fa16f2cc35fef243cdfceb08bd8471ef14973b99
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /*
33 * We track the state of the socket on a given connection using
34 * values defined below. The transition to a new socket state is
35 * handled by a function which verifies we aren't coming from an
36 * unexpected state.
37 *
38 * --------
39 * | NEW* | transient initial state
40 * --------
41 * | con_sock_state_init()
42 * v
43 * ----------
44 * | CLOSED | initialized, but no socket (and no
45 * ---------- TCP connection)
46 * ^ \
47 * | \ con_sock_state_connecting()
48 * | ----------------------
49 * | \
50 * + con_sock_state_closed() \
51 * |+--------------------------- \
52 * | \ \ \
53 * | ----------- \ \
54 * | | CLOSING | socket event; \ \
55 * | ----------- await close \ \
56 * | ^ \ |
57 * | | \ |
58 * | + con_sock_state_closing() \ |
59 * | / \ | |
60 * | / --------------- | |
61 * | / \ v v
62 * | / --------------
63 * | / -----------------| CONNECTING | socket created, TCP
64 * | | / -------------- connect initiated
65 * | | | con_sock_state_connected()
66 * | | v
67 * -------------
68 * | CONNECTED | TCP connection established
69 * -------------
70 *
71 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72 */
73
74 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
79
80 /*
81 * connection states
82 */
83 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
84 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
89
90 /*
91 * ceph_connection flag bits
92 */
93 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
94 * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
99
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108
109 /*
110 * When skipping (ignoring) a block of input we read it into a "skip
111 * buffer," which is this many bytes in size.
112 */
113 #define SKIP_BUF_SIZE 1024
114
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118
119 /*
120 * Nicely render a sockaddr as a string. An array of formatted
121 * strings is used, to approximate reentrancy.
122 */
123 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
124 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
127
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130
131 static struct page *zero_page; /* used in certain error cases */
132
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135 int i;
136 char *s;
137 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139
140 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141 s = addr_str[i];
142
143 switch (ss->ss_family) {
144 case AF_INET:
145 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146 ntohs(in4->sin_port));
147 break;
148
149 case AF_INET6:
150 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151 ntohs(in6->sin6_port));
152 break;
153
154 default:
155 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156 ss->ss_family);
157 }
158
159 return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162
163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166 ceph_encode_addr(&msgr->my_enc_addr);
167 }
168
169 /*
170 * work queue for all reading and writing to/from the socket.
171 */
172 static struct workqueue_struct *ceph_msgr_wq;
173
174 void _ceph_msgr_exit(void)
175 {
176 if (ceph_msgr_wq) {
177 destroy_workqueue(ceph_msgr_wq);
178 ceph_msgr_wq = NULL;
179 }
180
181 BUG_ON(zero_page == NULL);
182 kunmap(zero_page);
183 page_cache_release(zero_page);
184 zero_page = NULL;
185 }
186
187 int ceph_msgr_init(void)
188 {
189 BUG_ON(zero_page != NULL);
190 zero_page = ZERO_PAGE(0);
191 page_cache_get(zero_page);
192
193 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194 if (ceph_msgr_wq)
195 return 0;
196
197 pr_err("msgr_init failed to create workqueue\n");
198 _ceph_msgr_exit();
199
200 return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203
204 void ceph_msgr_exit(void)
205 {
206 BUG_ON(ceph_msgr_wq == NULL);
207
208 _ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211
212 void ceph_msgr_flush(void)
213 {
214 flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217
218 /* Connection socket state transition functions */
219
220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222 int old_state;
223
224 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226 printk("%s: unexpected old state %d\n", __func__, old_state);
227 }
228
229 static void con_sock_state_connecting(struct ceph_connection *con)
230 {
231 int old_state;
232
233 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
234 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
235 printk("%s: unexpected old state %d\n", __func__, old_state);
236 }
237
238 static void con_sock_state_connected(struct ceph_connection *con)
239 {
240 int old_state;
241
242 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
243 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
244 printk("%s: unexpected old state %d\n", __func__, old_state);
245 }
246
247 static void con_sock_state_closing(struct ceph_connection *con)
248 {
249 int old_state;
250
251 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
252 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
253 old_state != CON_SOCK_STATE_CONNECTED &&
254 old_state != CON_SOCK_STATE_CLOSING))
255 printk("%s: unexpected old state %d\n", __func__, old_state);
256 }
257
258 static void con_sock_state_closed(struct ceph_connection *con)
259 {
260 int old_state;
261
262 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
263 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
264 old_state != CON_SOCK_STATE_CLOSING &&
265 old_state != CON_SOCK_STATE_CONNECTING))
266 printk("%s: unexpected old state %d\n", __func__, old_state);
267 }
268
269 /*
270 * socket callback functions
271 */
272
273 /* data available on socket, or listen socket received a connect */
274 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
275 {
276 struct ceph_connection *con = sk->sk_user_data;
277 if (atomic_read(&con->msgr->stopping)) {
278 return;
279 }
280
281 if (sk->sk_state != TCP_CLOSE_WAIT) {
282 dout("%s on %p state = %lu, queueing work\n", __func__,
283 con, con->state);
284 queue_con(con);
285 }
286 }
287
288 /* socket has buffer space for writing */
289 static void ceph_sock_write_space(struct sock *sk)
290 {
291 struct ceph_connection *con = sk->sk_user_data;
292
293 /* only queue to workqueue if there is data we want to write,
294 * and there is sufficient space in the socket buffer to accept
295 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
296 * doesn't get called again until try_write() fills the socket
297 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
298 * and net/core/stream.c:sk_stream_write_space().
299 */
300 if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
301 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
302 dout("%s %p queueing write work\n", __func__, con);
303 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
304 queue_con(con);
305 }
306 } else {
307 dout("%s %p nothing to write\n", __func__, con);
308 }
309 }
310
311 /* socket's state has changed */
312 static void ceph_sock_state_change(struct sock *sk)
313 {
314 struct ceph_connection *con = sk->sk_user_data;
315
316 dout("%s %p state = %lu sk_state = %u\n", __func__,
317 con, con->state, sk->sk_state);
318
319 switch (sk->sk_state) {
320 case TCP_CLOSE:
321 dout("%s TCP_CLOSE\n", __func__);
322 case TCP_CLOSE_WAIT:
323 dout("%s TCP_CLOSE_WAIT\n", __func__);
324 con_sock_state_closing(con);
325 set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
326 queue_con(con);
327 break;
328 case TCP_ESTABLISHED:
329 dout("%s TCP_ESTABLISHED\n", __func__);
330 con_sock_state_connected(con);
331 queue_con(con);
332 break;
333 default: /* Everything else is uninteresting */
334 break;
335 }
336 }
337
338 /*
339 * set up socket callbacks
340 */
341 static void set_sock_callbacks(struct socket *sock,
342 struct ceph_connection *con)
343 {
344 struct sock *sk = sock->sk;
345 sk->sk_user_data = con;
346 sk->sk_data_ready = ceph_sock_data_ready;
347 sk->sk_write_space = ceph_sock_write_space;
348 sk->sk_state_change = ceph_sock_state_change;
349 }
350
351
352 /*
353 * socket helpers
354 */
355
356 /*
357 * initiate connection to a remote socket.
358 */
359 static int ceph_tcp_connect(struct ceph_connection *con)
360 {
361 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
362 struct socket *sock;
363 int ret;
364
365 BUG_ON(con->sock);
366 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
367 IPPROTO_TCP, &sock);
368 if (ret)
369 return ret;
370 sock->sk->sk_allocation = GFP_NOFS;
371
372 #ifdef CONFIG_LOCKDEP
373 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
374 #endif
375
376 set_sock_callbacks(sock, con);
377
378 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
379
380 con_sock_state_connecting(con);
381 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
382 O_NONBLOCK);
383 if (ret == -EINPROGRESS) {
384 dout("connect %s EINPROGRESS sk_state = %u\n",
385 ceph_pr_addr(&con->peer_addr.in_addr),
386 sock->sk->sk_state);
387 } else if (ret < 0) {
388 pr_err("connect %s error %d\n",
389 ceph_pr_addr(&con->peer_addr.in_addr), ret);
390 sock_release(sock);
391 con->error_msg = "connect error";
392
393 return ret;
394 }
395 con->sock = sock;
396 return 0;
397 }
398
399 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
400 {
401 struct kvec iov = {buf, len};
402 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
403 int r;
404
405 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
406 if (r == -EAGAIN)
407 r = 0;
408 return r;
409 }
410
411 /*
412 * write something. @more is true if caller will be sending more data
413 * shortly.
414 */
415 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
416 size_t kvlen, size_t len, int more)
417 {
418 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
419 int r;
420
421 if (more)
422 msg.msg_flags |= MSG_MORE;
423 else
424 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
425
426 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
427 if (r == -EAGAIN)
428 r = 0;
429 return r;
430 }
431
432 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
433 int offset, size_t size, int more)
434 {
435 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
436 int ret;
437
438 ret = kernel_sendpage(sock, page, offset, size, flags);
439 if (ret == -EAGAIN)
440 ret = 0;
441
442 return ret;
443 }
444
445
446 /*
447 * Shutdown/close the socket for the given connection.
448 */
449 static int con_close_socket(struct ceph_connection *con)
450 {
451 int rc;
452
453 dout("con_close_socket on %p sock %p\n", con, con->sock);
454 if (!con->sock)
455 return 0;
456 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
457 sock_release(con->sock);
458 con->sock = NULL;
459
460 /*
461 * Forcibly clear the SOCK_CLOSED flag. It gets set
462 * independent of the connection mutex, and we could have
463 * received a socket close event before we had the chance to
464 * shut the socket down.
465 */
466 clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
467 con_sock_state_closed(con);
468 return rc;
469 }
470
471 /*
472 * Reset a connection. Discard all incoming and outgoing messages
473 * and clear *_seq state.
474 */
475 static void ceph_msg_remove(struct ceph_msg *msg)
476 {
477 list_del_init(&msg->list_head);
478 BUG_ON(msg->con == NULL);
479 msg->con->ops->put(msg->con);
480 msg->con = NULL;
481
482 ceph_msg_put(msg);
483 }
484 static void ceph_msg_remove_list(struct list_head *head)
485 {
486 while (!list_empty(head)) {
487 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
488 list_head);
489 ceph_msg_remove(msg);
490 }
491 }
492
493 static void reset_connection(struct ceph_connection *con)
494 {
495 /* reset connection, out_queue, msg_ and connect_seq */
496 /* discard existing out_queue and msg_seq */
497 ceph_msg_remove_list(&con->out_queue);
498 ceph_msg_remove_list(&con->out_sent);
499
500 if (con->in_msg) {
501 BUG_ON(con->in_msg->con != con);
502 con->in_msg->con = NULL;
503 ceph_msg_put(con->in_msg);
504 con->in_msg = NULL;
505 con->ops->put(con);
506 }
507
508 con->connect_seq = 0;
509 con->out_seq = 0;
510 if (con->out_msg) {
511 ceph_msg_put(con->out_msg);
512 con->out_msg = NULL;
513 }
514 con->in_seq = 0;
515 con->in_seq_acked = 0;
516 }
517
518 /*
519 * mark a peer down. drop any open connections.
520 */
521 void ceph_con_close(struct ceph_connection *con)
522 {
523 mutex_lock(&con->mutex);
524 dout("con_close %p peer %s\n", con,
525 ceph_pr_addr(&con->peer_addr.in_addr));
526 con->state = CON_STATE_CLOSED;
527
528 clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
529 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
530 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
531 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
532 clear_bit(CON_FLAG_BACKOFF, &con->flags);
533
534 reset_connection(con);
535 con->peer_global_seq = 0;
536 cancel_delayed_work(&con->work);
537 con_close_socket(con);
538 mutex_unlock(&con->mutex);
539 }
540 EXPORT_SYMBOL(ceph_con_close);
541
542 /*
543 * Reopen a closed connection, with a new peer address.
544 */
545 void ceph_con_open(struct ceph_connection *con,
546 __u8 entity_type, __u64 entity_num,
547 struct ceph_entity_addr *addr)
548 {
549 mutex_lock(&con->mutex);
550 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
551
552 BUG_ON(con->state != CON_STATE_CLOSED);
553 con->state = CON_STATE_PREOPEN;
554
555 con->peer_name.type = (__u8) entity_type;
556 con->peer_name.num = cpu_to_le64(entity_num);
557
558 memcpy(&con->peer_addr, addr, sizeof(*addr));
559 con->delay = 0; /* reset backoff memory */
560 mutex_unlock(&con->mutex);
561 queue_con(con);
562 }
563 EXPORT_SYMBOL(ceph_con_open);
564
565 /*
566 * return true if this connection ever successfully opened
567 */
568 bool ceph_con_opened(struct ceph_connection *con)
569 {
570 return con->connect_seq > 0;
571 }
572
573 /*
574 * initialize a new connection.
575 */
576 void ceph_con_init(struct ceph_connection *con, void *private,
577 const struct ceph_connection_operations *ops,
578 struct ceph_messenger *msgr)
579 {
580 dout("con_init %p\n", con);
581 memset(con, 0, sizeof(*con));
582 con->private = private;
583 con->ops = ops;
584 con->msgr = msgr;
585
586 con_sock_state_init(con);
587
588 mutex_init(&con->mutex);
589 INIT_LIST_HEAD(&con->out_queue);
590 INIT_LIST_HEAD(&con->out_sent);
591 INIT_DELAYED_WORK(&con->work, con_work);
592
593 con->state = CON_STATE_CLOSED;
594 }
595 EXPORT_SYMBOL(ceph_con_init);
596
597
598 /*
599 * We maintain a global counter to order connection attempts. Get
600 * a unique seq greater than @gt.
601 */
602 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
603 {
604 u32 ret;
605
606 spin_lock(&msgr->global_seq_lock);
607 if (msgr->global_seq < gt)
608 msgr->global_seq = gt;
609 ret = ++msgr->global_seq;
610 spin_unlock(&msgr->global_seq_lock);
611 return ret;
612 }
613
614 static void con_out_kvec_reset(struct ceph_connection *con)
615 {
616 con->out_kvec_left = 0;
617 con->out_kvec_bytes = 0;
618 con->out_kvec_cur = &con->out_kvec[0];
619 }
620
621 static void con_out_kvec_add(struct ceph_connection *con,
622 size_t size, void *data)
623 {
624 int index;
625
626 index = con->out_kvec_left;
627 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
628
629 con->out_kvec[index].iov_len = size;
630 con->out_kvec[index].iov_base = data;
631 con->out_kvec_left++;
632 con->out_kvec_bytes += size;
633 }
634
635 #ifdef CONFIG_BLOCK
636 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
637 {
638 if (!bio) {
639 *iter = NULL;
640 *seg = 0;
641 return;
642 }
643 *iter = bio;
644 *seg = bio->bi_idx;
645 }
646
647 static void iter_bio_next(struct bio **bio_iter, int *seg)
648 {
649 if (*bio_iter == NULL)
650 return;
651
652 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
653
654 (*seg)++;
655 if (*seg == (*bio_iter)->bi_vcnt)
656 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
657 }
658 #endif
659
660 static void prepare_write_message_data(struct ceph_connection *con)
661 {
662 struct ceph_msg *msg = con->out_msg;
663
664 BUG_ON(!msg);
665 BUG_ON(!msg->hdr.data_len);
666
667 /* initialize page iterator */
668 con->out_msg_pos.page = 0;
669 if (msg->pages)
670 con->out_msg_pos.page_pos = msg->page_alignment;
671 else
672 con->out_msg_pos.page_pos = 0;
673 #ifdef CONFIG_BLOCK
674 if (msg->bio)
675 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
676 #endif
677 con->out_msg_pos.data_pos = 0;
678 con->out_msg_pos.did_page_crc = false;
679 con->out_more = 1; /* data + footer will follow */
680 }
681
682 /*
683 * Prepare footer for currently outgoing message, and finish things
684 * off. Assumes out_kvec* are already valid.. we just add on to the end.
685 */
686 static void prepare_write_message_footer(struct ceph_connection *con)
687 {
688 struct ceph_msg *m = con->out_msg;
689 int v = con->out_kvec_left;
690
691 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
692
693 dout("prepare_write_message_footer %p\n", con);
694 con->out_kvec_is_msg = true;
695 con->out_kvec[v].iov_base = &m->footer;
696 con->out_kvec[v].iov_len = sizeof(m->footer);
697 con->out_kvec_bytes += sizeof(m->footer);
698 con->out_kvec_left++;
699 con->out_more = m->more_to_follow;
700 con->out_msg_done = true;
701 }
702
703 /*
704 * Prepare headers for the next outgoing message.
705 */
706 static void prepare_write_message(struct ceph_connection *con)
707 {
708 struct ceph_msg *m;
709 u32 crc;
710
711 con_out_kvec_reset(con);
712 con->out_kvec_is_msg = true;
713 con->out_msg_done = false;
714
715 /* Sneak an ack in there first? If we can get it into the same
716 * TCP packet that's a good thing. */
717 if (con->in_seq > con->in_seq_acked) {
718 con->in_seq_acked = con->in_seq;
719 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
720 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
721 con_out_kvec_add(con, sizeof (con->out_temp_ack),
722 &con->out_temp_ack);
723 }
724
725 BUG_ON(list_empty(&con->out_queue));
726 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
727 con->out_msg = m;
728 BUG_ON(m->con != con);
729
730 /* put message on sent list */
731 ceph_msg_get(m);
732 list_move_tail(&m->list_head, &con->out_sent);
733
734 /*
735 * only assign outgoing seq # if we haven't sent this message
736 * yet. if it is requeued, resend with it's original seq.
737 */
738 if (m->needs_out_seq) {
739 m->hdr.seq = cpu_to_le64(++con->out_seq);
740 m->needs_out_seq = false;
741 }
742
743 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
744 m, con->out_seq, le16_to_cpu(m->hdr.type),
745 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
746 le32_to_cpu(m->hdr.data_len),
747 m->nr_pages);
748 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
749
750 /* tag + hdr + front + middle */
751 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
752 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
753 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
754
755 if (m->middle)
756 con_out_kvec_add(con, m->middle->vec.iov_len,
757 m->middle->vec.iov_base);
758
759 /* fill in crc (except data pages), footer */
760 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
761 con->out_msg->hdr.crc = cpu_to_le32(crc);
762 con->out_msg->footer.flags = 0;
763
764 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
765 con->out_msg->footer.front_crc = cpu_to_le32(crc);
766 if (m->middle) {
767 crc = crc32c(0, m->middle->vec.iov_base,
768 m->middle->vec.iov_len);
769 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
770 } else
771 con->out_msg->footer.middle_crc = 0;
772 dout("%s front_crc %u middle_crc %u\n", __func__,
773 le32_to_cpu(con->out_msg->footer.front_crc),
774 le32_to_cpu(con->out_msg->footer.middle_crc));
775
776 /* is there a data payload? */
777 con->out_msg->footer.data_crc = 0;
778 if (m->hdr.data_len)
779 prepare_write_message_data(con);
780 else
781 /* no, queue up footer too and be done */
782 prepare_write_message_footer(con);
783
784 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
785 }
786
787 /*
788 * Prepare an ack.
789 */
790 static void prepare_write_ack(struct ceph_connection *con)
791 {
792 dout("prepare_write_ack %p %llu -> %llu\n", con,
793 con->in_seq_acked, con->in_seq);
794 con->in_seq_acked = con->in_seq;
795
796 con_out_kvec_reset(con);
797
798 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
799
800 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
801 con_out_kvec_add(con, sizeof (con->out_temp_ack),
802 &con->out_temp_ack);
803
804 con->out_more = 1; /* more will follow.. eventually.. */
805 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
806 }
807
808 /*
809 * Prepare to write keepalive byte.
810 */
811 static void prepare_write_keepalive(struct ceph_connection *con)
812 {
813 dout("prepare_write_keepalive %p\n", con);
814 con_out_kvec_reset(con);
815 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
816 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
817 }
818
819 /*
820 * Connection negotiation.
821 */
822
823 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
824 int *auth_proto)
825 {
826 struct ceph_auth_handshake *auth;
827
828 if (!con->ops->get_authorizer) {
829 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
830 con->out_connect.authorizer_len = 0;
831 return NULL;
832 }
833
834 /* Can't hold the mutex while getting authorizer */
835 mutex_unlock(&con->mutex);
836 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
837 mutex_lock(&con->mutex);
838
839 if (IS_ERR(auth))
840 return auth;
841 if (con->state != CON_STATE_NEGOTIATING)
842 return ERR_PTR(-EAGAIN);
843
844 con->auth_reply_buf = auth->authorizer_reply_buf;
845 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
846 return auth;
847 }
848
849 /*
850 * We connected to a peer and are saying hello.
851 */
852 static void prepare_write_banner(struct ceph_connection *con)
853 {
854 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
855 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
856 &con->msgr->my_enc_addr);
857
858 con->out_more = 0;
859 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
860 }
861
862 static int prepare_write_connect(struct ceph_connection *con)
863 {
864 unsigned int global_seq = get_global_seq(con->msgr, 0);
865 int proto;
866 int auth_proto;
867 struct ceph_auth_handshake *auth;
868
869 switch (con->peer_name.type) {
870 case CEPH_ENTITY_TYPE_MON:
871 proto = CEPH_MONC_PROTOCOL;
872 break;
873 case CEPH_ENTITY_TYPE_OSD:
874 proto = CEPH_OSDC_PROTOCOL;
875 break;
876 case CEPH_ENTITY_TYPE_MDS:
877 proto = CEPH_MDSC_PROTOCOL;
878 break;
879 default:
880 BUG();
881 }
882
883 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
884 con->connect_seq, global_seq, proto);
885
886 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
887 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
888 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
889 con->out_connect.global_seq = cpu_to_le32(global_seq);
890 con->out_connect.protocol_version = cpu_to_le32(proto);
891 con->out_connect.flags = 0;
892
893 auth_proto = CEPH_AUTH_UNKNOWN;
894 auth = get_connect_authorizer(con, &auth_proto);
895 if (IS_ERR(auth))
896 return PTR_ERR(auth);
897
898 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
899 con->out_connect.authorizer_len = auth ?
900 cpu_to_le32(auth->authorizer_buf_len) : 0;
901
902 con_out_kvec_reset(con);
903 con_out_kvec_add(con, sizeof (con->out_connect),
904 &con->out_connect);
905 if (auth && auth->authorizer_buf_len)
906 con_out_kvec_add(con, auth->authorizer_buf_len,
907 auth->authorizer_buf);
908
909 con->out_more = 0;
910 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
911
912 return 0;
913 }
914
915 /*
916 * write as much of pending kvecs to the socket as we can.
917 * 1 -> done
918 * 0 -> socket full, but more to do
919 * <0 -> error
920 */
921 static int write_partial_kvec(struct ceph_connection *con)
922 {
923 int ret;
924
925 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
926 while (con->out_kvec_bytes > 0) {
927 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
928 con->out_kvec_left, con->out_kvec_bytes,
929 con->out_more);
930 if (ret <= 0)
931 goto out;
932 con->out_kvec_bytes -= ret;
933 if (con->out_kvec_bytes == 0)
934 break; /* done */
935
936 /* account for full iov entries consumed */
937 while (ret >= con->out_kvec_cur->iov_len) {
938 BUG_ON(!con->out_kvec_left);
939 ret -= con->out_kvec_cur->iov_len;
940 con->out_kvec_cur++;
941 con->out_kvec_left--;
942 }
943 /* and for a partially-consumed entry */
944 if (ret) {
945 con->out_kvec_cur->iov_len -= ret;
946 con->out_kvec_cur->iov_base += ret;
947 }
948 }
949 con->out_kvec_left = 0;
950 con->out_kvec_is_msg = false;
951 ret = 1;
952 out:
953 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
954 con->out_kvec_bytes, con->out_kvec_left, ret);
955 return ret; /* done! */
956 }
957
958 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
959 size_t len, size_t sent, bool in_trail)
960 {
961 struct ceph_msg *msg = con->out_msg;
962
963 BUG_ON(!msg);
964 BUG_ON(!sent);
965
966 con->out_msg_pos.data_pos += sent;
967 con->out_msg_pos.page_pos += sent;
968 if (sent < len)
969 return;
970
971 BUG_ON(sent != len);
972 con->out_msg_pos.page_pos = 0;
973 con->out_msg_pos.page++;
974 con->out_msg_pos.did_page_crc = false;
975 if (in_trail)
976 list_move_tail(&page->lru,
977 &msg->trail->head);
978 else if (msg->pagelist)
979 list_move_tail(&page->lru,
980 &msg->pagelist->head);
981 #ifdef CONFIG_BLOCK
982 else if (msg->bio)
983 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
984 #endif
985 }
986
987 /*
988 * Write as much message data payload as we can. If we finish, queue
989 * up the footer.
990 * 1 -> done, footer is now queued in out_kvec[].
991 * 0 -> socket full, but more to do
992 * <0 -> error
993 */
994 static int write_partial_msg_pages(struct ceph_connection *con)
995 {
996 struct ceph_msg *msg = con->out_msg;
997 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
998 size_t len;
999 bool do_datacrc = !con->msgr->nocrc;
1000 int ret;
1001 int total_max_write;
1002 bool in_trail = false;
1003 const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1004 const size_t trail_off = data_len - trail_len;
1005
1006 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1007 con, msg, con->out_msg_pos.page, msg->nr_pages,
1008 con->out_msg_pos.page_pos);
1009
1010 /*
1011 * Iterate through each page that contains data to be
1012 * written, and send as much as possible for each.
1013 *
1014 * If we are calculating the data crc (the default), we will
1015 * need to map the page. If we have no pages, they have
1016 * been revoked, so use the zero page.
1017 */
1018 while (data_len > con->out_msg_pos.data_pos) {
1019 struct page *page = NULL;
1020 int max_write = PAGE_SIZE;
1021 int bio_offset = 0;
1022
1023 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1024 if (!in_trail)
1025 total_max_write = trail_off - con->out_msg_pos.data_pos;
1026
1027 if (in_trail) {
1028 total_max_write = data_len - con->out_msg_pos.data_pos;
1029
1030 page = list_first_entry(&msg->trail->head,
1031 struct page, lru);
1032 } else if (msg->pages) {
1033 page = msg->pages[con->out_msg_pos.page];
1034 } else if (msg->pagelist) {
1035 page = list_first_entry(&msg->pagelist->head,
1036 struct page, lru);
1037 #ifdef CONFIG_BLOCK
1038 } else if (msg->bio) {
1039 struct bio_vec *bv;
1040
1041 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1042 page = bv->bv_page;
1043 bio_offset = bv->bv_offset;
1044 max_write = bv->bv_len;
1045 #endif
1046 } else {
1047 page = zero_page;
1048 }
1049 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1050 total_max_write);
1051
1052 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1053 void *base;
1054 u32 crc = le32_to_cpu(msg->footer.data_crc);
1055 char *kaddr;
1056
1057 kaddr = kmap(page);
1058 BUG_ON(kaddr == NULL);
1059 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1060 crc = crc32c(crc, base, len);
1061 msg->footer.data_crc = cpu_to_le32(crc);
1062 con->out_msg_pos.did_page_crc = true;
1063 }
1064 ret = ceph_tcp_sendpage(con->sock, page,
1065 con->out_msg_pos.page_pos + bio_offset,
1066 len, 1);
1067
1068 if (do_datacrc)
1069 kunmap(page);
1070
1071 if (ret <= 0)
1072 goto out;
1073
1074 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1075 }
1076
1077 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1078
1079 /* prepare and queue up footer, too */
1080 if (!do_datacrc)
1081 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1082 con_out_kvec_reset(con);
1083 prepare_write_message_footer(con);
1084 ret = 1;
1085 out:
1086 return ret;
1087 }
1088
1089 /*
1090 * write some zeros
1091 */
1092 static int write_partial_skip(struct ceph_connection *con)
1093 {
1094 int ret;
1095
1096 while (con->out_skip > 0) {
1097 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1098
1099 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1100 if (ret <= 0)
1101 goto out;
1102 con->out_skip -= ret;
1103 }
1104 ret = 1;
1105 out:
1106 return ret;
1107 }
1108
1109 /*
1110 * Prepare to read connection handshake, or an ack.
1111 */
1112 static void prepare_read_banner(struct ceph_connection *con)
1113 {
1114 dout("prepare_read_banner %p\n", con);
1115 con->in_base_pos = 0;
1116 }
1117
1118 static void prepare_read_connect(struct ceph_connection *con)
1119 {
1120 dout("prepare_read_connect %p\n", con);
1121 con->in_base_pos = 0;
1122 }
1123
1124 static void prepare_read_ack(struct ceph_connection *con)
1125 {
1126 dout("prepare_read_ack %p\n", con);
1127 con->in_base_pos = 0;
1128 }
1129
1130 static void prepare_read_tag(struct ceph_connection *con)
1131 {
1132 dout("prepare_read_tag %p\n", con);
1133 con->in_base_pos = 0;
1134 con->in_tag = CEPH_MSGR_TAG_READY;
1135 }
1136
1137 /*
1138 * Prepare to read a message.
1139 */
1140 static int prepare_read_message(struct ceph_connection *con)
1141 {
1142 dout("prepare_read_message %p\n", con);
1143 BUG_ON(con->in_msg != NULL);
1144 con->in_base_pos = 0;
1145 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1146 return 0;
1147 }
1148
1149
1150 static int read_partial(struct ceph_connection *con,
1151 int end, int size, void *object)
1152 {
1153 while (con->in_base_pos < end) {
1154 int left = end - con->in_base_pos;
1155 int have = size - left;
1156 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1157 if (ret <= 0)
1158 return ret;
1159 con->in_base_pos += ret;
1160 }
1161 return 1;
1162 }
1163
1164
1165 /*
1166 * Read all or part of the connect-side handshake on a new connection
1167 */
1168 static int read_partial_banner(struct ceph_connection *con)
1169 {
1170 int size;
1171 int end;
1172 int ret;
1173
1174 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1175
1176 /* peer's banner */
1177 size = strlen(CEPH_BANNER);
1178 end = size;
1179 ret = read_partial(con, end, size, con->in_banner);
1180 if (ret <= 0)
1181 goto out;
1182
1183 size = sizeof (con->actual_peer_addr);
1184 end += size;
1185 ret = read_partial(con, end, size, &con->actual_peer_addr);
1186 if (ret <= 0)
1187 goto out;
1188
1189 size = sizeof (con->peer_addr_for_me);
1190 end += size;
1191 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1192 if (ret <= 0)
1193 goto out;
1194
1195 out:
1196 return ret;
1197 }
1198
1199 static int read_partial_connect(struct ceph_connection *con)
1200 {
1201 int size;
1202 int end;
1203 int ret;
1204
1205 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1206
1207 size = sizeof (con->in_reply);
1208 end = size;
1209 ret = read_partial(con, end, size, &con->in_reply);
1210 if (ret <= 0)
1211 goto out;
1212
1213 size = le32_to_cpu(con->in_reply.authorizer_len);
1214 end += size;
1215 ret = read_partial(con, end, size, con->auth_reply_buf);
1216 if (ret <= 0)
1217 goto out;
1218
1219 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1220 con, (int)con->in_reply.tag,
1221 le32_to_cpu(con->in_reply.connect_seq),
1222 le32_to_cpu(con->in_reply.global_seq));
1223 out:
1224 return ret;
1225
1226 }
1227
1228 /*
1229 * Verify the hello banner looks okay.
1230 */
1231 static int verify_hello(struct ceph_connection *con)
1232 {
1233 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1234 pr_err("connect to %s got bad banner\n",
1235 ceph_pr_addr(&con->peer_addr.in_addr));
1236 con->error_msg = "protocol error, bad banner";
1237 return -1;
1238 }
1239 return 0;
1240 }
1241
1242 static bool addr_is_blank(struct sockaddr_storage *ss)
1243 {
1244 switch (ss->ss_family) {
1245 case AF_INET:
1246 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1247 case AF_INET6:
1248 return
1249 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1250 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1251 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1252 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1253 }
1254 return false;
1255 }
1256
1257 static int addr_port(struct sockaddr_storage *ss)
1258 {
1259 switch (ss->ss_family) {
1260 case AF_INET:
1261 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1262 case AF_INET6:
1263 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1264 }
1265 return 0;
1266 }
1267
1268 static void addr_set_port(struct sockaddr_storage *ss, int p)
1269 {
1270 switch (ss->ss_family) {
1271 case AF_INET:
1272 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1273 break;
1274 case AF_INET6:
1275 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1276 break;
1277 }
1278 }
1279
1280 /*
1281 * Unlike other *_pton function semantics, zero indicates success.
1282 */
1283 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1284 char delim, const char **ipend)
1285 {
1286 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1287 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1288
1289 memset(ss, 0, sizeof(*ss));
1290
1291 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1292 ss->ss_family = AF_INET;
1293 return 0;
1294 }
1295
1296 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1297 ss->ss_family = AF_INET6;
1298 return 0;
1299 }
1300
1301 return -EINVAL;
1302 }
1303
1304 /*
1305 * Extract hostname string and resolve using kernel DNS facility.
1306 */
1307 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1308 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1309 struct sockaddr_storage *ss, char delim, const char **ipend)
1310 {
1311 const char *end, *delim_p;
1312 char *colon_p, *ip_addr = NULL;
1313 int ip_len, ret;
1314
1315 /*
1316 * The end of the hostname occurs immediately preceding the delimiter or
1317 * the port marker (':') where the delimiter takes precedence.
1318 */
1319 delim_p = memchr(name, delim, namelen);
1320 colon_p = memchr(name, ':', namelen);
1321
1322 if (delim_p && colon_p)
1323 end = delim_p < colon_p ? delim_p : colon_p;
1324 else if (!delim_p && colon_p)
1325 end = colon_p;
1326 else {
1327 end = delim_p;
1328 if (!end) /* case: hostname:/ */
1329 end = name + namelen;
1330 }
1331
1332 if (end <= name)
1333 return -EINVAL;
1334
1335 /* do dns_resolve upcall */
1336 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1337 if (ip_len > 0)
1338 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1339 else
1340 ret = -ESRCH;
1341
1342 kfree(ip_addr);
1343
1344 *ipend = end;
1345
1346 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1347 ret, ret ? "failed" : ceph_pr_addr(ss));
1348
1349 return ret;
1350 }
1351 #else
1352 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1353 struct sockaddr_storage *ss, char delim, const char **ipend)
1354 {
1355 return -EINVAL;
1356 }
1357 #endif
1358
1359 /*
1360 * Parse a server name (IP or hostname). If a valid IP address is not found
1361 * then try to extract a hostname to resolve using userspace DNS upcall.
1362 */
1363 static int ceph_parse_server_name(const char *name, size_t namelen,
1364 struct sockaddr_storage *ss, char delim, const char **ipend)
1365 {
1366 int ret;
1367
1368 ret = ceph_pton(name, namelen, ss, delim, ipend);
1369 if (ret)
1370 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1371
1372 return ret;
1373 }
1374
1375 /*
1376 * Parse an ip[:port] list into an addr array. Use the default
1377 * monitor port if a port isn't specified.
1378 */
1379 int ceph_parse_ips(const char *c, const char *end,
1380 struct ceph_entity_addr *addr,
1381 int max_count, int *count)
1382 {
1383 int i, ret = -EINVAL;
1384 const char *p = c;
1385
1386 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1387 for (i = 0; i < max_count; i++) {
1388 const char *ipend;
1389 struct sockaddr_storage *ss = &addr[i].in_addr;
1390 int port;
1391 char delim = ',';
1392
1393 if (*p == '[') {
1394 delim = ']';
1395 p++;
1396 }
1397
1398 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1399 if (ret)
1400 goto bad;
1401 ret = -EINVAL;
1402
1403 p = ipend;
1404
1405 if (delim == ']') {
1406 if (*p != ']') {
1407 dout("missing matching ']'\n");
1408 goto bad;
1409 }
1410 p++;
1411 }
1412
1413 /* port? */
1414 if (p < end && *p == ':') {
1415 port = 0;
1416 p++;
1417 while (p < end && *p >= '0' && *p <= '9') {
1418 port = (port * 10) + (*p - '0');
1419 p++;
1420 }
1421 if (port > 65535 || port == 0)
1422 goto bad;
1423 } else {
1424 port = CEPH_MON_PORT;
1425 }
1426
1427 addr_set_port(ss, port);
1428
1429 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1430
1431 if (p == end)
1432 break;
1433 if (*p != ',')
1434 goto bad;
1435 p++;
1436 }
1437
1438 if (p != end)
1439 goto bad;
1440
1441 if (count)
1442 *count = i + 1;
1443 return 0;
1444
1445 bad:
1446 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1447 return ret;
1448 }
1449 EXPORT_SYMBOL(ceph_parse_ips);
1450
1451 static int process_banner(struct ceph_connection *con)
1452 {
1453 dout("process_banner on %p\n", con);
1454
1455 if (verify_hello(con) < 0)
1456 return -1;
1457
1458 ceph_decode_addr(&con->actual_peer_addr);
1459 ceph_decode_addr(&con->peer_addr_for_me);
1460
1461 /*
1462 * Make sure the other end is who we wanted. note that the other
1463 * end may not yet know their ip address, so if it's 0.0.0.0, give
1464 * them the benefit of the doubt.
1465 */
1466 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1467 sizeof(con->peer_addr)) != 0 &&
1468 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1469 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1470 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1471 ceph_pr_addr(&con->peer_addr.in_addr),
1472 (int)le32_to_cpu(con->peer_addr.nonce),
1473 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1474 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1475 con->error_msg = "wrong peer at address";
1476 return -1;
1477 }
1478
1479 /*
1480 * did we learn our address?
1481 */
1482 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1483 int port = addr_port(&con->msgr->inst.addr.in_addr);
1484
1485 memcpy(&con->msgr->inst.addr.in_addr,
1486 &con->peer_addr_for_me.in_addr,
1487 sizeof(con->peer_addr_for_me.in_addr));
1488 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1489 encode_my_addr(con->msgr);
1490 dout("process_banner learned my addr is %s\n",
1491 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1492 }
1493
1494 return 0;
1495 }
1496
1497 static void fail_protocol(struct ceph_connection *con)
1498 {
1499 reset_connection(con);
1500 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1501 con->state = CON_STATE_CLOSED;
1502 }
1503
1504 static int process_connect(struct ceph_connection *con)
1505 {
1506 u64 sup_feat = con->msgr->supported_features;
1507 u64 req_feat = con->msgr->required_features;
1508 u64 server_feat = le64_to_cpu(con->in_reply.features);
1509 int ret;
1510
1511 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1512
1513 switch (con->in_reply.tag) {
1514 case CEPH_MSGR_TAG_FEATURES:
1515 pr_err("%s%lld %s feature set mismatch,"
1516 " my %llx < server's %llx, missing %llx\n",
1517 ENTITY_NAME(con->peer_name),
1518 ceph_pr_addr(&con->peer_addr.in_addr),
1519 sup_feat, server_feat, server_feat & ~sup_feat);
1520 con->error_msg = "missing required protocol features";
1521 fail_protocol(con);
1522 return -1;
1523
1524 case CEPH_MSGR_TAG_BADPROTOVER:
1525 pr_err("%s%lld %s protocol version mismatch,"
1526 " my %d != server's %d\n",
1527 ENTITY_NAME(con->peer_name),
1528 ceph_pr_addr(&con->peer_addr.in_addr),
1529 le32_to_cpu(con->out_connect.protocol_version),
1530 le32_to_cpu(con->in_reply.protocol_version));
1531 con->error_msg = "protocol version mismatch";
1532 fail_protocol(con);
1533 return -1;
1534
1535 case CEPH_MSGR_TAG_BADAUTHORIZER:
1536 con->auth_retry++;
1537 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1538 con->auth_retry);
1539 if (con->auth_retry == 2) {
1540 con->error_msg = "connect authorization failure";
1541 return -1;
1542 }
1543 con->auth_retry = 1;
1544 ret = prepare_write_connect(con);
1545 if (ret < 0)
1546 return ret;
1547 prepare_read_connect(con);
1548 break;
1549
1550 case CEPH_MSGR_TAG_RESETSESSION:
1551 /*
1552 * If we connected with a large connect_seq but the peer
1553 * has no record of a session with us (no connection, or
1554 * connect_seq == 0), they will send RESETSESION to indicate
1555 * that they must have reset their session, and may have
1556 * dropped messages.
1557 */
1558 dout("process_connect got RESET peer seq %u\n",
1559 le32_to_cpu(con->in_reply.connect_seq));
1560 pr_err("%s%lld %s connection reset\n",
1561 ENTITY_NAME(con->peer_name),
1562 ceph_pr_addr(&con->peer_addr.in_addr));
1563 reset_connection(con);
1564 ret = prepare_write_connect(con);
1565 if (ret < 0)
1566 return ret;
1567 prepare_read_connect(con);
1568
1569 /* Tell ceph about it. */
1570 mutex_unlock(&con->mutex);
1571 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1572 if (con->ops->peer_reset)
1573 con->ops->peer_reset(con);
1574 mutex_lock(&con->mutex);
1575 if (con->state != CON_STATE_NEGOTIATING)
1576 return -EAGAIN;
1577 break;
1578
1579 case CEPH_MSGR_TAG_RETRY_SESSION:
1580 /*
1581 * If we sent a smaller connect_seq than the peer has, try
1582 * again with a larger value.
1583 */
1584 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1585 le32_to_cpu(con->out_connect.connect_seq),
1586 le32_to_cpu(con->in_reply.connect_seq));
1587 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1588 ret = prepare_write_connect(con);
1589 if (ret < 0)
1590 return ret;
1591 prepare_read_connect(con);
1592 break;
1593
1594 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1595 /*
1596 * If we sent a smaller global_seq than the peer has, try
1597 * again with a larger value.
1598 */
1599 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1600 con->peer_global_seq,
1601 le32_to_cpu(con->in_reply.global_seq));
1602 get_global_seq(con->msgr,
1603 le32_to_cpu(con->in_reply.global_seq));
1604 ret = prepare_write_connect(con);
1605 if (ret < 0)
1606 return ret;
1607 prepare_read_connect(con);
1608 break;
1609
1610 case CEPH_MSGR_TAG_READY:
1611 if (req_feat & ~server_feat) {
1612 pr_err("%s%lld %s protocol feature mismatch,"
1613 " my required %llx > server's %llx, need %llx\n",
1614 ENTITY_NAME(con->peer_name),
1615 ceph_pr_addr(&con->peer_addr.in_addr),
1616 req_feat, server_feat, req_feat & ~server_feat);
1617 con->error_msg = "missing required protocol features";
1618 fail_protocol(con);
1619 return -1;
1620 }
1621
1622 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1623 con->state = CON_STATE_OPEN;
1624
1625 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1626 con->connect_seq++;
1627 con->peer_features = server_feat;
1628 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1629 con->peer_global_seq,
1630 le32_to_cpu(con->in_reply.connect_seq),
1631 con->connect_seq);
1632 WARN_ON(con->connect_seq !=
1633 le32_to_cpu(con->in_reply.connect_seq));
1634
1635 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1636 set_bit(CON_FLAG_LOSSYTX, &con->flags);
1637
1638 con->delay = 0; /* reset backoff memory */
1639
1640 prepare_read_tag(con);
1641 break;
1642
1643 case CEPH_MSGR_TAG_WAIT:
1644 /*
1645 * If there is a connection race (we are opening
1646 * connections to each other), one of us may just have
1647 * to WAIT. This shouldn't happen if we are the
1648 * client.
1649 */
1650 pr_err("process_connect got WAIT as client\n");
1651 con->error_msg = "protocol error, got WAIT as client";
1652 return -1;
1653
1654 default:
1655 pr_err("connect protocol error, will retry\n");
1656 con->error_msg = "protocol error, garbage tag during connect";
1657 return -1;
1658 }
1659 return 0;
1660 }
1661
1662
1663 /*
1664 * read (part of) an ack
1665 */
1666 static int read_partial_ack(struct ceph_connection *con)
1667 {
1668 int size = sizeof (con->in_temp_ack);
1669 int end = size;
1670
1671 return read_partial(con, end, size, &con->in_temp_ack);
1672 }
1673
1674
1675 /*
1676 * We can finally discard anything that's been acked.
1677 */
1678 static void process_ack(struct ceph_connection *con)
1679 {
1680 struct ceph_msg *m;
1681 u64 ack = le64_to_cpu(con->in_temp_ack);
1682 u64 seq;
1683
1684 while (!list_empty(&con->out_sent)) {
1685 m = list_first_entry(&con->out_sent, struct ceph_msg,
1686 list_head);
1687 seq = le64_to_cpu(m->hdr.seq);
1688 if (seq > ack)
1689 break;
1690 dout("got ack for seq %llu type %d at %p\n", seq,
1691 le16_to_cpu(m->hdr.type), m);
1692 m->ack_stamp = jiffies;
1693 ceph_msg_remove(m);
1694 }
1695 prepare_read_tag(con);
1696 }
1697
1698
1699
1700
1701 static int read_partial_message_section(struct ceph_connection *con,
1702 struct kvec *section,
1703 unsigned int sec_len, u32 *crc)
1704 {
1705 int ret, left;
1706
1707 BUG_ON(!section);
1708
1709 while (section->iov_len < sec_len) {
1710 BUG_ON(section->iov_base == NULL);
1711 left = sec_len - section->iov_len;
1712 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1713 section->iov_len, left);
1714 if (ret <= 0)
1715 return ret;
1716 section->iov_len += ret;
1717 }
1718 if (section->iov_len == sec_len)
1719 *crc = crc32c(0, section->iov_base, section->iov_len);
1720
1721 return 1;
1722 }
1723
1724 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1725 struct ceph_msg_header *hdr);
1726
1727
1728 static int read_partial_message_pages(struct ceph_connection *con,
1729 struct page **pages,
1730 unsigned int data_len, bool do_datacrc)
1731 {
1732 void *p;
1733 int ret;
1734 int left;
1735
1736 left = min((int)(data_len - con->in_msg_pos.data_pos),
1737 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1738 /* (page) data */
1739 BUG_ON(pages == NULL);
1740 p = kmap(pages[con->in_msg_pos.page]);
1741 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1742 left);
1743 if (ret > 0 && do_datacrc)
1744 con->in_data_crc =
1745 crc32c(con->in_data_crc,
1746 p + con->in_msg_pos.page_pos, ret);
1747 kunmap(pages[con->in_msg_pos.page]);
1748 if (ret <= 0)
1749 return ret;
1750 con->in_msg_pos.data_pos += ret;
1751 con->in_msg_pos.page_pos += ret;
1752 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1753 con->in_msg_pos.page_pos = 0;
1754 con->in_msg_pos.page++;
1755 }
1756
1757 return ret;
1758 }
1759
1760 #ifdef CONFIG_BLOCK
1761 static int read_partial_message_bio(struct ceph_connection *con,
1762 struct bio **bio_iter, int *bio_seg,
1763 unsigned int data_len, bool do_datacrc)
1764 {
1765 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1766 void *p;
1767 int ret, left;
1768
1769 left = min((int)(data_len - con->in_msg_pos.data_pos),
1770 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1771
1772 p = kmap(bv->bv_page) + bv->bv_offset;
1773
1774 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1775 left);
1776 if (ret > 0 && do_datacrc)
1777 con->in_data_crc =
1778 crc32c(con->in_data_crc,
1779 p + con->in_msg_pos.page_pos, ret);
1780 kunmap(bv->bv_page);
1781 if (ret <= 0)
1782 return ret;
1783 con->in_msg_pos.data_pos += ret;
1784 con->in_msg_pos.page_pos += ret;
1785 if (con->in_msg_pos.page_pos == bv->bv_len) {
1786 con->in_msg_pos.page_pos = 0;
1787 iter_bio_next(bio_iter, bio_seg);
1788 }
1789
1790 return ret;
1791 }
1792 #endif
1793
1794 /*
1795 * read (part of) a message.
1796 */
1797 static int read_partial_message(struct ceph_connection *con)
1798 {
1799 struct ceph_msg *m = con->in_msg;
1800 int size;
1801 int end;
1802 int ret;
1803 unsigned int front_len, middle_len, data_len;
1804 bool do_datacrc = !con->msgr->nocrc;
1805 u64 seq;
1806 u32 crc;
1807
1808 dout("read_partial_message con %p msg %p\n", con, m);
1809
1810 /* header */
1811 size = sizeof (con->in_hdr);
1812 end = size;
1813 ret = read_partial(con, end, size, &con->in_hdr);
1814 if (ret <= 0)
1815 return ret;
1816
1817 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1818 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1819 pr_err("read_partial_message bad hdr "
1820 " crc %u != expected %u\n",
1821 crc, con->in_hdr.crc);
1822 return -EBADMSG;
1823 }
1824
1825 front_len = le32_to_cpu(con->in_hdr.front_len);
1826 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1827 return -EIO;
1828 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1829 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1830 return -EIO;
1831 data_len = le32_to_cpu(con->in_hdr.data_len);
1832 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1833 return -EIO;
1834
1835 /* verify seq# */
1836 seq = le64_to_cpu(con->in_hdr.seq);
1837 if ((s64)seq - (s64)con->in_seq < 1) {
1838 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1839 ENTITY_NAME(con->peer_name),
1840 ceph_pr_addr(&con->peer_addr.in_addr),
1841 seq, con->in_seq + 1);
1842 con->in_base_pos = -front_len - middle_len - data_len -
1843 sizeof(m->footer);
1844 con->in_tag = CEPH_MSGR_TAG_READY;
1845 return 0;
1846 } else if ((s64)seq - (s64)con->in_seq > 1) {
1847 pr_err("read_partial_message bad seq %lld expected %lld\n",
1848 seq, con->in_seq + 1);
1849 con->error_msg = "bad message sequence # for incoming message";
1850 return -EBADMSG;
1851 }
1852
1853 /* allocate message? */
1854 if (!con->in_msg) {
1855 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1856 con->in_hdr.front_len, con->in_hdr.data_len);
1857 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1858 /* skip this message */
1859 dout("alloc_msg said skip message\n");
1860 BUG_ON(con->in_msg);
1861 con->in_base_pos = -front_len - middle_len - data_len -
1862 sizeof(m->footer);
1863 con->in_tag = CEPH_MSGR_TAG_READY;
1864 con->in_seq++;
1865 return 0;
1866 }
1867 if (!con->in_msg) {
1868 con->error_msg =
1869 "error allocating memory for incoming message";
1870 return -ENOMEM;
1871 }
1872
1873 BUG_ON(con->in_msg->con != con);
1874 m = con->in_msg;
1875 m->front.iov_len = 0; /* haven't read it yet */
1876 if (m->middle)
1877 m->middle->vec.iov_len = 0;
1878
1879 con->in_msg_pos.page = 0;
1880 if (m->pages)
1881 con->in_msg_pos.page_pos = m->page_alignment;
1882 else
1883 con->in_msg_pos.page_pos = 0;
1884 con->in_msg_pos.data_pos = 0;
1885
1886 #ifdef CONFIG_BLOCK
1887 if (m->bio)
1888 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1889 #endif
1890 }
1891
1892 /* front */
1893 ret = read_partial_message_section(con, &m->front, front_len,
1894 &con->in_front_crc);
1895 if (ret <= 0)
1896 return ret;
1897
1898 /* middle */
1899 if (m->middle) {
1900 ret = read_partial_message_section(con, &m->middle->vec,
1901 middle_len,
1902 &con->in_middle_crc);
1903 if (ret <= 0)
1904 return ret;
1905 }
1906
1907 /* (page) data */
1908 while (con->in_msg_pos.data_pos < data_len) {
1909 if (m->pages) {
1910 ret = read_partial_message_pages(con, m->pages,
1911 data_len, do_datacrc);
1912 if (ret <= 0)
1913 return ret;
1914 #ifdef CONFIG_BLOCK
1915 } else if (m->bio) {
1916 BUG_ON(!m->bio_iter);
1917 ret = read_partial_message_bio(con,
1918 &m->bio_iter, &m->bio_seg,
1919 data_len, do_datacrc);
1920 if (ret <= 0)
1921 return ret;
1922 #endif
1923 } else {
1924 BUG_ON(1);
1925 }
1926 }
1927
1928 /* footer */
1929 size = sizeof (m->footer);
1930 end += size;
1931 ret = read_partial(con, end, size, &m->footer);
1932 if (ret <= 0)
1933 return ret;
1934
1935 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1936 m, front_len, m->footer.front_crc, middle_len,
1937 m->footer.middle_crc, data_len, m->footer.data_crc);
1938
1939 /* crc ok? */
1940 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1941 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1942 m, con->in_front_crc, m->footer.front_crc);
1943 return -EBADMSG;
1944 }
1945 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1946 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1947 m, con->in_middle_crc, m->footer.middle_crc);
1948 return -EBADMSG;
1949 }
1950 if (do_datacrc &&
1951 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1952 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1953 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1954 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1955 return -EBADMSG;
1956 }
1957
1958 return 1; /* done! */
1959 }
1960
1961 /*
1962 * Process message. This happens in the worker thread. The callback should
1963 * be careful not to do anything that waits on other incoming messages or it
1964 * may deadlock.
1965 */
1966 static void process_message(struct ceph_connection *con)
1967 {
1968 struct ceph_msg *msg;
1969
1970 BUG_ON(con->in_msg->con != con);
1971 con->in_msg->con = NULL;
1972 msg = con->in_msg;
1973 con->in_msg = NULL;
1974 con->ops->put(con);
1975
1976 /* if first message, set peer_name */
1977 if (con->peer_name.type == 0)
1978 con->peer_name = msg->hdr.src;
1979
1980 con->in_seq++;
1981 mutex_unlock(&con->mutex);
1982
1983 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1984 msg, le64_to_cpu(msg->hdr.seq),
1985 ENTITY_NAME(msg->hdr.src),
1986 le16_to_cpu(msg->hdr.type),
1987 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1988 le32_to_cpu(msg->hdr.front_len),
1989 le32_to_cpu(msg->hdr.data_len),
1990 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1991 con->ops->dispatch(con, msg);
1992
1993 mutex_lock(&con->mutex);
1994 prepare_read_tag(con);
1995 }
1996
1997
1998 /*
1999 * Write something to the socket. Called in a worker thread when the
2000 * socket appears to be writeable and we have something ready to send.
2001 */
2002 static int try_write(struct ceph_connection *con)
2003 {
2004 int ret = 1;
2005
2006 dout("try_write start %p state %lu\n", con, con->state);
2007
2008 more:
2009 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2010
2011 /* open the socket first? */
2012 if (con->state == CON_STATE_PREOPEN) {
2013 BUG_ON(con->sock);
2014 con->state = CON_STATE_CONNECTING;
2015
2016 con_out_kvec_reset(con);
2017 prepare_write_banner(con);
2018 prepare_read_banner(con);
2019
2020 BUG_ON(con->in_msg);
2021 con->in_tag = CEPH_MSGR_TAG_READY;
2022 dout("try_write initiating connect on %p new state %lu\n",
2023 con, con->state);
2024 ret = ceph_tcp_connect(con);
2025 if (ret < 0) {
2026 con->error_msg = "connect error";
2027 goto out;
2028 }
2029 }
2030
2031 more_kvec:
2032 /* kvec data queued? */
2033 if (con->out_skip) {
2034 ret = write_partial_skip(con);
2035 if (ret <= 0)
2036 goto out;
2037 }
2038 if (con->out_kvec_left) {
2039 ret = write_partial_kvec(con);
2040 if (ret <= 0)
2041 goto out;
2042 }
2043
2044 /* msg pages? */
2045 if (con->out_msg) {
2046 if (con->out_msg_done) {
2047 ceph_msg_put(con->out_msg);
2048 con->out_msg = NULL; /* we're done with this one */
2049 goto do_next;
2050 }
2051
2052 ret = write_partial_msg_pages(con);
2053 if (ret == 1)
2054 goto more_kvec; /* we need to send the footer, too! */
2055 if (ret == 0)
2056 goto out;
2057 if (ret < 0) {
2058 dout("try_write write_partial_msg_pages err %d\n",
2059 ret);
2060 goto out;
2061 }
2062 }
2063
2064 do_next:
2065 if (con->state == CON_STATE_OPEN) {
2066 /* is anything else pending? */
2067 if (!list_empty(&con->out_queue)) {
2068 prepare_write_message(con);
2069 goto more;
2070 }
2071 if (con->in_seq > con->in_seq_acked) {
2072 prepare_write_ack(con);
2073 goto more;
2074 }
2075 if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2076 &con->flags)) {
2077 prepare_write_keepalive(con);
2078 goto more;
2079 }
2080 }
2081
2082 /* Nothing to do! */
2083 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2084 dout("try_write nothing else to write.\n");
2085 ret = 0;
2086 out:
2087 dout("try_write done on %p ret %d\n", con, ret);
2088 return ret;
2089 }
2090
2091
2092
2093 /*
2094 * Read what we can from the socket.
2095 */
2096 static int try_read(struct ceph_connection *con)
2097 {
2098 int ret = -1;
2099
2100 more:
2101 dout("try_read start on %p state %lu\n", con, con->state);
2102 if (con->state != CON_STATE_CONNECTING &&
2103 con->state != CON_STATE_NEGOTIATING &&
2104 con->state != CON_STATE_OPEN)
2105 return 0;
2106
2107 BUG_ON(!con->sock);
2108
2109 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2110 con->in_base_pos);
2111
2112 if (con->state == CON_STATE_CONNECTING) {
2113 dout("try_read connecting\n");
2114 ret = read_partial_banner(con);
2115 if (ret <= 0)
2116 goto out;
2117 ret = process_banner(con);
2118 if (ret < 0)
2119 goto out;
2120
2121 BUG_ON(con->state != CON_STATE_CONNECTING);
2122 con->state = CON_STATE_NEGOTIATING;
2123
2124 /* Banner is good, exchange connection info */
2125 ret = prepare_write_connect(con);
2126 if (ret < 0)
2127 goto out;
2128 prepare_read_connect(con);
2129
2130 /* Send connection info before awaiting response */
2131 goto out;
2132 }
2133
2134 if (con->state == CON_STATE_NEGOTIATING) {
2135 dout("try_read negotiating\n");
2136 ret = read_partial_connect(con);
2137 if (ret <= 0)
2138 goto out;
2139 ret = process_connect(con);
2140 if (ret < 0)
2141 goto out;
2142 goto more;
2143 }
2144
2145 BUG_ON(con->state != CON_STATE_OPEN);
2146
2147 if (con->in_base_pos < 0) {
2148 /*
2149 * skipping + discarding content.
2150 *
2151 * FIXME: there must be a better way to do this!
2152 */
2153 static char buf[SKIP_BUF_SIZE];
2154 int skip = min((int) sizeof (buf), -con->in_base_pos);
2155
2156 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2157 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2158 if (ret <= 0)
2159 goto out;
2160 con->in_base_pos += ret;
2161 if (con->in_base_pos)
2162 goto more;
2163 }
2164 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2165 /*
2166 * what's next?
2167 */
2168 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2169 if (ret <= 0)
2170 goto out;
2171 dout("try_read got tag %d\n", (int)con->in_tag);
2172 switch (con->in_tag) {
2173 case CEPH_MSGR_TAG_MSG:
2174 prepare_read_message(con);
2175 break;
2176 case CEPH_MSGR_TAG_ACK:
2177 prepare_read_ack(con);
2178 break;
2179 case CEPH_MSGR_TAG_CLOSE:
2180 con_close_socket(con);
2181 con->state = CON_STATE_CLOSED;
2182 goto out;
2183 default:
2184 goto bad_tag;
2185 }
2186 }
2187 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2188 ret = read_partial_message(con);
2189 if (ret <= 0) {
2190 switch (ret) {
2191 case -EBADMSG:
2192 con->error_msg = "bad crc";
2193 ret = -EIO;
2194 break;
2195 case -EIO:
2196 con->error_msg = "io error";
2197 break;
2198 }
2199 goto out;
2200 }
2201 if (con->in_tag == CEPH_MSGR_TAG_READY)
2202 goto more;
2203 process_message(con);
2204 goto more;
2205 }
2206 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2207 ret = read_partial_ack(con);
2208 if (ret <= 0)
2209 goto out;
2210 process_ack(con);
2211 goto more;
2212 }
2213
2214 out:
2215 dout("try_read done on %p ret %d\n", con, ret);
2216 return ret;
2217
2218 bad_tag:
2219 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2220 con->error_msg = "protocol error, garbage tag";
2221 ret = -1;
2222 goto out;
2223 }
2224
2225
2226 /*
2227 * Atomically queue work on a connection. Bump @con reference to
2228 * avoid races with connection teardown.
2229 */
2230 static void queue_con(struct ceph_connection *con)
2231 {
2232 if (!con->ops->get(con)) {
2233 dout("queue_con %p ref count 0\n", con);
2234 return;
2235 }
2236
2237 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2238 dout("queue_con %p - already queued\n", con);
2239 con->ops->put(con);
2240 } else {
2241 dout("queue_con %p\n", con);
2242 }
2243 }
2244
2245 /*
2246 * Do some work on a connection. Drop a connection ref when we're done.
2247 */
2248 static void con_work(struct work_struct *work)
2249 {
2250 struct ceph_connection *con = container_of(work, struct ceph_connection,
2251 work.work);
2252 int ret;
2253
2254 mutex_lock(&con->mutex);
2255 restart:
2256 if (test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags)) {
2257 switch (con->state) {
2258 case CON_STATE_CONNECTING:
2259 con->error_msg = "connection failed";
2260 break;
2261 case CON_STATE_NEGOTIATING:
2262 con->error_msg = "negotiation failed";
2263 break;
2264 case CON_STATE_OPEN:
2265 con->error_msg = "socket closed";
2266 break;
2267 default:
2268 dout("unrecognized con state %d\n", (int)con->state);
2269 con->error_msg = "unrecognized con state";
2270 BUG();
2271 }
2272 goto fault;
2273 }
2274
2275 if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2276 dout("con_work %p backing off\n", con);
2277 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2278 round_jiffies_relative(con->delay))) {
2279 dout("con_work %p backoff %lu\n", con, con->delay);
2280 mutex_unlock(&con->mutex);
2281 return;
2282 } else {
2283 con->ops->put(con);
2284 dout("con_work %p FAILED to back off %lu\n", con,
2285 con->delay);
2286 }
2287 }
2288
2289 if (con->state == CON_STATE_STANDBY) {
2290 dout("con_work %p STANDBY\n", con);
2291 goto done;
2292 }
2293 if (con->state == CON_STATE_CLOSED) {
2294 dout("con_work %p CLOSED\n", con);
2295 BUG_ON(con->sock);
2296 goto done;
2297 }
2298 if (con->state == CON_STATE_PREOPEN) {
2299 dout("con_work OPENING\n");
2300 BUG_ON(con->sock);
2301 }
2302
2303 ret = try_read(con);
2304 if (ret == -EAGAIN)
2305 goto restart;
2306 if (ret < 0) {
2307 con->error_msg = "socket error on read";
2308 goto fault;
2309 }
2310
2311 ret = try_write(con);
2312 if (ret == -EAGAIN)
2313 goto restart;
2314 if (ret < 0) {
2315 con->error_msg = "socket error on write";
2316 goto fault;
2317 }
2318
2319 done:
2320 mutex_unlock(&con->mutex);
2321 done_unlocked:
2322 con->ops->put(con);
2323 return;
2324
2325 fault:
2326 mutex_unlock(&con->mutex);
2327 ceph_fault(con); /* error/fault path */
2328 goto done_unlocked;
2329 }
2330
2331
2332 /*
2333 * Generic error/fault handler. A retry mechanism is used with
2334 * exponential backoff
2335 */
2336 static void ceph_fault(struct ceph_connection *con)
2337 {
2338 mutex_lock(&con->mutex);
2339
2340 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2341 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2342 dout("fault %p state %lu to peer %s\n",
2343 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2344
2345 BUG_ON(con->state != CON_STATE_CONNECTING &&
2346 con->state != CON_STATE_NEGOTIATING &&
2347 con->state != CON_STATE_OPEN);
2348
2349 con_close_socket(con);
2350
2351 if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2352 dout("fault on LOSSYTX channel, marking CLOSED\n");
2353 con->state = CON_STATE_CLOSED;
2354 goto out_unlock;
2355 }
2356
2357 if (con->in_msg) {
2358 BUG_ON(con->in_msg->con != con);
2359 con->in_msg->con = NULL;
2360 ceph_msg_put(con->in_msg);
2361 con->in_msg = NULL;
2362 con->ops->put(con);
2363 }
2364
2365 /* Requeue anything that hasn't been acked */
2366 list_splice_init(&con->out_sent, &con->out_queue);
2367
2368 /* If there are no messages queued or keepalive pending, place
2369 * the connection in a STANDBY state */
2370 if (list_empty(&con->out_queue) &&
2371 !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2372 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2373 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2374 con->state = CON_STATE_STANDBY;
2375 } else {
2376 /* retry after a delay. */
2377 con->state = CON_STATE_PREOPEN;
2378 if (con->delay == 0)
2379 con->delay = BASE_DELAY_INTERVAL;
2380 else if (con->delay < MAX_DELAY_INTERVAL)
2381 con->delay *= 2;
2382 con->ops->get(con);
2383 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2384 round_jiffies_relative(con->delay))) {
2385 dout("fault queued %p delay %lu\n", con, con->delay);
2386 } else {
2387 con->ops->put(con);
2388 dout("fault failed to queue %p delay %lu, backoff\n",
2389 con, con->delay);
2390 /*
2391 * In many cases we see a socket state change
2392 * while con_work is running and end up
2393 * queuing (non-delayed) work, such that we
2394 * can't backoff with a delay. Set a flag so
2395 * that when con_work restarts we schedule the
2396 * delay then.
2397 */
2398 set_bit(CON_FLAG_BACKOFF, &con->flags);
2399 }
2400 }
2401
2402 out_unlock:
2403 mutex_unlock(&con->mutex);
2404 /*
2405 * in case we faulted due to authentication, invalidate our
2406 * current tickets so that we can get new ones.
2407 */
2408 if (con->auth_retry && con->ops->invalidate_authorizer) {
2409 dout("calling invalidate_authorizer()\n");
2410 con->ops->invalidate_authorizer(con);
2411 }
2412
2413 if (con->ops->fault)
2414 con->ops->fault(con);
2415 }
2416
2417
2418
2419 /*
2420 * initialize a new messenger instance
2421 */
2422 void ceph_messenger_init(struct ceph_messenger *msgr,
2423 struct ceph_entity_addr *myaddr,
2424 u32 supported_features,
2425 u32 required_features,
2426 bool nocrc)
2427 {
2428 msgr->supported_features = supported_features;
2429 msgr->required_features = required_features;
2430
2431 spin_lock_init(&msgr->global_seq_lock);
2432
2433 if (myaddr)
2434 msgr->inst.addr = *myaddr;
2435
2436 /* select a random nonce */
2437 msgr->inst.addr.type = 0;
2438 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2439 encode_my_addr(msgr);
2440 msgr->nocrc = nocrc;
2441
2442 atomic_set(&msgr->stopping, 0);
2443
2444 dout("%s %p\n", __func__, msgr);
2445 }
2446 EXPORT_SYMBOL(ceph_messenger_init);
2447
2448 static void clear_standby(struct ceph_connection *con)
2449 {
2450 /* come back from STANDBY? */
2451 if (con->state == CON_STATE_STANDBY) {
2452 dout("clear_standby %p and ++connect_seq\n", con);
2453 con->state = CON_STATE_PREOPEN;
2454 con->connect_seq++;
2455 WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2456 WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2457 }
2458 }
2459
2460 /*
2461 * Queue up an outgoing message on the given connection.
2462 */
2463 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2464 {
2465 /* set src+dst */
2466 msg->hdr.src = con->msgr->inst.name;
2467 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2468 msg->needs_out_seq = true;
2469
2470 mutex_lock(&con->mutex);
2471
2472 if (con->state == CON_STATE_CLOSED) {
2473 dout("con_send %p closed, dropping %p\n", con, msg);
2474 ceph_msg_put(msg);
2475 mutex_unlock(&con->mutex);
2476 return;
2477 }
2478
2479 BUG_ON(msg->con != NULL);
2480 msg->con = con->ops->get(con);
2481 BUG_ON(msg->con == NULL);
2482
2483 BUG_ON(!list_empty(&msg->list_head));
2484 list_add_tail(&msg->list_head, &con->out_queue);
2485 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2486 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2487 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2488 le32_to_cpu(msg->hdr.front_len),
2489 le32_to_cpu(msg->hdr.middle_len),
2490 le32_to_cpu(msg->hdr.data_len));
2491
2492 clear_standby(con);
2493 mutex_unlock(&con->mutex);
2494
2495 /* if there wasn't anything waiting to send before, queue
2496 * new work */
2497 if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2498 queue_con(con);
2499 }
2500 EXPORT_SYMBOL(ceph_con_send);
2501
2502 /*
2503 * Revoke a message that was previously queued for send
2504 */
2505 void ceph_msg_revoke(struct ceph_msg *msg)
2506 {
2507 struct ceph_connection *con = msg->con;
2508
2509 if (!con)
2510 return; /* Message not in our possession */
2511
2512 mutex_lock(&con->mutex);
2513 if (!list_empty(&msg->list_head)) {
2514 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2515 list_del_init(&msg->list_head);
2516 BUG_ON(msg->con == NULL);
2517 msg->con->ops->put(msg->con);
2518 msg->con = NULL;
2519 msg->hdr.seq = 0;
2520
2521 ceph_msg_put(msg);
2522 }
2523 if (con->out_msg == msg) {
2524 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2525 con->out_msg = NULL;
2526 if (con->out_kvec_is_msg) {
2527 con->out_skip = con->out_kvec_bytes;
2528 con->out_kvec_is_msg = false;
2529 }
2530 msg->hdr.seq = 0;
2531
2532 ceph_msg_put(msg);
2533 }
2534 mutex_unlock(&con->mutex);
2535 }
2536
2537 /*
2538 * Revoke a message that we may be reading data into
2539 */
2540 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2541 {
2542 struct ceph_connection *con;
2543
2544 BUG_ON(msg == NULL);
2545 if (!msg->con) {
2546 dout("%s msg %p null con\n", __func__, msg);
2547
2548 return; /* Message not in our possession */
2549 }
2550
2551 con = msg->con;
2552 mutex_lock(&con->mutex);
2553 if (con->in_msg == msg) {
2554 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2555 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2556 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2557
2558 /* skip rest of message */
2559 dout("%s %p msg %p revoked\n", __func__, con, msg);
2560 con->in_base_pos = con->in_base_pos -
2561 sizeof(struct ceph_msg_header) -
2562 front_len -
2563 middle_len -
2564 data_len -
2565 sizeof(struct ceph_msg_footer);
2566 ceph_msg_put(con->in_msg);
2567 con->in_msg = NULL;
2568 con->in_tag = CEPH_MSGR_TAG_READY;
2569 con->in_seq++;
2570 } else {
2571 dout("%s %p in_msg %p msg %p no-op\n",
2572 __func__, con, con->in_msg, msg);
2573 }
2574 mutex_unlock(&con->mutex);
2575 }
2576
2577 /*
2578 * Queue a keepalive byte to ensure the tcp connection is alive.
2579 */
2580 void ceph_con_keepalive(struct ceph_connection *con)
2581 {
2582 dout("con_keepalive %p\n", con);
2583 mutex_lock(&con->mutex);
2584 clear_standby(con);
2585 mutex_unlock(&con->mutex);
2586 if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2587 test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2588 queue_con(con);
2589 }
2590 EXPORT_SYMBOL(ceph_con_keepalive);
2591
2592
2593 /*
2594 * construct a new message with given type, size
2595 * the new msg has a ref count of 1.
2596 */
2597 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2598 bool can_fail)
2599 {
2600 struct ceph_msg *m;
2601
2602 m = kmalloc(sizeof(*m), flags);
2603 if (m == NULL)
2604 goto out;
2605 kref_init(&m->kref);
2606
2607 m->con = NULL;
2608 INIT_LIST_HEAD(&m->list_head);
2609
2610 m->hdr.tid = 0;
2611 m->hdr.type = cpu_to_le16(type);
2612 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2613 m->hdr.version = 0;
2614 m->hdr.front_len = cpu_to_le32(front_len);
2615 m->hdr.middle_len = 0;
2616 m->hdr.data_len = 0;
2617 m->hdr.data_off = 0;
2618 m->hdr.reserved = 0;
2619 m->footer.front_crc = 0;
2620 m->footer.middle_crc = 0;
2621 m->footer.data_crc = 0;
2622 m->footer.flags = 0;
2623 m->front_max = front_len;
2624 m->front_is_vmalloc = false;
2625 m->more_to_follow = false;
2626 m->ack_stamp = 0;
2627 m->pool = NULL;
2628
2629 /* middle */
2630 m->middle = NULL;
2631
2632 /* data */
2633 m->nr_pages = 0;
2634 m->page_alignment = 0;
2635 m->pages = NULL;
2636 m->pagelist = NULL;
2637 m->bio = NULL;
2638 m->bio_iter = NULL;
2639 m->bio_seg = 0;
2640 m->trail = NULL;
2641
2642 /* front */
2643 if (front_len) {
2644 if (front_len > PAGE_CACHE_SIZE) {
2645 m->front.iov_base = __vmalloc(front_len, flags,
2646 PAGE_KERNEL);
2647 m->front_is_vmalloc = true;
2648 } else {
2649 m->front.iov_base = kmalloc(front_len, flags);
2650 }
2651 if (m->front.iov_base == NULL) {
2652 dout("ceph_msg_new can't allocate %d bytes\n",
2653 front_len);
2654 goto out2;
2655 }
2656 } else {
2657 m->front.iov_base = NULL;
2658 }
2659 m->front.iov_len = front_len;
2660
2661 dout("ceph_msg_new %p front %d\n", m, front_len);
2662 return m;
2663
2664 out2:
2665 ceph_msg_put(m);
2666 out:
2667 if (!can_fail) {
2668 pr_err("msg_new can't create type %d front %d\n", type,
2669 front_len);
2670 WARN_ON(1);
2671 } else {
2672 dout("msg_new can't create type %d front %d\n", type,
2673 front_len);
2674 }
2675 return NULL;
2676 }
2677 EXPORT_SYMBOL(ceph_msg_new);
2678
2679 /*
2680 * Allocate "middle" portion of a message, if it is needed and wasn't
2681 * allocated by alloc_msg. This allows us to read a small fixed-size
2682 * per-type header in the front and then gracefully fail (i.e.,
2683 * propagate the error to the caller based on info in the front) when
2684 * the middle is too large.
2685 */
2686 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2687 {
2688 int type = le16_to_cpu(msg->hdr.type);
2689 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2690
2691 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2692 ceph_msg_type_name(type), middle_len);
2693 BUG_ON(!middle_len);
2694 BUG_ON(msg->middle);
2695
2696 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2697 if (!msg->middle)
2698 return -ENOMEM;
2699 return 0;
2700 }
2701
2702 /*
2703 * Allocate a message for receiving an incoming message on a
2704 * connection, and save the result in con->in_msg. Uses the
2705 * connection's private alloc_msg op if available.
2706 *
2707 * Returns true if the message should be skipped, false otherwise.
2708 * If true is returned (skip message), con->in_msg will be NULL.
2709 * If false is returned, con->in_msg will contain a pointer to the
2710 * newly-allocated message, or NULL in case of memory exhaustion.
2711 */
2712 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2713 struct ceph_msg_header *hdr)
2714 {
2715 int type = le16_to_cpu(hdr->type);
2716 int front_len = le32_to_cpu(hdr->front_len);
2717 int middle_len = le32_to_cpu(hdr->middle_len);
2718 int ret;
2719
2720 BUG_ON(con->in_msg != NULL);
2721
2722 if (con->ops->alloc_msg) {
2723 int skip = 0;
2724
2725 mutex_unlock(&con->mutex);
2726 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2727 mutex_lock(&con->mutex);
2728 if (con->in_msg) {
2729 con->in_msg->con = con->ops->get(con);
2730 BUG_ON(con->in_msg->con == NULL);
2731 }
2732 if (skip)
2733 con->in_msg = NULL;
2734
2735 if (!con->in_msg)
2736 return skip != 0;
2737 }
2738 if (!con->in_msg) {
2739 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2740 if (!con->in_msg) {
2741 pr_err("unable to allocate msg type %d len %d\n",
2742 type, front_len);
2743 return false;
2744 }
2745 con->in_msg->con = con->ops->get(con);
2746 BUG_ON(con->in_msg->con == NULL);
2747 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2748 }
2749 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2750
2751 if (middle_len && !con->in_msg->middle) {
2752 ret = ceph_alloc_middle(con, con->in_msg);
2753 if (ret < 0) {
2754 ceph_msg_put(con->in_msg);
2755 con->in_msg = NULL;
2756 }
2757 }
2758
2759 return false;
2760 }
2761
2762
2763 /*
2764 * Free a generically kmalloc'd message.
2765 */
2766 void ceph_msg_kfree(struct ceph_msg *m)
2767 {
2768 dout("msg_kfree %p\n", m);
2769 if (m->front_is_vmalloc)
2770 vfree(m->front.iov_base);
2771 else
2772 kfree(m->front.iov_base);
2773 kfree(m);
2774 }
2775
2776 /*
2777 * Drop a msg ref. Destroy as needed.
2778 */
2779 void ceph_msg_last_put(struct kref *kref)
2780 {
2781 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2782
2783 dout("ceph_msg_put last one on %p\n", m);
2784 WARN_ON(!list_empty(&m->list_head));
2785
2786 /* drop middle, data, if any */
2787 if (m->middle) {
2788 ceph_buffer_put(m->middle);
2789 m->middle = NULL;
2790 }
2791 m->nr_pages = 0;
2792 m->pages = NULL;
2793
2794 if (m->pagelist) {
2795 ceph_pagelist_release(m->pagelist);
2796 kfree(m->pagelist);
2797 m->pagelist = NULL;
2798 }
2799
2800 m->trail = NULL;
2801
2802 if (m->pool)
2803 ceph_msgpool_put(m->pool, m);
2804 else
2805 ceph_msg_kfree(m);
2806 }
2807 EXPORT_SYMBOL(ceph_msg_last_put);
2808
2809 void ceph_msg_dump(struct ceph_msg *msg)
2810 {
2811 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2812 msg->front_max, msg->nr_pages);
2813 print_hex_dump(KERN_DEBUG, "header: ",
2814 DUMP_PREFIX_OFFSET, 16, 1,
2815 &msg->hdr, sizeof(msg->hdr), true);
2816 print_hex_dump(KERN_DEBUG, " front: ",
2817 DUMP_PREFIX_OFFSET, 16, 1,
2818 msg->front.iov_base, msg->front.iov_len, true);
2819 if (msg->middle)
2820 print_hex_dump(KERN_DEBUG, "middle: ",
2821 DUMP_PREFIX_OFFSET, 16, 1,
2822 msg->middle->vec.iov_base,
2823 msg->middle->vec.iov_len, true);
2824 print_hex_dump(KERN_DEBUG, "footer: ",
2825 DUMP_PREFIX_OFFSET, 16, 1,
2826 &msg->footer, sizeof(msg->footer), true);
2827 }
2828 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.083802 seconds and 4 git commands to generate.