 } else
707 con->out_msg->footer.middle_crc = 0;
708 dout("%s front_crc %u middle_crc %u\n", __func__,
709 le32_to_cpu(con->out_msg->footer.front_crc),
710 le32_to_cpu(con->out_msg->footer.middle_crc));
711
712 /* is there a data payload? */
713 con->out_msg->footer.data_crc = 0;
714 if (m->hdr.data_len)
715 prepare_write_message_data(con);
716 else
717 /* no, queue up footer too and be done */
718 prepare_write_message_footer(con);
719
720 set_bit(WRITE_PENDING, &con->flags);
721 }
722
723 /*
724 * Prepare an ack.
725 */
726 static void prepare_write_ack(struct ceph_connection *con)
727 {
728 dout("prepare_write_ack %p %llu -> %llu\n", con,
729 con->in_seq_acked, con->in_seq);
730 con->in_seq_acked = con->in_seq;
731
732 con_out_kvec_reset(con);
733
734 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
735
736 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
737 con_out_kvec_add(con, sizeof (con->out_temp_ack),
738 &con->out_temp_ack);
739
740 con->out_more = 1; /* more will follow.. eventually.. */
741 set_bit(WRITE_PENDING, &con->flags);
742 }
743
744 /*
745 * Prepare to write keepalive byte.
746 */
747 static void prepare_write_keepalive(struct ceph_connection *con)
748 {
749 dout("prepare_write_keepalive %p\n", con);
750 con_out_kvec_reset(con);
751 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
752 set_bit(WRITE_PENDING, &con->flags);
753 }
754
755 /*
756 * Connection negotiation.
757 */
758
759 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
760 int *auth_proto)
761 {
762 struct ceph_auth_handshake *auth;
763
764 if (!con->ops->get_authorizer) {
765 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
766 con->out_connect.authorizer_len = 0;
767
768 return NULL;
769 }
770
771 /* Can't hold the mutex while getting authorizer */
772
773 mutex_unlock(&con->mutex);
774
775 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
776
777 mutex_lock(&con->mutex);
778
779 if (IS_ERR(auth))
780 return auth;
781 if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
782 return ERR_PTR(-EAGAIN);
783
784 con->auth_reply_buf = auth->authorizer_reply_buf;
785 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
786
787
788 return auth;
789 }
790
791 /*
792 * We connected to a peer and are saying hello.
793 */
794 static void prepare_write_banner(struct ceph_connection *con)
795 {
796 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
797 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
798 &con->msgr->my_enc_addr);
799
800 con->out_more = 0;
801 set_bit(WRITE_PENDING, &con->flags);
802 }
803
804 static int prepare_write_connect(struct ceph_connection *con)
805 {
806 unsigned int global_seq = get_global_seq(con->msgr, 0);
807 int proto;
808 int auth_proto;
809 struct ceph_auth_handshake *auth;
810
811 switch (con->peer_name.type) {
812 case CEPH_ENTITY_TYPE_MON:
813 proto = CEPH_MONC_PROTOCOL;
814 break;
815 case CEPH_ENTITY_TYPE_OSD:
816 proto = CEPH_OSDC_PROTOCOL;
817 break;
818 case CEPH_ENTITY_TYPE_MDS:
819 proto = CEPH_MDSC_PROTOCOL;
820 break;
821 default:
822 BUG();
823 }
824
825 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
826 con->connect_seq, global_seq, proto);
827
828 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
829 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
830 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
831 con->out_connect.global_seq = cpu_to_le32(global_seq);
832 con->out_connect.protocol_version = cpu_to_le32(proto);
833 con->out_connect.flags = 0;
834
835 auth_proto = CEPH_AUTH_UNKNOWN;
836 auth = get_connect_authorizer(con, &auth_proto);
837 if (IS_ERR(auth))
838 return PTR_ERR(auth);
839
840 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
841 con->out_connect.authorizer_len = auth ?
842 cpu_to_le32(auth->authorizer_buf_len) : 0;
843
844 con_out_kvec_reset(con);
845 con_out_kvec_add(con, sizeof (con->out_connect),
846 &con->out_connect);
847 if (auth && auth->authorizer_buf_len)
848 con_out_kvec_add(con, auth->authorizer_buf_len,
849 auth->authorizer_buf);
850
851 con->out_more = 0;
852 set_bit(WRITE_PENDING, &con->flags);
853
854 return 0;
855 }
856
857 /*
858 * write as much of pending kvecs to the socket as we can.
859 * 1 -> done
860 * 0 -> socket full, but more to do
861 * <0 -> error
862 */
863 static int write_partial_kvec(struct ceph_connection *con)
864 {
865 int ret;
866
867 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
868 while (con->out_kvec_bytes > 0) {
869 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
870 con->out_kvec_left, con->out_kvec_bytes,
871 con->out_more);
872 if (ret <= 0)
873 goto out;
874 con->out_kvec_bytes -= ret;
875 if (con->out_kvec_bytes == 0)
876 break; /* done */
877
878 /* account for full iov entries consumed */
879 while (ret >= con->out_kvec_cur->iov_len) {
880 BUG_ON(!con->out_kvec_left);
881 ret -= con->out_kvec_cur->iov_len;
882 con->out_kvec_cur++;
883 con->out_kvec_left--;
884 }
885 /* and for a partially-consumed entry */
886 if (ret) {
887 con->out_kvec_cur->iov_len -= ret;
888 con->out_kvec_cur->iov_base += ret;
889 }
890 }
891 con->out_kvec_left = 0;
892 con->out_kvec_is_msg = false;
893 ret = 1;
894 out:
895 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
896 con->out_kvec_bytes, con->out_kvec_left, ret);
897 return ret; /* done! */
898 }
899
900 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
901 size_t len, size_t sent, bool in_trail)
902 {
903 struct ceph_msg *msg = con->out_msg;
904
905 BUG_ON(!msg);
906 BUG_ON(!sent);
907
908 con->out_msg_pos.data_pos += sent;
909 con->out_msg_pos.page_pos += sent;
910 if (sent == len) {
911 con->out_msg_pos.page_pos = 0;
912 con->out_msg_pos.page++;
913 con->out_msg_pos.did_page_crc = false;
914 if (in_trail)
915 list_move_tail(&page->lru,
916 &msg->trail->head);
917 else if (msg->pagelist)
918 list_move_tail(&page->lru,
919 &msg->pagelist->head);
920 #ifdef CONFIG_BLOCK
921 else if (msg->bio)
922 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
923 #endif
924 }
925 }
926
927 /*
928 * Write as much message data payload as we can. If we finish, queue
929 * up the footer.
930 * 1 -> done, footer is now queued in out_kvec[].
931 * 0 -> socket full, but more to do
932 * <0 -> error
933 */
934 static int write_partial_msg_pages(struct ceph_connection *con)
935 {
936 struct ceph_msg *msg = con->out_msg;
937 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
938 size_t len;
939 bool do_datacrc = !con->msgr->nocrc;
940 int ret;
941 int total_max_write;
942 bool in_trail = false;
943 size_t trail_len = (msg->trail ? msg->trail->length : 0);
944
945 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
946 con, msg, con->out_msg_pos.page, msg->nr_pages,
947 con->out_msg_pos.page_pos);
948
949 while (data_len > con->out_msg_pos.data_pos) {
950 struct page *page = NULL;
951 int max_write = PAGE_SIZE;
952 int bio_offset = 0;
953
954 total_max_write = data_len - trail_len -
955 con->out_msg_pos.data_pos;
956
957 /*
958 * if we are calculating the data crc (the default), we need
959 * to map the page. if our pages[] has been revoked, use the
960 * zero page.
961 */
962
963 /* have we reached the trail part of the data? */
964 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
965 in_trail = true;
966
967 total_max_write = data_len - con->out_msg_pos.data_pos;
968
969 page = list_first_entry(&msg->trail->head,
970 struct page, lru);
971 } else if (msg->pages) {
972 page = msg->pages[con->out_msg_pos.page];
973 } else if (msg->pagelist) {
974 page = list_first_entry(&msg->pagelist->head,
975 struct page, lru);
976 #ifdef CONFIG_BLOCK
977 } else if (msg->bio) {
978 struct bio_vec *bv;
979
980 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
981 page = bv->bv_page;
982 bio_offset = bv->bv_offset;
983 max_write = bv->bv_len;
984 #endif
985 } else {
986 page = zero_page;
987 }
988 len = min_t(int, max_write - con->out_msg_pos.page_pos,
989 total_max_write);
990
991 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
992 void *base;
993 u32 crc;
994 u32 tmpcrc = le32_to_cpu(msg->footer.data_crc);
995 char *kaddr;
996
997 kaddr = kmap(page);
998 BUG_ON(kaddr == NULL);
999 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1000 crc = crc32c(tmpcrc, base, len);
1001 msg->footer.data_crc = cpu_to_le32(crc);
1002 con->out_msg_pos.did_page_crc = true;
1003 }
1004 ret = ceph_tcp_sendpage(con->sock, page,
1005 con->out_msg_pos.page_pos + bio_offset,
1006 len, 1);
1007
1008 if (do_datacrc)
1009 kunmap(page);
1010
1011 if (ret <= 0)
1012 goto out;
1013
1014 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1015 }
1016
1017 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1018
1019 /* prepare and queue up footer, too */
1020 if (!do_datacrc)
1021 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1022 con_out_kvec_reset(con);
1023 prepare_write_message_footer(con);
1024 ret = 1;
1025 out:
1026 return ret;
1027 }
1028
1029 /*
1030 * write some zeros
1031 */
1032 static int write_partial_skip(struct ceph_connection *con)
1033 {
1034 int ret;
1035
1036 while (con->out_skip > 0) {
1037 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1038
1039 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1040 if (ret <= 0)
1041 goto out;
1042 con->out_skip -= ret;
1043 }
1044 ret = 1;
1045 out:
1046 return ret;
1047 }
1048
1049 /*
1050 * Prepare to read connection handshake, or an ack.
1051 */
1052 static void prepare_read_banner(struct ceph_connection *con)
1053 {
1054 dout("prepare_read_banner %p\n", con);
1055 con->in_base_pos = 0;
1056 }
1057
1058 static void prepare_read_connect(struct ceph_connection *con)
1059 {
1060 dout("prepare_read_connect %p\n", con);
1061 con->in_base_pos = 0;
1062 }
1063
1064 static void prepare_read_ack(struct ceph_connection *con)
1065 {
1066 dout("prepare_read_ack %p\n", con);
1067 con->in_base_pos = 0;
1068 }
1069
1070 static void prepare_read_tag(struct ceph_connection *con)
1071 {
1072 dout("prepare_read_tag %p\n", con);
1073 con->in_base_pos = 0;
1074 con->in_tag = CEPH_MSGR_TAG_READY;
1075 }
1076
1077 /*
1078 * Prepare to read a message.
1079 */
1080 static int prepare_read_message(struct ceph_connection *con)
1081 {
1082 dout("prepare_read_message %p\n", con);
1083 BUG_ON(con->in_msg != NULL);
1084 con->in_base_pos = 0;
1085 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1086 return 0;
1087 }
1088
1089
1090 static int read_partial(struct ceph_connection *con,
1091 int end, int size, void *object)
1092 {
1093 while (con->in_base_pos < end) {
1094 int left = end - con->in_base_pos;
1095 int have = size - left;
1096 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1097 if (ret <= 0)
1098 return ret;
1099 con->in_base_pos += ret;
1100 }
1101 return 1;
1102 }
1103
1104
1105 /*
1106 * Read all or part of the connect-side handshake on a new connection
1107 */
1108 static int read_partial_banner(struct ceph_connection *con)
1109 {
1110 int size;
1111 int end;
1112 int ret;
1113
1114 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1115
1116 /* peer's banner */
1117 size = strlen(CEPH_BANNER);
1118 end = size;
1119 ret = read_partial(con, end, size, con->in_banner);
1120 if (ret <= 0)
1121 goto out;
1122
1123 size = sizeof (con->actual_peer_addr);
1124 end += size;
1125 ret = read_partial(con, end, size, &con->actual_peer_addr);
1126 if (ret <= 0)
1127 goto out;
1128
1129 size = sizeof (con->peer_addr_for_me);
1130 end += size;
1131 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1132 if (ret <= 0)
1133 goto out;
1134
1135 out:
1136 return ret;
1137 }
1138
1139 static int read_partial_connect(struct ceph_connection *con)
1140 {
1141 int size;
1142 int end;
1143 int ret;
1144
1145 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1146
1147 size = sizeof (con->in_reply);
1148 end = size;
1149 ret = read_partial(con, end, size, &con->in_reply);
1150 if (ret <= 0)
1151 goto out;
1152
1153 size = le32_to_cpu(con->in_reply.authorizer_len);
1154 end += size;
1155 ret = read_partial(con, end, size, con->auth_reply_buf);
1156 if (ret <= 0)
1157 goto out;
1158
1159 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1160 con, (int)con->in_reply.tag,
1161 le32_to_cpu(con->in_reply.connect_seq),
1162 le32_to_cpu(con->in_reply.global_seq));
1163 out:
1164 return ret;
1165
1166 }
1167
1168 /*
1169 * Verify the hello banner looks okay.
1170 */
1171 static int verify_hello(struct ceph_connection *con)
1172 {
1173 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1174 pr_err("connect to %s got bad banner\n",
1175 ceph_pr_addr(&con->peer_addr.in_addr));
1176 con->error_msg = "protocol error, bad banner";
1177 return -1;
1178 }
1179 return 0;
1180 }
1181
1182 static bool addr_is_blank(struct sockaddr_storage *ss)
1183 {
1184 switch (ss->ss_family) {
1185 case AF_INET:
1186 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1187 case AF_INET6:
1188 return
1189 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1190 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1191 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1192 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1193 }
1194 return false;
1195 }
1196
1197 static int addr_port(struct sockaddr_storage *ss)
1198 {
1199 switch (ss->ss_family) {
1200 case AF_INET:
1201 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1202 case AF_INET6:
1203 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1204 }
1205 return 0;
1206 }
1207
1208 static void addr_set_port(struct sockaddr_storage *ss, int p)
1209 {
1210 switch (ss->ss_family) {
1211 case AF_INET:
1212 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1213 break;
1214 case AF_INET6:
1215 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1216 break;
1217 }
1218 }
1219
1220 /*
1221 * Unlike other *_pton function semantics, zero indicates success.
1222 */
1223 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1224 char delim, const char **ipend)
1225 {
1226 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1227 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1228
1229 memset(ss, 0, sizeof(*ss));
1230
1231 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1232 ss->ss_family = AF_INET;
1233 return 0;
1234 }
1235
1236 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1237 ss->ss_family = AF_INET6;
1238 return 0;
1239 }
1240
1241 return -EINVAL;
1242 }
1243
1244 /*
1245 * Extract hostname string and resolve using kernel DNS facility.
1246 */
1247 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1248 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1249 struct sockaddr_storage *ss, char delim, const char **ipend)
1250 {
1251 const char *end, *delim_p;
1252 char *colon_p, *ip_addr = NULL;
1253 int ip_len, ret;
1254
1255 /*
1256 * The end of the hostname occurs immediately preceding the delimiter or
1257 * the port marker (':') where the delimiter takes precedence.
1258 */
1259 delim_p = memchr(name, delim, namelen);
1260 colon_p = memchr(name, ':', namelen);
1261
1262 if (delim_p && colon_p)
1263 end = delim_p < colon_p ? delim_p : colon_p;
1264 else if (!delim_p && colon_p)
1265 end = colon_p;
1266 else {
1267 end = delim_p;
1268 if (!end) /* case: hostname:/ */
1269 end = name + namelen;
1270 }
1271
1272 if (end <= name)
1273 return -EINVAL;
1274
1275 /* do dns_resolve upcall */
1276 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1277 if (ip_len > 0)
1278 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1279 else
1280 ret = -ESRCH;
1281
1282 kfree(ip_addr);
1283
1284 *ipend = end;
1285
1286 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1287 ret, ret ? "failed" : ceph_pr_addr(ss));
1288
1289 return ret;
1290 }
1291 #else
1292 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1293 struct sockaddr_storage *ss, char delim, const char **ipend)
1294 {
1295 return -EINVAL;
1296 }
1297 #endif
1298
1299 /*
1300 * Parse a server name (IP or hostname). If a valid IP address is not found
1301 * then try to extract a hostname to resolve using userspace DNS upcall.
1302 */
1303 static int ceph_parse_server_name(const char *name, size_t namelen,
1304 struct sockaddr_storage *ss, char delim, const char **ipend)
1305 {
1306 int ret;
1307
1308 ret = ceph_pton(name, namelen, ss, delim, ipend);
1309 if (ret)
1310 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1311
1312 return ret;
1313 }
1314
1315 /*
1316 * Parse an ip[:port] list into an addr array. Use the default
1317 * monitor port if a port isn't specified.
1318 */
1319 int ceph_parse_ips(const char *c, const char *end,
1320 struct ceph_entity_addr *addr,
1321 int max_count, int *count)
1322 {
1323 int i, ret = -EINVAL;
1324 const char *p = c;
1325
1326 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1327 for (i = 0; i < max_count; i++) {
1328 const char *ipend;
1329 struct sockaddr_storage *ss = &addr[i].in_addr;
1330 int port;
1331 char delim = ',';
1332
1333 if (*p == '[') {
1334 delim = ']';
1335 p++;
1336 }
1337
1338 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1339 if (ret)
1340 goto bad;
1341 ret = -EINVAL;
1342
1343 p = ipend;
1344
1345 if (delim == ']') {
1346 if (*p != ']') {
1347 dout("missing matching ']'\n");
1348 goto bad;
1349 }
1350 p++;
1351 }
1352
1353 /* port? */
1354 if (p < end && *p == ':') {
1355 port = 0;
1356 p++;
1357 while (p < end && *p >= '0' && *p <= '9') {
1358 port = (port * 10) + (*p - '0');
1359 p++;
1360 }
1361 if (port > 65535 || port == 0)
1362 goto bad;
1363 } else {
1364 port = CEPH_MON_PORT;
1365 }
1366
1367 addr_set_port(ss, port);
1368
1369 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1370
1371 if (p == end)
1372 break;
1373 if (*p != ',')
1374 goto bad;
1375 p++;
1376 }
1377
1378 if (p != end)
1379 goto bad;
1380
1381 if (count)
1382 *count = i + 1;
1383 return 0;
1384
1385 bad:
1386 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1387 return ret;
1388 }
1389 EXPORT_SYMBOL(ceph_parse_ips);
1390
1391 static int process_banner(struct ceph_connection *con)
1392 {
1393 dout("process_banner on %p\n", con);
1394
1395 if (verify_hello(con) < 0)
1396 return -1;
1397
1398 ceph_decode_addr(&con->actual_peer_addr);
1399 ceph_decode_addr(&con->peer_addr_for_me);
1400
1401 /*
1402 * Make sure the other end is who we wanted. note that the other
1403 * end may not yet know their ip address, so if it's 0.0.0.0, give
1404 * them the benefit of the doubt.
1405 */
1406 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1407 sizeof(con->peer_addr)) != 0 &&
1408 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1409 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1410 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1411 ceph_pr_addr(&con->peer_addr.in_addr),
1412 (int)le32_to_cpu(con->peer_addr.nonce),
1413 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1414 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1415 con->error_msg = "wrong peer at address";
1416 return -1;
1417 }
1418
1419 /*
1420 * did we learn our address?
1421 */
1422 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1423 int port = addr_port(&con->msgr->inst.addr.in_addr);
1424
1425 memcpy(&con->msgr->inst.addr.in_addr,
1426 &con->peer_addr_for_me.in_addr,
1427 sizeof(con->peer_addr_for_me.in_addr));
1428 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1429 encode_my_addr(con->msgr);
1430 dout("process_banner learned my addr is %s\n",
1431 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1432 }
1433
1434 return 0;
1435 }
1436
1437 static void fail_protocol(struct ceph_connection *con)
1438 {
1439 reset_connection(con);
1440 set_bit(CLOSED, &con->state); /* in case there's queued work */
1441 }
1442
1443 static int process_connect(struct ceph_connection *con)
1444 {
1445 u64 sup_feat = con->msgr->supported_features;
1446 u64 req_feat = con->msgr->required_features;
1447 u64 server_feat = le64_to_cpu(con->in_reply.features);
1448 int ret;
1449
1450 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1451
1452 switch (con->in_reply.tag) {
1453 case CEPH_MSGR_TAG_FEATURES:
1454 pr_err("%s%lld %s feature set mismatch,"
1455 " my %llx < server's %llx, missing %llx\n",
1456 ENTITY_NAME(con->peer_name),
1457 ceph_pr_addr(&con->peer_addr.in_addr),
1458 sup_feat, server_feat, server_feat & ~sup_feat);
1459 con->error_msg = "missing required protocol features";
1460 fail_protocol(con);
1461 return -1;
1462
1463 case CEPH_MSGR_TAG_BADPROTOVER:
1464 pr_err("%s%lld %s protocol version mismatch,"
1465 " my %d != server's %d\n",
1466 ENTITY_NAME(con->peer_name),
1467 ceph_pr_addr(&con->peer_addr.in_addr),
1468 le32_to_cpu(con->out_connect.protocol_version),
1469 le32_to_cpu(con->in_reply.protocol_version));
1470 con->error_msg = "protocol version mismatch";
1471 fail_protocol(con);
1472 return -1;
1473
1474 case CEPH_MSGR_TAG_BADAUTHORIZER:
1475 con->auth_retry++;
1476 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1477 con->auth_retry);
1478 if (con->auth_retry == 2) {
1479 con->error_msg = "connect authorization failure";
1480 return -1;
1481 }
1482 con->auth_retry = 1;
1483 ret = prepare_write_connect(con);
1484 if (ret < 0)
1485 return ret;
1486 prepare_read_connect(con);
1487 break;
1488
1489 case CEPH_MSGR_TAG_RESETSESSION:
1490 /*
1491 * If we connected with a large connect_seq but the peer
1492 * has no record of a session with us (no connection, or
1493 * connect_seq == 0), they will send RESETSESION to indicate
1494 * that they must have reset their session, and may have
1495 * dropped messages.
1496 */
1497 dout("process_connect got RESET peer seq %u\n",
1498 le32_to_cpu(con->in_connect.connect_seq));
1499 pr_err("%s%lld %s connection reset\n",
1500 ENTITY_NAME(con->peer_name),
1501 ceph_pr_addr(&con->peer_addr.in_addr));
1502 reset_connection(con);
1503 ret = prepare_write_connect(con);
1504 if (ret < 0)
1505 return ret;
1506 prepare_read_connect(con);
1507
1508 /* Tell ceph about it. */
1509 mutex_unlock(&con->mutex);
1510 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1511 if (con->ops->peer_reset)
1512 con->ops->peer_reset(con);
1513 mutex_lock(&con->mutex);
1514 if (test_bit(CLOSED, &con->state) ||
1515 test_bit(OPENING, &con->state))
1516 return -EAGAIN;
1517 break;
1518
1519 case CEPH_MSGR_TAG_RETRY_SESSION:
1520 /*
1521 * If we sent a smaller connect_seq than the peer has, try
1522 * again with a larger value.
1523 */
1524 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1525 le32_to_cpu(con->out_connect.connect_seq),
1526 le32_to_cpu(con->in_connect.connect_seq));
1527 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1528 ret = prepare_write_connect(con);
1529 if (ret < 0)
1530 return ret;
1531 prepare_read_connect(con);
1532 break;
1533
1534 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1535 /*
1536 * If we sent a smaller global_seq than the peer has, try
1537 * again with a larger value.
1538 */
1539 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1540 con->peer_global_seq,
1541 le32_to_cpu(con->in_connect.global_seq));
1542 get_global_seq(con->msgr,
1543 le32_to_cpu(con->in_connect.global_seq));
1544 ret = prepare_write_connect(con);
1545 if (ret < 0)
1546 return ret;
1547 prepare_read_connect(con);
1548 break;
1549
1550 case CEPH_MSGR_TAG_READY:
1551 if (req_feat & ~server_feat) {
1552 pr_err("%s%lld %s protocol feature mismatch,"
1553 " my required %llx > server's %llx, need %llx\n",
1554 ENTITY_NAME(con->peer_name),
1555 ceph_pr_addr(&con->peer_addr.in_addr),
1556 req_feat, server_feat, req_feat & ~server_feat);
1557 con->error_msg = "missing required protocol features";
1558 fail_protocol(con);
1559 return -1;
1560 }
1561 clear_bit(NEGOTIATING, &con->state);
1562 clear_bit(CONNECTING, &con->state);
1563 set_bit(CONNECTED, &con->state);
1564 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1565 con->connect_seq++;
1566 con->peer_features = server_feat;
1567 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1568 con->peer_global_seq,
1569 le32_to_cpu(con->in_reply.connect_seq),
1570 con->connect_seq);
1571 WARN_ON(con->connect_seq !=
1572 le32_to_cpu(con->in_reply.connect_seq));
1573
1574 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1575 set_bit(LOSSYTX, &con->flags);
1576
1577 prepare_read_tag(con);
1578 break;
1579
1580 case CEPH_MSGR_TAG_WAIT:
1581 /*
1582 * If there is a connection race (we are opening
1583 * connections to each other), one of us may just have
1584 * to WAIT. This shouldn't happen if we are the
1585 * client.
1586 */
1587 pr_err("process_connect got WAIT as client\n");
1588 con->error_msg = "protocol error, got WAIT as client";
1589 return -1;
1590
1591 default:
1592 pr_err("connect protocol error, will retry\n");
1593 con->error_msg = "protocol error, garbage tag during connect";
1594 return -1;
1595 }
1596 return 0;
1597 }
1598
1599
1600 /*
1601 * read (part of) an ack
1602 */
1603 static int read_partial_ack(struct ceph_connection *con)
1604 {
1605 int size = sizeof (con->in_temp_ack);
1606 int end = size;
1607
1608 return read_partial(con, end, size, &con->in_temp_ack);
1609 }
1610
1611
1612 /*
1613 * We can finally discard anything that's been acked.
1614 */
1615 static void process_ack(struct ceph_connection *con)
1616 {
1617 struct ceph_msg *m;
1618 u64 ack = le64_to_cpu(con->in_temp_ack);
1619 u64 seq;
1620
1621 while (!list_empty(&con->out_sent)) {
1622 m = list_first_entry(&con->out_sent, struct ceph_msg,
1623 list_head);
1624 seq = le64_to_cpu(m->hdr.seq);
1625 if (seq > ack)
1626 break;
1627 dout("got ack for seq %llu type %d at %p\n", seq,
1628 le16_to_cpu(m->hdr.type), m);
1629 m->ack_stamp = jiffies;
1630 ceph_msg_remove(m);
1631 }
1632 prepare_read_tag(con);
1633 }
1634
1635
1636
1637
1638 static int read_partial_message_section(struct ceph_connection *con,
1639 struct kvec *section,
1640 unsigned int sec_len, u32 *crc)
1641 {
1642 int ret, left;
1643
1644 BUG_ON(!section);
1645
1646 while (section->iov_len < sec_len) {
1647 BUG_ON(section->iov_base == NULL);
1648 left = sec_len - section->iov_len;
1649 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1650 section->iov_len, left);
1651 if (ret <= 0)
1652 return ret;
1653 section->iov_len += ret;
1654 }
1655 if (section->iov_len == sec_len)
1656 *crc = crc32c(0, section->iov_base, section->iov_len);
1657
1658 return 1;
1659 }
1660
1661 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1662 struct ceph_msg_header *hdr);
1663
1664
1665 static int read_partial_message_pages(struct ceph_connection *con,
1666 struct page **pages,
1667 unsigned int data_len, bool do_datacrc)
1668 {
1669 void *p;
1670 int ret;
1671 int left;
1672
1673 left = min((int)(data_len - con->in_msg_pos.data_pos),
1674 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1675 /* (page) data */
1676 BUG_ON(pages == NULL);
1677 p = kmap(pages[con->in_msg_pos.page]);
1678 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1679 left);
1680 if (ret > 0 && do_datacrc)
1681 con->in_data_crc =
1682 crc32c(con->in_data_crc,
1683 p + con->in_msg_pos.page_pos, ret);
1684 kunmap(pages[con->in_msg_pos.page]);
1685 if (ret <= 0)
1686 return ret;
1687 con->in_msg_pos.data_pos += ret;
1688 con->in_msg_pos.page_pos += ret;
1689 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1690 con->in_msg_pos.page_pos = 0;
1691 con->in_msg_pos.page++;
1692 }
1693
1694 return ret;
1695 }
1696
1697 #ifdef CONFIG_BLOCK
1698 static int read_partial_message_bio(struct ceph_connection *con,
1699 struct bio **bio_iter, int *bio_seg,
1700 unsigned int data_len, bool do_datacrc)
1701 {
1702 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1703 void *p;
1704 int ret, left;
1705
1706 if (IS_ERR(bv))
1707 return PTR_ERR(bv);
1708
1709 left = min((int)(data_len - con->in_msg_pos.data_pos),
1710 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1711
1712 p = kmap(bv->bv_page) + bv->bv_offset;
1713
1714 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1715 left);
1716 if (ret > 0 && do_datacrc)
1717 con->in_data_crc =
1718 crc32c(con->in_data_crc,
1719 p + con->in_msg_pos.page_pos, ret);
1720 kunmap(bv->bv_page);
1721 if (ret <= 0)
1722 return ret;
1723 con->in_msg_pos.data_pos += ret;
1724 con->in_msg_pos.page_pos += ret;
1725 if (con->in_msg_pos.page_pos == bv->bv_len) {
1726 con->in_msg_pos.page_pos = 0;
1727 iter_bio_next(bio_iter, bio_seg);
1728 }
1729
1730 return ret;
1731 }
1732 #endif
1733
1734 /*
1735 * read (part of) a message.
1736 */
1737 static int read_partial_message(struct ceph_connection *con)
1738 {
1739 struct ceph_msg *m = con->in_msg;
1740 int size;
1741 int end;
1742 int ret;
1743 unsigned int front_len, middle_len, data_len;
1744 bool do_datacrc = !con->msgr->nocrc;
1745 u64 seq;
1746 u32 crc;
1747
1748 dout("read_partial_message con %p msg %p\n", con, m);
1749
1750 /* header */
1751 size = sizeof (con->in_hdr);
1752 end = size;
1753 ret = read_partial(con, end, size, &con->in_hdr);
1754 if (ret <= 0)
1755 return ret;
1756
1757 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1758 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1759 pr_err("read_partial_message bad hdr "
1760 " crc %u != expected %u\n",
1761 crc, con->in_hdr.crc);
1762 return -EBADMSG;
1763 }
1764
1765 front_len = le32_to_cpu(con->in_hdr.front_len);
1766 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1767 return -EIO;
1768 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1769 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1770 return -EIO;
1771 data_len = le32_to_cpu(con->in_hdr.data_len);
1772 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1773 return -EIO;
1774
1775 /* verify seq# */
1776 seq = le64_to_cpu(con->in_hdr.seq);
1777 if ((s64)seq - (s64)con->in_seq < 1) {
1778 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1779 ENTITY_NAME(con->peer_name),
1780 ceph_pr_addr(&con->peer_addr.in_addr),
1781 seq, con->in_seq + 1);
1782 con->in_base_pos = -front_len - middle_len - data_len -
1783 sizeof(m->footer);
1784 con->in_tag = CEPH_MSGR_TAG_READY;
1785 return 0;
1786 } else if ((s64)seq - (s64)con->in_seq > 1) {
1787 pr_err("read_partial_message bad seq %lld expected %lld\n",
1788 seq, con->in_seq + 1);
1789 con->error_msg = "bad message sequence # for incoming message";
1790 return -EBADMSG;
1791 }
1792
1793 /* allocate message? */
1794 if (!con->in_msg) {
1795 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1796 con->in_hdr.front_len, con->in_hdr.data_len);
1797 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1798 /* skip this message */
1799 dout("alloc_msg said skip message\n");
1800 BUG_ON(con->in_msg);
1801 con->in_base_pos = -front_len - middle_len - data_len -
1802 sizeof(m->footer);
1803 con->in_tag = CEPH_MSGR_TAG_READY;
1804 con->in_seq++;
1805 return 0;
1806 }
1807 if (!con->in_msg) {
1808 con->error_msg =
1809 "error allocating memory for incoming message";
1810 return -ENOMEM;
1811 }
1812
1813 BUG_ON(con->in_msg->con != con);
1814 m = con->in_msg;
1815 m->front.iov_len = 0; /* haven't read it yet */
1816 if (m->middle)
1817 m->middle->vec.iov_len = 0;
1818
1819 con->in_msg_pos.page = 0;
1820 if (m->pages)
1821 con->in_msg_pos.page_pos = m->page_alignment;
1822 else
1823 con->in_msg_pos.page_pos = 0;
1824 con->in_msg_pos.data_pos = 0;
1825 }
1826
1827 /* front */
1828 ret = read_partial_message_section(con, &m->front, front_len,
1829 &con->in_front_crc);
1830 if (ret <= 0)
1831 return ret;
1832
1833 /* middle */
1834 if (m->middle) {
1835 ret = read_partial_message_section(con, &m->middle->vec,
1836 middle_len,
1837 &con->in_middle_crc);
1838 if (ret <= 0)
1839 return ret;
1840 }
1841 #ifdef CONFIG_BLOCK
1842 if (m->bio && !m->bio_iter)
1843 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1844 #endif
1845
1846 /* (page) data */
1847 while (con->in_msg_pos.data_pos < data_len) {
1848 if (m->pages) {
1849 ret = read_partial_message_pages(con, m->pages,
1850 data_len, do_datacrc);
1851 if (ret <= 0)
1852 return ret;
1853 #ifdef CONFIG_BLOCK
1854 } else if (m->bio) {
1855
1856 ret = read_partial_message_bio(con,
1857 &m->bio_iter, &m->bio_seg,
1858 data_len, do_datacrc);
1859 if (ret <= 0)
1860 return ret;
1861 #endif
1862 } else {
1863 BUG_ON(1);
1864 }
1865 }
1866
1867 /* footer */
1868 size = sizeof (m->footer);
1869 end += size;
1870 ret = read_partial(con, end, size, &m->footer);
1871 if (ret <= 0)
1872 return ret;
1873
1874 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1875 m, front_len, m->footer.front_crc, middle_len,
1876 m->footer.middle_crc, data_len, m->footer.data_crc);
1877
1878 /* crc ok? */
1879 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1880 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1881 m, con->in_front_crc, m->footer.front_crc);
1882 return -EBADMSG;
1883 }
1884 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1885 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1886 m, con->in_middle_crc, m->footer.middle_crc);
1887 return -EBADMSG;
1888 }
1889 if (do_datacrc &&
1890 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1891 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1892 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1893 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1894 return -EBADMSG;
1895 }
1896
1897 return 1; /* done! */
1898 }
1899
1900 /*
1901 * Process message. This happens in the worker thread. The callback should
1902 * be careful not to do anything that waits on other incoming messages or it
1903 * may deadlock.
1904 */
1905 static void process_message(struct ceph_connection *con)
1906 {
1907 struct ceph_msg *msg;
1908
1909 BUG_ON(con->in_msg->con != con);
1910 con->in_msg->con = NULL;
1911 msg = con->in_msg;
1912 con->in_msg = NULL;
1913 con->ops->put(con);
1914
1915 /* if first message, set peer_name */
1916 if (con->peer_name.type == 0)
1917 con->peer_name = msg->hdr.src;
1918
1919 con->in_seq++;
1920 mutex_unlock(&con->mutex);
1921
1922 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1923 msg, le64_to_cpu(msg->hdr.seq),
1924 ENTITY_NAME(msg->hdr.src),
1925 le16_to_cpu(msg->hdr.type),
1926 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1927 le32_to_cpu(msg->hdr.front_len),
1928 le32_to_cpu(msg->hdr.data_len),
1929 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1930 con->ops->dispatch(con, msg);
1931
1932 mutex_lock(&con->mutex);
1933 prepare_read_tag(con);
1934 }
1935
1936
1937 /*
1938 * Write something to the socket. Called in a worker thread when the
1939 * socket appears to be writeable and we have something ready to send.
1940 */
1941 static int try_write(struct ceph_connection *con)
1942 {
1943 int ret = 1;
1944
1945 dout("try_write start %p state %lu\n", con, con->state);
1946
1947 more:
1948 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1949
1950 /* open the socket first? */
1951 if (con->sock == NULL) {
1952 set_bit(CONNECTING, &con->state);
1953
1954 con_out_kvec_reset(con);
1955 prepare_write_banner(con);
1956 prepare_read_banner(con);
1957
1958 BUG_ON(con->in_msg);
1959 con->in_tag = CEPH_MSGR_TAG_READY;
1960 dout("try_write initiating connect on %p new state %lu\n",
1961 con, con->state);
1962 ret = ceph_tcp_connect(con);
1963 if (ret < 0) {
1964 con->error_msg = "connect error";
1965 goto out;
1966 }
1967 }
1968
1969 more_kvec:
1970 /* kvec data queued? */
1971 if (con->out_skip) {
1972 ret = write_partial_skip(con);
1973 if (ret <= 0)
1974 goto out;
1975 }
1976 if (con->out_kvec_left) {
1977 ret = write_partial_kvec(con);
1978 if (ret <= 0)
1979 goto out;
1980 }
1981
1982 /* msg pages? */
1983 if (con->out_msg) {
1984 if (con->out_msg_done) {
1985 ceph_msg_put(con->out_msg);
1986 con->out_msg = NULL; /* we're done with this one */
1987 goto do_next;
1988 }
1989
1990 ret = write_partial_msg_pages(con);
1991 if (ret == 1)
1992 goto more_kvec; /* we need to send the footer, too! */
1993 if (ret == 0)
1994 goto out;
1995 if (ret < 0) {
1996 dout("try_write write_partial_msg_pages err %d\n",
1997 ret);
1998 goto out;
1999 }
2000 }
2001
2002 do_next:
2003 if (!test_bit(CONNECTING, &con->state)) {
2004 /* is anything else pending? */
2005 if (!list_empty(&con->out_queue)) {
2006 prepare_write_message(con);
2007 goto more;
2008 }
2009 if (con->in_seq > con->in_seq_acked) {
2010 prepare_write_ack(con);
2011 goto more;
2012 }
2013 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2014 prepare_write_keepalive(con);
2015 goto more;
2016 }
2017 }
2018
2019 /* Nothing to do! */
2020 clear_bit(WRITE_PENDING, &con->flags);
2021 dout("try_write nothing else to write.\n");
2022 ret = 0;
2023 out:
2024 dout("try_write done on %p ret %d\n", con, ret);
2025 return ret;
2026 }
2027
2028
2029
2030 /*
2031 * Read what we can from the socket.
2032 */
2033 static int try_read(struct ceph_connection *con)
2034 {
2035 int ret = -1;
2036
2037 if (!con->sock)
2038 return 0;
2039
2040 if (test_bit(STANDBY, &con->state))
2041 return 0;
2042
2043 dout("try_read start on %p\n", con);
2044
2045 more:
2046 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2047 con->in_base_pos);
2048
2049 /*
2050 * process_connect and process_message drop and re-take
2051 * con->mutex. make sure we handle a racing close or reopen.
2052 */
2053 if (test_bit(CLOSED, &con->state) ||
2054 test_bit(OPENING, &con->state)) {
2055 ret = -EAGAIN;
2056 goto out;
2057 }
2058
2059 if (test_bit(CONNECTING, &con->state)) {
2060 if (!test_bit(NEGOTIATING, &con->state)) {
2061 dout("try_read connecting\n");
2062 ret = read_partial_banner(con);
2063 if (ret <= 0)
2064 goto out;
2065 ret = process_banner(con);
2066 if (ret < 0)
2067 goto out;
2068
2069 /* Banner is good, exchange connection info */
2070 ret = prepare_write_connect(con);
2071 if (ret < 0)
2072 goto out;
2073 prepare_read_connect(con);
2074 set_bit(NEGOTIATING, &con->state);
2075
2076 /* Send connection info before awaiting response */
2077 goto out;
2078 }
2079 ret = read_partial_connect(con);
2080 if (ret <= 0)
2081 goto out;
2082 ret = process_connect(con);
2083 if (ret < 0)
2084 goto out;
2085 goto more;
2086 }
2087
2088 if (con->in_base_pos < 0) {
2089 /*
2090 * skipping + discarding content.
2091 *
2092 * FIXME: there must be a better way to do this!
2093 */
2094 static char buf[SKIP_BUF_SIZE];
2095 int skip = min((int) sizeof (buf), -con->in_base_pos);
2096
2097 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2098 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2099 if (ret <= 0)
2100 goto out;
2101 con->in_base_pos += ret;
2102 if (con->in_base_pos)
2103 goto more;
2104 }
2105 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2106 /*
2107 * what's next?
2108 */
2109 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2110 if (ret <= 0)
2111 goto out;
2112 dout("try_read got tag %d\n", (int)con->in_tag);
2113 switch (con->in_tag) {
2114 case CEPH_MSGR_TAG_MSG:
2115 prepare_read_message(con);
2116 break;
2117 case CEPH_MSGR_TAG_ACK:
2118 prepare_read_ack(con);
2119 break;
2120 case CEPH_MSGR_TAG_CLOSE:
2121 clear_bit(CONNECTED, &con->state);
2122 set_bit(CLOSED, &con->state); /* fixme */
2123 goto out;
2124 default:
2125 goto bad_tag;
2126 }
2127 }
2128 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2129 ret = read_partial_message(con);
2130 if (ret <= 0) {
2131 switch (ret) {
2132 case -EBADMSG:
2133 con->error_msg = "bad crc";
2134 ret = -EIO;
2135 break;
2136 case -EIO:
2137 con->error_msg = "io error";
2138 break;
2139 }
2140 goto out;
2141 }
2142 if (con->in_tag == CEPH_MSGR_TAG_READY)
2143 goto more;
2144 process_message(con);
2145 goto more;
2146 }
2147 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2148 ret = read_partial_ack(con);
2149 if (ret <= 0)
2150 goto out;
2151 process_ack(con);
2152 goto more;
2153 }
2154
2155 out:
2156 dout("try_read done on %p ret %d\n", con, ret);
2157 return ret;
2158
2159 bad_tag:
2160 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2161 con->error_msg = "protocol error, garbage tag";
2162 ret = -1;
2163 goto out;
2164 }
2165
2166
2167 /*
2168 * Atomically queue work on a connection. Bump @con reference to
2169 * avoid races with connection teardown.
2170 */
2171 static void queue_con(struct ceph_connection *con)
2172 {
2173 if (!con->ops->get(con)) {
2174 dout("queue_con %p ref count 0\n", con);
2175 return;
2176 }
2177
2178 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2179 dout("queue_con %p - already queued\n", con);
2180 con->ops->put(con);
2181 } else {
2182 dout("queue_con %p\n", con);
2183 }
2184 }
2185
2186 /*
2187 * Do some work on a connection. Drop a connection ref when we're done.
2188 */
2189 static void con_work(struct work_struct *work)
2190 {
2191 struct ceph_connection *con = container_of(work, struct ceph_connection,
2192 work.work);
2193 int ret;
2194
2195 mutex_lock(&con->mutex);
2196 restart:
2197 if (test_and_clear_bit(SOCK_CLOSED, &con->flags)) {
2198 if (test_and_clear_bit(CONNECTED, &con->state))
2199 con->error_msg = "socket closed";
2200 else if (test_and_clear_bit(CONNECTING, &con->state)) {
2201 clear_bit(NEGOTIATING, &con->state);
2202 con->error_msg = "connection failed";
2203 } else {
2204 con->error_msg = "unrecognized con state";
2205 }
2206 goto fault;
2207 }
2208
2209 if (test_and_clear_bit(BACKOFF, &con->flags)) {
2210 dout("con_work %p backing off\n", con);
2211 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2212 round_jiffies_relative(con->delay))) {
2213 dout("con_work %p backoff %lu\n", con, con->delay);
2214 mutex_unlock(&con->mutex);
2215 return;
2216 } else {
2217 con->ops->put(con);
2218 dout("con_work %p FAILED to back off %lu\n", con,
2219 con->delay);
2220 }
2221 }
2222
2223 if (test_bit(STANDBY, &con->state)) {
2224 dout("con_work %p STANDBY\n", con);
2225 goto done;
2226 }
2227 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2228 dout("con_work CLOSED\n");
2229 con_close_socket(con);
2230 goto done;
2231 }
2232 if (test_and_clear_bit(OPENING, &con->state)) {
2233 /* reopen w/ new peer */
2234 dout("con_work OPENING\n");
2235 con_close_socket(con);
2236 }
2237
2238 ret = try_read(con);
2239 if (ret == -EAGAIN)
2240 goto restart;
2241 if (ret < 0)
2242 goto fault;
2243
2244 ret = try_write(con);
2245 if (ret == -EAGAIN)
2246 goto restart;
2247 if (ret < 0)
2248 goto fault;
2249
2250 done:
2251 mutex_unlock(&con->mutex);
2252 done_unlocked:
2253 con->ops->put(con);
2254 return;
2255
2256 fault:
2257 mutex_unlock(&con->mutex);
2258 ceph_fault(con); /* error/fault path */
2259 goto done_unlocked;
2260 }
2261
2262
2263 /*
2264 * Generic error/fault handler. A retry mechanism is used with
2265 * exponential backoff
2266 */
2267 static void ceph_fault(struct ceph_connection *con)
2268 {
2269 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2270 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2271 dout("fault %p state %lu to peer %s\n",
2272 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2273
2274 if (test_bit(LOSSYTX, &con->flags)) {
2275 dout("fault on LOSSYTX channel\n");
2276 goto out;
2277 }
2278
2279 mutex_lock(&con->mutex);
2280 if (test_bit(CLOSED, &con->state))
2281 goto out_unlock;
2282
2283 con_close_socket(con);
2284
2285 if (con->in_msg) {
2286 BUG_ON(con->in_msg->con != con);
2287 con->in_msg->con = NULL;
2288 ceph_msg_put(con->in_msg);
2289 con->in_msg = NULL;
2290 con->ops->put(con);
2291 }
2292
2293 /* Requeue anything that hasn't been acked */
2294 list_splice_init(&con->out_sent, &con->out_queue);
2295
2296 /* If there are no messages queued or keepalive pending, place
2297 * the connection in a STANDBY state */
2298 if (list_empty(&con->out_queue) &&
2299 !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2300 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2301 clear_bit(WRITE_PENDING, &con->flags);
2302 set_bit(STANDBY, &con->state);
2303 } else {
2304 /* retry after a delay. */
2305 if (con->delay == 0)
2306 con->delay = BASE_DELAY_INTERVAL;
2307 else if (con->delay < MAX_DELAY_INTERVAL)
2308 con->delay *= 2;
2309 con->ops->get(con);
2310 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2311 round_jiffies_relative(con->delay))) {
2312 dout("fault queued %p delay %lu\n", con, con->delay);
2313 } else {
2314 con->ops->put(con);
2315 dout("fault failed to queue %p delay %lu, backoff\n",
2316 con, con->delay);
2317 /*
2318 * In many cases we see a socket state change
2319 * while con_work is running and end up
2320 * queuing (non-delayed) work, such that we
2321 * can't backoff with a delay. Set a flag so
2322 * that when con_work restarts we schedule the
2323 * delay then.
2324 */
2325 set_bit(BACKOFF, &con->flags);
2326 }
2327 }
2328
2329 out_unlock:
2330 mutex_unlock(&con->mutex);
2331 out:
2332 /*
2333 * in case we faulted due to authentication, invalidate our
2334 * current tickets so that we can get new ones.
2335 */
2336 if (con->auth_retry && con->ops->invalidate_authorizer) {
2337 dout("calling invalidate_authorizer()\n");
2338 con->ops->invalidate_authorizer(con);
2339 }
2340
2341 if (con->ops->fault)
2342 con->ops->fault(con);
2343 }
2344
2345
2346
2347 /*
2348 * initialize a new messenger instance
2349 */
2350 void ceph_messenger_init(struct ceph_messenger *msgr,
2351 struct ceph_entity_addr *myaddr,
2352 u32 supported_features,
2353 u32 required_features,
2354 bool nocrc)
2355 {
2356 msgr->supported_features = supported_features;
2357 msgr->required_features = required_features;
2358
2359 spin_lock_init(&msgr->global_seq_lock);
2360
2361 if (myaddr)
2362 msgr->inst.addr = *myaddr;
2363
2364 /* select a random nonce */
2365 msgr->inst.addr.type = 0;
2366 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2367 encode_my_addr(msgr);
2368 msgr->nocrc = nocrc;
2369
2370 dout("%s %p\n", __func__, msgr);
2371 }
2372 EXPORT_SYMBOL(ceph_messenger_init);
2373
2374 static void clear_standby(struct ceph_connection *con)
2375 {
2376 /* come back from STANDBY? */
2377 if (test_and_clear_bit(STANDBY, &con->state)) {
2378 mutex_lock(&con->mutex);
2379 dout("clear_standby %p and ++connect_seq\n", con);
2380 con->connect_seq++;
2381 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2382 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2383 mutex_unlock(&con->mutex);
2384 }
2385 }
2386
2387 /*
2388 * Queue up an outgoing message on the given connection.
2389 */
2390 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2391 {
2392 if (test_bit(CLOSED, &con->state)) {
2393 dout("con_send %p closed, dropping %p\n", con, msg);
2394 ceph_msg_put(msg);
2395 return;
2396 }
2397
2398 /* set src+dst */
2399 msg->hdr.src = con->msgr->inst.name;
2400
2401 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2402
2403 msg->needs_out_seq = true;
2404
2405 /* queue */
2406 mutex_lock(&con->mutex);
2407
2408 BUG_ON(msg->con != NULL);
2409 msg->con = con->ops->get(con);
2410 BUG_ON(msg->con == NULL);
2411
2412 BUG_ON(!list_empty(&msg->list_head));
2413 list_add_tail(&msg->list_head, &con->out_queue);
2414 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2415 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2416 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2417 le32_to_cpu(msg->hdr.front_len),
2418 le32_to_cpu(msg->hdr.middle_len),
2419 le32_to_cpu(msg->hdr.data_len));
2420 mutex_unlock(&con->mutex);
2421
2422 /* if there wasn't anything waiting to send before, queue
2423 * new work */
2424 clear_standby(con);
2425 if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2426 queue_con(con);
2427 }
2428 EXPORT_SYMBOL(ceph_con_send);
2429
2430 /*
2431 * Revoke a message that was previously queued for send
2432 */
2433 void ceph_msg_revoke(struct ceph_msg *msg)
2434 {
2435 struct ceph_connection *con = msg->con;
2436
2437 if (!con)
2438 return; /* Message not in our possession */
2439
2440 mutex_lock(&con->mutex);
2441 if (!list_empty(&msg->list_head)) {
2442 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2443 list_del_init(&msg->list_head);
2444 BUG_ON(msg->con == NULL);
2445 msg->con->ops->put(msg->con);
2446 msg->con = NULL;
2447 msg->hdr.seq = 0;
2448
2449 ceph_msg_put(msg);
2450 }
2451 if (con->out_msg == msg) {
2452 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2453 con->out_msg = NULL;
2454 if (con->out_kvec_is_msg) {
2455 con->out_skip = con->out_kvec_bytes;
2456 con->out_kvec_is_msg = false;
2457 }
2458 msg->hdr.seq = 0;
2459
2460 ceph_msg_put(msg);
2461 }
2462 mutex_unlock(&con->mutex);
2463 }
2464
2465 /*
2466 * Revoke a message that we may be reading data into
2467 */
2468 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2469 {
2470 struct ceph_connection *con;
2471
2472 BUG_ON(msg == NULL);
2473 if (!msg->con) {
2474 dout("%s msg %p null con\n", __func__, msg);
2475
2476 return; /* Message not in our possession */
2477 }
2478
2479 con = msg->con;
2480 mutex_lock(&con->mutex);
2481 if (con->in_msg == msg) {
2482 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2483 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2484 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2485
2486 /* skip rest of message */
2487 dout("%s %p msg %p revoked\n", __func__, con, msg);
2488 con->in_base_pos = con->in_base_pos -
2489 sizeof(struct ceph_msg_header) -
2490 front_len -
2491 middle_len -
2492 data_len -
2493 sizeof(struct ceph_msg_footer);
2494 ceph_msg_put(con->in_msg);
2495 con->in_msg = NULL;
2496 con->in_tag = CEPH_MSGR_TAG_READY;
2497 con->in_seq++;
2498 } else {
2499 dout("%s %p in_msg %p msg %p no-op\n",
2500 __func__, con, con->in_msg, msg);
2501 }
2502 mutex_unlock(&con->mutex);
2503 }
2504
2505 /*
2506 * Queue a keepalive byte to ensure the tcp connection is alive.
2507 */
2508 void ceph_con_keepalive(struct ceph_connection *con)
2509 {
2510 dout("con_keepalive %p\n", con);
2511 clear_standby(con);
2512 if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2513 test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2514 queue_con(con);
2515 }
2516 EXPORT_SYMBOL(ceph_con_keepalive);
2517
2518
2519 /*
2520 * construct a new message with given type, size
2521 * the new msg has a ref count of 1.
2522 */
2523 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2524 bool can_fail)
2525 {
2526 struct ceph_msg *m;
2527
2528 m = kmalloc(sizeof(*m), flags);
2529 if (m == NULL)
2530 goto out;
2531 kref_init(&m->kref);
2532
2533 m->con = NULL;
2534 INIT_LIST_HEAD(&m->list_head);
2535
2536 m->hdr.tid = 0;
2537 m->hdr.type = cpu_to_le16(type);
2538 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2539 m->hdr.version = 0;
2540 m->hdr.front_len = cpu_to_le32(front_len);
2541 m->hdr.middle_len = 0;
2542 m->hdr.data_len = 0;
2543 m->hdr.data_off = 0;
2544 m->hdr.reserved = 0;
2545 m->footer.front_crc = 0;
2546 m->footer.middle_crc = 0;
2547 m->footer.data_crc = 0;
2548 m->footer.flags = 0;
2549 m->front_max = front_len;
2550 m->front_is_vmalloc = false;
2551 m->more_to_follow = false;
2552 m->ack_stamp = 0;
2553 m->pool = NULL;
2554
2555 /* middle */
2556 m->middle = NULL;
2557
2558 /* data */
2559 m->nr_pages = 0;
2560 m->page_alignment = 0;
2561 m->pages = NULL;
2562 m->pagelist = NULL;
2563 m->bio = NULL;
2564 m->bio_iter = NULL;
2565 m->bio_seg = 0;
2566 m->trail = NULL;
2567
2568 /* front */
2569 if (front_len) {
2570 if (front_len > PAGE_CACHE_SIZE) {
2571 m->front.iov_base = __vmalloc(front_len, flags,
2572 PAGE_KERNEL);
2573 m->front_is_vmalloc = true;
2574 } else {
2575 m->front.iov_base = kmalloc(front_len, flags);
2576 }
2577 if (m->front.iov_base == NULL) {
2578 dout("ceph_msg_new can't allocate %d bytes\n",
2579 front_len);
2580 goto out2;
2581 }
2582 } else {
2583 m->front.iov_base = NULL;
2584 }
2585 m->front.iov_len = front_len;
2586
2587 dout("ceph_msg_new %p front %d\n", m, front_len);
2588 return m;
2589
2590 out2:
2591 ceph_msg_put(m);
2592 out:
2593 if (!can_fail) {
2594 pr_err("msg_new can't create type %d front %d\n", type,
2595 front_len);
2596 WARN_ON(1);
2597 } else {
2598 dout("msg_new can't create type %d front %d\n", type,
2599 front_len);
2600 }
2601 return NULL;
2602 }
2603 EXPORT_SYMBOL(ceph_msg_new);
2604
2605 /*
2606 * Allocate "middle" portion of a message, if it is needed and wasn't
2607 * allocated by alloc_msg. This allows us to read a small fixed-size
2608 * per-type header in the front and then gracefully fail (i.e.,
2609 * propagate the error to the caller based on info in the front) when
2610 * the middle is too large.
2611 */
2612 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2613 {
2614 int type = le16_to_cpu(msg->hdr.type);
2615 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2616
2617 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2618 ceph_msg_type_name(type), middle_len);
2619 BUG_ON(!middle_len);
2620 BUG_ON(msg->middle);
2621
2622 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2623 if (!msg->middle)
2624 return -ENOMEM;
2625 return 0;
2626 }
2627
2628 /*
2629 * Allocate a message for receiving an incoming message on a
2630 * connection, and save the result in con->in_msg. Uses the
2631 * connection's private alloc_msg op if available.
2632 *
2633 * Returns true if the message should be skipped, false otherwise.
2634 * If true is returned (skip message), con->in_msg will be NULL.
2635 * If false is returned, con->in_msg will contain a pointer to the
2636 * newly-allocated message, or NULL in case of memory exhaustion.
2637 */
2638 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2639 struct ceph_msg_header *hdr)
2640 {
2641 int type = le16_to_cpu(hdr->type);
2642 int front_len = le32_to_cpu(hdr->front_len);
2643 int middle_len = le32_to_cpu(hdr->middle_len);
2644 int ret;
2645
2646 BUG_ON(con->in_msg != NULL);
2647
2648 if (con->ops->alloc_msg) {
2649 int skip = 0;
2650
2651 mutex_unlock(&con->mutex);
2652 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2653 mutex_lock(&con->mutex);
2654 if (con->in_msg) {
2655 con->in_msg->con = con->ops->get(con);
2656 BUG_ON(con->in_msg->con == NULL);
2657 }
2658 if (skip)
2659 con->in_msg = NULL;
2660
2661 if (!con->in_msg)
2662 return skip != 0;
2663 }
2664 if (!con->in_msg) {
2665 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2666 if (!con->in_msg) {
2667 pr_err("unable to allocate msg type %d len %d\n",
2668 type, front_len);
2669 return false;
2670 }
2671 con->in_msg->con = con->ops->get(con);
2672 BUG_ON(con->in_msg->con == NULL);
2673 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2674 }
2675 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2676
2677 if (middle_len && !con->in_msg->middle) {
2678 ret = ceph_alloc_middle(con, con->in_msg);
2679 if (ret < 0) {
2680 ceph_msg_put(con->in_msg);
2681 con->in_msg = NULL;
2682 }
2683 }
2684
2685 return false;
2686 }
2687
2688
2689 /*
2690 * Free a generically kmalloc'd message.
2691 */
2692 void ceph_msg_kfree(struct ceph_msg *m)
2693 {
2694 dout("msg_kfree %p\n", m);
2695 if (m->front_is_vmalloc)
2696 vfree(m->front.iov_base);
2697 else
2698 kfree(m->front.iov_base);
2699 kfree(m);
2700 }
2701
2702 /*
2703 * Drop a msg ref. Destroy as needed.
2704 */
2705 void ceph_msg_last_put(struct kref *kref)
2706 {
2707 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2708
2709 dout("ceph_msg_put last one on %p\n", m);
2710 WARN_ON(!list_empty(&m->list_head));
2711
2712 /* drop middle, data, if any */
2713 if (m->middle) {
2714 ceph_buffer_put(m->middle);
2715 m->middle = NULL;
2716 }
2717 m->nr_pages = 0;
2718 m->pages = NULL;
2719
2720 if (m->pagelist) {
2721 ceph_pagelist_release(m->pagelist);
2722 kfree(m->pagelist);
2723 m->pagelist = NULL;
2724 }
2725
2726 m->trail = NULL;
2727
2728 if (m->pool)
2729 ceph_msgpool_put(m->pool, m);
2730 else
2731 ceph_msg_kfree(m);
2732 }
2733 EXPORT_SYMBOL(ceph_msg_last_put);
2734
2735 void ceph_msg_dump(struct ceph_msg *msg)
2736 {
2737 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2738 msg->front_max, msg->nr_pages);
2739 print_hex_dump(KERN_DEBUG, "header: ",
2740 DUMP_PREFIX_OFFSET, 16, 1,
2741 &msg->hdr, sizeof(msg->hdr), true);
2742 print_hex_dump(KERN_DEBUG, " front: ",
2743 DUMP_PREFIX_OFFSET, 16, 1,
2744 msg->front.iov_base, msg->front.iov_len, true);
2745 if (msg->middle)
2746 print_hex_dump(KERN_DEBUG, "middle: ",
2747 DUMP_PREFIX_OFFSET, 16, 1,
2748 msg->middle->vec.iov_base,
2749 msg->middle->vec.iov_len, true);
2750 print_hex_dump(KERN_DEBUG, "footer: ",
2751 DUMP_PREFIX_OFFSET, 16, 1,
2752 &msg->footer, sizeof(msg->footer), true);
2753 }
2754 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.152179 seconds and 4 git commands to generate.