libceph: rename front to front_len in get_reply()
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
160
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 /*
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
173 */
174 #define SKIP_BUF_SIZE 1024
175
176 static void queue_con(struct ceph_connection *con);
177 static void con_work(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179
180 /*
181 * Nicely render a sockaddr as a string. An array of formatted
182 * strings is used, to approximate reentrancy.
183 */
184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
188
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191
192 static struct page *zero_page; /* used in certain error cases */
193
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 int i;
197 char *s;
198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200
201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 s = addr_str[i];
203
204 switch (ss->ss_family) {
205 case AF_INET:
206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 ntohs(in4->sin_port));
208 break;
209
210 case AF_INET6:
211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 ntohs(in6->sin6_port));
213 break;
214
215 default:
216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 ss->ss_family);
218 }
219
220 return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 ceph_encode_addr(&msgr->my_enc_addr);
228 }
229
230 /*
231 * work queue for all reading and writing to/from the socket.
232 */
233 static struct workqueue_struct *ceph_msgr_wq;
234
235 static int ceph_msgr_slab_init(void)
236 {
237 BUG_ON(ceph_msg_cache);
238 ceph_msg_cache = kmem_cache_create("ceph_msg",
239 sizeof (struct ceph_msg),
240 __alignof__(struct ceph_msg), 0, NULL);
241
242 if (!ceph_msg_cache)
243 return -ENOMEM;
244
245 BUG_ON(ceph_msg_data_cache);
246 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
247 sizeof (struct ceph_msg_data),
248 __alignof__(struct ceph_msg_data),
249 0, NULL);
250 if (ceph_msg_data_cache)
251 return 0;
252
253 kmem_cache_destroy(ceph_msg_cache);
254 ceph_msg_cache = NULL;
255
256 return -ENOMEM;
257 }
258
259 static void ceph_msgr_slab_exit(void)
260 {
261 BUG_ON(!ceph_msg_data_cache);
262 kmem_cache_destroy(ceph_msg_data_cache);
263 ceph_msg_data_cache = NULL;
264
265 BUG_ON(!ceph_msg_cache);
266 kmem_cache_destroy(ceph_msg_cache);
267 ceph_msg_cache = NULL;
268 }
269
270 static void _ceph_msgr_exit(void)
271 {
272 if (ceph_msgr_wq) {
273 destroy_workqueue(ceph_msgr_wq);
274 ceph_msgr_wq = NULL;
275 }
276
277 ceph_msgr_slab_exit();
278
279 BUG_ON(zero_page == NULL);
280 kunmap(zero_page);
281 page_cache_release(zero_page);
282 zero_page = NULL;
283 }
284
285 int ceph_msgr_init(void)
286 {
287 BUG_ON(zero_page != NULL);
288 zero_page = ZERO_PAGE(0);
289 page_cache_get(zero_page);
290
291 if (ceph_msgr_slab_init())
292 return -ENOMEM;
293
294 ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0);
295 if (ceph_msgr_wq)
296 return 0;
297
298 pr_err("msgr_init failed to create workqueue\n");
299 _ceph_msgr_exit();
300
301 return -ENOMEM;
302 }
303 EXPORT_SYMBOL(ceph_msgr_init);
304
305 void ceph_msgr_exit(void)
306 {
307 BUG_ON(ceph_msgr_wq == NULL);
308
309 _ceph_msgr_exit();
310 }
311 EXPORT_SYMBOL(ceph_msgr_exit);
312
313 void ceph_msgr_flush(void)
314 {
315 flush_workqueue(ceph_msgr_wq);
316 }
317 EXPORT_SYMBOL(ceph_msgr_flush);
318
319 /* Connection socket state transition functions */
320
321 static void con_sock_state_init(struct ceph_connection *con)
322 {
323 int old_state;
324
325 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
327 printk("%s: unexpected old state %d\n", __func__, old_state);
328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 CON_SOCK_STATE_CLOSED);
330 }
331
332 static void con_sock_state_connecting(struct ceph_connection *con)
333 {
334 int old_state;
335
336 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
337 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
338 printk("%s: unexpected old state %d\n", __func__, old_state);
339 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
340 CON_SOCK_STATE_CONNECTING);
341 }
342
343 static void con_sock_state_connected(struct ceph_connection *con)
344 {
345 int old_state;
346
347 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
348 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
349 printk("%s: unexpected old state %d\n", __func__, old_state);
350 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
351 CON_SOCK_STATE_CONNECTED);
352 }
353
354 static void con_sock_state_closing(struct ceph_connection *con)
355 {
356 int old_state;
357
358 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
359 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
360 old_state != CON_SOCK_STATE_CONNECTED &&
361 old_state != CON_SOCK_STATE_CLOSING))
362 printk("%s: unexpected old state %d\n", __func__, old_state);
363 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
364 CON_SOCK_STATE_CLOSING);
365 }
366
367 static void con_sock_state_closed(struct ceph_connection *con)
368 {
369 int old_state;
370
371 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
372 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
373 old_state != CON_SOCK_STATE_CLOSING &&
374 old_state != CON_SOCK_STATE_CONNECTING &&
375 old_state != CON_SOCK_STATE_CLOSED))
376 printk("%s: unexpected old state %d\n", __func__, old_state);
377 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
378 CON_SOCK_STATE_CLOSED);
379 }
380
381 /*
382 * socket callback functions
383 */
384
385 /* data available on socket, or listen socket received a connect */
386 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
387 {
388 struct ceph_connection *con = sk->sk_user_data;
389 if (atomic_read(&con->msgr->stopping)) {
390 return;
391 }
392
393 if (sk->sk_state != TCP_CLOSE_WAIT) {
394 dout("%s on %p state = %lu, queueing work\n", __func__,
395 con, con->state);
396 queue_con(con);
397 }
398 }
399
400 /* socket has buffer space for writing */
401 static void ceph_sock_write_space(struct sock *sk)
402 {
403 struct ceph_connection *con = sk->sk_user_data;
404
405 /* only queue to workqueue if there is data we want to write,
406 * and there is sufficient space in the socket buffer to accept
407 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
408 * doesn't get called again until try_write() fills the socket
409 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
410 * and net/core/stream.c:sk_stream_write_space().
411 */
412 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
413 if (sk_stream_is_writeable(sk)) {
414 dout("%s %p queueing write work\n", __func__, con);
415 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
416 queue_con(con);
417 }
418 } else {
419 dout("%s %p nothing to write\n", __func__, con);
420 }
421 }
422
423 /* socket's state has changed */
424 static void ceph_sock_state_change(struct sock *sk)
425 {
426 struct ceph_connection *con = sk->sk_user_data;
427
428 dout("%s %p state = %lu sk_state = %u\n", __func__,
429 con, con->state, sk->sk_state);
430
431 switch (sk->sk_state) {
432 case TCP_CLOSE:
433 dout("%s TCP_CLOSE\n", __func__);
434 case TCP_CLOSE_WAIT:
435 dout("%s TCP_CLOSE_WAIT\n", __func__);
436 con_sock_state_closing(con);
437 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
438 queue_con(con);
439 break;
440 case TCP_ESTABLISHED:
441 dout("%s TCP_ESTABLISHED\n", __func__);
442 con_sock_state_connected(con);
443 queue_con(con);
444 break;
445 default: /* Everything else is uninteresting */
446 break;
447 }
448 }
449
450 /*
451 * set up socket callbacks
452 */
453 static void set_sock_callbacks(struct socket *sock,
454 struct ceph_connection *con)
455 {
456 struct sock *sk = sock->sk;
457 sk->sk_user_data = con;
458 sk->sk_data_ready = ceph_sock_data_ready;
459 sk->sk_write_space = ceph_sock_write_space;
460 sk->sk_state_change = ceph_sock_state_change;
461 }
462
463
464 /*
465 * socket helpers
466 */
467
468 /*
469 * initiate connection to a remote socket.
470 */
471 static int ceph_tcp_connect(struct ceph_connection *con)
472 {
473 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
474 struct socket *sock;
475 int ret;
476
477 BUG_ON(con->sock);
478 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
479 IPPROTO_TCP, &sock);
480 if (ret)
481 return ret;
482 sock->sk->sk_allocation = GFP_NOFS;
483
484 #ifdef CONFIG_LOCKDEP
485 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
486 #endif
487
488 set_sock_callbacks(sock, con);
489
490 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
491
492 con_sock_state_connecting(con);
493 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
494 O_NONBLOCK);
495 if (ret == -EINPROGRESS) {
496 dout("connect %s EINPROGRESS sk_state = %u\n",
497 ceph_pr_addr(&con->peer_addr.in_addr),
498 sock->sk->sk_state);
499 } else if (ret < 0) {
500 pr_err("connect %s error %d\n",
501 ceph_pr_addr(&con->peer_addr.in_addr), ret);
502 sock_release(sock);
503 con->error_msg = "connect error";
504
505 return ret;
506 }
507 con->sock = sock;
508 return 0;
509 }
510
511 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
512 {
513 struct kvec iov = {buf, len};
514 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
515 int r;
516
517 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
518 if (r == -EAGAIN)
519 r = 0;
520 return r;
521 }
522
523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
524 int page_offset, size_t length)
525 {
526 void *kaddr;
527 int ret;
528
529 BUG_ON(page_offset + length > PAGE_SIZE);
530
531 kaddr = kmap(page);
532 BUG_ON(!kaddr);
533 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
534 kunmap(page);
535
536 return ret;
537 }
538
539 /*
540 * write something. @more is true if caller will be sending more data
541 * shortly.
542 */
543 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
544 size_t kvlen, size_t len, int more)
545 {
546 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
547 int r;
548
549 if (more)
550 msg.msg_flags |= MSG_MORE;
551 else
552 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
553
554 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
555 if (r == -EAGAIN)
556 r = 0;
557 return r;
558 }
559
560 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
561 int offset, size_t size, bool more)
562 {
563 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
564 int ret;
565
566 ret = kernel_sendpage(sock, page, offset, size, flags);
567 if (ret == -EAGAIN)
568 ret = 0;
569
570 return ret;
571 }
572
573
574 /*
575 * Shutdown/close the socket for the given connection.
576 */
577 static int con_close_socket(struct ceph_connection *con)
578 {
579 int rc = 0;
580
581 dout("con_close_socket on %p sock %p\n", con, con->sock);
582 if (con->sock) {
583 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
584 sock_release(con->sock);
585 con->sock = NULL;
586 }
587
588 /*
589 * Forcibly clear the SOCK_CLOSED flag. It gets set
590 * independent of the connection mutex, and we could have
591 * received a socket close event before we had the chance to
592 * shut the socket down.
593 */
594 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
595
596 con_sock_state_closed(con);
597 return rc;
598 }
599
600 /*
601 * Reset a connection. Discard all incoming and outgoing messages
602 * and clear *_seq state.
603 */
604 static void ceph_msg_remove(struct ceph_msg *msg)
605 {
606 list_del_init(&msg->list_head);
607 BUG_ON(msg->con == NULL);
608 msg->con->ops->put(msg->con);
609 msg->con = NULL;
610
611 ceph_msg_put(msg);
612 }
613 static void ceph_msg_remove_list(struct list_head *head)
614 {
615 while (!list_empty(head)) {
616 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
617 list_head);
618 ceph_msg_remove(msg);
619 }
620 }
621
622 static void reset_connection(struct ceph_connection *con)
623 {
624 /* reset connection, out_queue, msg_ and connect_seq */
625 /* discard existing out_queue and msg_seq */
626 dout("reset_connection %p\n", con);
627 ceph_msg_remove_list(&con->out_queue);
628 ceph_msg_remove_list(&con->out_sent);
629
630 if (con->in_msg) {
631 BUG_ON(con->in_msg->con != con);
632 con->in_msg->con = NULL;
633 ceph_msg_put(con->in_msg);
634 con->in_msg = NULL;
635 con->ops->put(con);
636 }
637
638 con->connect_seq = 0;
639 con->out_seq = 0;
640 if (con->out_msg) {
641 ceph_msg_put(con->out_msg);
642 con->out_msg = NULL;
643 }
644 con->in_seq = 0;
645 con->in_seq_acked = 0;
646 }
647
648 /*
649 * mark a peer down. drop any open connections.
650 */
651 void ceph_con_close(struct ceph_connection *con)
652 {
653 mutex_lock(&con->mutex);
654 dout("con_close %p peer %s\n", con,
655 ceph_pr_addr(&con->peer_addr.in_addr));
656 con->state = CON_STATE_CLOSED;
657
658 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
659 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
660 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
661 con_flag_clear(con, CON_FLAG_BACKOFF);
662
663 reset_connection(con);
664 con->peer_global_seq = 0;
665 cancel_delayed_work(&con->work);
666 con_close_socket(con);
667 mutex_unlock(&con->mutex);
668 }
669 EXPORT_SYMBOL(ceph_con_close);
670
671 /*
672 * Reopen a closed connection, with a new peer address.
673 */
674 void ceph_con_open(struct ceph_connection *con,
675 __u8 entity_type, __u64 entity_num,
676 struct ceph_entity_addr *addr)
677 {
678 mutex_lock(&con->mutex);
679 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
680
681 WARN_ON(con->state != CON_STATE_CLOSED);
682 con->state = CON_STATE_PREOPEN;
683
684 con->peer_name.type = (__u8) entity_type;
685 con->peer_name.num = cpu_to_le64(entity_num);
686
687 memcpy(&con->peer_addr, addr, sizeof(*addr));
688 con->delay = 0; /* reset backoff memory */
689 mutex_unlock(&con->mutex);
690 queue_con(con);
691 }
692 EXPORT_SYMBOL(ceph_con_open);
693
694 /*
695 * return true if this connection ever successfully opened
696 */
697 bool ceph_con_opened(struct ceph_connection *con)
698 {
699 return con->connect_seq > 0;
700 }
701
702 /*
703 * initialize a new connection.
704 */
705 void ceph_con_init(struct ceph_connection *con, void *private,
706 const struct ceph_connection_operations *ops,
707 struct ceph_messenger *msgr)
708 {
709 dout("con_init %p\n", con);
710 memset(con, 0, sizeof(*con));
711 con->private = private;
712 con->ops = ops;
713 con->msgr = msgr;
714
715 con_sock_state_init(con);
716
717 mutex_init(&con->mutex);
718 INIT_LIST_HEAD(&con->out_queue);
719 INIT_LIST_HEAD(&con->out_sent);
720 INIT_DELAYED_WORK(&con->work, con_work);
721
722 con->state = CON_STATE_CLOSED;
723 }
724 EXPORT_SYMBOL(ceph_con_init);
725
726
727 /*
728 * We maintain a global counter to order connection attempts. Get
729 * a unique seq greater than @gt.
730 */
731 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
732 {
733 u32 ret;
734
735 spin_lock(&msgr->global_seq_lock);
736 if (msgr->global_seq < gt)
737 msgr->global_seq = gt;
738 ret = ++msgr->global_seq;
739 spin_unlock(&msgr->global_seq_lock);
740 return ret;
741 }
742
743 static void con_out_kvec_reset(struct ceph_connection *con)
744 {
745 con->out_kvec_left = 0;
746 con->out_kvec_bytes = 0;
747 con->out_kvec_cur = &con->out_kvec[0];
748 }
749
750 static void con_out_kvec_add(struct ceph_connection *con,
751 size_t size, void *data)
752 {
753 int index;
754
755 index = con->out_kvec_left;
756 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
757
758 con->out_kvec[index].iov_len = size;
759 con->out_kvec[index].iov_base = data;
760 con->out_kvec_left++;
761 con->out_kvec_bytes += size;
762 }
763
764 #ifdef CONFIG_BLOCK
765
766 /*
767 * For a bio data item, a piece is whatever remains of the next
768 * entry in the current bio iovec, or the first entry in the next
769 * bio in the list.
770 */
771 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
772 size_t length)
773 {
774 struct ceph_msg_data *data = cursor->data;
775 struct bio *bio;
776
777 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
778
779 bio = data->bio;
780 BUG_ON(!bio);
781 BUG_ON(!bio->bi_vcnt);
782
783 cursor->resid = min(length, data->bio_length);
784 cursor->bio = bio;
785 cursor->vector_index = 0;
786 cursor->vector_offset = 0;
787 cursor->last_piece = length <= bio->bi_io_vec[0].bv_len;
788 }
789
790 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
791 size_t *page_offset,
792 size_t *length)
793 {
794 struct ceph_msg_data *data = cursor->data;
795 struct bio *bio;
796 struct bio_vec *bio_vec;
797 unsigned int index;
798
799 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
800
801 bio = cursor->bio;
802 BUG_ON(!bio);
803
804 index = cursor->vector_index;
805 BUG_ON(index >= (unsigned int) bio->bi_vcnt);
806
807 bio_vec = &bio->bi_io_vec[index];
808 BUG_ON(cursor->vector_offset >= bio_vec->bv_len);
809 *page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset);
810 BUG_ON(*page_offset >= PAGE_SIZE);
811 if (cursor->last_piece) /* pagelist offset is always 0 */
812 *length = cursor->resid;
813 else
814 *length = (size_t) (bio_vec->bv_len - cursor->vector_offset);
815 BUG_ON(*length > cursor->resid);
816 BUG_ON(*page_offset + *length > PAGE_SIZE);
817
818 return bio_vec->bv_page;
819 }
820
821 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
822 size_t bytes)
823 {
824 struct bio *bio;
825 struct bio_vec *bio_vec;
826 unsigned int index;
827
828 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
829
830 bio = cursor->bio;
831 BUG_ON(!bio);
832
833 index = cursor->vector_index;
834 BUG_ON(index >= (unsigned int) bio->bi_vcnt);
835 bio_vec = &bio->bi_io_vec[index];
836
837 /* Advance the cursor offset */
838
839 BUG_ON(cursor->resid < bytes);
840 cursor->resid -= bytes;
841 cursor->vector_offset += bytes;
842 if (cursor->vector_offset < bio_vec->bv_len)
843 return false; /* more bytes to process in this segment */
844 BUG_ON(cursor->vector_offset != bio_vec->bv_len);
845
846 /* Move on to the next segment, and possibly the next bio */
847
848 if (++index == (unsigned int) bio->bi_vcnt) {
849 bio = bio->bi_next;
850 index = 0;
851 }
852 cursor->bio = bio;
853 cursor->vector_index = index;
854 cursor->vector_offset = 0;
855
856 if (!cursor->last_piece) {
857 BUG_ON(!cursor->resid);
858 BUG_ON(!bio);
859 /* A short read is OK, so use <= rather than == */
860 if (cursor->resid <= bio->bi_io_vec[index].bv_len)
861 cursor->last_piece = true;
862 }
863
864 return true;
865 }
866 #endif /* CONFIG_BLOCK */
867
868 /*
869 * For a page array, a piece comes from the first page in the array
870 * that has not already been fully consumed.
871 */
872 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
873 size_t length)
874 {
875 struct ceph_msg_data *data = cursor->data;
876 int page_count;
877
878 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
879
880 BUG_ON(!data->pages);
881 BUG_ON(!data->length);
882
883 cursor->resid = min(length, data->length);
884 page_count = calc_pages_for(data->alignment, (u64)data->length);
885 cursor->page_offset = data->alignment & ~PAGE_MASK;
886 cursor->page_index = 0;
887 BUG_ON(page_count > (int)USHRT_MAX);
888 cursor->page_count = (unsigned short)page_count;
889 BUG_ON(length > SIZE_MAX - cursor->page_offset);
890 cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
891 }
892
893 static struct page *
894 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
895 size_t *page_offset, size_t *length)
896 {
897 struct ceph_msg_data *data = cursor->data;
898
899 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
900
901 BUG_ON(cursor->page_index >= cursor->page_count);
902 BUG_ON(cursor->page_offset >= PAGE_SIZE);
903
904 *page_offset = cursor->page_offset;
905 if (cursor->last_piece)
906 *length = cursor->resid;
907 else
908 *length = PAGE_SIZE - *page_offset;
909
910 return data->pages[cursor->page_index];
911 }
912
913 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
914 size_t bytes)
915 {
916 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
917
918 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
919
920 /* Advance the cursor page offset */
921
922 cursor->resid -= bytes;
923 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
924 if (!bytes || cursor->page_offset)
925 return false; /* more bytes to process in the current page */
926
927 /* Move on to the next page; offset is already at 0 */
928
929 BUG_ON(cursor->page_index >= cursor->page_count);
930 cursor->page_index++;
931 cursor->last_piece = cursor->resid <= PAGE_SIZE;
932
933 return true;
934 }
935
936 /*
937 * For a pagelist, a piece is whatever remains to be consumed in the
938 * first page in the list, or the front of the next page.
939 */
940 static void
941 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
942 size_t length)
943 {
944 struct ceph_msg_data *data = cursor->data;
945 struct ceph_pagelist *pagelist;
946 struct page *page;
947
948 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
949
950 pagelist = data->pagelist;
951 BUG_ON(!pagelist);
952
953 if (!length)
954 return; /* pagelist can be assigned but empty */
955
956 BUG_ON(list_empty(&pagelist->head));
957 page = list_first_entry(&pagelist->head, struct page, lru);
958
959 cursor->resid = min(length, pagelist->length);
960 cursor->page = page;
961 cursor->offset = 0;
962 cursor->last_piece = cursor->resid <= PAGE_SIZE;
963 }
964
965 static struct page *
966 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
967 size_t *page_offset, size_t *length)
968 {
969 struct ceph_msg_data *data = cursor->data;
970 struct ceph_pagelist *pagelist;
971
972 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
973
974 pagelist = data->pagelist;
975 BUG_ON(!pagelist);
976
977 BUG_ON(!cursor->page);
978 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
979
980 /* offset of first page in pagelist is always 0 */
981 *page_offset = cursor->offset & ~PAGE_MASK;
982 if (cursor->last_piece)
983 *length = cursor->resid;
984 else
985 *length = PAGE_SIZE - *page_offset;
986
987 return cursor->page;
988 }
989
990 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
991 size_t bytes)
992 {
993 struct ceph_msg_data *data = cursor->data;
994 struct ceph_pagelist *pagelist;
995
996 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
997
998 pagelist = data->pagelist;
999 BUG_ON(!pagelist);
1000
1001 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1002 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1003
1004 /* Advance the cursor offset */
1005
1006 cursor->resid -= bytes;
1007 cursor->offset += bytes;
1008 /* offset of first page in pagelist is always 0 */
1009 if (!bytes || cursor->offset & ~PAGE_MASK)
1010 return false; /* more bytes to process in the current page */
1011
1012 /* Move on to the next page */
1013
1014 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1015 cursor->page = list_entry_next(cursor->page, lru);
1016 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1017
1018 return true;
1019 }
1020
1021 /*
1022 * Message data is handled (sent or received) in pieces, where each
1023 * piece resides on a single page. The network layer might not
1024 * consume an entire piece at once. A data item's cursor keeps
1025 * track of which piece is next to process and how much remains to
1026 * be processed in that piece. It also tracks whether the current
1027 * piece is the last one in the data item.
1028 */
1029 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1030 {
1031 size_t length = cursor->total_resid;
1032
1033 switch (cursor->data->type) {
1034 case CEPH_MSG_DATA_PAGELIST:
1035 ceph_msg_data_pagelist_cursor_init(cursor, length);
1036 break;
1037 case CEPH_MSG_DATA_PAGES:
1038 ceph_msg_data_pages_cursor_init(cursor, length);
1039 break;
1040 #ifdef CONFIG_BLOCK
1041 case CEPH_MSG_DATA_BIO:
1042 ceph_msg_data_bio_cursor_init(cursor, length);
1043 break;
1044 #endif /* CONFIG_BLOCK */
1045 case CEPH_MSG_DATA_NONE:
1046 default:
1047 /* BUG(); */
1048 break;
1049 }
1050 cursor->need_crc = true;
1051 }
1052
1053 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1054 {
1055 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1056 struct ceph_msg_data *data;
1057
1058 BUG_ON(!length);
1059 BUG_ON(length > msg->data_length);
1060 BUG_ON(list_empty(&msg->data));
1061
1062 cursor->data_head = &msg->data;
1063 cursor->total_resid = length;
1064 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1065 cursor->data = data;
1066
1067 __ceph_msg_data_cursor_init(cursor);
1068 }
1069
1070 /*
1071 * Return the page containing the next piece to process for a given
1072 * data item, and supply the page offset and length of that piece.
1073 * Indicate whether this is the last piece in this data item.
1074 */
1075 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1076 size_t *page_offset, size_t *length,
1077 bool *last_piece)
1078 {
1079 struct page *page;
1080
1081 switch (cursor->data->type) {
1082 case CEPH_MSG_DATA_PAGELIST:
1083 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1084 break;
1085 case CEPH_MSG_DATA_PAGES:
1086 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1087 break;
1088 #ifdef CONFIG_BLOCK
1089 case CEPH_MSG_DATA_BIO:
1090 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1091 break;
1092 #endif /* CONFIG_BLOCK */
1093 case CEPH_MSG_DATA_NONE:
1094 default:
1095 page = NULL;
1096 break;
1097 }
1098 BUG_ON(!page);
1099 BUG_ON(*page_offset + *length > PAGE_SIZE);
1100 BUG_ON(!*length);
1101 if (last_piece)
1102 *last_piece = cursor->last_piece;
1103
1104 return page;
1105 }
1106
1107 /*
1108 * Returns true if the result moves the cursor on to the next piece
1109 * of the data item.
1110 */
1111 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1112 size_t bytes)
1113 {
1114 bool new_piece;
1115
1116 BUG_ON(bytes > cursor->resid);
1117 switch (cursor->data->type) {
1118 case CEPH_MSG_DATA_PAGELIST:
1119 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1120 break;
1121 case CEPH_MSG_DATA_PAGES:
1122 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1123 break;
1124 #ifdef CONFIG_BLOCK
1125 case CEPH_MSG_DATA_BIO:
1126 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1127 break;
1128 #endif /* CONFIG_BLOCK */
1129 case CEPH_MSG_DATA_NONE:
1130 default:
1131 BUG();
1132 break;
1133 }
1134 cursor->total_resid -= bytes;
1135
1136 if (!cursor->resid && cursor->total_resid) {
1137 WARN_ON(!cursor->last_piece);
1138 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1139 cursor->data = list_entry_next(cursor->data, links);
1140 __ceph_msg_data_cursor_init(cursor);
1141 new_piece = true;
1142 }
1143 cursor->need_crc = new_piece;
1144
1145 return new_piece;
1146 }
1147
1148 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1149 {
1150 BUG_ON(!msg);
1151 BUG_ON(!data_len);
1152
1153 /* Initialize data cursor */
1154
1155 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1156 }
1157
1158 /*
1159 * Prepare footer for currently outgoing message, and finish things
1160 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1161 */
1162 static void prepare_write_message_footer(struct ceph_connection *con)
1163 {
1164 struct ceph_msg *m = con->out_msg;
1165 int v = con->out_kvec_left;
1166
1167 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1168
1169 dout("prepare_write_message_footer %p\n", con);
1170 con->out_kvec_is_msg = true;
1171 con->out_kvec[v].iov_base = &m->footer;
1172 con->out_kvec[v].iov_len = sizeof(m->footer);
1173 con->out_kvec_bytes += sizeof(m->footer);
1174 con->out_kvec_left++;
1175 con->out_more = m->more_to_follow;
1176 con->out_msg_done = true;
1177 }
1178
1179 /*
1180 * Prepare headers for the next outgoing message.
1181 */
1182 static void prepare_write_message(struct ceph_connection *con)
1183 {
1184 struct ceph_msg *m;
1185 u32 crc;
1186
1187 con_out_kvec_reset(con);
1188 con->out_kvec_is_msg = true;
1189 con->out_msg_done = false;
1190
1191 /* Sneak an ack in there first? If we can get it into the same
1192 * TCP packet that's a good thing. */
1193 if (con->in_seq > con->in_seq_acked) {
1194 con->in_seq_acked = con->in_seq;
1195 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1196 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1197 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1198 &con->out_temp_ack);
1199 }
1200
1201 BUG_ON(list_empty(&con->out_queue));
1202 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1203 con->out_msg = m;
1204 BUG_ON(m->con != con);
1205
1206 /* put message on sent list */
1207 ceph_msg_get(m);
1208 list_move_tail(&m->list_head, &con->out_sent);
1209
1210 /*
1211 * only assign outgoing seq # if we haven't sent this message
1212 * yet. if it is requeued, resend with it's original seq.
1213 */
1214 if (m->needs_out_seq) {
1215 m->hdr.seq = cpu_to_le64(++con->out_seq);
1216 m->needs_out_seq = false;
1217 }
1218 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1219
1220 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1221 m, con->out_seq, le16_to_cpu(m->hdr.type),
1222 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1223 m->data_length);
1224 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1225
1226 /* tag + hdr + front + middle */
1227 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1228 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1229 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1230
1231 if (m->middle)
1232 con_out_kvec_add(con, m->middle->vec.iov_len,
1233 m->middle->vec.iov_base);
1234
1235 /* fill in crc (except data pages), footer */
1236 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1237 con->out_msg->hdr.crc = cpu_to_le32(crc);
1238 con->out_msg->footer.flags = 0;
1239
1240 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1241 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1242 if (m->middle) {
1243 crc = crc32c(0, m->middle->vec.iov_base,
1244 m->middle->vec.iov_len);
1245 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1246 } else
1247 con->out_msg->footer.middle_crc = 0;
1248 dout("%s front_crc %u middle_crc %u\n", __func__,
1249 le32_to_cpu(con->out_msg->footer.front_crc),
1250 le32_to_cpu(con->out_msg->footer.middle_crc));
1251
1252 /* is there a data payload? */
1253 con->out_msg->footer.data_crc = 0;
1254 if (m->data_length) {
1255 prepare_message_data(con->out_msg, m->data_length);
1256 con->out_more = 1; /* data + footer will follow */
1257 } else {
1258 /* no, queue up footer too and be done */
1259 prepare_write_message_footer(con);
1260 }
1261
1262 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1263 }
1264
1265 /*
1266 * Prepare an ack.
1267 */
1268 static void prepare_write_ack(struct ceph_connection *con)
1269 {
1270 dout("prepare_write_ack %p %llu -> %llu\n", con,
1271 con->in_seq_acked, con->in_seq);
1272 con->in_seq_acked = con->in_seq;
1273
1274 con_out_kvec_reset(con);
1275
1276 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1277
1278 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1279 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1280 &con->out_temp_ack);
1281
1282 con->out_more = 1; /* more will follow.. eventually.. */
1283 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1284 }
1285
1286 /*
1287 * Prepare to share the seq during handshake
1288 */
1289 static void prepare_write_seq(struct ceph_connection *con)
1290 {
1291 dout("prepare_write_seq %p %llu -> %llu\n", con,
1292 con->in_seq_acked, con->in_seq);
1293 con->in_seq_acked = con->in_seq;
1294
1295 con_out_kvec_reset(con);
1296
1297 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1298 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1299 &con->out_temp_ack);
1300
1301 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1302 }
1303
1304 /*
1305 * Prepare to write keepalive byte.
1306 */
1307 static void prepare_write_keepalive(struct ceph_connection *con)
1308 {
1309 dout("prepare_write_keepalive %p\n", con);
1310 con_out_kvec_reset(con);
1311 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1312 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1313 }
1314
1315 /*
1316 * Connection negotiation.
1317 */
1318
1319 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1320 int *auth_proto)
1321 {
1322 struct ceph_auth_handshake *auth;
1323
1324 if (!con->ops->get_authorizer) {
1325 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1326 con->out_connect.authorizer_len = 0;
1327 return NULL;
1328 }
1329
1330 /* Can't hold the mutex while getting authorizer */
1331 mutex_unlock(&con->mutex);
1332 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1333 mutex_lock(&con->mutex);
1334
1335 if (IS_ERR(auth))
1336 return auth;
1337 if (con->state != CON_STATE_NEGOTIATING)
1338 return ERR_PTR(-EAGAIN);
1339
1340 con->auth_reply_buf = auth->authorizer_reply_buf;
1341 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1342 return auth;
1343 }
1344
1345 /*
1346 * We connected to a peer and are saying hello.
1347 */
1348 static void prepare_write_banner(struct ceph_connection *con)
1349 {
1350 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1351 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1352 &con->msgr->my_enc_addr);
1353
1354 con->out_more = 0;
1355 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1356 }
1357
1358 static int prepare_write_connect(struct ceph_connection *con)
1359 {
1360 unsigned int global_seq = get_global_seq(con->msgr, 0);
1361 int proto;
1362 int auth_proto;
1363 struct ceph_auth_handshake *auth;
1364
1365 switch (con->peer_name.type) {
1366 case CEPH_ENTITY_TYPE_MON:
1367 proto = CEPH_MONC_PROTOCOL;
1368 break;
1369 case CEPH_ENTITY_TYPE_OSD:
1370 proto = CEPH_OSDC_PROTOCOL;
1371 break;
1372 case CEPH_ENTITY_TYPE_MDS:
1373 proto = CEPH_MDSC_PROTOCOL;
1374 break;
1375 default:
1376 BUG();
1377 }
1378
1379 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1380 con->connect_seq, global_seq, proto);
1381
1382 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1383 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1384 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1385 con->out_connect.global_seq = cpu_to_le32(global_seq);
1386 con->out_connect.protocol_version = cpu_to_le32(proto);
1387 con->out_connect.flags = 0;
1388
1389 auth_proto = CEPH_AUTH_UNKNOWN;
1390 auth = get_connect_authorizer(con, &auth_proto);
1391 if (IS_ERR(auth))
1392 return PTR_ERR(auth);
1393
1394 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1395 con->out_connect.authorizer_len = auth ?
1396 cpu_to_le32(auth->authorizer_buf_len) : 0;
1397
1398 con_out_kvec_add(con, sizeof (con->out_connect),
1399 &con->out_connect);
1400 if (auth && auth->authorizer_buf_len)
1401 con_out_kvec_add(con, auth->authorizer_buf_len,
1402 auth->authorizer_buf);
1403
1404 con->out_more = 0;
1405 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1406
1407 return 0;
1408 }
1409
1410 /*
1411 * write as much of pending kvecs to the socket as we can.
1412 * 1 -> done
1413 * 0 -> socket full, but more to do
1414 * <0 -> error
1415 */
1416 static int write_partial_kvec(struct ceph_connection *con)
1417 {
1418 int ret;
1419
1420 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1421 while (con->out_kvec_bytes > 0) {
1422 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1423 con->out_kvec_left, con->out_kvec_bytes,
1424 con->out_more);
1425 if (ret <= 0)
1426 goto out;
1427 con->out_kvec_bytes -= ret;
1428 if (con->out_kvec_bytes == 0)
1429 break; /* done */
1430
1431 /* account for full iov entries consumed */
1432 while (ret >= con->out_kvec_cur->iov_len) {
1433 BUG_ON(!con->out_kvec_left);
1434 ret -= con->out_kvec_cur->iov_len;
1435 con->out_kvec_cur++;
1436 con->out_kvec_left--;
1437 }
1438 /* and for a partially-consumed entry */
1439 if (ret) {
1440 con->out_kvec_cur->iov_len -= ret;
1441 con->out_kvec_cur->iov_base += ret;
1442 }
1443 }
1444 con->out_kvec_left = 0;
1445 con->out_kvec_is_msg = false;
1446 ret = 1;
1447 out:
1448 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1449 con->out_kvec_bytes, con->out_kvec_left, ret);
1450 return ret; /* done! */
1451 }
1452
1453 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1454 unsigned int page_offset,
1455 unsigned int length)
1456 {
1457 char *kaddr;
1458
1459 kaddr = kmap(page);
1460 BUG_ON(kaddr == NULL);
1461 crc = crc32c(crc, kaddr + page_offset, length);
1462 kunmap(page);
1463
1464 return crc;
1465 }
1466 /*
1467 * Write as much message data payload as we can. If we finish, queue
1468 * up the footer.
1469 * 1 -> done, footer is now queued in out_kvec[].
1470 * 0 -> socket full, but more to do
1471 * <0 -> error
1472 */
1473 static int write_partial_message_data(struct ceph_connection *con)
1474 {
1475 struct ceph_msg *msg = con->out_msg;
1476 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1477 bool do_datacrc = !con->msgr->nocrc;
1478 u32 crc;
1479
1480 dout("%s %p msg %p\n", __func__, con, msg);
1481
1482 if (list_empty(&msg->data))
1483 return -EINVAL;
1484
1485 /*
1486 * Iterate through each page that contains data to be
1487 * written, and send as much as possible for each.
1488 *
1489 * If we are calculating the data crc (the default), we will
1490 * need to map the page. If we have no pages, they have
1491 * been revoked, so use the zero page.
1492 */
1493 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1494 while (cursor->resid) {
1495 struct page *page;
1496 size_t page_offset;
1497 size_t length;
1498 bool last_piece;
1499 bool need_crc;
1500 int ret;
1501
1502 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1503 &last_piece);
1504 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1505 length, last_piece);
1506 if (ret <= 0) {
1507 if (do_datacrc)
1508 msg->footer.data_crc = cpu_to_le32(crc);
1509
1510 return ret;
1511 }
1512 if (do_datacrc && cursor->need_crc)
1513 crc = ceph_crc32c_page(crc, page, page_offset, length);
1514 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1515 }
1516
1517 dout("%s %p msg %p done\n", __func__, con, msg);
1518
1519 /* prepare and queue up footer, too */
1520 if (do_datacrc)
1521 msg->footer.data_crc = cpu_to_le32(crc);
1522 else
1523 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1524 con_out_kvec_reset(con);
1525 prepare_write_message_footer(con);
1526
1527 return 1; /* must return > 0 to indicate success */
1528 }
1529
1530 /*
1531 * write some zeros
1532 */
1533 static int write_partial_skip(struct ceph_connection *con)
1534 {
1535 int ret;
1536
1537 while (con->out_skip > 0) {
1538 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1539
1540 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1541 if (ret <= 0)
1542 goto out;
1543 con->out_skip -= ret;
1544 }
1545 ret = 1;
1546 out:
1547 return ret;
1548 }
1549
1550 /*
1551 * Prepare to read connection handshake, or an ack.
1552 */
1553 static void prepare_read_banner(struct ceph_connection *con)
1554 {
1555 dout("prepare_read_banner %p\n", con);
1556 con->in_base_pos = 0;
1557 }
1558
1559 static void prepare_read_connect(struct ceph_connection *con)
1560 {
1561 dout("prepare_read_connect %p\n", con);
1562 con->in_base_pos = 0;
1563 }
1564
1565 static void prepare_read_ack(struct ceph_connection *con)
1566 {
1567 dout("prepare_read_ack %p\n", con);
1568 con->in_base_pos = 0;
1569 }
1570
1571 static void prepare_read_seq(struct ceph_connection *con)
1572 {
1573 dout("prepare_read_seq %p\n", con);
1574 con->in_base_pos = 0;
1575 con->in_tag = CEPH_MSGR_TAG_SEQ;
1576 }
1577
1578 static void prepare_read_tag(struct ceph_connection *con)
1579 {
1580 dout("prepare_read_tag %p\n", con);
1581 con->in_base_pos = 0;
1582 con->in_tag = CEPH_MSGR_TAG_READY;
1583 }
1584
1585 /*
1586 * Prepare to read a message.
1587 */
1588 static int prepare_read_message(struct ceph_connection *con)
1589 {
1590 dout("prepare_read_message %p\n", con);
1591 BUG_ON(con->in_msg != NULL);
1592 con->in_base_pos = 0;
1593 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1594 return 0;
1595 }
1596
1597
1598 static int read_partial(struct ceph_connection *con,
1599 int end, int size, void *object)
1600 {
1601 while (con->in_base_pos < end) {
1602 int left = end - con->in_base_pos;
1603 int have = size - left;
1604 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1605 if (ret <= 0)
1606 return ret;
1607 con->in_base_pos += ret;
1608 }
1609 return 1;
1610 }
1611
1612
1613 /*
1614 * Read all or part of the connect-side handshake on a new connection
1615 */
1616 static int read_partial_banner(struct ceph_connection *con)
1617 {
1618 int size;
1619 int end;
1620 int ret;
1621
1622 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1623
1624 /* peer's banner */
1625 size = strlen(CEPH_BANNER);
1626 end = size;
1627 ret = read_partial(con, end, size, con->in_banner);
1628 if (ret <= 0)
1629 goto out;
1630
1631 size = sizeof (con->actual_peer_addr);
1632 end += size;
1633 ret = read_partial(con, end, size, &con->actual_peer_addr);
1634 if (ret <= 0)
1635 goto out;
1636
1637 size = sizeof (con->peer_addr_for_me);
1638 end += size;
1639 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1640 if (ret <= 0)
1641 goto out;
1642
1643 out:
1644 return ret;
1645 }
1646
1647 static int read_partial_connect(struct ceph_connection *con)
1648 {
1649 int size;
1650 int end;
1651 int ret;
1652
1653 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1654
1655 size = sizeof (con->in_reply);
1656 end = size;
1657 ret = read_partial(con, end, size, &con->in_reply);
1658 if (ret <= 0)
1659 goto out;
1660
1661 size = le32_to_cpu(con->in_reply.authorizer_len);
1662 end += size;
1663 ret = read_partial(con, end, size, con->auth_reply_buf);
1664 if (ret <= 0)
1665 goto out;
1666
1667 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1668 con, (int)con->in_reply.tag,
1669 le32_to_cpu(con->in_reply.connect_seq),
1670 le32_to_cpu(con->in_reply.global_seq));
1671 out:
1672 return ret;
1673
1674 }
1675
1676 /*
1677 * Verify the hello banner looks okay.
1678 */
1679 static int verify_hello(struct ceph_connection *con)
1680 {
1681 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1682 pr_err("connect to %s got bad banner\n",
1683 ceph_pr_addr(&con->peer_addr.in_addr));
1684 con->error_msg = "protocol error, bad banner";
1685 return -1;
1686 }
1687 return 0;
1688 }
1689
1690 static bool addr_is_blank(struct sockaddr_storage *ss)
1691 {
1692 switch (ss->ss_family) {
1693 case AF_INET:
1694 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1695 case AF_INET6:
1696 return
1697 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1698 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1699 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1700 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1701 }
1702 return false;
1703 }
1704
1705 static int addr_port(struct sockaddr_storage *ss)
1706 {
1707 switch (ss->ss_family) {
1708 case AF_INET:
1709 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1710 case AF_INET6:
1711 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1712 }
1713 return 0;
1714 }
1715
1716 static void addr_set_port(struct sockaddr_storage *ss, int p)
1717 {
1718 switch (ss->ss_family) {
1719 case AF_INET:
1720 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1721 break;
1722 case AF_INET6:
1723 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1724 break;
1725 }
1726 }
1727
1728 /*
1729 * Unlike other *_pton function semantics, zero indicates success.
1730 */
1731 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1732 char delim, const char **ipend)
1733 {
1734 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1735 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1736
1737 memset(ss, 0, sizeof(*ss));
1738
1739 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1740 ss->ss_family = AF_INET;
1741 return 0;
1742 }
1743
1744 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1745 ss->ss_family = AF_INET6;
1746 return 0;
1747 }
1748
1749 return -EINVAL;
1750 }
1751
1752 /*
1753 * Extract hostname string and resolve using kernel DNS facility.
1754 */
1755 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1756 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1757 struct sockaddr_storage *ss, char delim, const char **ipend)
1758 {
1759 const char *end, *delim_p;
1760 char *colon_p, *ip_addr = NULL;
1761 int ip_len, ret;
1762
1763 /*
1764 * The end of the hostname occurs immediately preceding the delimiter or
1765 * the port marker (':') where the delimiter takes precedence.
1766 */
1767 delim_p = memchr(name, delim, namelen);
1768 colon_p = memchr(name, ':', namelen);
1769
1770 if (delim_p && colon_p)
1771 end = delim_p < colon_p ? delim_p : colon_p;
1772 else if (!delim_p && colon_p)
1773 end = colon_p;
1774 else {
1775 end = delim_p;
1776 if (!end) /* case: hostname:/ */
1777 end = name + namelen;
1778 }
1779
1780 if (end <= name)
1781 return -EINVAL;
1782
1783 /* do dns_resolve upcall */
1784 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1785 if (ip_len > 0)
1786 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1787 else
1788 ret = -ESRCH;
1789
1790 kfree(ip_addr);
1791
1792 *ipend = end;
1793
1794 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1795 ret, ret ? "failed" : ceph_pr_addr(ss));
1796
1797 return ret;
1798 }
1799 #else
1800 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1801 struct sockaddr_storage *ss, char delim, const char **ipend)
1802 {
1803 return -EINVAL;
1804 }
1805 #endif
1806
1807 /*
1808 * Parse a server name (IP or hostname). If a valid IP address is not found
1809 * then try to extract a hostname to resolve using userspace DNS upcall.
1810 */
1811 static int ceph_parse_server_name(const char *name, size_t namelen,
1812 struct sockaddr_storage *ss, char delim, const char **ipend)
1813 {
1814 int ret;
1815
1816 ret = ceph_pton(name, namelen, ss, delim, ipend);
1817 if (ret)
1818 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1819
1820 return ret;
1821 }
1822
1823 /*
1824 * Parse an ip[:port] list into an addr array. Use the default
1825 * monitor port if a port isn't specified.
1826 */
1827 int ceph_parse_ips(const char *c, const char *end,
1828 struct ceph_entity_addr *addr,
1829 int max_count, int *count)
1830 {
1831 int i, ret = -EINVAL;
1832 const char *p = c;
1833
1834 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1835 for (i = 0; i < max_count; i++) {
1836 const char *ipend;
1837 struct sockaddr_storage *ss = &addr[i].in_addr;
1838 int port;
1839 char delim = ',';
1840
1841 if (*p == '[') {
1842 delim = ']';
1843 p++;
1844 }
1845
1846 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1847 if (ret)
1848 goto bad;
1849 ret = -EINVAL;
1850
1851 p = ipend;
1852
1853 if (delim == ']') {
1854 if (*p != ']') {
1855 dout("missing matching ']'\n");
1856 goto bad;
1857 }
1858 p++;
1859 }
1860
1861 /* port? */
1862 if (p < end && *p == ':') {
1863 port = 0;
1864 p++;
1865 while (p < end && *p >= '0' && *p <= '9') {
1866 port = (port * 10) + (*p - '0');
1867 p++;
1868 }
1869 if (port == 0)
1870 port = CEPH_MON_PORT;
1871 else if (port > 65535)
1872 goto bad;
1873 } else {
1874 port = CEPH_MON_PORT;
1875 }
1876
1877 addr_set_port(ss, port);
1878
1879 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1880
1881 if (p == end)
1882 break;
1883 if (*p != ',')
1884 goto bad;
1885 p++;
1886 }
1887
1888 if (p != end)
1889 goto bad;
1890
1891 if (count)
1892 *count = i + 1;
1893 return 0;
1894
1895 bad:
1896 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1897 return ret;
1898 }
1899 EXPORT_SYMBOL(ceph_parse_ips);
1900
1901 static int process_banner(struct ceph_connection *con)
1902 {
1903 dout("process_banner on %p\n", con);
1904
1905 if (verify_hello(con) < 0)
1906 return -1;
1907
1908 ceph_decode_addr(&con->actual_peer_addr);
1909 ceph_decode_addr(&con->peer_addr_for_me);
1910
1911 /*
1912 * Make sure the other end is who we wanted. note that the other
1913 * end may not yet know their ip address, so if it's 0.0.0.0, give
1914 * them the benefit of the doubt.
1915 */
1916 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1917 sizeof(con->peer_addr)) != 0 &&
1918 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1919 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1920 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1921 ceph_pr_addr(&con->peer_addr.in_addr),
1922 (int)le32_to_cpu(con->peer_addr.nonce),
1923 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1924 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1925 con->error_msg = "wrong peer at address";
1926 return -1;
1927 }
1928
1929 /*
1930 * did we learn our address?
1931 */
1932 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1933 int port = addr_port(&con->msgr->inst.addr.in_addr);
1934
1935 memcpy(&con->msgr->inst.addr.in_addr,
1936 &con->peer_addr_for_me.in_addr,
1937 sizeof(con->peer_addr_for_me.in_addr));
1938 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1939 encode_my_addr(con->msgr);
1940 dout("process_banner learned my addr is %s\n",
1941 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1942 }
1943
1944 return 0;
1945 }
1946
1947 static int process_connect(struct ceph_connection *con)
1948 {
1949 u64 sup_feat = con->msgr->supported_features;
1950 u64 req_feat = con->msgr->required_features;
1951 u64 server_feat = ceph_sanitize_features(
1952 le64_to_cpu(con->in_reply.features));
1953 int ret;
1954
1955 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1956
1957 switch (con->in_reply.tag) {
1958 case CEPH_MSGR_TAG_FEATURES:
1959 pr_err("%s%lld %s feature set mismatch,"
1960 " my %llx < server's %llx, missing %llx\n",
1961 ENTITY_NAME(con->peer_name),
1962 ceph_pr_addr(&con->peer_addr.in_addr),
1963 sup_feat, server_feat, server_feat & ~sup_feat);
1964 con->error_msg = "missing required protocol features";
1965 reset_connection(con);
1966 return -1;
1967
1968 case CEPH_MSGR_TAG_BADPROTOVER:
1969 pr_err("%s%lld %s protocol version mismatch,"
1970 " my %d != server's %d\n",
1971 ENTITY_NAME(con->peer_name),
1972 ceph_pr_addr(&con->peer_addr.in_addr),
1973 le32_to_cpu(con->out_connect.protocol_version),
1974 le32_to_cpu(con->in_reply.protocol_version));
1975 con->error_msg = "protocol version mismatch";
1976 reset_connection(con);
1977 return -1;
1978
1979 case CEPH_MSGR_TAG_BADAUTHORIZER:
1980 con->auth_retry++;
1981 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1982 con->auth_retry);
1983 if (con->auth_retry == 2) {
1984 con->error_msg = "connect authorization failure";
1985 return -1;
1986 }
1987 con_out_kvec_reset(con);
1988 ret = prepare_write_connect(con);
1989 if (ret < 0)
1990 return ret;
1991 prepare_read_connect(con);
1992 break;
1993
1994 case CEPH_MSGR_TAG_RESETSESSION:
1995 /*
1996 * If we connected with a large connect_seq but the peer
1997 * has no record of a session with us (no connection, or
1998 * connect_seq == 0), they will send RESETSESION to indicate
1999 * that they must have reset their session, and may have
2000 * dropped messages.
2001 */
2002 dout("process_connect got RESET peer seq %u\n",
2003 le32_to_cpu(con->in_reply.connect_seq));
2004 pr_err("%s%lld %s connection reset\n",
2005 ENTITY_NAME(con->peer_name),
2006 ceph_pr_addr(&con->peer_addr.in_addr));
2007 reset_connection(con);
2008 con_out_kvec_reset(con);
2009 ret = prepare_write_connect(con);
2010 if (ret < 0)
2011 return ret;
2012 prepare_read_connect(con);
2013
2014 /* Tell ceph about it. */
2015 mutex_unlock(&con->mutex);
2016 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2017 if (con->ops->peer_reset)
2018 con->ops->peer_reset(con);
2019 mutex_lock(&con->mutex);
2020 if (con->state != CON_STATE_NEGOTIATING)
2021 return -EAGAIN;
2022 break;
2023
2024 case CEPH_MSGR_TAG_RETRY_SESSION:
2025 /*
2026 * If we sent a smaller connect_seq than the peer has, try
2027 * again with a larger value.
2028 */
2029 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2030 le32_to_cpu(con->out_connect.connect_seq),
2031 le32_to_cpu(con->in_reply.connect_seq));
2032 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2033 con_out_kvec_reset(con);
2034 ret = prepare_write_connect(con);
2035 if (ret < 0)
2036 return ret;
2037 prepare_read_connect(con);
2038 break;
2039
2040 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2041 /*
2042 * If we sent a smaller global_seq than the peer has, try
2043 * again with a larger value.
2044 */
2045 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2046 con->peer_global_seq,
2047 le32_to_cpu(con->in_reply.global_seq));
2048 get_global_seq(con->msgr,
2049 le32_to_cpu(con->in_reply.global_seq));
2050 con_out_kvec_reset(con);
2051 ret = prepare_write_connect(con);
2052 if (ret < 0)
2053 return ret;
2054 prepare_read_connect(con);
2055 break;
2056
2057 case CEPH_MSGR_TAG_SEQ:
2058 case CEPH_MSGR_TAG_READY:
2059 if (req_feat & ~server_feat) {
2060 pr_err("%s%lld %s protocol feature mismatch,"
2061 " my required %llx > server's %llx, need %llx\n",
2062 ENTITY_NAME(con->peer_name),
2063 ceph_pr_addr(&con->peer_addr.in_addr),
2064 req_feat, server_feat, req_feat & ~server_feat);
2065 con->error_msg = "missing required protocol features";
2066 reset_connection(con);
2067 return -1;
2068 }
2069
2070 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2071 con->state = CON_STATE_OPEN;
2072 con->auth_retry = 0; /* we authenticated; clear flag */
2073 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2074 con->connect_seq++;
2075 con->peer_features = server_feat;
2076 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2077 con->peer_global_seq,
2078 le32_to_cpu(con->in_reply.connect_seq),
2079 con->connect_seq);
2080 WARN_ON(con->connect_seq !=
2081 le32_to_cpu(con->in_reply.connect_seq));
2082
2083 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2084 con_flag_set(con, CON_FLAG_LOSSYTX);
2085
2086 con->delay = 0; /* reset backoff memory */
2087
2088 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2089 prepare_write_seq(con);
2090 prepare_read_seq(con);
2091 } else {
2092 prepare_read_tag(con);
2093 }
2094 break;
2095
2096 case CEPH_MSGR_TAG_WAIT:
2097 /*
2098 * If there is a connection race (we are opening
2099 * connections to each other), one of us may just have
2100 * to WAIT. This shouldn't happen if we are the
2101 * client.
2102 */
2103 pr_err("process_connect got WAIT as client\n");
2104 con->error_msg = "protocol error, got WAIT as client";
2105 return -1;
2106
2107 default:
2108 pr_err("connect protocol error, will retry\n");
2109 con->error_msg = "protocol error, garbage tag during connect";
2110 return -1;
2111 }
2112 return 0;
2113 }
2114
2115
2116 /*
2117 * read (part of) an ack
2118 */
2119 static int read_partial_ack(struct ceph_connection *con)
2120 {
2121 int size = sizeof (con->in_temp_ack);
2122 int end = size;
2123
2124 return read_partial(con, end, size, &con->in_temp_ack);
2125 }
2126
2127 /*
2128 * We can finally discard anything that's been acked.
2129 */
2130 static void process_ack(struct ceph_connection *con)
2131 {
2132 struct ceph_msg *m;
2133 u64 ack = le64_to_cpu(con->in_temp_ack);
2134 u64 seq;
2135
2136 while (!list_empty(&con->out_sent)) {
2137 m = list_first_entry(&con->out_sent, struct ceph_msg,
2138 list_head);
2139 seq = le64_to_cpu(m->hdr.seq);
2140 if (seq > ack)
2141 break;
2142 dout("got ack for seq %llu type %d at %p\n", seq,
2143 le16_to_cpu(m->hdr.type), m);
2144 m->ack_stamp = jiffies;
2145 ceph_msg_remove(m);
2146 }
2147 prepare_read_tag(con);
2148 }
2149
2150
2151 static int read_partial_message_section(struct ceph_connection *con,
2152 struct kvec *section,
2153 unsigned int sec_len, u32 *crc)
2154 {
2155 int ret, left;
2156
2157 BUG_ON(!section);
2158
2159 while (section->iov_len < sec_len) {
2160 BUG_ON(section->iov_base == NULL);
2161 left = sec_len - section->iov_len;
2162 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2163 section->iov_len, left);
2164 if (ret <= 0)
2165 return ret;
2166 section->iov_len += ret;
2167 }
2168 if (section->iov_len == sec_len)
2169 *crc = crc32c(0, section->iov_base, section->iov_len);
2170
2171 return 1;
2172 }
2173
2174 static int read_partial_msg_data(struct ceph_connection *con)
2175 {
2176 struct ceph_msg *msg = con->in_msg;
2177 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2178 const bool do_datacrc = !con->msgr->nocrc;
2179 struct page *page;
2180 size_t page_offset;
2181 size_t length;
2182 u32 crc = 0;
2183 int ret;
2184
2185 BUG_ON(!msg);
2186 if (list_empty(&msg->data))
2187 return -EIO;
2188
2189 if (do_datacrc)
2190 crc = con->in_data_crc;
2191 while (cursor->resid) {
2192 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2193 NULL);
2194 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2195 if (ret <= 0) {
2196 if (do_datacrc)
2197 con->in_data_crc = crc;
2198
2199 return ret;
2200 }
2201
2202 if (do_datacrc)
2203 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2204 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2205 }
2206 if (do_datacrc)
2207 con->in_data_crc = crc;
2208
2209 return 1; /* must return > 0 to indicate success */
2210 }
2211
2212 /*
2213 * read (part of) a message.
2214 */
2215 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2216
2217 static int read_partial_message(struct ceph_connection *con)
2218 {
2219 struct ceph_msg *m = con->in_msg;
2220 int size;
2221 int end;
2222 int ret;
2223 unsigned int front_len, middle_len, data_len;
2224 bool do_datacrc = !con->msgr->nocrc;
2225 u64 seq;
2226 u32 crc;
2227
2228 dout("read_partial_message con %p msg %p\n", con, m);
2229
2230 /* header */
2231 size = sizeof (con->in_hdr);
2232 end = size;
2233 ret = read_partial(con, end, size, &con->in_hdr);
2234 if (ret <= 0)
2235 return ret;
2236
2237 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2238 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2239 pr_err("read_partial_message bad hdr "
2240 " crc %u != expected %u\n",
2241 crc, con->in_hdr.crc);
2242 return -EBADMSG;
2243 }
2244
2245 front_len = le32_to_cpu(con->in_hdr.front_len);
2246 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2247 return -EIO;
2248 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2249 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2250 return -EIO;
2251 data_len = le32_to_cpu(con->in_hdr.data_len);
2252 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2253 return -EIO;
2254
2255 /* verify seq# */
2256 seq = le64_to_cpu(con->in_hdr.seq);
2257 if ((s64)seq - (s64)con->in_seq < 1) {
2258 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2259 ENTITY_NAME(con->peer_name),
2260 ceph_pr_addr(&con->peer_addr.in_addr),
2261 seq, con->in_seq + 1);
2262 con->in_base_pos = -front_len - middle_len - data_len -
2263 sizeof(m->footer);
2264 con->in_tag = CEPH_MSGR_TAG_READY;
2265 return 0;
2266 } else if ((s64)seq - (s64)con->in_seq > 1) {
2267 pr_err("read_partial_message bad seq %lld expected %lld\n",
2268 seq, con->in_seq + 1);
2269 con->error_msg = "bad message sequence # for incoming message";
2270 return -EBADMSG;
2271 }
2272
2273 /* allocate message? */
2274 if (!con->in_msg) {
2275 int skip = 0;
2276
2277 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2278 front_len, data_len);
2279 ret = ceph_con_in_msg_alloc(con, &skip);
2280 if (ret < 0)
2281 return ret;
2282
2283 BUG_ON(!con->in_msg ^ skip);
2284 if (con->in_msg && data_len > con->in_msg->data_length) {
2285 pr_warning("%s skipping long message (%u > %zd)\n",
2286 __func__, data_len, con->in_msg->data_length);
2287 ceph_msg_put(con->in_msg);
2288 con->in_msg = NULL;
2289 skip = 1;
2290 }
2291 if (skip) {
2292 /* skip this message */
2293 dout("alloc_msg said skip message\n");
2294 con->in_base_pos = -front_len - middle_len - data_len -
2295 sizeof(m->footer);
2296 con->in_tag = CEPH_MSGR_TAG_READY;
2297 con->in_seq++;
2298 return 0;
2299 }
2300
2301 BUG_ON(!con->in_msg);
2302 BUG_ON(con->in_msg->con != con);
2303 m = con->in_msg;
2304 m->front.iov_len = 0; /* haven't read it yet */
2305 if (m->middle)
2306 m->middle->vec.iov_len = 0;
2307
2308 /* prepare for data payload, if any */
2309
2310 if (data_len)
2311 prepare_message_data(con->in_msg, data_len);
2312 }
2313
2314 /* front */
2315 ret = read_partial_message_section(con, &m->front, front_len,
2316 &con->in_front_crc);
2317 if (ret <= 0)
2318 return ret;
2319
2320 /* middle */
2321 if (m->middle) {
2322 ret = read_partial_message_section(con, &m->middle->vec,
2323 middle_len,
2324 &con->in_middle_crc);
2325 if (ret <= 0)
2326 return ret;
2327 }
2328
2329 /* (page) data */
2330 if (data_len) {
2331 ret = read_partial_msg_data(con);
2332 if (ret <= 0)
2333 return ret;
2334 }
2335
2336 /* footer */
2337 size = sizeof (m->footer);
2338 end += size;
2339 ret = read_partial(con, end, size, &m->footer);
2340 if (ret <= 0)
2341 return ret;
2342
2343 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2344 m, front_len, m->footer.front_crc, middle_len,
2345 m->footer.middle_crc, data_len, m->footer.data_crc);
2346
2347 /* crc ok? */
2348 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2349 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2350 m, con->in_front_crc, m->footer.front_crc);
2351 return -EBADMSG;
2352 }
2353 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2354 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2355 m, con->in_middle_crc, m->footer.middle_crc);
2356 return -EBADMSG;
2357 }
2358 if (do_datacrc &&
2359 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2360 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2361 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2362 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2363 return -EBADMSG;
2364 }
2365
2366 return 1; /* done! */
2367 }
2368
2369 /*
2370 * Process message. This happens in the worker thread. The callback should
2371 * be careful not to do anything that waits on other incoming messages or it
2372 * may deadlock.
2373 */
2374 static void process_message(struct ceph_connection *con)
2375 {
2376 struct ceph_msg *msg;
2377
2378 BUG_ON(con->in_msg->con != con);
2379 con->in_msg->con = NULL;
2380 msg = con->in_msg;
2381 con->in_msg = NULL;
2382 con->ops->put(con);
2383
2384 /* if first message, set peer_name */
2385 if (con->peer_name.type == 0)
2386 con->peer_name = msg->hdr.src;
2387
2388 con->in_seq++;
2389 mutex_unlock(&con->mutex);
2390
2391 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2392 msg, le64_to_cpu(msg->hdr.seq),
2393 ENTITY_NAME(msg->hdr.src),
2394 le16_to_cpu(msg->hdr.type),
2395 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2396 le32_to_cpu(msg->hdr.front_len),
2397 le32_to_cpu(msg->hdr.data_len),
2398 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2399 con->ops->dispatch(con, msg);
2400
2401 mutex_lock(&con->mutex);
2402 }
2403
2404
2405 /*
2406 * Write something to the socket. Called in a worker thread when the
2407 * socket appears to be writeable and we have something ready to send.
2408 */
2409 static int try_write(struct ceph_connection *con)
2410 {
2411 int ret = 1;
2412
2413 dout("try_write start %p state %lu\n", con, con->state);
2414
2415 more:
2416 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2417
2418 /* open the socket first? */
2419 if (con->state == CON_STATE_PREOPEN) {
2420 BUG_ON(con->sock);
2421 con->state = CON_STATE_CONNECTING;
2422
2423 con_out_kvec_reset(con);
2424 prepare_write_banner(con);
2425 prepare_read_banner(con);
2426
2427 BUG_ON(con->in_msg);
2428 con->in_tag = CEPH_MSGR_TAG_READY;
2429 dout("try_write initiating connect on %p new state %lu\n",
2430 con, con->state);
2431 ret = ceph_tcp_connect(con);
2432 if (ret < 0) {
2433 con->error_msg = "connect error";
2434 goto out;
2435 }
2436 }
2437
2438 more_kvec:
2439 /* kvec data queued? */
2440 if (con->out_skip) {
2441 ret = write_partial_skip(con);
2442 if (ret <= 0)
2443 goto out;
2444 }
2445 if (con->out_kvec_left) {
2446 ret = write_partial_kvec(con);
2447 if (ret <= 0)
2448 goto out;
2449 }
2450
2451 /* msg pages? */
2452 if (con->out_msg) {
2453 if (con->out_msg_done) {
2454 ceph_msg_put(con->out_msg);
2455 con->out_msg = NULL; /* we're done with this one */
2456 goto do_next;
2457 }
2458
2459 ret = write_partial_message_data(con);
2460 if (ret == 1)
2461 goto more_kvec; /* we need to send the footer, too! */
2462 if (ret == 0)
2463 goto out;
2464 if (ret < 0) {
2465 dout("try_write write_partial_message_data err %d\n",
2466 ret);
2467 goto out;
2468 }
2469 }
2470
2471 do_next:
2472 if (con->state == CON_STATE_OPEN) {
2473 /* is anything else pending? */
2474 if (!list_empty(&con->out_queue)) {
2475 prepare_write_message(con);
2476 goto more;
2477 }
2478 if (con->in_seq > con->in_seq_acked) {
2479 prepare_write_ack(con);
2480 goto more;
2481 }
2482 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2483 prepare_write_keepalive(con);
2484 goto more;
2485 }
2486 }
2487
2488 /* Nothing to do! */
2489 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2490 dout("try_write nothing else to write.\n");
2491 ret = 0;
2492 out:
2493 dout("try_write done on %p ret %d\n", con, ret);
2494 return ret;
2495 }
2496
2497
2498
2499 /*
2500 * Read what we can from the socket.
2501 */
2502 static int try_read(struct ceph_connection *con)
2503 {
2504 int ret = -1;
2505
2506 more:
2507 dout("try_read start on %p state %lu\n", con, con->state);
2508 if (con->state != CON_STATE_CONNECTING &&
2509 con->state != CON_STATE_NEGOTIATING &&
2510 con->state != CON_STATE_OPEN)
2511 return 0;
2512
2513 BUG_ON(!con->sock);
2514
2515 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2516 con->in_base_pos);
2517
2518 if (con->state == CON_STATE_CONNECTING) {
2519 dout("try_read connecting\n");
2520 ret = read_partial_banner(con);
2521 if (ret <= 0)
2522 goto out;
2523 ret = process_banner(con);
2524 if (ret < 0)
2525 goto out;
2526
2527 con->state = CON_STATE_NEGOTIATING;
2528
2529 /*
2530 * Received banner is good, exchange connection info.
2531 * Do not reset out_kvec, as sending our banner raced
2532 * with receiving peer banner after connect completed.
2533 */
2534 ret = prepare_write_connect(con);
2535 if (ret < 0)
2536 goto out;
2537 prepare_read_connect(con);
2538
2539 /* Send connection info before awaiting response */
2540 goto out;
2541 }
2542
2543 if (con->state == CON_STATE_NEGOTIATING) {
2544 dout("try_read negotiating\n");
2545 ret = read_partial_connect(con);
2546 if (ret <= 0)
2547 goto out;
2548 ret = process_connect(con);
2549 if (ret < 0)
2550 goto out;
2551 goto more;
2552 }
2553
2554 WARN_ON(con->state != CON_STATE_OPEN);
2555
2556 if (con->in_base_pos < 0) {
2557 /*
2558 * skipping + discarding content.
2559 *
2560 * FIXME: there must be a better way to do this!
2561 */
2562 static char buf[SKIP_BUF_SIZE];
2563 int skip = min((int) sizeof (buf), -con->in_base_pos);
2564
2565 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2566 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2567 if (ret <= 0)
2568 goto out;
2569 con->in_base_pos += ret;
2570 if (con->in_base_pos)
2571 goto more;
2572 }
2573 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2574 /*
2575 * what's next?
2576 */
2577 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2578 if (ret <= 0)
2579 goto out;
2580 dout("try_read got tag %d\n", (int)con->in_tag);
2581 switch (con->in_tag) {
2582 case CEPH_MSGR_TAG_MSG:
2583 prepare_read_message(con);
2584 break;
2585 case CEPH_MSGR_TAG_ACK:
2586 prepare_read_ack(con);
2587 break;
2588 case CEPH_MSGR_TAG_CLOSE:
2589 con_close_socket(con);
2590 con->state = CON_STATE_CLOSED;
2591 goto out;
2592 default:
2593 goto bad_tag;
2594 }
2595 }
2596 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2597 ret = read_partial_message(con);
2598 if (ret <= 0) {
2599 switch (ret) {
2600 case -EBADMSG:
2601 con->error_msg = "bad crc";
2602 ret = -EIO;
2603 break;
2604 case -EIO:
2605 con->error_msg = "io error";
2606 break;
2607 }
2608 goto out;
2609 }
2610 if (con->in_tag == CEPH_MSGR_TAG_READY)
2611 goto more;
2612 process_message(con);
2613 if (con->state == CON_STATE_OPEN)
2614 prepare_read_tag(con);
2615 goto more;
2616 }
2617 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2618 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2619 /*
2620 * the final handshake seq exchange is semantically
2621 * equivalent to an ACK
2622 */
2623 ret = read_partial_ack(con);
2624 if (ret <= 0)
2625 goto out;
2626 process_ack(con);
2627 goto more;
2628 }
2629
2630 out:
2631 dout("try_read done on %p ret %d\n", con, ret);
2632 return ret;
2633
2634 bad_tag:
2635 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2636 con->error_msg = "protocol error, garbage tag";
2637 ret = -1;
2638 goto out;
2639 }
2640
2641
2642 /*
2643 * Atomically queue work on a connection after the specified delay.
2644 * Bump @con reference to avoid races with connection teardown.
2645 * Returns 0 if work was queued, or an error code otherwise.
2646 */
2647 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2648 {
2649 if (!con->ops->get(con)) {
2650 dout("%s %p ref count 0\n", __func__, con);
2651
2652 return -ENOENT;
2653 }
2654
2655 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2656 dout("%s %p - already queued\n", __func__, con);
2657 con->ops->put(con);
2658
2659 return -EBUSY;
2660 }
2661
2662 dout("%s %p %lu\n", __func__, con, delay);
2663
2664 return 0;
2665 }
2666
2667 static void queue_con(struct ceph_connection *con)
2668 {
2669 (void) queue_con_delay(con, 0);
2670 }
2671
2672 static bool con_sock_closed(struct ceph_connection *con)
2673 {
2674 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2675 return false;
2676
2677 #define CASE(x) \
2678 case CON_STATE_ ## x: \
2679 con->error_msg = "socket closed (con state " #x ")"; \
2680 break;
2681
2682 switch (con->state) {
2683 CASE(CLOSED);
2684 CASE(PREOPEN);
2685 CASE(CONNECTING);
2686 CASE(NEGOTIATING);
2687 CASE(OPEN);
2688 CASE(STANDBY);
2689 default:
2690 pr_warning("%s con %p unrecognized state %lu\n",
2691 __func__, con, con->state);
2692 con->error_msg = "unrecognized con state";
2693 BUG();
2694 break;
2695 }
2696 #undef CASE
2697
2698 return true;
2699 }
2700
2701 static bool con_backoff(struct ceph_connection *con)
2702 {
2703 int ret;
2704
2705 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2706 return false;
2707
2708 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2709 if (ret) {
2710 dout("%s: con %p FAILED to back off %lu\n", __func__,
2711 con, con->delay);
2712 BUG_ON(ret == -ENOENT);
2713 con_flag_set(con, CON_FLAG_BACKOFF);
2714 }
2715
2716 return true;
2717 }
2718
2719 /* Finish fault handling; con->mutex must *not* be held here */
2720
2721 static void con_fault_finish(struct ceph_connection *con)
2722 {
2723 /*
2724 * in case we faulted due to authentication, invalidate our
2725 * current tickets so that we can get new ones.
2726 */
2727 if (con->auth_retry && con->ops->invalidate_authorizer) {
2728 dout("calling invalidate_authorizer()\n");
2729 con->ops->invalidate_authorizer(con);
2730 }
2731
2732 if (con->ops->fault)
2733 con->ops->fault(con);
2734 }
2735
2736 /*
2737 * Do some work on a connection. Drop a connection ref when we're done.
2738 */
2739 static void con_work(struct work_struct *work)
2740 {
2741 struct ceph_connection *con = container_of(work, struct ceph_connection,
2742 work.work);
2743 bool fault;
2744
2745 mutex_lock(&con->mutex);
2746 while (true) {
2747 int ret;
2748
2749 if ((fault = con_sock_closed(con))) {
2750 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2751 break;
2752 }
2753 if (con_backoff(con)) {
2754 dout("%s: con %p BACKOFF\n", __func__, con);
2755 break;
2756 }
2757 if (con->state == CON_STATE_STANDBY) {
2758 dout("%s: con %p STANDBY\n", __func__, con);
2759 break;
2760 }
2761 if (con->state == CON_STATE_CLOSED) {
2762 dout("%s: con %p CLOSED\n", __func__, con);
2763 BUG_ON(con->sock);
2764 break;
2765 }
2766 if (con->state == CON_STATE_PREOPEN) {
2767 dout("%s: con %p PREOPEN\n", __func__, con);
2768 BUG_ON(con->sock);
2769 }
2770
2771 ret = try_read(con);
2772 if (ret < 0) {
2773 if (ret == -EAGAIN)
2774 continue;
2775 con->error_msg = "socket error on read";
2776 fault = true;
2777 break;
2778 }
2779
2780 ret = try_write(con);
2781 if (ret < 0) {
2782 if (ret == -EAGAIN)
2783 continue;
2784 con->error_msg = "socket error on write";
2785 fault = true;
2786 }
2787
2788 break; /* If we make it to here, we're done */
2789 }
2790 if (fault)
2791 con_fault(con);
2792 mutex_unlock(&con->mutex);
2793
2794 if (fault)
2795 con_fault_finish(con);
2796
2797 con->ops->put(con);
2798 }
2799
2800 /*
2801 * Generic error/fault handler. A retry mechanism is used with
2802 * exponential backoff
2803 */
2804 static void con_fault(struct ceph_connection *con)
2805 {
2806 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2807 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2808 dout("fault %p state %lu to peer %s\n",
2809 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2810
2811 WARN_ON(con->state != CON_STATE_CONNECTING &&
2812 con->state != CON_STATE_NEGOTIATING &&
2813 con->state != CON_STATE_OPEN);
2814
2815 con_close_socket(con);
2816
2817 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2818 dout("fault on LOSSYTX channel, marking CLOSED\n");
2819 con->state = CON_STATE_CLOSED;
2820 return;
2821 }
2822
2823 if (con->in_msg) {
2824 BUG_ON(con->in_msg->con != con);
2825 con->in_msg->con = NULL;
2826 ceph_msg_put(con->in_msg);
2827 con->in_msg = NULL;
2828 con->ops->put(con);
2829 }
2830
2831 /* Requeue anything that hasn't been acked */
2832 list_splice_init(&con->out_sent, &con->out_queue);
2833
2834 /* If there are no messages queued or keepalive pending, place
2835 * the connection in a STANDBY state */
2836 if (list_empty(&con->out_queue) &&
2837 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2838 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2839 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2840 con->state = CON_STATE_STANDBY;
2841 } else {
2842 /* retry after a delay. */
2843 con->state = CON_STATE_PREOPEN;
2844 if (con->delay == 0)
2845 con->delay = BASE_DELAY_INTERVAL;
2846 else if (con->delay < MAX_DELAY_INTERVAL)
2847 con->delay *= 2;
2848 con_flag_set(con, CON_FLAG_BACKOFF);
2849 queue_con(con);
2850 }
2851 }
2852
2853
2854
2855 /*
2856 * initialize a new messenger instance
2857 */
2858 void ceph_messenger_init(struct ceph_messenger *msgr,
2859 struct ceph_entity_addr *myaddr,
2860 u64 supported_features,
2861 u64 required_features,
2862 bool nocrc)
2863 {
2864 msgr->supported_features = supported_features;
2865 msgr->required_features = required_features;
2866
2867 spin_lock_init(&msgr->global_seq_lock);
2868
2869 if (myaddr)
2870 msgr->inst.addr = *myaddr;
2871
2872 /* select a random nonce */
2873 msgr->inst.addr.type = 0;
2874 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2875 encode_my_addr(msgr);
2876 msgr->nocrc = nocrc;
2877
2878 atomic_set(&msgr->stopping, 0);
2879
2880 dout("%s %p\n", __func__, msgr);
2881 }
2882 EXPORT_SYMBOL(ceph_messenger_init);
2883
2884 static void clear_standby(struct ceph_connection *con)
2885 {
2886 /* come back from STANDBY? */
2887 if (con->state == CON_STATE_STANDBY) {
2888 dout("clear_standby %p and ++connect_seq\n", con);
2889 con->state = CON_STATE_PREOPEN;
2890 con->connect_seq++;
2891 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2892 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2893 }
2894 }
2895
2896 /*
2897 * Queue up an outgoing message on the given connection.
2898 */
2899 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2900 {
2901 /* set src+dst */
2902 msg->hdr.src = con->msgr->inst.name;
2903 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2904 msg->needs_out_seq = true;
2905
2906 mutex_lock(&con->mutex);
2907
2908 if (con->state == CON_STATE_CLOSED) {
2909 dout("con_send %p closed, dropping %p\n", con, msg);
2910 ceph_msg_put(msg);
2911 mutex_unlock(&con->mutex);
2912 return;
2913 }
2914
2915 BUG_ON(msg->con != NULL);
2916 msg->con = con->ops->get(con);
2917 BUG_ON(msg->con == NULL);
2918
2919 BUG_ON(!list_empty(&msg->list_head));
2920 list_add_tail(&msg->list_head, &con->out_queue);
2921 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2922 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2923 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2924 le32_to_cpu(msg->hdr.front_len),
2925 le32_to_cpu(msg->hdr.middle_len),
2926 le32_to_cpu(msg->hdr.data_len));
2927
2928 clear_standby(con);
2929 mutex_unlock(&con->mutex);
2930
2931 /* if there wasn't anything waiting to send before, queue
2932 * new work */
2933 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2934 queue_con(con);
2935 }
2936 EXPORT_SYMBOL(ceph_con_send);
2937
2938 /*
2939 * Revoke a message that was previously queued for send
2940 */
2941 void ceph_msg_revoke(struct ceph_msg *msg)
2942 {
2943 struct ceph_connection *con = msg->con;
2944
2945 if (!con)
2946 return; /* Message not in our possession */
2947
2948 mutex_lock(&con->mutex);
2949 if (!list_empty(&msg->list_head)) {
2950 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2951 list_del_init(&msg->list_head);
2952 BUG_ON(msg->con == NULL);
2953 msg->con->ops->put(msg->con);
2954 msg->con = NULL;
2955 msg->hdr.seq = 0;
2956
2957 ceph_msg_put(msg);
2958 }
2959 if (con->out_msg == msg) {
2960 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2961 con->out_msg = NULL;
2962 if (con->out_kvec_is_msg) {
2963 con->out_skip = con->out_kvec_bytes;
2964 con->out_kvec_is_msg = false;
2965 }
2966 msg->hdr.seq = 0;
2967
2968 ceph_msg_put(msg);
2969 }
2970 mutex_unlock(&con->mutex);
2971 }
2972
2973 /*
2974 * Revoke a message that we may be reading data into
2975 */
2976 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2977 {
2978 struct ceph_connection *con;
2979
2980 BUG_ON(msg == NULL);
2981 if (!msg->con) {
2982 dout("%s msg %p null con\n", __func__, msg);
2983
2984 return; /* Message not in our possession */
2985 }
2986
2987 con = msg->con;
2988 mutex_lock(&con->mutex);
2989 if (con->in_msg == msg) {
2990 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2991 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2992 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2993
2994 /* skip rest of message */
2995 dout("%s %p msg %p revoked\n", __func__, con, msg);
2996 con->in_base_pos = con->in_base_pos -
2997 sizeof(struct ceph_msg_header) -
2998 front_len -
2999 middle_len -
3000 data_len -
3001 sizeof(struct ceph_msg_footer);
3002 ceph_msg_put(con->in_msg);
3003 con->in_msg = NULL;
3004 con->in_tag = CEPH_MSGR_TAG_READY;
3005 con->in_seq++;
3006 } else {
3007 dout("%s %p in_msg %p msg %p no-op\n",
3008 __func__, con, con->in_msg, msg);
3009 }
3010 mutex_unlock(&con->mutex);
3011 }
3012
3013 /*
3014 * Queue a keepalive byte to ensure the tcp connection is alive.
3015 */
3016 void ceph_con_keepalive(struct ceph_connection *con)
3017 {
3018 dout("con_keepalive %p\n", con);
3019 mutex_lock(&con->mutex);
3020 clear_standby(con);
3021 mutex_unlock(&con->mutex);
3022 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3023 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3024 queue_con(con);
3025 }
3026 EXPORT_SYMBOL(ceph_con_keepalive);
3027
3028 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3029 {
3030 struct ceph_msg_data *data;
3031
3032 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3033 return NULL;
3034
3035 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3036 if (data)
3037 data->type = type;
3038 INIT_LIST_HEAD(&data->links);
3039
3040 return data;
3041 }
3042
3043 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3044 {
3045 if (!data)
3046 return;
3047
3048 WARN_ON(!list_empty(&data->links));
3049 if (data->type == CEPH_MSG_DATA_PAGELIST) {
3050 ceph_pagelist_release(data->pagelist);
3051 kfree(data->pagelist);
3052 }
3053 kmem_cache_free(ceph_msg_data_cache, data);
3054 }
3055
3056 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3057 size_t length, size_t alignment)
3058 {
3059 struct ceph_msg_data *data;
3060
3061 BUG_ON(!pages);
3062 BUG_ON(!length);
3063
3064 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3065 BUG_ON(!data);
3066 data->pages = pages;
3067 data->length = length;
3068 data->alignment = alignment & ~PAGE_MASK;
3069
3070 list_add_tail(&data->links, &msg->data);
3071 msg->data_length += length;
3072 }
3073 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3074
3075 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3076 struct ceph_pagelist *pagelist)
3077 {
3078 struct ceph_msg_data *data;
3079
3080 BUG_ON(!pagelist);
3081 BUG_ON(!pagelist->length);
3082
3083 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3084 BUG_ON(!data);
3085 data->pagelist = pagelist;
3086
3087 list_add_tail(&data->links, &msg->data);
3088 msg->data_length += pagelist->length;
3089 }
3090 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3091
3092 #ifdef CONFIG_BLOCK
3093 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3094 size_t length)
3095 {
3096 struct ceph_msg_data *data;
3097
3098 BUG_ON(!bio);
3099
3100 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3101 BUG_ON(!data);
3102 data->bio = bio;
3103 data->bio_length = length;
3104
3105 list_add_tail(&data->links, &msg->data);
3106 msg->data_length += length;
3107 }
3108 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3109 #endif /* CONFIG_BLOCK */
3110
3111 /*
3112 * construct a new message with given type, size
3113 * the new msg has a ref count of 1.
3114 */
3115 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3116 bool can_fail)
3117 {
3118 struct ceph_msg *m;
3119
3120 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3121 if (m == NULL)
3122 goto out;
3123
3124 m->hdr.type = cpu_to_le16(type);
3125 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3126 m->hdr.front_len = cpu_to_le32(front_len);
3127
3128 INIT_LIST_HEAD(&m->list_head);
3129 kref_init(&m->kref);
3130 INIT_LIST_HEAD(&m->data);
3131
3132 /* front */
3133 m->front_alloc_len = front_len;
3134 if (front_len) {
3135 if (front_len > PAGE_CACHE_SIZE) {
3136 m->front.iov_base = __vmalloc(front_len, flags,
3137 PAGE_KERNEL);
3138 m->front_is_vmalloc = true;
3139 } else {
3140 m->front.iov_base = kmalloc(front_len, flags);
3141 }
3142 if (m->front.iov_base == NULL) {
3143 dout("ceph_msg_new can't allocate %d bytes\n",
3144 front_len);
3145 goto out2;
3146 }
3147 } else {
3148 m->front.iov_base = NULL;
3149 }
3150 m->front.iov_len = front_len;
3151
3152 dout("ceph_msg_new %p front %d\n", m, front_len);
3153 return m;
3154
3155 out2:
3156 ceph_msg_put(m);
3157 out:
3158 if (!can_fail) {
3159 pr_err("msg_new can't create type %d front %d\n", type,
3160 front_len);
3161 WARN_ON(1);
3162 } else {
3163 dout("msg_new can't create type %d front %d\n", type,
3164 front_len);
3165 }
3166 return NULL;
3167 }
3168 EXPORT_SYMBOL(ceph_msg_new);
3169
3170 /*
3171 * Allocate "middle" portion of a message, if it is needed and wasn't
3172 * allocated by alloc_msg. This allows us to read a small fixed-size
3173 * per-type header in the front and then gracefully fail (i.e.,
3174 * propagate the error to the caller based on info in the front) when
3175 * the middle is too large.
3176 */
3177 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3178 {
3179 int type = le16_to_cpu(msg->hdr.type);
3180 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3181
3182 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3183 ceph_msg_type_name(type), middle_len);
3184 BUG_ON(!middle_len);
3185 BUG_ON(msg->middle);
3186
3187 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3188 if (!msg->middle)
3189 return -ENOMEM;
3190 return 0;
3191 }
3192
3193 /*
3194 * Allocate a message for receiving an incoming message on a
3195 * connection, and save the result in con->in_msg. Uses the
3196 * connection's private alloc_msg op if available.
3197 *
3198 * Returns 0 on success, or a negative error code.
3199 *
3200 * On success, if we set *skip = 1:
3201 * - the next message should be skipped and ignored.
3202 * - con->in_msg == NULL
3203 * or if we set *skip = 0:
3204 * - con->in_msg is non-null.
3205 * On error (ENOMEM, EAGAIN, ...),
3206 * - con->in_msg == NULL
3207 */
3208 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3209 {
3210 struct ceph_msg_header *hdr = &con->in_hdr;
3211 int middle_len = le32_to_cpu(hdr->middle_len);
3212 struct ceph_msg *msg;
3213 int ret = 0;
3214
3215 BUG_ON(con->in_msg != NULL);
3216 BUG_ON(!con->ops->alloc_msg);
3217
3218 mutex_unlock(&con->mutex);
3219 msg = con->ops->alloc_msg(con, hdr, skip);
3220 mutex_lock(&con->mutex);
3221 if (con->state != CON_STATE_OPEN) {
3222 if (msg)
3223 ceph_msg_put(msg);
3224 return -EAGAIN;
3225 }
3226 if (msg) {
3227 BUG_ON(*skip);
3228 con->in_msg = msg;
3229 con->in_msg->con = con->ops->get(con);
3230 BUG_ON(con->in_msg->con == NULL);
3231 } else {
3232 /*
3233 * Null message pointer means either we should skip
3234 * this message or we couldn't allocate memory. The
3235 * former is not an error.
3236 */
3237 if (*skip)
3238 return 0;
3239 con->error_msg = "error allocating memory for incoming message";
3240
3241 return -ENOMEM;
3242 }
3243 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3244
3245 if (middle_len && !con->in_msg->middle) {
3246 ret = ceph_alloc_middle(con, con->in_msg);
3247 if (ret < 0) {
3248 ceph_msg_put(con->in_msg);
3249 con->in_msg = NULL;
3250 }
3251 }
3252
3253 return ret;
3254 }
3255
3256
3257 /*
3258 * Free a generically kmalloc'd message.
3259 */
3260 void ceph_msg_kfree(struct ceph_msg *m)
3261 {
3262 dout("msg_kfree %p\n", m);
3263 if (m->front_is_vmalloc)
3264 vfree(m->front.iov_base);
3265 else
3266 kfree(m->front.iov_base);
3267 kmem_cache_free(ceph_msg_cache, m);
3268 }
3269
3270 /*
3271 * Drop a msg ref. Destroy as needed.
3272 */
3273 void ceph_msg_last_put(struct kref *kref)
3274 {
3275 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3276 LIST_HEAD(data);
3277 struct list_head *links;
3278 struct list_head *next;
3279
3280 dout("ceph_msg_put last one on %p\n", m);
3281 WARN_ON(!list_empty(&m->list_head));
3282
3283 /* drop middle, data, if any */
3284 if (m->middle) {
3285 ceph_buffer_put(m->middle);
3286 m->middle = NULL;
3287 }
3288
3289 list_splice_init(&m->data, &data);
3290 list_for_each_safe(links, next, &data) {
3291 struct ceph_msg_data *data;
3292
3293 data = list_entry(links, struct ceph_msg_data, links);
3294 list_del_init(links);
3295 ceph_msg_data_destroy(data);
3296 }
3297 m->data_length = 0;
3298
3299 if (m->pool)
3300 ceph_msgpool_put(m->pool, m);
3301 else
3302 ceph_msg_kfree(m);
3303 }
3304 EXPORT_SYMBOL(ceph_msg_last_put);
3305
3306 void ceph_msg_dump(struct ceph_msg *msg)
3307 {
3308 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3309 msg->front_alloc_len, msg->data_length);
3310 print_hex_dump(KERN_DEBUG, "header: ",
3311 DUMP_PREFIX_OFFSET, 16, 1,
3312 &msg->hdr, sizeof(msg->hdr), true);
3313 print_hex_dump(KERN_DEBUG, " front: ",
3314 DUMP_PREFIX_OFFSET, 16, 1,
3315 msg->front.iov_base, msg->front.iov_len, true);
3316 if (msg->middle)
3317 print_hex_dump(KERN_DEBUG, "middle: ",
3318 DUMP_PREFIX_OFFSET, 16, 1,
3319 msg->middle->vec.iov_base,
3320 msg->middle->vec.iov_len, true);
3321 print_hex_dump(KERN_DEBUG, "footer: ",
3322 DUMP_PREFIX_OFFSET, 16, 1,
3323 &msg->footer, sizeof(msg->footer), true);
3324 }
3325 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.095816 seconds and 6 git commands to generate.