libceph: move init_bio_*() functions up
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
33
34 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
35 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
36 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
37 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
38 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
39
40 /* static tag bytes (protocol control messages) */
41 static char tag_msg = CEPH_MSGR_TAG_MSG;
42 static char tag_ack = CEPH_MSGR_TAG_ACK;
43 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
44
45 #ifdef CONFIG_LOCKDEP
46 static struct lock_class_key socket_class;
47 #endif
48
49 /*
50 * When skipping (ignoring) a block of input we read it into a "skip
51 * buffer," which is this many bytes in size.
52 */
53 #define SKIP_BUF_SIZE 1024
54
55 static void queue_con(struct ceph_connection *con);
56 static void con_work(struct work_struct *);
57 static void ceph_fault(struct ceph_connection *con);
58
59 /*
60 * Nicely render a sockaddr as a string. An array of formatted
61 * strings is used, to approximate reentrancy.
62 */
63 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
64 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
65 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
66 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
67
68 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
69 static atomic_t addr_str_seq = ATOMIC_INIT(0);
70
71 static struct page *zero_page; /* used in certain error cases */
72
73 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
74 {
75 int i;
76 char *s;
77 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
78 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
79
80 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
81 s = addr_str[i];
82
83 switch (ss->ss_family) {
84 case AF_INET:
85 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
86 ntohs(in4->sin_port));
87 break;
88
89 case AF_INET6:
90 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
91 ntohs(in6->sin6_port));
92 break;
93
94 default:
95 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
96 ss->ss_family);
97 }
98
99 return s;
100 }
101 EXPORT_SYMBOL(ceph_pr_addr);
102
103 static void encode_my_addr(struct ceph_messenger *msgr)
104 {
105 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
106 ceph_encode_addr(&msgr->my_enc_addr);
107 }
108
109 /*
110 * work queue for all reading and writing to/from the socket.
111 */
112 static struct workqueue_struct *ceph_msgr_wq;
113
114 void _ceph_msgr_exit(void)
115 {
116 if (ceph_msgr_wq) {
117 destroy_workqueue(ceph_msgr_wq);
118 ceph_msgr_wq = NULL;
119 }
120
121 BUG_ON(zero_page == NULL);
122 kunmap(zero_page);
123 page_cache_release(zero_page);
124 zero_page = NULL;
125 }
126
127 int ceph_msgr_init(void)
128 {
129 BUG_ON(zero_page != NULL);
130 zero_page = ZERO_PAGE(0);
131 page_cache_get(zero_page);
132
133 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
134 if (ceph_msgr_wq)
135 return 0;
136
137 pr_err("msgr_init failed to create workqueue\n");
138 _ceph_msgr_exit();
139
140 return -ENOMEM;
141 }
142 EXPORT_SYMBOL(ceph_msgr_init);
143
144 void ceph_msgr_exit(void)
145 {
146 BUG_ON(ceph_msgr_wq == NULL);
147
148 _ceph_msgr_exit();
149 }
150 EXPORT_SYMBOL(ceph_msgr_exit);
151
152 void ceph_msgr_flush(void)
153 {
154 flush_workqueue(ceph_msgr_wq);
155 }
156 EXPORT_SYMBOL(ceph_msgr_flush);
157
158 /* Connection socket state transition functions */
159
160 static void con_sock_state_init(struct ceph_connection *con)
161 {
162 int old_state;
163
164 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
165 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
166 printk("%s: unexpected old state %d\n", __func__, old_state);
167 }
168
169 static void con_sock_state_connecting(struct ceph_connection *con)
170 {
171 int old_state;
172
173 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
174 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
175 printk("%s: unexpected old state %d\n", __func__, old_state);
176 }
177
178 static void con_sock_state_connected(struct ceph_connection *con)
179 {
180 int old_state;
181
182 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
183 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
184 printk("%s: unexpected old state %d\n", __func__, old_state);
185 }
186
187 static void con_sock_state_closing(struct ceph_connection *con)
188 {
189 int old_state;
190
191 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
192 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
193 old_state != CON_SOCK_STATE_CONNECTED &&
194 old_state != CON_SOCK_STATE_CLOSING))
195 printk("%s: unexpected old state %d\n", __func__, old_state);
196 }
197
198 static void con_sock_state_closed(struct ceph_connection *con)
199 {
200 int old_state;
201
202 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
203 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
204 old_state != CON_SOCK_STATE_CLOSING))
205 printk("%s: unexpected old state %d\n", __func__, old_state);
206 }
207
208 /*
209 * socket callback functions
210 */
211
212 /* data available on socket, or listen socket received a connect */
213 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
214 {
215 struct ceph_connection *con = sk->sk_user_data;
216
217 if (sk->sk_state != TCP_CLOSE_WAIT) {
218 dout("%s on %p state = %lu, queueing work\n", __func__,
219 con, con->state);
220 queue_con(con);
221 }
222 }
223
224 /* socket has buffer space for writing */
225 static void ceph_sock_write_space(struct sock *sk)
226 {
227 struct ceph_connection *con = sk->sk_user_data;
228
229 /* only queue to workqueue if there is data we want to write,
230 * and there is sufficient space in the socket buffer to accept
231 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
232 * doesn't get called again until try_write() fills the socket
233 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
234 * and net/core/stream.c:sk_stream_write_space().
235 */
236 if (test_bit(WRITE_PENDING, &con->flags)) {
237 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
238 dout("%s %p queueing write work\n", __func__, con);
239 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
240 queue_con(con);
241 }
242 } else {
243 dout("%s %p nothing to write\n", __func__, con);
244 }
245 }
246
247 /* socket's state has changed */
248 static void ceph_sock_state_change(struct sock *sk)
249 {
250 struct ceph_connection *con = sk->sk_user_data;
251
252 dout("%s %p state = %lu sk_state = %u\n", __func__,
253 con, con->state, sk->sk_state);
254
255 if (test_bit(CLOSED, &con->state))
256 return;
257
258 switch (sk->sk_state) {
259 case TCP_CLOSE:
260 dout("%s TCP_CLOSE\n", __func__);
261 case TCP_CLOSE_WAIT:
262 dout("%s TCP_CLOSE_WAIT\n", __func__);
263 con_sock_state_closing(con);
264 if (test_and_set_bit(SOCK_CLOSED, &con->flags) == 0) {
265 if (test_bit(CONNECTING, &con->state))
266 con->error_msg = "connection failed";
267 else
268 con->error_msg = "socket closed";
269 queue_con(con);
270 }
271 break;
272 case TCP_ESTABLISHED:
273 dout("%s TCP_ESTABLISHED\n", __func__);
274 con_sock_state_connected(con);
275 queue_con(con);
276 break;
277 default: /* Everything else is uninteresting */
278 break;
279 }
280 }
281
282 /*
283 * set up socket callbacks
284 */
285 static void set_sock_callbacks(struct socket *sock,
286 struct ceph_connection *con)
287 {
288 struct sock *sk = sock->sk;
289 sk->sk_user_data = con;
290 sk->sk_data_ready = ceph_sock_data_ready;
291 sk->sk_write_space = ceph_sock_write_space;
292 sk->sk_state_change = ceph_sock_state_change;
293 }
294
295
296 /*
297 * socket helpers
298 */
299
300 /*
301 * initiate connection to a remote socket.
302 */
303 static int ceph_tcp_connect(struct ceph_connection *con)
304 {
305 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
306 struct socket *sock;
307 int ret;
308
309 BUG_ON(con->sock);
310 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
311 IPPROTO_TCP, &sock);
312 if (ret)
313 return ret;
314 sock->sk->sk_allocation = GFP_NOFS;
315
316 #ifdef CONFIG_LOCKDEP
317 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
318 #endif
319
320 set_sock_callbacks(sock, con);
321
322 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
323
324 con_sock_state_connecting(con);
325 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
326 O_NONBLOCK);
327 if (ret == -EINPROGRESS) {
328 dout("connect %s EINPROGRESS sk_state = %u\n",
329 ceph_pr_addr(&con->peer_addr.in_addr),
330 sock->sk->sk_state);
331 } else if (ret < 0) {
332 pr_err("connect %s error %d\n",
333 ceph_pr_addr(&con->peer_addr.in_addr), ret);
334 sock_release(sock);
335 con->error_msg = "connect error";
336
337 return ret;
338 }
339 con->sock = sock;
340 return 0;
341 }
342
343 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
344 {
345 struct kvec iov = {buf, len};
346 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
347 int r;
348
349 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
350 if (r == -EAGAIN)
351 r = 0;
352 return r;
353 }
354
355 /*
356 * write something. @more is true if caller will be sending more data
357 * shortly.
358 */
359 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
360 size_t kvlen, size_t len, int more)
361 {
362 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
363 int r;
364
365 if (more)
366 msg.msg_flags |= MSG_MORE;
367 else
368 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
369
370 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
371 if (r == -EAGAIN)
372 r = 0;
373 return r;
374 }
375
376 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
377 int offset, size_t size, int more)
378 {
379 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
380 int ret;
381
382 ret = kernel_sendpage(sock, page, offset, size, flags);
383 if (ret == -EAGAIN)
384 ret = 0;
385
386 return ret;
387 }
388
389
390 /*
391 * Shutdown/close the socket for the given connection.
392 */
393 static int con_close_socket(struct ceph_connection *con)
394 {
395 int rc;
396
397 dout("con_close_socket on %p sock %p\n", con, con->sock);
398 if (!con->sock)
399 return 0;
400 set_bit(SOCK_CLOSED, &con->state);
401 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
402 sock_release(con->sock);
403 con->sock = NULL;
404 clear_bit(SOCK_CLOSED, &con->state);
405 con_sock_state_closed(con);
406 return rc;
407 }
408
409 /*
410 * Reset a connection. Discard all incoming and outgoing messages
411 * and clear *_seq state.
412 */
413 static void ceph_msg_remove(struct ceph_msg *msg)
414 {
415 list_del_init(&msg->list_head);
416 BUG_ON(msg->con == NULL);
417 msg->con->ops->put(msg->con);
418 msg->con = NULL;
419
420 ceph_msg_put(msg);
421 }
422 static void ceph_msg_remove_list(struct list_head *head)
423 {
424 while (!list_empty(head)) {
425 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
426 list_head);
427 ceph_msg_remove(msg);
428 }
429 }
430
431 static void reset_connection(struct ceph_connection *con)
432 {
433 /* reset connection, out_queue, msg_ and connect_seq */
434 /* discard existing out_queue and msg_seq */
435 ceph_msg_remove_list(&con->out_queue);
436 ceph_msg_remove_list(&con->out_sent);
437
438 if (con->in_msg) {
439 BUG_ON(con->in_msg->con != con);
440 con->in_msg->con = NULL;
441 ceph_msg_put(con->in_msg);
442 con->in_msg = NULL;
443 con->ops->put(con);
444 }
445
446 con->connect_seq = 0;
447 con->out_seq = 0;
448 if (con->out_msg) {
449 ceph_msg_put(con->out_msg);
450 con->out_msg = NULL;
451 }
452 con->in_seq = 0;
453 con->in_seq_acked = 0;
454 }
455
456 /*
457 * mark a peer down. drop any open connections.
458 */
459 void ceph_con_close(struct ceph_connection *con)
460 {
461 dout("con_close %p peer %s\n", con,
462 ceph_pr_addr(&con->peer_addr.in_addr));
463 clear_bit(NEGOTIATING, &con->state);
464 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
465 set_bit(CLOSED, &con->state);
466
467 clear_bit(LOSSYTX, &con->flags); /* so we retry next connect */
468 clear_bit(KEEPALIVE_PENDING, &con->flags);
469 clear_bit(WRITE_PENDING, &con->flags);
470
471 mutex_lock(&con->mutex);
472 reset_connection(con);
473 con->peer_global_seq = 0;
474 cancel_delayed_work(&con->work);
475 mutex_unlock(&con->mutex);
476 queue_con(con);
477 }
478 EXPORT_SYMBOL(ceph_con_close);
479
480 /*
481 * Reopen a closed connection, with a new peer address.
482 */
483 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
484 {
485 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
486 set_bit(OPENING, &con->state);
487 WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
488
489 memcpy(&con->peer_addr, addr, sizeof(*addr));
490 con->delay = 0; /* reset backoff memory */
491 queue_con(con);
492 }
493 EXPORT_SYMBOL(ceph_con_open);
494
495 /*
496 * return true if this connection ever successfully opened
497 */
498 bool ceph_con_opened(struct ceph_connection *con)
499 {
500 return con->connect_seq > 0;
501 }
502
503 /*
504 * initialize a new connection.
505 */
506 void ceph_con_init(struct ceph_connection *con, void *private,
507 const struct ceph_connection_operations *ops,
508 struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
509 {
510 dout("con_init %p\n", con);
511 memset(con, 0, sizeof(*con));
512 con->private = private;
513 con->ops = ops;
514 con->msgr = msgr;
515
516 con_sock_state_init(con);
517
518 con->peer_name.type = (__u8) entity_type;
519 con->peer_name.num = cpu_to_le64(entity_num);
520
521 mutex_init(&con->mutex);
522 INIT_LIST_HEAD(&con->out_queue);
523 INIT_LIST_HEAD(&con->out_sent);
524 INIT_DELAYED_WORK(&con->work, con_work);
525
526 set_bit(CLOSED, &con->state);
527 }
528 EXPORT_SYMBOL(ceph_con_init);
529
530
531 /*
532 * We maintain a global counter to order connection attempts. Get
533 * a unique seq greater than @gt.
534 */
535 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
536 {
537 u32 ret;
538
539 spin_lock(&msgr->global_seq_lock);
540 if (msgr->global_seq < gt)
541 msgr->global_seq = gt;
542 ret = ++msgr->global_seq;
543 spin_unlock(&msgr->global_seq_lock);
544 return ret;
545 }
546
547 static void con_out_kvec_reset(struct ceph_connection *con)
548 {
549 con->out_kvec_left = 0;
550 con->out_kvec_bytes = 0;
551 con->out_kvec_cur = &con->out_kvec[0];
552 }
553
554 static void con_out_kvec_add(struct ceph_connection *con,
555 size_t size, void *data)
556 {
557 int index;
558
559 index = con->out_kvec_left;
560 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
561
562 con->out_kvec[index].iov_len = size;
563 con->out_kvec[index].iov_base = data;
564 con->out_kvec_left++;
565 con->out_kvec_bytes += size;
566 }
567
568 #ifdef CONFIG_BLOCK
569 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
570 {
571 if (!bio) {
572 *iter = NULL;
573 *seg = 0;
574 return;
575 }
576 *iter = bio;
577 *seg = bio->bi_idx;
578 }
579
580 static void iter_bio_next(struct bio **bio_iter, int *seg)
581 {
582 if (*bio_iter == NULL)
583 return;
584
585 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
586
587 (*seg)++;
588 if (*seg == (*bio_iter)->bi_vcnt)
589 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
590 }
591 #endif
592
593 static void prepare_write_message_data(struct ceph_connection *con)
594 {
595 struct ceph_msg *msg = con->out_msg;
596
597 BUG_ON(!msg);
598 BUG_ON(!msg->hdr.data_len);
599
600 /* initialize page iterator */
601 con->out_msg_pos.page = 0;
602 if (msg->pages)
603 con->out_msg_pos.page_pos = msg->page_alignment;
604 else
605 con->out_msg_pos.page_pos = 0;
606 con->out_msg_pos.data_pos = 0;
607 con->out_msg_pos.did_page_crc = false;
608 con->out_more = 1; /* data + footer will follow */
609 }
610
611 /*
612 * Prepare footer for currently outgoing message, and finish things
613 * off. Assumes out_kvec* are already valid.. we just add on to the end.
614 */
615 static void prepare_write_message_footer(struct ceph_connection *con)
616 {
617 struct ceph_msg *m = con->out_msg;
618 int v = con->out_kvec_left;
619
620 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
621
622 dout("prepare_write_message_footer %p\n", con);
623 con->out_kvec_is_msg = true;
624 con->out_kvec[v].iov_base = &m->footer;
625 con->out_kvec[v].iov_len = sizeof(m->footer);
626 con->out_kvec_bytes += sizeof(m->footer);
627 con->out_kvec_left++;
628 con->out_more = m->more_to_follow;
629 con->out_msg_done = true;
630 }
631
632 /*
633 * Prepare headers for the next outgoing message.
634 */
635 static void prepare_write_message(struct ceph_connection *con)
636 {
637 struct ceph_msg *m;
638 u32 crc;
639
640 con_out_kvec_reset(con);
641 con->out_kvec_is_msg = true;
642 con->out_msg_done = false;
643
644 /* Sneak an ack in there first? If we can get it into the same
645 * TCP packet that's a good thing. */
646 if (con->in_seq > con->in_seq_acked) {
647 con->in_seq_acked = con->in_seq;
648 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
649 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
650 con_out_kvec_add(con, sizeof (con->out_temp_ack),
651 &con->out_temp_ack);
652 }
653
654 BUG_ON(list_empty(&con->out_queue));
655 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
656 con->out_msg = m;
657 BUG_ON(m->con != con);
658
659 /* put message on sent list */
660 ceph_msg_get(m);
661 list_move_tail(&m->list_head, &con->out_sent);
662
663 /*
664 * only assign outgoing seq # if we haven't sent this message
665 * yet. if it is requeued, resend with it's original seq.
666 */
667 if (m->needs_out_seq) {
668 m->hdr.seq = cpu_to_le64(++con->out_seq);
669 m->needs_out_seq = false;
670 }
671 #ifdef CONFIG_BLOCK
672 else
673 m->bio_iter = NULL;
674 #endif
675
676 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
677 m, con->out_seq, le16_to_cpu(m->hdr.type),
678 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
679 le32_to_cpu(m->hdr.data_len),
680 m->nr_pages);
681 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
682
683 /* tag + hdr + front + middle */
684 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
685 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
686 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
687
688 if (m->middle)
689 con_out_kvec_add(con, m->middle->vec.iov_len,
690 m->middle->vec.iov_base);
691
692 /* fill in crc (except data pages), footer */
693 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
694 con->out_msg->hdr.crc = cpu_to_le32(crc);
695 con->out_msg->footer.flags = 0;
696
697 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
698 con->out_msg->footer.front_crc = cpu_to_le32(crc);
699 if (m->middle) {
700 crc = crc32c(0, m->middle->vec.iov_base,
701 m->middle->vec.iov_len);
702 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
703 } else
704 con->out_msg->footer.middle_crc = 0;
705 dout("%s front_crc %u middle_crc %u\n", __func__,
706 le32_to_cpu(con->out_msg->footer.front_crc),
707 le32_to_cpu(con->out_msg->footer.middle_crc));
708
709 /* is there a data payload? */
710 con->out_msg->footer.data_crc = 0;
711 if (m->hdr.data_len)
712 prepare_write_message_data(con);
713 else
714 /* no, queue up footer too and be done */
715 prepare_write_message_footer(con);
716
717 set_bit(WRITE_PENDING, &con->flags);
718 }
719
720 /*
721 * Prepare an ack.
722 */
723 static void prepare_write_ack(struct ceph_connection *con)
724 {
725 dout("prepare_write_ack %p %llu -> %llu\n", con,
726 con->in_seq_acked, con->in_seq);
727 con->in_seq_acked = con->in_seq;
728
729 con_out_kvec_reset(con);
730
731 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732
733 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
734 con_out_kvec_add(con, sizeof (con->out_temp_ack),
735 &con->out_temp_ack);
736
737 con->out_more = 1; /* more will follow.. eventually.. */
738 set_bit(WRITE_PENDING, &con->flags);
739 }
740
741 /*
742 * Prepare to write keepalive byte.
743 */
744 static void prepare_write_keepalive(struct ceph_connection *con)
745 {
746 dout("prepare_write_keepalive %p\n", con);
747 con_out_kvec_reset(con);
748 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
749 set_bit(WRITE_PENDING, &con->flags);
750 }
751
752 /*
753 * Connection negotiation.
754 */
755
756 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
757 int *auth_proto)
758 {
759 struct ceph_auth_handshake *auth;
760
761 if (!con->ops->get_authorizer) {
762 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
763 con->out_connect.authorizer_len = 0;
764
765 return NULL;
766 }
767
768 /* Can't hold the mutex while getting authorizer */
769
770 mutex_unlock(&con->mutex);
771
772 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
773
774 mutex_lock(&con->mutex);
775
776 if (IS_ERR(auth))
777 return auth;
778 if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
779 return ERR_PTR(-EAGAIN);
780
781 con->auth_reply_buf = auth->authorizer_reply_buf;
782 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
783
784
785 return auth;
786 }
787
788 /*
789 * We connected to a peer and are saying hello.
790 */
791 static void prepare_write_banner(struct ceph_connection *con)
792 {
793 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
794 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
795 &con->msgr->my_enc_addr);
796
797 con->out_more = 0;
798 set_bit(WRITE_PENDING, &con->flags);
799 }
800
801 static int prepare_write_connect(struct ceph_connection *con)
802 {
803 unsigned int global_seq = get_global_seq(con->msgr, 0);
804 int proto;
805 int auth_proto;
806 struct ceph_auth_handshake *auth;
807
808 switch (con->peer_name.type) {
809 case CEPH_ENTITY_TYPE_MON:
810 proto = CEPH_MONC_PROTOCOL;
811 break;
812 case CEPH_ENTITY_TYPE_OSD:
813 proto = CEPH_OSDC_PROTOCOL;
814 break;
815 case CEPH_ENTITY_TYPE_MDS:
816 proto = CEPH_MDSC_PROTOCOL;
817 break;
818 default:
819 BUG();
820 }
821
822 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
823 con->connect_seq, global_seq, proto);
824
825 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
826 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
827 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
828 con->out_connect.global_seq = cpu_to_le32(global_seq);
829 con->out_connect.protocol_version = cpu_to_le32(proto);
830 con->out_connect.flags = 0;
831
832 auth_proto = CEPH_AUTH_UNKNOWN;
833 auth = get_connect_authorizer(con, &auth_proto);
834 if (IS_ERR(auth))
835 return PTR_ERR(auth);
836
837 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
838 con->out_connect.authorizer_len = auth ?
839 cpu_to_le32(auth->authorizer_buf_len) : 0;
840
841 con_out_kvec_add(con, sizeof (con->out_connect),
842 &con->out_connect);
843 if (auth && auth->authorizer_buf_len)
844 con_out_kvec_add(con, auth->authorizer_buf_len,
845 auth->authorizer_buf);
846
847 con->out_more = 0;
848 set_bit(WRITE_PENDING, &con->flags);
849
850 return 0;
851 }
852
853 /*
854 * write as much of pending kvecs to the socket as we can.
855 * 1 -> done
856 * 0 -> socket full, but more to do
857 * <0 -> error
858 */
859 static int write_partial_kvec(struct ceph_connection *con)
860 {
861 int ret;
862
863 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
864 while (con->out_kvec_bytes > 0) {
865 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
866 con->out_kvec_left, con->out_kvec_bytes,
867 con->out_more);
868 if (ret <= 0)
869 goto out;
870 con->out_kvec_bytes -= ret;
871 if (con->out_kvec_bytes == 0)
872 break; /* done */
873
874 /* account for full iov entries consumed */
875 while (ret >= con->out_kvec_cur->iov_len) {
876 BUG_ON(!con->out_kvec_left);
877 ret -= con->out_kvec_cur->iov_len;
878 con->out_kvec_cur++;
879 con->out_kvec_left--;
880 }
881 /* and for a partially-consumed entry */
882 if (ret) {
883 con->out_kvec_cur->iov_len -= ret;
884 con->out_kvec_cur->iov_base += ret;
885 }
886 }
887 con->out_kvec_left = 0;
888 con->out_kvec_is_msg = false;
889 ret = 1;
890 out:
891 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
892 con->out_kvec_bytes, con->out_kvec_left, ret);
893 return ret; /* done! */
894 }
895
896 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
897 size_t len, size_t sent, bool in_trail)
898 {
899 struct ceph_msg *msg = con->out_msg;
900
901 BUG_ON(!msg);
902 BUG_ON(!sent);
903
904 con->out_msg_pos.data_pos += sent;
905 con->out_msg_pos.page_pos += sent;
906 if (sent == len) {
907 con->out_msg_pos.page_pos = 0;
908 con->out_msg_pos.page++;
909 con->out_msg_pos.did_page_crc = false;
910 if (in_trail)
911 list_move_tail(&page->lru,
912 &msg->trail->head);
913 else if (msg->pagelist)
914 list_move_tail(&page->lru,
915 &msg->pagelist->head);
916 #ifdef CONFIG_BLOCK
917 else if (msg->bio)
918 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
919 #endif
920 }
921 }
922
923 /*
924 * Write as much message data payload as we can. If we finish, queue
925 * up the footer.
926 * 1 -> done, footer is now queued in out_kvec[].
927 * 0 -> socket full, but more to do
928 * <0 -> error
929 */
930 static int write_partial_msg_pages(struct ceph_connection *con)
931 {
932 struct ceph_msg *msg = con->out_msg;
933 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
934 size_t len;
935 bool do_datacrc = !con->msgr->nocrc;
936 int ret;
937 int total_max_write;
938 bool in_trail = false;
939 size_t trail_len = (msg->trail ? msg->trail->length : 0);
940
941 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
942 con, msg, con->out_msg_pos.page, msg->nr_pages,
943 con->out_msg_pos.page_pos);
944
945 #ifdef CONFIG_BLOCK
946 if (msg->bio && !msg->bio_iter)
947 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
948 #endif
949
950 while (data_len > con->out_msg_pos.data_pos) {
951 struct page *page = NULL;
952 int max_write = PAGE_SIZE;
953 int bio_offset = 0;
954
955 total_max_write = data_len - trail_len -
956 con->out_msg_pos.data_pos;
957
958 /*
959 * if we are calculating the data crc (the default), we need
960 * to map the page. if our pages[] has been revoked, use the
961 * zero page.
962 */
963
964 /* have we reached the trail part of the data? */
965 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
966 in_trail = true;
967
968 total_max_write = data_len - con->out_msg_pos.data_pos;
969
970 page = list_first_entry(&msg->trail->head,
971 struct page, lru);
972 } else if (msg->pages) {
973 page = msg->pages[con->out_msg_pos.page];
974 } else if (msg->pagelist) {
975 page = list_first_entry(&msg->pagelist->head,
976 struct page, lru);
977 #ifdef CONFIG_BLOCK
978 } else if (msg->bio) {
979 struct bio_vec *bv;
980
981 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
982 page = bv->bv_page;
983 bio_offset = bv->bv_offset;
984 max_write = bv->bv_len;
985 #endif
986 } else {
987 page = zero_page;
988 }
989 len = min_t(int, max_write - con->out_msg_pos.page_pos,
990 total_max_write);
991
992 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
993 void *base;
994 u32 crc;
995 u32 tmpcrc = le32_to_cpu(msg->footer.data_crc);
996 char *kaddr;
997
998 kaddr = kmap(page);
999 BUG_ON(kaddr == NULL);
1000 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1001 crc = crc32c(tmpcrc, base, len);
1002 msg->footer.data_crc = cpu_to_le32(crc);
1003 con->out_msg_pos.did_page_crc = true;
1004 }
1005 ret = ceph_tcp_sendpage(con->sock, page,
1006 con->out_msg_pos.page_pos + bio_offset,
1007 len, 1);
1008
1009 if (do_datacrc)
1010 kunmap(page);
1011
1012 if (ret <= 0)
1013 goto out;
1014
1015 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1016 }
1017
1018 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1019
1020 /* prepare and queue up footer, too */
1021 if (!do_datacrc)
1022 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1023 con_out_kvec_reset(con);
1024 prepare_write_message_footer(con);
1025 ret = 1;
1026 out:
1027 return ret;
1028 }
1029
1030 /*
1031 * write some zeros
1032 */
1033 static int write_partial_skip(struct ceph_connection *con)
1034 {
1035 int ret;
1036
1037 while (con->out_skip > 0) {
1038 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1039
1040 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1041 if (ret <= 0)
1042 goto out;
1043 con->out_skip -= ret;
1044 }
1045 ret = 1;
1046 out:
1047 return ret;
1048 }
1049
1050 /*
1051 * Prepare to read connection handshake, or an ack.
1052 */
1053 static void prepare_read_banner(struct ceph_connection *con)
1054 {
1055 dout("prepare_read_banner %p\n", con);
1056 con->in_base_pos = 0;
1057 }
1058
1059 static void prepare_read_connect(struct ceph_connection *con)
1060 {
1061 dout("prepare_read_connect %p\n", con);
1062 con->in_base_pos = 0;
1063 }
1064
1065 static void prepare_read_ack(struct ceph_connection *con)
1066 {
1067 dout("prepare_read_ack %p\n", con);
1068 con->in_base_pos = 0;
1069 }
1070
1071 static void prepare_read_tag(struct ceph_connection *con)
1072 {
1073 dout("prepare_read_tag %p\n", con);
1074 con->in_base_pos = 0;
1075 con->in_tag = CEPH_MSGR_TAG_READY;
1076 }
1077
1078 /*
1079 * Prepare to read a message.
1080 */
1081 static int prepare_read_message(struct ceph_connection *con)
1082 {
1083 dout("prepare_read_message %p\n", con);
1084 BUG_ON(con->in_msg != NULL);
1085 con->in_base_pos = 0;
1086 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1087 return 0;
1088 }
1089
1090
1091 static int read_partial(struct ceph_connection *con,
1092 int end, int size, void *object)
1093 {
1094 while (con->in_base_pos < end) {
1095 int left = end - con->in_base_pos;
1096 int have = size - left;
1097 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1098 if (ret <= 0)
1099 return ret;
1100 con->in_base_pos += ret;
1101 }
1102 return 1;
1103 }
1104
1105
1106 /*
1107 * Read all or part of the connect-side handshake on a new connection
1108 */
1109 static int read_partial_banner(struct ceph_connection *con)
1110 {
1111 int size;
1112 int end;
1113 int ret;
1114
1115 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1116
1117 /* peer's banner */
1118 size = strlen(CEPH_BANNER);
1119 end = size;
1120 ret = read_partial(con, end, size, con->in_banner);
1121 if (ret <= 0)
1122 goto out;
1123
1124 size = sizeof (con->actual_peer_addr);
1125 end += size;
1126 ret = read_partial(con, end, size, &con->actual_peer_addr);
1127 if (ret <= 0)
1128 goto out;
1129
1130 size = sizeof (con->peer_addr_for_me);
1131 end += size;
1132 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1133 if (ret <= 0)
1134 goto out;
1135
1136 out:
1137 return ret;
1138 }
1139
1140 static int read_partial_connect(struct ceph_connection *con)
1141 {
1142 int size;
1143 int end;
1144 int ret;
1145
1146 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1147
1148 size = sizeof (con->in_reply);
1149 end = size;
1150 ret = read_partial(con, end, size, &con->in_reply);
1151 if (ret <= 0)
1152 goto out;
1153
1154 size = le32_to_cpu(con->in_reply.authorizer_len);
1155 end += size;
1156 ret = read_partial(con, end, size, con->auth_reply_buf);
1157 if (ret <= 0)
1158 goto out;
1159
1160 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1161 con, (int)con->in_reply.tag,
1162 le32_to_cpu(con->in_reply.connect_seq),
1163 le32_to_cpu(con->in_reply.global_seq));
1164 out:
1165 return ret;
1166
1167 }
1168
1169 /*
1170 * Verify the hello banner looks okay.
1171 */
1172 static int verify_hello(struct ceph_connection *con)
1173 {
1174 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1175 pr_err("connect to %s got bad banner\n",
1176 ceph_pr_addr(&con->peer_addr.in_addr));
1177 con->error_msg = "protocol error, bad banner";
1178 return -1;
1179 }
1180 return 0;
1181 }
1182
1183 static bool addr_is_blank(struct sockaddr_storage *ss)
1184 {
1185 switch (ss->ss_family) {
1186 case AF_INET:
1187 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1188 case AF_INET6:
1189 return
1190 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1191 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1192 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1193 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1194 }
1195 return false;
1196 }
1197
1198 static int addr_port(struct sockaddr_storage *ss)
1199 {
1200 switch (ss->ss_family) {
1201 case AF_INET:
1202 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1203 case AF_INET6:
1204 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1205 }
1206 return 0;
1207 }
1208
1209 static void addr_set_port(struct sockaddr_storage *ss, int p)
1210 {
1211 switch (ss->ss_family) {
1212 case AF_INET:
1213 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1214 break;
1215 case AF_INET6:
1216 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1217 break;
1218 }
1219 }
1220
1221 /*
1222 * Unlike other *_pton function semantics, zero indicates success.
1223 */
1224 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1225 char delim, const char **ipend)
1226 {
1227 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1228 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1229
1230 memset(ss, 0, sizeof(*ss));
1231
1232 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1233 ss->ss_family = AF_INET;
1234 return 0;
1235 }
1236
1237 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1238 ss->ss_family = AF_INET6;
1239 return 0;
1240 }
1241
1242 return -EINVAL;
1243 }
1244
1245 /*
1246 * Extract hostname string and resolve using kernel DNS facility.
1247 */
1248 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1249 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1250 struct sockaddr_storage *ss, char delim, const char **ipend)
1251 {
1252 const char *end, *delim_p;
1253 char *colon_p, *ip_addr = NULL;
1254 int ip_len, ret;
1255
1256 /*
1257 * The end of the hostname occurs immediately preceding the delimiter or
1258 * the port marker (':') where the delimiter takes precedence.
1259 */
1260 delim_p = memchr(name, delim, namelen);
1261 colon_p = memchr(name, ':', namelen);
1262
1263 if (delim_p && colon_p)
1264 end = delim_p < colon_p ? delim_p : colon_p;
1265 else if (!delim_p && colon_p)
1266 end = colon_p;
1267 else {
1268 end = delim_p;
1269 if (!end) /* case: hostname:/ */
1270 end = name + namelen;
1271 }
1272
1273 if (end <= name)
1274 return -EINVAL;
1275
1276 /* do dns_resolve upcall */
1277 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1278 if (ip_len > 0)
1279 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1280 else
1281 ret = -ESRCH;
1282
1283 kfree(ip_addr);
1284
1285 *ipend = end;
1286
1287 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1288 ret, ret ? "failed" : ceph_pr_addr(ss));
1289
1290 return ret;
1291 }
1292 #else
1293 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1294 struct sockaddr_storage *ss, char delim, const char **ipend)
1295 {
1296 return -EINVAL;
1297 }
1298 #endif
1299
1300 /*
1301 * Parse a server name (IP or hostname). If a valid IP address is not found
1302 * then try to extract a hostname to resolve using userspace DNS upcall.
1303 */
1304 static int ceph_parse_server_name(const char *name, size_t namelen,
1305 struct sockaddr_storage *ss, char delim, const char **ipend)
1306 {
1307 int ret;
1308
1309 ret = ceph_pton(name, namelen, ss, delim, ipend);
1310 if (ret)
1311 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1312
1313 return ret;
1314 }
1315
1316 /*
1317 * Parse an ip[:port] list into an addr array. Use the default
1318 * monitor port if a port isn't specified.
1319 */
1320 int ceph_parse_ips(const char *c, const char *end,
1321 struct ceph_entity_addr *addr,
1322 int max_count, int *count)
1323 {
1324 int i, ret = -EINVAL;
1325 const char *p = c;
1326
1327 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1328 for (i = 0; i < max_count; i++) {
1329 const char *ipend;
1330 struct sockaddr_storage *ss = &addr[i].in_addr;
1331 int port;
1332 char delim = ',';
1333
1334 if (*p == '[') {
1335 delim = ']';
1336 p++;
1337 }
1338
1339 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1340 if (ret)
1341 goto bad;
1342 ret = -EINVAL;
1343
1344 p = ipend;
1345
1346 if (delim == ']') {
1347 if (*p != ']') {
1348 dout("missing matching ']'\n");
1349 goto bad;
1350 }
1351 p++;
1352 }
1353
1354 /* port? */
1355 if (p < end && *p == ':') {
1356 port = 0;
1357 p++;
1358 while (p < end && *p >= '0' && *p <= '9') {
1359 port = (port * 10) + (*p - '0');
1360 p++;
1361 }
1362 if (port > 65535 || port == 0)
1363 goto bad;
1364 } else {
1365 port = CEPH_MON_PORT;
1366 }
1367
1368 addr_set_port(ss, port);
1369
1370 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1371
1372 if (p == end)
1373 break;
1374 if (*p != ',')
1375 goto bad;
1376 p++;
1377 }
1378
1379 if (p != end)
1380 goto bad;
1381
1382 if (count)
1383 *count = i + 1;
1384 return 0;
1385
1386 bad:
1387 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1388 return ret;
1389 }
1390 EXPORT_SYMBOL(ceph_parse_ips);
1391
1392 static int process_banner(struct ceph_connection *con)
1393 {
1394 dout("process_banner on %p\n", con);
1395
1396 if (verify_hello(con) < 0)
1397 return -1;
1398
1399 ceph_decode_addr(&con->actual_peer_addr);
1400 ceph_decode_addr(&con->peer_addr_for_me);
1401
1402 /*
1403 * Make sure the other end is who we wanted. note that the other
1404 * end may not yet know their ip address, so if it's 0.0.0.0, give
1405 * them the benefit of the doubt.
1406 */
1407 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1408 sizeof(con->peer_addr)) != 0 &&
1409 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1410 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1411 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1412 ceph_pr_addr(&con->peer_addr.in_addr),
1413 (int)le32_to_cpu(con->peer_addr.nonce),
1414 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1415 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1416 con->error_msg = "wrong peer at address";
1417 return -1;
1418 }
1419
1420 /*
1421 * did we learn our address?
1422 */
1423 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1424 int port = addr_port(&con->msgr->inst.addr.in_addr);
1425
1426 memcpy(&con->msgr->inst.addr.in_addr,
1427 &con->peer_addr_for_me.in_addr,
1428 sizeof(con->peer_addr_for_me.in_addr));
1429 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1430 encode_my_addr(con->msgr);
1431 dout("process_banner learned my addr is %s\n",
1432 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1433 }
1434
1435 set_bit(NEGOTIATING, &con->state);
1436 prepare_read_connect(con);
1437 return 0;
1438 }
1439
1440 static void fail_protocol(struct ceph_connection *con)
1441 {
1442 reset_connection(con);
1443 set_bit(CLOSED, &con->state); /* in case there's queued work */
1444 }
1445
1446 static int process_connect(struct ceph_connection *con)
1447 {
1448 u64 sup_feat = con->msgr->supported_features;
1449 u64 req_feat = con->msgr->required_features;
1450 u64 server_feat = le64_to_cpu(con->in_reply.features);
1451 int ret;
1452
1453 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1454
1455 switch (con->in_reply.tag) {
1456 case CEPH_MSGR_TAG_FEATURES:
1457 pr_err("%s%lld %s feature set mismatch,"
1458 " my %llx < server's %llx, missing %llx\n",
1459 ENTITY_NAME(con->peer_name),
1460 ceph_pr_addr(&con->peer_addr.in_addr),
1461 sup_feat, server_feat, server_feat & ~sup_feat);
1462 con->error_msg = "missing required protocol features";
1463 fail_protocol(con);
1464 return -1;
1465
1466 case CEPH_MSGR_TAG_BADPROTOVER:
1467 pr_err("%s%lld %s protocol version mismatch,"
1468 " my %d != server's %d\n",
1469 ENTITY_NAME(con->peer_name),
1470 ceph_pr_addr(&con->peer_addr.in_addr),
1471 le32_to_cpu(con->out_connect.protocol_version),
1472 le32_to_cpu(con->in_reply.protocol_version));
1473 con->error_msg = "protocol version mismatch";
1474 fail_protocol(con);
1475 return -1;
1476
1477 case CEPH_MSGR_TAG_BADAUTHORIZER:
1478 con->auth_retry++;
1479 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1480 con->auth_retry);
1481 if (con->auth_retry == 2) {
1482 con->error_msg = "connect authorization failure";
1483 return -1;
1484 }
1485 con->auth_retry = 1;
1486 con_out_kvec_reset(con);
1487 ret = prepare_write_connect(con);
1488 if (ret < 0)
1489 return ret;
1490 prepare_read_connect(con);
1491 break;
1492
1493 case CEPH_MSGR_TAG_RESETSESSION:
1494 /*
1495 * If we connected with a large connect_seq but the peer
1496 * has no record of a session with us (no connection, or
1497 * connect_seq == 0), they will send RESETSESION to indicate
1498 * that they must have reset their session, and may have
1499 * dropped messages.
1500 */
1501 dout("process_connect got RESET peer seq %u\n",
1502 le32_to_cpu(con->in_connect.connect_seq));
1503 pr_err("%s%lld %s connection reset\n",
1504 ENTITY_NAME(con->peer_name),
1505 ceph_pr_addr(&con->peer_addr.in_addr));
1506 reset_connection(con);
1507 con_out_kvec_reset(con);
1508 ret = prepare_write_connect(con);
1509 if (ret < 0)
1510 return ret;
1511 prepare_read_connect(con);
1512
1513 /* Tell ceph about it. */
1514 mutex_unlock(&con->mutex);
1515 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1516 if (con->ops->peer_reset)
1517 con->ops->peer_reset(con);
1518 mutex_lock(&con->mutex);
1519 if (test_bit(CLOSED, &con->state) ||
1520 test_bit(OPENING, &con->state))
1521 return -EAGAIN;
1522 break;
1523
1524 case CEPH_MSGR_TAG_RETRY_SESSION:
1525 /*
1526 * If we sent a smaller connect_seq than the peer has, try
1527 * again with a larger value.
1528 */
1529 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1530 le32_to_cpu(con->out_connect.connect_seq),
1531 le32_to_cpu(con->in_connect.connect_seq));
1532 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1533 con_out_kvec_reset(con);
1534 ret = prepare_write_connect(con);
1535 if (ret < 0)
1536 return ret;
1537 prepare_read_connect(con);
1538 break;
1539
1540 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1541 /*
1542 * If we sent a smaller global_seq than the peer has, try
1543 * again with a larger value.
1544 */
1545 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1546 con->peer_global_seq,
1547 le32_to_cpu(con->in_connect.global_seq));
1548 get_global_seq(con->msgr,
1549 le32_to_cpu(con->in_connect.global_seq));
1550 con_out_kvec_reset(con);
1551 ret = prepare_write_connect(con);
1552 if (ret < 0)
1553 return ret;
1554 prepare_read_connect(con);
1555 break;
1556
1557 case CEPH_MSGR_TAG_READY:
1558 if (req_feat & ~server_feat) {
1559 pr_err("%s%lld %s protocol feature mismatch,"
1560 " my required %llx > server's %llx, need %llx\n",
1561 ENTITY_NAME(con->peer_name),
1562 ceph_pr_addr(&con->peer_addr.in_addr),
1563 req_feat, server_feat, req_feat & ~server_feat);
1564 con->error_msg = "missing required protocol features";
1565 fail_protocol(con);
1566 return -1;
1567 }
1568 clear_bit(CONNECTING, &con->state);
1569 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1570 con->connect_seq++;
1571 con->peer_features = server_feat;
1572 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1573 con->peer_global_seq,
1574 le32_to_cpu(con->in_reply.connect_seq),
1575 con->connect_seq);
1576 WARN_ON(con->connect_seq !=
1577 le32_to_cpu(con->in_reply.connect_seq));
1578
1579 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1580 set_bit(LOSSYTX, &con->flags);
1581
1582 prepare_read_tag(con);
1583 break;
1584
1585 case CEPH_MSGR_TAG_WAIT:
1586 /*
1587 * If there is a connection race (we are opening
1588 * connections to each other), one of us may just have
1589 * to WAIT. This shouldn't happen if we are the
1590 * client.
1591 */
1592 pr_err("process_connect got WAIT as client\n");
1593 con->error_msg = "protocol error, got WAIT as client";
1594 return -1;
1595
1596 default:
1597 pr_err("connect protocol error, will retry\n");
1598 con->error_msg = "protocol error, garbage tag during connect";
1599 return -1;
1600 }
1601 return 0;
1602 }
1603
1604
1605 /*
1606 * read (part of) an ack
1607 */
1608 static int read_partial_ack(struct ceph_connection *con)
1609 {
1610 int size = sizeof (con->in_temp_ack);
1611 int end = size;
1612
1613 return read_partial(con, end, size, &con->in_temp_ack);
1614 }
1615
1616
1617 /*
1618 * We can finally discard anything that's been acked.
1619 */
1620 static void process_ack(struct ceph_connection *con)
1621 {
1622 struct ceph_msg *m;
1623 u64 ack = le64_to_cpu(con->in_temp_ack);
1624 u64 seq;
1625
1626 while (!list_empty(&con->out_sent)) {
1627 m = list_first_entry(&con->out_sent, struct ceph_msg,
1628 list_head);
1629 seq = le64_to_cpu(m->hdr.seq);
1630 if (seq > ack)
1631 break;
1632 dout("got ack for seq %llu type %d at %p\n", seq,
1633 le16_to_cpu(m->hdr.type), m);
1634 m->ack_stamp = jiffies;
1635 ceph_msg_remove(m);
1636 }
1637 prepare_read_tag(con);
1638 }
1639
1640
1641
1642
1643 static int read_partial_message_section(struct ceph_connection *con,
1644 struct kvec *section,
1645 unsigned int sec_len, u32 *crc)
1646 {
1647 int ret, left;
1648
1649 BUG_ON(!section);
1650
1651 while (section->iov_len < sec_len) {
1652 BUG_ON(section->iov_base == NULL);
1653 left = sec_len - section->iov_len;
1654 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1655 section->iov_len, left);
1656 if (ret <= 0)
1657 return ret;
1658 section->iov_len += ret;
1659 }
1660 if (section->iov_len == sec_len)
1661 *crc = crc32c(0, section->iov_base, section->iov_len);
1662
1663 return 1;
1664 }
1665
1666 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1667 struct ceph_msg_header *hdr);
1668
1669
1670 static int read_partial_message_pages(struct ceph_connection *con,
1671 struct page **pages,
1672 unsigned int data_len, bool do_datacrc)
1673 {
1674 void *p;
1675 int ret;
1676 int left;
1677
1678 left = min((int)(data_len - con->in_msg_pos.data_pos),
1679 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1680 /* (page) data */
1681 BUG_ON(pages == NULL);
1682 p = kmap(pages[con->in_msg_pos.page]);
1683 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1684 left);
1685 if (ret > 0 && do_datacrc)
1686 con->in_data_crc =
1687 crc32c(con->in_data_crc,
1688 p + con->in_msg_pos.page_pos, ret);
1689 kunmap(pages[con->in_msg_pos.page]);
1690 if (ret <= 0)
1691 return ret;
1692 con->in_msg_pos.data_pos += ret;
1693 con->in_msg_pos.page_pos += ret;
1694 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1695 con->in_msg_pos.page_pos = 0;
1696 con->in_msg_pos.page++;
1697 }
1698
1699 return ret;
1700 }
1701
1702 #ifdef CONFIG_BLOCK
1703 static int read_partial_message_bio(struct ceph_connection *con,
1704 struct bio **bio_iter, int *bio_seg,
1705 unsigned int data_len, bool do_datacrc)
1706 {
1707 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1708 void *p;
1709 int ret, left;
1710
1711 if (IS_ERR(bv))
1712 return PTR_ERR(bv);
1713
1714 left = min((int)(data_len - con->in_msg_pos.data_pos),
1715 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1716
1717 p = kmap(bv->bv_page) + bv->bv_offset;
1718
1719 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1720 left);
1721 if (ret > 0 && do_datacrc)
1722 con->in_data_crc =
1723 crc32c(con->in_data_crc,
1724 p + con->in_msg_pos.page_pos, ret);
1725 kunmap(bv->bv_page);
1726 if (ret <= 0)
1727 return ret;
1728 con->in_msg_pos.data_pos += ret;
1729 con->in_msg_pos.page_pos += ret;
1730 if (con->in_msg_pos.page_pos == bv->bv_len) {
1731 con->in_msg_pos.page_pos = 0;
1732 iter_bio_next(bio_iter, bio_seg);
1733 }
1734
1735 return ret;
1736 }
1737 #endif
1738
1739 /*
1740 * read (part of) a message.
1741 */
1742 static int read_partial_message(struct ceph_connection *con)
1743 {
1744 struct ceph_msg *m = con->in_msg;
1745 int size;
1746 int end;
1747 int ret;
1748 unsigned int front_len, middle_len, data_len;
1749 bool do_datacrc = !con->msgr->nocrc;
1750 u64 seq;
1751 u32 crc;
1752
1753 dout("read_partial_message con %p msg %p\n", con, m);
1754
1755 /* header */
1756 size = sizeof (con->in_hdr);
1757 end = size;
1758 ret = read_partial(con, end, size, &con->in_hdr);
1759 if (ret <= 0)
1760 return ret;
1761
1762 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1763 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1764 pr_err("read_partial_message bad hdr "
1765 " crc %u != expected %u\n",
1766 crc, con->in_hdr.crc);
1767 return -EBADMSG;
1768 }
1769
1770 front_len = le32_to_cpu(con->in_hdr.front_len);
1771 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1772 return -EIO;
1773 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1774 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1775 return -EIO;
1776 data_len = le32_to_cpu(con->in_hdr.data_len);
1777 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1778 return -EIO;
1779
1780 /* verify seq# */
1781 seq = le64_to_cpu(con->in_hdr.seq);
1782 if ((s64)seq - (s64)con->in_seq < 1) {
1783 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1784 ENTITY_NAME(con->peer_name),
1785 ceph_pr_addr(&con->peer_addr.in_addr),
1786 seq, con->in_seq + 1);
1787 con->in_base_pos = -front_len - middle_len - data_len -
1788 sizeof(m->footer);
1789 con->in_tag = CEPH_MSGR_TAG_READY;
1790 return 0;
1791 } else if ((s64)seq - (s64)con->in_seq > 1) {
1792 pr_err("read_partial_message bad seq %lld expected %lld\n",
1793 seq, con->in_seq + 1);
1794 con->error_msg = "bad message sequence # for incoming message";
1795 return -EBADMSG;
1796 }
1797
1798 /* allocate message? */
1799 if (!con->in_msg) {
1800 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1801 con->in_hdr.front_len, con->in_hdr.data_len);
1802 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1803 /* skip this message */
1804 dout("alloc_msg said skip message\n");
1805 BUG_ON(con->in_msg);
1806 con->in_base_pos = -front_len - middle_len - data_len -
1807 sizeof(m->footer);
1808 con->in_tag = CEPH_MSGR_TAG_READY;
1809 con->in_seq++;
1810 return 0;
1811 }
1812 if (!con->in_msg) {
1813 con->error_msg =
1814 "error allocating memory for incoming message";
1815 return -ENOMEM;
1816 }
1817
1818 BUG_ON(con->in_msg->con != con);
1819 m = con->in_msg;
1820 m->front.iov_len = 0; /* haven't read it yet */
1821 if (m->middle)
1822 m->middle->vec.iov_len = 0;
1823
1824 con->in_msg_pos.page = 0;
1825 if (m->pages)
1826 con->in_msg_pos.page_pos = m->page_alignment;
1827 else
1828 con->in_msg_pos.page_pos = 0;
1829 con->in_msg_pos.data_pos = 0;
1830 }
1831
1832 /* front */
1833 ret = read_partial_message_section(con, &m->front, front_len,
1834 &con->in_front_crc);
1835 if (ret <= 0)
1836 return ret;
1837
1838 /* middle */
1839 if (m->middle) {
1840 ret = read_partial_message_section(con, &m->middle->vec,
1841 middle_len,
1842 &con->in_middle_crc);
1843 if (ret <= 0)
1844 return ret;
1845 }
1846 #ifdef CONFIG_BLOCK
1847 if (m->bio && !m->bio_iter)
1848 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1849 #endif
1850
1851 /* (page) data */
1852 while (con->in_msg_pos.data_pos < data_len) {
1853 if (m->pages) {
1854 ret = read_partial_message_pages(con, m->pages,
1855 data_len, do_datacrc);
1856 if (ret <= 0)
1857 return ret;
1858 #ifdef CONFIG_BLOCK
1859 } else if (m->bio) {
1860
1861 ret = read_partial_message_bio(con,
1862 &m->bio_iter, &m->bio_seg,
1863 data_len, do_datacrc);
1864 if (ret <= 0)
1865 return ret;
1866 #endif
1867 } else {
1868 BUG_ON(1);
1869 }
1870 }
1871
1872 /* footer */
1873 size = sizeof (m->footer);
1874 end += size;
1875 ret = read_partial(con, end, size, &m->footer);
1876 if (ret <= 0)
1877 return ret;
1878
1879 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1880 m, front_len, m->footer.front_crc, middle_len,
1881 m->footer.middle_crc, data_len, m->footer.data_crc);
1882
1883 /* crc ok? */
1884 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1885 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1886 m, con->in_front_crc, m->footer.front_crc);
1887 return -EBADMSG;
1888 }
1889 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1890 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1891 m, con->in_middle_crc, m->footer.middle_crc);
1892 return -EBADMSG;
1893 }
1894 if (do_datacrc &&
1895 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1896 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1897 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1898 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1899 return -EBADMSG;
1900 }
1901
1902 return 1; /* done! */
1903 }
1904
1905 /*
1906 * Process message. This happens in the worker thread. The callback should
1907 * be careful not to do anything that waits on other incoming messages or it
1908 * may deadlock.
1909 */
1910 static void process_message(struct ceph_connection *con)
1911 {
1912 struct ceph_msg *msg;
1913
1914 BUG_ON(con->in_msg->con != con);
1915 con->in_msg->con = NULL;
1916 msg = con->in_msg;
1917 con->in_msg = NULL;
1918 con->ops->put(con);
1919
1920 /* if first message, set peer_name */
1921 if (con->peer_name.type == 0)
1922 con->peer_name = msg->hdr.src;
1923
1924 con->in_seq++;
1925 mutex_unlock(&con->mutex);
1926
1927 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1928 msg, le64_to_cpu(msg->hdr.seq),
1929 ENTITY_NAME(msg->hdr.src),
1930 le16_to_cpu(msg->hdr.type),
1931 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1932 le32_to_cpu(msg->hdr.front_len),
1933 le32_to_cpu(msg->hdr.data_len),
1934 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1935 con->ops->dispatch(con, msg);
1936
1937 mutex_lock(&con->mutex);
1938 prepare_read_tag(con);
1939 }
1940
1941
1942 /*
1943 * Write something to the socket. Called in a worker thread when the
1944 * socket appears to be writeable and we have something ready to send.
1945 */
1946 static int try_write(struct ceph_connection *con)
1947 {
1948 int ret = 1;
1949
1950 dout("try_write start %p state %lu\n", con, con->state);
1951
1952 more:
1953 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1954
1955 /* open the socket first? */
1956 if (con->sock == NULL) {
1957 clear_bit(NEGOTIATING, &con->state);
1958 set_bit(CONNECTING, &con->state);
1959
1960 con_out_kvec_reset(con);
1961 prepare_write_banner(con);
1962 ret = prepare_write_connect(con);
1963 if (ret < 0)
1964 goto out;
1965 prepare_read_banner(con);
1966
1967 BUG_ON(con->in_msg);
1968 con->in_tag = CEPH_MSGR_TAG_READY;
1969 dout("try_write initiating connect on %p new state %lu\n",
1970 con, con->state);
1971 ret = ceph_tcp_connect(con);
1972 if (ret < 0) {
1973 con->error_msg = "connect error";
1974 goto out;
1975 }
1976 }
1977
1978 more_kvec:
1979 /* kvec data queued? */
1980 if (con->out_skip) {
1981 ret = write_partial_skip(con);
1982 if (ret <= 0)
1983 goto out;
1984 }
1985 if (con->out_kvec_left) {
1986 ret = write_partial_kvec(con);
1987 if (ret <= 0)
1988 goto out;
1989 }
1990
1991 /* msg pages? */
1992 if (con->out_msg) {
1993 if (con->out_msg_done) {
1994 ceph_msg_put(con->out_msg);
1995 con->out_msg = NULL; /* we're done with this one */
1996 goto do_next;
1997 }
1998
1999 ret = write_partial_msg_pages(con);
2000 if (ret == 1)
2001 goto more_kvec; /* we need to send the footer, too! */
2002 if (ret == 0)
2003 goto out;
2004 if (ret < 0) {
2005 dout("try_write write_partial_msg_pages err %d\n",
2006 ret);
2007 goto out;
2008 }
2009 }
2010
2011 do_next:
2012 if (!test_bit(CONNECTING, &con->state)) {
2013 /* is anything else pending? */
2014 if (!list_empty(&con->out_queue)) {
2015 prepare_write_message(con);
2016 goto more;
2017 }
2018 if (con->in_seq > con->in_seq_acked) {
2019 prepare_write_ack(con);
2020 goto more;
2021 }
2022 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2023 prepare_write_keepalive(con);
2024 goto more;
2025 }
2026 }
2027
2028 /* Nothing to do! */
2029 clear_bit(WRITE_PENDING, &con->flags);
2030 dout("try_write nothing else to write.\n");
2031 ret = 0;
2032 out:
2033 dout("try_write done on %p ret %d\n", con, ret);
2034 return ret;
2035 }
2036
2037
2038
2039 /*
2040 * Read what we can from the socket.
2041 */
2042 static int try_read(struct ceph_connection *con)
2043 {
2044 int ret = -1;
2045
2046 if (!con->sock)
2047 return 0;
2048
2049 if (test_bit(STANDBY, &con->state))
2050 return 0;
2051
2052 dout("try_read start on %p\n", con);
2053
2054 more:
2055 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2056 con->in_base_pos);
2057
2058 /*
2059 * process_connect and process_message drop and re-take
2060 * con->mutex. make sure we handle a racing close or reopen.
2061 */
2062 if (test_bit(CLOSED, &con->state) ||
2063 test_bit(OPENING, &con->state)) {
2064 ret = -EAGAIN;
2065 goto out;
2066 }
2067
2068 if (test_bit(CONNECTING, &con->state)) {
2069 if (!test_bit(NEGOTIATING, &con->state)) {
2070 dout("try_read connecting\n");
2071 ret = read_partial_banner(con);
2072 if (ret <= 0)
2073 goto out;
2074 ret = process_banner(con);
2075 if (ret < 0)
2076 goto out;
2077 }
2078 ret = read_partial_connect(con);
2079 if (ret <= 0)
2080 goto out;
2081 ret = process_connect(con);
2082 if (ret < 0)
2083 goto out;
2084 goto more;
2085 }
2086
2087 if (con->in_base_pos < 0) {
2088 /*
2089 * skipping + discarding content.
2090 *
2091 * FIXME: there must be a better way to do this!
2092 */
2093 static char buf[SKIP_BUF_SIZE];
2094 int skip = min((int) sizeof (buf), -con->in_base_pos);
2095
2096 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2097 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2098 if (ret <= 0)
2099 goto out;
2100 con->in_base_pos += ret;
2101 if (con->in_base_pos)
2102 goto more;
2103 }
2104 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2105 /*
2106 * what's next?
2107 */
2108 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2109 if (ret <= 0)
2110 goto out;
2111 dout("try_read got tag %d\n", (int)con->in_tag);
2112 switch (con->in_tag) {
2113 case CEPH_MSGR_TAG_MSG:
2114 prepare_read_message(con);
2115 break;
2116 case CEPH_MSGR_TAG_ACK:
2117 prepare_read_ack(con);
2118 break;
2119 case CEPH_MSGR_TAG_CLOSE:
2120 set_bit(CLOSED, &con->state); /* fixme */
2121 goto out;
2122 default:
2123 goto bad_tag;
2124 }
2125 }
2126 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2127 ret = read_partial_message(con);
2128 if (ret <= 0) {
2129 switch (ret) {
2130 case -EBADMSG:
2131 con->error_msg = "bad crc";
2132 ret = -EIO;
2133 break;
2134 case -EIO:
2135 con->error_msg = "io error";
2136 break;
2137 }
2138 goto out;
2139 }
2140 if (con->in_tag == CEPH_MSGR_TAG_READY)
2141 goto more;
2142 process_message(con);
2143 goto more;
2144 }
2145 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2146 ret = read_partial_ack(con);
2147 if (ret <= 0)
2148 goto out;
2149 process_ack(con);
2150 goto more;
2151 }
2152
2153 out:
2154 dout("try_read done on %p ret %d\n", con, ret);
2155 return ret;
2156
2157 bad_tag:
2158 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2159 con->error_msg = "protocol error, garbage tag";
2160 ret = -1;
2161 goto out;
2162 }
2163
2164
2165 /*
2166 * Atomically queue work on a connection. Bump @con reference to
2167 * avoid races with connection teardown.
2168 */
2169 static void queue_con(struct ceph_connection *con)
2170 {
2171 if (!con->ops->get(con)) {
2172 dout("queue_con %p ref count 0\n", con);
2173 return;
2174 }
2175
2176 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2177 dout("queue_con %p - already queued\n", con);
2178 con->ops->put(con);
2179 } else {
2180 dout("queue_con %p\n", con);
2181 }
2182 }
2183
2184 /*
2185 * Do some work on a connection. Drop a connection ref when we're done.
2186 */
2187 static void con_work(struct work_struct *work)
2188 {
2189 struct ceph_connection *con = container_of(work, struct ceph_connection,
2190 work.work);
2191 int ret;
2192
2193 mutex_lock(&con->mutex);
2194 restart:
2195 if (test_and_clear_bit(BACKOFF, &con->flags)) {
2196 dout("con_work %p backing off\n", con);
2197 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2198 round_jiffies_relative(con->delay))) {
2199 dout("con_work %p backoff %lu\n", con, con->delay);
2200 mutex_unlock(&con->mutex);
2201 return;
2202 } else {
2203 con->ops->put(con);
2204 dout("con_work %p FAILED to back off %lu\n", con,
2205 con->delay);
2206 }
2207 }
2208
2209 if (test_bit(STANDBY, &con->state)) {
2210 dout("con_work %p STANDBY\n", con);
2211 goto done;
2212 }
2213 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2214 dout("con_work CLOSED\n");
2215 con_close_socket(con);
2216 goto done;
2217 }
2218 if (test_and_clear_bit(OPENING, &con->state)) {
2219 /* reopen w/ new peer */
2220 dout("con_work OPENING\n");
2221 con_close_socket(con);
2222 }
2223
2224 if (test_and_clear_bit(SOCK_CLOSED, &con->flags))
2225 goto fault;
2226
2227 ret = try_read(con);
2228 if (ret == -EAGAIN)
2229 goto restart;
2230 if (ret < 0)
2231 goto fault;
2232
2233 ret = try_write(con);
2234 if (ret == -EAGAIN)
2235 goto restart;
2236 if (ret < 0)
2237 goto fault;
2238
2239 done:
2240 mutex_unlock(&con->mutex);
2241 done_unlocked:
2242 con->ops->put(con);
2243 return;
2244
2245 fault:
2246 mutex_unlock(&con->mutex);
2247 ceph_fault(con); /* error/fault path */
2248 goto done_unlocked;
2249 }
2250
2251
2252 /*
2253 * Generic error/fault handler. A retry mechanism is used with
2254 * exponential backoff
2255 */
2256 static void ceph_fault(struct ceph_connection *con)
2257 {
2258 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2259 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2260 dout("fault %p state %lu to peer %s\n",
2261 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2262
2263 if (test_bit(LOSSYTX, &con->flags)) {
2264 dout("fault on LOSSYTX channel\n");
2265 goto out;
2266 }
2267
2268 mutex_lock(&con->mutex);
2269 if (test_bit(CLOSED, &con->state))
2270 goto out_unlock;
2271
2272 con_close_socket(con);
2273
2274 if (con->in_msg) {
2275 BUG_ON(con->in_msg->con != con);
2276 con->in_msg->con = NULL;
2277 ceph_msg_put(con->in_msg);
2278 con->in_msg = NULL;
2279 con->ops->put(con);
2280 }
2281
2282 /* Requeue anything that hasn't been acked */
2283 list_splice_init(&con->out_sent, &con->out_queue);
2284
2285 /* If there are no messages queued or keepalive pending, place
2286 * the connection in a STANDBY state */
2287 if (list_empty(&con->out_queue) &&
2288 !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2289 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2290 clear_bit(WRITE_PENDING, &con->flags);
2291 set_bit(STANDBY, &con->state);
2292 } else {
2293 /* retry after a delay. */
2294 if (con->delay == 0)
2295 con->delay = BASE_DELAY_INTERVAL;
2296 else if (con->delay < MAX_DELAY_INTERVAL)
2297 con->delay *= 2;
2298 con->ops->get(con);
2299 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2300 round_jiffies_relative(con->delay))) {
2301 dout("fault queued %p delay %lu\n", con, con->delay);
2302 } else {
2303 con->ops->put(con);
2304 dout("fault failed to queue %p delay %lu, backoff\n",
2305 con, con->delay);
2306 /*
2307 * In many cases we see a socket state change
2308 * while con_work is running and end up
2309 * queuing (non-delayed) work, such that we
2310 * can't backoff with a delay. Set a flag so
2311 * that when con_work restarts we schedule the
2312 * delay then.
2313 */
2314 set_bit(BACKOFF, &con->flags);
2315 }
2316 }
2317
2318 out_unlock:
2319 mutex_unlock(&con->mutex);
2320 out:
2321 /*
2322 * in case we faulted due to authentication, invalidate our
2323 * current tickets so that we can get new ones.
2324 */
2325 if (con->auth_retry && con->ops->invalidate_authorizer) {
2326 dout("calling invalidate_authorizer()\n");
2327 con->ops->invalidate_authorizer(con);
2328 }
2329
2330 if (con->ops->fault)
2331 con->ops->fault(con);
2332 }
2333
2334
2335
2336 /*
2337 * initialize a new messenger instance
2338 */
2339 void ceph_messenger_init(struct ceph_messenger *msgr,
2340 struct ceph_entity_addr *myaddr,
2341 u32 supported_features,
2342 u32 required_features,
2343 bool nocrc)
2344 {
2345 msgr->supported_features = supported_features;
2346 msgr->required_features = required_features;
2347
2348 spin_lock_init(&msgr->global_seq_lock);
2349
2350 if (myaddr)
2351 msgr->inst.addr = *myaddr;
2352
2353 /* select a random nonce */
2354 msgr->inst.addr.type = 0;
2355 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2356 encode_my_addr(msgr);
2357 msgr->nocrc = nocrc;
2358
2359 dout("%s %p\n", __func__, msgr);
2360 }
2361 EXPORT_SYMBOL(ceph_messenger_init);
2362
2363 static void clear_standby(struct ceph_connection *con)
2364 {
2365 /* come back from STANDBY? */
2366 if (test_and_clear_bit(STANDBY, &con->state)) {
2367 mutex_lock(&con->mutex);
2368 dout("clear_standby %p and ++connect_seq\n", con);
2369 con->connect_seq++;
2370 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2371 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2372 mutex_unlock(&con->mutex);
2373 }
2374 }
2375
2376 /*
2377 * Queue up an outgoing message on the given connection.
2378 */
2379 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2380 {
2381 if (test_bit(CLOSED, &con->state)) {
2382 dout("con_send %p closed, dropping %p\n", con, msg);
2383 ceph_msg_put(msg);
2384 return;
2385 }
2386
2387 /* set src+dst */
2388 msg->hdr.src = con->msgr->inst.name;
2389
2390 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2391
2392 msg->needs_out_seq = true;
2393
2394 /* queue */
2395 mutex_lock(&con->mutex);
2396
2397 BUG_ON(msg->con != NULL);
2398 msg->con = con->ops->get(con);
2399 BUG_ON(msg->con == NULL);
2400
2401 BUG_ON(!list_empty(&msg->list_head));
2402 list_add_tail(&msg->list_head, &con->out_queue);
2403 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2404 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2405 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2406 le32_to_cpu(msg->hdr.front_len),
2407 le32_to_cpu(msg->hdr.middle_len),
2408 le32_to_cpu(msg->hdr.data_len));
2409 mutex_unlock(&con->mutex);
2410
2411 /* if there wasn't anything waiting to send before, queue
2412 * new work */
2413 clear_standby(con);
2414 if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2415 queue_con(con);
2416 }
2417 EXPORT_SYMBOL(ceph_con_send);
2418
2419 /*
2420 * Revoke a message that was previously queued for send
2421 */
2422 void ceph_msg_revoke(struct ceph_msg *msg)
2423 {
2424 struct ceph_connection *con = msg->con;
2425
2426 if (!con)
2427 return; /* Message not in our possession */
2428
2429 mutex_lock(&con->mutex);
2430 if (!list_empty(&msg->list_head)) {
2431 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2432 list_del_init(&msg->list_head);
2433 BUG_ON(msg->con == NULL);
2434 msg->con->ops->put(msg->con);
2435 msg->con = NULL;
2436 msg->hdr.seq = 0;
2437
2438 ceph_msg_put(msg);
2439 }
2440 if (con->out_msg == msg) {
2441 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2442 con->out_msg = NULL;
2443 if (con->out_kvec_is_msg) {
2444 con->out_skip = con->out_kvec_bytes;
2445 con->out_kvec_is_msg = false;
2446 }
2447 msg->hdr.seq = 0;
2448
2449 ceph_msg_put(msg);
2450 }
2451 mutex_unlock(&con->mutex);
2452 }
2453
2454 /*
2455 * Revoke a message that we may be reading data into
2456 */
2457 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2458 {
2459 struct ceph_connection *con;
2460
2461 BUG_ON(msg == NULL);
2462 if (!msg->con) {
2463 dout("%s msg %p null con\n", __func__, msg);
2464
2465 return; /* Message not in our possession */
2466 }
2467
2468 con = msg->con;
2469 mutex_lock(&con->mutex);
2470 if (con->in_msg == msg) {
2471 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2472 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2473 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2474
2475 /* skip rest of message */
2476 dout("%s %p msg %p revoked\n", __func__, con, msg);
2477 con->in_base_pos = con->in_base_pos -
2478 sizeof(struct ceph_msg_header) -
2479 front_len -
2480 middle_len -
2481 data_len -
2482 sizeof(struct ceph_msg_footer);
2483 ceph_msg_put(con->in_msg);
2484 con->in_msg = NULL;
2485 con->in_tag = CEPH_MSGR_TAG_READY;
2486 con->in_seq++;
2487 } else {
2488 dout("%s %p in_msg %p msg %p no-op\n",
2489 __func__, con, con->in_msg, msg);
2490 }
2491 mutex_unlock(&con->mutex);
2492 }
2493
2494 /*
2495 * Queue a keepalive byte to ensure the tcp connection is alive.
2496 */
2497 void ceph_con_keepalive(struct ceph_connection *con)
2498 {
2499 dout("con_keepalive %p\n", con);
2500 clear_standby(con);
2501 if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2502 test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2503 queue_con(con);
2504 }
2505 EXPORT_SYMBOL(ceph_con_keepalive);
2506
2507
2508 /*
2509 * construct a new message with given type, size
2510 * the new msg has a ref count of 1.
2511 */
2512 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2513 bool can_fail)
2514 {
2515 struct ceph_msg *m;
2516
2517 m = kmalloc(sizeof(*m), flags);
2518 if (m == NULL)
2519 goto out;
2520 kref_init(&m->kref);
2521
2522 m->con = NULL;
2523 INIT_LIST_HEAD(&m->list_head);
2524
2525 m->hdr.tid = 0;
2526 m->hdr.type = cpu_to_le16(type);
2527 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2528 m->hdr.version = 0;
2529 m->hdr.front_len = cpu_to_le32(front_len);
2530 m->hdr.middle_len = 0;
2531 m->hdr.data_len = 0;
2532 m->hdr.data_off = 0;
2533 m->hdr.reserved = 0;
2534 m->footer.front_crc = 0;
2535 m->footer.middle_crc = 0;
2536 m->footer.data_crc = 0;
2537 m->footer.flags = 0;
2538 m->front_max = front_len;
2539 m->front_is_vmalloc = false;
2540 m->more_to_follow = false;
2541 m->ack_stamp = 0;
2542 m->pool = NULL;
2543
2544 /* middle */
2545 m->middle = NULL;
2546
2547 /* data */
2548 m->nr_pages = 0;
2549 m->page_alignment = 0;
2550 m->pages = NULL;
2551 m->pagelist = NULL;
2552 m->bio = NULL;
2553 m->bio_iter = NULL;
2554 m->bio_seg = 0;
2555 m->trail = NULL;
2556
2557 /* front */
2558 if (front_len) {
2559 if (front_len > PAGE_CACHE_SIZE) {
2560 m->front.iov_base = __vmalloc(front_len, flags,
2561 PAGE_KERNEL);
2562 m->front_is_vmalloc = true;
2563 } else {
2564 m->front.iov_base = kmalloc(front_len, flags);
2565 }
2566 if (m->front.iov_base == NULL) {
2567 dout("ceph_msg_new can't allocate %d bytes\n",
2568 front_len);
2569 goto out2;
2570 }
2571 } else {
2572 m->front.iov_base = NULL;
2573 }
2574 m->front.iov_len = front_len;
2575
2576 dout("ceph_msg_new %p front %d\n", m, front_len);
2577 return m;
2578
2579 out2:
2580 ceph_msg_put(m);
2581 out:
2582 if (!can_fail) {
2583 pr_err("msg_new can't create type %d front %d\n", type,
2584 front_len);
2585 WARN_ON(1);
2586 } else {
2587 dout("msg_new can't create type %d front %d\n", type,
2588 front_len);
2589 }
2590 return NULL;
2591 }
2592 EXPORT_SYMBOL(ceph_msg_new);
2593
2594 /*
2595 * Allocate "middle" portion of a message, if it is needed and wasn't
2596 * allocated by alloc_msg. This allows us to read a small fixed-size
2597 * per-type header in the front and then gracefully fail (i.e.,
2598 * propagate the error to the caller based on info in the front) when
2599 * the middle is too large.
2600 */
2601 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2602 {
2603 int type = le16_to_cpu(msg->hdr.type);
2604 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2605
2606 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2607 ceph_msg_type_name(type), middle_len);
2608 BUG_ON(!middle_len);
2609 BUG_ON(msg->middle);
2610
2611 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2612 if (!msg->middle)
2613 return -ENOMEM;
2614 return 0;
2615 }
2616
2617 /*
2618 * Allocate a message for receiving an incoming message on a
2619 * connection, and save the result in con->in_msg. Uses the
2620 * connection's private alloc_msg op if available.
2621 *
2622 * Returns true if the message should be skipped, false otherwise.
2623 * If true is returned (skip message), con->in_msg will be NULL.
2624 * If false is returned, con->in_msg will contain a pointer to the
2625 * newly-allocated message, or NULL in case of memory exhaustion.
2626 */
2627 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2628 struct ceph_msg_header *hdr)
2629 {
2630 int type = le16_to_cpu(hdr->type);
2631 int front_len = le32_to_cpu(hdr->front_len);
2632 int middle_len = le32_to_cpu(hdr->middle_len);
2633 int ret;
2634
2635 BUG_ON(con->in_msg != NULL);
2636
2637 if (con->ops->alloc_msg) {
2638 int skip = 0;
2639
2640 mutex_unlock(&con->mutex);
2641 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2642 mutex_lock(&con->mutex);
2643 if (con->in_msg) {
2644 con->in_msg->con = con->ops->get(con);
2645 BUG_ON(con->in_msg->con == NULL);
2646 }
2647 if (skip)
2648 con->in_msg = NULL;
2649
2650 if (!con->in_msg)
2651 return skip != 0;
2652 }
2653 if (!con->in_msg) {
2654 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2655 if (!con->in_msg) {
2656 pr_err("unable to allocate msg type %d len %d\n",
2657 type, front_len);
2658 return false;
2659 }
2660 con->in_msg->con = con->ops->get(con);
2661 BUG_ON(con->in_msg->con == NULL);
2662 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2663 }
2664 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2665
2666 if (middle_len && !con->in_msg->middle) {
2667 ret = ceph_alloc_middle(con, con->in_msg);
2668 if (ret < 0) {
2669 ceph_msg_put(con->in_msg);
2670 con->in_msg = NULL;
2671 }
2672 }
2673
2674 return false;
2675 }
2676
2677
2678 /*
2679 * Free a generically kmalloc'd message.
2680 */
2681 void ceph_msg_kfree(struct ceph_msg *m)
2682 {
2683 dout("msg_kfree %p\n", m);
2684 if (m->front_is_vmalloc)
2685 vfree(m->front.iov_base);
2686 else
2687 kfree(m->front.iov_base);
2688 kfree(m);
2689 }
2690
2691 /*
2692 * Drop a msg ref. Destroy as needed.
2693 */
2694 void ceph_msg_last_put(struct kref *kref)
2695 {
2696 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2697
2698 dout("ceph_msg_put last one on %p\n", m);
2699 WARN_ON(!list_empty(&m->list_head));
2700
2701 /* drop middle, data, if any */
2702 if (m->middle) {
2703 ceph_buffer_put(m->middle);
2704 m->middle = NULL;
2705 }
2706 m->nr_pages = 0;
2707 m->pages = NULL;
2708
2709 if (m->pagelist) {
2710 ceph_pagelist_release(m->pagelist);
2711 kfree(m->pagelist);
2712 m->pagelist = NULL;
2713 }
2714
2715 m->trail = NULL;
2716
2717 if (m->pool)
2718 ceph_msgpool_put(m->pool, m);
2719 else
2720 ceph_msg_kfree(m);
2721 }
2722 EXPORT_SYMBOL(ceph_msg_last_put);
2723
2724 void ceph_msg_dump(struct ceph_msg *msg)
2725 {
2726 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2727 msg->front_max, msg->nr_pages);
2728 print_hex_dump(KERN_DEBUG, "header: ",
2729 DUMP_PREFIX_OFFSET, 16, 1,
2730 &msg->hdr, sizeof(msg->hdr), true);
2731 print_hex_dump(KERN_DEBUG, " front: ",
2732 DUMP_PREFIX_OFFSET, 16, 1,
2733 msg->front.iov_base, msg->front.iov_len, true);
2734 if (msg->middle)
2735 print_hex_dump(KERN_DEBUG, "middle: ",
2736 DUMP_PREFIX_OFFSET, 16, 1,
2737 msg->middle->vec.iov_base,
2738 msg->middle->vec.iov_len, true);
2739 print_hex_dump(KERN_DEBUG, "footer: ",
2740 DUMP_PREFIX_OFFSET, 16, 1,
2741 &msg->footer, sizeof(msg->footer), true);
2742 }
2743 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.172509 seconds and 5 git commands to generate.