ASoC: samsung: Add devm_clk_get to pcm.c
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
160
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 /*
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
173 */
174 #define SKIP_BUF_SIZE 1024
175
176 static void queue_con(struct ceph_connection *con);
177 static void con_work(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179
180 /*
181 * Nicely render a sockaddr as a string. An array of formatted
182 * strings is used, to approximate reentrancy.
183 */
184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
188
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191
192 static struct page *zero_page; /* used in certain error cases */
193
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 int i;
197 char *s;
198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200
201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 s = addr_str[i];
203
204 switch (ss->ss_family) {
205 case AF_INET:
206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 ntohs(in4->sin_port));
208 break;
209
210 case AF_INET6:
211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 ntohs(in6->sin6_port));
213 break;
214
215 default:
216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 ss->ss_family);
218 }
219
220 return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 ceph_encode_addr(&msgr->my_enc_addr);
228 }
229
230 /*
231 * work queue for all reading and writing to/from the socket.
232 */
233 static struct workqueue_struct *ceph_msgr_wq;
234
235 static int ceph_msgr_slab_init(void)
236 {
237 BUG_ON(ceph_msg_cache);
238 ceph_msg_cache = kmem_cache_create("ceph_msg",
239 sizeof (struct ceph_msg),
240 __alignof__(struct ceph_msg), 0, NULL);
241
242 if (!ceph_msg_cache)
243 return -ENOMEM;
244
245 BUG_ON(ceph_msg_data_cache);
246 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
247 sizeof (struct ceph_msg_data),
248 __alignof__(struct ceph_msg_data),
249 0, NULL);
250 if (ceph_msg_data_cache)
251 return 0;
252
253 kmem_cache_destroy(ceph_msg_cache);
254 ceph_msg_cache = NULL;
255
256 return -ENOMEM;
257 }
258
259 static void ceph_msgr_slab_exit(void)
260 {
261 BUG_ON(!ceph_msg_data_cache);
262 kmem_cache_destroy(ceph_msg_data_cache);
263 ceph_msg_data_cache = NULL;
264
265 BUG_ON(!ceph_msg_cache);
266 kmem_cache_destroy(ceph_msg_cache);
267 ceph_msg_cache = NULL;
268 }
269
270 static void _ceph_msgr_exit(void)
271 {
272 if (ceph_msgr_wq) {
273 destroy_workqueue(ceph_msgr_wq);
274 ceph_msgr_wq = NULL;
275 }
276
277 ceph_msgr_slab_exit();
278
279 BUG_ON(zero_page == NULL);
280 kunmap(zero_page);
281 page_cache_release(zero_page);
282 zero_page = NULL;
283 }
284
285 int ceph_msgr_init(void)
286 {
287 BUG_ON(zero_page != NULL);
288 zero_page = ZERO_PAGE(0);
289 page_cache_get(zero_page);
290
291 if (ceph_msgr_slab_init())
292 return -ENOMEM;
293
294 ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0);
295 if (ceph_msgr_wq)
296 return 0;
297
298 pr_err("msgr_init failed to create workqueue\n");
299 _ceph_msgr_exit();
300
301 return -ENOMEM;
302 }
303 EXPORT_SYMBOL(ceph_msgr_init);
304
305 void ceph_msgr_exit(void)
306 {
307 BUG_ON(ceph_msgr_wq == NULL);
308
309 _ceph_msgr_exit();
310 }
311 EXPORT_SYMBOL(ceph_msgr_exit);
312
313 void ceph_msgr_flush(void)
314 {
315 flush_workqueue(ceph_msgr_wq);
316 }
317 EXPORT_SYMBOL(ceph_msgr_flush);
318
319 /* Connection socket state transition functions */
320
321 static void con_sock_state_init(struct ceph_connection *con)
322 {
323 int old_state;
324
325 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
327 printk("%s: unexpected old state %d\n", __func__, old_state);
328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 CON_SOCK_STATE_CLOSED);
330 }
331
332 static void con_sock_state_connecting(struct ceph_connection *con)
333 {
334 int old_state;
335
336 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
337 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
338 printk("%s: unexpected old state %d\n", __func__, old_state);
339 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
340 CON_SOCK_STATE_CONNECTING);
341 }
342
343 static void con_sock_state_connected(struct ceph_connection *con)
344 {
345 int old_state;
346
347 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
348 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
349 printk("%s: unexpected old state %d\n", __func__, old_state);
350 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
351 CON_SOCK_STATE_CONNECTED);
352 }
353
354 static void con_sock_state_closing(struct ceph_connection *con)
355 {
356 int old_state;
357
358 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
359 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
360 old_state != CON_SOCK_STATE_CONNECTED &&
361 old_state != CON_SOCK_STATE_CLOSING))
362 printk("%s: unexpected old state %d\n", __func__, old_state);
363 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
364 CON_SOCK_STATE_CLOSING);
365 }
366
367 static void con_sock_state_closed(struct ceph_connection *con)
368 {
369 int old_state;
370
371 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
372 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
373 old_state != CON_SOCK_STATE_CLOSING &&
374 old_state != CON_SOCK_STATE_CONNECTING &&
375 old_state != CON_SOCK_STATE_CLOSED))
376 printk("%s: unexpected old state %d\n", __func__, old_state);
377 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
378 CON_SOCK_STATE_CLOSED);
379 }
380
381 /*
382 * socket callback functions
383 */
384
385 /* data available on socket, or listen socket received a connect */
386 static void ceph_sock_data_ready(struct sock *sk)
387 {
388 struct ceph_connection *con = sk->sk_user_data;
389 if (atomic_read(&con->msgr->stopping)) {
390 return;
391 }
392
393 if (sk->sk_state != TCP_CLOSE_WAIT) {
394 dout("%s on %p state = %lu, queueing work\n", __func__,
395 con, con->state);
396 queue_con(con);
397 }
398 }
399
400 /* socket has buffer space for writing */
401 static void ceph_sock_write_space(struct sock *sk)
402 {
403 struct ceph_connection *con = sk->sk_user_data;
404
405 /* only queue to workqueue if there is data we want to write,
406 * and there is sufficient space in the socket buffer to accept
407 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
408 * doesn't get called again until try_write() fills the socket
409 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
410 * and net/core/stream.c:sk_stream_write_space().
411 */
412 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
413 if (sk_stream_is_writeable(sk)) {
414 dout("%s %p queueing write work\n", __func__, con);
415 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
416 queue_con(con);
417 }
418 } else {
419 dout("%s %p nothing to write\n", __func__, con);
420 }
421 }
422
423 /* socket's state has changed */
424 static void ceph_sock_state_change(struct sock *sk)
425 {
426 struct ceph_connection *con = sk->sk_user_data;
427
428 dout("%s %p state = %lu sk_state = %u\n", __func__,
429 con, con->state, sk->sk_state);
430
431 switch (sk->sk_state) {
432 case TCP_CLOSE:
433 dout("%s TCP_CLOSE\n", __func__);
434 case TCP_CLOSE_WAIT:
435 dout("%s TCP_CLOSE_WAIT\n", __func__);
436 con_sock_state_closing(con);
437 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
438 queue_con(con);
439 break;
440 case TCP_ESTABLISHED:
441 dout("%s TCP_ESTABLISHED\n", __func__);
442 con_sock_state_connected(con);
443 queue_con(con);
444 break;
445 default: /* Everything else is uninteresting */
446 break;
447 }
448 }
449
450 /*
451 * set up socket callbacks
452 */
453 static void set_sock_callbacks(struct socket *sock,
454 struct ceph_connection *con)
455 {
456 struct sock *sk = sock->sk;
457 sk->sk_user_data = con;
458 sk->sk_data_ready = ceph_sock_data_ready;
459 sk->sk_write_space = ceph_sock_write_space;
460 sk->sk_state_change = ceph_sock_state_change;
461 }
462
463
464 /*
465 * socket helpers
466 */
467
468 /*
469 * initiate connection to a remote socket.
470 */
471 static int ceph_tcp_connect(struct ceph_connection *con)
472 {
473 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
474 struct socket *sock;
475 int ret;
476
477 BUG_ON(con->sock);
478 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
479 IPPROTO_TCP, &sock);
480 if (ret)
481 return ret;
482 sock->sk->sk_allocation = GFP_NOFS;
483
484 #ifdef CONFIG_LOCKDEP
485 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
486 #endif
487
488 set_sock_callbacks(sock, con);
489
490 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
491
492 con_sock_state_connecting(con);
493 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
494 O_NONBLOCK);
495 if (ret == -EINPROGRESS) {
496 dout("connect %s EINPROGRESS sk_state = %u\n",
497 ceph_pr_addr(&con->peer_addr.in_addr),
498 sock->sk->sk_state);
499 } else if (ret < 0) {
500 pr_err("connect %s error %d\n",
501 ceph_pr_addr(&con->peer_addr.in_addr), ret);
502 sock_release(sock);
503 con->error_msg = "connect error";
504
505 return ret;
506 }
507 con->sock = sock;
508 return 0;
509 }
510
511 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
512 {
513 struct kvec iov = {buf, len};
514 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
515 int r;
516
517 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
518 if (r == -EAGAIN)
519 r = 0;
520 return r;
521 }
522
523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
524 int page_offset, size_t length)
525 {
526 void *kaddr;
527 int ret;
528
529 BUG_ON(page_offset + length > PAGE_SIZE);
530
531 kaddr = kmap(page);
532 BUG_ON(!kaddr);
533 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
534 kunmap(page);
535
536 return ret;
537 }
538
539 /*
540 * write something. @more is true if caller will be sending more data
541 * shortly.
542 */
543 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
544 size_t kvlen, size_t len, int more)
545 {
546 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
547 int r;
548
549 if (more)
550 msg.msg_flags |= MSG_MORE;
551 else
552 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
553
554 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
555 if (r == -EAGAIN)
556 r = 0;
557 return r;
558 }
559
560 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
561 int offset, size_t size, bool more)
562 {
563 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
564 int ret;
565
566 ret = kernel_sendpage(sock, page, offset, size, flags);
567 if (ret == -EAGAIN)
568 ret = 0;
569
570 return ret;
571 }
572
573
574 /*
575 * Shutdown/close the socket for the given connection.
576 */
577 static int con_close_socket(struct ceph_connection *con)
578 {
579 int rc = 0;
580
581 dout("con_close_socket on %p sock %p\n", con, con->sock);
582 if (con->sock) {
583 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
584 sock_release(con->sock);
585 con->sock = NULL;
586 }
587
588 /*
589 * Forcibly clear the SOCK_CLOSED flag. It gets set
590 * independent of the connection mutex, and we could have
591 * received a socket close event before we had the chance to
592 * shut the socket down.
593 */
594 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
595
596 con_sock_state_closed(con);
597 return rc;
598 }
599
600 /*
601 * Reset a connection. Discard all incoming and outgoing messages
602 * and clear *_seq state.
603 */
604 static void ceph_msg_remove(struct ceph_msg *msg)
605 {
606 list_del_init(&msg->list_head);
607 BUG_ON(msg->con == NULL);
608 msg->con->ops->put(msg->con);
609 msg->con = NULL;
610
611 ceph_msg_put(msg);
612 }
613 static void ceph_msg_remove_list(struct list_head *head)
614 {
615 while (!list_empty(head)) {
616 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
617 list_head);
618 ceph_msg_remove(msg);
619 }
620 }
621
622 static void reset_connection(struct ceph_connection *con)
623 {
624 /* reset connection, out_queue, msg_ and connect_seq */
625 /* discard existing out_queue and msg_seq */
626 dout("reset_connection %p\n", con);
627 ceph_msg_remove_list(&con->out_queue);
628 ceph_msg_remove_list(&con->out_sent);
629
630 if (con->in_msg) {
631 BUG_ON(con->in_msg->con != con);
632 con->in_msg->con = NULL;
633 ceph_msg_put(con->in_msg);
634 con->in_msg = NULL;
635 con->ops->put(con);
636 }
637
638 con->connect_seq = 0;
639 con->out_seq = 0;
640 if (con->out_msg) {
641 ceph_msg_put(con->out_msg);
642 con->out_msg = NULL;
643 }
644 con->in_seq = 0;
645 con->in_seq_acked = 0;
646 }
647
648 /*
649 * mark a peer down. drop any open connections.
650 */
651 void ceph_con_close(struct ceph_connection *con)
652 {
653 mutex_lock(&con->mutex);
654 dout("con_close %p peer %s\n", con,
655 ceph_pr_addr(&con->peer_addr.in_addr));
656 con->state = CON_STATE_CLOSED;
657
658 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
659 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
660 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
661 con_flag_clear(con, CON_FLAG_BACKOFF);
662
663 reset_connection(con);
664 con->peer_global_seq = 0;
665 cancel_delayed_work(&con->work);
666 con_close_socket(con);
667 mutex_unlock(&con->mutex);
668 }
669 EXPORT_SYMBOL(ceph_con_close);
670
671 /*
672 * Reopen a closed connection, with a new peer address.
673 */
674 void ceph_con_open(struct ceph_connection *con,
675 __u8 entity_type, __u64 entity_num,
676 struct ceph_entity_addr *addr)
677 {
678 mutex_lock(&con->mutex);
679 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
680
681 WARN_ON(con->state != CON_STATE_CLOSED);
682 con->state = CON_STATE_PREOPEN;
683
684 con->peer_name.type = (__u8) entity_type;
685 con->peer_name.num = cpu_to_le64(entity_num);
686
687 memcpy(&con->peer_addr, addr, sizeof(*addr));
688 con->delay = 0; /* reset backoff memory */
689 mutex_unlock(&con->mutex);
690 queue_con(con);
691 }
692 EXPORT_SYMBOL(ceph_con_open);
693
694 /*
695 * return true if this connection ever successfully opened
696 */
697 bool ceph_con_opened(struct ceph_connection *con)
698 {
699 return con->connect_seq > 0;
700 }
701
702 /*
703 * initialize a new connection.
704 */
705 void ceph_con_init(struct ceph_connection *con, void *private,
706 const struct ceph_connection_operations *ops,
707 struct ceph_messenger *msgr)
708 {
709 dout("con_init %p\n", con);
710 memset(con, 0, sizeof(*con));
711 con->private = private;
712 con->ops = ops;
713 con->msgr = msgr;
714
715 con_sock_state_init(con);
716
717 mutex_init(&con->mutex);
718 INIT_LIST_HEAD(&con->out_queue);
719 INIT_LIST_HEAD(&con->out_sent);
720 INIT_DELAYED_WORK(&con->work, con_work);
721
722 con->state = CON_STATE_CLOSED;
723 }
724 EXPORT_SYMBOL(ceph_con_init);
725
726
727 /*
728 * We maintain a global counter to order connection attempts. Get
729 * a unique seq greater than @gt.
730 */
731 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
732 {
733 u32 ret;
734
735 spin_lock(&msgr->global_seq_lock);
736 if (msgr->global_seq < gt)
737 msgr->global_seq = gt;
738 ret = ++msgr->global_seq;
739 spin_unlock(&msgr->global_seq_lock);
740 return ret;
741 }
742
743 static void con_out_kvec_reset(struct ceph_connection *con)
744 {
745 con->out_kvec_left = 0;
746 con->out_kvec_bytes = 0;
747 con->out_kvec_cur = &con->out_kvec[0];
748 }
749
750 static void con_out_kvec_add(struct ceph_connection *con,
751 size_t size, void *data)
752 {
753 int index;
754
755 index = con->out_kvec_left;
756 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
757
758 con->out_kvec[index].iov_len = size;
759 con->out_kvec[index].iov_base = data;
760 con->out_kvec_left++;
761 con->out_kvec_bytes += size;
762 }
763
764 #ifdef CONFIG_BLOCK
765
766 /*
767 * For a bio data item, a piece is whatever remains of the next
768 * entry in the current bio iovec, or the first entry in the next
769 * bio in the list.
770 */
771 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
772 size_t length)
773 {
774 struct ceph_msg_data *data = cursor->data;
775 struct bio *bio;
776
777 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
778
779 bio = data->bio;
780 BUG_ON(!bio);
781
782 cursor->resid = min(length, data->bio_length);
783 cursor->bio = bio;
784 cursor->bvec_iter = bio->bi_iter;
785 cursor->last_piece =
786 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
787 }
788
789 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
790 size_t *page_offset,
791 size_t *length)
792 {
793 struct ceph_msg_data *data = cursor->data;
794 struct bio *bio;
795 struct bio_vec bio_vec;
796
797 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
798
799 bio = cursor->bio;
800 BUG_ON(!bio);
801
802 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
803
804 *page_offset = (size_t) bio_vec.bv_offset;
805 BUG_ON(*page_offset >= PAGE_SIZE);
806 if (cursor->last_piece) /* pagelist offset is always 0 */
807 *length = cursor->resid;
808 else
809 *length = (size_t) bio_vec.bv_len;
810 BUG_ON(*length > cursor->resid);
811 BUG_ON(*page_offset + *length > PAGE_SIZE);
812
813 return bio_vec.bv_page;
814 }
815
816 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
817 size_t bytes)
818 {
819 struct bio *bio;
820 struct bio_vec bio_vec;
821
822 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
823
824 bio = cursor->bio;
825 BUG_ON(!bio);
826
827 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
828
829 /* Advance the cursor offset */
830
831 BUG_ON(cursor->resid < bytes);
832 cursor->resid -= bytes;
833
834 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
835
836 if (bytes < bio_vec.bv_len)
837 return false; /* more bytes to process in this segment */
838
839 /* Move on to the next segment, and possibly the next bio */
840
841 if (!cursor->bvec_iter.bi_size) {
842 bio = bio->bi_next;
843 cursor->bio = bio;
844 if (bio)
845 cursor->bvec_iter = bio->bi_iter;
846 else
847 memset(&cursor->bvec_iter, 0,
848 sizeof(cursor->bvec_iter));
849 }
850
851 if (!cursor->last_piece) {
852 BUG_ON(!cursor->resid);
853 BUG_ON(!bio);
854 /* A short read is OK, so use <= rather than == */
855 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
856 cursor->last_piece = true;
857 }
858
859 return true;
860 }
861 #endif /* CONFIG_BLOCK */
862
863 /*
864 * For a page array, a piece comes from the first page in the array
865 * that has not already been fully consumed.
866 */
867 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
868 size_t length)
869 {
870 struct ceph_msg_data *data = cursor->data;
871 int page_count;
872
873 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
874
875 BUG_ON(!data->pages);
876 BUG_ON(!data->length);
877
878 cursor->resid = min(length, data->length);
879 page_count = calc_pages_for(data->alignment, (u64)data->length);
880 cursor->page_offset = data->alignment & ~PAGE_MASK;
881 cursor->page_index = 0;
882 BUG_ON(page_count > (int)USHRT_MAX);
883 cursor->page_count = (unsigned short)page_count;
884 BUG_ON(length > SIZE_MAX - cursor->page_offset);
885 cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
886 }
887
888 static struct page *
889 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
890 size_t *page_offset, size_t *length)
891 {
892 struct ceph_msg_data *data = cursor->data;
893
894 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
895
896 BUG_ON(cursor->page_index >= cursor->page_count);
897 BUG_ON(cursor->page_offset >= PAGE_SIZE);
898
899 *page_offset = cursor->page_offset;
900 if (cursor->last_piece)
901 *length = cursor->resid;
902 else
903 *length = PAGE_SIZE - *page_offset;
904
905 return data->pages[cursor->page_index];
906 }
907
908 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
909 size_t bytes)
910 {
911 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
912
913 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
914
915 /* Advance the cursor page offset */
916
917 cursor->resid -= bytes;
918 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
919 if (!bytes || cursor->page_offset)
920 return false; /* more bytes to process in the current page */
921
922 if (!cursor->resid)
923 return false; /* no more data */
924
925 /* Move on to the next page; offset is already at 0 */
926
927 BUG_ON(cursor->page_index >= cursor->page_count);
928 cursor->page_index++;
929 cursor->last_piece = cursor->resid <= PAGE_SIZE;
930
931 return true;
932 }
933
934 /*
935 * For a pagelist, a piece is whatever remains to be consumed in the
936 * first page in the list, or the front of the next page.
937 */
938 static void
939 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
940 size_t length)
941 {
942 struct ceph_msg_data *data = cursor->data;
943 struct ceph_pagelist *pagelist;
944 struct page *page;
945
946 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
947
948 pagelist = data->pagelist;
949 BUG_ON(!pagelist);
950
951 if (!length)
952 return; /* pagelist can be assigned but empty */
953
954 BUG_ON(list_empty(&pagelist->head));
955 page = list_first_entry(&pagelist->head, struct page, lru);
956
957 cursor->resid = min(length, pagelist->length);
958 cursor->page = page;
959 cursor->offset = 0;
960 cursor->last_piece = cursor->resid <= PAGE_SIZE;
961 }
962
963 static struct page *
964 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
965 size_t *page_offset, size_t *length)
966 {
967 struct ceph_msg_data *data = cursor->data;
968 struct ceph_pagelist *pagelist;
969
970 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
971
972 pagelist = data->pagelist;
973 BUG_ON(!pagelist);
974
975 BUG_ON(!cursor->page);
976 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
977
978 /* offset of first page in pagelist is always 0 */
979 *page_offset = cursor->offset & ~PAGE_MASK;
980 if (cursor->last_piece)
981 *length = cursor->resid;
982 else
983 *length = PAGE_SIZE - *page_offset;
984
985 return cursor->page;
986 }
987
988 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
989 size_t bytes)
990 {
991 struct ceph_msg_data *data = cursor->data;
992 struct ceph_pagelist *pagelist;
993
994 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
995
996 pagelist = data->pagelist;
997 BUG_ON(!pagelist);
998
999 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1000 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1001
1002 /* Advance the cursor offset */
1003
1004 cursor->resid -= bytes;
1005 cursor->offset += bytes;
1006 /* offset of first page in pagelist is always 0 */
1007 if (!bytes || cursor->offset & ~PAGE_MASK)
1008 return false; /* more bytes to process in the current page */
1009
1010 if (!cursor->resid)
1011 return false; /* no more data */
1012
1013 /* Move on to the next page */
1014
1015 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1016 cursor->page = list_entry_next(cursor->page, lru);
1017 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1018
1019 return true;
1020 }
1021
1022 /*
1023 * Message data is handled (sent or received) in pieces, where each
1024 * piece resides on a single page. The network layer might not
1025 * consume an entire piece at once. A data item's cursor keeps
1026 * track of which piece is next to process and how much remains to
1027 * be processed in that piece. It also tracks whether the current
1028 * piece is the last one in the data item.
1029 */
1030 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1031 {
1032 size_t length = cursor->total_resid;
1033
1034 switch (cursor->data->type) {
1035 case CEPH_MSG_DATA_PAGELIST:
1036 ceph_msg_data_pagelist_cursor_init(cursor, length);
1037 break;
1038 case CEPH_MSG_DATA_PAGES:
1039 ceph_msg_data_pages_cursor_init(cursor, length);
1040 break;
1041 #ifdef CONFIG_BLOCK
1042 case CEPH_MSG_DATA_BIO:
1043 ceph_msg_data_bio_cursor_init(cursor, length);
1044 break;
1045 #endif /* CONFIG_BLOCK */
1046 case CEPH_MSG_DATA_NONE:
1047 default:
1048 /* BUG(); */
1049 break;
1050 }
1051 cursor->need_crc = true;
1052 }
1053
1054 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1055 {
1056 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1057 struct ceph_msg_data *data;
1058
1059 BUG_ON(!length);
1060 BUG_ON(length > msg->data_length);
1061 BUG_ON(list_empty(&msg->data));
1062
1063 cursor->data_head = &msg->data;
1064 cursor->total_resid = length;
1065 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1066 cursor->data = data;
1067
1068 __ceph_msg_data_cursor_init(cursor);
1069 }
1070
1071 /*
1072 * Return the page containing the next piece to process for a given
1073 * data item, and supply the page offset and length of that piece.
1074 * Indicate whether this is the last piece in this data item.
1075 */
1076 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1077 size_t *page_offset, size_t *length,
1078 bool *last_piece)
1079 {
1080 struct page *page;
1081
1082 switch (cursor->data->type) {
1083 case CEPH_MSG_DATA_PAGELIST:
1084 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1085 break;
1086 case CEPH_MSG_DATA_PAGES:
1087 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1088 break;
1089 #ifdef CONFIG_BLOCK
1090 case CEPH_MSG_DATA_BIO:
1091 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1092 break;
1093 #endif /* CONFIG_BLOCK */
1094 case CEPH_MSG_DATA_NONE:
1095 default:
1096 page = NULL;
1097 break;
1098 }
1099 BUG_ON(!page);
1100 BUG_ON(*page_offset + *length > PAGE_SIZE);
1101 BUG_ON(!*length);
1102 if (last_piece)
1103 *last_piece = cursor->last_piece;
1104
1105 return page;
1106 }
1107
1108 /*
1109 * Returns true if the result moves the cursor on to the next piece
1110 * of the data item.
1111 */
1112 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1113 size_t bytes)
1114 {
1115 bool new_piece;
1116
1117 BUG_ON(bytes > cursor->resid);
1118 switch (cursor->data->type) {
1119 case CEPH_MSG_DATA_PAGELIST:
1120 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1121 break;
1122 case CEPH_MSG_DATA_PAGES:
1123 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1124 break;
1125 #ifdef CONFIG_BLOCK
1126 case CEPH_MSG_DATA_BIO:
1127 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1128 break;
1129 #endif /* CONFIG_BLOCK */
1130 case CEPH_MSG_DATA_NONE:
1131 default:
1132 BUG();
1133 break;
1134 }
1135 cursor->total_resid -= bytes;
1136
1137 if (!cursor->resid && cursor->total_resid) {
1138 WARN_ON(!cursor->last_piece);
1139 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1140 cursor->data = list_entry_next(cursor->data, links);
1141 __ceph_msg_data_cursor_init(cursor);
1142 new_piece = true;
1143 }
1144 cursor->need_crc = new_piece;
1145
1146 return new_piece;
1147 }
1148
1149 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1150 {
1151 BUG_ON(!msg);
1152 BUG_ON(!data_len);
1153
1154 /* Initialize data cursor */
1155
1156 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1157 }
1158
1159 /*
1160 * Prepare footer for currently outgoing message, and finish things
1161 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1162 */
1163 static void prepare_write_message_footer(struct ceph_connection *con)
1164 {
1165 struct ceph_msg *m = con->out_msg;
1166 int v = con->out_kvec_left;
1167
1168 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1169
1170 dout("prepare_write_message_footer %p\n", con);
1171 con->out_kvec_is_msg = true;
1172 con->out_kvec[v].iov_base = &m->footer;
1173 con->out_kvec[v].iov_len = sizeof(m->footer);
1174 con->out_kvec_bytes += sizeof(m->footer);
1175 con->out_kvec_left++;
1176 con->out_more = m->more_to_follow;
1177 con->out_msg_done = true;
1178 }
1179
1180 /*
1181 * Prepare headers for the next outgoing message.
1182 */
1183 static void prepare_write_message(struct ceph_connection *con)
1184 {
1185 struct ceph_msg *m;
1186 u32 crc;
1187
1188 con_out_kvec_reset(con);
1189 con->out_kvec_is_msg = true;
1190 con->out_msg_done = false;
1191
1192 /* Sneak an ack in there first? If we can get it into the same
1193 * TCP packet that's a good thing. */
1194 if (con->in_seq > con->in_seq_acked) {
1195 con->in_seq_acked = con->in_seq;
1196 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1197 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1198 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1199 &con->out_temp_ack);
1200 }
1201
1202 BUG_ON(list_empty(&con->out_queue));
1203 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1204 con->out_msg = m;
1205 BUG_ON(m->con != con);
1206
1207 /* put message on sent list */
1208 ceph_msg_get(m);
1209 list_move_tail(&m->list_head, &con->out_sent);
1210
1211 /*
1212 * only assign outgoing seq # if we haven't sent this message
1213 * yet. if it is requeued, resend with it's original seq.
1214 */
1215 if (m->needs_out_seq) {
1216 m->hdr.seq = cpu_to_le64(++con->out_seq);
1217 m->needs_out_seq = false;
1218 }
1219 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1220
1221 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1222 m, con->out_seq, le16_to_cpu(m->hdr.type),
1223 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1224 m->data_length);
1225 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1226
1227 /* tag + hdr + front + middle */
1228 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1229 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1230 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1231
1232 if (m->middle)
1233 con_out_kvec_add(con, m->middle->vec.iov_len,
1234 m->middle->vec.iov_base);
1235
1236 /* fill in crc (except data pages), footer */
1237 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1238 con->out_msg->hdr.crc = cpu_to_le32(crc);
1239 con->out_msg->footer.flags = 0;
1240
1241 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1242 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1243 if (m->middle) {
1244 crc = crc32c(0, m->middle->vec.iov_base,
1245 m->middle->vec.iov_len);
1246 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1247 } else
1248 con->out_msg->footer.middle_crc = 0;
1249 dout("%s front_crc %u middle_crc %u\n", __func__,
1250 le32_to_cpu(con->out_msg->footer.front_crc),
1251 le32_to_cpu(con->out_msg->footer.middle_crc));
1252
1253 /* is there a data payload? */
1254 con->out_msg->footer.data_crc = 0;
1255 if (m->data_length) {
1256 prepare_message_data(con->out_msg, m->data_length);
1257 con->out_more = 1; /* data + footer will follow */
1258 } else {
1259 /* no, queue up footer too and be done */
1260 prepare_write_message_footer(con);
1261 }
1262
1263 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1264 }
1265
1266 /*
1267 * Prepare an ack.
1268 */
1269 static void prepare_write_ack(struct ceph_connection *con)
1270 {
1271 dout("prepare_write_ack %p %llu -> %llu\n", con,
1272 con->in_seq_acked, con->in_seq);
1273 con->in_seq_acked = con->in_seq;
1274
1275 con_out_kvec_reset(con);
1276
1277 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1278
1279 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1280 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1281 &con->out_temp_ack);
1282
1283 con->out_more = 1; /* more will follow.. eventually.. */
1284 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1285 }
1286
1287 /*
1288 * Prepare to share the seq during handshake
1289 */
1290 static void prepare_write_seq(struct ceph_connection *con)
1291 {
1292 dout("prepare_write_seq %p %llu -> %llu\n", con,
1293 con->in_seq_acked, con->in_seq);
1294 con->in_seq_acked = con->in_seq;
1295
1296 con_out_kvec_reset(con);
1297
1298 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1299 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1300 &con->out_temp_ack);
1301
1302 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1303 }
1304
1305 /*
1306 * Prepare to write keepalive byte.
1307 */
1308 static void prepare_write_keepalive(struct ceph_connection *con)
1309 {
1310 dout("prepare_write_keepalive %p\n", con);
1311 con_out_kvec_reset(con);
1312 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1313 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1314 }
1315
1316 /*
1317 * Connection negotiation.
1318 */
1319
1320 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1321 int *auth_proto)
1322 {
1323 struct ceph_auth_handshake *auth;
1324
1325 if (!con->ops->get_authorizer) {
1326 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1327 con->out_connect.authorizer_len = 0;
1328 return NULL;
1329 }
1330
1331 /* Can't hold the mutex while getting authorizer */
1332 mutex_unlock(&con->mutex);
1333 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1334 mutex_lock(&con->mutex);
1335
1336 if (IS_ERR(auth))
1337 return auth;
1338 if (con->state != CON_STATE_NEGOTIATING)
1339 return ERR_PTR(-EAGAIN);
1340
1341 con->auth_reply_buf = auth->authorizer_reply_buf;
1342 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1343 return auth;
1344 }
1345
1346 /*
1347 * We connected to a peer and are saying hello.
1348 */
1349 static void prepare_write_banner(struct ceph_connection *con)
1350 {
1351 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1352 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1353 &con->msgr->my_enc_addr);
1354
1355 con->out_more = 0;
1356 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1357 }
1358
1359 static int prepare_write_connect(struct ceph_connection *con)
1360 {
1361 unsigned int global_seq = get_global_seq(con->msgr, 0);
1362 int proto;
1363 int auth_proto;
1364 struct ceph_auth_handshake *auth;
1365
1366 switch (con->peer_name.type) {
1367 case CEPH_ENTITY_TYPE_MON:
1368 proto = CEPH_MONC_PROTOCOL;
1369 break;
1370 case CEPH_ENTITY_TYPE_OSD:
1371 proto = CEPH_OSDC_PROTOCOL;
1372 break;
1373 case CEPH_ENTITY_TYPE_MDS:
1374 proto = CEPH_MDSC_PROTOCOL;
1375 break;
1376 default:
1377 BUG();
1378 }
1379
1380 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1381 con->connect_seq, global_seq, proto);
1382
1383 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1384 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1385 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1386 con->out_connect.global_seq = cpu_to_le32(global_seq);
1387 con->out_connect.protocol_version = cpu_to_le32(proto);
1388 con->out_connect.flags = 0;
1389
1390 auth_proto = CEPH_AUTH_UNKNOWN;
1391 auth = get_connect_authorizer(con, &auth_proto);
1392 if (IS_ERR(auth))
1393 return PTR_ERR(auth);
1394
1395 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1396 con->out_connect.authorizer_len = auth ?
1397 cpu_to_le32(auth->authorizer_buf_len) : 0;
1398
1399 con_out_kvec_add(con, sizeof (con->out_connect),
1400 &con->out_connect);
1401 if (auth && auth->authorizer_buf_len)
1402 con_out_kvec_add(con, auth->authorizer_buf_len,
1403 auth->authorizer_buf);
1404
1405 con->out_more = 0;
1406 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1407
1408 return 0;
1409 }
1410
1411 /*
1412 * write as much of pending kvecs to the socket as we can.
1413 * 1 -> done
1414 * 0 -> socket full, but more to do
1415 * <0 -> error
1416 */
1417 static int write_partial_kvec(struct ceph_connection *con)
1418 {
1419 int ret;
1420
1421 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1422 while (con->out_kvec_bytes > 0) {
1423 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1424 con->out_kvec_left, con->out_kvec_bytes,
1425 con->out_more);
1426 if (ret <= 0)
1427 goto out;
1428 con->out_kvec_bytes -= ret;
1429 if (con->out_kvec_bytes == 0)
1430 break; /* done */
1431
1432 /* account for full iov entries consumed */
1433 while (ret >= con->out_kvec_cur->iov_len) {
1434 BUG_ON(!con->out_kvec_left);
1435 ret -= con->out_kvec_cur->iov_len;
1436 con->out_kvec_cur++;
1437 con->out_kvec_left--;
1438 }
1439 /* and for a partially-consumed entry */
1440 if (ret) {
1441 con->out_kvec_cur->iov_len -= ret;
1442 con->out_kvec_cur->iov_base += ret;
1443 }
1444 }
1445 con->out_kvec_left = 0;
1446 con->out_kvec_is_msg = false;
1447 ret = 1;
1448 out:
1449 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1450 con->out_kvec_bytes, con->out_kvec_left, ret);
1451 return ret; /* done! */
1452 }
1453
1454 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1455 unsigned int page_offset,
1456 unsigned int length)
1457 {
1458 char *kaddr;
1459
1460 kaddr = kmap(page);
1461 BUG_ON(kaddr == NULL);
1462 crc = crc32c(crc, kaddr + page_offset, length);
1463 kunmap(page);
1464
1465 return crc;
1466 }
1467 /*
1468 * Write as much message data payload as we can. If we finish, queue
1469 * up the footer.
1470 * 1 -> done, footer is now queued in out_kvec[].
1471 * 0 -> socket full, but more to do
1472 * <0 -> error
1473 */
1474 static int write_partial_message_data(struct ceph_connection *con)
1475 {
1476 struct ceph_msg *msg = con->out_msg;
1477 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1478 bool do_datacrc = !con->msgr->nocrc;
1479 u32 crc;
1480
1481 dout("%s %p msg %p\n", __func__, con, msg);
1482
1483 if (list_empty(&msg->data))
1484 return -EINVAL;
1485
1486 /*
1487 * Iterate through each page that contains data to be
1488 * written, and send as much as possible for each.
1489 *
1490 * If we are calculating the data crc (the default), we will
1491 * need to map the page. If we have no pages, they have
1492 * been revoked, so use the zero page.
1493 */
1494 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1495 while (cursor->resid) {
1496 struct page *page;
1497 size_t page_offset;
1498 size_t length;
1499 bool last_piece;
1500 bool need_crc;
1501 int ret;
1502
1503 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1504 &last_piece);
1505 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1506 length, last_piece);
1507 if (ret <= 0) {
1508 if (do_datacrc)
1509 msg->footer.data_crc = cpu_to_le32(crc);
1510
1511 return ret;
1512 }
1513 if (do_datacrc && cursor->need_crc)
1514 crc = ceph_crc32c_page(crc, page, page_offset, length);
1515 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1516 }
1517
1518 dout("%s %p msg %p done\n", __func__, con, msg);
1519
1520 /* prepare and queue up footer, too */
1521 if (do_datacrc)
1522 msg->footer.data_crc = cpu_to_le32(crc);
1523 else
1524 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1525 con_out_kvec_reset(con);
1526 prepare_write_message_footer(con);
1527
1528 return 1; /* must return > 0 to indicate success */
1529 }
1530
1531 /*
1532 * write some zeros
1533 */
1534 static int write_partial_skip(struct ceph_connection *con)
1535 {
1536 int ret;
1537
1538 while (con->out_skip > 0) {
1539 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1540
1541 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1542 if (ret <= 0)
1543 goto out;
1544 con->out_skip -= ret;
1545 }
1546 ret = 1;
1547 out:
1548 return ret;
1549 }
1550
1551 /*
1552 * Prepare to read connection handshake, or an ack.
1553 */
1554 static void prepare_read_banner(struct ceph_connection *con)
1555 {
1556 dout("prepare_read_banner %p\n", con);
1557 con->in_base_pos = 0;
1558 }
1559
1560 static void prepare_read_connect(struct ceph_connection *con)
1561 {
1562 dout("prepare_read_connect %p\n", con);
1563 con->in_base_pos = 0;
1564 }
1565
1566 static void prepare_read_ack(struct ceph_connection *con)
1567 {
1568 dout("prepare_read_ack %p\n", con);
1569 con->in_base_pos = 0;
1570 }
1571
1572 static void prepare_read_seq(struct ceph_connection *con)
1573 {
1574 dout("prepare_read_seq %p\n", con);
1575 con->in_base_pos = 0;
1576 con->in_tag = CEPH_MSGR_TAG_SEQ;
1577 }
1578
1579 static void prepare_read_tag(struct ceph_connection *con)
1580 {
1581 dout("prepare_read_tag %p\n", con);
1582 con->in_base_pos = 0;
1583 con->in_tag = CEPH_MSGR_TAG_READY;
1584 }
1585
1586 /*
1587 * Prepare to read a message.
1588 */
1589 static int prepare_read_message(struct ceph_connection *con)
1590 {
1591 dout("prepare_read_message %p\n", con);
1592 BUG_ON(con->in_msg != NULL);
1593 con->in_base_pos = 0;
1594 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1595 return 0;
1596 }
1597
1598
1599 static int read_partial(struct ceph_connection *con,
1600 int end, int size, void *object)
1601 {
1602 while (con->in_base_pos < end) {
1603 int left = end - con->in_base_pos;
1604 int have = size - left;
1605 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1606 if (ret <= 0)
1607 return ret;
1608 con->in_base_pos += ret;
1609 }
1610 return 1;
1611 }
1612
1613
1614 /*
1615 * Read all or part of the connect-side handshake on a new connection
1616 */
1617 static int read_partial_banner(struct ceph_connection *con)
1618 {
1619 int size;
1620 int end;
1621 int ret;
1622
1623 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1624
1625 /* peer's banner */
1626 size = strlen(CEPH_BANNER);
1627 end = size;
1628 ret = read_partial(con, end, size, con->in_banner);
1629 if (ret <= 0)
1630 goto out;
1631
1632 size = sizeof (con->actual_peer_addr);
1633 end += size;
1634 ret = read_partial(con, end, size, &con->actual_peer_addr);
1635 if (ret <= 0)
1636 goto out;
1637
1638 size = sizeof (con->peer_addr_for_me);
1639 end += size;
1640 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1641 if (ret <= 0)
1642 goto out;
1643
1644 out:
1645 return ret;
1646 }
1647
1648 static int read_partial_connect(struct ceph_connection *con)
1649 {
1650 int size;
1651 int end;
1652 int ret;
1653
1654 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1655
1656 size = sizeof (con->in_reply);
1657 end = size;
1658 ret = read_partial(con, end, size, &con->in_reply);
1659 if (ret <= 0)
1660 goto out;
1661
1662 size = le32_to_cpu(con->in_reply.authorizer_len);
1663 end += size;
1664 ret = read_partial(con, end, size, con->auth_reply_buf);
1665 if (ret <= 0)
1666 goto out;
1667
1668 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1669 con, (int)con->in_reply.tag,
1670 le32_to_cpu(con->in_reply.connect_seq),
1671 le32_to_cpu(con->in_reply.global_seq));
1672 out:
1673 return ret;
1674
1675 }
1676
1677 /*
1678 * Verify the hello banner looks okay.
1679 */
1680 static int verify_hello(struct ceph_connection *con)
1681 {
1682 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1683 pr_err("connect to %s got bad banner\n",
1684 ceph_pr_addr(&con->peer_addr.in_addr));
1685 con->error_msg = "protocol error, bad banner";
1686 return -1;
1687 }
1688 return 0;
1689 }
1690
1691 static bool addr_is_blank(struct sockaddr_storage *ss)
1692 {
1693 switch (ss->ss_family) {
1694 case AF_INET:
1695 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1696 case AF_INET6:
1697 return
1698 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1699 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1700 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1701 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1702 }
1703 return false;
1704 }
1705
1706 static int addr_port(struct sockaddr_storage *ss)
1707 {
1708 switch (ss->ss_family) {
1709 case AF_INET:
1710 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1711 case AF_INET6:
1712 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1713 }
1714 return 0;
1715 }
1716
1717 static void addr_set_port(struct sockaddr_storage *ss, int p)
1718 {
1719 switch (ss->ss_family) {
1720 case AF_INET:
1721 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1722 break;
1723 case AF_INET6:
1724 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1725 break;
1726 }
1727 }
1728
1729 /*
1730 * Unlike other *_pton function semantics, zero indicates success.
1731 */
1732 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1733 char delim, const char **ipend)
1734 {
1735 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1736 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1737
1738 memset(ss, 0, sizeof(*ss));
1739
1740 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1741 ss->ss_family = AF_INET;
1742 return 0;
1743 }
1744
1745 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1746 ss->ss_family = AF_INET6;
1747 return 0;
1748 }
1749
1750 return -EINVAL;
1751 }
1752
1753 /*
1754 * Extract hostname string and resolve using kernel DNS facility.
1755 */
1756 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1757 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1758 struct sockaddr_storage *ss, char delim, const char **ipend)
1759 {
1760 const char *end, *delim_p;
1761 char *colon_p, *ip_addr = NULL;
1762 int ip_len, ret;
1763
1764 /*
1765 * The end of the hostname occurs immediately preceding the delimiter or
1766 * the port marker (':') where the delimiter takes precedence.
1767 */
1768 delim_p = memchr(name, delim, namelen);
1769 colon_p = memchr(name, ':', namelen);
1770
1771 if (delim_p && colon_p)
1772 end = delim_p < colon_p ? delim_p : colon_p;
1773 else if (!delim_p && colon_p)
1774 end = colon_p;
1775 else {
1776 end = delim_p;
1777 if (!end) /* case: hostname:/ */
1778 end = name + namelen;
1779 }
1780
1781 if (end <= name)
1782 return -EINVAL;
1783
1784 /* do dns_resolve upcall */
1785 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1786 if (ip_len > 0)
1787 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1788 else
1789 ret = -ESRCH;
1790
1791 kfree(ip_addr);
1792
1793 *ipend = end;
1794
1795 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1796 ret, ret ? "failed" : ceph_pr_addr(ss));
1797
1798 return ret;
1799 }
1800 #else
1801 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1802 struct sockaddr_storage *ss, char delim, const char **ipend)
1803 {
1804 return -EINVAL;
1805 }
1806 #endif
1807
1808 /*
1809 * Parse a server name (IP or hostname). If a valid IP address is not found
1810 * then try to extract a hostname to resolve using userspace DNS upcall.
1811 */
1812 static int ceph_parse_server_name(const char *name, size_t namelen,
1813 struct sockaddr_storage *ss, char delim, const char **ipend)
1814 {
1815 int ret;
1816
1817 ret = ceph_pton(name, namelen, ss, delim, ipend);
1818 if (ret)
1819 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1820
1821 return ret;
1822 }
1823
1824 /*
1825 * Parse an ip[:port] list into an addr array. Use the default
1826 * monitor port if a port isn't specified.
1827 */
1828 int ceph_parse_ips(const char *c, const char *end,
1829 struct ceph_entity_addr *addr,
1830 int max_count, int *count)
1831 {
1832 int i, ret = -EINVAL;
1833 const char *p = c;
1834
1835 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1836 for (i = 0; i < max_count; i++) {
1837 const char *ipend;
1838 struct sockaddr_storage *ss = &addr[i].in_addr;
1839 int port;
1840 char delim = ',';
1841
1842 if (*p == '[') {
1843 delim = ']';
1844 p++;
1845 }
1846
1847 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1848 if (ret)
1849 goto bad;
1850 ret = -EINVAL;
1851
1852 p = ipend;
1853
1854 if (delim == ']') {
1855 if (*p != ']') {
1856 dout("missing matching ']'\n");
1857 goto bad;
1858 }
1859 p++;
1860 }
1861
1862 /* port? */
1863 if (p < end && *p == ':') {
1864 port = 0;
1865 p++;
1866 while (p < end && *p >= '0' && *p <= '9') {
1867 port = (port * 10) + (*p - '0');
1868 p++;
1869 }
1870 if (port == 0)
1871 port = CEPH_MON_PORT;
1872 else if (port > 65535)
1873 goto bad;
1874 } else {
1875 port = CEPH_MON_PORT;
1876 }
1877
1878 addr_set_port(ss, port);
1879
1880 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1881
1882 if (p == end)
1883 break;
1884 if (*p != ',')
1885 goto bad;
1886 p++;
1887 }
1888
1889 if (p != end)
1890 goto bad;
1891
1892 if (count)
1893 *count = i + 1;
1894 return 0;
1895
1896 bad:
1897 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1898 return ret;
1899 }
1900 EXPORT_SYMBOL(ceph_parse_ips);
1901
1902 static int process_banner(struct ceph_connection *con)
1903 {
1904 dout("process_banner on %p\n", con);
1905
1906 if (verify_hello(con) < 0)
1907 return -1;
1908
1909 ceph_decode_addr(&con->actual_peer_addr);
1910 ceph_decode_addr(&con->peer_addr_for_me);
1911
1912 /*
1913 * Make sure the other end is who we wanted. note that the other
1914 * end may not yet know their ip address, so if it's 0.0.0.0, give
1915 * them the benefit of the doubt.
1916 */
1917 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1918 sizeof(con->peer_addr)) != 0 &&
1919 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1920 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1921 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1922 ceph_pr_addr(&con->peer_addr.in_addr),
1923 (int)le32_to_cpu(con->peer_addr.nonce),
1924 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1925 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1926 con->error_msg = "wrong peer at address";
1927 return -1;
1928 }
1929
1930 /*
1931 * did we learn our address?
1932 */
1933 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1934 int port = addr_port(&con->msgr->inst.addr.in_addr);
1935
1936 memcpy(&con->msgr->inst.addr.in_addr,
1937 &con->peer_addr_for_me.in_addr,
1938 sizeof(con->peer_addr_for_me.in_addr));
1939 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1940 encode_my_addr(con->msgr);
1941 dout("process_banner learned my addr is %s\n",
1942 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1943 }
1944
1945 return 0;
1946 }
1947
1948 static int process_connect(struct ceph_connection *con)
1949 {
1950 u64 sup_feat = con->msgr->supported_features;
1951 u64 req_feat = con->msgr->required_features;
1952 u64 server_feat = ceph_sanitize_features(
1953 le64_to_cpu(con->in_reply.features));
1954 int ret;
1955
1956 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1957
1958 switch (con->in_reply.tag) {
1959 case CEPH_MSGR_TAG_FEATURES:
1960 pr_err("%s%lld %s feature set mismatch,"
1961 " my %llx < server's %llx, missing %llx\n",
1962 ENTITY_NAME(con->peer_name),
1963 ceph_pr_addr(&con->peer_addr.in_addr),
1964 sup_feat, server_feat, server_feat & ~sup_feat);
1965 con->error_msg = "missing required protocol features";
1966 reset_connection(con);
1967 return -1;
1968
1969 case CEPH_MSGR_TAG_BADPROTOVER:
1970 pr_err("%s%lld %s protocol version mismatch,"
1971 " my %d != server's %d\n",
1972 ENTITY_NAME(con->peer_name),
1973 ceph_pr_addr(&con->peer_addr.in_addr),
1974 le32_to_cpu(con->out_connect.protocol_version),
1975 le32_to_cpu(con->in_reply.protocol_version));
1976 con->error_msg = "protocol version mismatch";
1977 reset_connection(con);
1978 return -1;
1979
1980 case CEPH_MSGR_TAG_BADAUTHORIZER:
1981 con->auth_retry++;
1982 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1983 con->auth_retry);
1984 if (con->auth_retry == 2) {
1985 con->error_msg = "connect authorization failure";
1986 return -1;
1987 }
1988 con_out_kvec_reset(con);
1989 ret = prepare_write_connect(con);
1990 if (ret < 0)
1991 return ret;
1992 prepare_read_connect(con);
1993 break;
1994
1995 case CEPH_MSGR_TAG_RESETSESSION:
1996 /*
1997 * If we connected with a large connect_seq but the peer
1998 * has no record of a session with us (no connection, or
1999 * connect_seq == 0), they will send RESETSESION to indicate
2000 * that they must have reset their session, and may have
2001 * dropped messages.
2002 */
2003 dout("process_connect got RESET peer seq %u\n",
2004 le32_to_cpu(con->in_reply.connect_seq));
2005 pr_err("%s%lld %s connection reset\n",
2006 ENTITY_NAME(con->peer_name),
2007 ceph_pr_addr(&con->peer_addr.in_addr));
2008 reset_connection(con);
2009 con_out_kvec_reset(con);
2010 ret = prepare_write_connect(con);
2011 if (ret < 0)
2012 return ret;
2013 prepare_read_connect(con);
2014
2015 /* Tell ceph about it. */
2016 mutex_unlock(&con->mutex);
2017 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2018 if (con->ops->peer_reset)
2019 con->ops->peer_reset(con);
2020 mutex_lock(&con->mutex);
2021 if (con->state != CON_STATE_NEGOTIATING)
2022 return -EAGAIN;
2023 break;
2024
2025 case CEPH_MSGR_TAG_RETRY_SESSION:
2026 /*
2027 * If we sent a smaller connect_seq than the peer has, try
2028 * again with a larger value.
2029 */
2030 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2031 le32_to_cpu(con->out_connect.connect_seq),
2032 le32_to_cpu(con->in_reply.connect_seq));
2033 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2034 con_out_kvec_reset(con);
2035 ret = prepare_write_connect(con);
2036 if (ret < 0)
2037 return ret;
2038 prepare_read_connect(con);
2039 break;
2040
2041 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2042 /*
2043 * If we sent a smaller global_seq than the peer has, try
2044 * again with a larger value.
2045 */
2046 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2047 con->peer_global_seq,
2048 le32_to_cpu(con->in_reply.global_seq));
2049 get_global_seq(con->msgr,
2050 le32_to_cpu(con->in_reply.global_seq));
2051 con_out_kvec_reset(con);
2052 ret = prepare_write_connect(con);
2053 if (ret < 0)
2054 return ret;
2055 prepare_read_connect(con);
2056 break;
2057
2058 case CEPH_MSGR_TAG_SEQ:
2059 case CEPH_MSGR_TAG_READY:
2060 if (req_feat & ~server_feat) {
2061 pr_err("%s%lld %s protocol feature mismatch,"
2062 " my required %llx > server's %llx, need %llx\n",
2063 ENTITY_NAME(con->peer_name),
2064 ceph_pr_addr(&con->peer_addr.in_addr),
2065 req_feat, server_feat, req_feat & ~server_feat);
2066 con->error_msg = "missing required protocol features";
2067 reset_connection(con);
2068 return -1;
2069 }
2070
2071 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2072 con->state = CON_STATE_OPEN;
2073 con->auth_retry = 0; /* we authenticated; clear flag */
2074 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2075 con->connect_seq++;
2076 con->peer_features = server_feat;
2077 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2078 con->peer_global_seq,
2079 le32_to_cpu(con->in_reply.connect_seq),
2080 con->connect_seq);
2081 WARN_ON(con->connect_seq !=
2082 le32_to_cpu(con->in_reply.connect_seq));
2083
2084 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2085 con_flag_set(con, CON_FLAG_LOSSYTX);
2086
2087 con->delay = 0; /* reset backoff memory */
2088
2089 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2090 prepare_write_seq(con);
2091 prepare_read_seq(con);
2092 } else {
2093 prepare_read_tag(con);
2094 }
2095 break;
2096
2097 case CEPH_MSGR_TAG_WAIT:
2098 /*
2099 * If there is a connection race (we are opening
2100 * connections to each other), one of us may just have
2101 * to WAIT. This shouldn't happen if we are the
2102 * client.
2103 */
2104 pr_err("process_connect got WAIT as client\n");
2105 con->error_msg = "protocol error, got WAIT as client";
2106 return -1;
2107
2108 default:
2109 pr_err("connect protocol error, will retry\n");
2110 con->error_msg = "protocol error, garbage tag during connect";
2111 return -1;
2112 }
2113 return 0;
2114 }
2115
2116
2117 /*
2118 * read (part of) an ack
2119 */
2120 static int read_partial_ack(struct ceph_connection *con)
2121 {
2122 int size = sizeof (con->in_temp_ack);
2123 int end = size;
2124
2125 return read_partial(con, end, size, &con->in_temp_ack);
2126 }
2127
2128 /*
2129 * We can finally discard anything that's been acked.
2130 */
2131 static void process_ack(struct ceph_connection *con)
2132 {
2133 struct ceph_msg *m;
2134 u64 ack = le64_to_cpu(con->in_temp_ack);
2135 u64 seq;
2136
2137 while (!list_empty(&con->out_sent)) {
2138 m = list_first_entry(&con->out_sent, struct ceph_msg,
2139 list_head);
2140 seq = le64_to_cpu(m->hdr.seq);
2141 if (seq > ack)
2142 break;
2143 dout("got ack for seq %llu type %d at %p\n", seq,
2144 le16_to_cpu(m->hdr.type), m);
2145 m->ack_stamp = jiffies;
2146 ceph_msg_remove(m);
2147 }
2148 prepare_read_tag(con);
2149 }
2150
2151
2152 static int read_partial_message_section(struct ceph_connection *con,
2153 struct kvec *section,
2154 unsigned int sec_len, u32 *crc)
2155 {
2156 int ret, left;
2157
2158 BUG_ON(!section);
2159
2160 while (section->iov_len < sec_len) {
2161 BUG_ON(section->iov_base == NULL);
2162 left = sec_len - section->iov_len;
2163 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2164 section->iov_len, left);
2165 if (ret <= 0)
2166 return ret;
2167 section->iov_len += ret;
2168 }
2169 if (section->iov_len == sec_len)
2170 *crc = crc32c(0, section->iov_base, section->iov_len);
2171
2172 return 1;
2173 }
2174
2175 static int read_partial_msg_data(struct ceph_connection *con)
2176 {
2177 struct ceph_msg *msg = con->in_msg;
2178 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2179 const bool do_datacrc = !con->msgr->nocrc;
2180 struct page *page;
2181 size_t page_offset;
2182 size_t length;
2183 u32 crc = 0;
2184 int ret;
2185
2186 BUG_ON(!msg);
2187 if (list_empty(&msg->data))
2188 return -EIO;
2189
2190 if (do_datacrc)
2191 crc = con->in_data_crc;
2192 while (cursor->resid) {
2193 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2194 NULL);
2195 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2196 if (ret <= 0) {
2197 if (do_datacrc)
2198 con->in_data_crc = crc;
2199
2200 return ret;
2201 }
2202
2203 if (do_datacrc)
2204 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2205 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2206 }
2207 if (do_datacrc)
2208 con->in_data_crc = crc;
2209
2210 return 1; /* must return > 0 to indicate success */
2211 }
2212
2213 /*
2214 * read (part of) a message.
2215 */
2216 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2217
2218 static int read_partial_message(struct ceph_connection *con)
2219 {
2220 struct ceph_msg *m = con->in_msg;
2221 int size;
2222 int end;
2223 int ret;
2224 unsigned int front_len, middle_len, data_len;
2225 bool do_datacrc = !con->msgr->nocrc;
2226 u64 seq;
2227 u32 crc;
2228
2229 dout("read_partial_message con %p msg %p\n", con, m);
2230
2231 /* header */
2232 size = sizeof (con->in_hdr);
2233 end = size;
2234 ret = read_partial(con, end, size, &con->in_hdr);
2235 if (ret <= 0)
2236 return ret;
2237
2238 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2239 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2240 pr_err("read_partial_message bad hdr "
2241 " crc %u != expected %u\n",
2242 crc, con->in_hdr.crc);
2243 return -EBADMSG;
2244 }
2245
2246 front_len = le32_to_cpu(con->in_hdr.front_len);
2247 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2248 return -EIO;
2249 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2250 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2251 return -EIO;
2252 data_len = le32_to_cpu(con->in_hdr.data_len);
2253 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2254 return -EIO;
2255
2256 /* verify seq# */
2257 seq = le64_to_cpu(con->in_hdr.seq);
2258 if ((s64)seq - (s64)con->in_seq < 1) {
2259 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2260 ENTITY_NAME(con->peer_name),
2261 ceph_pr_addr(&con->peer_addr.in_addr),
2262 seq, con->in_seq + 1);
2263 con->in_base_pos = -front_len - middle_len - data_len -
2264 sizeof(m->footer);
2265 con->in_tag = CEPH_MSGR_TAG_READY;
2266 return 0;
2267 } else if ((s64)seq - (s64)con->in_seq > 1) {
2268 pr_err("read_partial_message bad seq %lld expected %lld\n",
2269 seq, con->in_seq + 1);
2270 con->error_msg = "bad message sequence # for incoming message";
2271 return -EBADMSG;
2272 }
2273
2274 /* allocate message? */
2275 if (!con->in_msg) {
2276 int skip = 0;
2277
2278 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2279 front_len, data_len);
2280 ret = ceph_con_in_msg_alloc(con, &skip);
2281 if (ret < 0)
2282 return ret;
2283
2284 BUG_ON(!con->in_msg ^ skip);
2285 if (con->in_msg && data_len > con->in_msg->data_length) {
2286 pr_warning("%s skipping long message (%u > %zd)\n",
2287 __func__, data_len, con->in_msg->data_length);
2288 ceph_msg_put(con->in_msg);
2289 con->in_msg = NULL;
2290 skip = 1;
2291 }
2292 if (skip) {
2293 /* skip this message */
2294 dout("alloc_msg said skip message\n");
2295 con->in_base_pos = -front_len - middle_len - data_len -
2296 sizeof(m->footer);
2297 con->in_tag = CEPH_MSGR_TAG_READY;
2298 con->in_seq++;
2299 return 0;
2300 }
2301
2302 BUG_ON(!con->in_msg);
2303 BUG_ON(con->in_msg->con != con);
2304 m = con->in_msg;
2305 m->front.iov_len = 0; /* haven't read it yet */
2306 if (m->middle)
2307 m->middle->vec.iov_len = 0;
2308
2309 /* prepare for data payload, if any */
2310
2311 if (data_len)
2312 prepare_message_data(con->in_msg, data_len);
2313 }
2314
2315 /* front */
2316 ret = read_partial_message_section(con, &m->front, front_len,
2317 &con->in_front_crc);
2318 if (ret <= 0)
2319 return ret;
2320
2321 /* middle */
2322 if (m->middle) {
2323 ret = read_partial_message_section(con, &m->middle->vec,
2324 middle_len,
2325 &con->in_middle_crc);
2326 if (ret <= 0)
2327 return ret;
2328 }
2329
2330 /* (page) data */
2331 if (data_len) {
2332 ret = read_partial_msg_data(con);
2333 if (ret <= 0)
2334 return ret;
2335 }
2336
2337 /* footer */
2338 size = sizeof (m->footer);
2339 end += size;
2340 ret = read_partial(con, end, size, &m->footer);
2341 if (ret <= 0)
2342 return ret;
2343
2344 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2345 m, front_len, m->footer.front_crc, middle_len,
2346 m->footer.middle_crc, data_len, m->footer.data_crc);
2347
2348 /* crc ok? */
2349 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2350 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2351 m, con->in_front_crc, m->footer.front_crc);
2352 return -EBADMSG;
2353 }
2354 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2355 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2356 m, con->in_middle_crc, m->footer.middle_crc);
2357 return -EBADMSG;
2358 }
2359 if (do_datacrc &&
2360 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2361 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2362 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2363 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2364 return -EBADMSG;
2365 }
2366
2367 return 1; /* done! */
2368 }
2369
2370 /*
2371 * Process message. This happens in the worker thread. The callback should
2372 * be careful not to do anything that waits on other incoming messages or it
2373 * may deadlock.
2374 */
2375 static void process_message(struct ceph_connection *con)
2376 {
2377 struct ceph_msg *msg;
2378
2379 BUG_ON(con->in_msg->con != con);
2380 con->in_msg->con = NULL;
2381 msg = con->in_msg;
2382 con->in_msg = NULL;
2383 con->ops->put(con);
2384
2385 /* if first message, set peer_name */
2386 if (con->peer_name.type == 0)
2387 con->peer_name = msg->hdr.src;
2388
2389 con->in_seq++;
2390 mutex_unlock(&con->mutex);
2391
2392 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2393 msg, le64_to_cpu(msg->hdr.seq),
2394 ENTITY_NAME(msg->hdr.src),
2395 le16_to_cpu(msg->hdr.type),
2396 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2397 le32_to_cpu(msg->hdr.front_len),
2398 le32_to_cpu(msg->hdr.data_len),
2399 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2400 con->ops->dispatch(con, msg);
2401
2402 mutex_lock(&con->mutex);
2403 }
2404
2405
2406 /*
2407 * Write something to the socket. Called in a worker thread when the
2408 * socket appears to be writeable and we have something ready to send.
2409 */
2410 static int try_write(struct ceph_connection *con)
2411 {
2412 int ret = 1;
2413
2414 dout("try_write start %p state %lu\n", con, con->state);
2415
2416 more:
2417 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2418
2419 /* open the socket first? */
2420 if (con->state == CON_STATE_PREOPEN) {
2421 BUG_ON(con->sock);
2422 con->state = CON_STATE_CONNECTING;
2423
2424 con_out_kvec_reset(con);
2425 prepare_write_banner(con);
2426 prepare_read_banner(con);
2427
2428 BUG_ON(con->in_msg);
2429 con->in_tag = CEPH_MSGR_TAG_READY;
2430 dout("try_write initiating connect on %p new state %lu\n",
2431 con, con->state);
2432 ret = ceph_tcp_connect(con);
2433 if (ret < 0) {
2434 con->error_msg = "connect error";
2435 goto out;
2436 }
2437 }
2438
2439 more_kvec:
2440 /* kvec data queued? */
2441 if (con->out_skip) {
2442 ret = write_partial_skip(con);
2443 if (ret <= 0)
2444 goto out;
2445 }
2446 if (con->out_kvec_left) {
2447 ret = write_partial_kvec(con);
2448 if (ret <= 0)
2449 goto out;
2450 }
2451
2452 /* msg pages? */
2453 if (con->out_msg) {
2454 if (con->out_msg_done) {
2455 ceph_msg_put(con->out_msg);
2456 con->out_msg = NULL; /* we're done with this one */
2457 goto do_next;
2458 }
2459
2460 ret = write_partial_message_data(con);
2461 if (ret == 1)
2462 goto more_kvec; /* we need to send the footer, too! */
2463 if (ret == 0)
2464 goto out;
2465 if (ret < 0) {
2466 dout("try_write write_partial_message_data err %d\n",
2467 ret);
2468 goto out;
2469 }
2470 }
2471
2472 do_next:
2473 if (con->state == CON_STATE_OPEN) {
2474 /* is anything else pending? */
2475 if (!list_empty(&con->out_queue)) {
2476 prepare_write_message(con);
2477 goto more;
2478 }
2479 if (con->in_seq > con->in_seq_acked) {
2480 prepare_write_ack(con);
2481 goto more;
2482 }
2483 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2484 prepare_write_keepalive(con);
2485 goto more;
2486 }
2487 }
2488
2489 /* Nothing to do! */
2490 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2491 dout("try_write nothing else to write.\n");
2492 ret = 0;
2493 out:
2494 dout("try_write done on %p ret %d\n", con, ret);
2495 return ret;
2496 }
2497
2498
2499
2500 /*
2501 * Read what we can from the socket.
2502 */
2503 static int try_read(struct ceph_connection *con)
2504 {
2505 int ret = -1;
2506
2507 more:
2508 dout("try_read start on %p state %lu\n", con, con->state);
2509 if (con->state != CON_STATE_CONNECTING &&
2510 con->state != CON_STATE_NEGOTIATING &&
2511 con->state != CON_STATE_OPEN)
2512 return 0;
2513
2514 BUG_ON(!con->sock);
2515
2516 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2517 con->in_base_pos);
2518
2519 if (con->state == CON_STATE_CONNECTING) {
2520 dout("try_read connecting\n");
2521 ret = read_partial_banner(con);
2522 if (ret <= 0)
2523 goto out;
2524 ret = process_banner(con);
2525 if (ret < 0)
2526 goto out;
2527
2528 con->state = CON_STATE_NEGOTIATING;
2529
2530 /*
2531 * Received banner is good, exchange connection info.
2532 * Do not reset out_kvec, as sending our banner raced
2533 * with receiving peer banner after connect completed.
2534 */
2535 ret = prepare_write_connect(con);
2536 if (ret < 0)
2537 goto out;
2538 prepare_read_connect(con);
2539
2540 /* Send connection info before awaiting response */
2541 goto out;
2542 }
2543
2544 if (con->state == CON_STATE_NEGOTIATING) {
2545 dout("try_read negotiating\n");
2546 ret = read_partial_connect(con);
2547 if (ret <= 0)
2548 goto out;
2549 ret = process_connect(con);
2550 if (ret < 0)
2551 goto out;
2552 goto more;
2553 }
2554
2555 WARN_ON(con->state != CON_STATE_OPEN);
2556
2557 if (con->in_base_pos < 0) {
2558 /*
2559 * skipping + discarding content.
2560 *
2561 * FIXME: there must be a better way to do this!
2562 */
2563 static char buf[SKIP_BUF_SIZE];
2564 int skip = min((int) sizeof (buf), -con->in_base_pos);
2565
2566 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2567 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2568 if (ret <= 0)
2569 goto out;
2570 con->in_base_pos += ret;
2571 if (con->in_base_pos)
2572 goto more;
2573 }
2574 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2575 /*
2576 * what's next?
2577 */
2578 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2579 if (ret <= 0)
2580 goto out;
2581 dout("try_read got tag %d\n", (int)con->in_tag);
2582 switch (con->in_tag) {
2583 case CEPH_MSGR_TAG_MSG:
2584 prepare_read_message(con);
2585 break;
2586 case CEPH_MSGR_TAG_ACK:
2587 prepare_read_ack(con);
2588 break;
2589 case CEPH_MSGR_TAG_CLOSE:
2590 con_close_socket(con);
2591 con->state = CON_STATE_CLOSED;
2592 goto out;
2593 default:
2594 goto bad_tag;
2595 }
2596 }
2597 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2598 ret = read_partial_message(con);
2599 if (ret <= 0) {
2600 switch (ret) {
2601 case -EBADMSG:
2602 con->error_msg = "bad crc";
2603 ret = -EIO;
2604 break;
2605 case -EIO:
2606 con->error_msg = "io error";
2607 break;
2608 }
2609 goto out;
2610 }
2611 if (con->in_tag == CEPH_MSGR_TAG_READY)
2612 goto more;
2613 process_message(con);
2614 if (con->state == CON_STATE_OPEN)
2615 prepare_read_tag(con);
2616 goto more;
2617 }
2618 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2619 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2620 /*
2621 * the final handshake seq exchange is semantically
2622 * equivalent to an ACK
2623 */
2624 ret = read_partial_ack(con);
2625 if (ret <= 0)
2626 goto out;
2627 process_ack(con);
2628 goto more;
2629 }
2630
2631 out:
2632 dout("try_read done on %p ret %d\n", con, ret);
2633 return ret;
2634
2635 bad_tag:
2636 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2637 con->error_msg = "protocol error, garbage tag";
2638 ret = -1;
2639 goto out;
2640 }
2641
2642
2643 /*
2644 * Atomically queue work on a connection after the specified delay.
2645 * Bump @con reference to avoid races with connection teardown.
2646 * Returns 0 if work was queued, or an error code otherwise.
2647 */
2648 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2649 {
2650 if (!con->ops->get(con)) {
2651 dout("%s %p ref count 0\n", __func__, con);
2652
2653 return -ENOENT;
2654 }
2655
2656 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2657 dout("%s %p - already queued\n", __func__, con);
2658 con->ops->put(con);
2659
2660 return -EBUSY;
2661 }
2662
2663 dout("%s %p %lu\n", __func__, con, delay);
2664
2665 return 0;
2666 }
2667
2668 static void queue_con(struct ceph_connection *con)
2669 {
2670 (void) queue_con_delay(con, 0);
2671 }
2672
2673 static bool con_sock_closed(struct ceph_connection *con)
2674 {
2675 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2676 return false;
2677
2678 #define CASE(x) \
2679 case CON_STATE_ ## x: \
2680 con->error_msg = "socket closed (con state " #x ")"; \
2681 break;
2682
2683 switch (con->state) {
2684 CASE(CLOSED);
2685 CASE(PREOPEN);
2686 CASE(CONNECTING);
2687 CASE(NEGOTIATING);
2688 CASE(OPEN);
2689 CASE(STANDBY);
2690 default:
2691 pr_warning("%s con %p unrecognized state %lu\n",
2692 __func__, con, con->state);
2693 con->error_msg = "unrecognized con state";
2694 BUG();
2695 break;
2696 }
2697 #undef CASE
2698
2699 return true;
2700 }
2701
2702 static bool con_backoff(struct ceph_connection *con)
2703 {
2704 int ret;
2705
2706 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2707 return false;
2708
2709 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2710 if (ret) {
2711 dout("%s: con %p FAILED to back off %lu\n", __func__,
2712 con, con->delay);
2713 BUG_ON(ret == -ENOENT);
2714 con_flag_set(con, CON_FLAG_BACKOFF);
2715 }
2716
2717 return true;
2718 }
2719
2720 /* Finish fault handling; con->mutex must *not* be held here */
2721
2722 static void con_fault_finish(struct ceph_connection *con)
2723 {
2724 /*
2725 * in case we faulted due to authentication, invalidate our
2726 * current tickets so that we can get new ones.
2727 */
2728 if (con->auth_retry && con->ops->invalidate_authorizer) {
2729 dout("calling invalidate_authorizer()\n");
2730 con->ops->invalidate_authorizer(con);
2731 }
2732
2733 if (con->ops->fault)
2734 con->ops->fault(con);
2735 }
2736
2737 /*
2738 * Do some work on a connection. Drop a connection ref when we're done.
2739 */
2740 static void con_work(struct work_struct *work)
2741 {
2742 struct ceph_connection *con = container_of(work, struct ceph_connection,
2743 work.work);
2744 bool fault;
2745
2746 mutex_lock(&con->mutex);
2747 while (true) {
2748 int ret;
2749
2750 if ((fault = con_sock_closed(con))) {
2751 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2752 break;
2753 }
2754 if (con_backoff(con)) {
2755 dout("%s: con %p BACKOFF\n", __func__, con);
2756 break;
2757 }
2758 if (con->state == CON_STATE_STANDBY) {
2759 dout("%s: con %p STANDBY\n", __func__, con);
2760 break;
2761 }
2762 if (con->state == CON_STATE_CLOSED) {
2763 dout("%s: con %p CLOSED\n", __func__, con);
2764 BUG_ON(con->sock);
2765 break;
2766 }
2767 if (con->state == CON_STATE_PREOPEN) {
2768 dout("%s: con %p PREOPEN\n", __func__, con);
2769 BUG_ON(con->sock);
2770 }
2771
2772 ret = try_read(con);
2773 if (ret < 0) {
2774 if (ret == -EAGAIN)
2775 continue;
2776 con->error_msg = "socket error on read";
2777 fault = true;
2778 break;
2779 }
2780
2781 ret = try_write(con);
2782 if (ret < 0) {
2783 if (ret == -EAGAIN)
2784 continue;
2785 con->error_msg = "socket error on write";
2786 fault = true;
2787 }
2788
2789 break; /* If we make it to here, we're done */
2790 }
2791 if (fault)
2792 con_fault(con);
2793 mutex_unlock(&con->mutex);
2794
2795 if (fault)
2796 con_fault_finish(con);
2797
2798 con->ops->put(con);
2799 }
2800
2801 /*
2802 * Generic error/fault handler. A retry mechanism is used with
2803 * exponential backoff
2804 */
2805 static void con_fault(struct ceph_connection *con)
2806 {
2807 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2808 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2809 dout("fault %p state %lu to peer %s\n",
2810 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2811
2812 WARN_ON(con->state != CON_STATE_CONNECTING &&
2813 con->state != CON_STATE_NEGOTIATING &&
2814 con->state != CON_STATE_OPEN);
2815
2816 con_close_socket(con);
2817
2818 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2819 dout("fault on LOSSYTX channel, marking CLOSED\n");
2820 con->state = CON_STATE_CLOSED;
2821 return;
2822 }
2823
2824 if (con->in_msg) {
2825 BUG_ON(con->in_msg->con != con);
2826 con->in_msg->con = NULL;
2827 ceph_msg_put(con->in_msg);
2828 con->in_msg = NULL;
2829 con->ops->put(con);
2830 }
2831
2832 /* Requeue anything that hasn't been acked */
2833 list_splice_init(&con->out_sent, &con->out_queue);
2834
2835 /* If there are no messages queued or keepalive pending, place
2836 * the connection in a STANDBY state */
2837 if (list_empty(&con->out_queue) &&
2838 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2839 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2840 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2841 con->state = CON_STATE_STANDBY;
2842 } else {
2843 /* retry after a delay. */
2844 con->state = CON_STATE_PREOPEN;
2845 if (con->delay == 0)
2846 con->delay = BASE_DELAY_INTERVAL;
2847 else if (con->delay < MAX_DELAY_INTERVAL)
2848 con->delay *= 2;
2849 con_flag_set(con, CON_FLAG_BACKOFF);
2850 queue_con(con);
2851 }
2852 }
2853
2854
2855
2856 /*
2857 * initialize a new messenger instance
2858 */
2859 void ceph_messenger_init(struct ceph_messenger *msgr,
2860 struct ceph_entity_addr *myaddr,
2861 u64 supported_features,
2862 u64 required_features,
2863 bool nocrc)
2864 {
2865 msgr->supported_features = supported_features;
2866 msgr->required_features = required_features;
2867
2868 spin_lock_init(&msgr->global_seq_lock);
2869
2870 if (myaddr)
2871 msgr->inst.addr = *myaddr;
2872
2873 /* select a random nonce */
2874 msgr->inst.addr.type = 0;
2875 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2876 encode_my_addr(msgr);
2877 msgr->nocrc = nocrc;
2878
2879 atomic_set(&msgr->stopping, 0);
2880
2881 dout("%s %p\n", __func__, msgr);
2882 }
2883 EXPORT_SYMBOL(ceph_messenger_init);
2884
2885 static void clear_standby(struct ceph_connection *con)
2886 {
2887 /* come back from STANDBY? */
2888 if (con->state == CON_STATE_STANDBY) {
2889 dout("clear_standby %p and ++connect_seq\n", con);
2890 con->state = CON_STATE_PREOPEN;
2891 con->connect_seq++;
2892 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2893 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2894 }
2895 }
2896
2897 /*
2898 * Queue up an outgoing message on the given connection.
2899 */
2900 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2901 {
2902 /* set src+dst */
2903 msg->hdr.src = con->msgr->inst.name;
2904 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2905 msg->needs_out_seq = true;
2906
2907 mutex_lock(&con->mutex);
2908
2909 if (con->state == CON_STATE_CLOSED) {
2910 dout("con_send %p closed, dropping %p\n", con, msg);
2911 ceph_msg_put(msg);
2912 mutex_unlock(&con->mutex);
2913 return;
2914 }
2915
2916 BUG_ON(msg->con != NULL);
2917 msg->con = con->ops->get(con);
2918 BUG_ON(msg->con == NULL);
2919
2920 BUG_ON(!list_empty(&msg->list_head));
2921 list_add_tail(&msg->list_head, &con->out_queue);
2922 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2923 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2924 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2925 le32_to_cpu(msg->hdr.front_len),
2926 le32_to_cpu(msg->hdr.middle_len),
2927 le32_to_cpu(msg->hdr.data_len));
2928
2929 clear_standby(con);
2930 mutex_unlock(&con->mutex);
2931
2932 /* if there wasn't anything waiting to send before, queue
2933 * new work */
2934 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2935 queue_con(con);
2936 }
2937 EXPORT_SYMBOL(ceph_con_send);
2938
2939 /*
2940 * Revoke a message that was previously queued for send
2941 */
2942 void ceph_msg_revoke(struct ceph_msg *msg)
2943 {
2944 struct ceph_connection *con = msg->con;
2945
2946 if (!con)
2947 return; /* Message not in our possession */
2948
2949 mutex_lock(&con->mutex);
2950 if (!list_empty(&msg->list_head)) {
2951 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2952 list_del_init(&msg->list_head);
2953 BUG_ON(msg->con == NULL);
2954 msg->con->ops->put(msg->con);
2955 msg->con = NULL;
2956 msg->hdr.seq = 0;
2957
2958 ceph_msg_put(msg);
2959 }
2960 if (con->out_msg == msg) {
2961 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2962 con->out_msg = NULL;
2963 if (con->out_kvec_is_msg) {
2964 con->out_skip = con->out_kvec_bytes;
2965 con->out_kvec_is_msg = false;
2966 }
2967 msg->hdr.seq = 0;
2968
2969 ceph_msg_put(msg);
2970 }
2971 mutex_unlock(&con->mutex);
2972 }
2973
2974 /*
2975 * Revoke a message that we may be reading data into
2976 */
2977 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2978 {
2979 struct ceph_connection *con;
2980
2981 BUG_ON(msg == NULL);
2982 if (!msg->con) {
2983 dout("%s msg %p null con\n", __func__, msg);
2984
2985 return; /* Message not in our possession */
2986 }
2987
2988 con = msg->con;
2989 mutex_lock(&con->mutex);
2990 if (con->in_msg == msg) {
2991 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2992 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2993 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2994
2995 /* skip rest of message */
2996 dout("%s %p msg %p revoked\n", __func__, con, msg);
2997 con->in_base_pos = con->in_base_pos -
2998 sizeof(struct ceph_msg_header) -
2999 front_len -
3000 middle_len -
3001 data_len -
3002 sizeof(struct ceph_msg_footer);
3003 ceph_msg_put(con->in_msg);
3004 con->in_msg = NULL;
3005 con->in_tag = CEPH_MSGR_TAG_READY;
3006 con->in_seq++;
3007 } else {
3008 dout("%s %p in_msg %p msg %p no-op\n",
3009 __func__, con, con->in_msg, msg);
3010 }
3011 mutex_unlock(&con->mutex);
3012 }
3013
3014 /*
3015 * Queue a keepalive byte to ensure the tcp connection is alive.
3016 */
3017 void ceph_con_keepalive(struct ceph_connection *con)
3018 {
3019 dout("con_keepalive %p\n", con);
3020 mutex_lock(&con->mutex);
3021 clear_standby(con);
3022 mutex_unlock(&con->mutex);
3023 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3024 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3025 queue_con(con);
3026 }
3027 EXPORT_SYMBOL(ceph_con_keepalive);
3028
3029 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3030 {
3031 struct ceph_msg_data *data;
3032
3033 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3034 return NULL;
3035
3036 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3037 if (data)
3038 data->type = type;
3039 INIT_LIST_HEAD(&data->links);
3040
3041 return data;
3042 }
3043
3044 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3045 {
3046 if (!data)
3047 return;
3048
3049 WARN_ON(!list_empty(&data->links));
3050 if (data->type == CEPH_MSG_DATA_PAGELIST) {
3051 ceph_pagelist_release(data->pagelist);
3052 kfree(data->pagelist);
3053 }
3054 kmem_cache_free(ceph_msg_data_cache, data);
3055 }
3056
3057 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3058 size_t length, size_t alignment)
3059 {
3060 struct ceph_msg_data *data;
3061
3062 BUG_ON(!pages);
3063 BUG_ON(!length);
3064
3065 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3066 BUG_ON(!data);
3067 data->pages = pages;
3068 data->length = length;
3069 data->alignment = alignment & ~PAGE_MASK;
3070
3071 list_add_tail(&data->links, &msg->data);
3072 msg->data_length += length;
3073 }
3074 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3075
3076 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3077 struct ceph_pagelist *pagelist)
3078 {
3079 struct ceph_msg_data *data;
3080
3081 BUG_ON(!pagelist);
3082 BUG_ON(!pagelist->length);
3083
3084 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3085 BUG_ON(!data);
3086 data->pagelist = pagelist;
3087
3088 list_add_tail(&data->links, &msg->data);
3089 msg->data_length += pagelist->length;
3090 }
3091 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3092
3093 #ifdef CONFIG_BLOCK
3094 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3095 size_t length)
3096 {
3097 struct ceph_msg_data *data;
3098
3099 BUG_ON(!bio);
3100
3101 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3102 BUG_ON(!data);
3103 data->bio = bio;
3104 data->bio_length = length;
3105
3106 list_add_tail(&data->links, &msg->data);
3107 msg->data_length += length;
3108 }
3109 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3110 #endif /* CONFIG_BLOCK */
3111
3112 /*
3113 * construct a new message with given type, size
3114 * the new msg has a ref count of 1.
3115 */
3116 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3117 bool can_fail)
3118 {
3119 struct ceph_msg *m;
3120
3121 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3122 if (m == NULL)
3123 goto out;
3124
3125 m->hdr.type = cpu_to_le16(type);
3126 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3127 m->hdr.front_len = cpu_to_le32(front_len);
3128
3129 INIT_LIST_HEAD(&m->list_head);
3130 kref_init(&m->kref);
3131 INIT_LIST_HEAD(&m->data);
3132
3133 /* front */
3134 if (front_len) {
3135 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3136 if (m->front.iov_base == NULL) {
3137 dout("ceph_msg_new can't allocate %d bytes\n",
3138 front_len);
3139 goto out2;
3140 }
3141 } else {
3142 m->front.iov_base = NULL;
3143 }
3144 m->front_alloc_len = m->front.iov_len = front_len;
3145
3146 dout("ceph_msg_new %p front %d\n", m, front_len);
3147 return m;
3148
3149 out2:
3150 ceph_msg_put(m);
3151 out:
3152 if (!can_fail) {
3153 pr_err("msg_new can't create type %d front %d\n", type,
3154 front_len);
3155 WARN_ON(1);
3156 } else {
3157 dout("msg_new can't create type %d front %d\n", type,
3158 front_len);
3159 }
3160 return NULL;
3161 }
3162 EXPORT_SYMBOL(ceph_msg_new);
3163
3164 /*
3165 * Allocate "middle" portion of a message, if it is needed and wasn't
3166 * allocated by alloc_msg. This allows us to read a small fixed-size
3167 * per-type header in the front and then gracefully fail (i.e.,
3168 * propagate the error to the caller based on info in the front) when
3169 * the middle is too large.
3170 */
3171 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3172 {
3173 int type = le16_to_cpu(msg->hdr.type);
3174 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3175
3176 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3177 ceph_msg_type_name(type), middle_len);
3178 BUG_ON(!middle_len);
3179 BUG_ON(msg->middle);
3180
3181 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3182 if (!msg->middle)
3183 return -ENOMEM;
3184 return 0;
3185 }
3186
3187 /*
3188 * Allocate a message for receiving an incoming message on a
3189 * connection, and save the result in con->in_msg. Uses the
3190 * connection's private alloc_msg op if available.
3191 *
3192 * Returns 0 on success, or a negative error code.
3193 *
3194 * On success, if we set *skip = 1:
3195 * - the next message should be skipped and ignored.
3196 * - con->in_msg == NULL
3197 * or if we set *skip = 0:
3198 * - con->in_msg is non-null.
3199 * On error (ENOMEM, EAGAIN, ...),
3200 * - con->in_msg == NULL
3201 */
3202 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3203 {
3204 struct ceph_msg_header *hdr = &con->in_hdr;
3205 int middle_len = le32_to_cpu(hdr->middle_len);
3206 struct ceph_msg *msg;
3207 int ret = 0;
3208
3209 BUG_ON(con->in_msg != NULL);
3210 BUG_ON(!con->ops->alloc_msg);
3211
3212 mutex_unlock(&con->mutex);
3213 msg = con->ops->alloc_msg(con, hdr, skip);
3214 mutex_lock(&con->mutex);
3215 if (con->state != CON_STATE_OPEN) {
3216 if (msg)
3217 ceph_msg_put(msg);
3218 return -EAGAIN;
3219 }
3220 if (msg) {
3221 BUG_ON(*skip);
3222 con->in_msg = msg;
3223 con->in_msg->con = con->ops->get(con);
3224 BUG_ON(con->in_msg->con == NULL);
3225 } else {
3226 /*
3227 * Null message pointer means either we should skip
3228 * this message or we couldn't allocate memory. The
3229 * former is not an error.
3230 */
3231 if (*skip)
3232 return 0;
3233 con->error_msg = "error allocating memory for incoming message";
3234
3235 return -ENOMEM;
3236 }
3237 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3238
3239 if (middle_len && !con->in_msg->middle) {
3240 ret = ceph_alloc_middle(con, con->in_msg);
3241 if (ret < 0) {
3242 ceph_msg_put(con->in_msg);
3243 con->in_msg = NULL;
3244 }
3245 }
3246
3247 return ret;
3248 }
3249
3250
3251 /*
3252 * Free a generically kmalloc'd message.
3253 */
3254 void ceph_msg_kfree(struct ceph_msg *m)
3255 {
3256 dout("msg_kfree %p\n", m);
3257 ceph_kvfree(m->front.iov_base);
3258 kmem_cache_free(ceph_msg_cache, m);
3259 }
3260
3261 /*
3262 * Drop a msg ref. Destroy as needed.
3263 */
3264 void ceph_msg_last_put(struct kref *kref)
3265 {
3266 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3267 LIST_HEAD(data);
3268 struct list_head *links;
3269 struct list_head *next;
3270
3271 dout("ceph_msg_put last one on %p\n", m);
3272 WARN_ON(!list_empty(&m->list_head));
3273
3274 /* drop middle, data, if any */
3275 if (m->middle) {
3276 ceph_buffer_put(m->middle);
3277 m->middle = NULL;
3278 }
3279
3280 list_splice_init(&m->data, &data);
3281 list_for_each_safe(links, next, &data) {
3282 struct ceph_msg_data *data;
3283
3284 data = list_entry(links, struct ceph_msg_data, links);
3285 list_del_init(links);
3286 ceph_msg_data_destroy(data);
3287 }
3288 m->data_length = 0;
3289
3290 if (m->pool)
3291 ceph_msgpool_put(m->pool, m);
3292 else
3293 ceph_msg_kfree(m);
3294 }
3295 EXPORT_SYMBOL(ceph_msg_last_put);
3296
3297 void ceph_msg_dump(struct ceph_msg *msg)
3298 {
3299 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3300 msg->front_alloc_len, msg->data_length);
3301 print_hex_dump(KERN_DEBUG, "header: ",
3302 DUMP_PREFIX_OFFSET, 16, 1,
3303 &msg->hdr, sizeof(msg->hdr), true);
3304 print_hex_dump(KERN_DEBUG, " front: ",
3305 DUMP_PREFIX_OFFSET, 16, 1,
3306 msg->front.iov_base, msg->front.iov_len, true);
3307 if (msg->middle)
3308 print_hex_dump(KERN_DEBUG, "middle: ",
3309 DUMP_PREFIX_OFFSET, 16, 1,
3310 msg->middle->vec.iov_base,
3311 msg->middle->vec.iov_len, true);
3312 print_hex_dump(KERN_DEBUG, "footer: ",
3313 DUMP_PREFIX_OFFSET, 16, 1,
3314 &msg->footer, sizeof(msg->footer), true);
3315 }
3316 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.186601 seconds and 5 git commands to generate.