libceph: fix handling of immediate socket connect failure
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /*
33 * We track the state of the socket on a given connection using
34 * values defined below. The transition to a new socket state is
35 * handled by a function which verifies we aren't coming from an
36 * unexpected state.
37 *
38 * --------
39 * | NEW* | transient initial state
40 * --------
41 * | con_sock_state_init()
42 * v
43 * ----------
44 * | CLOSED | initialized, but no socket (and no
45 * ---------- TCP connection)
46 * ^ \
47 * | \ con_sock_state_connecting()
48 * | ----------------------
49 * | \
50 * + con_sock_state_closed() \
51 * |+--------------------------- \
52 * | \ \ \
53 * | ----------- \ \
54 * | | CLOSING | socket event; \ \
55 * | ----------- await close \ \
56 * | ^ \ |
57 * | | \ |
58 * | + con_sock_state_closing() \ |
59 * | / \ | |
60 * | / --------------- | |
61 * | / \ v v
62 * | / --------------
63 * | / -----------------| CONNECTING | socket created, TCP
64 * | | / -------------- connect initiated
65 * | | | con_sock_state_connected()
66 * | | v
67 * -------------
68 * | CONNECTED | TCP connection established
69 * -------------
70 *
71 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72 */
73
74 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
79
80 /*
81 * connection states
82 */
83 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
84 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
89
90 /*
91 * ceph_connection flag bits
92 */
93 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
94 * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
99
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108
109 /*
110 * When skipping (ignoring) a block of input we read it into a "skip
111 * buffer," which is this many bytes in size.
112 */
113 #define SKIP_BUF_SIZE 1024
114
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118
119 /*
120 * Nicely render a sockaddr as a string. An array of formatted
121 * strings is used, to approximate reentrancy.
122 */
123 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
124 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
127
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130
131 static struct page *zero_page; /* used in certain error cases */
132
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135 int i;
136 char *s;
137 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139
140 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141 s = addr_str[i];
142
143 switch (ss->ss_family) {
144 case AF_INET:
145 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146 ntohs(in4->sin_port));
147 break;
148
149 case AF_INET6:
150 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151 ntohs(in6->sin6_port));
152 break;
153
154 default:
155 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156 ss->ss_family);
157 }
158
159 return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162
163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166 ceph_encode_addr(&msgr->my_enc_addr);
167 }
168
169 /*
170 * work queue for all reading and writing to/from the socket.
171 */
172 static struct workqueue_struct *ceph_msgr_wq;
173
174 void _ceph_msgr_exit(void)
175 {
176 if (ceph_msgr_wq) {
177 destroy_workqueue(ceph_msgr_wq);
178 ceph_msgr_wq = NULL;
179 }
180
181 BUG_ON(zero_page == NULL);
182 kunmap(zero_page);
183 page_cache_release(zero_page);
184 zero_page = NULL;
185 }
186
187 int ceph_msgr_init(void)
188 {
189 BUG_ON(zero_page != NULL);
190 zero_page = ZERO_PAGE(0);
191 page_cache_get(zero_page);
192
193 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194 if (ceph_msgr_wq)
195 return 0;
196
197 pr_err("msgr_init failed to create workqueue\n");
198 _ceph_msgr_exit();
199
200 return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203
204 void ceph_msgr_exit(void)
205 {
206 BUG_ON(ceph_msgr_wq == NULL);
207
208 _ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211
212 void ceph_msgr_flush(void)
213 {
214 flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217
218 /* Connection socket state transition functions */
219
220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222 int old_state;
223
224 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226 printk("%s: unexpected old state %d\n", __func__, old_state);
227 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
228 CON_SOCK_STATE_CLOSED);
229 }
230
231 static void con_sock_state_connecting(struct ceph_connection *con)
232 {
233 int old_state;
234
235 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
236 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237 printk("%s: unexpected old state %d\n", __func__, old_state);
238 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
239 CON_SOCK_STATE_CONNECTING);
240 }
241
242 static void con_sock_state_connected(struct ceph_connection *con)
243 {
244 int old_state;
245
246 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248 printk("%s: unexpected old state %d\n", __func__, old_state);
249 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
250 CON_SOCK_STATE_CONNECTED);
251 }
252
253 static void con_sock_state_closing(struct ceph_connection *con)
254 {
255 int old_state;
256
257 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259 old_state != CON_SOCK_STATE_CONNECTED &&
260 old_state != CON_SOCK_STATE_CLOSING))
261 printk("%s: unexpected old state %d\n", __func__, old_state);
262 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
263 CON_SOCK_STATE_CLOSING);
264 }
265
266 static void con_sock_state_closed(struct ceph_connection *con)
267 {
268 int old_state;
269
270 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272 old_state != CON_SOCK_STATE_CLOSING &&
273 old_state != CON_SOCK_STATE_CONNECTING &&
274 old_state != CON_SOCK_STATE_CLOSED))
275 printk("%s: unexpected old state %d\n", __func__, old_state);
276 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
277 CON_SOCK_STATE_CLOSED);
278 }
279
280 /*
281 * socket callback functions
282 */
283
284 /* data available on socket, or listen socket received a connect */
285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
286 {
287 struct ceph_connection *con = sk->sk_user_data;
288 if (atomic_read(&con->msgr->stopping)) {
289 return;
290 }
291
292 if (sk->sk_state != TCP_CLOSE_WAIT) {
293 dout("%s on %p state = %lu, queueing work\n", __func__,
294 con, con->state);
295 queue_con(con);
296 }
297 }
298
299 /* socket has buffer space for writing */
300 static void ceph_sock_write_space(struct sock *sk)
301 {
302 struct ceph_connection *con = sk->sk_user_data;
303
304 /* only queue to workqueue if there is data we want to write,
305 * and there is sufficient space in the socket buffer to accept
306 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
307 * doesn't get called again until try_write() fills the socket
308 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309 * and net/core/stream.c:sk_stream_write_space().
310 */
311 if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313 dout("%s %p queueing write work\n", __func__, con);
314 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315 queue_con(con);
316 }
317 } else {
318 dout("%s %p nothing to write\n", __func__, con);
319 }
320 }
321
322 /* socket's state has changed */
323 static void ceph_sock_state_change(struct sock *sk)
324 {
325 struct ceph_connection *con = sk->sk_user_data;
326
327 dout("%s %p state = %lu sk_state = %u\n", __func__,
328 con, con->state, sk->sk_state);
329
330 switch (sk->sk_state) {
331 case TCP_CLOSE:
332 dout("%s TCP_CLOSE\n", __func__);
333 case TCP_CLOSE_WAIT:
334 dout("%s TCP_CLOSE_WAIT\n", __func__);
335 con_sock_state_closing(con);
336 set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
337 queue_con(con);
338 break;
339 case TCP_ESTABLISHED:
340 dout("%s TCP_ESTABLISHED\n", __func__);
341 con_sock_state_connected(con);
342 queue_con(con);
343 break;
344 default: /* Everything else is uninteresting */
345 break;
346 }
347 }
348
349 /*
350 * set up socket callbacks
351 */
352 static void set_sock_callbacks(struct socket *sock,
353 struct ceph_connection *con)
354 {
355 struct sock *sk = sock->sk;
356 sk->sk_user_data = con;
357 sk->sk_data_ready = ceph_sock_data_ready;
358 sk->sk_write_space = ceph_sock_write_space;
359 sk->sk_state_change = ceph_sock_state_change;
360 }
361
362
363 /*
364 * socket helpers
365 */
366
367 /*
368 * initiate connection to a remote socket.
369 */
370 static int ceph_tcp_connect(struct ceph_connection *con)
371 {
372 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373 struct socket *sock;
374 int ret;
375
376 BUG_ON(con->sock);
377 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378 IPPROTO_TCP, &sock);
379 if (ret)
380 return ret;
381 sock->sk->sk_allocation = GFP_NOFS;
382
383 #ifdef CONFIG_LOCKDEP
384 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
386
387 set_sock_callbacks(sock, con);
388
389 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
390
391 con_sock_state_connecting(con);
392 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393 O_NONBLOCK);
394 if (ret == -EINPROGRESS) {
395 dout("connect %s EINPROGRESS sk_state = %u\n",
396 ceph_pr_addr(&con->peer_addr.in_addr),
397 sock->sk->sk_state);
398 } else if (ret < 0) {
399 pr_err("connect %s error %d\n",
400 ceph_pr_addr(&con->peer_addr.in_addr), ret);
401 sock_release(sock);
402 con->error_msg = "connect error";
403
404 return ret;
405 }
406 con->sock = sock;
407 return 0;
408 }
409
410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
411 {
412 struct kvec iov = {buf, len};
413 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414 int r;
415
416 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417 if (r == -EAGAIN)
418 r = 0;
419 return r;
420 }
421
422 /*
423 * write something. @more is true if caller will be sending more data
424 * shortly.
425 */
426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427 size_t kvlen, size_t len, int more)
428 {
429 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430 int r;
431
432 if (more)
433 msg.msg_flags |= MSG_MORE;
434 else
435 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
436
437 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438 if (r == -EAGAIN)
439 r = 0;
440 return r;
441 }
442
443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444 int offset, size_t size, int more)
445 {
446 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447 int ret;
448
449 ret = kernel_sendpage(sock, page, offset, size, flags);
450 if (ret == -EAGAIN)
451 ret = 0;
452
453 return ret;
454 }
455
456
457 /*
458 * Shutdown/close the socket for the given connection.
459 */
460 static int con_close_socket(struct ceph_connection *con)
461 {
462 int rc = 0;
463
464 dout("con_close_socket on %p sock %p\n", con, con->sock);
465 if (con->sock) {
466 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467 sock_release(con->sock);
468 con->sock = NULL;
469 }
470
471 /*
472 * Forcibly clear the SOCK_CLOSED flag. It gets set
473 * independent of the connection mutex, and we could have
474 * received a socket close event before we had the chance to
475 * shut the socket down.
476 */
477 clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
478
479 con_sock_state_closed(con);
480 return rc;
481 }
482
483 /*
484 * Reset a connection. Discard all incoming and outgoing messages
485 * and clear *_seq state.
486 */
487 static void ceph_msg_remove(struct ceph_msg *msg)
488 {
489 list_del_init(&msg->list_head);
490 BUG_ON(msg->con == NULL);
491 msg->con->ops->put(msg->con);
492 msg->con = NULL;
493
494 ceph_msg_put(msg);
495 }
496 static void ceph_msg_remove_list(struct list_head *head)
497 {
498 while (!list_empty(head)) {
499 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500 list_head);
501 ceph_msg_remove(msg);
502 }
503 }
504
505 static void reset_connection(struct ceph_connection *con)
506 {
507 /* reset connection, out_queue, msg_ and connect_seq */
508 /* discard existing out_queue and msg_seq */
509 ceph_msg_remove_list(&con->out_queue);
510 ceph_msg_remove_list(&con->out_sent);
511
512 if (con->in_msg) {
513 BUG_ON(con->in_msg->con != con);
514 con->in_msg->con = NULL;
515 ceph_msg_put(con->in_msg);
516 con->in_msg = NULL;
517 con->ops->put(con);
518 }
519
520 con->connect_seq = 0;
521 con->out_seq = 0;
522 if (con->out_msg) {
523 ceph_msg_put(con->out_msg);
524 con->out_msg = NULL;
525 }
526 con->in_seq = 0;
527 con->in_seq_acked = 0;
528 }
529
530 /*
531 * mark a peer down. drop any open connections.
532 */
533 void ceph_con_close(struct ceph_connection *con)
534 {
535 mutex_lock(&con->mutex);
536 dout("con_close %p peer %s\n", con,
537 ceph_pr_addr(&con->peer_addr.in_addr));
538 con->state = CON_STATE_CLOSED;
539
540 clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
541 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
542 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
543 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
544 clear_bit(CON_FLAG_BACKOFF, &con->flags);
545
546 reset_connection(con);
547 con->peer_global_seq = 0;
548 cancel_delayed_work(&con->work);
549 con_close_socket(con);
550 mutex_unlock(&con->mutex);
551 }
552 EXPORT_SYMBOL(ceph_con_close);
553
554 /*
555 * Reopen a closed connection, with a new peer address.
556 */
557 void ceph_con_open(struct ceph_connection *con,
558 __u8 entity_type, __u64 entity_num,
559 struct ceph_entity_addr *addr)
560 {
561 mutex_lock(&con->mutex);
562 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
563
564 BUG_ON(con->state != CON_STATE_CLOSED);
565 con->state = CON_STATE_PREOPEN;
566
567 con->peer_name.type = (__u8) entity_type;
568 con->peer_name.num = cpu_to_le64(entity_num);
569
570 memcpy(&con->peer_addr, addr, sizeof(*addr));
571 con->delay = 0; /* reset backoff memory */
572 mutex_unlock(&con->mutex);
573 queue_con(con);
574 }
575 EXPORT_SYMBOL(ceph_con_open);
576
577 /*
578 * return true if this connection ever successfully opened
579 */
580 bool ceph_con_opened(struct ceph_connection *con)
581 {
582 return con->connect_seq > 0;
583 }
584
585 /*
586 * initialize a new connection.
587 */
588 void ceph_con_init(struct ceph_connection *con, void *private,
589 const struct ceph_connection_operations *ops,
590 struct ceph_messenger *msgr)
591 {
592 dout("con_init %p\n", con);
593 memset(con, 0, sizeof(*con));
594 con->private = private;
595 con->ops = ops;
596 con->msgr = msgr;
597
598 con_sock_state_init(con);
599
600 mutex_init(&con->mutex);
601 INIT_LIST_HEAD(&con->out_queue);
602 INIT_LIST_HEAD(&con->out_sent);
603 INIT_DELAYED_WORK(&con->work, con_work);
604
605 con->state = CON_STATE_CLOSED;
606 }
607 EXPORT_SYMBOL(ceph_con_init);
608
609
610 /*
611 * We maintain a global counter to order connection attempts. Get
612 * a unique seq greater than @gt.
613 */
614 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
615 {
616 u32 ret;
617
618 spin_lock(&msgr->global_seq_lock);
619 if (msgr->global_seq < gt)
620 msgr->global_seq = gt;
621 ret = ++msgr->global_seq;
622 spin_unlock(&msgr->global_seq_lock);
623 return ret;
624 }
625
626 static void con_out_kvec_reset(struct ceph_connection *con)
627 {
628 con->out_kvec_left = 0;
629 con->out_kvec_bytes = 0;
630 con->out_kvec_cur = &con->out_kvec[0];
631 }
632
633 static void con_out_kvec_add(struct ceph_connection *con,
634 size_t size, void *data)
635 {
636 int index;
637
638 index = con->out_kvec_left;
639 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
640
641 con->out_kvec[index].iov_len = size;
642 con->out_kvec[index].iov_base = data;
643 con->out_kvec_left++;
644 con->out_kvec_bytes += size;
645 }
646
647 #ifdef CONFIG_BLOCK
648 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
649 {
650 if (!bio) {
651 *iter = NULL;
652 *seg = 0;
653 return;
654 }
655 *iter = bio;
656 *seg = bio->bi_idx;
657 }
658
659 static void iter_bio_next(struct bio **bio_iter, int *seg)
660 {
661 if (*bio_iter == NULL)
662 return;
663
664 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
665
666 (*seg)++;
667 if (*seg == (*bio_iter)->bi_vcnt)
668 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
669 }
670 #endif
671
672 static void prepare_write_message_data(struct ceph_connection *con)
673 {
674 struct ceph_msg *msg = con->out_msg;
675
676 BUG_ON(!msg);
677 BUG_ON(!msg->hdr.data_len);
678
679 /* initialize page iterator */
680 con->out_msg_pos.page = 0;
681 if (msg->pages)
682 con->out_msg_pos.page_pos = msg->page_alignment;
683 else
684 con->out_msg_pos.page_pos = 0;
685 #ifdef CONFIG_BLOCK
686 if (msg->bio)
687 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
688 #endif
689 con->out_msg_pos.data_pos = 0;
690 con->out_msg_pos.did_page_crc = false;
691 con->out_more = 1; /* data + footer will follow */
692 }
693
694 /*
695 * Prepare footer for currently outgoing message, and finish things
696 * off. Assumes out_kvec* are already valid.. we just add on to the end.
697 */
698 static void prepare_write_message_footer(struct ceph_connection *con)
699 {
700 struct ceph_msg *m = con->out_msg;
701 int v = con->out_kvec_left;
702
703 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
704
705 dout("prepare_write_message_footer %p\n", con);
706 con->out_kvec_is_msg = true;
707 con->out_kvec[v].iov_base = &m->footer;
708 con->out_kvec[v].iov_len = sizeof(m->footer);
709 con->out_kvec_bytes += sizeof(m->footer);
710 con->out_kvec_left++;
711 con->out_more = m->more_to_follow;
712 con->out_msg_done = true;
713 }
714
715 /*
716 * Prepare headers for the next outgoing message.
717 */
718 static void prepare_write_message(struct ceph_connection *con)
719 {
720 struct ceph_msg *m;
721 u32 crc;
722
723 con_out_kvec_reset(con);
724 con->out_kvec_is_msg = true;
725 con->out_msg_done = false;
726
727 /* Sneak an ack in there first? If we can get it into the same
728 * TCP packet that's a good thing. */
729 if (con->in_seq > con->in_seq_acked) {
730 con->in_seq_acked = con->in_seq;
731 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
733 con_out_kvec_add(con, sizeof (con->out_temp_ack),
734 &con->out_temp_ack);
735 }
736
737 BUG_ON(list_empty(&con->out_queue));
738 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
739 con->out_msg = m;
740 BUG_ON(m->con != con);
741
742 /* put message on sent list */
743 ceph_msg_get(m);
744 list_move_tail(&m->list_head, &con->out_sent);
745
746 /*
747 * only assign outgoing seq # if we haven't sent this message
748 * yet. if it is requeued, resend with it's original seq.
749 */
750 if (m->needs_out_seq) {
751 m->hdr.seq = cpu_to_le64(++con->out_seq);
752 m->needs_out_seq = false;
753 }
754
755 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
756 m, con->out_seq, le16_to_cpu(m->hdr.type),
757 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
758 le32_to_cpu(m->hdr.data_len),
759 m->nr_pages);
760 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
761
762 /* tag + hdr + front + middle */
763 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
764 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
765 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
766
767 if (m->middle)
768 con_out_kvec_add(con, m->middle->vec.iov_len,
769 m->middle->vec.iov_base);
770
771 /* fill in crc (except data pages), footer */
772 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
773 con->out_msg->hdr.crc = cpu_to_le32(crc);
774 con->out_msg->footer.flags = 0;
775
776 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
777 con->out_msg->footer.front_crc = cpu_to_le32(crc);
778 if (m->middle) {
779 crc = crc32c(0, m->middle->vec.iov_base,
780 m->middle->vec.iov_len);
781 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
782 } else
783 con->out_msg->footer.middle_crc = 0;
784 dout("%s front_crc %u middle_crc %u\n", __func__,
785 le32_to_cpu(con->out_msg->footer.front_crc),
786 le32_to_cpu(con->out_msg->footer.middle_crc));
787
788 /* is there a data payload? */
789 con->out_msg->footer.data_crc = 0;
790 if (m->hdr.data_len)
791 prepare_write_message_data(con);
792 else
793 /* no, queue up footer too and be done */
794 prepare_write_message_footer(con);
795
796 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
797 }
798
799 /*
800 * Prepare an ack.
801 */
802 static void prepare_write_ack(struct ceph_connection *con)
803 {
804 dout("prepare_write_ack %p %llu -> %llu\n", con,
805 con->in_seq_acked, con->in_seq);
806 con->in_seq_acked = con->in_seq;
807
808 con_out_kvec_reset(con);
809
810 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
811
812 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
813 con_out_kvec_add(con, sizeof (con->out_temp_ack),
814 &con->out_temp_ack);
815
816 con->out_more = 1; /* more will follow.. eventually.. */
817 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
818 }
819
820 /*
821 * Prepare to write keepalive byte.
822 */
823 static void prepare_write_keepalive(struct ceph_connection *con)
824 {
825 dout("prepare_write_keepalive %p\n", con);
826 con_out_kvec_reset(con);
827 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
828 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
829 }
830
831 /*
832 * Connection negotiation.
833 */
834
835 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
836 int *auth_proto)
837 {
838 struct ceph_auth_handshake *auth;
839
840 if (!con->ops->get_authorizer) {
841 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
842 con->out_connect.authorizer_len = 0;
843 return NULL;
844 }
845
846 /* Can't hold the mutex while getting authorizer */
847 mutex_unlock(&con->mutex);
848 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
849 mutex_lock(&con->mutex);
850
851 if (IS_ERR(auth))
852 return auth;
853 if (con->state != CON_STATE_NEGOTIATING)
854 return ERR_PTR(-EAGAIN);
855
856 con->auth_reply_buf = auth->authorizer_reply_buf;
857 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
858 return auth;
859 }
860
861 /*
862 * We connected to a peer and are saying hello.
863 */
864 static void prepare_write_banner(struct ceph_connection *con)
865 {
866 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
867 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
868 &con->msgr->my_enc_addr);
869
870 con->out_more = 0;
871 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
872 }
873
874 static int prepare_write_connect(struct ceph_connection *con)
875 {
876 unsigned int global_seq = get_global_seq(con->msgr, 0);
877 int proto;
878 int auth_proto;
879 struct ceph_auth_handshake *auth;
880
881 switch (con->peer_name.type) {
882 case CEPH_ENTITY_TYPE_MON:
883 proto = CEPH_MONC_PROTOCOL;
884 break;
885 case CEPH_ENTITY_TYPE_OSD:
886 proto = CEPH_OSDC_PROTOCOL;
887 break;
888 case CEPH_ENTITY_TYPE_MDS:
889 proto = CEPH_MDSC_PROTOCOL;
890 break;
891 default:
892 BUG();
893 }
894
895 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
896 con->connect_seq, global_seq, proto);
897
898 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
899 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
900 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
901 con->out_connect.global_seq = cpu_to_le32(global_seq);
902 con->out_connect.protocol_version = cpu_to_le32(proto);
903 con->out_connect.flags = 0;
904
905 auth_proto = CEPH_AUTH_UNKNOWN;
906 auth = get_connect_authorizer(con, &auth_proto);
907 if (IS_ERR(auth))
908 return PTR_ERR(auth);
909
910 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
911 con->out_connect.authorizer_len = auth ?
912 cpu_to_le32(auth->authorizer_buf_len) : 0;
913
914 con_out_kvec_reset(con);
915 con_out_kvec_add(con, sizeof (con->out_connect),
916 &con->out_connect);
917 if (auth && auth->authorizer_buf_len)
918 con_out_kvec_add(con, auth->authorizer_buf_len,
919 auth->authorizer_buf);
920
921 con->out_more = 0;
922 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
923
924 return 0;
925 }
926
927 /*
928 * write as much of pending kvecs to the socket as we can.
929 * 1 -> done
930 * 0 -> socket full, but more to do
931 * <0 -> error
932 */
933 static int write_partial_kvec(struct ceph_connection *con)
934 {
935 int ret;
936
937 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
938 while (con->out_kvec_bytes > 0) {
939 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
940 con->out_kvec_left, con->out_kvec_bytes,
941 con->out_more);
942 if (ret <= 0)
943 goto out;
944 con->out_kvec_bytes -= ret;
945 if (con->out_kvec_bytes == 0)
946 break; /* done */
947
948 /* account for full iov entries consumed */
949 while (ret >= con->out_kvec_cur->iov_len) {
950 BUG_ON(!con->out_kvec_left);
951 ret -= con->out_kvec_cur->iov_len;
952 con->out_kvec_cur++;
953 con->out_kvec_left--;
954 }
955 /* and for a partially-consumed entry */
956 if (ret) {
957 con->out_kvec_cur->iov_len -= ret;
958 con->out_kvec_cur->iov_base += ret;
959 }
960 }
961 con->out_kvec_left = 0;
962 con->out_kvec_is_msg = false;
963 ret = 1;
964 out:
965 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
966 con->out_kvec_bytes, con->out_kvec_left, ret);
967 return ret; /* done! */
968 }
969
970 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
971 size_t len, size_t sent, bool in_trail)
972 {
973 struct ceph_msg *msg = con->out_msg;
974
975 BUG_ON(!msg);
976 BUG_ON(!sent);
977
978 con->out_msg_pos.data_pos += sent;
979 con->out_msg_pos.page_pos += sent;
980 if (sent < len)
981 return;
982
983 BUG_ON(sent != len);
984 con->out_msg_pos.page_pos = 0;
985 con->out_msg_pos.page++;
986 con->out_msg_pos.did_page_crc = false;
987 if (in_trail)
988 list_move_tail(&page->lru,
989 &msg->trail->head);
990 else if (msg->pagelist)
991 list_move_tail(&page->lru,
992 &msg->pagelist->head);
993 #ifdef CONFIG_BLOCK
994 else if (msg->bio)
995 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
996 #endif
997 }
998
999 /*
1000 * Write as much message data payload as we can. If we finish, queue
1001 * up the footer.
1002 * 1 -> done, footer is now queued in out_kvec[].
1003 * 0 -> socket full, but more to do
1004 * <0 -> error
1005 */
1006 static int write_partial_msg_pages(struct ceph_connection *con)
1007 {
1008 struct ceph_msg *msg = con->out_msg;
1009 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1010 size_t len;
1011 bool do_datacrc = !con->msgr->nocrc;
1012 int ret;
1013 int total_max_write;
1014 bool in_trail = false;
1015 const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1016 const size_t trail_off = data_len - trail_len;
1017
1018 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1019 con, msg, con->out_msg_pos.page, msg->nr_pages,
1020 con->out_msg_pos.page_pos);
1021
1022 /*
1023 * Iterate through each page that contains data to be
1024 * written, and send as much as possible for each.
1025 *
1026 * If we are calculating the data crc (the default), we will
1027 * need to map the page. If we have no pages, they have
1028 * been revoked, so use the zero page.
1029 */
1030 while (data_len > con->out_msg_pos.data_pos) {
1031 struct page *page = NULL;
1032 int max_write = PAGE_SIZE;
1033 int bio_offset = 0;
1034
1035 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1036 if (!in_trail)
1037 total_max_write = trail_off - con->out_msg_pos.data_pos;
1038
1039 if (in_trail) {
1040 total_max_write = data_len - con->out_msg_pos.data_pos;
1041
1042 page = list_first_entry(&msg->trail->head,
1043 struct page, lru);
1044 } else if (msg->pages) {
1045 page = msg->pages[con->out_msg_pos.page];
1046 } else if (msg->pagelist) {
1047 page = list_first_entry(&msg->pagelist->head,
1048 struct page, lru);
1049 #ifdef CONFIG_BLOCK
1050 } else if (msg->bio) {
1051 struct bio_vec *bv;
1052
1053 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1054 page = bv->bv_page;
1055 bio_offset = bv->bv_offset;
1056 max_write = bv->bv_len;
1057 #endif
1058 } else {
1059 page = zero_page;
1060 }
1061 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1062 total_max_write);
1063
1064 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1065 void *base;
1066 u32 crc = le32_to_cpu(msg->footer.data_crc);
1067 char *kaddr;
1068
1069 kaddr = kmap(page);
1070 BUG_ON(kaddr == NULL);
1071 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1072 crc = crc32c(crc, base, len);
1073 msg->footer.data_crc = cpu_to_le32(crc);
1074 con->out_msg_pos.did_page_crc = true;
1075 }
1076 ret = ceph_tcp_sendpage(con->sock, page,
1077 con->out_msg_pos.page_pos + bio_offset,
1078 len, 1);
1079
1080 if (do_datacrc)
1081 kunmap(page);
1082
1083 if (ret <= 0)
1084 goto out;
1085
1086 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1087 }
1088
1089 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1090
1091 /* prepare and queue up footer, too */
1092 if (!do_datacrc)
1093 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1094 con_out_kvec_reset(con);
1095 prepare_write_message_footer(con);
1096 ret = 1;
1097 out:
1098 return ret;
1099 }
1100
1101 /*
1102 * write some zeros
1103 */
1104 static int write_partial_skip(struct ceph_connection *con)
1105 {
1106 int ret;
1107
1108 while (con->out_skip > 0) {
1109 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1110
1111 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1112 if (ret <= 0)
1113 goto out;
1114 con->out_skip -= ret;
1115 }
1116 ret = 1;
1117 out:
1118 return ret;
1119 }
1120
1121 /*
1122 * Prepare to read connection handshake, or an ack.
1123 */
1124 static void prepare_read_banner(struct ceph_connection *con)
1125 {
1126 dout("prepare_read_banner %p\n", con);
1127 con->in_base_pos = 0;
1128 }
1129
1130 static void prepare_read_connect(struct ceph_connection *con)
1131 {
1132 dout("prepare_read_connect %p\n", con);
1133 con->in_base_pos = 0;
1134 }
1135
1136 static void prepare_read_ack(struct ceph_connection *con)
1137 {
1138 dout("prepare_read_ack %p\n", con);
1139 con->in_base_pos = 0;
1140 }
1141
1142 static void prepare_read_tag(struct ceph_connection *con)
1143 {
1144 dout("prepare_read_tag %p\n", con);
1145 con->in_base_pos = 0;
1146 con->in_tag = CEPH_MSGR_TAG_READY;
1147 }
1148
1149 /*
1150 * Prepare to read a message.
1151 */
1152 static int prepare_read_message(struct ceph_connection *con)
1153 {
1154 dout("prepare_read_message %p\n", con);
1155 BUG_ON(con->in_msg != NULL);
1156 con->in_base_pos = 0;
1157 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1158 return 0;
1159 }
1160
1161
1162 static int read_partial(struct ceph_connection *con,
1163 int end, int size, void *object)
1164 {
1165 while (con->in_base_pos < end) {
1166 int left = end - con->in_base_pos;
1167 int have = size - left;
1168 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1169 if (ret <= 0)
1170 return ret;
1171 con->in_base_pos += ret;
1172 }
1173 return 1;
1174 }
1175
1176
1177 /*
1178 * Read all or part of the connect-side handshake on a new connection
1179 */
1180 static int read_partial_banner(struct ceph_connection *con)
1181 {
1182 int size;
1183 int end;
1184 int ret;
1185
1186 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1187
1188 /* peer's banner */
1189 size = strlen(CEPH_BANNER);
1190 end = size;
1191 ret = read_partial(con, end, size, con->in_banner);
1192 if (ret <= 0)
1193 goto out;
1194
1195 size = sizeof (con->actual_peer_addr);
1196 end += size;
1197 ret = read_partial(con, end, size, &con->actual_peer_addr);
1198 if (ret <= 0)
1199 goto out;
1200
1201 size = sizeof (con->peer_addr_for_me);
1202 end += size;
1203 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1204 if (ret <= 0)
1205 goto out;
1206
1207 out:
1208 return ret;
1209 }
1210
1211 static int read_partial_connect(struct ceph_connection *con)
1212 {
1213 int size;
1214 int end;
1215 int ret;
1216
1217 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1218
1219 size = sizeof (con->in_reply);
1220 end = size;
1221 ret = read_partial(con, end, size, &con->in_reply);
1222 if (ret <= 0)
1223 goto out;
1224
1225 size = le32_to_cpu(con->in_reply.authorizer_len);
1226 end += size;
1227 ret = read_partial(con, end, size, con->auth_reply_buf);
1228 if (ret <= 0)
1229 goto out;
1230
1231 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1232 con, (int)con->in_reply.tag,
1233 le32_to_cpu(con->in_reply.connect_seq),
1234 le32_to_cpu(con->in_reply.global_seq));
1235 out:
1236 return ret;
1237
1238 }
1239
1240 /*
1241 * Verify the hello banner looks okay.
1242 */
1243 static int verify_hello(struct ceph_connection *con)
1244 {
1245 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1246 pr_err("connect to %s got bad banner\n",
1247 ceph_pr_addr(&con->peer_addr.in_addr));
1248 con->error_msg = "protocol error, bad banner";
1249 return -1;
1250 }
1251 return 0;
1252 }
1253
1254 static bool addr_is_blank(struct sockaddr_storage *ss)
1255 {
1256 switch (ss->ss_family) {
1257 case AF_INET:
1258 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1259 case AF_INET6:
1260 return
1261 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1262 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1263 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1264 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1265 }
1266 return false;
1267 }
1268
1269 static int addr_port(struct sockaddr_storage *ss)
1270 {
1271 switch (ss->ss_family) {
1272 case AF_INET:
1273 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1274 case AF_INET6:
1275 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1276 }
1277 return 0;
1278 }
1279
1280 static void addr_set_port(struct sockaddr_storage *ss, int p)
1281 {
1282 switch (ss->ss_family) {
1283 case AF_INET:
1284 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1285 break;
1286 case AF_INET6:
1287 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1288 break;
1289 }
1290 }
1291
1292 /*
1293 * Unlike other *_pton function semantics, zero indicates success.
1294 */
1295 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1296 char delim, const char **ipend)
1297 {
1298 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1299 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1300
1301 memset(ss, 0, sizeof(*ss));
1302
1303 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1304 ss->ss_family = AF_INET;
1305 return 0;
1306 }
1307
1308 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1309 ss->ss_family = AF_INET6;
1310 return 0;
1311 }
1312
1313 return -EINVAL;
1314 }
1315
1316 /*
1317 * Extract hostname string and resolve using kernel DNS facility.
1318 */
1319 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1320 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1321 struct sockaddr_storage *ss, char delim, const char **ipend)
1322 {
1323 const char *end, *delim_p;
1324 char *colon_p, *ip_addr = NULL;
1325 int ip_len, ret;
1326
1327 /*
1328 * The end of the hostname occurs immediately preceding the delimiter or
1329 * the port marker (':') where the delimiter takes precedence.
1330 */
1331 delim_p = memchr(name, delim, namelen);
1332 colon_p = memchr(name, ':', namelen);
1333
1334 if (delim_p && colon_p)
1335 end = delim_p < colon_p ? delim_p : colon_p;
1336 else if (!delim_p && colon_p)
1337 end = colon_p;
1338 else {
1339 end = delim_p;
1340 if (!end) /* case: hostname:/ */
1341 end = name + namelen;
1342 }
1343
1344 if (end <= name)
1345 return -EINVAL;
1346
1347 /* do dns_resolve upcall */
1348 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1349 if (ip_len > 0)
1350 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1351 else
1352 ret = -ESRCH;
1353
1354 kfree(ip_addr);
1355
1356 *ipend = end;
1357
1358 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1359 ret, ret ? "failed" : ceph_pr_addr(ss));
1360
1361 return ret;
1362 }
1363 #else
1364 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1365 struct sockaddr_storage *ss, char delim, const char **ipend)
1366 {
1367 return -EINVAL;
1368 }
1369 #endif
1370
1371 /*
1372 * Parse a server name (IP or hostname). If a valid IP address is not found
1373 * then try to extract a hostname to resolve using userspace DNS upcall.
1374 */
1375 static int ceph_parse_server_name(const char *name, size_t namelen,
1376 struct sockaddr_storage *ss, char delim, const char **ipend)
1377 {
1378 int ret;
1379
1380 ret = ceph_pton(name, namelen, ss, delim, ipend);
1381 if (ret)
1382 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1383
1384 return ret;
1385 }
1386
1387 /*
1388 * Parse an ip[:port] list into an addr array. Use the default
1389 * monitor port if a port isn't specified.
1390 */
1391 int ceph_parse_ips(const char *c, const char *end,
1392 struct ceph_entity_addr *addr,
1393 int max_count, int *count)
1394 {
1395 int i, ret = -EINVAL;
1396 const char *p = c;
1397
1398 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1399 for (i = 0; i < max_count; i++) {
1400 const char *ipend;
1401 struct sockaddr_storage *ss = &addr[i].in_addr;
1402 int port;
1403 char delim = ',';
1404
1405 if (*p == '[') {
1406 delim = ']';
1407 p++;
1408 }
1409
1410 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1411 if (ret)
1412 goto bad;
1413 ret = -EINVAL;
1414
1415 p = ipend;
1416
1417 if (delim == ']') {
1418 if (*p != ']') {
1419 dout("missing matching ']'\n");
1420 goto bad;
1421 }
1422 p++;
1423 }
1424
1425 /* port? */
1426 if (p < end && *p == ':') {
1427 port = 0;
1428 p++;
1429 while (p < end && *p >= '0' && *p <= '9') {
1430 port = (port * 10) + (*p - '0');
1431 p++;
1432 }
1433 if (port > 65535 || port == 0)
1434 goto bad;
1435 } else {
1436 port = CEPH_MON_PORT;
1437 }
1438
1439 addr_set_port(ss, port);
1440
1441 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1442
1443 if (p == end)
1444 break;
1445 if (*p != ',')
1446 goto bad;
1447 p++;
1448 }
1449
1450 if (p != end)
1451 goto bad;
1452
1453 if (count)
1454 *count = i + 1;
1455 return 0;
1456
1457 bad:
1458 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1459 return ret;
1460 }
1461 EXPORT_SYMBOL(ceph_parse_ips);
1462
1463 static int process_banner(struct ceph_connection *con)
1464 {
1465 dout("process_banner on %p\n", con);
1466
1467 if (verify_hello(con) < 0)
1468 return -1;
1469
1470 ceph_decode_addr(&con->actual_peer_addr);
1471 ceph_decode_addr(&con->peer_addr_for_me);
1472
1473 /*
1474 * Make sure the other end is who we wanted. note that the other
1475 * end may not yet know their ip address, so if it's 0.0.0.0, give
1476 * them the benefit of the doubt.
1477 */
1478 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1479 sizeof(con->peer_addr)) != 0 &&
1480 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1481 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1482 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1483 ceph_pr_addr(&con->peer_addr.in_addr),
1484 (int)le32_to_cpu(con->peer_addr.nonce),
1485 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1486 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1487 con->error_msg = "wrong peer at address";
1488 return -1;
1489 }
1490
1491 /*
1492 * did we learn our address?
1493 */
1494 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1495 int port = addr_port(&con->msgr->inst.addr.in_addr);
1496
1497 memcpy(&con->msgr->inst.addr.in_addr,
1498 &con->peer_addr_for_me.in_addr,
1499 sizeof(con->peer_addr_for_me.in_addr));
1500 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1501 encode_my_addr(con->msgr);
1502 dout("process_banner learned my addr is %s\n",
1503 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1504 }
1505
1506 return 0;
1507 }
1508
1509 static void fail_protocol(struct ceph_connection *con)
1510 {
1511 reset_connection(con);
1512 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1513 con->state = CON_STATE_CLOSED;
1514 }
1515
1516 static int process_connect(struct ceph_connection *con)
1517 {
1518 u64 sup_feat = con->msgr->supported_features;
1519 u64 req_feat = con->msgr->required_features;
1520 u64 server_feat = le64_to_cpu(con->in_reply.features);
1521 int ret;
1522
1523 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1524
1525 switch (con->in_reply.tag) {
1526 case CEPH_MSGR_TAG_FEATURES:
1527 pr_err("%s%lld %s feature set mismatch,"
1528 " my %llx < server's %llx, missing %llx\n",
1529 ENTITY_NAME(con->peer_name),
1530 ceph_pr_addr(&con->peer_addr.in_addr),
1531 sup_feat, server_feat, server_feat & ~sup_feat);
1532 con->error_msg = "missing required protocol features";
1533 fail_protocol(con);
1534 return -1;
1535
1536 case CEPH_MSGR_TAG_BADPROTOVER:
1537 pr_err("%s%lld %s protocol version mismatch,"
1538 " my %d != server's %d\n",
1539 ENTITY_NAME(con->peer_name),
1540 ceph_pr_addr(&con->peer_addr.in_addr),
1541 le32_to_cpu(con->out_connect.protocol_version),
1542 le32_to_cpu(con->in_reply.protocol_version));
1543 con->error_msg = "protocol version mismatch";
1544 fail_protocol(con);
1545 return -1;
1546
1547 case CEPH_MSGR_TAG_BADAUTHORIZER:
1548 con->auth_retry++;
1549 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1550 con->auth_retry);
1551 if (con->auth_retry == 2) {
1552 con->error_msg = "connect authorization failure";
1553 return -1;
1554 }
1555 con->auth_retry = 1;
1556 ret = prepare_write_connect(con);
1557 if (ret < 0)
1558 return ret;
1559 prepare_read_connect(con);
1560 break;
1561
1562 case CEPH_MSGR_TAG_RESETSESSION:
1563 /*
1564 * If we connected with a large connect_seq but the peer
1565 * has no record of a session with us (no connection, or
1566 * connect_seq == 0), they will send RESETSESION to indicate
1567 * that they must have reset their session, and may have
1568 * dropped messages.
1569 */
1570 dout("process_connect got RESET peer seq %u\n",
1571 le32_to_cpu(con->in_reply.connect_seq));
1572 pr_err("%s%lld %s connection reset\n",
1573 ENTITY_NAME(con->peer_name),
1574 ceph_pr_addr(&con->peer_addr.in_addr));
1575 reset_connection(con);
1576 ret = prepare_write_connect(con);
1577 if (ret < 0)
1578 return ret;
1579 prepare_read_connect(con);
1580
1581 /* Tell ceph about it. */
1582 mutex_unlock(&con->mutex);
1583 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1584 if (con->ops->peer_reset)
1585 con->ops->peer_reset(con);
1586 mutex_lock(&con->mutex);
1587 if (con->state != CON_STATE_NEGOTIATING)
1588 return -EAGAIN;
1589 break;
1590
1591 case CEPH_MSGR_TAG_RETRY_SESSION:
1592 /*
1593 * If we sent a smaller connect_seq than the peer has, try
1594 * again with a larger value.
1595 */
1596 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1597 le32_to_cpu(con->out_connect.connect_seq),
1598 le32_to_cpu(con->in_reply.connect_seq));
1599 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1600 ret = prepare_write_connect(con);
1601 if (ret < 0)
1602 return ret;
1603 prepare_read_connect(con);
1604 break;
1605
1606 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1607 /*
1608 * If we sent a smaller global_seq than the peer has, try
1609 * again with a larger value.
1610 */
1611 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1612 con->peer_global_seq,
1613 le32_to_cpu(con->in_reply.global_seq));
1614 get_global_seq(con->msgr,
1615 le32_to_cpu(con->in_reply.global_seq));
1616 ret = prepare_write_connect(con);
1617 if (ret < 0)
1618 return ret;
1619 prepare_read_connect(con);
1620 break;
1621
1622 case CEPH_MSGR_TAG_READY:
1623 if (req_feat & ~server_feat) {
1624 pr_err("%s%lld %s protocol feature mismatch,"
1625 " my required %llx > server's %llx, need %llx\n",
1626 ENTITY_NAME(con->peer_name),
1627 ceph_pr_addr(&con->peer_addr.in_addr),
1628 req_feat, server_feat, req_feat & ~server_feat);
1629 con->error_msg = "missing required protocol features";
1630 fail_protocol(con);
1631 return -1;
1632 }
1633
1634 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1635 con->state = CON_STATE_OPEN;
1636
1637 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1638 con->connect_seq++;
1639 con->peer_features = server_feat;
1640 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1641 con->peer_global_seq,
1642 le32_to_cpu(con->in_reply.connect_seq),
1643 con->connect_seq);
1644 WARN_ON(con->connect_seq !=
1645 le32_to_cpu(con->in_reply.connect_seq));
1646
1647 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1648 set_bit(CON_FLAG_LOSSYTX, &con->flags);
1649
1650 con->delay = 0; /* reset backoff memory */
1651
1652 prepare_read_tag(con);
1653 break;
1654
1655 case CEPH_MSGR_TAG_WAIT:
1656 /*
1657 * If there is a connection race (we are opening
1658 * connections to each other), one of us may just have
1659 * to WAIT. This shouldn't happen if we are the
1660 * client.
1661 */
1662 pr_err("process_connect got WAIT as client\n");
1663 con->error_msg = "protocol error, got WAIT as client";
1664 return -1;
1665
1666 default:
1667 pr_err("connect protocol error, will retry\n");
1668 con->error_msg = "protocol error, garbage tag during connect";
1669 return -1;
1670 }
1671 return 0;
1672 }
1673
1674
1675 /*
1676 * read (part of) an ack
1677 */
1678 static int read_partial_ack(struct ceph_connection *con)
1679 {
1680 int size = sizeof (con->in_temp_ack);
1681 int end = size;
1682
1683 return read_partial(con, end, size, &con->in_temp_ack);
1684 }
1685
1686
1687 /*
1688 * We can finally discard anything that's been acked.
1689 */
1690 static void process_ack(struct ceph_connection *con)
1691 {
1692 struct ceph_msg *m;
1693 u64 ack = le64_to_cpu(con->in_temp_ack);
1694 u64 seq;
1695
1696 while (!list_empty(&con->out_sent)) {
1697 m = list_first_entry(&con->out_sent, struct ceph_msg,
1698 list_head);
1699 seq = le64_to_cpu(m->hdr.seq);
1700 if (seq > ack)
1701 break;
1702 dout("got ack for seq %llu type %d at %p\n", seq,
1703 le16_to_cpu(m->hdr.type), m);
1704 m->ack_stamp = jiffies;
1705 ceph_msg_remove(m);
1706 }
1707 prepare_read_tag(con);
1708 }
1709
1710
1711
1712
1713 static int read_partial_message_section(struct ceph_connection *con,
1714 struct kvec *section,
1715 unsigned int sec_len, u32 *crc)
1716 {
1717 int ret, left;
1718
1719 BUG_ON(!section);
1720
1721 while (section->iov_len < sec_len) {
1722 BUG_ON(section->iov_base == NULL);
1723 left = sec_len - section->iov_len;
1724 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1725 section->iov_len, left);
1726 if (ret <= 0)
1727 return ret;
1728 section->iov_len += ret;
1729 }
1730 if (section->iov_len == sec_len)
1731 *crc = crc32c(0, section->iov_base, section->iov_len);
1732
1733 return 1;
1734 }
1735
1736 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1737 struct ceph_msg_header *hdr);
1738
1739
1740 static int read_partial_message_pages(struct ceph_connection *con,
1741 struct page **pages,
1742 unsigned int data_len, bool do_datacrc)
1743 {
1744 void *p;
1745 int ret;
1746 int left;
1747
1748 left = min((int)(data_len - con->in_msg_pos.data_pos),
1749 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1750 /* (page) data */
1751 BUG_ON(pages == NULL);
1752 p = kmap(pages[con->in_msg_pos.page]);
1753 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1754 left);
1755 if (ret > 0 && do_datacrc)
1756 con->in_data_crc =
1757 crc32c(con->in_data_crc,
1758 p + con->in_msg_pos.page_pos, ret);
1759 kunmap(pages[con->in_msg_pos.page]);
1760 if (ret <= 0)
1761 return ret;
1762 con->in_msg_pos.data_pos += ret;
1763 con->in_msg_pos.page_pos += ret;
1764 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1765 con->in_msg_pos.page_pos = 0;
1766 con->in_msg_pos.page++;
1767 }
1768
1769 return ret;
1770 }
1771
1772 #ifdef CONFIG_BLOCK
1773 static int read_partial_message_bio(struct ceph_connection *con,
1774 struct bio **bio_iter, int *bio_seg,
1775 unsigned int data_len, bool do_datacrc)
1776 {
1777 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1778 void *p;
1779 int ret, left;
1780
1781 left = min((int)(data_len - con->in_msg_pos.data_pos),
1782 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1783
1784 p = kmap(bv->bv_page) + bv->bv_offset;
1785
1786 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1787 left);
1788 if (ret > 0 && do_datacrc)
1789 con->in_data_crc =
1790 crc32c(con->in_data_crc,
1791 p + con->in_msg_pos.page_pos, ret);
1792 kunmap(bv->bv_page);
1793 if (ret <= 0)
1794 return ret;
1795 con->in_msg_pos.data_pos += ret;
1796 con->in_msg_pos.page_pos += ret;
1797 if (con->in_msg_pos.page_pos == bv->bv_len) {
1798 con->in_msg_pos.page_pos = 0;
1799 iter_bio_next(bio_iter, bio_seg);
1800 }
1801
1802 return ret;
1803 }
1804 #endif
1805
1806 /*
1807 * read (part of) a message.
1808 */
1809 static int read_partial_message(struct ceph_connection *con)
1810 {
1811 struct ceph_msg *m = con->in_msg;
1812 int size;
1813 int end;
1814 int ret;
1815 unsigned int front_len, middle_len, data_len;
1816 bool do_datacrc = !con->msgr->nocrc;
1817 u64 seq;
1818 u32 crc;
1819
1820 dout("read_partial_message con %p msg %p\n", con, m);
1821
1822 /* header */
1823 size = sizeof (con->in_hdr);
1824 end = size;
1825 ret = read_partial(con, end, size, &con->in_hdr);
1826 if (ret <= 0)
1827 return ret;
1828
1829 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1830 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1831 pr_err("read_partial_message bad hdr "
1832 " crc %u != expected %u\n",
1833 crc, con->in_hdr.crc);
1834 return -EBADMSG;
1835 }
1836
1837 front_len = le32_to_cpu(con->in_hdr.front_len);
1838 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1839 return -EIO;
1840 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1841 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1842 return -EIO;
1843 data_len = le32_to_cpu(con->in_hdr.data_len);
1844 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1845 return -EIO;
1846
1847 /* verify seq# */
1848 seq = le64_to_cpu(con->in_hdr.seq);
1849 if ((s64)seq - (s64)con->in_seq < 1) {
1850 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1851 ENTITY_NAME(con->peer_name),
1852 ceph_pr_addr(&con->peer_addr.in_addr),
1853 seq, con->in_seq + 1);
1854 con->in_base_pos = -front_len - middle_len - data_len -
1855 sizeof(m->footer);
1856 con->in_tag = CEPH_MSGR_TAG_READY;
1857 return 0;
1858 } else if ((s64)seq - (s64)con->in_seq > 1) {
1859 pr_err("read_partial_message bad seq %lld expected %lld\n",
1860 seq, con->in_seq + 1);
1861 con->error_msg = "bad message sequence # for incoming message";
1862 return -EBADMSG;
1863 }
1864
1865 /* allocate message? */
1866 if (!con->in_msg) {
1867 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1868 con->in_hdr.front_len, con->in_hdr.data_len);
1869 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1870 /* skip this message */
1871 dout("alloc_msg said skip message\n");
1872 BUG_ON(con->in_msg);
1873 con->in_base_pos = -front_len - middle_len - data_len -
1874 sizeof(m->footer);
1875 con->in_tag = CEPH_MSGR_TAG_READY;
1876 con->in_seq++;
1877 return 0;
1878 }
1879 if (!con->in_msg) {
1880 con->error_msg =
1881 "error allocating memory for incoming message";
1882 return -ENOMEM;
1883 }
1884
1885 BUG_ON(con->in_msg->con != con);
1886 m = con->in_msg;
1887 m->front.iov_len = 0; /* haven't read it yet */
1888 if (m->middle)
1889 m->middle->vec.iov_len = 0;
1890
1891 con->in_msg_pos.page = 0;
1892 if (m->pages)
1893 con->in_msg_pos.page_pos = m->page_alignment;
1894 else
1895 con->in_msg_pos.page_pos = 0;
1896 con->in_msg_pos.data_pos = 0;
1897
1898 #ifdef CONFIG_BLOCK
1899 if (m->bio)
1900 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1901 #endif
1902 }
1903
1904 /* front */
1905 ret = read_partial_message_section(con, &m->front, front_len,
1906 &con->in_front_crc);
1907 if (ret <= 0)
1908 return ret;
1909
1910 /* middle */
1911 if (m->middle) {
1912 ret = read_partial_message_section(con, &m->middle->vec,
1913 middle_len,
1914 &con->in_middle_crc);
1915 if (ret <= 0)
1916 return ret;
1917 }
1918
1919 /* (page) data */
1920 while (con->in_msg_pos.data_pos < data_len) {
1921 if (m->pages) {
1922 ret = read_partial_message_pages(con, m->pages,
1923 data_len, do_datacrc);
1924 if (ret <= 0)
1925 return ret;
1926 #ifdef CONFIG_BLOCK
1927 } else if (m->bio) {
1928 BUG_ON(!m->bio_iter);
1929 ret = read_partial_message_bio(con,
1930 &m->bio_iter, &m->bio_seg,
1931 data_len, do_datacrc);
1932 if (ret <= 0)
1933 return ret;
1934 #endif
1935 } else {
1936 BUG_ON(1);
1937 }
1938 }
1939
1940 /* footer */
1941 size = sizeof (m->footer);
1942 end += size;
1943 ret = read_partial(con, end, size, &m->footer);
1944 if (ret <= 0)
1945 return ret;
1946
1947 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1948 m, front_len, m->footer.front_crc, middle_len,
1949 m->footer.middle_crc, data_len, m->footer.data_crc);
1950
1951 /* crc ok? */
1952 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1953 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1954 m, con->in_front_crc, m->footer.front_crc);
1955 return -EBADMSG;
1956 }
1957 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1958 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1959 m, con->in_middle_crc, m->footer.middle_crc);
1960 return -EBADMSG;
1961 }
1962 if (do_datacrc &&
1963 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1964 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1965 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1966 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1967 return -EBADMSG;
1968 }
1969
1970 return 1; /* done! */
1971 }
1972
1973 /*
1974 * Process message. This happens in the worker thread. The callback should
1975 * be careful not to do anything that waits on other incoming messages or it
1976 * may deadlock.
1977 */
1978 static void process_message(struct ceph_connection *con)
1979 {
1980 struct ceph_msg *msg;
1981
1982 BUG_ON(con->in_msg->con != con);
1983 con->in_msg->con = NULL;
1984 msg = con->in_msg;
1985 con->in_msg = NULL;
1986 con->ops->put(con);
1987
1988 /* if first message, set peer_name */
1989 if (con->peer_name.type == 0)
1990 con->peer_name = msg->hdr.src;
1991
1992 con->in_seq++;
1993 mutex_unlock(&con->mutex);
1994
1995 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1996 msg, le64_to_cpu(msg->hdr.seq),
1997 ENTITY_NAME(msg->hdr.src),
1998 le16_to_cpu(msg->hdr.type),
1999 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2000 le32_to_cpu(msg->hdr.front_len),
2001 le32_to_cpu(msg->hdr.data_len),
2002 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2003 con->ops->dispatch(con, msg);
2004
2005 mutex_lock(&con->mutex);
2006 prepare_read_tag(con);
2007 }
2008
2009
2010 /*
2011 * Write something to the socket. Called in a worker thread when the
2012 * socket appears to be writeable and we have something ready to send.
2013 */
2014 static int try_write(struct ceph_connection *con)
2015 {
2016 int ret = 1;
2017
2018 dout("try_write start %p state %lu\n", con, con->state);
2019
2020 more:
2021 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2022
2023 /* open the socket first? */
2024 if (con->state == CON_STATE_PREOPEN) {
2025 BUG_ON(con->sock);
2026 con->state = CON_STATE_CONNECTING;
2027
2028 con_out_kvec_reset(con);
2029 prepare_write_banner(con);
2030 prepare_read_banner(con);
2031
2032 BUG_ON(con->in_msg);
2033 con->in_tag = CEPH_MSGR_TAG_READY;
2034 dout("try_write initiating connect on %p new state %lu\n",
2035 con, con->state);
2036 ret = ceph_tcp_connect(con);
2037 if (ret < 0) {
2038 con->error_msg = "connect error";
2039 goto out;
2040 }
2041 }
2042
2043 more_kvec:
2044 /* kvec data queued? */
2045 if (con->out_skip) {
2046 ret = write_partial_skip(con);
2047 if (ret <= 0)
2048 goto out;
2049 }
2050 if (con->out_kvec_left) {
2051 ret = write_partial_kvec(con);
2052 if (ret <= 0)
2053 goto out;
2054 }
2055
2056 /* msg pages? */
2057 if (con->out_msg) {
2058 if (con->out_msg_done) {
2059 ceph_msg_put(con->out_msg);
2060 con->out_msg = NULL; /* we're done with this one */
2061 goto do_next;
2062 }
2063
2064 ret = write_partial_msg_pages(con);
2065 if (ret == 1)
2066 goto more_kvec; /* we need to send the footer, too! */
2067 if (ret == 0)
2068 goto out;
2069 if (ret < 0) {
2070 dout("try_write write_partial_msg_pages err %d\n",
2071 ret);
2072 goto out;
2073 }
2074 }
2075
2076 do_next:
2077 if (con->state == CON_STATE_OPEN) {
2078 /* is anything else pending? */
2079 if (!list_empty(&con->out_queue)) {
2080 prepare_write_message(con);
2081 goto more;
2082 }
2083 if (con->in_seq > con->in_seq_acked) {
2084 prepare_write_ack(con);
2085 goto more;
2086 }
2087 if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2088 &con->flags)) {
2089 prepare_write_keepalive(con);
2090 goto more;
2091 }
2092 }
2093
2094 /* Nothing to do! */
2095 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2096 dout("try_write nothing else to write.\n");
2097 ret = 0;
2098 out:
2099 dout("try_write done on %p ret %d\n", con, ret);
2100 return ret;
2101 }
2102
2103
2104
2105 /*
2106 * Read what we can from the socket.
2107 */
2108 static int try_read(struct ceph_connection *con)
2109 {
2110 int ret = -1;
2111
2112 more:
2113 dout("try_read start on %p state %lu\n", con, con->state);
2114 if (con->state != CON_STATE_CONNECTING &&
2115 con->state != CON_STATE_NEGOTIATING &&
2116 con->state != CON_STATE_OPEN)
2117 return 0;
2118
2119 BUG_ON(!con->sock);
2120
2121 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2122 con->in_base_pos);
2123
2124 if (con->state == CON_STATE_CONNECTING) {
2125 dout("try_read connecting\n");
2126 ret = read_partial_banner(con);
2127 if (ret <= 0)
2128 goto out;
2129 ret = process_banner(con);
2130 if (ret < 0)
2131 goto out;
2132
2133 BUG_ON(con->state != CON_STATE_CONNECTING);
2134 con->state = CON_STATE_NEGOTIATING;
2135
2136 /* Banner is good, exchange connection info */
2137 ret = prepare_write_connect(con);
2138 if (ret < 0)
2139 goto out;
2140 prepare_read_connect(con);
2141
2142 /* Send connection info before awaiting response */
2143 goto out;
2144 }
2145
2146 if (con->state == CON_STATE_NEGOTIATING) {
2147 dout("try_read negotiating\n");
2148 ret = read_partial_connect(con);
2149 if (ret <= 0)
2150 goto out;
2151 ret = process_connect(con);
2152 if (ret < 0)
2153 goto out;
2154 goto more;
2155 }
2156
2157 BUG_ON(con->state != CON_STATE_OPEN);
2158
2159 if (con->in_base_pos < 0) {
2160 /*
2161 * skipping + discarding content.
2162 *
2163 * FIXME: there must be a better way to do this!
2164 */
2165 static char buf[SKIP_BUF_SIZE];
2166 int skip = min((int) sizeof (buf), -con->in_base_pos);
2167
2168 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2169 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2170 if (ret <= 0)
2171 goto out;
2172 con->in_base_pos += ret;
2173 if (con->in_base_pos)
2174 goto more;
2175 }
2176 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2177 /*
2178 * what's next?
2179 */
2180 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2181 if (ret <= 0)
2182 goto out;
2183 dout("try_read got tag %d\n", (int)con->in_tag);
2184 switch (con->in_tag) {
2185 case CEPH_MSGR_TAG_MSG:
2186 prepare_read_message(con);
2187 break;
2188 case CEPH_MSGR_TAG_ACK:
2189 prepare_read_ack(con);
2190 break;
2191 case CEPH_MSGR_TAG_CLOSE:
2192 con_close_socket(con);
2193 con->state = CON_STATE_CLOSED;
2194 goto out;
2195 default:
2196 goto bad_tag;
2197 }
2198 }
2199 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2200 ret = read_partial_message(con);
2201 if (ret <= 0) {
2202 switch (ret) {
2203 case -EBADMSG:
2204 con->error_msg = "bad crc";
2205 ret = -EIO;
2206 break;
2207 case -EIO:
2208 con->error_msg = "io error";
2209 break;
2210 }
2211 goto out;
2212 }
2213 if (con->in_tag == CEPH_MSGR_TAG_READY)
2214 goto more;
2215 process_message(con);
2216 goto more;
2217 }
2218 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2219 ret = read_partial_ack(con);
2220 if (ret <= 0)
2221 goto out;
2222 process_ack(con);
2223 goto more;
2224 }
2225
2226 out:
2227 dout("try_read done on %p ret %d\n", con, ret);
2228 return ret;
2229
2230 bad_tag:
2231 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2232 con->error_msg = "protocol error, garbage tag";
2233 ret = -1;
2234 goto out;
2235 }
2236
2237
2238 /*
2239 * Atomically queue work on a connection. Bump @con reference to
2240 * avoid races with connection teardown.
2241 */
2242 static void queue_con(struct ceph_connection *con)
2243 {
2244 if (!con->ops->get(con)) {
2245 dout("queue_con %p ref count 0\n", con);
2246 return;
2247 }
2248
2249 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2250 dout("queue_con %p - already queued\n", con);
2251 con->ops->put(con);
2252 } else {
2253 dout("queue_con %p\n", con);
2254 }
2255 }
2256
2257 /*
2258 * Do some work on a connection. Drop a connection ref when we're done.
2259 */
2260 static void con_work(struct work_struct *work)
2261 {
2262 struct ceph_connection *con = container_of(work, struct ceph_connection,
2263 work.work);
2264 int ret;
2265
2266 mutex_lock(&con->mutex);
2267 restart:
2268 if (test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags)) {
2269 switch (con->state) {
2270 case CON_STATE_CONNECTING:
2271 con->error_msg = "connection failed";
2272 break;
2273 case CON_STATE_NEGOTIATING:
2274 con->error_msg = "negotiation failed";
2275 break;
2276 case CON_STATE_OPEN:
2277 con->error_msg = "socket closed";
2278 break;
2279 default:
2280 dout("unrecognized con state %d\n", (int)con->state);
2281 con->error_msg = "unrecognized con state";
2282 BUG();
2283 }
2284 goto fault;
2285 }
2286
2287 if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2288 dout("con_work %p backing off\n", con);
2289 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2290 round_jiffies_relative(con->delay))) {
2291 dout("con_work %p backoff %lu\n", con, con->delay);
2292 mutex_unlock(&con->mutex);
2293 return;
2294 } else {
2295 con->ops->put(con);
2296 dout("con_work %p FAILED to back off %lu\n", con,
2297 con->delay);
2298 }
2299 }
2300
2301 if (con->state == CON_STATE_STANDBY) {
2302 dout("con_work %p STANDBY\n", con);
2303 goto done;
2304 }
2305 if (con->state == CON_STATE_CLOSED) {
2306 dout("con_work %p CLOSED\n", con);
2307 BUG_ON(con->sock);
2308 goto done;
2309 }
2310 if (con->state == CON_STATE_PREOPEN) {
2311 dout("con_work OPENING\n");
2312 BUG_ON(con->sock);
2313 }
2314
2315 ret = try_read(con);
2316 if (ret == -EAGAIN)
2317 goto restart;
2318 if (ret < 0) {
2319 con->error_msg = "socket error on read";
2320 goto fault;
2321 }
2322
2323 ret = try_write(con);
2324 if (ret == -EAGAIN)
2325 goto restart;
2326 if (ret < 0) {
2327 con->error_msg = "socket error on write";
2328 goto fault;
2329 }
2330
2331 done:
2332 mutex_unlock(&con->mutex);
2333 done_unlocked:
2334 con->ops->put(con);
2335 return;
2336
2337 fault:
2338 mutex_unlock(&con->mutex);
2339 ceph_fault(con); /* error/fault path */
2340 goto done_unlocked;
2341 }
2342
2343
2344 /*
2345 * Generic error/fault handler. A retry mechanism is used with
2346 * exponential backoff
2347 */
2348 static void ceph_fault(struct ceph_connection *con)
2349 {
2350 mutex_lock(&con->mutex);
2351
2352 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2353 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2354 dout("fault %p state %lu to peer %s\n",
2355 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2356
2357 BUG_ON(con->state != CON_STATE_CONNECTING &&
2358 con->state != CON_STATE_NEGOTIATING &&
2359 con->state != CON_STATE_OPEN);
2360
2361 con_close_socket(con);
2362
2363 if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2364 dout("fault on LOSSYTX channel, marking CLOSED\n");
2365 con->state = CON_STATE_CLOSED;
2366 goto out_unlock;
2367 }
2368
2369 if (con->in_msg) {
2370 BUG_ON(con->in_msg->con != con);
2371 con->in_msg->con = NULL;
2372 ceph_msg_put(con->in_msg);
2373 con->in_msg = NULL;
2374 con->ops->put(con);
2375 }
2376
2377 /* Requeue anything that hasn't been acked */
2378 list_splice_init(&con->out_sent, &con->out_queue);
2379
2380 /* If there are no messages queued or keepalive pending, place
2381 * the connection in a STANDBY state */
2382 if (list_empty(&con->out_queue) &&
2383 !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2384 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2385 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2386 con->state = CON_STATE_STANDBY;
2387 } else {
2388 /* retry after a delay. */
2389 con->state = CON_STATE_PREOPEN;
2390 if (con->delay == 0)
2391 con->delay = BASE_DELAY_INTERVAL;
2392 else if (con->delay < MAX_DELAY_INTERVAL)
2393 con->delay *= 2;
2394 con->ops->get(con);
2395 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2396 round_jiffies_relative(con->delay))) {
2397 dout("fault queued %p delay %lu\n", con, con->delay);
2398 } else {
2399 con->ops->put(con);
2400 dout("fault failed to queue %p delay %lu, backoff\n",
2401 con, con->delay);
2402 /*
2403 * In many cases we see a socket state change
2404 * while con_work is running and end up
2405 * queuing (non-delayed) work, such that we
2406 * can't backoff with a delay. Set a flag so
2407 * that when con_work restarts we schedule the
2408 * delay then.
2409 */
2410 set_bit(CON_FLAG_BACKOFF, &con->flags);
2411 }
2412 }
2413
2414 out_unlock:
2415 mutex_unlock(&con->mutex);
2416 /*
2417 * in case we faulted due to authentication, invalidate our
2418 * current tickets so that we can get new ones.
2419 */
2420 if (con->auth_retry && con->ops->invalidate_authorizer) {
2421 dout("calling invalidate_authorizer()\n");
2422 con->ops->invalidate_authorizer(con);
2423 }
2424
2425 if (con->ops->fault)
2426 con->ops->fault(con);
2427 }
2428
2429
2430
2431 /*
2432 * initialize a new messenger instance
2433 */
2434 void ceph_messenger_init(struct ceph_messenger *msgr,
2435 struct ceph_entity_addr *myaddr,
2436 u32 supported_features,
2437 u32 required_features,
2438 bool nocrc)
2439 {
2440 msgr->supported_features = supported_features;
2441 msgr->required_features = required_features;
2442
2443 spin_lock_init(&msgr->global_seq_lock);
2444
2445 if (myaddr)
2446 msgr->inst.addr = *myaddr;
2447
2448 /* select a random nonce */
2449 msgr->inst.addr.type = 0;
2450 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2451 encode_my_addr(msgr);
2452 msgr->nocrc = nocrc;
2453
2454 atomic_set(&msgr->stopping, 0);
2455
2456 dout("%s %p\n", __func__, msgr);
2457 }
2458 EXPORT_SYMBOL(ceph_messenger_init);
2459
2460 static void clear_standby(struct ceph_connection *con)
2461 {
2462 /* come back from STANDBY? */
2463 if (con->state == CON_STATE_STANDBY) {
2464 dout("clear_standby %p and ++connect_seq\n", con);
2465 con->state = CON_STATE_PREOPEN;
2466 con->connect_seq++;
2467 WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2468 WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2469 }
2470 }
2471
2472 /*
2473 * Queue up an outgoing message on the given connection.
2474 */
2475 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2476 {
2477 /* set src+dst */
2478 msg->hdr.src = con->msgr->inst.name;
2479 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2480 msg->needs_out_seq = true;
2481
2482 mutex_lock(&con->mutex);
2483
2484 if (con->state == CON_STATE_CLOSED) {
2485 dout("con_send %p closed, dropping %p\n", con, msg);
2486 ceph_msg_put(msg);
2487 mutex_unlock(&con->mutex);
2488 return;
2489 }
2490
2491 BUG_ON(msg->con != NULL);
2492 msg->con = con->ops->get(con);
2493 BUG_ON(msg->con == NULL);
2494
2495 BUG_ON(!list_empty(&msg->list_head));
2496 list_add_tail(&msg->list_head, &con->out_queue);
2497 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2498 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2499 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2500 le32_to_cpu(msg->hdr.front_len),
2501 le32_to_cpu(msg->hdr.middle_len),
2502 le32_to_cpu(msg->hdr.data_len));
2503
2504 clear_standby(con);
2505 mutex_unlock(&con->mutex);
2506
2507 /* if there wasn't anything waiting to send before, queue
2508 * new work */
2509 if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2510 queue_con(con);
2511 }
2512 EXPORT_SYMBOL(ceph_con_send);
2513
2514 /*
2515 * Revoke a message that was previously queued for send
2516 */
2517 void ceph_msg_revoke(struct ceph_msg *msg)
2518 {
2519 struct ceph_connection *con = msg->con;
2520
2521 if (!con)
2522 return; /* Message not in our possession */
2523
2524 mutex_lock(&con->mutex);
2525 if (!list_empty(&msg->list_head)) {
2526 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2527 list_del_init(&msg->list_head);
2528 BUG_ON(msg->con == NULL);
2529 msg->con->ops->put(msg->con);
2530 msg->con = NULL;
2531 msg->hdr.seq = 0;
2532
2533 ceph_msg_put(msg);
2534 }
2535 if (con->out_msg == msg) {
2536 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2537 con->out_msg = NULL;
2538 if (con->out_kvec_is_msg) {
2539 con->out_skip = con->out_kvec_bytes;
2540 con->out_kvec_is_msg = false;
2541 }
2542 msg->hdr.seq = 0;
2543
2544 ceph_msg_put(msg);
2545 }
2546 mutex_unlock(&con->mutex);
2547 }
2548
2549 /*
2550 * Revoke a message that we may be reading data into
2551 */
2552 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2553 {
2554 struct ceph_connection *con;
2555
2556 BUG_ON(msg == NULL);
2557 if (!msg->con) {
2558 dout("%s msg %p null con\n", __func__, msg);
2559
2560 return; /* Message not in our possession */
2561 }
2562
2563 con = msg->con;
2564 mutex_lock(&con->mutex);
2565 if (con->in_msg == msg) {
2566 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2567 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2568 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2569
2570 /* skip rest of message */
2571 dout("%s %p msg %p revoked\n", __func__, con, msg);
2572 con->in_base_pos = con->in_base_pos -
2573 sizeof(struct ceph_msg_header) -
2574 front_len -
2575 middle_len -
2576 data_len -
2577 sizeof(struct ceph_msg_footer);
2578 ceph_msg_put(con->in_msg);
2579 con->in_msg = NULL;
2580 con->in_tag = CEPH_MSGR_TAG_READY;
2581 con->in_seq++;
2582 } else {
2583 dout("%s %p in_msg %p msg %p no-op\n",
2584 __func__, con, con->in_msg, msg);
2585 }
2586 mutex_unlock(&con->mutex);
2587 }
2588
2589 /*
2590 * Queue a keepalive byte to ensure the tcp connection is alive.
2591 */
2592 void ceph_con_keepalive(struct ceph_connection *con)
2593 {
2594 dout("con_keepalive %p\n", con);
2595 mutex_lock(&con->mutex);
2596 clear_standby(con);
2597 mutex_unlock(&con->mutex);
2598 if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2599 test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2600 queue_con(con);
2601 }
2602 EXPORT_SYMBOL(ceph_con_keepalive);
2603
2604
2605 /*
2606 * construct a new message with given type, size
2607 * the new msg has a ref count of 1.
2608 */
2609 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2610 bool can_fail)
2611 {
2612 struct ceph_msg *m;
2613
2614 m = kmalloc(sizeof(*m), flags);
2615 if (m == NULL)
2616 goto out;
2617 kref_init(&m->kref);
2618
2619 m->con = NULL;
2620 INIT_LIST_HEAD(&m->list_head);
2621
2622 m->hdr.tid = 0;
2623 m->hdr.type = cpu_to_le16(type);
2624 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2625 m->hdr.version = 0;
2626 m->hdr.front_len = cpu_to_le32(front_len);
2627 m->hdr.middle_len = 0;
2628 m->hdr.data_len = 0;
2629 m->hdr.data_off = 0;
2630 m->hdr.reserved = 0;
2631 m->footer.front_crc = 0;
2632 m->footer.middle_crc = 0;
2633 m->footer.data_crc = 0;
2634 m->footer.flags = 0;
2635 m->front_max = front_len;
2636 m->front_is_vmalloc = false;
2637 m->more_to_follow = false;
2638 m->ack_stamp = 0;
2639 m->pool = NULL;
2640
2641 /* middle */
2642 m->middle = NULL;
2643
2644 /* data */
2645 m->nr_pages = 0;
2646 m->page_alignment = 0;
2647 m->pages = NULL;
2648 m->pagelist = NULL;
2649 m->bio = NULL;
2650 m->bio_iter = NULL;
2651 m->bio_seg = 0;
2652 m->trail = NULL;
2653
2654 /* front */
2655 if (front_len) {
2656 if (front_len > PAGE_CACHE_SIZE) {
2657 m->front.iov_base = __vmalloc(front_len, flags,
2658 PAGE_KERNEL);
2659 m->front_is_vmalloc = true;
2660 } else {
2661 m->front.iov_base = kmalloc(front_len, flags);
2662 }
2663 if (m->front.iov_base == NULL) {
2664 dout("ceph_msg_new can't allocate %d bytes\n",
2665 front_len);
2666 goto out2;
2667 }
2668 } else {
2669 m->front.iov_base = NULL;
2670 }
2671 m->front.iov_len = front_len;
2672
2673 dout("ceph_msg_new %p front %d\n", m, front_len);
2674 return m;
2675
2676 out2:
2677 ceph_msg_put(m);
2678 out:
2679 if (!can_fail) {
2680 pr_err("msg_new can't create type %d front %d\n", type,
2681 front_len);
2682 WARN_ON(1);
2683 } else {
2684 dout("msg_new can't create type %d front %d\n", type,
2685 front_len);
2686 }
2687 return NULL;
2688 }
2689 EXPORT_SYMBOL(ceph_msg_new);
2690
2691 /*
2692 * Allocate "middle" portion of a message, if it is needed and wasn't
2693 * allocated by alloc_msg. This allows us to read a small fixed-size
2694 * per-type header in the front and then gracefully fail (i.e.,
2695 * propagate the error to the caller based on info in the front) when
2696 * the middle is too large.
2697 */
2698 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2699 {
2700 int type = le16_to_cpu(msg->hdr.type);
2701 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2702
2703 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2704 ceph_msg_type_name(type), middle_len);
2705 BUG_ON(!middle_len);
2706 BUG_ON(msg->middle);
2707
2708 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2709 if (!msg->middle)
2710 return -ENOMEM;
2711 return 0;
2712 }
2713
2714 /*
2715 * Allocate a message for receiving an incoming message on a
2716 * connection, and save the result in con->in_msg. Uses the
2717 * connection's private alloc_msg op if available.
2718 *
2719 * Returns true if the message should be skipped, false otherwise.
2720 * If true is returned (skip message), con->in_msg will be NULL.
2721 * If false is returned, con->in_msg will contain a pointer to the
2722 * newly-allocated message, or NULL in case of memory exhaustion.
2723 */
2724 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2725 struct ceph_msg_header *hdr)
2726 {
2727 int type = le16_to_cpu(hdr->type);
2728 int front_len = le32_to_cpu(hdr->front_len);
2729 int middle_len = le32_to_cpu(hdr->middle_len);
2730 int ret;
2731
2732 BUG_ON(con->in_msg != NULL);
2733
2734 if (con->ops->alloc_msg) {
2735 int skip = 0;
2736
2737 mutex_unlock(&con->mutex);
2738 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2739 mutex_lock(&con->mutex);
2740 if (con->in_msg) {
2741 con->in_msg->con = con->ops->get(con);
2742 BUG_ON(con->in_msg->con == NULL);
2743 }
2744 if (skip)
2745 con->in_msg = NULL;
2746
2747 if (!con->in_msg)
2748 return skip != 0;
2749 }
2750 if (!con->in_msg) {
2751 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2752 if (!con->in_msg) {
2753 pr_err("unable to allocate msg type %d len %d\n",
2754 type, front_len);
2755 return false;
2756 }
2757 con->in_msg->con = con->ops->get(con);
2758 BUG_ON(con->in_msg->con == NULL);
2759 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2760 }
2761 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2762
2763 if (middle_len && !con->in_msg->middle) {
2764 ret = ceph_alloc_middle(con, con->in_msg);
2765 if (ret < 0) {
2766 ceph_msg_put(con->in_msg);
2767 con->in_msg = NULL;
2768 }
2769 }
2770
2771 return false;
2772 }
2773
2774
2775 /*
2776 * Free a generically kmalloc'd message.
2777 */
2778 void ceph_msg_kfree(struct ceph_msg *m)
2779 {
2780 dout("msg_kfree %p\n", m);
2781 if (m->front_is_vmalloc)
2782 vfree(m->front.iov_base);
2783 else
2784 kfree(m->front.iov_base);
2785 kfree(m);
2786 }
2787
2788 /*
2789 * Drop a msg ref. Destroy as needed.
2790 */
2791 void ceph_msg_last_put(struct kref *kref)
2792 {
2793 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2794
2795 dout("ceph_msg_put last one on %p\n", m);
2796 WARN_ON(!list_empty(&m->list_head));
2797
2798 /* drop middle, data, if any */
2799 if (m->middle) {
2800 ceph_buffer_put(m->middle);
2801 m->middle = NULL;
2802 }
2803 m->nr_pages = 0;
2804 m->pages = NULL;
2805
2806 if (m->pagelist) {
2807 ceph_pagelist_release(m->pagelist);
2808 kfree(m->pagelist);
2809 m->pagelist = NULL;
2810 }
2811
2812 m->trail = NULL;
2813
2814 if (m->pool)
2815 ceph_msgpool_put(m->pool, m);
2816 else
2817 ceph_msg_kfree(m);
2818 }
2819 EXPORT_SYMBOL(ceph_msg_last_put);
2820
2821 void ceph_msg_dump(struct ceph_msg *msg)
2822 {
2823 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2824 msg->front_max, msg->nr_pages);
2825 print_hex_dump(KERN_DEBUG, "header: ",
2826 DUMP_PREFIX_OFFSET, 16, 1,
2827 &msg->hdr, sizeof(msg->hdr), true);
2828 print_hex_dump(KERN_DEBUG, " front: ",
2829 DUMP_PREFIX_OFFSET, 16, 1,
2830 msg->front.iov_base, msg->front.iov_len, true);
2831 if (msg->middle)
2832 print_hex_dump(KERN_DEBUG, "middle: ",
2833 DUMP_PREFIX_OFFSET, 16, 1,
2834 msg->middle->vec.iov_base,
2835 msg->middle->vec.iov_len, true);
2836 print_hex_dump(KERN_DEBUG, "footer: ",
2837 DUMP_PREFIX_OFFSET, 16, 1,
2838 &msg->footer, sizeof(msg->footer), true);
2839 }
2840 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.189312 seconds and 5 git commands to generate.