ceph: messenger: change read_partial() to take "end" arg
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /* static tag bytes (protocol control messages) */
33 static char tag_msg = CEPH_MSGR_TAG_MSG;
34 static char tag_ack = CEPH_MSGR_TAG_ACK;
35 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36
37 #ifdef CONFIG_LOCKDEP
38 static struct lock_class_key socket_class;
39 #endif
40
41 /*
42 * When skipping (ignoring) a block of input we read it into a "skip
43 * buffer," which is this many bytes in size.
44 */
45 #define SKIP_BUF_SIZE 1024
46
47 static void queue_con(struct ceph_connection *con);
48 static void con_work(struct work_struct *);
49 static void ceph_fault(struct ceph_connection *con);
50
51 /*
52 * Nicely render a sockaddr as a string. An array of formatted
53 * strings is used, to approximate reentrancy.
54 */
55 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
56 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
57 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
58 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
59
60 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
61 static atomic_t addr_str_seq = ATOMIC_INIT(0);
62
63 static struct page *zero_page; /* used in certain error cases */
64
65 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
66 {
67 int i;
68 char *s;
69 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
70 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
71
72 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
73 s = addr_str[i];
74
75 switch (ss->ss_family) {
76 case AF_INET:
77 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
78 ntohs(in4->sin_port));
79 break;
80
81 case AF_INET6:
82 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
83 ntohs(in6->sin6_port));
84 break;
85
86 default:
87 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
88 ss->ss_family);
89 }
90
91 return s;
92 }
93 EXPORT_SYMBOL(ceph_pr_addr);
94
95 static void encode_my_addr(struct ceph_messenger *msgr)
96 {
97 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
98 ceph_encode_addr(&msgr->my_enc_addr);
99 }
100
101 /*
102 * work queue for all reading and writing to/from the socket.
103 */
104 static struct workqueue_struct *ceph_msgr_wq;
105
106 void _ceph_msgr_exit(void)
107 {
108 if (ceph_msgr_wq) {
109 destroy_workqueue(ceph_msgr_wq);
110 ceph_msgr_wq = NULL;
111 }
112
113 BUG_ON(zero_page == NULL);
114 kunmap(zero_page);
115 page_cache_release(zero_page);
116 zero_page = NULL;
117 }
118
119 int ceph_msgr_init(void)
120 {
121 BUG_ON(zero_page != NULL);
122 zero_page = ZERO_PAGE(0);
123 page_cache_get(zero_page);
124
125 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
126 if (ceph_msgr_wq)
127 return 0;
128
129 pr_err("msgr_init failed to create workqueue\n");
130 _ceph_msgr_exit();
131
132 return -ENOMEM;
133 }
134 EXPORT_SYMBOL(ceph_msgr_init);
135
136 void ceph_msgr_exit(void)
137 {
138 BUG_ON(ceph_msgr_wq == NULL);
139
140 _ceph_msgr_exit();
141 }
142 EXPORT_SYMBOL(ceph_msgr_exit);
143
144 void ceph_msgr_flush(void)
145 {
146 flush_workqueue(ceph_msgr_wq);
147 }
148 EXPORT_SYMBOL(ceph_msgr_flush);
149
150
151 /*
152 * socket callback functions
153 */
154
155 /* data available on socket, or listen socket received a connect */
156 static void ceph_data_ready(struct sock *sk, int count_unused)
157 {
158 struct ceph_connection *con = sk->sk_user_data;
159
160 if (sk->sk_state != TCP_CLOSE_WAIT) {
161 dout("ceph_data_ready on %p state = %lu, queueing work\n",
162 con, con->state);
163 queue_con(con);
164 }
165 }
166
167 /* socket has buffer space for writing */
168 static void ceph_write_space(struct sock *sk)
169 {
170 struct ceph_connection *con = sk->sk_user_data;
171
172 /* only queue to workqueue if there is data we want to write,
173 * and there is sufficient space in the socket buffer to accept
174 * more data. clear SOCK_NOSPACE so that ceph_write_space()
175 * doesn't get called again until try_write() fills the socket
176 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
177 * and net/core/stream.c:sk_stream_write_space().
178 */
179 if (test_bit(WRITE_PENDING, &con->state)) {
180 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
181 dout("ceph_write_space %p queueing write work\n", con);
182 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
183 queue_con(con);
184 }
185 } else {
186 dout("ceph_write_space %p nothing to write\n", con);
187 }
188 }
189
190 /* socket's state has changed */
191 static void ceph_state_change(struct sock *sk)
192 {
193 struct ceph_connection *con = sk->sk_user_data;
194
195 dout("ceph_state_change %p state = %lu sk_state = %u\n",
196 con, con->state, sk->sk_state);
197
198 if (test_bit(CLOSED, &con->state))
199 return;
200
201 switch (sk->sk_state) {
202 case TCP_CLOSE:
203 dout("ceph_state_change TCP_CLOSE\n");
204 case TCP_CLOSE_WAIT:
205 dout("ceph_state_change TCP_CLOSE_WAIT\n");
206 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
207 if (test_bit(CONNECTING, &con->state))
208 con->error_msg = "connection failed";
209 else
210 con->error_msg = "socket closed";
211 queue_con(con);
212 }
213 break;
214 case TCP_ESTABLISHED:
215 dout("ceph_state_change TCP_ESTABLISHED\n");
216 queue_con(con);
217 break;
218 default: /* Everything else is uninteresting */
219 break;
220 }
221 }
222
223 /*
224 * set up socket callbacks
225 */
226 static void set_sock_callbacks(struct socket *sock,
227 struct ceph_connection *con)
228 {
229 struct sock *sk = sock->sk;
230 sk->sk_user_data = con;
231 sk->sk_data_ready = ceph_data_ready;
232 sk->sk_write_space = ceph_write_space;
233 sk->sk_state_change = ceph_state_change;
234 }
235
236
237 /*
238 * socket helpers
239 */
240
241 /*
242 * initiate connection to a remote socket.
243 */
244 static int ceph_tcp_connect(struct ceph_connection *con)
245 {
246 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
247 struct socket *sock;
248 int ret;
249
250 BUG_ON(con->sock);
251 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
252 IPPROTO_TCP, &sock);
253 if (ret)
254 return ret;
255 sock->sk->sk_allocation = GFP_NOFS;
256
257 #ifdef CONFIG_LOCKDEP
258 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
259 #endif
260
261 set_sock_callbacks(sock, con);
262
263 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
264
265 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
266 O_NONBLOCK);
267 if (ret == -EINPROGRESS) {
268 dout("connect %s EINPROGRESS sk_state = %u\n",
269 ceph_pr_addr(&con->peer_addr.in_addr),
270 sock->sk->sk_state);
271 } else if (ret < 0) {
272 pr_err("connect %s error %d\n",
273 ceph_pr_addr(&con->peer_addr.in_addr), ret);
274 sock_release(sock);
275 con->error_msg = "connect error";
276
277 return ret;
278 }
279 con->sock = sock;
280
281 return 0;
282 }
283
284 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
285 {
286 struct kvec iov = {buf, len};
287 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
288 int r;
289
290 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
291 if (r == -EAGAIN)
292 r = 0;
293 return r;
294 }
295
296 /*
297 * write something. @more is true if caller will be sending more data
298 * shortly.
299 */
300 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
301 size_t kvlen, size_t len, int more)
302 {
303 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
304 int r;
305
306 if (more)
307 msg.msg_flags |= MSG_MORE;
308 else
309 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
310
311 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
312 if (r == -EAGAIN)
313 r = 0;
314 return r;
315 }
316
317 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
318 int offset, size_t size, int more)
319 {
320 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
321 int ret;
322
323 ret = kernel_sendpage(sock, page, offset, size, flags);
324 if (ret == -EAGAIN)
325 ret = 0;
326
327 return ret;
328 }
329
330
331 /*
332 * Shutdown/close the socket for the given connection.
333 */
334 static int con_close_socket(struct ceph_connection *con)
335 {
336 int rc;
337
338 dout("con_close_socket on %p sock %p\n", con, con->sock);
339 if (!con->sock)
340 return 0;
341 set_bit(SOCK_CLOSED, &con->state);
342 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
343 sock_release(con->sock);
344 con->sock = NULL;
345 clear_bit(SOCK_CLOSED, &con->state);
346 return rc;
347 }
348
349 /*
350 * Reset a connection. Discard all incoming and outgoing messages
351 * and clear *_seq state.
352 */
353 static void ceph_msg_remove(struct ceph_msg *msg)
354 {
355 list_del_init(&msg->list_head);
356 ceph_msg_put(msg);
357 }
358 static void ceph_msg_remove_list(struct list_head *head)
359 {
360 while (!list_empty(head)) {
361 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
362 list_head);
363 ceph_msg_remove(msg);
364 }
365 }
366
367 static void reset_connection(struct ceph_connection *con)
368 {
369 /* reset connection, out_queue, msg_ and connect_seq */
370 /* discard existing out_queue and msg_seq */
371 ceph_msg_remove_list(&con->out_queue);
372 ceph_msg_remove_list(&con->out_sent);
373
374 if (con->in_msg) {
375 ceph_msg_put(con->in_msg);
376 con->in_msg = NULL;
377 }
378
379 con->connect_seq = 0;
380 con->out_seq = 0;
381 if (con->out_msg) {
382 ceph_msg_put(con->out_msg);
383 con->out_msg = NULL;
384 }
385 con->in_seq = 0;
386 con->in_seq_acked = 0;
387 }
388
389 /*
390 * mark a peer down. drop any open connections.
391 */
392 void ceph_con_close(struct ceph_connection *con)
393 {
394 dout("con_close %p peer %s\n", con,
395 ceph_pr_addr(&con->peer_addr.in_addr));
396 set_bit(CLOSED, &con->state); /* in case there's queued work */
397 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
398 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
399 clear_bit(KEEPALIVE_PENDING, &con->state);
400 clear_bit(WRITE_PENDING, &con->state);
401 mutex_lock(&con->mutex);
402 reset_connection(con);
403 con->peer_global_seq = 0;
404 cancel_delayed_work(&con->work);
405 mutex_unlock(&con->mutex);
406 queue_con(con);
407 }
408 EXPORT_SYMBOL(ceph_con_close);
409
410 /*
411 * Reopen a closed connection, with a new peer address.
412 */
413 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
414 {
415 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
416 set_bit(OPENING, &con->state);
417 clear_bit(CLOSED, &con->state);
418 memcpy(&con->peer_addr, addr, sizeof(*addr));
419 con->delay = 0; /* reset backoff memory */
420 queue_con(con);
421 }
422 EXPORT_SYMBOL(ceph_con_open);
423
424 /*
425 * return true if this connection ever successfully opened
426 */
427 bool ceph_con_opened(struct ceph_connection *con)
428 {
429 return con->connect_seq > 0;
430 }
431
432 /*
433 * generic get/put
434 */
435 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
436 {
437 int nref = __atomic_add_unless(&con->nref, 1, 0);
438
439 dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
440
441 return nref ? con : NULL;
442 }
443
444 void ceph_con_put(struct ceph_connection *con)
445 {
446 int nref = atomic_dec_return(&con->nref);
447
448 BUG_ON(nref < 0);
449 if (nref == 0) {
450 BUG_ON(con->sock);
451 kfree(con);
452 }
453 dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
454 }
455
456 /*
457 * initialize a new connection.
458 */
459 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
460 {
461 dout("con_init %p\n", con);
462 memset(con, 0, sizeof(*con));
463 atomic_set(&con->nref, 1);
464 con->msgr = msgr;
465 mutex_init(&con->mutex);
466 INIT_LIST_HEAD(&con->out_queue);
467 INIT_LIST_HEAD(&con->out_sent);
468 INIT_DELAYED_WORK(&con->work, con_work);
469 }
470 EXPORT_SYMBOL(ceph_con_init);
471
472
473 /*
474 * We maintain a global counter to order connection attempts. Get
475 * a unique seq greater than @gt.
476 */
477 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
478 {
479 u32 ret;
480
481 spin_lock(&msgr->global_seq_lock);
482 if (msgr->global_seq < gt)
483 msgr->global_seq = gt;
484 ret = ++msgr->global_seq;
485 spin_unlock(&msgr->global_seq_lock);
486 return ret;
487 }
488
489 static void ceph_con_out_kvec_reset(struct ceph_connection *con)
490 {
491 con->out_kvec_left = 0;
492 con->out_kvec_bytes = 0;
493 con->out_kvec_cur = &con->out_kvec[0];
494 }
495
496 static void ceph_con_out_kvec_add(struct ceph_connection *con,
497 size_t size, void *data)
498 {
499 int index;
500
501 index = con->out_kvec_left;
502 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
503
504 con->out_kvec[index].iov_len = size;
505 con->out_kvec[index].iov_base = data;
506 con->out_kvec_left++;
507 con->out_kvec_bytes += size;
508 }
509
510 /*
511 * Prepare footer for currently outgoing message, and finish things
512 * off. Assumes out_kvec* are already valid.. we just add on to the end.
513 */
514 static void prepare_write_message_footer(struct ceph_connection *con)
515 {
516 struct ceph_msg *m = con->out_msg;
517 int v = con->out_kvec_left;
518
519 dout("prepare_write_message_footer %p\n", con);
520 con->out_kvec_is_msg = true;
521 con->out_kvec[v].iov_base = &m->footer;
522 con->out_kvec[v].iov_len = sizeof(m->footer);
523 con->out_kvec_bytes += sizeof(m->footer);
524 con->out_kvec_left++;
525 con->out_more = m->more_to_follow;
526 con->out_msg_done = true;
527 }
528
529 /*
530 * Prepare headers for the next outgoing message.
531 */
532 static void prepare_write_message(struct ceph_connection *con)
533 {
534 struct ceph_msg *m;
535 u32 crc;
536
537 ceph_con_out_kvec_reset(con);
538 con->out_kvec_is_msg = true;
539 con->out_msg_done = false;
540
541 /* Sneak an ack in there first? If we can get it into the same
542 * TCP packet that's a good thing. */
543 if (con->in_seq > con->in_seq_acked) {
544 con->in_seq_acked = con->in_seq;
545 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
546 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
547 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
548 &con->out_temp_ack);
549 }
550
551 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
552 con->out_msg = m;
553
554 /* put message on sent list */
555 ceph_msg_get(m);
556 list_move_tail(&m->list_head, &con->out_sent);
557
558 /*
559 * only assign outgoing seq # if we haven't sent this message
560 * yet. if it is requeued, resend with it's original seq.
561 */
562 if (m->needs_out_seq) {
563 m->hdr.seq = cpu_to_le64(++con->out_seq);
564 m->needs_out_seq = false;
565 }
566
567 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
568 m, con->out_seq, le16_to_cpu(m->hdr.type),
569 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
570 le32_to_cpu(m->hdr.data_len),
571 m->nr_pages);
572 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
573
574 /* tag + hdr + front + middle */
575 ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
576 ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
577 ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
578
579 if (m->middle)
580 ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
581 m->middle->vec.iov_base);
582
583 /* fill in crc (except data pages), footer */
584 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
585 con->out_msg->hdr.crc = cpu_to_le32(crc);
586 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
587
588 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
589 con->out_msg->footer.front_crc = cpu_to_le32(crc);
590 if (m->middle) {
591 crc = crc32c(0, m->middle->vec.iov_base,
592 m->middle->vec.iov_len);
593 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
594 } else
595 con->out_msg->footer.middle_crc = 0;
596 con->out_msg->footer.data_crc = 0;
597 dout("prepare_write_message front_crc %u data_crc %u\n",
598 le32_to_cpu(con->out_msg->footer.front_crc),
599 le32_to_cpu(con->out_msg->footer.middle_crc));
600
601 /* is there a data payload? */
602 if (le32_to_cpu(m->hdr.data_len) > 0) {
603 /* initialize page iterator */
604 con->out_msg_pos.page = 0;
605 if (m->pages)
606 con->out_msg_pos.page_pos = m->page_alignment;
607 else
608 con->out_msg_pos.page_pos = 0;
609 con->out_msg_pos.data_pos = 0;
610 con->out_msg_pos.did_page_crc = false;
611 con->out_more = 1; /* data + footer will follow */
612 } else {
613 /* no, queue up footer too and be done */
614 prepare_write_message_footer(con);
615 }
616
617 set_bit(WRITE_PENDING, &con->state);
618 }
619
620 /*
621 * Prepare an ack.
622 */
623 static void prepare_write_ack(struct ceph_connection *con)
624 {
625 dout("prepare_write_ack %p %llu -> %llu\n", con,
626 con->in_seq_acked, con->in_seq);
627 con->in_seq_acked = con->in_seq;
628
629 ceph_con_out_kvec_reset(con);
630
631 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
632
633 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
634 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
635 &con->out_temp_ack);
636
637 con->out_more = 1; /* more will follow.. eventually.. */
638 set_bit(WRITE_PENDING, &con->state);
639 }
640
641 /*
642 * Prepare to write keepalive byte.
643 */
644 static void prepare_write_keepalive(struct ceph_connection *con)
645 {
646 dout("prepare_write_keepalive %p\n", con);
647 ceph_con_out_kvec_reset(con);
648 ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
649 set_bit(WRITE_PENDING, &con->state);
650 }
651
652 /*
653 * Connection negotiation.
654 */
655
656 static int prepare_connect_authorizer(struct ceph_connection *con)
657 {
658 void *auth_buf;
659 int auth_len = 0;
660 int auth_protocol = 0;
661
662 mutex_unlock(&con->mutex);
663 if (con->ops->get_authorizer)
664 con->ops->get_authorizer(con, &auth_buf, &auth_len,
665 &auth_protocol, &con->auth_reply_buf,
666 &con->auth_reply_buf_len,
667 con->auth_retry);
668 mutex_lock(&con->mutex);
669
670 if (test_bit(CLOSED, &con->state) ||
671 test_bit(OPENING, &con->state))
672 return -EAGAIN;
673
674 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
675 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
676
677 if (auth_len)
678 ceph_con_out_kvec_add(con, auth_len, auth_buf);
679
680 return 0;
681 }
682
683 /*
684 * We connected to a peer and are saying hello.
685 */
686 static void prepare_write_banner(struct ceph_messenger *msgr,
687 struct ceph_connection *con)
688 {
689 ceph_con_out_kvec_reset(con);
690 ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
691 ceph_con_out_kvec_add(con, sizeof (msgr->my_enc_addr),
692 &msgr->my_enc_addr);
693
694 con->out_more = 0;
695 set_bit(WRITE_PENDING, &con->state);
696 }
697
698 static int prepare_write_connect(struct ceph_messenger *msgr,
699 struct ceph_connection *con,
700 int include_banner)
701 {
702 unsigned global_seq = get_global_seq(con->msgr, 0);
703 int proto;
704
705 switch (con->peer_name.type) {
706 case CEPH_ENTITY_TYPE_MON:
707 proto = CEPH_MONC_PROTOCOL;
708 break;
709 case CEPH_ENTITY_TYPE_OSD:
710 proto = CEPH_OSDC_PROTOCOL;
711 break;
712 case CEPH_ENTITY_TYPE_MDS:
713 proto = CEPH_MDSC_PROTOCOL;
714 break;
715 default:
716 BUG();
717 }
718
719 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
720 con->connect_seq, global_seq, proto);
721
722 con->out_connect.features = cpu_to_le64(msgr->supported_features);
723 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
724 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
725 con->out_connect.global_seq = cpu_to_le32(global_seq);
726 con->out_connect.protocol_version = cpu_to_le32(proto);
727 con->out_connect.flags = 0;
728
729 if (include_banner)
730 prepare_write_banner(msgr, con);
731 else
732 ceph_con_out_kvec_reset(con);
733 ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
734
735 con->out_more = 0;
736 set_bit(WRITE_PENDING, &con->state);
737
738 return prepare_connect_authorizer(con);
739 }
740
741 /*
742 * write as much of pending kvecs to the socket as we can.
743 * 1 -> done
744 * 0 -> socket full, but more to do
745 * <0 -> error
746 */
747 static int write_partial_kvec(struct ceph_connection *con)
748 {
749 int ret;
750
751 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
752 while (con->out_kvec_bytes > 0) {
753 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
754 con->out_kvec_left, con->out_kvec_bytes,
755 con->out_more);
756 if (ret <= 0)
757 goto out;
758 con->out_kvec_bytes -= ret;
759 if (con->out_kvec_bytes == 0)
760 break; /* done */
761
762 /* account for full iov entries consumed */
763 while (ret >= con->out_kvec_cur->iov_len) {
764 BUG_ON(!con->out_kvec_left);
765 ret -= con->out_kvec_cur->iov_len;
766 con->out_kvec_cur++;
767 con->out_kvec_left--;
768 }
769 /* and for a partially-consumed entry */
770 if (ret) {
771 con->out_kvec_cur->iov_len -= ret;
772 con->out_kvec_cur->iov_base += ret;
773 }
774 }
775 con->out_kvec_left = 0;
776 con->out_kvec_is_msg = false;
777 ret = 1;
778 out:
779 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
780 con->out_kvec_bytes, con->out_kvec_left, ret);
781 return ret; /* done! */
782 }
783
784 #ifdef CONFIG_BLOCK
785 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
786 {
787 if (!bio) {
788 *iter = NULL;
789 *seg = 0;
790 return;
791 }
792 *iter = bio;
793 *seg = bio->bi_idx;
794 }
795
796 static void iter_bio_next(struct bio **bio_iter, int *seg)
797 {
798 if (*bio_iter == NULL)
799 return;
800
801 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
802
803 (*seg)++;
804 if (*seg == (*bio_iter)->bi_vcnt)
805 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
806 }
807 #endif
808
809 /*
810 * Write as much message data payload as we can. If we finish, queue
811 * up the footer.
812 * 1 -> done, footer is now queued in out_kvec[].
813 * 0 -> socket full, but more to do
814 * <0 -> error
815 */
816 static int write_partial_msg_pages(struct ceph_connection *con)
817 {
818 struct ceph_msg *msg = con->out_msg;
819 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
820 size_t len;
821 bool do_datacrc = !con->msgr->nocrc;
822 int ret;
823 int total_max_write;
824 int in_trail = 0;
825 size_t trail_len = (msg->trail ? msg->trail->length : 0);
826
827 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
828 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
829 con->out_msg_pos.page_pos);
830
831 #ifdef CONFIG_BLOCK
832 if (msg->bio && !msg->bio_iter)
833 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
834 #endif
835
836 while (data_len > con->out_msg_pos.data_pos) {
837 struct page *page = NULL;
838 int max_write = PAGE_SIZE;
839 int bio_offset = 0;
840
841 total_max_write = data_len - trail_len -
842 con->out_msg_pos.data_pos;
843
844 /*
845 * if we are calculating the data crc (the default), we need
846 * to map the page. if our pages[] has been revoked, use the
847 * zero page.
848 */
849
850 /* have we reached the trail part of the data? */
851 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
852 in_trail = 1;
853
854 total_max_write = data_len - con->out_msg_pos.data_pos;
855
856 page = list_first_entry(&msg->trail->head,
857 struct page, lru);
858 max_write = PAGE_SIZE;
859 } else if (msg->pages) {
860 page = msg->pages[con->out_msg_pos.page];
861 } else if (msg->pagelist) {
862 page = list_first_entry(&msg->pagelist->head,
863 struct page, lru);
864 #ifdef CONFIG_BLOCK
865 } else if (msg->bio) {
866 struct bio_vec *bv;
867
868 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
869 page = bv->bv_page;
870 bio_offset = bv->bv_offset;
871 max_write = bv->bv_len;
872 #endif
873 } else {
874 page = zero_page;
875 }
876 len = min_t(int, max_write - con->out_msg_pos.page_pos,
877 total_max_write);
878
879 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
880 void *base;
881 u32 crc;
882 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
883 char *kaddr;
884
885 kaddr = kmap(page);
886 BUG_ON(kaddr == NULL);
887 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
888 crc = crc32c(tmpcrc, base, len);
889 con->out_msg->footer.data_crc = cpu_to_le32(crc);
890 con->out_msg_pos.did_page_crc = true;
891 }
892 ret = ceph_tcp_sendpage(con->sock, page,
893 con->out_msg_pos.page_pos + bio_offset,
894 len, 1);
895
896 if (do_datacrc)
897 kunmap(page);
898
899 if (ret <= 0)
900 goto out;
901
902 con->out_msg_pos.data_pos += ret;
903 con->out_msg_pos.page_pos += ret;
904 if (ret == len) {
905 con->out_msg_pos.page_pos = 0;
906 con->out_msg_pos.page++;
907 con->out_msg_pos.did_page_crc = false;
908 if (in_trail)
909 list_move_tail(&page->lru,
910 &msg->trail->head);
911 else if (msg->pagelist)
912 list_move_tail(&page->lru,
913 &msg->pagelist->head);
914 #ifdef CONFIG_BLOCK
915 else if (msg->bio)
916 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
917 #endif
918 }
919 }
920
921 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
922
923 /* prepare and queue up footer, too */
924 if (!do_datacrc)
925 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
926 ceph_con_out_kvec_reset(con);
927 prepare_write_message_footer(con);
928 ret = 1;
929 out:
930 return ret;
931 }
932
933 /*
934 * write some zeros
935 */
936 static int write_partial_skip(struct ceph_connection *con)
937 {
938 int ret;
939
940 while (con->out_skip > 0) {
941 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
942
943 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
944 if (ret <= 0)
945 goto out;
946 con->out_skip -= ret;
947 }
948 ret = 1;
949 out:
950 return ret;
951 }
952
953 /*
954 * Prepare to read connection handshake, or an ack.
955 */
956 static void prepare_read_banner(struct ceph_connection *con)
957 {
958 dout("prepare_read_banner %p\n", con);
959 con->in_base_pos = 0;
960 }
961
962 static void prepare_read_connect(struct ceph_connection *con)
963 {
964 dout("prepare_read_connect %p\n", con);
965 con->in_base_pos = 0;
966 }
967
968 static void prepare_read_ack(struct ceph_connection *con)
969 {
970 dout("prepare_read_ack %p\n", con);
971 con->in_base_pos = 0;
972 }
973
974 static void prepare_read_tag(struct ceph_connection *con)
975 {
976 dout("prepare_read_tag %p\n", con);
977 con->in_base_pos = 0;
978 con->in_tag = CEPH_MSGR_TAG_READY;
979 }
980
981 /*
982 * Prepare to read a message.
983 */
984 static int prepare_read_message(struct ceph_connection *con)
985 {
986 dout("prepare_read_message %p\n", con);
987 BUG_ON(con->in_msg != NULL);
988 con->in_base_pos = 0;
989 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
990 return 0;
991 }
992
993
994 static int read_partial(struct ceph_connection *con,
995 int end, int size, void *object)
996 {
997 while (con->in_base_pos < end) {
998 int left = end - con->in_base_pos;
999 int have = size - left;
1000 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1001 if (ret <= 0)
1002 return ret;
1003 con->in_base_pos += ret;
1004 }
1005 return 1;
1006 }
1007
1008
1009 /*
1010 * Read all or part of the connect-side handshake on a new connection
1011 */
1012 static int read_partial_banner(struct ceph_connection *con)
1013 {
1014 int size;
1015 int end;
1016 int ret;
1017
1018 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1019
1020 /* peer's banner */
1021 size = strlen(CEPH_BANNER);
1022 end = size;
1023 ret = read_partial(con, end, size, con->in_banner);
1024 if (ret <= 0)
1025 goto out;
1026
1027 size = sizeof (con->actual_peer_addr);
1028 end += size;
1029 ret = read_partial(con, end, size, &con->actual_peer_addr);
1030 if (ret <= 0)
1031 goto out;
1032
1033 size = sizeof (con->peer_addr_for_me);
1034 end += size;
1035 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1036 if (ret <= 0)
1037 goto out;
1038
1039 out:
1040 return ret;
1041 }
1042
1043 static int read_partial_connect(struct ceph_connection *con)
1044 {
1045 int size;
1046 int end;
1047 int ret;
1048
1049 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1050
1051 size = sizeof (con->in_reply);
1052 end = size;
1053 ret = read_partial(con, end, size, &con->in_reply);
1054 if (ret <= 0)
1055 goto out;
1056
1057 size = le32_to_cpu(con->in_reply.authorizer_len);
1058 end += size;
1059 ret = read_partial(con, end, size, con->auth_reply_buf);
1060 if (ret <= 0)
1061 goto out;
1062
1063 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1064 con, (int)con->in_reply.tag,
1065 le32_to_cpu(con->in_reply.connect_seq),
1066 le32_to_cpu(con->in_reply.global_seq));
1067 out:
1068 return ret;
1069
1070 }
1071
1072 /*
1073 * Verify the hello banner looks okay.
1074 */
1075 static int verify_hello(struct ceph_connection *con)
1076 {
1077 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1078 pr_err("connect to %s got bad banner\n",
1079 ceph_pr_addr(&con->peer_addr.in_addr));
1080 con->error_msg = "protocol error, bad banner";
1081 return -1;
1082 }
1083 return 0;
1084 }
1085
1086 static bool addr_is_blank(struct sockaddr_storage *ss)
1087 {
1088 switch (ss->ss_family) {
1089 case AF_INET:
1090 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1091 case AF_INET6:
1092 return
1093 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1094 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1095 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1096 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1097 }
1098 return false;
1099 }
1100
1101 static int addr_port(struct sockaddr_storage *ss)
1102 {
1103 switch (ss->ss_family) {
1104 case AF_INET:
1105 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1106 case AF_INET6:
1107 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1108 }
1109 return 0;
1110 }
1111
1112 static void addr_set_port(struct sockaddr_storage *ss, int p)
1113 {
1114 switch (ss->ss_family) {
1115 case AF_INET:
1116 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1117 break;
1118 case AF_INET6:
1119 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1120 break;
1121 }
1122 }
1123
1124 /*
1125 * Unlike other *_pton function semantics, zero indicates success.
1126 */
1127 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1128 char delim, const char **ipend)
1129 {
1130 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1131 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1132
1133 memset(ss, 0, sizeof(*ss));
1134
1135 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1136 ss->ss_family = AF_INET;
1137 return 0;
1138 }
1139
1140 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1141 ss->ss_family = AF_INET6;
1142 return 0;
1143 }
1144
1145 return -EINVAL;
1146 }
1147
1148 /*
1149 * Extract hostname string and resolve using kernel DNS facility.
1150 */
1151 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1152 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1153 struct sockaddr_storage *ss, char delim, const char **ipend)
1154 {
1155 const char *end, *delim_p;
1156 char *colon_p, *ip_addr = NULL;
1157 int ip_len, ret;
1158
1159 /*
1160 * The end of the hostname occurs immediately preceding the delimiter or
1161 * the port marker (':') where the delimiter takes precedence.
1162 */
1163 delim_p = memchr(name, delim, namelen);
1164 colon_p = memchr(name, ':', namelen);
1165
1166 if (delim_p && colon_p)
1167 end = delim_p < colon_p ? delim_p : colon_p;
1168 else if (!delim_p && colon_p)
1169 end = colon_p;
1170 else {
1171 end = delim_p;
1172 if (!end) /* case: hostname:/ */
1173 end = name + namelen;
1174 }
1175
1176 if (end <= name)
1177 return -EINVAL;
1178
1179 /* do dns_resolve upcall */
1180 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1181 if (ip_len > 0)
1182 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1183 else
1184 ret = -ESRCH;
1185
1186 kfree(ip_addr);
1187
1188 *ipend = end;
1189
1190 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1191 ret, ret ? "failed" : ceph_pr_addr(ss));
1192
1193 return ret;
1194 }
1195 #else
1196 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1197 struct sockaddr_storage *ss, char delim, const char **ipend)
1198 {
1199 return -EINVAL;
1200 }
1201 #endif
1202
1203 /*
1204 * Parse a server name (IP or hostname). If a valid IP address is not found
1205 * then try to extract a hostname to resolve using userspace DNS upcall.
1206 */
1207 static int ceph_parse_server_name(const char *name, size_t namelen,
1208 struct sockaddr_storage *ss, char delim, const char **ipend)
1209 {
1210 int ret;
1211
1212 ret = ceph_pton(name, namelen, ss, delim, ipend);
1213 if (ret)
1214 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1215
1216 return ret;
1217 }
1218
1219 /*
1220 * Parse an ip[:port] list into an addr array. Use the default
1221 * monitor port if a port isn't specified.
1222 */
1223 int ceph_parse_ips(const char *c, const char *end,
1224 struct ceph_entity_addr *addr,
1225 int max_count, int *count)
1226 {
1227 int i, ret = -EINVAL;
1228 const char *p = c;
1229
1230 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1231 for (i = 0; i < max_count; i++) {
1232 const char *ipend;
1233 struct sockaddr_storage *ss = &addr[i].in_addr;
1234 int port;
1235 char delim = ',';
1236
1237 if (*p == '[') {
1238 delim = ']';
1239 p++;
1240 }
1241
1242 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1243 if (ret)
1244 goto bad;
1245 ret = -EINVAL;
1246
1247 p = ipend;
1248
1249 if (delim == ']') {
1250 if (*p != ']') {
1251 dout("missing matching ']'\n");
1252 goto bad;
1253 }
1254 p++;
1255 }
1256
1257 /* port? */
1258 if (p < end && *p == ':') {
1259 port = 0;
1260 p++;
1261 while (p < end && *p >= '0' && *p <= '9') {
1262 port = (port * 10) + (*p - '0');
1263 p++;
1264 }
1265 if (port > 65535 || port == 0)
1266 goto bad;
1267 } else {
1268 port = CEPH_MON_PORT;
1269 }
1270
1271 addr_set_port(ss, port);
1272
1273 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1274
1275 if (p == end)
1276 break;
1277 if (*p != ',')
1278 goto bad;
1279 p++;
1280 }
1281
1282 if (p != end)
1283 goto bad;
1284
1285 if (count)
1286 *count = i + 1;
1287 return 0;
1288
1289 bad:
1290 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1291 return ret;
1292 }
1293 EXPORT_SYMBOL(ceph_parse_ips);
1294
1295 static int process_banner(struct ceph_connection *con)
1296 {
1297 dout("process_banner on %p\n", con);
1298
1299 if (verify_hello(con) < 0)
1300 return -1;
1301
1302 ceph_decode_addr(&con->actual_peer_addr);
1303 ceph_decode_addr(&con->peer_addr_for_me);
1304
1305 /*
1306 * Make sure the other end is who we wanted. note that the other
1307 * end may not yet know their ip address, so if it's 0.0.0.0, give
1308 * them the benefit of the doubt.
1309 */
1310 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1311 sizeof(con->peer_addr)) != 0 &&
1312 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1313 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1314 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1315 ceph_pr_addr(&con->peer_addr.in_addr),
1316 (int)le32_to_cpu(con->peer_addr.nonce),
1317 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1318 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1319 con->error_msg = "wrong peer at address";
1320 return -1;
1321 }
1322
1323 /*
1324 * did we learn our address?
1325 */
1326 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1327 int port = addr_port(&con->msgr->inst.addr.in_addr);
1328
1329 memcpy(&con->msgr->inst.addr.in_addr,
1330 &con->peer_addr_for_me.in_addr,
1331 sizeof(con->peer_addr_for_me.in_addr));
1332 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1333 encode_my_addr(con->msgr);
1334 dout("process_banner learned my addr is %s\n",
1335 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1336 }
1337
1338 set_bit(NEGOTIATING, &con->state);
1339 prepare_read_connect(con);
1340 return 0;
1341 }
1342
1343 static void fail_protocol(struct ceph_connection *con)
1344 {
1345 reset_connection(con);
1346 set_bit(CLOSED, &con->state); /* in case there's queued work */
1347
1348 mutex_unlock(&con->mutex);
1349 if (con->ops->bad_proto)
1350 con->ops->bad_proto(con);
1351 mutex_lock(&con->mutex);
1352 }
1353
1354 static int process_connect(struct ceph_connection *con)
1355 {
1356 u64 sup_feat = con->msgr->supported_features;
1357 u64 req_feat = con->msgr->required_features;
1358 u64 server_feat = le64_to_cpu(con->in_reply.features);
1359 int ret;
1360
1361 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1362
1363 switch (con->in_reply.tag) {
1364 case CEPH_MSGR_TAG_FEATURES:
1365 pr_err("%s%lld %s feature set mismatch,"
1366 " my %llx < server's %llx, missing %llx\n",
1367 ENTITY_NAME(con->peer_name),
1368 ceph_pr_addr(&con->peer_addr.in_addr),
1369 sup_feat, server_feat, server_feat & ~sup_feat);
1370 con->error_msg = "missing required protocol features";
1371 fail_protocol(con);
1372 return -1;
1373
1374 case CEPH_MSGR_TAG_BADPROTOVER:
1375 pr_err("%s%lld %s protocol version mismatch,"
1376 " my %d != server's %d\n",
1377 ENTITY_NAME(con->peer_name),
1378 ceph_pr_addr(&con->peer_addr.in_addr),
1379 le32_to_cpu(con->out_connect.protocol_version),
1380 le32_to_cpu(con->in_reply.protocol_version));
1381 con->error_msg = "protocol version mismatch";
1382 fail_protocol(con);
1383 return -1;
1384
1385 case CEPH_MSGR_TAG_BADAUTHORIZER:
1386 con->auth_retry++;
1387 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1388 con->auth_retry);
1389 if (con->auth_retry == 2) {
1390 con->error_msg = "connect authorization failure";
1391 return -1;
1392 }
1393 con->auth_retry = 1;
1394 ret = prepare_write_connect(con->msgr, con, 0);
1395 if (ret < 0)
1396 return ret;
1397 prepare_read_connect(con);
1398 break;
1399
1400 case CEPH_MSGR_TAG_RESETSESSION:
1401 /*
1402 * If we connected with a large connect_seq but the peer
1403 * has no record of a session with us (no connection, or
1404 * connect_seq == 0), they will send RESETSESION to indicate
1405 * that they must have reset their session, and may have
1406 * dropped messages.
1407 */
1408 dout("process_connect got RESET peer seq %u\n",
1409 le32_to_cpu(con->in_connect.connect_seq));
1410 pr_err("%s%lld %s connection reset\n",
1411 ENTITY_NAME(con->peer_name),
1412 ceph_pr_addr(&con->peer_addr.in_addr));
1413 reset_connection(con);
1414 prepare_write_connect(con->msgr, con, 0);
1415 prepare_read_connect(con);
1416
1417 /* Tell ceph about it. */
1418 mutex_unlock(&con->mutex);
1419 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1420 if (con->ops->peer_reset)
1421 con->ops->peer_reset(con);
1422 mutex_lock(&con->mutex);
1423 if (test_bit(CLOSED, &con->state) ||
1424 test_bit(OPENING, &con->state))
1425 return -EAGAIN;
1426 break;
1427
1428 case CEPH_MSGR_TAG_RETRY_SESSION:
1429 /*
1430 * If we sent a smaller connect_seq than the peer has, try
1431 * again with a larger value.
1432 */
1433 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1434 le32_to_cpu(con->out_connect.connect_seq),
1435 le32_to_cpu(con->in_connect.connect_seq));
1436 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1437 prepare_write_connect(con->msgr, con, 0);
1438 prepare_read_connect(con);
1439 break;
1440
1441 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1442 /*
1443 * If we sent a smaller global_seq than the peer has, try
1444 * again with a larger value.
1445 */
1446 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1447 con->peer_global_seq,
1448 le32_to_cpu(con->in_connect.global_seq));
1449 get_global_seq(con->msgr,
1450 le32_to_cpu(con->in_connect.global_seq));
1451 prepare_write_connect(con->msgr, con, 0);
1452 prepare_read_connect(con);
1453 break;
1454
1455 case CEPH_MSGR_TAG_READY:
1456 if (req_feat & ~server_feat) {
1457 pr_err("%s%lld %s protocol feature mismatch,"
1458 " my required %llx > server's %llx, need %llx\n",
1459 ENTITY_NAME(con->peer_name),
1460 ceph_pr_addr(&con->peer_addr.in_addr),
1461 req_feat, server_feat, req_feat & ~server_feat);
1462 con->error_msg = "missing required protocol features";
1463 fail_protocol(con);
1464 return -1;
1465 }
1466 clear_bit(CONNECTING, &con->state);
1467 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1468 con->connect_seq++;
1469 con->peer_features = server_feat;
1470 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1471 con->peer_global_seq,
1472 le32_to_cpu(con->in_reply.connect_seq),
1473 con->connect_seq);
1474 WARN_ON(con->connect_seq !=
1475 le32_to_cpu(con->in_reply.connect_seq));
1476
1477 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1478 set_bit(LOSSYTX, &con->state);
1479
1480 prepare_read_tag(con);
1481 break;
1482
1483 case CEPH_MSGR_TAG_WAIT:
1484 /*
1485 * If there is a connection race (we are opening
1486 * connections to each other), one of us may just have
1487 * to WAIT. This shouldn't happen if we are the
1488 * client.
1489 */
1490 pr_err("process_connect got WAIT as client\n");
1491 con->error_msg = "protocol error, got WAIT as client";
1492 return -1;
1493
1494 default:
1495 pr_err("connect protocol error, will retry\n");
1496 con->error_msg = "protocol error, garbage tag during connect";
1497 return -1;
1498 }
1499 return 0;
1500 }
1501
1502
1503 /*
1504 * read (part of) an ack
1505 */
1506 static int read_partial_ack(struct ceph_connection *con)
1507 {
1508 int size = sizeof (con->in_temp_ack);
1509 int end = size;
1510
1511 return read_partial(con, end, size, &con->in_temp_ack);
1512 }
1513
1514
1515 /*
1516 * We can finally discard anything that's been acked.
1517 */
1518 static void process_ack(struct ceph_connection *con)
1519 {
1520 struct ceph_msg *m;
1521 u64 ack = le64_to_cpu(con->in_temp_ack);
1522 u64 seq;
1523
1524 while (!list_empty(&con->out_sent)) {
1525 m = list_first_entry(&con->out_sent, struct ceph_msg,
1526 list_head);
1527 seq = le64_to_cpu(m->hdr.seq);
1528 if (seq > ack)
1529 break;
1530 dout("got ack for seq %llu type %d at %p\n", seq,
1531 le16_to_cpu(m->hdr.type), m);
1532 m->ack_stamp = jiffies;
1533 ceph_msg_remove(m);
1534 }
1535 prepare_read_tag(con);
1536 }
1537
1538
1539
1540
1541 static int read_partial_message_section(struct ceph_connection *con,
1542 struct kvec *section,
1543 unsigned int sec_len, u32 *crc)
1544 {
1545 int ret, left;
1546
1547 BUG_ON(!section);
1548
1549 while (section->iov_len < sec_len) {
1550 BUG_ON(section->iov_base == NULL);
1551 left = sec_len - section->iov_len;
1552 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1553 section->iov_len, left);
1554 if (ret <= 0)
1555 return ret;
1556 section->iov_len += ret;
1557 }
1558 if (section->iov_len == sec_len)
1559 *crc = crc32c(0, section->iov_base, section->iov_len);
1560
1561 return 1;
1562 }
1563
1564 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1565 struct ceph_msg_header *hdr,
1566 int *skip);
1567
1568
1569 static int read_partial_message_pages(struct ceph_connection *con,
1570 struct page **pages,
1571 unsigned data_len, bool do_datacrc)
1572 {
1573 void *p;
1574 int ret;
1575 int left;
1576
1577 left = min((int)(data_len - con->in_msg_pos.data_pos),
1578 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1579 /* (page) data */
1580 BUG_ON(pages == NULL);
1581 p = kmap(pages[con->in_msg_pos.page]);
1582 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1583 left);
1584 if (ret > 0 && do_datacrc)
1585 con->in_data_crc =
1586 crc32c(con->in_data_crc,
1587 p + con->in_msg_pos.page_pos, ret);
1588 kunmap(pages[con->in_msg_pos.page]);
1589 if (ret <= 0)
1590 return ret;
1591 con->in_msg_pos.data_pos += ret;
1592 con->in_msg_pos.page_pos += ret;
1593 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1594 con->in_msg_pos.page_pos = 0;
1595 con->in_msg_pos.page++;
1596 }
1597
1598 return ret;
1599 }
1600
1601 #ifdef CONFIG_BLOCK
1602 static int read_partial_message_bio(struct ceph_connection *con,
1603 struct bio **bio_iter, int *bio_seg,
1604 unsigned data_len, bool do_datacrc)
1605 {
1606 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1607 void *p;
1608 int ret, left;
1609
1610 if (IS_ERR(bv))
1611 return PTR_ERR(bv);
1612
1613 left = min((int)(data_len - con->in_msg_pos.data_pos),
1614 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1615
1616 p = kmap(bv->bv_page) + bv->bv_offset;
1617
1618 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1619 left);
1620 if (ret > 0 && do_datacrc)
1621 con->in_data_crc =
1622 crc32c(con->in_data_crc,
1623 p + con->in_msg_pos.page_pos, ret);
1624 kunmap(bv->bv_page);
1625 if (ret <= 0)
1626 return ret;
1627 con->in_msg_pos.data_pos += ret;
1628 con->in_msg_pos.page_pos += ret;
1629 if (con->in_msg_pos.page_pos == bv->bv_len) {
1630 con->in_msg_pos.page_pos = 0;
1631 iter_bio_next(bio_iter, bio_seg);
1632 }
1633
1634 return ret;
1635 }
1636 #endif
1637
1638 /*
1639 * read (part of) a message.
1640 */
1641 static int read_partial_message(struct ceph_connection *con)
1642 {
1643 struct ceph_msg *m = con->in_msg;
1644 int size;
1645 int end;
1646 int ret;
1647 unsigned front_len, middle_len, data_len;
1648 bool do_datacrc = !con->msgr->nocrc;
1649 int skip;
1650 u64 seq;
1651 u32 crc;
1652
1653 dout("read_partial_message con %p msg %p\n", con, m);
1654
1655 /* header */
1656 size = sizeof (con->in_hdr);
1657 end = size;
1658 ret = read_partial(con, end, size, &con->in_hdr);
1659 if (ret <= 0)
1660 return ret;
1661
1662 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1663 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1664 pr_err("read_partial_message bad hdr "
1665 " crc %u != expected %u\n",
1666 crc, con->in_hdr.crc);
1667 return -EBADMSG;
1668 }
1669
1670 front_len = le32_to_cpu(con->in_hdr.front_len);
1671 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1672 return -EIO;
1673 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1674 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1675 return -EIO;
1676 data_len = le32_to_cpu(con->in_hdr.data_len);
1677 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1678 return -EIO;
1679
1680 /* verify seq# */
1681 seq = le64_to_cpu(con->in_hdr.seq);
1682 if ((s64)seq - (s64)con->in_seq < 1) {
1683 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1684 ENTITY_NAME(con->peer_name),
1685 ceph_pr_addr(&con->peer_addr.in_addr),
1686 seq, con->in_seq + 1);
1687 con->in_base_pos = -front_len - middle_len - data_len -
1688 sizeof(m->footer);
1689 con->in_tag = CEPH_MSGR_TAG_READY;
1690 return 0;
1691 } else if ((s64)seq - (s64)con->in_seq > 1) {
1692 pr_err("read_partial_message bad seq %lld expected %lld\n",
1693 seq, con->in_seq + 1);
1694 con->error_msg = "bad message sequence # for incoming message";
1695 return -EBADMSG;
1696 }
1697
1698 /* allocate message? */
1699 if (!con->in_msg) {
1700 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1701 con->in_hdr.front_len, con->in_hdr.data_len);
1702 skip = 0;
1703 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1704 if (skip) {
1705 /* skip this message */
1706 dout("alloc_msg said skip message\n");
1707 BUG_ON(con->in_msg);
1708 con->in_base_pos = -front_len - middle_len - data_len -
1709 sizeof(m->footer);
1710 con->in_tag = CEPH_MSGR_TAG_READY;
1711 con->in_seq++;
1712 return 0;
1713 }
1714 if (!con->in_msg) {
1715 con->error_msg =
1716 "error allocating memory for incoming message";
1717 return -ENOMEM;
1718 }
1719 m = con->in_msg;
1720 m->front.iov_len = 0; /* haven't read it yet */
1721 if (m->middle)
1722 m->middle->vec.iov_len = 0;
1723
1724 con->in_msg_pos.page = 0;
1725 if (m->pages)
1726 con->in_msg_pos.page_pos = m->page_alignment;
1727 else
1728 con->in_msg_pos.page_pos = 0;
1729 con->in_msg_pos.data_pos = 0;
1730 }
1731
1732 /* front */
1733 ret = read_partial_message_section(con, &m->front, front_len,
1734 &con->in_front_crc);
1735 if (ret <= 0)
1736 return ret;
1737
1738 /* middle */
1739 if (m->middle) {
1740 ret = read_partial_message_section(con, &m->middle->vec,
1741 middle_len,
1742 &con->in_middle_crc);
1743 if (ret <= 0)
1744 return ret;
1745 }
1746 #ifdef CONFIG_BLOCK
1747 if (m->bio && !m->bio_iter)
1748 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1749 #endif
1750
1751 /* (page) data */
1752 while (con->in_msg_pos.data_pos < data_len) {
1753 if (m->pages) {
1754 ret = read_partial_message_pages(con, m->pages,
1755 data_len, do_datacrc);
1756 if (ret <= 0)
1757 return ret;
1758 #ifdef CONFIG_BLOCK
1759 } else if (m->bio) {
1760
1761 ret = read_partial_message_bio(con,
1762 &m->bio_iter, &m->bio_seg,
1763 data_len, do_datacrc);
1764 if (ret <= 0)
1765 return ret;
1766 #endif
1767 } else {
1768 BUG_ON(1);
1769 }
1770 }
1771
1772 /* footer */
1773 size = sizeof (m->footer);
1774 end += size;
1775 ret = read_partial(con, end, size, &m->footer);
1776 if (ret <= 0)
1777 return ret;
1778
1779 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1780 m, front_len, m->footer.front_crc, middle_len,
1781 m->footer.middle_crc, data_len, m->footer.data_crc);
1782
1783 /* crc ok? */
1784 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1785 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1786 m, con->in_front_crc, m->footer.front_crc);
1787 return -EBADMSG;
1788 }
1789 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1790 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1791 m, con->in_middle_crc, m->footer.middle_crc);
1792 return -EBADMSG;
1793 }
1794 if (do_datacrc &&
1795 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1796 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1797 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1798 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1799 return -EBADMSG;
1800 }
1801
1802 return 1; /* done! */
1803 }
1804
1805 /*
1806 * Process message. This happens in the worker thread. The callback should
1807 * be careful not to do anything that waits on other incoming messages or it
1808 * may deadlock.
1809 */
1810 static void process_message(struct ceph_connection *con)
1811 {
1812 struct ceph_msg *msg;
1813
1814 msg = con->in_msg;
1815 con->in_msg = NULL;
1816
1817 /* if first message, set peer_name */
1818 if (con->peer_name.type == 0)
1819 con->peer_name = msg->hdr.src;
1820
1821 con->in_seq++;
1822 mutex_unlock(&con->mutex);
1823
1824 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1825 msg, le64_to_cpu(msg->hdr.seq),
1826 ENTITY_NAME(msg->hdr.src),
1827 le16_to_cpu(msg->hdr.type),
1828 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1829 le32_to_cpu(msg->hdr.front_len),
1830 le32_to_cpu(msg->hdr.data_len),
1831 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1832 con->ops->dispatch(con, msg);
1833
1834 mutex_lock(&con->mutex);
1835 prepare_read_tag(con);
1836 }
1837
1838
1839 /*
1840 * Write something to the socket. Called in a worker thread when the
1841 * socket appears to be writeable and we have something ready to send.
1842 */
1843 static int try_write(struct ceph_connection *con)
1844 {
1845 struct ceph_messenger *msgr = con->msgr;
1846 int ret = 1;
1847
1848 dout("try_write start %p state %lu nref %d\n", con, con->state,
1849 atomic_read(&con->nref));
1850
1851 more:
1852 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1853
1854 /* open the socket first? */
1855 if (con->sock == NULL) {
1856 prepare_write_connect(msgr, con, 1);
1857 prepare_read_banner(con);
1858 set_bit(CONNECTING, &con->state);
1859 clear_bit(NEGOTIATING, &con->state);
1860
1861 BUG_ON(con->in_msg);
1862 con->in_tag = CEPH_MSGR_TAG_READY;
1863 dout("try_write initiating connect on %p new state %lu\n",
1864 con, con->state);
1865 ret = ceph_tcp_connect(con);
1866 if (ret < 0) {
1867 con->error_msg = "connect error";
1868 goto out;
1869 }
1870 }
1871
1872 more_kvec:
1873 /* kvec data queued? */
1874 if (con->out_skip) {
1875 ret = write_partial_skip(con);
1876 if (ret <= 0)
1877 goto out;
1878 }
1879 if (con->out_kvec_left) {
1880 ret = write_partial_kvec(con);
1881 if (ret <= 0)
1882 goto out;
1883 }
1884
1885 /* msg pages? */
1886 if (con->out_msg) {
1887 if (con->out_msg_done) {
1888 ceph_msg_put(con->out_msg);
1889 con->out_msg = NULL; /* we're done with this one */
1890 goto do_next;
1891 }
1892
1893 ret = write_partial_msg_pages(con);
1894 if (ret == 1)
1895 goto more_kvec; /* we need to send the footer, too! */
1896 if (ret == 0)
1897 goto out;
1898 if (ret < 0) {
1899 dout("try_write write_partial_msg_pages err %d\n",
1900 ret);
1901 goto out;
1902 }
1903 }
1904
1905 do_next:
1906 if (!test_bit(CONNECTING, &con->state)) {
1907 /* is anything else pending? */
1908 if (!list_empty(&con->out_queue)) {
1909 prepare_write_message(con);
1910 goto more;
1911 }
1912 if (con->in_seq > con->in_seq_acked) {
1913 prepare_write_ack(con);
1914 goto more;
1915 }
1916 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1917 prepare_write_keepalive(con);
1918 goto more;
1919 }
1920 }
1921
1922 /* Nothing to do! */
1923 clear_bit(WRITE_PENDING, &con->state);
1924 dout("try_write nothing else to write.\n");
1925 ret = 0;
1926 out:
1927 dout("try_write done on %p ret %d\n", con, ret);
1928 return ret;
1929 }
1930
1931
1932
1933 /*
1934 * Read what we can from the socket.
1935 */
1936 static int try_read(struct ceph_connection *con)
1937 {
1938 int ret = -1;
1939
1940 if (!con->sock)
1941 return 0;
1942
1943 if (test_bit(STANDBY, &con->state))
1944 return 0;
1945
1946 dout("try_read start on %p\n", con);
1947
1948 more:
1949 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1950 con->in_base_pos);
1951
1952 /*
1953 * process_connect and process_message drop and re-take
1954 * con->mutex. make sure we handle a racing close or reopen.
1955 */
1956 if (test_bit(CLOSED, &con->state) ||
1957 test_bit(OPENING, &con->state)) {
1958 ret = -EAGAIN;
1959 goto out;
1960 }
1961
1962 if (test_bit(CONNECTING, &con->state)) {
1963 if (!test_bit(NEGOTIATING, &con->state)) {
1964 dout("try_read connecting\n");
1965 ret = read_partial_banner(con);
1966 if (ret <= 0)
1967 goto out;
1968 ret = process_banner(con);
1969 if (ret < 0)
1970 goto out;
1971 }
1972 ret = read_partial_connect(con);
1973 if (ret <= 0)
1974 goto out;
1975 ret = process_connect(con);
1976 if (ret < 0)
1977 goto out;
1978 goto more;
1979 }
1980
1981 if (con->in_base_pos < 0) {
1982 /*
1983 * skipping + discarding content.
1984 *
1985 * FIXME: there must be a better way to do this!
1986 */
1987 static char buf[SKIP_BUF_SIZE];
1988 int skip = min((int) sizeof (buf), -con->in_base_pos);
1989
1990 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1991 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1992 if (ret <= 0)
1993 goto out;
1994 con->in_base_pos += ret;
1995 if (con->in_base_pos)
1996 goto more;
1997 }
1998 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1999 /*
2000 * what's next?
2001 */
2002 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2003 if (ret <= 0)
2004 goto out;
2005 dout("try_read got tag %d\n", (int)con->in_tag);
2006 switch (con->in_tag) {
2007 case CEPH_MSGR_TAG_MSG:
2008 prepare_read_message(con);
2009 break;
2010 case CEPH_MSGR_TAG_ACK:
2011 prepare_read_ack(con);
2012 break;
2013 case CEPH_MSGR_TAG_CLOSE:
2014 set_bit(CLOSED, &con->state); /* fixme */
2015 goto out;
2016 default:
2017 goto bad_tag;
2018 }
2019 }
2020 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2021 ret = read_partial_message(con);
2022 if (ret <= 0) {
2023 switch (ret) {
2024 case -EBADMSG:
2025 con->error_msg = "bad crc";
2026 ret = -EIO;
2027 break;
2028 case -EIO:
2029 con->error_msg = "io error";
2030 break;
2031 }
2032 goto out;
2033 }
2034 if (con->in_tag == CEPH_MSGR_TAG_READY)
2035 goto more;
2036 process_message(con);
2037 goto more;
2038 }
2039 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2040 ret = read_partial_ack(con);
2041 if (ret <= 0)
2042 goto out;
2043 process_ack(con);
2044 goto more;
2045 }
2046
2047 out:
2048 dout("try_read done on %p ret %d\n", con, ret);
2049 return ret;
2050
2051 bad_tag:
2052 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2053 con->error_msg = "protocol error, garbage tag";
2054 ret = -1;
2055 goto out;
2056 }
2057
2058
2059 /*
2060 * Atomically queue work on a connection. Bump @con reference to
2061 * avoid races with connection teardown.
2062 */
2063 static void queue_con(struct ceph_connection *con)
2064 {
2065 if (test_bit(DEAD, &con->state)) {
2066 dout("queue_con %p ignoring: DEAD\n",
2067 con);
2068 return;
2069 }
2070
2071 if (!con->ops->get(con)) {
2072 dout("queue_con %p ref count 0\n", con);
2073 return;
2074 }
2075
2076 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2077 dout("queue_con %p - already queued\n", con);
2078 con->ops->put(con);
2079 } else {
2080 dout("queue_con %p\n", con);
2081 }
2082 }
2083
2084 /*
2085 * Do some work on a connection. Drop a connection ref when we're done.
2086 */
2087 static void con_work(struct work_struct *work)
2088 {
2089 struct ceph_connection *con = container_of(work, struct ceph_connection,
2090 work.work);
2091 int ret;
2092
2093 mutex_lock(&con->mutex);
2094 restart:
2095 if (test_and_clear_bit(BACKOFF, &con->state)) {
2096 dout("con_work %p backing off\n", con);
2097 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2098 round_jiffies_relative(con->delay))) {
2099 dout("con_work %p backoff %lu\n", con, con->delay);
2100 mutex_unlock(&con->mutex);
2101 return;
2102 } else {
2103 con->ops->put(con);
2104 dout("con_work %p FAILED to back off %lu\n", con,
2105 con->delay);
2106 }
2107 }
2108
2109 if (test_bit(STANDBY, &con->state)) {
2110 dout("con_work %p STANDBY\n", con);
2111 goto done;
2112 }
2113 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2114 dout("con_work CLOSED\n");
2115 con_close_socket(con);
2116 goto done;
2117 }
2118 if (test_and_clear_bit(OPENING, &con->state)) {
2119 /* reopen w/ new peer */
2120 dout("con_work OPENING\n");
2121 con_close_socket(con);
2122 }
2123
2124 if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2125 goto fault;
2126
2127 ret = try_read(con);
2128 if (ret == -EAGAIN)
2129 goto restart;
2130 if (ret < 0)
2131 goto fault;
2132
2133 ret = try_write(con);
2134 if (ret == -EAGAIN)
2135 goto restart;
2136 if (ret < 0)
2137 goto fault;
2138
2139 done:
2140 mutex_unlock(&con->mutex);
2141 done_unlocked:
2142 con->ops->put(con);
2143 return;
2144
2145 fault:
2146 mutex_unlock(&con->mutex);
2147 ceph_fault(con); /* error/fault path */
2148 goto done_unlocked;
2149 }
2150
2151
2152 /*
2153 * Generic error/fault handler. A retry mechanism is used with
2154 * exponential backoff
2155 */
2156 static void ceph_fault(struct ceph_connection *con)
2157 {
2158 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2159 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2160 dout("fault %p state %lu to peer %s\n",
2161 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2162
2163 if (test_bit(LOSSYTX, &con->state)) {
2164 dout("fault on LOSSYTX channel\n");
2165 goto out;
2166 }
2167
2168 mutex_lock(&con->mutex);
2169 if (test_bit(CLOSED, &con->state))
2170 goto out_unlock;
2171
2172 con_close_socket(con);
2173
2174 if (con->in_msg) {
2175 ceph_msg_put(con->in_msg);
2176 con->in_msg = NULL;
2177 }
2178
2179 /* Requeue anything that hasn't been acked */
2180 list_splice_init(&con->out_sent, &con->out_queue);
2181
2182 /* If there are no messages queued or keepalive pending, place
2183 * the connection in a STANDBY state */
2184 if (list_empty(&con->out_queue) &&
2185 !test_bit(KEEPALIVE_PENDING, &con->state)) {
2186 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2187 clear_bit(WRITE_PENDING, &con->state);
2188 set_bit(STANDBY, &con->state);
2189 } else {
2190 /* retry after a delay. */
2191 if (con->delay == 0)
2192 con->delay = BASE_DELAY_INTERVAL;
2193 else if (con->delay < MAX_DELAY_INTERVAL)
2194 con->delay *= 2;
2195 con->ops->get(con);
2196 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2197 round_jiffies_relative(con->delay))) {
2198 dout("fault queued %p delay %lu\n", con, con->delay);
2199 } else {
2200 con->ops->put(con);
2201 dout("fault failed to queue %p delay %lu, backoff\n",
2202 con, con->delay);
2203 /*
2204 * In many cases we see a socket state change
2205 * while con_work is running and end up
2206 * queuing (non-delayed) work, such that we
2207 * can't backoff with a delay. Set a flag so
2208 * that when con_work restarts we schedule the
2209 * delay then.
2210 */
2211 set_bit(BACKOFF, &con->state);
2212 }
2213 }
2214
2215 out_unlock:
2216 mutex_unlock(&con->mutex);
2217 out:
2218 /*
2219 * in case we faulted due to authentication, invalidate our
2220 * current tickets so that we can get new ones.
2221 */
2222 if (con->auth_retry && con->ops->invalidate_authorizer) {
2223 dout("calling invalidate_authorizer()\n");
2224 con->ops->invalidate_authorizer(con);
2225 }
2226
2227 if (con->ops->fault)
2228 con->ops->fault(con);
2229 }
2230
2231
2232
2233 /*
2234 * create a new messenger instance
2235 */
2236 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2237 u32 supported_features,
2238 u32 required_features)
2239 {
2240 struct ceph_messenger *msgr;
2241
2242 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2243 if (msgr == NULL)
2244 return ERR_PTR(-ENOMEM);
2245
2246 msgr->supported_features = supported_features;
2247 msgr->required_features = required_features;
2248
2249 spin_lock_init(&msgr->global_seq_lock);
2250
2251 if (myaddr)
2252 msgr->inst.addr = *myaddr;
2253
2254 /* select a random nonce */
2255 msgr->inst.addr.type = 0;
2256 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2257 encode_my_addr(msgr);
2258
2259 dout("messenger_create %p\n", msgr);
2260 return msgr;
2261 }
2262 EXPORT_SYMBOL(ceph_messenger_create);
2263
2264 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2265 {
2266 dout("destroy %p\n", msgr);
2267 kfree(msgr);
2268 dout("destroyed messenger %p\n", msgr);
2269 }
2270 EXPORT_SYMBOL(ceph_messenger_destroy);
2271
2272 static void clear_standby(struct ceph_connection *con)
2273 {
2274 /* come back from STANDBY? */
2275 if (test_and_clear_bit(STANDBY, &con->state)) {
2276 mutex_lock(&con->mutex);
2277 dout("clear_standby %p and ++connect_seq\n", con);
2278 con->connect_seq++;
2279 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2280 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2281 mutex_unlock(&con->mutex);
2282 }
2283 }
2284
2285 /*
2286 * Queue up an outgoing message on the given connection.
2287 */
2288 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2289 {
2290 if (test_bit(CLOSED, &con->state)) {
2291 dout("con_send %p closed, dropping %p\n", con, msg);
2292 ceph_msg_put(msg);
2293 return;
2294 }
2295
2296 /* set src+dst */
2297 msg->hdr.src = con->msgr->inst.name;
2298
2299 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2300
2301 msg->needs_out_seq = true;
2302
2303 /* queue */
2304 mutex_lock(&con->mutex);
2305 BUG_ON(!list_empty(&msg->list_head));
2306 list_add_tail(&msg->list_head, &con->out_queue);
2307 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2308 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2309 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2310 le32_to_cpu(msg->hdr.front_len),
2311 le32_to_cpu(msg->hdr.middle_len),
2312 le32_to_cpu(msg->hdr.data_len));
2313 mutex_unlock(&con->mutex);
2314
2315 /* if there wasn't anything waiting to send before, queue
2316 * new work */
2317 clear_standby(con);
2318 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2319 queue_con(con);
2320 }
2321 EXPORT_SYMBOL(ceph_con_send);
2322
2323 /*
2324 * Revoke a message that was previously queued for send
2325 */
2326 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2327 {
2328 mutex_lock(&con->mutex);
2329 if (!list_empty(&msg->list_head)) {
2330 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2331 list_del_init(&msg->list_head);
2332 ceph_msg_put(msg);
2333 msg->hdr.seq = 0;
2334 }
2335 if (con->out_msg == msg) {
2336 dout("con_revoke %p msg %p - was sending\n", con, msg);
2337 con->out_msg = NULL;
2338 if (con->out_kvec_is_msg) {
2339 con->out_skip = con->out_kvec_bytes;
2340 con->out_kvec_is_msg = false;
2341 }
2342 ceph_msg_put(msg);
2343 msg->hdr.seq = 0;
2344 }
2345 mutex_unlock(&con->mutex);
2346 }
2347
2348 /*
2349 * Revoke a message that we may be reading data into
2350 */
2351 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2352 {
2353 mutex_lock(&con->mutex);
2354 if (con->in_msg && con->in_msg == msg) {
2355 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2356 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2357 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2358
2359 /* skip rest of message */
2360 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2361 con->in_base_pos = con->in_base_pos -
2362 sizeof(struct ceph_msg_header) -
2363 front_len -
2364 middle_len -
2365 data_len -
2366 sizeof(struct ceph_msg_footer);
2367 ceph_msg_put(con->in_msg);
2368 con->in_msg = NULL;
2369 con->in_tag = CEPH_MSGR_TAG_READY;
2370 con->in_seq++;
2371 } else {
2372 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2373 con, con->in_msg, msg);
2374 }
2375 mutex_unlock(&con->mutex);
2376 }
2377
2378 /*
2379 * Queue a keepalive byte to ensure the tcp connection is alive.
2380 */
2381 void ceph_con_keepalive(struct ceph_connection *con)
2382 {
2383 dout("con_keepalive %p\n", con);
2384 clear_standby(con);
2385 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2386 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2387 queue_con(con);
2388 }
2389 EXPORT_SYMBOL(ceph_con_keepalive);
2390
2391
2392 /*
2393 * construct a new message with given type, size
2394 * the new msg has a ref count of 1.
2395 */
2396 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2397 bool can_fail)
2398 {
2399 struct ceph_msg *m;
2400
2401 m = kmalloc(sizeof(*m), flags);
2402 if (m == NULL)
2403 goto out;
2404 kref_init(&m->kref);
2405 INIT_LIST_HEAD(&m->list_head);
2406
2407 m->hdr.tid = 0;
2408 m->hdr.type = cpu_to_le16(type);
2409 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2410 m->hdr.version = 0;
2411 m->hdr.front_len = cpu_to_le32(front_len);
2412 m->hdr.middle_len = 0;
2413 m->hdr.data_len = 0;
2414 m->hdr.data_off = 0;
2415 m->hdr.reserved = 0;
2416 m->footer.front_crc = 0;
2417 m->footer.middle_crc = 0;
2418 m->footer.data_crc = 0;
2419 m->footer.flags = 0;
2420 m->front_max = front_len;
2421 m->front_is_vmalloc = false;
2422 m->more_to_follow = false;
2423 m->ack_stamp = 0;
2424 m->pool = NULL;
2425
2426 /* middle */
2427 m->middle = NULL;
2428
2429 /* data */
2430 m->nr_pages = 0;
2431 m->page_alignment = 0;
2432 m->pages = NULL;
2433 m->pagelist = NULL;
2434 m->bio = NULL;
2435 m->bio_iter = NULL;
2436 m->bio_seg = 0;
2437 m->trail = NULL;
2438
2439 /* front */
2440 if (front_len) {
2441 if (front_len > PAGE_CACHE_SIZE) {
2442 m->front.iov_base = __vmalloc(front_len, flags,
2443 PAGE_KERNEL);
2444 m->front_is_vmalloc = true;
2445 } else {
2446 m->front.iov_base = kmalloc(front_len, flags);
2447 }
2448 if (m->front.iov_base == NULL) {
2449 dout("ceph_msg_new can't allocate %d bytes\n",
2450 front_len);
2451 goto out2;
2452 }
2453 } else {
2454 m->front.iov_base = NULL;
2455 }
2456 m->front.iov_len = front_len;
2457
2458 dout("ceph_msg_new %p front %d\n", m, front_len);
2459 return m;
2460
2461 out2:
2462 ceph_msg_put(m);
2463 out:
2464 if (!can_fail) {
2465 pr_err("msg_new can't create type %d front %d\n", type,
2466 front_len);
2467 WARN_ON(1);
2468 } else {
2469 dout("msg_new can't create type %d front %d\n", type,
2470 front_len);
2471 }
2472 return NULL;
2473 }
2474 EXPORT_SYMBOL(ceph_msg_new);
2475
2476 /*
2477 * Allocate "middle" portion of a message, if it is needed and wasn't
2478 * allocated by alloc_msg. This allows us to read a small fixed-size
2479 * per-type header in the front and then gracefully fail (i.e.,
2480 * propagate the error to the caller based on info in the front) when
2481 * the middle is too large.
2482 */
2483 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2484 {
2485 int type = le16_to_cpu(msg->hdr.type);
2486 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2487
2488 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2489 ceph_msg_type_name(type), middle_len);
2490 BUG_ON(!middle_len);
2491 BUG_ON(msg->middle);
2492
2493 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2494 if (!msg->middle)
2495 return -ENOMEM;
2496 return 0;
2497 }
2498
2499 /*
2500 * Generic message allocator, for incoming messages.
2501 */
2502 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2503 struct ceph_msg_header *hdr,
2504 int *skip)
2505 {
2506 int type = le16_to_cpu(hdr->type);
2507 int front_len = le32_to_cpu(hdr->front_len);
2508 int middle_len = le32_to_cpu(hdr->middle_len);
2509 struct ceph_msg *msg = NULL;
2510 int ret;
2511
2512 if (con->ops->alloc_msg) {
2513 mutex_unlock(&con->mutex);
2514 msg = con->ops->alloc_msg(con, hdr, skip);
2515 mutex_lock(&con->mutex);
2516 if (!msg || *skip)
2517 return NULL;
2518 }
2519 if (!msg) {
2520 *skip = 0;
2521 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2522 if (!msg) {
2523 pr_err("unable to allocate msg type %d len %d\n",
2524 type, front_len);
2525 return NULL;
2526 }
2527 msg->page_alignment = le16_to_cpu(hdr->data_off);
2528 }
2529 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2530
2531 if (middle_len && !msg->middle) {
2532 ret = ceph_alloc_middle(con, msg);
2533 if (ret < 0) {
2534 ceph_msg_put(msg);
2535 return NULL;
2536 }
2537 }
2538
2539 return msg;
2540 }
2541
2542
2543 /*
2544 * Free a generically kmalloc'd message.
2545 */
2546 void ceph_msg_kfree(struct ceph_msg *m)
2547 {
2548 dout("msg_kfree %p\n", m);
2549 if (m->front_is_vmalloc)
2550 vfree(m->front.iov_base);
2551 else
2552 kfree(m->front.iov_base);
2553 kfree(m);
2554 }
2555
2556 /*
2557 * Drop a msg ref. Destroy as needed.
2558 */
2559 void ceph_msg_last_put(struct kref *kref)
2560 {
2561 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2562
2563 dout("ceph_msg_put last one on %p\n", m);
2564 WARN_ON(!list_empty(&m->list_head));
2565
2566 /* drop middle, data, if any */
2567 if (m->middle) {
2568 ceph_buffer_put(m->middle);
2569 m->middle = NULL;
2570 }
2571 m->nr_pages = 0;
2572 m->pages = NULL;
2573
2574 if (m->pagelist) {
2575 ceph_pagelist_release(m->pagelist);
2576 kfree(m->pagelist);
2577 m->pagelist = NULL;
2578 }
2579
2580 m->trail = NULL;
2581
2582 if (m->pool)
2583 ceph_msgpool_put(m->pool, m);
2584 else
2585 ceph_msg_kfree(m);
2586 }
2587 EXPORT_SYMBOL(ceph_msg_last_put);
2588
2589 void ceph_msg_dump(struct ceph_msg *msg)
2590 {
2591 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2592 msg->front_max, msg->nr_pages);
2593 print_hex_dump(KERN_DEBUG, "header: ",
2594 DUMP_PREFIX_OFFSET, 16, 1,
2595 &msg->hdr, sizeof(msg->hdr), true);
2596 print_hex_dump(KERN_DEBUG, " front: ",
2597 DUMP_PREFIX_OFFSET, 16, 1,
2598 msg->front.iov_base, msg->front.iov_len, true);
2599 if (msg->middle)
2600 print_hex_dump(KERN_DEBUG, "middle: ",
2601 DUMP_PREFIX_OFFSET, 16, 1,
2602 msg->middle->vec.iov_base,
2603 msg->middle->vec.iov_len, true);
2604 print_hex_dump(KERN_DEBUG, "footer: ",
2605 DUMP_PREFIX_OFFSET, 16, 1,
2606 &msg->footer, sizeof(msg->footer), true);
2607 }
2608 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.121043 seconds and 5 git commands to generate.