libceph: just set SOCK_CLOSED when state changes
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
33
34 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
35 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
36 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
37 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
38 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
39
40 /* static tag bytes (protocol control messages) */
41 static char tag_msg = CEPH_MSGR_TAG_MSG;
42 static char tag_ack = CEPH_MSGR_TAG_ACK;
43 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
44
45 #ifdef CONFIG_LOCKDEP
46 static struct lock_class_key socket_class;
47 #endif
48
49 /*
50 * When skipping (ignoring) a block of input we read it into a "skip
51 * buffer," which is this many bytes in size.
52 */
53 #define SKIP_BUF_SIZE 1024
54
55 static void queue_con(struct ceph_connection *con);
56 static void con_work(struct work_struct *);
57 static void ceph_fault(struct ceph_connection *con);
58
59 /*
60 * Nicely render a sockaddr as a string. An array of formatted
61 * strings is used, to approximate reentrancy.
62 */
63 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
64 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
65 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
66 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
67
68 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
69 static atomic_t addr_str_seq = ATOMIC_INIT(0);
70
71 static struct page *zero_page; /* used in certain error cases */
72
73 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
74 {
75 int i;
76 char *s;
77 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
78 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
79
80 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
81 s = addr_str[i];
82
83 switch (ss->ss_family) {
84 case AF_INET:
85 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
86 ntohs(in4->sin_port));
87 break;
88
89 case AF_INET6:
90 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
91 ntohs(in6->sin6_port));
92 break;
93
94 default:
95 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
96 ss->ss_family);
97 }
98
99 return s;
100 }
101 EXPORT_SYMBOL(ceph_pr_addr);
102
103 static void encode_my_addr(struct ceph_messenger *msgr)
104 {
105 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
106 ceph_encode_addr(&msgr->my_enc_addr);
107 }
108
109 /*
110 * work queue for all reading and writing to/from the socket.
111 */
112 static struct workqueue_struct *ceph_msgr_wq;
113
114 void _ceph_msgr_exit(void)
115 {
116 if (ceph_msgr_wq) {
117 destroy_workqueue(ceph_msgr_wq);
118 ceph_msgr_wq = NULL;
119 }
120
121 BUG_ON(zero_page == NULL);
122 kunmap(zero_page);
123 page_cache_release(zero_page);
124 zero_page = NULL;
125 }
126
127 int ceph_msgr_init(void)
128 {
129 BUG_ON(zero_page != NULL);
130 zero_page = ZERO_PAGE(0);
131 page_cache_get(zero_page);
132
133 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
134 if (ceph_msgr_wq)
135 return 0;
136
137 pr_err("msgr_init failed to create workqueue\n");
138 _ceph_msgr_exit();
139
140 return -ENOMEM;
141 }
142 EXPORT_SYMBOL(ceph_msgr_init);
143
144 void ceph_msgr_exit(void)
145 {
146 BUG_ON(ceph_msgr_wq == NULL);
147
148 _ceph_msgr_exit();
149 }
150 EXPORT_SYMBOL(ceph_msgr_exit);
151
152 void ceph_msgr_flush(void)
153 {
154 flush_workqueue(ceph_msgr_wq);
155 }
156 EXPORT_SYMBOL(ceph_msgr_flush);
157
158 /* Connection socket state transition functions */
159
160 static void con_sock_state_init(struct ceph_connection *con)
161 {
162 int old_state;
163
164 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
165 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
166 printk("%s: unexpected old state %d\n", __func__, old_state);
167 }
168
169 static void con_sock_state_connecting(struct ceph_connection *con)
170 {
171 int old_state;
172
173 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
174 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
175 printk("%s: unexpected old state %d\n", __func__, old_state);
176 }
177
178 static void con_sock_state_connected(struct ceph_connection *con)
179 {
180 int old_state;
181
182 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
183 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
184 printk("%s: unexpected old state %d\n", __func__, old_state);
185 }
186
187 static void con_sock_state_closing(struct ceph_connection *con)
188 {
189 int old_state;
190
191 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
192 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
193 old_state != CON_SOCK_STATE_CONNECTED &&
194 old_state != CON_SOCK_STATE_CLOSING))
195 printk("%s: unexpected old state %d\n", __func__, old_state);
196 }
197
198 static void con_sock_state_closed(struct ceph_connection *con)
199 {
200 int old_state;
201
202 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
203 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
204 old_state != CON_SOCK_STATE_CLOSING))
205 printk("%s: unexpected old state %d\n", __func__, old_state);
206 }
207
208 /*
209 * socket callback functions
210 */
211
212 /* data available on socket, or listen socket received a connect */
213 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
214 {
215 struct ceph_connection *con = sk->sk_user_data;
216
217 if (sk->sk_state != TCP_CLOSE_WAIT) {
218 dout("%s on %p state = %lu, queueing work\n", __func__,
219 con, con->state);
220 queue_con(con);
221 }
222 }
223
224 /* socket has buffer space for writing */
225 static void ceph_sock_write_space(struct sock *sk)
226 {
227 struct ceph_connection *con = sk->sk_user_data;
228
229 /* only queue to workqueue if there is data we want to write,
230 * and there is sufficient space in the socket buffer to accept
231 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
232 * doesn't get called again until try_write() fills the socket
233 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
234 * and net/core/stream.c:sk_stream_write_space().
235 */
236 if (test_bit(WRITE_PENDING, &con->flags)) {
237 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
238 dout("%s %p queueing write work\n", __func__, con);
239 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
240 queue_con(con);
241 }
242 } else {
243 dout("%s %p nothing to write\n", __func__, con);
244 }
245 }
246
247 /* socket's state has changed */
248 static void ceph_sock_state_change(struct sock *sk)
249 {
250 struct ceph_connection *con = sk->sk_user_data;
251
252 dout("%s %p state = %lu sk_state = %u\n", __func__,
253 con, con->state, sk->sk_state);
254
255 if (test_bit(CLOSED, &con->state))
256 return;
257
258 switch (sk->sk_state) {
259 case TCP_CLOSE:
260 dout("%s TCP_CLOSE\n", __func__);
261 case TCP_CLOSE_WAIT:
262 dout("%s TCP_CLOSE_WAIT\n", __func__);
263 con_sock_state_closing(con);
264 set_bit(SOCK_CLOSED, &con->flags);
265 queue_con(con);
266 break;
267 case TCP_ESTABLISHED:
268 dout("%s TCP_ESTABLISHED\n", __func__);
269 con_sock_state_connected(con);
270 queue_con(con);
271 break;
272 default: /* Everything else is uninteresting */
273 break;
274 }
275 }
276
277 /*
278 * set up socket callbacks
279 */
280 static void set_sock_callbacks(struct socket *sock,
281 struct ceph_connection *con)
282 {
283 struct sock *sk = sock->sk;
284 sk->sk_user_data = con;
285 sk->sk_data_ready = ceph_sock_data_ready;
286 sk->sk_write_space = ceph_sock_write_space;
287 sk->sk_state_change = ceph_sock_state_change;
288 }
289
290
291 /*
292 * socket helpers
293 */
294
295 /*
296 * initiate connection to a remote socket.
297 */
298 static int ceph_tcp_connect(struct ceph_connection *con)
299 {
300 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
301 struct socket *sock;
302 int ret;
303
304 BUG_ON(con->sock);
305 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
306 IPPROTO_TCP, &sock);
307 if (ret)
308 return ret;
309 sock->sk->sk_allocation = GFP_NOFS;
310
311 #ifdef CONFIG_LOCKDEP
312 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
313 #endif
314
315 set_sock_callbacks(sock, con);
316
317 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
318
319 con_sock_state_connecting(con);
320 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
321 O_NONBLOCK);
322 if (ret == -EINPROGRESS) {
323 dout("connect %s EINPROGRESS sk_state = %u\n",
324 ceph_pr_addr(&con->peer_addr.in_addr),
325 sock->sk->sk_state);
326 } else if (ret < 0) {
327 pr_err("connect %s error %d\n",
328 ceph_pr_addr(&con->peer_addr.in_addr), ret);
329 sock_release(sock);
330 con->error_msg = "connect error";
331
332 return ret;
333 }
334 con->sock = sock;
335 return 0;
336 }
337
338 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
339 {
340 struct kvec iov = {buf, len};
341 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
342 int r;
343
344 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
345 if (r == -EAGAIN)
346 r = 0;
347 return r;
348 }
349
350 /*
351 * write something. @more is true if caller will be sending more data
352 * shortly.
353 */
354 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
355 size_t kvlen, size_t len, int more)
356 {
357 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
358 int r;
359
360 if (more)
361 msg.msg_flags |= MSG_MORE;
362 else
363 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
364
365 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
366 if (r == -EAGAIN)
367 r = 0;
368 return r;
369 }
370
371 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
372 int offset, size_t size, int more)
373 {
374 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
375 int ret;
376
377 ret = kernel_sendpage(sock, page, offset, size, flags);
378 if (ret == -EAGAIN)
379 ret = 0;
380
381 return ret;
382 }
383
384
385 /*
386 * Shutdown/close the socket for the given connection.
387 */
388 static int con_close_socket(struct ceph_connection *con)
389 {
390 int rc;
391
392 dout("con_close_socket on %p sock %p\n", con, con->sock);
393 if (!con->sock)
394 return 0;
395 set_bit(SOCK_CLOSED, &con->flags);
396 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
397 sock_release(con->sock);
398 con->sock = NULL;
399 clear_bit(SOCK_CLOSED, &con->flags);
400 con_sock_state_closed(con);
401 return rc;
402 }
403
404 /*
405 * Reset a connection. Discard all incoming and outgoing messages
406 * and clear *_seq state.
407 */
408 static void ceph_msg_remove(struct ceph_msg *msg)
409 {
410 list_del_init(&msg->list_head);
411 BUG_ON(msg->con == NULL);
412 msg->con->ops->put(msg->con);
413 msg->con = NULL;
414
415 ceph_msg_put(msg);
416 }
417 static void ceph_msg_remove_list(struct list_head *head)
418 {
419 while (!list_empty(head)) {
420 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
421 list_head);
422 ceph_msg_remove(msg);
423 }
424 }
425
426 static void reset_connection(struct ceph_connection *con)
427 {
428 /* reset connection, out_queue, msg_ and connect_seq */
429 /* discard existing out_queue and msg_seq */
430 ceph_msg_remove_list(&con->out_queue);
431 ceph_msg_remove_list(&con->out_sent);
432
433 if (con->in_msg) {
434 BUG_ON(con->in_msg->con != con);
435 con->in_msg->con = NULL;
436 ceph_msg_put(con->in_msg);
437 con->in_msg = NULL;
438 con->ops->put(con);
439 }
440
441 con->connect_seq = 0;
442 con->out_seq = 0;
443 if (con->out_msg) {
444 ceph_msg_put(con->out_msg);
445 con->out_msg = NULL;
446 }
447 con->in_seq = 0;
448 con->in_seq_acked = 0;
449 }
450
451 /*
452 * mark a peer down. drop any open connections.
453 */
454 void ceph_con_close(struct ceph_connection *con)
455 {
456 dout("con_close %p peer %s\n", con,
457 ceph_pr_addr(&con->peer_addr.in_addr));
458 clear_bit(NEGOTIATING, &con->state);
459 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
460 set_bit(CLOSED, &con->state);
461
462 clear_bit(LOSSYTX, &con->flags); /* so we retry next connect */
463 clear_bit(KEEPALIVE_PENDING, &con->flags);
464 clear_bit(WRITE_PENDING, &con->flags);
465
466 mutex_lock(&con->mutex);
467 reset_connection(con);
468 con->peer_global_seq = 0;
469 cancel_delayed_work(&con->work);
470 mutex_unlock(&con->mutex);
471 queue_con(con);
472 }
473 EXPORT_SYMBOL(ceph_con_close);
474
475 /*
476 * Reopen a closed connection, with a new peer address.
477 */
478 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
479 {
480 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
481 set_bit(OPENING, &con->state);
482 WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
483
484 memcpy(&con->peer_addr, addr, sizeof(*addr));
485 con->delay = 0; /* reset backoff memory */
486 queue_con(con);
487 }
488 EXPORT_SYMBOL(ceph_con_open);
489
490 /*
491 * return true if this connection ever successfully opened
492 */
493 bool ceph_con_opened(struct ceph_connection *con)
494 {
495 return con->connect_seq > 0;
496 }
497
498 /*
499 * initialize a new connection.
500 */
501 void ceph_con_init(struct ceph_connection *con, void *private,
502 const struct ceph_connection_operations *ops,
503 struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
504 {
505 dout("con_init %p\n", con);
506 memset(con, 0, sizeof(*con));
507 con->private = private;
508 con->ops = ops;
509 con->msgr = msgr;
510
511 con_sock_state_init(con);
512
513 con->peer_name.type = (__u8) entity_type;
514 con->peer_name.num = cpu_to_le64(entity_num);
515
516 mutex_init(&con->mutex);
517 INIT_LIST_HEAD(&con->out_queue);
518 INIT_LIST_HEAD(&con->out_sent);
519 INIT_DELAYED_WORK(&con->work, con_work);
520
521 set_bit(CLOSED, &con->state);
522 }
523 EXPORT_SYMBOL(ceph_con_init);
524
525
526 /*
527 * We maintain a global counter to order connection attempts. Get
528 * a unique seq greater than @gt.
529 */
530 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
531 {
532 u32 ret;
533
534 spin_lock(&msgr->global_seq_lock);
535 if (msgr->global_seq < gt)
536 msgr->global_seq = gt;
537 ret = ++msgr->global_seq;
538 spin_unlock(&msgr->global_seq_lock);
539 return ret;
540 }
541
542 static void con_out_kvec_reset(struct ceph_connection *con)
543 {
544 con->out_kvec_left = 0;
545 con->out_kvec_bytes = 0;
546 con->out_kvec_cur = &con->out_kvec[0];
547 }
548
549 static void con_out_kvec_add(struct ceph_connection *con,
550 size_t size, void *data)
551 {
552 int index;
553
554 index = con->out_kvec_left;
555 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
556
557 con->out_kvec[index].iov_len = size;
558 con->out_kvec[index].iov_base = data;
559 con->out_kvec_left++;
560 con->out_kvec_bytes += size;
561 }
562
563 #ifdef CONFIG_BLOCK
564 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
565 {
566 if (!bio) {
567 *iter = NULL;
568 *seg = 0;
569 return;
570 }
571 *iter = bio;
572 *seg = bio->bi_idx;
573 }
574
575 static void iter_bio_next(struct bio **bio_iter, int *seg)
576 {
577 if (*bio_iter == NULL)
578 return;
579
580 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
581
582 (*seg)++;
583 if (*seg == (*bio_iter)->bi_vcnt)
584 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
585 }
586 #endif
587
588 static void prepare_write_message_data(struct ceph_connection *con)
589 {
590 struct ceph_msg *msg = con->out_msg;
591
592 BUG_ON(!msg);
593 BUG_ON(!msg->hdr.data_len);
594
595 /* initialize page iterator */
596 con->out_msg_pos.page = 0;
597 if (msg->pages)
598 con->out_msg_pos.page_pos = msg->page_alignment;
599 else
600 con->out_msg_pos.page_pos = 0;
601 #ifdef CONFIG_BLOCK
602 if (msg->bio)
603 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
604 #endif
605 con->out_msg_pos.data_pos = 0;
606 con->out_msg_pos.did_page_crc = false;
607 con->out_more = 1; /* data + footer will follow */
608 }
609
610 /*
611 * Prepare footer for currently outgoing message, and finish things
612 * off. Assumes out_kvec* are already valid.. we just add on to the end.
613 */
614 static void prepare_write_message_footer(struct ceph_connection *con)
615 {
616 struct ceph_msg *m = con->out_msg;
617 int v = con->out_kvec_left;
618
619 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
620
621 dout("prepare_write_message_footer %p\n", con);
622 con->out_kvec_is_msg = true;
623 con->out_kvec[v].iov_base = &m->footer;
624 con->out_kvec[v].iov_len = sizeof(m->footer);
625 con->out_kvec_bytes += sizeof(m->footer);
626 con->out_kvec_left++;
627 con->out_more = m->more_to_follow;
628 con->out_msg_done = true;
629 }
630
631 /*
632 * Prepare headers for the next outgoing message.
633 */
634 static void prepare_write_message(struct ceph_connection *con)
635 {
636 struct ceph_msg *m;
637 u32 crc;
638
639 con_out_kvec_reset(con);
640 con->out_kvec_is_msg = true;
641 con->out_msg_done = false;
642
643 /* Sneak an ack in there first? If we can get it into the same
644 * TCP packet that's a good thing. */
645 if (con->in_seq > con->in_seq_acked) {
646 con->in_seq_acked = con->in_seq;
647 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
648 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
649 con_out_kvec_add(con, sizeof (con->out_temp_ack),
650 &con->out_temp_ack);
651 }
652
653 BUG_ON(list_empty(&con->out_queue));
654 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
655 con->out_msg = m;
656 BUG_ON(m->con != con);
657
658 /* put message on sent list */
659 ceph_msg_get(m);
660 list_move_tail(&m->list_head, &con->out_sent);
661
662 /*
663 * only assign outgoing seq # if we haven't sent this message
664 * yet. if it is requeued, resend with it's original seq.
665 */
666 if (m->needs_out_seq) {
667 m->hdr.seq = cpu_to_le64(++con->out_seq);
668 m->needs_out_seq = false;
669 }
670
671 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
672 m, con->out_seq, le16_to_cpu(m->hdr.type),
673 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
674 le32_to_cpu(m->hdr.data_len),
675 m->nr_pages);
676 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
677
678 /* tag + hdr + front + middle */
679 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
680 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
681 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
682
683 if (m->middle)
684 con_out_kvec_add(con, m->middle->vec.iov_len,
685 m->middle->vec.iov_base);
686
687 /* fill in crc (except data pages), footer */
688 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
689 con->out_msg->hdr.crc = cpu_to_le32(crc);
690 con->out_msg->footer.flags = 0;
691
692 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
693 con->out_msg->footer.front_crc = cpu_to_le32(crc);
694 if (m->middle) {
695 crc = crc32c(0, m->middle->vec.iov_base,
696 m->middle->vec.iov_len);
697 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
698 } else
699 con->out_msg->footer.middle_crc = 0;
700 dout("%s front_crc %u middle_crc %u\n", __func__,
701 le32_to_cpu(con->out_msg->footer.front_crc),
702 le32_to_cpu(con->out_msg->footer.middle_crc));
703
704 /* is there a data payload? */
705 con->out_msg->footer.data_crc = 0;
706 if (m->hdr.data_len)
707 prepare_write_message_data(con);
708 else
709 /* no, queue up footer too and be done */
710 prepare_write_message_footer(con);
711
712 set_bit(WRITE_PENDING, &con->flags);
713 }
714
715 /*
716 * Prepare an ack.
717 */
718 static void prepare_write_ack(struct ceph_connection *con)
719 {
720 dout("prepare_write_ack %p %llu -> %llu\n", con,
721 con->in_seq_acked, con->in_seq);
722 con->in_seq_acked = con->in_seq;
723
724 con_out_kvec_reset(con);
725
726 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
727
728 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
729 con_out_kvec_add(con, sizeof (con->out_temp_ack),
730 &con->out_temp_ack);
731
732 con->out_more = 1; /* more will follow.. eventually.. */
733 set_bit(WRITE_PENDING, &con->flags);
734 }
735
736 /*
737 * Prepare to write keepalive byte.
738 */
739 static void prepare_write_keepalive(struct ceph_connection *con)
740 {
741 dout("prepare_write_keepalive %p\n", con);
742 con_out_kvec_reset(con);
743 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
744 set_bit(WRITE_PENDING, &con->flags);
745 }
746
747 /*
748 * Connection negotiation.
749 */
750
751 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
752 int *auth_proto)
753 {
754 struct ceph_auth_handshake *auth;
755
756 if (!con->ops->get_authorizer) {
757 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
758 con->out_connect.authorizer_len = 0;
759
760 return NULL;
761 }
762
763 /* Can't hold the mutex while getting authorizer */
764
765 mutex_unlock(&con->mutex);
766
767 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
768
769 mutex_lock(&con->mutex);
770
771 if (IS_ERR(auth))
772 return auth;
773 if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
774 return ERR_PTR(-EAGAIN);
775
776 con->auth_reply_buf = auth->authorizer_reply_buf;
777 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
778
779
780 return auth;
781 }
782
783 /*
784 * We connected to a peer and are saying hello.
785 */
786 static void prepare_write_banner(struct ceph_connection *con)
787 {
788 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
789 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
790 &con->msgr->my_enc_addr);
791
792 con->out_more = 0;
793 set_bit(WRITE_PENDING, &con->flags);
794 }
795
796 static int prepare_write_connect(struct ceph_connection *con)
797 {
798 unsigned int global_seq = get_global_seq(con->msgr, 0);
799 int proto;
800 int auth_proto;
801 struct ceph_auth_handshake *auth;
802
803 switch (con->peer_name.type) {
804 case CEPH_ENTITY_TYPE_MON:
805 proto = CEPH_MONC_PROTOCOL;
806 break;
807 case CEPH_ENTITY_TYPE_OSD:
808 proto = CEPH_OSDC_PROTOCOL;
809 break;
810 case CEPH_ENTITY_TYPE_MDS:
811 proto = CEPH_MDSC_PROTOCOL;
812 break;
813 default:
814 BUG();
815 }
816
817 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
818 con->connect_seq, global_seq, proto);
819
820 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
821 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
822 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
823 con->out_connect.global_seq = cpu_to_le32(global_seq);
824 con->out_connect.protocol_version = cpu_to_le32(proto);
825 con->out_connect.flags = 0;
826
827 auth_proto = CEPH_AUTH_UNKNOWN;
828 auth = get_connect_authorizer(con, &auth_proto);
829 if (IS_ERR(auth))
830 return PTR_ERR(auth);
831
832 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
833 con->out_connect.authorizer_len = auth ?
834 cpu_to_le32(auth->authorizer_buf_len) : 0;
835
836 con_out_kvec_add(con, sizeof (con->out_connect),
837 &con->out_connect);
838 if (auth && auth->authorizer_buf_len)
839 con_out_kvec_add(con, auth->authorizer_buf_len,
840 auth->authorizer_buf);
841
842 con->out_more = 0;
843 set_bit(WRITE_PENDING, &con->flags);
844
845 return 0;
846 }
847
848 /*
849 * write as much of pending kvecs to the socket as we can.
850 * 1 -> done
851 * 0 -> socket full, but more to do
852 * <0 -> error
853 */
854 static int write_partial_kvec(struct ceph_connection *con)
855 {
856 int ret;
857
858 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
859 while (con->out_kvec_bytes > 0) {
860 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
861 con->out_kvec_left, con->out_kvec_bytes,
862 con->out_more);
863 if (ret <= 0)
864 goto out;
865 con->out_kvec_bytes -= ret;
866 if (con->out_kvec_bytes == 0)
867 break; /* done */
868
869 /* account for full iov entries consumed */
870 while (ret >= con->out_kvec_cur->iov_len) {
871 BUG_ON(!con->out_kvec_left);
872 ret -= con->out_kvec_cur->iov_len;
873 con->out_kvec_cur++;
874 con->out_kvec_left--;
875 }
876 /* and for a partially-consumed entry */
877 if (ret) {
878 con->out_kvec_cur->iov_len -= ret;
879 con->out_kvec_cur->iov_base += ret;
880 }
881 }
882 con->out_kvec_left = 0;
883 con->out_kvec_is_msg = false;
884 ret = 1;
885 out:
886 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
887 con->out_kvec_bytes, con->out_kvec_left, ret);
888 return ret; /* done! */
889 }
890
891 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
892 size_t len, size_t sent, bool in_trail)
893 {
894 struct ceph_msg *msg = con->out_msg;
895
896 BUG_ON(!msg);
897 BUG_ON(!sent);
898
899 con->out_msg_pos.data_pos += sent;
900 con->out_msg_pos.page_pos += sent;
901 if (sent == len) {
902 con->out_msg_pos.page_pos = 0;
903 con->out_msg_pos.page++;
904 con->out_msg_pos.did_page_crc = false;
905 if (in_trail)
906 list_move_tail(&page->lru,
907 &msg->trail->head);
908 else if (msg->pagelist)
909 list_move_tail(&page->lru,
910 &msg->pagelist->head);
911 #ifdef CONFIG_BLOCK
912 else if (msg->bio)
913 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
914 #endif
915 }
916 }
917
918 /*
919 * Write as much message data payload as we can. If we finish, queue
920 * up the footer.
921 * 1 -> done, footer is now queued in out_kvec[].
922 * 0 -> socket full, but more to do
923 * <0 -> error
924 */
925 static int write_partial_msg_pages(struct ceph_connection *con)
926 {
927 struct ceph_msg *msg = con->out_msg;
928 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
929 size_t len;
930 bool do_datacrc = !con->msgr->nocrc;
931 int ret;
932 int total_max_write;
933 bool in_trail = false;
934 size_t trail_len = (msg->trail ? msg->trail->length : 0);
935
936 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
937 con, msg, con->out_msg_pos.page, msg->nr_pages,
938 con->out_msg_pos.page_pos);
939
940 while (data_len > con->out_msg_pos.data_pos) {
941 struct page *page = NULL;
942 int max_write = PAGE_SIZE;
943 int bio_offset = 0;
944
945 total_max_write = data_len - trail_len -
946 con->out_msg_pos.data_pos;
947
948 /*
949 * if we are calculating the data crc (the default), we need
950 * to map the page. if our pages[] has been revoked, use the
951 * zero page.
952 */
953
954 /* have we reached the trail part of the data? */
955 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
956 in_trail = true;
957
958 total_max_write = data_len - con->out_msg_pos.data_pos;
959
960 page = list_first_entry(&msg->trail->head,
961 struct page, lru);
962 } else if (msg->pages) {
963 page = msg->pages[con->out_msg_pos.page];
964 } else if (msg->pagelist) {
965 page = list_first_entry(&msg->pagelist->head,
966 struct page, lru);
967 #ifdef CONFIG_BLOCK
968 } else if (msg->bio) {
969 struct bio_vec *bv;
970
971 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
972 page = bv->bv_page;
973 bio_offset = bv->bv_offset;
974 max_write = bv->bv_len;
975 #endif
976 } else {
977 page = zero_page;
978 }
979 len = min_t(int, max_write - con->out_msg_pos.page_pos,
980 total_max_write);
981
982 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
983 void *base;
984 u32 crc;
985 u32 tmpcrc = le32_to_cpu(msg->footer.data_crc);
986 char *kaddr;
987
988 kaddr = kmap(page);
989 BUG_ON(kaddr == NULL);
990 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
991 crc = crc32c(tmpcrc, base, len);
992 msg->footer.data_crc = cpu_to_le32(crc);
993 con->out_msg_pos.did_page_crc = true;
994 }
995 ret = ceph_tcp_sendpage(con->sock, page,
996 con->out_msg_pos.page_pos + bio_offset,
997 len, 1);
998
999 if (do_datacrc)
1000 kunmap(page);
1001
1002 if (ret <= 0)
1003 goto out;
1004
1005 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1006 }
1007
1008 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1009
1010 /* prepare and queue up footer, too */
1011 if (!do_datacrc)
1012 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1013 con_out_kvec_reset(con);
1014 prepare_write_message_footer(con);
1015 ret = 1;
1016 out:
1017 return ret;
1018 }
1019
1020 /*
1021 * write some zeros
1022 */
1023 static int write_partial_skip(struct ceph_connection *con)
1024 {
1025 int ret;
1026
1027 while (con->out_skip > 0) {
1028 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1029
1030 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1031 if (ret <= 0)
1032 goto out;
1033 con->out_skip -= ret;
1034 }
1035 ret = 1;
1036 out:
1037 return ret;
1038 }
1039
1040 /*
1041 * Prepare to read connection handshake, or an ack.
1042 */
1043 static void prepare_read_banner(struct ceph_connection *con)
1044 {
1045 dout("prepare_read_banner %p\n", con);
1046 con->in_base_pos = 0;
1047 }
1048
1049 static void prepare_read_connect(struct ceph_connection *con)
1050 {
1051 dout("prepare_read_connect %p\n", con);
1052 con->in_base_pos = 0;
1053 }
1054
1055 static void prepare_read_ack(struct ceph_connection *con)
1056 {
1057 dout("prepare_read_ack %p\n", con);
1058 con->in_base_pos = 0;
1059 }
1060
1061 static void prepare_read_tag(struct ceph_connection *con)
1062 {
1063 dout("prepare_read_tag %p\n", con);
1064 con->in_base_pos = 0;
1065 con->in_tag = CEPH_MSGR_TAG_READY;
1066 }
1067
1068 /*
1069 * Prepare to read a message.
1070 */
1071 static int prepare_read_message(struct ceph_connection *con)
1072 {
1073 dout("prepare_read_message %p\n", con);
1074 BUG_ON(con->in_msg != NULL);
1075 con->in_base_pos = 0;
1076 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1077 return 0;
1078 }
1079
1080
1081 static int read_partial(struct ceph_connection *con,
1082 int end, int size, void *object)
1083 {
1084 while (con->in_base_pos < end) {
1085 int left = end - con->in_base_pos;
1086 int have = size - left;
1087 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1088 if (ret <= 0)
1089 return ret;
1090 con->in_base_pos += ret;
1091 }
1092 return 1;
1093 }
1094
1095
1096 /*
1097 * Read all or part of the connect-side handshake on a new connection
1098 */
1099 static int read_partial_banner(struct ceph_connection *con)
1100 {
1101 int size;
1102 int end;
1103 int ret;
1104
1105 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1106
1107 /* peer's banner */
1108 size = strlen(CEPH_BANNER);
1109 end = size;
1110 ret = read_partial(con, end, size, con->in_banner);
1111 if (ret <= 0)
1112 goto out;
1113
1114 size = sizeof (con->actual_peer_addr);
1115 end += size;
1116 ret = read_partial(con, end, size, &con->actual_peer_addr);
1117 if (ret <= 0)
1118 goto out;
1119
1120 size = sizeof (con->peer_addr_for_me);
1121 end += size;
1122 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1123 if (ret <= 0)
1124 goto out;
1125
1126 out:
1127 return ret;
1128 }
1129
1130 static int read_partial_connect(struct ceph_connection *con)
1131 {
1132 int size;
1133 int end;
1134 int ret;
1135
1136 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1137
1138 size = sizeof (con->in_reply);
1139 end = size;
1140 ret = read_partial(con, end, size, &con->in_reply);
1141 if (ret <= 0)
1142 goto out;
1143
1144 size = le32_to_cpu(con->in_reply.authorizer_len);
1145 end += size;
1146 ret = read_partial(con, end, size, con->auth_reply_buf);
1147 if (ret <= 0)
1148 goto out;
1149
1150 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1151 con, (int)con->in_reply.tag,
1152 le32_to_cpu(con->in_reply.connect_seq),
1153 le32_to_cpu(con->in_reply.global_seq));
1154 out:
1155 return ret;
1156
1157 }
1158
1159 /*
1160 * Verify the hello banner looks okay.
1161 */
1162 static int verify_hello(struct ceph_connection *con)
1163 {
1164 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1165 pr_err("connect to %s got bad banner\n",
1166 ceph_pr_addr(&con->peer_addr.in_addr));
1167 con->error_msg = "protocol error, bad banner";
1168 return -1;
1169 }
1170 return 0;
1171 }
1172
1173 static bool addr_is_blank(struct sockaddr_storage *ss)
1174 {
1175 switch (ss->ss_family) {
1176 case AF_INET:
1177 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1178 case AF_INET6:
1179 return
1180 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1181 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1182 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1183 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1184 }
1185 return false;
1186 }
1187
1188 static int addr_port(struct sockaddr_storage *ss)
1189 {
1190 switch (ss->ss_family) {
1191 case AF_INET:
1192 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1193 case AF_INET6:
1194 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1195 }
1196 return 0;
1197 }
1198
1199 static void addr_set_port(struct sockaddr_storage *ss, int p)
1200 {
1201 switch (ss->ss_family) {
1202 case AF_INET:
1203 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1204 break;
1205 case AF_INET6:
1206 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1207 break;
1208 }
1209 }
1210
1211 /*
1212 * Unlike other *_pton function semantics, zero indicates success.
1213 */
1214 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1215 char delim, const char **ipend)
1216 {
1217 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1218 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1219
1220 memset(ss, 0, sizeof(*ss));
1221
1222 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1223 ss->ss_family = AF_INET;
1224 return 0;
1225 }
1226
1227 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1228 ss->ss_family = AF_INET6;
1229 return 0;
1230 }
1231
1232 return -EINVAL;
1233 }
1234
1235 /*
1236 * Extract hostname string and resolve using kernel DNS facility.
1237 */
1238 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1239 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1240 struct sockaddr_storage *ss, char delim, const char **ipend)
1241 {
1242 const char *end, *delim_p;
1243 char *colon_p, *ip_addr = NULL;
1244 int ip_len, ret;
1245
1246 /*
1247 * The end of the hostname occurs immediately preceding the delimiter or
1248 * the port marker (':') where the delimiter takes precedence.
1249 */
1250 delim_p = memchr(name, delim, namelen);
1251 colon_p = memchr(name, ':', namelen);
1252
1253 if (delim_p && colon_p)
1254 end = delim_p < colon_p ? delim_p : colon_p;
1255 else if (!delim_p && colon_p)
1256 end = colon_p;
1257 else {
1258 end = delim_p;
1259 if (!end) /* case: hostname:/ */
1260 end = name + namelen;
1261 }
1262
1263 if (end <= name)
1264 return -EINVAL;
1265
1266 /* do dns_resolve upcall */
1267 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1268 if (ip_len > 0)
1269 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1270 else
1271 ret = -ESRCH;
1272
1273 kfree(ip_addr);
1274
1275 *ipend = end;
1276
1277 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1278 ret, ret ? "failed" : ceph_pr_addr(ss));
1279
1280 return ret;
1281 }
1282 #else
1283 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1284 struct sockaddr_storage *ss, char delim, const char **ipend)
1285 {
1286 return -EINVAL;
1287 }
1288 #endif
1289
1290 /*
1291 * Parse a server name (IP or hostname). If a valid IP address is not found
1292 * then try to extract a hostname to resolve using userspace DNS upcall.
1293 */
1294 static int ceph_parse_server_name(const char *name, size_t namelen,
1295 struct sockaddr_storage *ss, char delim, const char **ipend)
1296 {
1297 int ret;
1298
1299 ret = ceph_pton(name, namelen, ss, delim, ipend);
1300 if (ret)
1301 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1302
1303 return ret;
1304 }
1305
1306 /*
1307 * Parse an ip[:port] list into an addr array. Use the default
1308 * monitor port if a port isn't specified.
1309 */
1310 int ceph_parse_ips(const char *c, const char *end,
1311 struct ceph_entity_addr *addr,
1312 int max_count, int *count)
1313 {
1314 int i, ret = -EINVAL;
1315 const char *p = c;
1316
1317 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1318 for (i = 0; i < max_count; i++) {
1319 const char *ipend;
1320 struct sockaddr_storage *ss = &addr[i].in_addr;
1321 int port;
1322 char delim = ',';
1323
1324 if (*p == '[') {
1325 delim = ']';
1326 p++;
1327 }
1328
1329 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1330 if (ret)
1331 goto bad;
1332 ret = -EINVAL;
1333
1334 p = ipend;
1335
1336 if (delim == ']') {
1337 if (*p != ']') {
1338 dout("missing matching ']'\n");
1339 goto bad;
1340 }
1341 p++;
1342 }
1343
1344 /* port? */
1345 if (p < end && *p == ':') {
1346 port = 0;
1347 p++;
1348 while (p < end && *p >= '0' && *p <= '9') {
1349 port = (port * 10) + (*p - '0');
1350 p++;
1351 }
1352 if (port > 65535 || port == 0)
1353 goto bad;
1354 } else {
1355 port = CEPH_MON_PORT;
1356 }
1357
1358 addr_set_port(ss, port);
1359
1360 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1361
1362 if (p == end)
1363 break;
1364 if (*p != ',')
1365 goto bad;
1366 p++;
1367 }
1368
1369 if (p != end)
1370 goto bad;
1371
1372 if (count)
1373 *count = i + 1;
1374 return 0;
1375
1376 bad:
1377 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1378 return ret;
1379 }
1380 EXPORT_SYMBOL(ceph_parse_ips);
1381
1382 static int process_banner(struct ceph_connection *con)
1383 {
1384 dout("process_banner on %p\n", con);
1385
1386 if (verify_hello(con) < 0)
1387 return -1;
1388
1389 ceph_decode_addr(&con->actual_peer_addr);
1390 ceph_decode_addr(&con->peer_addr_for_me);
1391
1392 /*
1393 * Make sure the other end is who we wanted. note that the other
1394 * end may not yet know their ip address, so if it's 0.0.0.0, give
1395 * them the benefit of the doubt.
1396 */
1397 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1398 sizeof(con->peer_addr)) != 0 &&
1399 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1400 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1401 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1402 ceph_pr_addr(&con->peer_addr.in_addr),
1403 (int)le32_to_cpu(con->peer_addr.nonce),
1404 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1405 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1406 con->error_msg = "wrong peer at address";
1407 return -1;
1408 }
1409
1410 /*
1411 * did we learn our address?
1412 */
1413 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1414 int port = addr_port(&con->msgr->inst.addr.in_addr);
1415
1416 memcpy(&con->msgr->inst.addr.in_addr,
1417 &con->peer_addr_for_me.in_addr,
1418 sizeof(con->peer_addr_for_me.in_addr));
1419 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1420 encode_my_addr(con->msgr);
1421 dout("process_banner learned my addr is %s\n",
1422 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1423 }
1424
1425 set_bit(NEGOTIATING, &con->state);
1426 prepare_read_connect(con);
1427 return 0;
1428 }
1429
1430 static void fail_protocol(struct ceph_connection *con)
1431 {
1432 reset_connection(con);
1433 set_bit(CLOSED, &con->state); /* in case there's queued work */
1434 }
1435
1436 static int process_connect(struct ceph_connection *con)
1437 {
1438 u64 sup_feat = con->msgr->supported_features;
1439 u64 req_feat = con->msgr->required_features;
1440 u64 server_feat = le64_to_cpu(con->in_reply.features);
1441 int ret;
1442
1443 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1444
1445 switch (con->in_reply.tag) {
1446 case CEPH_MSGR_TAG_FEATURES:
1447 pr_err("%s%lld %s feature set mismatch,"
1448 " my %llx < server's %llx, missing %llx\n",
1449 ENTITY_NAME(con->peer_name),
1450 ceph_pr_addr(&con->peer_addr.in_addr),
1451 sup_feat, server_feat, server_feat & ~sup_feat);
1452 con->error_msg = "missing required protocol features";
1453 fail_protocol(con);
1454 return -1;
1455
1456 case CEPH_MSGR_TAG_BADPROTOVER:
1457 pr_err("%s%lld %s protocol version mismatch,"
1458 " my %d != server's %d\n",
1459 ENTITY_NAME(con->peer_name),
1460 ceph_pr_addr(&con->peer_addr.in_addr),
1461 le32_to_cpu(con->out_connect.protocol_version),
1462 le32_to_cpu(con->in_reply.protocol_version));
1463 con->error_msg = "protocol version mismatch";
1464 fail_protocol(con);
1465 return -1;
1466
1467 case CEPH_MSGR_TAG_BADAUTHORIZER:
1468 con->auth_retry++;
1469 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1470 con->auth_retry);
1471 if (con->auth_retry == 2) {
1472 con->error_msg = "connect authorization failure";
1473 return -1;
1474 }
1475 con->auth_retry = 1;
1476 con_out_kvec_reset(con);
1477 ret = prepare_write_connect(con);
1478 if (ret < 0)
1479 return ret;
1480 prepare_read_connect(con);
1481 break;
1482
1483 case CEPH_MSGR_TAG_RESETSESSION:
1484 /*
1485 * If we connected with a large connect_seq but the peer
1486 * has no record of a session with us (no connection, or
1487 * connect_seq == 0), they will send RESETSESION to indicate
1488 * that they must have reset their session, and may have
1489 * dropped messages.
1490 */
1491 dout("process_connect got RESET peer seq %u\n",
1492 le32_to_cpu(con->in_connect.connect_seq));
1493 pr_err("%s%lld %s connection reset\n",
1494 ENTITY_NAME(con->peer_name),
1495 ceph_pr_addr(&con->peer_addr.in_addr));
1496 reset_connection(con);
1497 con_out_kvec_reset(con);
1498 ret = prepare_write_connect(con);
1499 if (ret < 0)
1500 return ret;
1501 prepare_read_connect(con);
1502
1503 /* Tell ceph about it. */
1504 mutex_unlock(&con->mutex);
1505 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1506 if (con->ops->peer_reset)
1507 con->ops->peer_reset(con);
1508 mutex_lock(&con->mutex);
1509 if (test_bit(CLOSED, &con->state) ||
1510 test_bit(OPENING, &con->state))
1511 return -EAGAIN;
1512 break;
1513
1514 case CEPH_MSGR_TAG_RETRY_SESSION:
1515 /*
1516 * If we sent a smaller connect_seq than the peer has, try
1517 * again with a larger value.
1518 */
1519 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1520 le32_to_cpu(con->out_connect.connect_seq),
1521 le32_to_cpu(con->in_connect.connect_seq));
1522 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1523 con_out_kvec_reset(con);
1524 ret = prepare_write_connect(con);
1525 if (ret < 0)
1526 return ret;
1527 prepare_read_connect(con);
1528 break;
1529
1530 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1531 /*
1532 * If we sent a smaller global_seq than the peer has, try
1533 * again with a larger value.
1534 */
1535 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1536 con->peer_global_seq,
1537 le32_to_cpu(con->in_connect.global_seq));
1538 get_global_seq(con->msgr,
1539 le32_to_cpu(con->in_connect.global_seq));
1540 con_out_kvec_reset(con);
1541 ret = prepare_write_connect(con);
1542 if (ret < 0)
1543 return ret;
1544 prepare_read_connect(con);
1545 break;
1546
1547 case CEPH_MSGR_TAG_READY:
1548 if (req_feat & ~server_feat) {
1549 pr_err("%s%lld %s protocol feature mismatch,"
1550 " my required %llx > server's %llx, need %llx\n",
1551 ENTITY_NAME(con->peer_name),
1552 ceph_pr_addr(&con->peer_addr.in_addr),
1553 req_feat, server_feat, req_feat & ~server_feat);
1554 con->error_msg = "missing required protocol features";
1555 fail_protocol(con);
1556 return -1;
1557 }
1558 clear_bit(CONNECTING, &con->state);
1559 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1560 con->connect_seq++;
1561 con->peer_features = server_feat;
1562 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1563 con->peer_global_seq,
1564 le32_to_cpu(con->in_reply.connect_seq),
1565 con->connect_seq);
1566 WARN_ON(con->connect_seq !=
1567 le32_to_cpu(con->in_reply.connect_seq));
1568
1569 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1570 set_bit(LOSSYTX, &con->flags);
1571
1572 prepare_read_tag(con);
1573 break;
1574
1575 case CEPH_MSGR_TAG_WAIT:
1576 /*
1577 * If there is a connection race (we are opening
1578 * connections to each other), one of us may just have
1579 * to WAIT. This shouldn't happen if we are the
1580 * client.
1581 */
1582 pr_err("process_connect got WAIT as client\n");
1583 con->error_msg = "protocol error, got WAIT as client";
1584 return -1;
1585
1586 default:
1587 pr_err("connect protocol error, will retry\n");
1588 con->error_msg = "protocol error, garbage tag during connect";
1589 return -1;
1590 }
1591 return 0;
1592 }
1593
1594
1595 /*
1596 * read (part of) an ack
1597 */
1598 static int read_partial_ack(struct ceph_connection *con)
1599 {
1600 int size = sizeof (con->in_temp_ack);
1601 int end = size;
1602
1603 return read_partial(con, end, size, &con->in_temp_ack);
1604 }
1605
1606
1607 /*
1608 * We can finally discard anything that's been acked.
1609 */
1610 static void process_ack(struct ceph_connection *con)
1611 {
1612 struct ceph_msg *m;
1613 u64 ack = le64_to_cpu(con->in_temp_ack);
1614 u64 seq;
1615
1616 while (!list_empty(&con->out_sent)) {
1617 m = list_first_entry(&con->out_sent, struct ceph_msg,
1618 list_head);
1619 seq = le64_to_cpu(m->hdr.seq);
1620 if (seq > ack)
1621 break;
1622 dout("got ack for seq %llu type %d at %p\n", seq,
1623 le16_to_cpu(m->hdr.type), m);
1624 m->ack_stamp = jiffies;
1625 ceph_msg_remove(m);
1626 }
1627 prepare_read_tag(con);
1628 }
1629
1630
1631
1632
1633 static int read_partial_message_section(struct ceph_connection *con,
1634 struct kvec *section,
1635 unsigned int sec_len, u32 *crc)
1636 {
1637 int ret, left;
1638
1639 BUG_ON(!section);
1640
1641 while (section->iov_len < sec_len) {
1642 BUG_ON(section->iov_base == NULL);
1643 left = sec_len - section->iov_len;
1644 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1645 section->iov_len, left);
1646 if (ret <= 0)
1647 return ret;
1648 section->iov_len += ret;
1649 }
1650 if (section->iov_len == sec_len)
1651 *crc = crc32c(0, section->iov_base, section->iov_len);
1652
1653 return 1;
1654 }
1655
1656 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1657 struct ceph_msg_header *hdr);
1658
1659
1660 static int read_partial_message_pages(struct ceph_connection *con,
1661 struct page **pages,
1662 unsigned int data_len, bool do_datacrc)
1663 {
1664 void *p;
1665 int ret;
1666 int left;
1667
1668 left = min((int)(data_len - con->in_msg_pos.data_pos),
1669 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1670 /* (page) data */
1671 BUG_ON(pages == NULL);
1672 p = kmap(pages[con->in_msg_pos.page]);
1673 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1674 left);
1675 if (ret > 0 && do_datacrc)
1676 con->in_data_crc =
1677 crc32c(con->in_data_crc,
1678 p + con->in_msg_pos.page_pos, ret);
1679 kunmap(pages[con->in_msg_pos.page]);
1680 if (ret <= 0)
1681 return ret;
1682 con->in_msg_pos.data_pos += ret;
1683 con->in_msg_pos.page_pos += ret;
1684 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1685 con->in_msg_pos.page_pos = 0;
1686 con->in_msg_pos.page++;
1687 }
1688
1689 return ret;
1690 }
1691
1692 #ifdef CONFIG_BLOCK
1693 static int read_partial_message_bio(struct ceph_connection *con,
1694 struct bio **bio_iter, int *bio_seg,
1695 unsigned int data_len, bool do_datacrc)
1696 {
1697 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1698 void *p;
1699 int ret, left;
1700
1701 if (IS_ERR(bv))
1702 return PTR_ERR(bv);
1703
1704 left = min((int)(data_len - con->in_msg_pos.data_pos),
1705 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1706
1707 p = kmap(bv->bv_page) + bv->bv_offset;
1708
1709 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1710 left);
1711 if (ret > 0 && do_datacrc)
1712 con->in_data_crc =
1713 crc32c(con->in_data_crc,
1714 p + con->in_msg_pos.page_pos, ret);
1715 kunmap(bv->bv_page);
1716 if (ret <= 0)
1717 return ret;
1718 con->in_msg_pos.data_pos += ret;
1719 con->in_msg_pos.page_pos += ret;
1720 if (con->in_msg_pos.page_pos == bv->bv_len) {
1721 con->in_msg_pos.page_pos = 0;
1722 iter_bio_next(bio_iter, bio_seg);
1723 }
1724
1725 return ret;
1726 }
1727 #endif
1728
1729 /*
1730 * read (part of) a message.
1731 */
1732 static int read_partial_message(struct ceph_connection *con)
1733 {
1734 struct ceph_msg *m = con->in_msg;
1735 int size;
1736 int end;
1737 int ret;
1738 unsigned int front_len, middle_len, data_len;
1739 bool do_datacrc = !con->msgr->nocrc;
1740 u64 seq;
1741 u32 crc;
1742
1743 dout("read_partial_message con %p msg %p\n", con, m);
1744
1745 /* header */
1746 size = sizeof (con->in_hdr);
1747 end = size;
1748 ret = read_partial(con, end, size, &con->in_hdr);
1749 if (ret <= 0)
1750 return ret;
1751
1752 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1753 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1754 pr_err("read_partial_message bad hdr "
1755 " crc %u != expected %u\n",
1756 crc, con->in_hdr.crc);
1757 return -EBADMSG;
1758 }
1759
1760 front_len = le32_to_cpu(con->in_hdr.front_len);
1761 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1762 return -EIO;
1763 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1764 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1765 return -EIO;
1766 data_len = le32_to_cpu(con->in_hdr.data_len);
1767 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1768 return -EIO;
1769
1770 /* verify seq# */
1771 seq = le64_to_cpu(con->in_hdr.seq);
1772 if ((s64)seq - (s64)con->in_seq < 1) {
1773 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1774 ENTITY_NAME(con->peer_name),
1775 ceph_pr_addr(&con->peer_addr.in_addr),
1776 seq, con->in_seq + 1);
1777 con->in_base_pos = -front_len - middle_len - data_len -
1778 sizeof(m->footer);
1779 con->in_tag = CEPH_MSGR_TAG_READY;
1780 return 0;
1781 } else if ((s64)seq - (s64)con->in_seq > 1) {
1782 pr_err("read_partial_message bad seq %lld expected %lld\n",
1783 seq, con->in_seq + 1);
1784 con->error_msg = "bad message sequence # for incoming message";
1785 return -EBADMSG;
1786 }
1787
1788 /* allocate message? */
1789 if (!con->in_msg) {
1790 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1791 con->in_hdr.front_len, con->in_hdr.data_len);
1792 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1793 /* skip this message */
1794 dout("alloc_msg said skip message\n");
1795 BUG_ON(con->in_msg);
1796 con->in_base_pos = -front_len - middle_len - data_len -
1797 sizeof(m->footer);
1798 con->in_tag = CEPH_MSGR_TAG_READY;
1799 con->in_seq++;
1800 return 0;
1801 }
1802 if (!con->in_msg) {
1803 con->error_msg =
1804 "error allocating memory for incoming message";
1805 return -ENOMEM;
1806 }
1807
1808 BUG_ON(con->in_msg->con != con);
1809 m = con->in_msg;
1810 m->front.iov_len = 0; /* haven't read it yet */
1811 if (m->middle)
1812 m->middle->vec.iov_len = 0;
1813
1814 con->in_msg_pos.page = 0;
1815 if (m->pages)
1816 con->in_msg_pos.page_pos = m->page_alignment;
1817 else
1818 con->in_msg_pos.page_pos = 0;
1819 con->in_msg_pos.data_pos = 0;
1820 }
1821
1822 /* front */
1823 ret = read_partial_message_section(con, &m->front, front_len,
1824 &con->in_front_crc);
1825 if (ret <= 0)
1826 return ret;
1827
1828 /* middle */
1829 if (m->middle) {
1830 ret = read_partial_message_section(con, &m->middle->vec,
1831 middle_len,
1832 &con->in_middle_crc);
1833 if (ret <= 0)
1834 return ret;
1835 }
1836 #ifdef CONFIG_BLOCK
1837 if (m->bio && !m->bio_iter)
1838 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1839 #endif
1840
1841 /* (page) data */
1842 while (con->in_msg_pos.data_pos < data_len) {
1843 if (m->pages) {
1844 ret = read_partial_message_pages(con, m->pages,
1845 data_len, do_datacrc);
1846 if (ret <= 0)
1847 return ret;
1848 #ifdef CONFIG_BLOCK
1849 } else if (m->bio) {
1850
1851 ret = read_partial_message_bio(con,
1852 &m->bio_iter, &m->bio_seg,
1853 data_len, do_datacrc);
1854 if (ret <= 0)
1855 return ret;
1856 #endif
1857 } else {
1858 BUG_ON(1);
1859 }
1860 }
1861
1862 /* footer */
1863 size = sizeof (m->footer);
1864 end += size;
1865 ret = read_partial(con, end, size, &m->footer);
1866 if (ret <= 0)
1867 return ret;
1868
1869 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1870 m, front_len, m->footer.front_crc, middle_len,
1871 m->footer.middle_crc, data_len, m->footer.data_crc);
1872
1873 /* crc ok? */
1874 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1875 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1876 m, con->in_front_crc, m->footer.front_crc);
1877 return -EBADMSG;
1878 }
1879 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1880 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1881 m, con->in_middle_crc, m->footer.middle_crc);
1882 return -EBADMSG;
1883 }
1884 if (do_datacrc &&
1885 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1886 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1887 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1888 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1889 return -EBADMSG;
1890 }
1891
1892 return 1; /* done! */
1893 }
1894
1895 /*
1896 * Process message. This happens in the worker thread. The callback should
1897 * be careful not to do anything that waits on other incoming messages or it
1898 * may deadlock.
1899 */
1900 static void process_message(struct ceph_connection *con)
1901 {
1902 struct ceph_msg *msg;
1903
1904 BUG_ON(con->in_msg->con != con);
1905 con->in_msg->con = NULL;
1906 msg = con->in_msg;
1907 con->in_msg = NULL;
1908 con->ops->put(con);
1909
1910 /* if first message, set peer_name */
1911 if (con->peer_name.type == 0)
1912 con->peer_name = msg->hdr.src;
1913
1914 con->in_seq++;
1915 mutex_unlock(&con->mutex);
1916
1917 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1918 msg, le64_to_cpu(msg->hdr.seq),
1919 ENTITY_NAME(msg->hdr.src),
1920 le16_to_cpu(msg->hdr.type),
1921 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1922 le32_to_cpu(msg->hdr.front_len),
1923 le32_to_cpu(msg->hdr.data_len),
1924 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1925 con->ops->dispatch(con, msg);
1926
1927 mutex_lock(&con->mutex);
1928 prepare_read_tag(con);
1929 }
1930
1931
1932 /*
1933 * Write something to the socket. Called in a worker thread when the
1934 * socket appears to be writeable and we have something ready to send.
1935 */
1936 static int try_write(struct ceph_connection *con)
1937 {
1938 int ret = 1;
1939
1940 dout("try_write start %p state %lu\n", con, con->state);
1941
1942 more:
1943 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1944
1945 /* open the socket first? */
1946 if (con->sock == NULL) {
1947 clear_bit(NEGOTIATING, &con->state);
1948 set_bit(CONNECTING, &con->state);
1949
1950 con_out_kvec_reset(con);
1951 prepare_write_banner(con);
1952 ret = prepare_write_connect(con);
1953 if (ret < 0)
1954 goto out;
1955 prepare_read_banner(con);
1956
1957 BUG_ON(con->in_msg);
1958 con->in_tag = CEPH_MSGR_TAG_READY;
1959 dout("try_write initiating connect on %p new state %lu\n",
1960 con, con->state);
1961 ret = ceph_tcp_connect(con);
1962 if (ret < 0) {
1963 con->error_msg = "connect error";
1964 goto out;
1965 }
1966 }
1967
1968 more_kvec:
1969 /* kvec data queued? */
1970 if (con->out_skip) {
1971 ret = write_partial_skip(con);
1972 if (ret <= 0)
1973 goto out;
1974 }
1975 if (con->out_kvec_left) {
1976 ret = write_partial_kvec(con);
1977 if (ret <= 0)
1978 goto out;
1979 }
1980
1981 /* msg pages? */
1982 if (con->out_msg) {
1983 if (con->out_msg_done) {
1984 ceph_msg_put(con->out_msg);
1985 con->out_msg = NULL; /* we're done with this one */
1986 goto do_next;
1987 }
1988
1989 ret = write_partial_msg_pages(con);
1990 if (ret == 1)
1991 goto more_kvec; /* we need to send the footer, too! */
1992 if (ret == 0)
1993 goto out;
1994 if (ret < 0) {
1995 dout("try_write write_partial_msg_pages err %d\n",
1996 ret);
1997 goto out;
1998 }
1999 }
2000
2001 do_next:
2002 if (!test_bit(CONNECTING, &con->state)) {
2003 /* is anything else pending? */
2004 if (!list_empty(&con->out_queue)) {
2005 prepare_write_message(con);
2006 goto more;
2007 }
2008 if (con->in_seq > con->in_seq_acked) {
2009 prepare_write_ack(con);
2010 goto more;
2011 }
2012 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2013 prepare_write_keepalive(con);
2014 goto more;
2015 }
2016 }
2017
2018 /* Nothing to do! */
2019 clear_bit(WRITE_PENDING, &con->flags);
2020 dout("try_write nothing else to write.\n");
2021 ret = 0;
2022 out:
2023 dout("try_write done on %p ret %d\n", con, ret);
2024 return ret;
2025 }
2026
2027
2028
2029 /*
2030 * Read what we can from the socket.
2031 */
2032 static int try_read(struct ceph_connection *con)
2033 {
2034 int ret = -1;
2035
2036 if (!con->sock)
2037 return 0;
2038
2039 if (test_bit(STANDBY, &con->state))
2040 return 0;
2041
2042 dout("try_read start on %p\n", con);
2043
2044 more:
2045 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2046 con->in_base_pos);
2047
2048 /*
2049 * process_connect and process_message drop and re-take
2050 * con->mutex. make sure we handle a racing close or reopen.
2051 */
2052 if (test_bit(CLOSED, &con->state) ||
2053 test_bit(OPENING, &con->state)) {
2054 ret = -EAGAIN;
2055 goto out;
2056 }
2057
2058 if (test_bit(CONNECTING, &con->state)) {
2059 if (!test_bit(NEGOTIATING, &con->state)) {
2060 dout("try_read connecting\n");
2061 ret = read_partial_banner(con);
2062 if (ret <= 0)
2063 goto out;
2064 ret = process_banner(con);
2065 if (ret < 0)
2066 goto out;
2067 }
2068 ret = read_partial_connect(con);
2069 if (ret <= 0)
2070 goto out;
2071 ret = process_connect(con);
2072 if (ret < 0)
2073 goto out;
2074 goto more;
2075 }
2076
2077 if (con->in_base_pos < 0) {
2078 /*
2079 * skipping + discarding content.
2080 *
2081 * FIXME: there must be a better way to do this!
2082 */
2083 static char buf[SKIP_BUF_SIZE];
2084 int skip = min((int) sizeof (buf), -con->in_base_pos);
2085
2086 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2087 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2088 if (ret <= 0)
2089 goto out;
2090 con->in_base_pos += ret;
2091 if (con->in_base_pos)
2092 goto more;
2093 }
2094 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2095 /*
2096 * what's next?
2097 */
2098 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2099 if (ret <= 0)
2100 goto out;
2101 dout("try_read got tag %d\n", (int)con->in_tag);
2102 switch (con->in_tag) {
2103 case CEPH_MSGR_TAG_MSG:
2104 prepare_read_message(con);
2105 break;
2106 case CEPH_MSGR_TAG_ACK:
2107 prepare_read_ack(con);
2108 break;
2109 case CEPH_MSGR_TAG_CLOSE:
2110 set_bit(CLOSED, &con->state); /* fixme */
2111 goto out;
2112 default:
2113 goto bad_tag;
2114 }
2115 }
2116 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2117 ret = read_partial_message(con);
2118 if (ret <= 0) {
2119 switch (ret) {
2120 case -EBADMSG:
2121 con->error_msg = "bad crc";
2122 ret = -EIO;
2123 break;
2124 case -EIO:
2125 con->error_msg = "io error";
2126 break;
2127 }
2128 goto out;
2129 }
2130 if (con->in_tag == CEPH_MSGR_TAG_READY)
2131 goto more;
2132 process_message(con);
2133 goto more;
2134 }
2135 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2136 ret = read_partial_ack(con);
2137 if (ret <= 0)
2138 goto out;
2139 process_ack(con);
2140 goto more;
2141 }
2142
2143 out:
2144 dout("try_read done on %p ret %d\n", con, ret);
2145 return ret;
2146
2147 bad_tag:
2148 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2149 con->error_msg = "protocol error, garbage tag";
2150 ret = -1;
2151 goto out;
2152 }
2153
2154
2155 /*
2156 * Atomically queue work on a connection. Bump @con reference to
2157 * avoid races with connection teardown.
2158 */
2159 static void queue_con(struct ceph_connection *con)
2160 {
2161 if (!con->ops->get(con)) {
2162 dout("queue_con %p ref count 0\n", con);
2163 return;
2164 }
2165
2166 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2167 dout("queue_con %p - already queued\n", con);
2168 con->ops->put(con);
2169 } else {
2170 dout("queue_con %p\n", con);
2171 }
2172 }
2173
2174 /*
2175 * Do some work on a connection. Drop a connection ref when we're done.
2176 */
2177 static void con_work(struct work_struct *work)
2178 {
2179 struct ceph_connection *con = container_of(work, struct ceph_connection,
2180 work.work);
2181 int ret;
2182
2183 mutex_lock(&con->mutex);
2184 restart:
2185 if (test_and_clear_bit(SOCK_CLOSED, &con->flags)) {
2186 if (test_bit(CONNECTING, &con->state))
2187 con->error_msg = "connection failed";
2188 else
2189 con->error_msg = "socket closed";
2190 goto fault;
2191 }
2192
2193 if (test_and_clear_bit(BACKOFF, &con->flags)) {
2194 dout("con_work %p backing off\n", con);
2195 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2196 round_jiffies_relative(con->delay))) {
2197 dout("con_work %p backoff %lu\n", con, con->delay);
2198 mutex_unlock(&con->mutex);
2199 return;
2200 } else {
2201 con->ops->put(con);
2202 dout("con_work %p FAILED to back off %lu\n", con,
2203 con->delay);
2204 }
2205 }
2206
2207 if (test_bit(STANDBY, &con->state)) {
2208 dout("con_work %p STANDBY\n", con);
2209 goto done;
2210 }
2211 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2212 dout("con_work CLOSED\n");
2213 con_close_socket(con);
2214 goto done;
2215 }
2216 if (test_and_clear_bit(OPENING, &con->state)) {
2217 /* reopen w/ new peer */
2218 dout("con_work OPENING\n");
2219 con_close_socket(con);
2220 }
2221
2222 ret = try_read(con);
2223 if (ret == -EAGAIN)
2224 goto restart;
2225 if (ret < 0)
2226 goto fault;
2227
2228 ret = try_write(con);
2229 if (ret == -EAGAIN)
2230 goto restart;
2231 if (ret < 0)
2232 goto fault;
2233
2234 done:
2235 mutex_unlock(&con->mutex);
2236 done_unlocked:
2237 con->ops->put(con);
2238 return;
2239
2240 fault:
2241 mutex_unlock(&con->mutex);
2242 ceph_fault(con); /* error/fault path */
2243 goto done_unlocked;
2244 }
2245
2246
2247 /*
2248 * Generic error/fault handler. A retry mechanism is used with
2249 * exponential backoff
2250 */
2251 static void ceph_fault(struct ceph_connection *con)
2252 {
2253 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2254 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2255 dout("fault %p state %lu to peer %s\n",
2256 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2257
2258 if (test_bit(LOSSYTX, &con->flags)) {
2259 dout("fault on LOSSYTX channel\n");
2260 goto out;
2261 }
2262
2263 mutex_lock(&con->mutex);
2264 if (test_bit(CLOSED, &con->state))
2265 goto out_unlock;
2266
2267 con_close_socket(con);
2268
2269 if (con->in_msg) {
2270 BUG_ON(con->in_msg->con != con);
2271 con->in_msg->con = NULL;
2272 ceph_msg_put(con->in_msg);
2273 con->in_msg = NULL;
2274 con->ops->put(con);
2275 }
2276
2277 /* Requeue anything that hasn't been acked */
2278 list_splice_init(&con->out_sent, &con->out_queue);
2279
2280 /* If there are no messages queued or keepalive pending, place
2281 * the connection in a STANDBY state */
2282 if (list_empty(&con->out_queue) &&
2283 !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2284 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2285 clear_bit(WRITE_PENDING, &con->flags);
2286 set_bit(STANDBY, &con->state);
2287 } else {
2288 /* retry after a delay. */
2289 if (con->delay == 0)
2290 con->delay = BASE_DELAY_INTERVAL;
2291 else if (con->delay < MAX_DELAY_INTERVAL)
2292 con->delay *= 2;
2293 con->ops->get(con);
2294 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2295 round_jiffies_relative(con->delay))) {
2296 dout("fault queued %p delay %lu\n", con, con->delay);
2297 } else {
2298 con->ops->put(con);
2299 dout("fault failed to queue %p delay %lu, backoff\n",
2300 con, con->delay);
2301 /*
2302 * In many cases we see a socket state change
2303 * while con_work is running and end up
2304 * queuing (non-delayed) work, such that we
2305 * can't backoff with a delay. Set a flag so
2306 * that when con_work restarts we schedule the
2307 * delay then.
2308 */
2309 set_bit(BACKOFF, &con->flags);
2310 }
2311 }
2312
2313 out_unlock:
2314 mutex_unlock(&con->mutex);
2315 out:
2316 /*
2317 * in case we faulted due to authentication, invalidate our
2318 * current tickets so that we can get new ones.
2319 */
2320 if (con->auth_retry && con->ops->invalidate_authorizer) {
2321 dout("calling invalidate_authorizer()\n");
2322 con->ops->invalidate_authorizer(con);
2323 }
2324
2325 if (con->ops->fault)
2326 con->ops->fault(con);
2327 }
2328
2329
2330
2331 /*
2332 * initialize a new messenger instance
2333 */
2334 void ceph_messenger_init(struct ceph_messenger *msgr,
2335 struct ceph_entity_addr *myaddr,
2336 u32 supported_features,
2337 u32 required_features,
2338 bool nocrc)
2339 {
2340 msgr->supported_features = supported_features;
2341 msgr->required_features = required_features;
2342
2343 spin_lock_init(&msgr->global_seq_lock);
2344
2345 if (myaddr)
2346 msgr->inst.addr = *myaddr;
2347
2348 /* select a random nonce */
2349 msgr->inst.addr.type = 0;
2350 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2351 encode_my_addr(msgr);
2352 msgr->nocrc = nocrc;
2353
2354 dout("%s %p\n", __func__, msgr);
2355 }
2356 EXPORT_SYMBOL(ceph_messenger_init);
2357
2358 static void clear_standby(struct ceph_connection *con)
2359 {
2360 /* come back from STANDBY? */
2361 if (test_and_clear_bit(STANDBY, &con->state)) {
2362 mutex_lock(&con->mutex);
2363 dout("clear_standby %p and ++connect_seq\n", con);
2364 con->connect_seq++;
2365 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2366 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2367 mutex_unlock(&con->mutex);
2368 }
2369 }
2370
2371 /*
2372 * Queue up an outgoing message on the given connection.
2373 */
2374 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2375 {
2376 if (test_bit(CLOSED, &con->state)) {
2377 dout("con_send %p closed, dropping %p\n", con, msg);
2378 ceph_msg_put(msg);
2379 return;
2380 }
2381
2382 /* set src+dst */
2383 msg->hdr.src = con->msgr->inst.name;
2384
2385 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2386
2387 msg->needs_out_seq = true;
2388
2389 /* queue */
2390 mutex_lock(&con->mutex);
2391
2392 BUG_ON(msg->con != NULL);
2393 msg->con = con->ops->get(con);
2394 BUG_ON(msg->con == NULL);
2395
2396 BUG_ON(!list_empty(&msg->list_head));
2397 list_add_tail(&msg->list_head, &con->out_queue);
2398 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2399 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2400 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2401 le32_to_cpu(msg->hdr.front_len),
2402 le32_to_cpu(msg->hdr.middle_len),
2403 le32_to_cpu(msg->hdr.data_len));
2404 mutex_unlock(&con->mutex);
2405
2406 /* if there wasn't anything waiting to send before, queue
2407 * new work */
2408 clear_standby(con);
2409 if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2410 queue_con(con);
2411 }
2412 EXPORT_SYMBOL(ceph_con_send);
2413
2414 /*
2415 * Revoke a message that was previously queued for send
2416 */
2417 void ceph_msg_revoke(struct ceph_msg *msg)
2418 {
2419 struct ceph_connection *con = msg->con;
2420
2421 if (!con)
2422 return; /* Message not in our possession */
2423
2424 mutex_lock(&con->mutex);
2425 if (!list_empty(&msg->list_head)) {
2426 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2427 list_del_init(&msg->list_head);
2428 BUG_ON(msg->con == NULL);
2429 msg->con->ops->put(msg->con);
2430 msg->con = NULL;
2431 msg->hdr.seq = 0;
2432
2433 ceph_msg_put(msg);
2434 }
2435 if (con->out_msg == msg) {
2436 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2437 con->out_msg = NULL;
2438 if (con->out_kvec_is_msg) {
2439 con->out_skip = con->out_kvec_bytes;
2440 con->out_kvec_is_msg = false;
2441 }
2442 msg->hdr.seq = 0;
2443
2444 ceph_msg_put(msg);
2445 }
2446 mutex_unlock(&con->mutex);
2447 }
2448
2449 /*
2450 * Revoke a message that we may be reading data into
2451 */
2452 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2453 {
2454 struct ceph_connection *con;
2455
2456 BUG_ON(msg == NULL);
2457 if (!msg->con) {
2458 dout("%s msg %p null con\n", __func__, msg);
2459
2460 return; /* Message not in our possession */
2461 }
2462
2463 con = msg->con;
2464 mutex_lock(&con->mutex);
2465 if (con->in_msg == msg) {
2466 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2467 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2468 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2469
2470 /* skip rest of message */
2471 dout("%s %p msg %p revoked\n", __func__, con, msg);
2472 con->in_base_pos = con->in_base_pos -
2473 sizeof(struct ceph_msg_header) -
2474 front_len -
2475 middle_len -
2476 data_len -
2477 sizeof(struct ceph_msg_footer);
2478 ceph_msg_put(con->in_msg);
2479 con->in_msg = NULL;
2480 con->in_tag = CEPH_MSGR_TAG_READY;
2481 con->in_seq++;
2482 } else {
2483 dout("%s %p in_msg %p msg %p no-op\n",
2484 __func__, con, con->in_msg, msg);
2485 }
2486 mutex_unlock(&con->mutex);
2487 }
2488
2489 /*
2490 * Queue a keepalive byte to ensure the tcp connection is alive.
2491 */
2492 void ceph_con_keepalive(struct ceph_connection *con)
2493 {
2494 dout("con_keepalive %p\n", con);
2495 clear_standby(con);
2496 if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2497 test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2498 queue_con(con);
2499 }
2500 EXPORT_SYMBOL(ceph_con_keepalive);
2501
2502
2503 /*
2504 * construct a new message with given type, size
2505 * the new msg has a ref count of 1.
2506 */
2507 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2508 bool can_fail)
2509 {
2510 struct ceph_msg *m;
2511
2512 m = kmalloc(sizeof(*m), flags);
2513 if (m == NULL)
2514 goto out;
2515 kref_init(&m->kref);
2516
2517 m->con = NULL;
2518 INIT_LIST_HEAD(&m->list_head);
2519
2520 m->hdr.tid = 0;
2521 m->hdr.type = cpu_to_le16(type);
2522 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2523 m->hdr.version = 0;
2524 m->hdr.front_len = cpu_to_le32(front_len);
2525 m->hdr.middle_len = 0;
2526 m->hdr.data_len = 0;
2527 m->hdr.data_off = 0;
2528 m->hdr.reserved = 0;
2529 m->footer.front_crc = 0;
2530 m->footer.middle_crc = 0;
2531 m->footer.data_crc = 0;
2532 m->footer.flags = 0;
2533 m->front_max = front_len;
2534 m->front_is_vmalloc = false;
2535 m->more_to_follow = false;
2536 m->ack_stamp = 0;
2537 m->pool = NULL;
2538
2539 /* middle */
2540 m->middle = NULL;
2541
2542 /* data */
2543 m->nr_pages = 0;
2544 m->page_alignment = 0;
2545 m->pages = NULL;
2546 m->pagelist = NULL;
2547 m->bio = NULL;
2548 m->bio_iter = NULL;
2549 m->bio_seg = 0;
2550 m->trail = NULL;
2551
2552 /* front */
2553 if (front_len) {
2554 if (front_len > PAGE_CACHE_SIZE) {
2555 m->front.iov_base = __vmalloc(front_len, flags,
2556 PAGE_KERNEL);
2557 m->front_is_vmalloc = true;
2558 } else {
2559 m->front.iov_base = kmalloc(front_len, flags);
2560 }
2561 if (m->front.iov_base == NULL) {
2562 dout("ceph_msg_new can't allocate %d bytes\n",
2563 front_len);
2564 goto out2;
2565 }
2566 } else {
2567 m->front.iov_base = NULL;
2568 }
2569 m->front.iov_len = front_len;
2570
2571 dout("ceph_msg_new %p front %d\n", m, front_len);
2572 return m;
2573
2574 out2:
2575 ceph_msg_put(m);
2576 out:
2577 if (!can_fail) {
2578 pr_err("msg_new can't create type %d front %d\n", type,
2579 front_len);
2580 WARN_ON(1);
2581 } else {
2582 dout("msg_new can't create type %d front %d\n", type,
2583 front_len);
2584 }
2585 return NULL;
2586 }
2587 EXPORT_SYMBOL(ceph_msg_new);
2588
2589 /*
2590 * Allocate "middle" portion of a message, if it is needed and wasn't
2591 * allocated by alloc_msg. This allows us to read a small fixed-size
2592 * per-type header in the front and then gracefully fail (i.e.,
2593 * propagate the error to the caller based on info in the front) when
2594 * the middle is too large.
2595 */
2596 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2597 {
2598 int type = le16_to_cpu(msg->hdr.type);
2599 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2600
2601 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2602 ceph_msg_type_name(type), middle_len);
2603 BUG_ON(!middle_len);
2604 BUG_ON(msg->middle);
2605
2606 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2607 if (!msg->middle)
2608 return -ENOMEM;
2609 return 0;
2610 }
2611
2612 /*
2613 * Allocate a message for receiving an incoming message on a
2614 * connection, and save the result in con->in_msg. Uses the
2615 * connection's private alloc_msg op if available.
2616 *
2617 * Returns true if the message should be skipped, false otherwise.
2618 * If true is returned (skip message), con->in_msg will be NULL.
2619 * If false is returned, con->in_msg will contain a pointer to the
2620 * newly-allocated message, or NULL in case of memory exhaustion.
2621 */
2622 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2623 struct ceph_msg_header *hdr)
2624 {
2625 int type = le16_to_cpu(hdr->type);
2626 int front_len = le32_to_cpu(hdr->front_len);
2627 int middle_len = le32_to_cpu(hdr->middle_len);
2628 int ret;
2629
2630 BUG_ON(con->in_msg != NULL);
2631
2632 if (con->ops->alloc_msg) {
2633 int skip = 0;
2634
2635 mutex_unlock(&con->mutex);
2636 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2637 mutex_lock(&con->mutex);
2638 if (con->in_msg) {
2639 con->in_msg->con = con->ops->get(con);
2640 BUG_ON(con->in_msg->con == NULL);
2641 }
2642 if (skip)
2643 con->in_msg = NULL;
2644
2645 if (!con->in_msg)
2646 return skip != 0;
2647 }
2648 if (!con->in_msg) {
2649 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2650 if (!con->in_msg) {
2651 pr_err("unable to allocate msg type %d len %d\n",
2652 type, front_len);
2653 return false;
2654 }
2655 con->in_msg->con = con->ops->get(con);
2656 BUG_ON(con->in_msg->con == NULL);
2657 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2658 }
2659 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2660
2661 if (middle_len && !con->in_msg->middle) {
2662 ret = ceph_alloc_middle(con, con->in_msg);
2663 if (ret < 0) {
2664 ceph_msg_put(con->in_msg);
2665 con->in_msg = NULL;
2666 }
2667 }
2668
2669 return false;
2670 }
2671
2672
2673 /*
2674 * Free a generically kmalloc'd message.
2675 */
2676 void ceph_msg_kfree(struct ceph_msg *m)
2677 {
2678 dout("msg_kfree %p\n", m);
2679 if (m->front_is_vmalloc)
2680 vfree(m->front.iov_base);
2681 else
2682 kfree(m->front.iov_base);
2683 kfree(m);
2684 }
2685
2686 /*
2687 * Drop a msg ref. Destroy as needed.
2688 */
2689 void ceph_msg_last_put(struct kref *kref)
2690 {
2691 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2692
2693 dout("ceph_msg_put last one on %p\n", m);
2694 WARN_ON(!list_empty(&m->list_head));
2695
2696 /* drop middle, data, if any */
2697 if (m->middle) {
2698 ceph_buffer_put(m->middle);
2699 m->middle = NULL;
2700 }
2701 m->nr_pages = 0;
2702 m->pages = NULL;
2703
2704 if (m->pagelist) {
2705 ceph_pagelist_release(m->pagelist);
2706 kfree(m->pagelist);
2707 m->pagelist = NULL;
2708 }
2709
2710 m->trail = NULL;
2711
2712 if (m->pool)
2713 ceph_msgpool_put(m->pool, m);
2714 else
2715 ceph_msg_kfree(m);
2716 }
2717 EXPORT_SYMBOL(ceph_msg_last_put);
2718
2719 void ceph_msg_dump(struct ceph_msg *msg)
2720 {
2721 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2722 msg->front_max, msg->nr_pages);
2723 print_hex_dump(KERN_DEBUG, "header: ",
2724 DUMP_PREFIX_OFFSET, 16, 1,
2725 &msg->hdr, sizeof(msg->hdr), true);
2726 print_hex_dump(KERN_DEBUG, " front: ",
2727 DUMP_PREFIX_OFFSET, 16, 1,
2728 msg->front.iov_base, msg->front.iov_len, true);
2729 if (msg->middle)
2730 print_hex_dump(KERN_DEBUG, "middle: ",
2731 DUMP_PREFIX_OFFSET, 16, 1,
2732 msg->middle->vec.iov_base,
2733 msg->middle->vec.iov_len, true);
2734 print_hex_dump(KERN_DEBUG, "footer: ",
2735 DUMP_PREFIX_OFFSET, 16, 1,
2736 &msg->footer, sizeof(msg->footer), true);
2737 }
2738 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.083381 seconds and 6 git commands to generate.