Merge branch 'cpuidle' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif /* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
25
26 /*
27 * Ceph uses the messenger to exchange ceph_msg messages with other
28 * hosts in the system. The messenger provides ordered and reliable
29 * delivery. We tolerate TCP disconnects by reconnecting (with
30 * exponential backoff) in the case of a fault (disconnection, bad
31 * crc, protocol error). Acks allow sent messages to be discarded by
32 * the sender.
33 */
34
35 /*
36 * We track the state of the socket on a given connection using
37 * values defined below. The transition to a new socket state is
38 * handled by a function which verifies we aren't coming from an
39 * unexpected state.
40 *
41 * --------
42 * | NEW* | transient initial state
43 * --------
44 * | con_sock_state_init()
45 * v
46 * ----------
47 * | CLOSED | initialized, but no socket (and no
48 * ---------- TCP connection)
49 * ^ \
50 * | \ con_sock_state_connecting()
51 * | ----------------------
52 * | \
53 * + con_sock_state_closed() \
54 * |+--------------------------- \
55 * | \ \ \
56 * | ----------- \ \
57 * | | CLOSING | socket event; \ \
58 * | ----------- await close \ \
59 * | ^ \ |
60 * | | \ |
61 * | + con_sock_state_closing() \ |
62 * | / \ | |
63 * | / --------------- | |
64 * | / \ v v
65 * | / --------------
66 * | / -----------------| CONNECTING | socket created, TCP
67 * | | / -------------- connect initiated
68 * | | | con_sock_state_connected()
69 * | | v
70 * -------------
71 * | CONNECTED | TCP connection established
72 * -------------
73 *
74 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
75 */
76
77 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
78 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
79 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
80 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
81 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
82
83 /*
84 * connection states
85 */
86 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
87 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
88 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
89 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
90 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
91 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
92
93 /*
94 * ceph_connection flag bits
95 */
96 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
97 * messages on errors */
98 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
99 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
100 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
101 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
102
103 static bool con_flag_valid(unsigned long con_flag)
104 {
105 switch (con_flag) {
106 case CON_FLAG_LOSSYTX:
107 case CON_FLAG_KEEPALIVE_PENDING:
108 case CON_FLAG_WRITE_PENDING:
109 case CON_FLAG_SOCK_CLOSED:
110 case CON_FLAG_BACKOFF:
111 return true;
112 default:
113 return false;
114 }
115 }
116
117 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
118 {
119 BUG_ON(!con_flag_valid(con_flag));
120
121 clear_bit(con_flag, &con->flags);
122 }
123
124 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
125 {
126 BUG_ON(!con_flag_valid(con_flag));
127
128 set_bit(con_flag, &con->flags);
129 }
130
131 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
132 {
133 BUG_ON(!con_flag_valid(con_flag));
134
135 return test_bit(con_flag, &con->flags);
136 }
137
138 static bool con_flag_test_and_clear(struct ceph_connection *con,
139 unsigned long con_flag)
140 {
141 BUG_ON(!con_flag_valid(con_flag));
142
143 return test_and_clear_bit(con_flag, &con->flags);
144 }
145
146 static bool con_flag_test_and_set(struct ceph_connection *con,
147 unsigned long con_flag)
148 {
149 BUG_ON(!con_flag_valid(con_flag));
150
151 return test_and_set_bit(con_flag, &con->flags);
152 }
153
154 /* Slab caches for frequently-allocated structures */
155
156 static struct kmem_cache *ceph_msg_cache;
157 static struct kmem_cache *ceph_msg_data_cache;
158
159 /* static tag bytes (protocol control messages) */
160 static char tag_msg = CEPH_MSGR_TAG_MSG;
161 static char tag_ack = CEPH_MSGR_TAG_ACK;
162 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
163 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
164
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class;
167 #endif
168
169 /*
170 * When skipping (ignoring) a block of input we read it into a "skip
171 * buffer," which is this many bytes in size.
172 */
173 #define SKIP_BUF_SIZE 1024
174
175 static void queue_con(struct ceph_connection *con);
176 static void cancel_con(struct ceph_connection *con);
177 static void ceph_con_workfn(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179
180 /*
181 * Nicely render a sockaddr as a string. An array of formatted
182 * strings is used, to approximate reentrancy.
183 */
184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
188
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191
192 static struct page *zero_page; /* used in certain error cases */
193
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 int i;
197 char *s;
198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200
201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 s = addr_str[i];
203
204 switch (ss->ss_family) {
205 case AF_INET:
206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 ntohs(in4->sin_port));
208 break;
209
210 case AF_INET6:
211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 ntohs(in6->sin6_port));
213 break;
214
215 default:
216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 ss->ss_family);
218 }
219
220 return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 ceph_encode_addr(&msgr->my_enc_addr);
228 }
229
230 /*
231 * work queue for all reading and writing to/from the socket.
232 */
233 static struct workqueue_struct *ceph_msgr_wq;
234
235 static int ceph_msgr_slab_init(void)
236 {
237 BUG_ON(ceph_msg_cache);
238 ceph_msg_cache = kmem_cache_create("ceph_msg",
239 sizeof (struct ceph_msg),
240 __alignof__(struct ceph_msg), 0, NULL);
241
242 if (!ceph_msg_cache)
243 return -ENOMEM;
244
245 BUG_ON(ceph_msg_data_cache);
246 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
247 sizeof (struct ceph_msg_data),
248 __alignof__(struct ceph_msg_data),
249 0, NULL);
250 if (ceph_msg_data_cache)
251 return 0;
252
253 kmem_cache_destroy(ceph_msg_cache);
254 ceph_msg_cache = NULL;
255
256 return -ENOMEM;
257 }
258
259 static void ceph_msgr_slab_exit(void)
260 {
261 BUG_ON(!ceph_msg_data_cache);
262 kmem_cache_destroy(ceph_msg_data_cache);
263 ceph_msg_data_cache = NULL;
264
265 BUG_ON(!ceph_msg_cache);
266 kmem_cache_destroy(ceph_msg_cache);
267 ceph_msg_cache = NULL;
268 }
269
270 static void _ceph_msgr_exit(void)
271 {
272 if (ceph_msgr_wq) {
273 destroy_workqueue(ceph_msgr_wq);
274 ceph_msgr_wq = NULL;
275 }
276
277 BUG_ON(zero_page == NULL);
278 page_cache_release(zero_page);
279 zero_page = NULL;
280
281 ceph_msgr_slab_exit();
282 }
283
284 int ceph_msgr_init(void)
285 {
286 if (ceph_msgr_slab_init())
287 return -ENOMEM;
288
289 BUG_ON(zero_page != NULL);
290 zero_page = ZERO_PAGE(0);
291 page_cache_get(zero_page);
292
293 /*
294 * The number of active work items is limited by the number of
295 * connections, so leave @max_active at default.
296 */
297 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
298 if (ceph_msgr_wq)
299 return 0;
300
301 pr_err("msgr_init failed to create workqueue\n");
302 _ceph_msgr_exit();
303
304 return -ENOMEM;
305 }
306 EXPORT_SYMBOL(ceph_msgr_init);
307
308 void ceph_msgr_exit(void)
309 {
310 BUG_ON(ceph_msgr_wq == NULL);
311
312 _ceph_msgr_exit();
313 }
314 EXPORT_SYMBOL(ceph_msgr_exit);
315
316 void ceph_msgr_flush(void)
317 {
318 flush_workqueue(ceph_msgr_wq);
319 }
320 EXPORT_SYMBOL(ceph_msgr_flush);
321
322 /* Connection socket state transition functions */
323
324 static void con_sock_state_init(struct ceph_connection *con)
325 {
326 int old_state;
327
328 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
329 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
330 printk("%s: unexpected old state %d\n", __func__, old_state);
331 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332 CON_SOCK_STATE_CLOSED);
333 }
334
335 static void con_sock_state_connecting(struct ceph_connection *con)
336 {
337 int old_state;
338
339 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
340 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
341 printk("%s: unexpected old state %d\n", __func__, old_state);
342 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
343 CON_SOCK_STATE_CONNECTING);
344 }
345
346 static void con_sock_state_connected(struct ceph_connection *con)
347 {
348 int old_state;
349
350 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
351 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
352 printk("%s: unexpected old state %d\n", __func__, old_state);
353 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
354 CON_SOCK_STATE_CONNECTED);
355 }
356
357 static void con_sock_state_closing(struct ceph_connection *con)
358 {
359 int old_state;
360
361 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
362 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
363 old_state != CON_SOCK_STATE_CONNECTED &&
364 old_state != CON_SOCK_STATE_CLOSING))
365 printk("%s: unexpected old state %d\n", __func__, old_state);
366 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
367 CON_SOCK_STATE_CLOSING);
368 }
369
370 static void con_sock_state_closed(struct ceph_connection *con)
371 {
372 int old_state;
373
374 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
375 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
376 old_state != CON_SOCK_STATE_CLOSING &&
377 old_state != CON_SOCK_STATE_CONNECTING &&
378 old_state != CON_SOCK_STATE_CLOSED))
379 printk("%s: unexpected old state %d\n", __func__, old_state);
380 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
381 CON_SOCK_STATE_CLOSED);
382 }
383
384 /*
385 * socket callback functions
386 */
387
388 /* data available on socket, or listen socket received a connect */
389 static void ceph_sock_data_ready(struct sock *sk)
390 {
391 struct ceph_connection *con = sk->sk_user_data;
392 if (atomic_read(&con->msgr->stopping)) {
393 return;
394 }
395
396 if (sk->sk_state != TCP_CLOSE_WAIT) {
397 dout("%s on %p state = %lu, queueing work\n", __func__,
398 con, con->state);
399 queue_con(con);
400 }
401 }
402
403 /* socket has buffer space for writing */
404 static void ceph_sock_write_space(struct sock *sk)
405 {
406 struct ceph_connection *con = sk->sk_user_data;
407
408 /* only queue to workqueue if there is data we want to write,
409 * and there is sufficient space in the socket buffer to accept
410 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
411 * doesn't get called again until try_write() fills the socket
412 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
413 * and net/core/stream.c:sk_stream_write_space().
414 */
415 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
416 if (sk_stream_is_writeable(sk)) {
417 dout("%s %p queueing write work\n", __func__, con);
418 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
419 queue_con(con);
420 }
421 } else {
422 dout("%s %p nothing to write\n", __func__, con);
423 }
424 }
425
426 /* socket's state has changed */
427 static void ceph_sock_state_change(struct sock *sk)
428 {
429 struct ceph_connection *con = sk->sk_user_data;
430
431 dout("%s %p state = %lu sk_state = %u\n", __func__,
432 con, con->state, sk->sk_state);
433
434 switch (sk->sk_state) {
435 case TCP_CLOSE:
436 dout("%s TCP_CLOSE\n", __func__);
437 case TCP_CLOSE_WAIT:
438 dout("%s TCP_CLOSE_WAIT\n", __func__);
439 con_sock_state_closing(con);
440 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
441 queue_con(con);
442 break;
443 case TCP_ESTABLISHED:
444 dout("%s TCP_ESTABLISHED\n", __func__);
445 con_sock_state_connected(con);
446 queue_con(con);
447 break;
448 default: /* Everything else is uninteresting */
449 break;
450 }
451 }
452
453 /*
454 * set up socket callbacks
455 */
456 static void set_sock_callbacks(struct socket *sock,
457 struct ceph_connection *con)
458 {
459 struct sock *sk = sock->sk;
460 sk->sk_user_data = con;
461 sk->sk_data_ready = ceph_sock_data_ready;
462 sk->sk_write_space = ceph_sock_write_space;
463 sk->sk_state_change = ceph_sock_state_change;
464 }
465
466
467 /*
468 * socket helpers
469 */
470
471 /*
472 * initiate connection to a remote socket.
473 */
474 static int ceph_tcp_connect(struct ceph_connection *con)
475 {
476 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
477 struct socket *sock;
478 int ret;
479
480 BUG_ON(con->sock);
481 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
482 SOCK_STREAM, IPPROTO_TCP, &sock);
483 if (ret)
484 return ret;
485 sock->sk->sk_allocation = GFP_NOFS;
486
487 #ifdef CONFIG_LOCKDEP
488 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
489 #endif
490
491 set_sock_callbacks(sock, con);
492
493 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
494
495 con_sock_state_connecting(con);
496 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
497 O_NONBLOCK);
498 if (ret == -EINPROGRESS) {
499 dout("connect %s EINPROGRESS sk_state = %u\n",
500 ceph_pr_addr(&con->peer_addr.in_addr),
501 sock->sk->sk_state);
502 } else if (ret < 0) {
503 pr_err("connect %s error %d\n",
504 ceph_pr_addr(&con->peer_addr.in_addr), ret);
505 sock_release(sock);
506 return ret;
507 }
508
509 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
510 int optval = 1;
511
512 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
513 (char *)&optval, sizeof(optval));
514 if (ret)
515 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
516 ret);
517 }
518
519 con->sock = sock;
520 return 0;
521 }
522
523 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
524 {
525 struct kvec iov = {buf, len};
526 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
527 int r;
528
529 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
530 if (r == -EAGAIN)
531 r = 0;
532 return r;
533 }
534
535 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
536 int page_offset, size_t length)
537 {
538 void *kaddr;
539 int ret;
540
541 BUG_ON(page_offset + length > PAGE_SIZE);
542
543 kaddr = kmap(page);
544 BUG_ON(!kaddr);
545 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
546 kunmap(page);
547
548 return ret;
549 }
550
551 /*
552 * write something. @more is true if caller will be sending more data
553 * shortly.
554 */
555 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
556 size_t kvlen, size_t len, int more)
557 {
558 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
559 int r;
560
561 if (more)
562 msg.msg_flags |= MSG_MORE;
563 else
564 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
565
566 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
567 if (r == -EAGAIN)
568 r = 0;
569 return r;
570 }
571
572 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
573 int offset, size_t size, bool more)
574 {
575 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
576 int ret;
577
578 ret = kernel_sendpage(sock, page, offset, size, flags);
579 if (ret == -EAGAIN)
580 ret = 0;
581
582 return ret;
583 }
584
585 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
586 int offset, size_t size, bool more)
587 {
588 int ret;
589 struct kvec iov;
590
591 /* sendpage cannot properly handle pages with page_count == 0,
592 * we need to fallback to sendmsg if that's the case */
593 if (page_count(page) >= 1)
594 return __ceph_tcp_sendpage(sock, page, offset, size, more);
595
596 iov.iov_base = kmap(page) + offset;
597 iov.iov_len = size;
598 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
599 kunmap(page);
600
601 return ret;
602 }
603
604 /*
605 * Shutdown/close the socket for the given connection.
606 */
607 static int con_close_socket(struct ceph_connection *con)
608 {
609 int rc = 0;
610
611 dout("con_close_socket on %p sock %p\n", con, con->sock);
612 if (con->sock) {
613 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
614 sock_release(con->sock);
615 con->sock = NULL;
616 }
617
618 /*
619 * Forcibly clear the SOCK_CLOSED flag. It gets set
620 * independent of the connection mutex, and we could have
621 * received a socket close event before we had the chance to
622 * shut the socket down.
623 */
624 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
625
626 con_sock_state_closed(con);
627 return rc;
628 }
629
630 /*
631 * Reset a connection. Discard all incoming and outgoing messages
632 * and clear *_seq state.
633 */
634 static void ceph_msg_remove(struct ceph_msg *msg)
635 {
636 list_del_init(&msg->list_head);
637
638 ceph_msg_put(msg);
639 }
640 static void ceph_msg_remove_list(struct list_head *head)
641 {
642 while (!list_empty(head)) {
643 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
644 list_head);
645 ceph_msg_remove(msg);
646 }
647 }
648
649 static void reset_connection(struct ceph_connection *con)
650 {
651 /* reset connection, out_queue, msg_ and connect_seq */
652 /* discard existing out_queue and msg_seq */
653 dout("reset_connection %p\n", con);
654 ceph_msg_remove_list(&con->out_queue);
655 ceph_msg_remove_list(&con->out_sent);
656
657 if (con->in_msg) {
658 BUG_ON(con->in_msg->con != con);
659 ceph_msg_put(con->in_msg);
660 con->in_msg = NULL;
661 }
662
663 con->connect_seq = 0;
664 con->out_seq = 0;
665 if (con->out_msg) {
666 BUG_ON(con->out_msg->con != con);
667 ceph_msg_put(con->out_msg);
668 con->out_msg = NULL;
669 }
670 con->in_seq = 0;
671 con->in_seq_acked = 0;
672
673 con->out_skip = 0;
674 }
675
676 /*
677 * mark a peer down. drop any open connections.
678 */
679 void ceph_con_close(struct ceph_connection *con)
680 {
681 mutex_lock(&con->mutex);
682 dout("con_close %p peer %s\n", con,
683 ceph_pr_addr(&con->peer_addr.in_addr));
684 con->state = CON_STATE_CLOSED;
685
686 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
687 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
688 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
689 con_flag_clear(con, CON_FLAG_BACKOFF);
690
691 reset_connection(con);
692 con->peer_global_seq = 0;
693 cancel_con(con);
694 con_close_socket(con);
695 mutex_unlock(&con->mutex);
696 }
697 EXPORT_SYMBOL(ceph_con_close);
698
699 /*
700 * Reopen a closed connection, with a new peer address.
701 */
702 void ceph_con_open(struct ceph_connection *con,
703 __u8 entity_type, __u64 entity_num,
704 struct ceph_entity_addr *addr)
705 {
706 mutex_lock(&con->mutex);
707 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
708
709 WARN_ON(con->state != CON_STATE_CLOSED);
710 con->state = CON_STATE_PREOPEN;
711
712 con->peer_name.type = (__u8) entity_type;
713 con->peer_name.num = cpu_to_le64(entity_num);
714
715 memcpy(&con->peer_addr, addr, sizeof(*addr));
716 con->delay = 0; /* reset backoff memory */
717 mutex_unlock(&con->mutex);
718 queue_con(con);
719 }
720 EXPORT_SYMBOL(ceph_con_open);
721
722 /*
723 * return true if this connection ever successfully opened
724 */
725 bool ceph_con_opened(struct ceph_connection *con)
726 {
727 return con->connect_seq > 0;
728 }
729
730 /*
731 * initialize a new connection.
732 */
733 void ceph_con_init(struct ceph_connection *con, void *private,
734 const struct ceph_connection_operations *ops,
735 struct ceph_messenger *msgr)
736 {
737 dout("con_init %p\n", con);
738 memset(con, 0, sizeof(*con));
739 con->private = private;
740 con->ops = ops;
741 con->msgr = msgr;
742
743 con_sock_state_init(con);
744
745 mutex_init(&con->mutex);
746 INIT_LIST_HEAD(&con->out_queue);
747 INIT_LIST_HEAD(&con->out_sent);
748 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
749
750 con->state = CON_STATE_CLOSED;
751 }
752 EXPORT_SYMBOL(ceph_con_init);
753
754
755 /*
756 * We maintain a global counter to order connection attempts. Get
757 * a unique seq greater than @gt.
758 */
759 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
760 {
761 u32 ret;
762
763 spin_lock(&msgr->global_seq_lock);
764 if (msgr->global_seq < gt)
765 msgr->global_seq = gt;
766 ret = ++msgr->global_seq;
767 spin_unlock(&msgr->global_seq_lock);
768 return ret;
769 }
770
771 static void con_out_kvec_reset(struct ceph_connection *con)
772 {
773 BUG_ON(con->out_skip);
774
775 con->out_kvec_left = 0;
776 con->out_kvec_bytes = 0;
777 con->out_kvec_cur = &con->out_kvec[0];
778 }
779
780 static void con_out_kvec_add(struct ceph_connection *con,
781 size_t size, void *data)
782 {
783 int index = con->out_kvec_left;
784
785 BUG_ON(con->out_skip);
786 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
787
788 con->out_kvec[index].iov_len = size;
789 con->out_kvec[index].iov_base = data;
790 con->out_kvec_left++;
791 con->out_kvec_bytes += size;
792 }
793
794 /*
795 * Chop off a kvec from the end. Return residual number of bytes for
796 * that kvec, i.e. how many bytes would have been written if the kvec
797 * hadn't been nuked.
798 */
799 static int con_out_kvec_skip(struct ceph_connection *con)
800 {
801 int off = con->out_kvec_cur - con->out_kvec;
802 int skip = 0;
803
804 if (con->out_kvec_bytes > 0) {
805 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
806 BUG_ON(con->out_kvec_bytes < skip);
807 BUG_ON(!con->out_kvec_left);
808 con->out_kvec_bytes -= skip;
809 con->out_kvec_left--;
810 }
811
812 return skip;
813 }
814
815 #ifdef CONFIG_BLOCK
816
817 /*
818 * For a bio data item, a piece is whatever remains of the next
819 * entry in the current bio iovec, or the first entry in the next
820 * bio in the list.
821 */
822 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
823 size_t length)
824 {
825 struct ceph_msg_data *data = cursor->data;
826 struct bio *bio;
827
828 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
829
830 bio = data->bio;
831 BUG_ON(!bio);
832
833 cursor->resid = min(length, data->bio_length);
834 cursor->bio = bio;
835 cursor->bvec_iter = bio->bi_iter;
836 cursor->last_piece =
837 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
838 }
839
840 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
841 size_t *page_offset,
842 size_t *length)
843 {
844 struct ceph_msg_data *data = cursor->data;
845 struct bio *bio;
846 struct bio_vec bio_vec;
847
848 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
849
850 bio = cursor->bio;
851 BUG_ON(!bio);
852
853 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
854
855 *page_offset = (size_t) bio_vec.bv_offset;
856 BUG_ON(*page_offset >= PAGE_SIZE);
857 if (cursor->last_piece) /* pagelist offset is always 0 */
858 *length = cursor->resid;
859 else
860 *length = (size_t) bio_vec.bv_len;
861 BUG_ON(*length > cursor->resid);
862 BUG_ON(*page_offset + *length > PAGE_SIZE);
863
864 return bio_vec.bv_page;
865 }
866
867 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
868 size_t bytes)
869 {
870 struct bio *bio;
871 struct bio_vec bio_vec;
872
873 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
874
875 bio = cursor->bio;
876 BUG_ON(!bio);
877
878 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
879
880 /* Advance the cursor offset */
881
882 BUG_ON(cursor->resid < bytes);
883 cursor->resid -= bytes;
884
885 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
886
887 if (bytes < bio_vec.bv_len)
888 return false; /* more bytes to process in this segment */
889
890 /* Move on to the next segment, and possibly the next bio */
891
892 if (!cursor->bvec_iter.bi_size) {
893 bio = bio->bi_next;
894 cursor->bio = bio;
895 if (bio)
896 cursor->bvec_iter = bio->bi_iter;
897 else
898 memset(&cursor->bvec_iter, 0,
899 sizeof(cursor->bvec_iter));
900 }
901
902 if (!cursor->last_piece) {
903 BUG_ON(!cursor->resid);
904 BUG_ON(!bio);
905 /* A short read is OK, so use <= rather than == */
906 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
907 cursor->last_piece = true;
908 }
909
910 return true;
911 }
912 #endif /* CONFIG_BLOCK */
913
914 /*
915 * For a page array, a piece comes from the first page in the array
916 * that has not already been fully consumed.
917 */
918 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
919 size_t length)
920 {
921 struct ceph_msg_data *data = cursor->data;
922 int page_count;
923
924 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
925
926 BUG_ON(!data->pages);
927 BUG_ON(!data->length);
928
929 cursor->resid = min(length, data->length);
930 page_count = calc_pages_for(data->alignment, (u64)data->length);
931 cursor->page_offset = data->alignment & ~PAGE_MASK;
932 cursor->page_index = 0;
933 BUG_ON(page_count > (int)USHRT_MAX);
934 cursor->page_count = (unsigned short)page_count;
935 BUG_ON(length > SIZE_MAX - cursor->page_offset);
936 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
937 }
938
939 static struct page *
940 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
941 size_t *page_offset, size_t *length)
942 {
943 struct ceph_msg_data *data = cursor->data;
944
945 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
946
947 BUG_ON(cursor->page_index >= cursor->page_count);
948 BUG_ON(cursor->page_offset >= PAGE_SIZE);
949
950 *page_offset = cursor->page_offset;
951 if (cursor->last_piece)
952 *length = cursor->resid;
953 else
954 *length = PAGE_SIZE - *page_offset;
955
956 return data->pages[cursor->page_index];
957 }
958
959 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
960 size_t bytes)
961 {
962 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
963
964 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
965
966 /* Advance the cursor page offset */
967
968 cursor->resid -= bytes;
969 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
970 if (!bytes || cursor->page_offset)
971 return false; /* more bytes to process in the current page */
972
973 if (!cursor->resid)
974 return false; /* no more data */
975
976 /* Move on to the next page; offset is already at 0 */
977
978 BUG_ON(cursor->page_index >= cursor->page_count);
979 cursor->page_index++;
980 cursor->last_piece = cursor->resid <= PAGE_SIZE;
981
982 return true;
983 }
984
985 /*
986 * For a pagelist, a piece is whatever remains to be consumed in the
987 * first page in the list, or the front of the next page.
988 */
989 static void
990 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
991 size_t length)
992 {
993 struct ceph_msg_data *data = cursor->data;
994 struct ceph_pagelist *pagelist;
995 struct page *page;
996
997 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
998
999 pagelist = data->pagelist;
1000 BUG_ON(!pagelist);
1001
1002 if (!length)
1003 return; /* pagelist can be assigned but empty */
1004
1005 BUG_ON(list_empty(&pagelist->head));
1006 page = list_first_entry(&pagelist->head, struct page, lru);
1007
1008 cursor->resid = min(length, pagelist->length);
1009 cursor->page = page;
1010 cursor->offset = 0;
1011 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1012 }
1013
1014 static struct page *
1015 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1016 size_t *page_offset, size_t *length)
1017 {
1018 struct ceph_msg_data *data = cursor->data;
1019 struct ceph_pagelist *pagelist;
1020
1021 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1022
1023 pagelist = data->pagelist;
1024 BUG_ON(!pagelist);
1025
1026 BUG_ON(!cursor->page);
1027 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1028
1029 /* offset of first page in pagelist is always 0 */
1030 *page_offset = cursor->offset & ~PAGE_MASK;
1031 if (cursor->last_piece)
1032 *length = cursor->resid;
1033 else
1034 *length = PAGE_SIZE - *page_offset;
1035
1036 return cursor->page;
1037 }
1038
1039 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1040 size_t bytes)
1041 {
1042 struct ceph_msg_data *data = cursor->data;
1043 struct ceph_pagelist *pagelist;
1044
1045 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1046
1047 pagelist = data->pagelist;
1048 BUG_ON(!pagelist);
1049
1050 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1051 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1052
1053 /* Advance the cursor offset */
1054
1055 cursor->resid -= bytes;
1056 cursor->offset += bytes;
1057 /* offset of first page in pagelist is always 0 */
1058 if (!bytes || cursor->offset & ~PAGE_MASK)
1059 return false; /* more bytes to process in the current page */
1060
1061 if (!cursor->resid)
1062 return false; /* no more data */
1063
1064 /* Move on to the next page */
1065
1066 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1067 cursor->page = list_next_entry(cursor->page, lru);
1068 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1069
1070 return true;
1071 }
1072
1073 /*
1074 * Message data is handled (sent or received) in pieces, where each
1075 * piece resides on a single page. The network layer might not
1076 * consume an entire piece at once. A data item's cursor keeps
1077 * track of which piece is next to process and how much remains to
1078 * be processed in that piece. It also tracks whether the current
1079 * piece is the last one in the data item.
1080 */
1081 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1082 {
1083 size_t length = cursor->total_resid;
1084
1085 switch (cursor->data->type) {
1086 case CEPH_MSG_DATA_PAGELIST:
1087 ceph_msg_data_pagelist_cursor_init(cursor, length);
1088 break;
1089 case CEPH_MSG_DATA_PAGES:
1090 ceph_msg_data_pages_cursor_init(cursor, length);
1091 break;
1092 #ifdef CONFIG_BLOCK
1093 case CEPH_MSG_DATA_BIO:
1094 ceph_msg_data_bio_cursor_init(cursor, length);
1095 break;
1096 #endif /* CONFIG_BLOCK */
1097 case CEPH_MSG_DATA_NONE:
1098 default:
1099 /* BUG(); */
1100 break;
1101 }
1102 cursor->need_crc = true;
1103 }
1104
1105 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1106 {
1107 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1108 struct ceph_msg_data *data;
1109
1110 BUG_ON(!length);
1111 BUG_ON(length > msg->data_length);
1112 BUG_ON(list_empty(&msg->data));
1113
1114 cursor->data_head = &msg->data;
1115 cursor->total_resid = length;
1116 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1117 cursor->data = data;
1118
1119 __ceph_msg_data_cursor_init(cursor);
1120 }
1121
1122 /*
1123 * Return the page containing the next piece to process for a given
1124 * data item, and supply the page offset and length of that piece.
1125 * Indicate whether this is the last piece in this data item.
1126 */
1127 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1128 size_t *page_offset, size_t *length,
1129 bool *last_piece)
1130 {
1131 struct page *page;
1132
1133 switch (cursor->data->type) {
1134 case CEPH_MSG_DATA_PAGELIST:
1135 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1136 break;
1137 case CEPH_MSG_DATA_PAGES:
1138 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1139 break;
1140 #ifdef CONFIG_BLOCK
1141 case CEPH_MSG_DATA_BIO:
1142 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1143 break;
1144 #endif /* CONFIG_BLOCK */
1145 case CEPH_MSG_DATA_NONE:
1146 default:
1147 page = NULL;
1148 break;
1149 }
1150 BUG_ON(!page);
1151 BUG_ON(*page_offset + *length > PAGE_SIZE);
1152 BUG_ON(!*length);
1153 if (last_piece)
1154 *last_piece = cursor->last_piece;
1155
1156 return page;
1157 }
1158
1159 /*
1160 * Returns true if the result moves the cursor on to the next piece
1161 * of the data item.
1162 */
1163 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1164 size_t bytes)
1165 {
1166 bool new_piece;
1167
1168 BUG_ON(bytes > cursor->resid);
1169 switch (cursor->data->type) {
1170 case CEPH_MSG_DATA_PAGELIST:
1171 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1172 break;
1173 case CEPH_MSG_DATA_PAGES:
1174 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1175 break;
1176 #ifdef CONFIG_BLOCK
1177 case CEPH_MSG_DATA_BIO:
1178 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1179 break;
1180 #endif /* CONFIG_BLOCK */
1181 case CEPH_MSG_DATA_NONE:
1182 default:
1183 BUG();
1184 break;
1185 }
1186 cursor->total_resid -= bytes;
1187
1188 if (!cursor->resid && cursor->total_resid) {
1189 WARN_ON(!cursor->last_piece);
1190 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1191 cursor->data = list_next_entry(cursor->data, links);
1192 __ceph_msg_data_cursor_init(cursor);
1193 new_piece = true;
1194 }
1195 cursor->need_crc = new_piece;
1196
1197 return new_piece;
1198 }
1199
1200 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1201 {
1202 BUG_ON(!msg);
1203 BUG_ON(!data_len);
1204
1205 /* Initialize data cursor */
1206
1207 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1208 }
1209
1210 /*
1211 * Prepare footer for currently outgoing message, and finish things
1212 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1213 */
1214 static void prepare_write_message_footer(struct ceph_connection *con)
1215 {
1216 struct ceph_msg *m = con->out_msg;
1217 int v = con->out_kvec_left;
1218
1219 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1220
1221 dout("prepare_write_message_footer %p\n", con);
1222 con->out_kvec[v].iov_base = &m->footer;
1223 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1224 if (con->ops->sign_message)
1225 con->ops->sign_message(m);
1226 else
1227 m->footer.sig = 0;
1228 con->out_kvec[v].iov_len = sizeof(m->footer);
1229 con->out_kvec_bytes += sizeof(m->footer);
1230 } else {
1231 m->old_footer.flags = m->footer.flags;
1232 con->out_kvec[v].iov_len = sizeof(m->old_footer);
1233 con->out_kvec_bytes += sizeof(m->old_footer);
1234 }
1235 con->out_kvec_left++;
1236 con->out_more = m->more_to_follow;
1237 con->out_msg_done = true;
1238 }
1239
1240 /*
1241 * Prepare headers for the next outgoing message.
1242 */
1243 static void prepare_write_message(struct ceph_connection *con)
1244 {
1245 struct ceph_msg *m;
1246 u32 crc;
1247
1248 con_out_kvec_reset(con);
1249 con->out_msg_done = false;
1250
1251 /* Sneak an ack in there first? If we can get it into the same
1252 * TCP packet that's a good thing. */
1253 if (con->in_seq > con->in_seq_acked) {
1254 con->in_seq_acked = con->in_seq;
1255 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1256 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1257 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1258 &con->out_temp_ack);
1259 }
1260
1261 BUG_ON(list_empty(&con->out_queue));
1262 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1263 con->out_msg = m;
1264 BUG_ON(m->con != con);
1265
1266 /* put message on sent list */
1267 ceph_msg_get(m);
1268 list_move_tail(&m->list_head, &con->out_sent);
1269
1270 /*
1271 * only assign outgoing seq # if we haven't sent this message
1272 * yet. if it is requeued, resend with it's original seq.
1273 */
1274 if (m->needs_out_seq) {
1275 m->hdr.seq = cpu_to_le64(++con->out_seq);
1276 m->needs_out_seq = false;
1277 }
1278 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1279
1280 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1281 m, con->out_seq, le16_to_cpu(m->hdr.type),
1282 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1283 m->data_length);
1284 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1285
1286 /* tag + hdr + front + middle */
1287 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1288 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1289 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1290
1291 if (m->middle)
1292 con_out_kvec_add(con, m->middle->vec.iov_len,
1293 m->middle->vec.iov_base);
1294
1295 /* fill in hdr crc and finalize hdr */
1296 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1297 con->out_msg->hdr.crc = cpu_to_le32(crc);
1298 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1299
1300 /* fill in front and middle crc, footer */
1301 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1302 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1303 if (m->middle) {
1304 crc = crc32c(0, m->middle->vec.iov_base,
1305 m->middle->vec.iov_len);
1306 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1307 } else
1308 con->out_msg->footer.middle_crc = 0;
1309 dout("%s front_crc %u middle_crc %u\n", __func__,
1310 le32_to_cpu(con->out_msg->footer.front_crc),
1311 le32_to_cpu(con->out_msg->footer.middle_crc));
1312 con->out_msg->footer.flags = 0;
1313
1314 /* is there a data payload? */
1315 con->out_msg->footer.data_crc = 0;
1316 if (m->data_length) {
1317 prepare_message_data(con->out_msg, m->data_length);
1318 con->out_more = 1; /* data + footer will follow */
1319 } else {
1320 /* no, queue up footer too and be done */
1321 prepare_write_message_footer(con);
1322 }
1323
1324 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1325 }
1326
1327 /*
1328 * Prepare an ack.
1329 */
1330 static void prepare_write_ack(struct ceph_connection *con)
1331 {
1332 dout("prepare_write_ack %p %llu -> %llu\n", con,
1333 con->in_seq_acked, con->in_seq);
1334 con->in_seq_acked = con->in_seq;
1335
1336 con_out_kvec_reset(con);
1337
1338 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1339
1340 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1341 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1342 &con->out_temp_ack);
1343
1344 con->out_more = 1; /* more will follow.. eventually.. */
1345 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1346 }
1347
1348 /*
1349 * Prepare to share the seq during handshake
1350 */
1351 static void prepare_write_seq(struct ceph_connection *con)
1352 {
1353 dout("prepare_write_seq %p %llu -> %llu\n", con,
1354 con->in_seq_acked, con->in_seq);
1355 con->in_seq_acked = con->in_seq;
1356
1357 con_out_kvec_reset(con);
1358
1359 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1360 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1361 &con->out_temp_ack);
1362
1363 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1364 }
1365
1366 /*
1367 * Prepare to write keepalive byte.
1368 */
1369 static void prepare_write_keepalive(struct ceph_connection *con)
1370 {
1371 dout("prepare_write_keepalive %p\n", con);
1372 con_out_kvec_reset(con);
1373 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1374 struct timespec now = CURRENT_TIME;
1375
1376 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1377 ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1378 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1379 &con->out_temp_keepalive2);
1380 } else {
1381 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1382 }
1383 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1384 }
1385
1386 /*
1387 * Connection negotiation.
1388 */
1389
1390 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1391 int *auth_proto)
1392 {
1393 struct ceph_auth_handshake *auth;
1394
1395 if (!con->ops->get_authorizer) {
1396 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1397 con->out_connect.authorizer_len = 0;
1398 return NULL;
1399 }
1400
1401 /* Can't hold the mutex while getting authorizer */
1402 mutex_unlock(&con->mutex);
1403 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1404 mutex_lock(&con->mutex);
1405
1406 if (IS_ERR(auth))
1407 return auth;
1408 if (con->state != CON_STATE_NEGOTIATING)
1409 return ERR_PTR(-EAGAIN);
1410
1411 con->auth_reply_buf = auth->authorizer_reply_buf;
1412 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1413 return auth;
1414 }
1415
1416 /*
1417 * We connected to a peer and are saying hello.
1418 */
1419 static void prepare_write_banner(struct ceph_connection *con)
1420 {
1421 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1422 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1423 &con->msgr->my_enc_addr);
1424
1425 con->out_more = 0;
1426 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1427 }
1428
1429 static int prepare_write_connect(struct ceph_connection *con)
1430 {
1431 unsigned int global_seq = get_global_seq(con->msgr, 0);
1432 int proto;
1433 int auth_proto;
1434 struct ceph_auth_handshake *auth;
1435
1436 switch (con->peer_name.type) {
1437 case CEPH_ENTITY_TYPE_MON:
1438 proto = CEPH_MONC_PROTOCOL;
1439 break;
1440 case CEPH_ENTITY_TYPE_OSD:
1441 proto = CEPH_OSDC_PROTOCOL;
1442 break;
1443 case CEPH_ENTITY_TYPE_MDS:
1444 proto = CEPH_MDSC_PROTOCOL;
1445 break;
1446 default:
1447 BUG();
1448 }
1449
1450 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1451 con->connect_seq, global_seq, proto);
1452
1453 con->out_connect.features =
1454 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1455 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1456 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1457 con->out_connect.global_seq = cpu_to_le32(global_seq);
1458 con->out_connect.protocol_version = cpu_to_le32(proto);
1459 con->out_connect.flags = 0;
1460
1461 auth_proto = CEPH_AUTH_UNKNOWN;
1462 auth = get_connect_authorizer(con, &auth_proto);
1463 if (IS_ERR(auth))
1464 return PTR_ERR(auth);
1465
1466 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1467 con->out_connect.authorizer_len = auth ?
1468 cpu_to_le32(auth->authorizer_buf_len) : 0;
1469
1470 con_out_kvec_add(con, sizeof (con->out_connect),
1471 &con->out_connect);
1472 if (auth && auth->authorizer_buf_len)
1473 con_out_kvec_add(con, auth->authorizer_buf_len,
1474 auth->authorizer_buf);
1475
1476 con->out_more = 0;
1477 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1478
1479 return 0;
1480 }
1481
1482 /*
1483 * write as much of pending kvecs to the socket as we can.
1484 * 1 -> done
1485 * 0 -> socket full, but more to do
1486 * <0 -> error
1487 */
1488 static int write_partial_kvec(struct ceph_connection *con)
1489 {
1490 int ret;
1491
1492 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1493 while (con->out_kvec_bytes > 0) {
1494 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1495 con->out_kvec_left, con->out_kvec_bytes,
1496 con->out_more);
1497 if (ret <= 0)
1498 goto out;
1499 con->out_kvec_bytes -= ret;
1500 if (con->out_kvec_bytes == 0)
1501 break; /* done */
1502
1503 /* account for full iov entries consumed */
1504 while (ret >= con->out_kvec_cur->iov_len) {
1505 BUG_ON(!con->out_kvec_left);
1506 ret -= con->out_kvec_cur->iov_len;
1507 con->out_kvec_cur++;
1508 con->out_kvec_left--;
1509 }
1510 /* and for a partially-consumed entry */
1511 if (ret) {
1512 con->out_kvec_cur->iov_len -= ret;
1513 con->out_kvec_cur->iov_base += ret;
1514 }
1515 }
1516 con->out_kvec_left = 0;
1517 ret = 1;
1518 out:
1519 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1520 con->out_kvec_bytes, con->out_kvec_left, ret);
1521 return ret; /* done! */
1522 }
1523
1524 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1525 unsigned int page_offset,
1526 unsigned int length)
1527 {
1528 char *kaddr;
1529
1530 kaddr = kmap(page);
1531 BUG_ON(kaddr == NULL);
1532 crc = crc32c(crc, kaddr + page_offset, length);
1533 kunmap(page);
1534
1535 return crc;
1536 }
1537 /*
1538 * Write as much message data payload as we can. If we finish, queue
1539 * up the footer.
1540 * 1 -> done, footer is now queued in out_kvec[].
1541 * 0 -> socket full, but more to do
1542 * <0 -> error
1543 */
1544 static int write_partial_message_data(struct ceph_connection *con)
1545 {
1546 struct ceph_msg *msg = con->out_msg;
1547 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1548 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1549 u32 crc;
1550
1551 dout("%s %p msg %p\n", __func__, con, msg);
1552
1553 if (list_empty(&msg->data))
1554 return -EINVAL;
1555
1556 /*
1557 * Iterate through each page that contains data to be
1558 * written, and send as much as possible for each.
1559 *
1560 * If we are calculating the data crc (the default), we will
1561 * need to map the page. If we have no pages, they have
1562 * been revoked, so use the zero page.
1563 */
1564 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1565 while (cursor->resid) {
1566 struct page *page;
1567 size_t page_offset;
1568 size_t length;
1569 bool last_piece;
1570 bool need_crc;
1571 int ret;
1572
1573 page = ceph_msg_data_next(cursor, &page_offset, &length,
1574 &last_piece);
1575 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1576 length, !last_piece);
1577 if (ret <= 0) {
1578 if (do_datacrc)
1579 msg->footer.data_crc = cpu_to_le32(crc);
1580
1581 return ret;
1582 }
1583 if (do_datacrc && cursor->need_crc)
1584 crc = ceph_crc32c_page(crc, page, page_offset, length);
1585 need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1586 }
1587
1588 dout("%s %p msg %p done\n", __func__, con, msg);
1589
1590 /* prepare and queue up footer, too */
1591 if (do_datacrc)
1592 msg->footer.data_crc = cpu_to_le32(crc);
1593 else
1594 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1595 con_out_kvec_reset(con);
1596 prepare_write_message_footer(con);
1597
1598 return 1; /* must return > 0 to indicate success */
1599 }
1600
1601 /*
1602 * write some zeros
1603 */
1604 static int write_partial_skip(struct ceph_connection *con)
1605 {
1606 int ret;
1607
1608 dout("%s %p %d left\n", __func__, con, con->out_skip);
1609 while (con->out_skip > 0) {
1610 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1611
1612 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1613 if (ret <= 0)
1614 goto out;
1615 con->out_skip -= ret;
1616 }
1617 ret = 1;
1618 out:
1619 return ret;
1620 }
1621
1622 /*
1623 * Prepare to read connection handshake, or an ack.
1624 */
1625 static void prepare_read_banner(struct ceph_connection *con)
1626 {
1627 dout("prepare_read_banner %p\n", con);
1628 con->in_base_pos = 0;
1629 }
1630
1631 static void prepare_read_connect(struct ceph_connection *con)
1632 {
1633 dout("prepare_read_connect %p\n", con);
1634 con->in_base_pos = 0;
1635 }
1636
1637 static void prepare_read_ack(struct ceph_connection *con)
1638 {
1639 dout("prepare_read_ack %p\n", con);
1640 con->in_base_pos = 0;
1641 }
1642
1643 static void prepare_read_seq(struct ceph_connection *con)
1644 {
1645 dout("prepare_read_seq %p\n", con);
1646 con->in_base_pos = 0;
1647 con->in_tag = CEPH_MSGR_TAG_SEQ;
1648 }
1649
1650 static void prepare_read_tag(struct ceph_connection *con)
1651 {
1652 dout("prepare_read_tag %p\n", con);
1653 con->in_base_pos = 0;
1654 con->in_tag = CEPH_MSGR_TAG_READY;
1655 }
1656
1657 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1658 {
1659 dout("prepare_read_keepalive_ack %p\n", con);
1660 con->in_base_pos = 0;
1661 }
1662
1663 /*
1664 * Prepare to read a message.
1665 */
1666 static int prepare_read_message(struct ceph_connection *con)
1667 {
1668 dout("prepare_read_message %p\n", con);
1669 BUG_ON(con->in_msg != NULL);
1670 con->in_base_pos = 0;
1671 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1672 return 0;
1673 }
1674
1675
1676 static int read_partial(struct ceph_connection *con,
1677 int end, int size, void *object)
1678 {
1679 while (con->in_base_pos < end) {
1680 int left = end - con->in_base_pos;
1681 int have = size - left;
1682 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1683 if (ret <= 0)
1684 return ret;
1685 con->in_base_pos += ret;
1686 }
1687 return 1;
1688 }
1689
1690
1691 /*
1692 * Read all or part of the connect-side handshake on a new connection
1693 */
1694 static int read_partial_banner(struct ceph_connection *con)
1695 {
1696 int size;
1697 int end;
1698 int ret;
1699
1700 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1701
1702 /* peer's banner */
1703 size = strlen(CEPH_BANNER);
1704 end = size;
1705 ret = read_partial(con, end, size, con->in_banner);
1706 if (ret <= 0)
1707 goto out;
1708
1709 size = sizeof (con->actual_peer_addr);
1710 end += size;
1711 ret = read_partial(con, end, size, &con->actual_peer_addr);
1712 if (ret <= 0)
1713 goto out;
1714
1715 size = sizeof (con->peer_addr_for_me);
1716 end += size;
1717 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1718 if (ret <= 0)
1719 goto out;
1720
1721 out:
1722 return ret;
1723 }
1724
1725 static int read_partial_connect(struct ceph_connection *con)
1726 {
1727 int size;
1728 int end;
1729 int ret;
1730
1731 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1732
1733 size = sizeof (con->in_reply);
1734 end = size;
1735 ret = read_partial(con, end, size, &con->in_reply);
1736 if (ret <= 0)
1737 goto out;
1738
1739 size = le32_to_cpu(con->in_reply.authorizer_len);
1740 end += size;
1741 ret = read_partial(con, end, size, con->auth_reply_buf);
1742 if (ret <= 0)
1743 goto out;
1744
1745 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1746 con, (int)con->in_reply.tag,
1747 le32_to_cpu(con->in_reply.connect_seq),
1748 le32_to_cpu(con->in_reply.global_seq));
1749 out:
1750 return ret;
1751
1752 }
1753
1754 /*
1755 * Verify the hello banner looks okay.
1756 */
1757 static int verify_hello(struct ceph_connection *con)
1758 {
1759 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1760 pr_err("connect to %s got bad banner\n",
1761 ceph_pr_addr(&con->peer_addr.in_addr));
1762 con->error_msg = "protocol error, bad banner";
1763 return -1;
1764 }
1765 return 0;
1766 }
1767
1768 static bool addr_is_blank(struct sockaddr_storage *ss)
1769 {
1770 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1771 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1772
1773 switch (ss->ss_family) {
1774 case AF_INET:
1775 return addr->s_addr == htonl(INADDR_ANY);
1776 case AF_INET6:
1777 return ipv6_addr_any(addr6);
1778 default:
1779 return true;
1780 }
1781 }
1782
1783 static int addr_port(struct sockaddr_storage *ss)
1784 {
1785 switch (ss->ss_family) {
1786 case AF_INET:
1787 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1788 case AF_INET6:
1789 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1790 }
1791 return 0;
1792 }
1793
1794 static void addr_set_port(struct sockaddr_storage *ss, int p)
1795 {
1796 switch (ss->ss_family) {
1797 case AF_INET:
1798 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1799 break;
1800 case AF_INET6:
1801 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1802 break;
1803 }
1804 }
1805
1806 /*
1807 * Unlike other *_pton function semantics, zero indicates success.
1808 */
1809 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1810 char delim, const char **ipend)
1811 {
1812 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1813 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1814
1815 memset(ss, 0, sizeof(*ss));
1816
1817 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1818 ss->ss_family = AF_INET;
1819 return 0;
1820 }
1821
1822 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1823 ss->ss_family = AF_INET6;
1824 return 0;
1825 }
1826
1827 return -EINVAL;
1828 }
1829
1830 /*
1831 * Extract hostname string and resolve using kernel DNS facility.
1832 */
1833 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1834 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1835 struct sockaddr_storage *ss, char delim, const char **ipend)
1836 {
1837 const char *end, *delim_p;
1838 char *colon_p, *ip_addr = NULL;
1839 int ip_len, ret;
1840
1841 /*
1842 * The end of the hostname occurs immediately preceding the delimiter or
1843 * the port marker (':') where the delimiter takes precedence.
1844 */
1845 delim_p = memchr(name, delim, namelen);
1846 colon_p = memchr(name, ':', namelen);
1847
1848 if (delim_p && colon_p)
1849 end = delim_p < colon_p ? delim_p : colon_p;
1850 else if (!delim_p && colon_p)
1851 end = colon_p;
1852 else {
1853 end = delim_p;
1854 if (!end) /* case: hostname:/ */
1855 end = name + namelen;
1856 }
1857
1858 if (end <= name)
1859 return -EINVAL;
1860
1861 /* do dns_resolve upcall */
1862 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1863 if (ip_len > 0)
1864 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1865 else
1866 ret = -ESRCH;
1867
1868 kfree(ip_addr);
1869
1870 *ipend = end;
1871
1872 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1873 ret, ret ? "failed" : ceph_pr_addr(ss));
1874
1875 return ret;
1876 }
1877 #else
1878 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1879 struct sockaddr_storage *ss, char delim, const char **ipend)
1880 {
1881 return -EINVAL;
1882 }
1883 #endif
1884
1885 /*
1886 * Parse a server name (IP or hostname). If a valid IP address is not found
1887 * then try to extract a hostname to resolve using userspace DNS upcall.
1888 */
1889 static int ceph_parse_server_name(const char *name, size_t namelen,
1890 struct sockaddr_storage *ss, char delim, const char **ipend)
1891 {
1892 int ret;
1893
1894 ret = ceph_pton(name, namelen, ss, delim, ipend);
1895 if (ret)
1896 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1897
1898 return ret;
1899 }
1900
1901 /*
1902 * Parse an ip[:port] list into an addr array. Use the default
1903 * monitor port if a port isn't specified.
1904 */
1905 int ceph_parse_ips(const char *c, const char *end,
1906 struct ceph_entity_addr *addr,
1907 int max_count, int *count)
1908 {
1909 int i, ret = -EINVAL;
1910 const char *p = c;
1911
1912 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1913 for (i = 0; i < max_count; i++) {
1914 const char *ipend;
1915 struct sockaddr_storage *ss = &addr[i].in_addr;
1916 int port;
1917 char delim = ',';
1918
1919 if (*p == '[') {
1920 delim = ']';
1921 p++;
1922 }
1923
1924 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1925 if (ret)
1926 goto bad;
1927 ret = -EINVAL;
1928
1929 p = ipend;
1930
1931 if (delim == ']') {
1932 if (*p != ']') {
1933 dout("missing matching ']'\n");
1934 goto bad;
1935 }
1936 p++;
1937 }
1938
1939 /* port? */
1940 if (p < end && *p == ':') {
1941 port = 0;
1942 p++;
1943 while (p < end && *p >= '0' && *p <= '9') {
1944 port = (port * 10) + (*p - '0');
1945 p++;
1946 }
1947 if (port == 0)
1948 port = CEPH_MON_PORT;
1949 else if (port > 65535)
1950 goto bad;
1951 } else {
1952 port = CEPH_MON_PORT;
1953 }
1954
1955 addr_set_port(ss, port);
1956
1957 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1958
1959 if (p == end)
1960 break;
1961 if (*p != ',')
1962 goto bad;
1963 p++;
1964 }
1965
1966 if (p != end)
1967 goto bad;
1968
1969 if (count)
1970 *count = i + 1;
1971 return 0;
1972
1973 bad:
1974 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1975 return ret;
1976 }
1977 EXPORT_SYMBOL(ceph_parse_ips);
1978
1979 static int process_banner(struct ceph_connection *con)
1980 {
1981 dout("process_banner on %p\n", con);
1982
1983 if (verify_hello(con) < 0)
1984 return -1;
1985
1986 ceph_decode_addr(&con->actual_peer_addr);
1987 ceph_decode_addr(&con->peer_addr_for_me);
1988
1989 /*
1990 * Make sure the other end is who we wanted. note that the other
1991 * end may not yet know their ip address, so if it's 0.0.0.0, give
1992 * them the benefit of the doubt.
1993 */
1994 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1995 sizeof(con->peer_addr)) != 0 &&
1996 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1997 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1998 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1999 ceph_pr_addr(&con->peer_addr.in_addr),
2000 (int)le32_to_cpu(con->peer_addr.nonce),
2001 ceph_pr_addr(&con->actual_peer_addr.in_addr),
2002 (int)le32_to_cpu(con->actual_peer_addr.nonce));
2003 con->error_msg = "wrong peer at address";
2004 return -1;
2005 }
2006
2007 /*
2008 * did we learn our address?
2009 */
2010 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2011 int port = addr_port(&con->msgr->inst.addr.in_addr);
2012
2013 memcpy(&con->msgr->inst.addr.in_addr,
2014 &con->peer_addr_for_me.in_addr,
2015 sizeof(con->peer_addr_for_me.in_addr));
2016 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2017 encode_my_addr(con->msgr);
2018 dout("process_banner learned my addr is %s\n",
2019 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2020 }
2021
2022 return 0;
2023 }
2024
2025 static int process_connect(struct ceph_connection *con)
2026 {
2027 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2028 u64 req_feat = from_msgr(con->msgr)->required_features;
2029 u64 server_feat = ceph_sanitize_features(
2030 le64_to_cpu(con->in_reply.features));
2031 int ret;
2032
2033 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2034
2035 switch (con->in_reply.tag) {
2036 case CEPH_MSGR_TAG_FEATURES:
2037 pr_err("%s%lld %s feature set mismatch,"
2038 " my %llx < server's %llx, missing %llx\n",
2039 ENTITY_NAME(con->peer_name),
2040 ceph_pr_addr(&con->peer_addr.in_addr),
2041 sup_feat, server_feat, server_feat & ~sup_feat);
2042 con->error_msg = "missing required protocol features";
2043 reset_connection(con);
2044 return -1;
2045
2046 case CEPH_MSGR_TAG_BADPROTOVER:
2047 pr_err("%s%lld %s protocol version mismatch,"
2048 " my %d != server's %d\n",
2049 ENTITY_NAME(con->peer_name),
2050 ceph_pr_addr(&con->peer_addr.in_addr),
2051 le32_to_cpu(con->out_connect.protocol_version),
2052 le32_to_cpu(con->in_reply.protocol_version));
2053 con->error_msg = "protocol version mismatch";
2054 reset_connection(con);
2055 return -1;
2056
2057 case CEPH_MSGR_TAG_BADAUTHORIZER:
2058 con->auth_retry++;
2059 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2060 con->auth_retry);
2061 if (con->auth_retry == 2) {
2062 con->error_msg = "connect authorization failure";
2063 return -1;
2064 }
2065 con_out_kvec_reset(con);
2066 ret = prepare_write_connect(con);
2067 if (ret < 0)
2068 return ret;
2069 prepare_read_connect(con);
2070 break;
2071
2072 case CEPH_MSGR_TAG_RESETSESSION:
2073 /*
2074 * If we connected with a large connect_seq but the peer
2075 * has no record of a session with us (no connection, or
2076 * connect_seq == 0), they will send RESETSESION to indicate
2077 * that they must have reset their session, and may have
2078 * dropped messages.
2079 */
2080 dout("process_connect got RESET peer seq %u\n",
2081 le32_to_cpu(con->in_reply.connect_seq));
2082 pr_err("%s%lld %s connection reset\n",
2083 ENTITY_NAME(con->peer_name),
2084 ceph_pr_addr(&con->peer_addr.in_addr));
2085 reset_connection(con);
2086 con_out_kvec_reset(con);
2087 ret = prepare_write_connect(con);
2088 if (ret < 0)
2089 return ret;
2090 prepare_read_connect(con);
2091
2092 /* Tell ceph about it. */
2093 mutex_unlock(&con->mutex);
2094 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2095 if (con->ops->peer_reset)
2096 con->ops->peer_reset(con);
2097 mutex_lock(&con->mutex);
2098 if (con->state != CON_STATE_NEGOTIATING)
2099 return -EAGAIN;
2100 break;
2101
2102 case CEPH_MSGR_TAG_RETRY_SESSION:
2103 /*
2104 * If we sent a smaller connect_seq than the peer has, try
2105 * again with a larger value.
2106 */
2107 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2108 le32_to_cpu(con->out_connect.connect_seq),
2109 le32_to_cpu(con->in_reply.connect_seq));
2110 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2111 con_out_kvec_reset(con);
2112 ret = prepare_write_connect(con);
2113 if (ret < 0)
2114 return ret;
2115 prepare_read_connect(con);
2116 break;
2117
2118 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2119 /*
2120 * If we sent a smaller global_seq than the peer has, try
2121 * again with a larger value.
2122 */
2123 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2124 con->peer_global_seq,
2125 le32_to_cpu(con->in_reply.global_seq));
2126 get_global_seq(con->msgr,
2127 le32_to_cpu(con->in_reply.global_seq));
2128 con_out_kvec_reset(con);
2129 ret = prepare_write_connect(con);
2130 if (ret < 0)
2131 return ret;
2132 prepare_read_connect(con);
2133 break;
2134
2135 case CEPH_MSGR_TAG_SEQ:
2136 case CEPH_MSGR_TAG_READY:
2137 if (req_feat & ~server_feat) {
2138 pr_err("%s%lld %s protocol feature mismatch,"
2139 " my required %llx > server's %llx, need %llx\n",
2140 ENTITY_NAME(con->peer_name),
2141 ceph_pr_addr(&con->peer_addr.in_addr),
2142 req_feat, server_feat, req_feat & ~server_feat);
2143 con->error_msg = "missing required protocol features";
2144 reset_connection(con);
2145 return -1;
2146 }
2147
2148 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2149 con->state = CON_STATE_OPEN;
2150 con->auth_retry = 0; /* we authenticated; clear flag */
2151 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2152 con->connect_seq++;
2153 con->peer_features = server_feat;
2154 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2155 con->peer_global_seq,
2156 le32_to_cpu(con->in_reply.connect_seq),
2157 con->connect_seq);
2158 WARN_ON(con->connect_seq !=
2159 le32_to_cpu(con->in_reply.connect_seq));
2160
2161 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2162 con_flag_set(con, CON_FLAG_LOSSYTX);
2163
2164 con->delay = 0; /* reset backoff memory */
2165
2166 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2167 prepare_write_seq(con);
2168 prepare_read_seq(con);
2169 } else {
2170 prepare_read_tag(con);
2171 }
2172 break;
2173
2174 case CEPH_MSGR_TAG_WAIT:
2175 /*
2176 * If there is a connection race (we are opening
2177 * connections to each other), one of us may just have
2178 * to WAIT. This shouldn't happen if we are the
2179 * client.
2180 */
2181 con->error_msg = "protocol error, got WAIT as client";
2182 return -1;
2183
2184 default:
2185 con->error_msg = "protocol error, garbage tag during connect";
2186 return -1;
2187 }
2188 return 0;
2189 }
2190
2191
2192 /*
2193 * read (part of) an ack
2194 */
2195 static int read_partial_ack(struct ceph_connection *con)
2196 {
2197 int size = sizeof (con->in_temp_ack);
2198 int end = size;
2199
2200 return read_partial(con, end, size, &con->in_temp_ack);
2201 }
2202
2203 /*
2204 * We can finally discard anything that's been acked.
2205 */
2206 static void process_ack(struct ceph_connection *con)
2207 {
2208 struct ceph_msg *m;
2209 u64 ack = le64_to_cpu(con->in_temp_ack);
2210 u64 seq;
2211
2212 while (!list_empty(&con->out_sent)) {
2213 m = list_first_entry(&con->out_sent, struct ceph_msg,
2214 list_head);
2215 seq = le64_to_cpu(m->hdr.seq);
2216 if (seq > ack)
2217 break;
2218 dout("got ack for seq %llu type %d at %p\n", seq,
2219 le16_to_cpu(m->hdr.type), m);
2220 m->ack_stamp = jiffies;
2221 ceph_msg_remove(m);
2222 }
2223 prepare_read_tag(con);
2224 }
2225
2226
2227 static int read_partial_message_section(struct ceph_connection *con,
2228 struct kvec *section,
2229 unsigned int sec_len, u32 *crc)
2230 {
2231 int ret, left;
2232
2233 BUG_ON(!section);
2234
2235 while (section->iov_len < sec_len) {
2236 BUG_ON(section->iov_base == NULL);
2237 left = sec_len - section->iov_len;
2238 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2239 section->iov_len, left);
2240 if (ret <= 0)
2241 return ret;
2242 section->iov_len += ret;
2243 }
2244 if (section->iov_len == sec_len)
2245 *crc = crc32c(0, section->iov_base, section->iov_len);
2246
2247 return 1;
2248 }
2249
2250 static int read_partial_msg_data(struct ceph_connection *con)
2251 {
2252 struct ceph_msg *msg = con->in_msg;
2253 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2254 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2255 struct page *page;
2256 size_t page_offset;
2257 size_t length;
2258 u32 crc = 0;
2259 int ret;
2260
2261 BUG_ON(!msg);
2262 if (list_empty(&msg->data))
2263 return -EIO;
2264
2265 if (do_datacrc)
2266 crc = con->in_data_crc;
2267 while (cursor->resid) {
2268 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2269 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2270 if (ret <= 0) {
2271 if (do_datacrc)
2272 con->in_data_crc = crc;
2273
2274 return ret;
2275 }
2276
2277 if (do_datacrc)
2278 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2279 (void) ceph_msg_data_advance(cursor, (size_t)ret);
2280 }
2281 if (do_datacrc)
2282 con->in_data_crc = crc;
2283
2284 return 1; /* must return > 0 to indicate success */
2285 }
2286
2287 /*
2288 * read (part of) a message.
2289 */
2290 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2291
2292 static int read_partial_message(struct ceph_connection *con)
2293 {
2294 struct ceph_msg *m = con->in_msg;
2295 int size;
2296 int end;
2297 int ret;
2298 unsigned int front_len, middle_len, data_len;
2299 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2300 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2301 u64 seq;
2302 u32 crc;
2303
2304 dout("read_partial_message con %p msg %p\n", con, m);
2305
2306 /* header */
2307 size = sizeof (con->in_hdr);
2308 end = size;
2309 ret = read_partial(con, end, size, &con->in_hdr);
2310 if (ret <= 0)
2311 return ret;
2312
2313 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2314 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2315 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2316 crc, con->in_hdr.crc);
2317 return -EBADMSG;
2318 }
2319
2320 front_len = le32_to_cpu(con->in_hdr.front_len);
2321 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2322 return -EIO;
2323 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2324 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2325 return -EIO;
2326 data_len = le32_to_cpu(con->in_hdr.data_len);
2327 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2328 return -EIO;
2329
2330 /* verify seq# */
2331 seq = le64_to_cpu(con->in_hdr.seq);
2332 if ((s64)seq - (s64)con->in_seq < 1) {
2333 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2334 ENTITY_NAME(con->peer_name),
2335 ceph_pr_addr(&con->peer_addr.in_addr),
2336 seq, con->in_seq + 1);
2337 con->in_base_pos = -front_len - middle_len - data_len -
2338 sizeof(m->footer);
2339 con->in_tag = CEPH_MSGR_TAG_READY;
2340 return 0;
2341 } else if ((s64)seq - (s64)con->in_seq > 1) {
2342 pr_err("read_partial_message bad seq %lld expected %lld\n",
2343 seq, con->in_seq + 1);
2344 con->error_msg = "bad message sequence # for incoming message";
2345 return -EBADE;
2346 }
2347
2348 /* allocate message? */
2349 if (!con->in_msg) {
2350 int skip = 0;
2351
2352 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2353 front_len, data_len);
2354 ret = ceph_con_in_msg_alloc(con, &skip);
2355 if (ret < 0)
2356 return ret;
2357
2358 BUG_ON(!con->in_msg ^ skip);
2359 if (skip) {
2360 /* skip this message */
2361 dout("alloc_msg said skip message\n");
2362 con->in_base_pos = -front_len - middle_len - data_len -
2363 sizeof(m->footer);
2364 con->in_tag = CEPH_MSGR_TAG_READY;
2365 con->in_seq++;
2366 return 0;
2367 }
2368
2369 BUG_ON(!con->in_msg);
2370 BUG_ON(con->in_msg->con != con);
2371 m = con->in_msg;
2372 m->front.iov_len = 0; /* haven't read it yet */
2373 if (m->middle)
2374 m->middle->vec.iov_len = 0;
2375
2376 /* prepare for data payload, if any */
2377
2378 if (data_len)
2379 prepare_message_data(con->in_msg, data_len);
2380 }
2381
2382 /* front */
2383 ret = read_partial_message_section(con, &m->front, front_len,
2384 &con->in_front_crc);
2385 if (ret <= 0)
2386 return ret;
2387
2388 /* middle */
2389 if (m->middle) {
2390 ret = read_partial_message_section(con, &m->middle->vec,
2391 middle_len,
2392 &con->in_middle_crc);
2393 if (ret <= 0)
2394 return ret;
2395 }
2396
2397 /* (page) data */
2398 if (data_len) {
2399 ret = read_partial_msg_data(con);
2400 if (ret <= 0)
2401 return ret;
2402 }
2403
2404 /* footer */
2405 if (need_sign)
2406 size = sizeof(m->footer);
2407 else
2408 size = sizeof(m->old_footer);
2409
2410 end += size;
2411 ret = read_partial(con, end, size, &m->footer);
2412 if (ret <= 0)
2413 return ret;
2414
2415 if (!need_sign) {
2416 m->footer.flags = m->old_footer.flags;
2417 m->footer.sig = 0;
2418 }
2419
2420 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2421 m, front_len, m->footer.front_crc, middle_len,
2422 m->footer.middle_crc, data_len, m->footer.data_crc);
2423
2424 /* crc ok? */
2425 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2426 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2427 m, con->in_front_crc, m->footer.front_crc);
2428 return -EBADMSG;
2429 }
2430 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2431 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2432 m, con->in_middle_crc, m->footer.middle_crc);
2433 return -EBADMSG;
2434 }
2435 if (do_datacrc &&
2436 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2437 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2438 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2439 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2440 return -EBADMSG;
2441 }
2442
2443 if (need_sign && con->ops->check_message_signature &&
2444 con->ops->check_message_signature(m)) {
2445 pr_err("read_partial_message %p signature check failed\n", m);
2446 return -EBADMSG;
2447 }
2448
2449 return 1; /* done! */
2450 }
2451
2452 /*
2453 * Process message. This happens in the worker thread. The callback should
2454 * be careful not to do anything that waits on other incoming messages or it
2455 * may deadlock.
2456 */
2457 static void process_message(struct ceph_connection *con)
2458 {
2459 struct ceph_msg *msg = con->in_msg;
2460
2461 BUG_ON(con->in_msg->con != con);
2462 con->in_msg = NULL;
2463
2464 /* if first message, set peer_name */
2465 if (con->peer_name.type == 0)
2466 con->peer_name = msg->hdr.src;
2467
2468 con->in_seq++;
2469 mutex_unlock(&con->mutex);
2470
2471 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2472 msg, le64_to_cpu(msg->hdr.seq),
2473 ENTITY_NAME(msg->hdr.src),
2474 le16_to_cpu(msg->hdr.type),
2475 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2476 le32_to_cpu(msg->hdr.front_len),
2477 le32_to_cpu(msg->hdr.data_len),
2478 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2479 con->ops->dispatch(con, msg);
2480
2481 mutex_lock(&con->mutex);
2482 }
2483
2484 static int read_keepalive_ack(struct ceph_connection *con)
2485 {
2486 struct ceph_timespec ceph_ts;
2487 size_t size = sizeof(ceph_ts);
2488 int ret = read_partial(con, size, size, &ceph_ts);
2489 if (ret <= 0)
2490 return ret;
2491 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2492 prepare_read_tag(con);
2493 return 1;
2494 }
2495
2496 /*
2497 * Write something to the socket. Called in a worker thread when the
2498 * socket appears to be writeable and we have something ready to send.
2499 */
2500 static int try_write(struct ceph_connection *con)
2501 {
2502 int ret = 1;
2503
2504 dout("try_write start %p state %lu\n", con, con->state);
2505
2506 more:
2507 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2508
2509 /* open the socket first? */
2510 if (con->state == CON_STATE_PREOPEN) {
2511 BUG_ON(con->sock);
2512 con->state = CON_STATE_CONNECTING;
2513
2514 con_out_kvec_reset(con);
2515 prepare_write_banner(con);
2516 prepare_read_banner(con);
2517
2518 BUG_ON(con->in_msg);
2519 con->in_tag = CEPH_MSGR_TAG_READY;
2520 dout("try_write initiating connect on %p new state %lu\n",
2521 con, con->state);
2522 ret = ceph_tcp_connect(con);
2523 if (ret < 0) {
2524 con->error_msg = "connect error";
2525 goto out;
2526 }
2527 }
2528
2529 more_kvec:
2530 /* kvec data queued? */
2531 if (con->out_kvec_left) {
2532 ret = write_partial_kvec(con);
2533 if (ret <= 0)
2534 goto out;
2535 }
2536 if (con->out_skip) {
2537 ret = write_partial_skip(con);
2538 if (ret <= 0)
2539 goto out;
2540 }
2541
2542 /* msg pages? */
2543 if (con->out_msg) {
2544 if (con->out_msg_done) {
2545 ceph_msg_put(con->out_msg);
2546 con->out_msg = NULL; /* we're done with this one */
2547 goto do_next;
2548 }
2549
2550 ret = write_partial_message_data(con);
2551 if (ret == 1)
2552 goto more_kvec; /* we need to send the footer, too! */
2553 if (ret == 0)
2554 goto out;
2555 if (ret < 0) {
2556 dout("try_write write_partial_message_data err %d\n",
2557 ret);
2558 goto out;
2559 }
2560 }
2561
2562 do_next:
2563 if (con->state == CON_STATE_OPEN) {
2564 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2565 prepare_write_keepalive(con);
2566 goto more;
2567 }
2568 /* is anything else pending? */
2569 if (!list_empty(&con->out_queue)) {
2570 prepare_write_message(con);
2571 goto more;
2572 }
2573 if (con->in_seq > con->in_seq_acked) {
2574 prepare_write_ack(con);
2575 goto more;
2576 }
2577 }
2578
2579 /* Nothing to do! */
2580 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2581 dout("try_write nothing else to write.\n");
2582 ret = 0;
2583 out:
2584 dout("try_write done on %p ret %d\n", con, ret);
2585 return ret;
2586 }
2587
2588
2589
2590 /*
2591 * Read what we can from the socket.
2592 */
2593 static int try_read(struct ceph_connection *con)
2594 {
2595 int ret = -1;
2596
2597 more:
2598 dout("try_read start on %p state %lu\n", con, con->state);
2599 if (con->state != CON_STATE_CONNECTING &&
2600 con->state != CON_STATE_NEGOTIATING &&
2601 con->state != CON_STATE_OPEN)
2602 return 0;
2603
2604 BUG_ON(!con->sock);
2605
2606 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2607 con->in_base_pos);
2608
2609 if (con->state == CON_STATE_CONNECTING) {
2610 dout("try_read connecting\n");
2611 ret = read_partial_banner(con);
2612 if (ret <= 0)
2613 goto out;
2614 ret = process_banner(con);
2615 if (ret < 0)
2616 goto out;
2617
2618 con->state = CON_STATE_NEGOTIATING;
2619
2620 /*
2621 * Received banner is good, exchange connection info.
2622 * Do not reset out_kvec, as sending our banner raced
2623 * with receiving peer banner after connect completed.
2624 */
2625 ret = prepare_write_connect(con);
2626 if (ret < 0)
2627 goto out;
2628 prepare_read_connect(con);
2629
2630 /* Send connection info before awaiting response */
2631 goto out;
2632 }
2633
2634 if (con->state == CON_STATE_NEGOTIATING) {
2635 dout("try_read negotiating\n");
2636 ret = read_partial_connect(con);
2637 if (ret <= 0)
2638 goto out;
2639 ret = process_connect(con);
2640 if (ret < 0)
2641 goto out;
2642 goto more;
2643 }
2644
2645 WARN_ON(con->state != CON_STATE_OPEN);
2646
2647 if (con->in_base_pos < 0) {
2648 /*
2649 * skipping + discarding content.
2650 *
2651 * FIXME: there must be a better way to do this!
2652 */
2653 static char buf[SKIP_BUF_SIZE];
2654 int skip = min((int) sizeof (buf), -con->in_base_pos);
2655
2656 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2657 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2658 if (ret <= 0)
2659 goto out;
2660 con->in_base_pos += ret;
2661 if (con->in_base_pos)
2662 goto more;
2663 }
2664 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2665 /*
2666 * what's next?
2667 */
2668 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2669 if (ret <= 0)
2670 goto out;
2671 dout("try_read got tag %d\n", (int)con->in_tag);
2672 switch (con->in_tag) {
2673 case CEPH_MSGR_TAG_MSG:
2674 prepare_read_message(con);
2675 break;
2676 case CEPH_MSGR_TAG_ACK:
2677 prepare_read_ack(con);
2678 break;
2679 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2680 prepare_read_keepalive_ack(con);
2681 break;
2682 case CEPH_MSGR_TAG_CLOSE:
2683 con_close_socket(con);
2684 con->state = CON_STATE_CLOSED;
2685 goto out;
2686 default:
2687 goto bad_tag;
2688 }
2689 }
2690 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2691 ret = read_partial_message(con);
2692 if (ret <= 0) {
2693 switch (ret) {
2694 case -EBADMSG:
2695 con->error_msg = "bad crc/signature";
2696 /* fall through */
2697 case -EBADE:
2698 ret = -EIO;
2699 break;
2700 case -EIO:
2701 con->error_msg = "io error";
2702 break;
2703 }
2704 goto out;
2705 }
2706 if (con->in_tag == CEPH_MSGR_TAG_READY)
2707 goto more;
2708 process_message(con);
2709 if (con->state == CON_STATE_OPEN)
2710 prepare_read_tag(con);
2711 goto more;
2712 }
2713 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2714 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2715 /*
2716 * the final handshake seq exchange is semantically
2717 * equivalent to an ACK
2718 */
2719 ret = read_partial_ack(con);
2720 if (ret <= 0)
2721 goto out;
2722 process_ack(con);
2723 goto more;
2724 }
2725 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2726 ret = read_keepalive_ack(con);
2727 if (ret <= 0)
2728 goto out;
2729 goto more;
2730 }
2731
2732 out:
2733 dout("try_read done on %p ret %d\n", con, ret);
2734 return ret;
2735
2736 bad_tag:
2737 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2738 con->error_msg = "protocol error, garbage tag";
2739 ret = -1;
2740 goto out;
2741 }
2742
2743
2744 /*
2745 * Atomically queue work on a connection after the specified delay.
2746 * Bump @con reference to avoid races with connection teardown.
2747 * Returns 0 if work was queued, or an error code otherwise.
2748 */
2749 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2750 {
2751 if (!con->ops->get(con)) {
2752 dout("%s %p ref count 0\n", __func__, con);
2753 return -ENOENT;
2754 }
2755
2756 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2757 dout("%s %p - already queued\n", __func__, con);
2758 con->ops->put(con);
2759 return -EBUSY;
2760 }
2761
2762 dout("%s %p %lu\n", __func__, con, delay);
2763 return 0;
2764 }
2765
2766 static void queue_con(struct ceph_connection *con)
2767 {
2768 (void) queue_con_delay(con, 0);
2769 }
2770
2771 static void cancel_con(struct ceph_connection *con)
2772 {
2773 if (cancel_delayed_work(&con->work)) {
2774 dout("%s %p\n", __func__, con);
2775 con->ops->put(con);
2776 }
2777 }
2778
2779 static bool con_sock_closed(struct ceph_connection *con)
2780 {
2781 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2782 return false;
2783
2784 #define CASE(x) \
2785 case CON_STATE_ ## x: \
2786 con->error_msg = "socket closed (con state " #x ")"; \
2787 break;
2788
2789 switch (con->state) {
2790 CASE(CLOSED);
2791 CASE(PREOPEN);
2792 CASE(CONNECTING);
2793 CASE(NEGOTIATING);
2794 CASE(OPEN);
2795 CASE(STANDBY);
2796 default:
2797 pr_warn("%s con %p unrecognized state %lu\n",
2798 __func__, con, con->state);
2799 con->error_msg = "unrecognized con state";
2800 BUG();
2801 break;
2802 }
2803 #undef CASE
2804
2805 return true;
2806 }
2807
2808 static bool con_backoff(struct ceph_connection *con)
2809 {
2810 int ret;
2811
2812 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2813 return false;
2814
2815 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2816 if (ret) {
2817 dout("%s: con %p FAILED to back off %lu\n", __func__,
2818 con, con->delay);
2819 BUG_ON(ret == -ENOENT);
2820 con_flag_set(con, CON_FLAG_BACKOFF);
2821 }
2822
2823 return true;
2824 }
2825
2826 /* Finish fault handling; con->mutex must *not* be held here */
2827
2828 static void con_fault_finish(struct ceph_connection *con)
2829 {
2830 dout("%s %p\n", __func__, con);
2831
2832 /*
2833 * in case we faulted due to authentication, invalidate our
2834 * current tickets so that we can get new ones.
2835 */
2836 if (con->auth_retry) {
2837 dout("auth_retry %d, invalidating\n", con->auth_retry);
2838 if (con->ops->invalidate_authorizer)
2839 con->ops->invalidate_authorizer(con);
2840 con->auth_retry = 0;
2841 }
2842
2843 if (con->ops->fault)
2844 con->ops->fault(con);
2845 }
2846
2847 /*
2848 * Do some work on a connection. Drop a connection ref when we're done.
2849 */
2850 static void ceph_con_workfn(struct work_struct *work)
2851 {
2852 struct ceph_connection *con = container_of(work, struct ceph_connection,
2853 work.work);
2854 bool fault;
2855
2856 mutex_lock(&con->mutex);
2857 while (true) {
2858 int ret;
2859
2860 if ((fault = con_sock_closed(con))) {
2861 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2862 break;
2863 }
2864 if (con_backoff(con)) {
2865 dout("%s: con %p BACKOFF\n", __func__, con);
2866 break;
2867 }
2868 if (con->state == CON_STATE_STANDBY) {
2869 dout("%s: con %p STANDBY\n", __func__, con);
2870 break;
2871 }
2872 if (con->state == CON_STATE_CLOSED) {
2873 dout("%s: con %p CLOSED\n", __func__, con);
2874 BUG_ON(con->sock);
2875 break;
2876 }
2877 if (con->state == CON_STATE_PREOPEN) {
2878 dout("%s: con %p PREOPEN\n", __func__, con);
2879 BUG_ON(con->sock);
2880 }
2881
2882 ret = try_read(con);
2883 if (ret < 0) {
2884 if (ret == -EAGAIN)
2885 continue;
2886 if (!con->error_msg)
2887 con->error_msg = "socket error on read";
2888 fault = true;
2889 break;
2890 }
2891
2892 ret = try_write(con);
2893 if (ret < 0) {
2894 if (ret == -EAGAIN)
2895 continue;
2896 if (!con->error_msg)
2897 con->error_msg = "socket error on write";
2898 fault = true;
2899 }
2900
2901 break; /* If we make it to here, we're done */
2902 }
2903 if (fault)
2904 con_fault(con);
2905 mutex_unlock(&con->mutex);
2906
2907 if (fault)
2908 con_fault_finish(con);
2909
2910 con->ops->put(con);
2911 }
2912
2913 /*
2914 * Generic error/fault handler. A retry mechanism is used with
2915 * exponential backoff
2916 */
2917 static void con_fault(struct ceph_connection *con)
2918 {
2919 dout("fault %p state %lu to peer %s\n",
2920 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2921
2922 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2923 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2924 con->error_msg = NULL;
2925
2926 WARN_ON(con->state != CON_STATE_CONNECTING &&
2927 con->state != CON_STATE_NEGOTIATING &&
2928 con->state != CON_STATE_OPEN);
2929
2930 con_close_socket(con);
2931
2932 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2933 dout("fault on LOSSYTX channel, marking CLOSED\n");
2934 con->state = CON_STATE_CLOSED;
2935 return;
2936 }
2937
2938 if (con->in_msg) {
2939 BUG_ON(con->in_msg->con != con);
2940 ceph_msg_put(con->in_msg);
2941 con->in_msg = NULL;
2942 }
2943
2944 /* Requeue anything that hasn't been acked */
2945 list_splice_init(&con->out_sent, &con->out_queue);
2946
2947 /* If there are no messages queued or keepalive pending, place
2948 * the connection in a STANDBY state */
2949 if (list_empty(&con->out_queue) &&
2950 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2951 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2952 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2953 con->state = CON_STATE_STANDBY;
2954 } else {
2955 /* retry after a delay. */
2956 con->state = CON_STATE_PREOPEN;
2957 if (con->delay == 0)
2958 con->delay = BASE_DELAY_INTERVAL;
2959 else if (con->delay < MAX_DELAY_INTERVAL)
2960 con->delay *= 2;
2961 con_flag_set(con, CON_FLAG_BACKOFF);
2962 queue_con(con);
2963 }
2964 }
2965
2966
2967
2968 /*
2969 * initialize a new messenger instance
2970 */
2971 void ceph_messenger_init(struct ceph_messenger *msgr,
2972 struct ceph_entity_addr *myaddr)
2973 {
2974 spin_lock_init(&msgr->global_seq_lock);
2975
2976 if (myaddr)
2977 msgr->inst.addr = *myaddr;
2978
2979 /* select a random nonce */
2980 msgr->inst.addr.type = 0;
2981 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2982 encode_my_addr(msgr);
2983
2984 atomic_set(&msgr->stopping, 0);
2985 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2986
2987 dout("%s %p\n", __func__, msgr);
2988 }
2989 EXPORT_SYMBOL(ceph_messenger_init);
2990
2991 void ceph_messenger_fini(struct ceph_messenger *msgr)
2992 {
2993 put_net(read_pnet(&msgr->net));
2994 }
2995 EXPORT_SYMBOL(ceph_messenger_fini);
2996
2997 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
2998 {
2999 if (msg->con)
3000 msg->con->ops->put(msg->con);
3001
3002 msg->con = con ? con->ops->get(con) : NULL;
3003 BUG_ON(msg->con != con);
3004 }
3005
3006 static void clear_standby(struct ceph_connection *con)
3007 {
3008 /* come back from STANDBY? */
3009 if (con->state == CON_STATE_STANDBY) {
3010 dout("clear_standby %p and ++connect_seq\n", con);
3011 con->state = CON_STATE_PREOPEN;
3012 con->connect_seq++;
3013 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3014 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3015 }
3016 }
3017
3018 /*
3019 * Queue up an outgoing message on the given connection.
3020 */
3021 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3022 {
3023 /* set src+dst */
3024 msg->hdr.src = con->msgr->inst.name;
3025 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3026 msg->needs_out_seq = true;
3027
3028 mutex_lock(&con->mutex);
3029
3030 if (con->state == CON_STATE_CLOSED) {
3031 dout("con_send %p closed, dropping %p\n", con, msg);
3032 ceph_msg_put(msg);
3033 mutex_unlock(&con->mutex);
3034 return;
3035 }
3036
3037 msg_con_set(msg, con);
3038
3039 BUG_ON(!list_empty(&msg->list_head));
3040 list_add_tail(&msg->list_head, &con->out_queue);
3041 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3042 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3043 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3044 le32_to_cpu(msg->hdr.front_len),
3045 le32_to_cpu(msg->hdr.middle_len),
3046 le32_to_cpu(msg->hdr.data_len));
3047
3048 clear_standby(con);
3049 mutex_unlock(&con->mutex);
3050
3051 /* if there wasn't anything waiting to send before, queue
3052 * new work */
3053 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3054 queue_con(con);
3055 }
3056 EXPORT_SYMBOL(ceph_con_send);
3057
3058 /*
3059 * Revoke a message that was previously queued for send
3060 */
3061 void ceph_msg_revoke(struct ceph_msg *msg)
3062 {
3063 struct ceph_connection *con = msg->con;
3064
3065 if (!con) {
3066 dout("%s msg %p null con\n", __func__, msg);
3067 return; /* Message not in our possession */
3068 }
3069
3070 mutex_lock(&con->mutex);
3071 if (!list_empty(&msg->list_head)) {
3072 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3073 list_del_init(&msg->list_head);
3074 msg->hdr.seq = 0;
3075
3076 ceph_msg_put(msg);
3077 }
3078 if (con->out_msg == msg) {
3079 BUG_ON(con->out_skip);
3080 /* footer */
3081 if (con->out_msg_done) {
3082 con->out_skip += con_out_kvec_skip(con);
3083 } else {
3084 BUG_ON(!msg->data_length);
3085 if (con->peer_features & CEPH_FEATURE_MSG_AUTH)
3086 con->out_skip += sizeof(msg->footer);
3087 else
3088 con->out_skip += sizeof(msg->old_footer);
3089 }
3090 /* data, middle, front */
3091 if (msg->data_length)
3092 con->out_skip += msg->cursor.total_resid;
3093 if (msg->middle)
3094 con->out_skip += con_out_kvec_skip(con);
3095 con->out_skip += con_out_kvec_skip(con);
3096
3097 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3098 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3099 msg->hdr.seq = 0;
3100 con->out_msg = NULL;
3101 ceph_msg_put(msg);
3102 }
3103
3104 mutex_unlock(&con->mutex);
3105 }
3106
3107 /*
3108 * Revoke a message that we may be reading data into
3109 */
3110 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3111 {
3112 struct ceph_connection *con = msg->con;
3113
3114 if (!con) {
3115 dout("%s msg %p null con\n", __func__, msg);
3116 return; /* Message not in our possession */
3117 }
3118
3119 mutex_lock(&con->mutex);
3120 if (con->in_msg == msg) {
3121 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3122 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3123 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3124
3125 /* skip rest of message */
3126 dout("%s %p msg %p revoked\n", __func__, con, msg);
3127 con->in_base_pos = con->in_base_pos -
3128 sizeof(struct ceph_msg_header) -
3129 front_len -
3130 middle_len -
3131 data_len -
3132 sizeof(struct ceph_msg_footer);
3133 ceph_msg_put(con->in_msg);
3134 con->in_msg = NULL;
3135 con->in_tag = CEPH_MSGR_TAG_READY;
3136 con->in_seq++;
3137 } else {
3138 dout("%s %p in_msg %p msg %p no-op\n",
3139 __func__, con, con->in_msg, msg);
3140 }
3141 mutex_unlock(&con->mutex);
3142 }
3143
3144 /*
3145 * Queue a keepalive byte to ensure the tcp connection is alive.
3146 */
3147 void ceph_con_keepalive(struct ceph_connection *con)
3148 {
3149 dout("con_keepalive %p\n", con);
3150 mutex_lock(&con->mutex);
3151 clear_standby(con);
3152 mutex_unlock(&con->mutex);
3153 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3154 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3155 queue_con(con);
3156 }
3157 EXPORT_SYMBOL(ceph_con_keepalive);
3158
3159 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3160 unsigned long interval)
3161 {
3162 if (interval > 0 &&
3163 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3164 struct timespec now = CURRENT_TIME;
3165 struct timespec ts;
3166 jiffies_to_timespec(interval, &ts);
3167 ts = timespec_add(con->last_keepalive_ack, ts);
3168 return timespec_compare(&now, &ts) >= 0;
3169 }
3170 return false;
3171 }
3172
3173 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3174 {
3175 struct ceph_msg_data *data;
3176
3177 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3178 return NULL;
3179
3180 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3181 if (data)
3182 data->type = type;
3183 INIT_LIST_HEAD(&data->links);
3184
3185 return data;
3186 }
3187
3188 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3189 {
3190 if (!data)
3191 return;
3192
3193 WARN_ON(!list_empty(&data->links));
3194 if (data->type == CEPH_MSG_DATA_PAGELIST)
3195 ceph_pagelist_release(data->pagelist);
3196 kmem_cache_free(ceph_msg_data_cache, data);
3197 }
3198
3199 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3200 size_t length, size_t alignment)
3201 {
3202 struct ceph_msg_data *data;
3203
3204 BUG_ON(!pages);
3205 BUG_ON(!length);
3206
3207 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3208 BUG_ON(!data);
3209 data->pages = pages;
3210 data->length = length;
3211 data->alignment = alignment & ~PAGE_MASK;
3212
3213 list_add_tail(&data->links, &msg->data);
3214 msg->data_length += length;
3215 }
3216 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3217
3218 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3219 struct ceph_pagelist *pagelist)
3220 {
3221 struct ceph_msg_data *data;
3222
3223 BUG_ON(!pagelist);
3224 BUG_ON(!pagelist->length);
3225
3226 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3227 BUG_ON(!data);
3228 data->pagelist = pagelist;
3229
3230 list_add_tail(&data->links, &msg->data);
3231 msg->data_length += pagelist->length;
3232 }
3233 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3234
3235 #ifdef CONFIG_BLOCK
3236 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3237 size_t length)
3238 {
3239 struct ceph_msg_data *data;
3240
3241 BUG_ON(!bio);
3242
3243 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3244 BUG_ON(!data);
3245 data->bio = bio;
3246 data->bio_length = length;
3247
3248 list_add_tail(&data->links, &msg->data);
3249 msg->data_length += length;
3250 }
3251 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3252 #endif /* CONFIG_BLOCK */
3253
3254 /*
3255 * construct a new message with given type, size
3256 * the new msg has a ref count of 1.
3257 */
3258 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3259 bool can_fail)
3260 {
3261 struct ceph_msg *m;
3262
3263 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3264 if (m == NULL)
3265 goto out;
3266
3267 m->hdr.type = cpu_to_le16(type);
3268 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3269 m->hdr.front_len = cpu_to_le32(front_len);
3270
3271 INIT_LIST_HEAD(&m->list_head);
3272 kref_init(&m->kref);
3273 INIT_LIST_HEAD(&m->data);
3274
3275 /* front */
3276 if (front_len) {
3277 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3278 if (m->front.iov_base == NULL) {
3279 dout("ceph_msg_new can't allocate %d bytes\n",
3280 front_len);
3281 goto out2;
3282 }
3283 } else {
3284 m->front.iov_base = NULL;
3285 }
3286 m->front_alloc_len = m->front.iov_len = front_len;
3287
3288 dout("ceph_msg_new %p front %d\n", m, front_len);
3289 return m;
3290
3291 out2:
3292 ceph_msg_put(m);
3293 out:
3294 if (!can_fail) {
3295 pr_err("msg_new can't create type %d front %d\n", type,
3296 front_len);
3297 WARN_ON(1);
3298 } else {
3299 dout("msg_new can't create type %d front %d\n", type,
3300 front_len);
3301 }
3302 return NULL;
3303 }
3304 EXPORT_SYMBOL(ceph_msg_new);
3305
3306 /*
3307 * Allocate "middle" portion of a message, if it is needed and wasn't
3308 * allocated by alloc_msg. This allows us to read a small fixed-size
3309 * per-type header in the front and then gracefully fail (i.e.,
3310 * propagate the error to the caller based on info in the front) when
3311 * the middle is too large.
3312 */
3313 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3314 {
3315 int type = le16_to_cpu(msg->hdr.type);
3316 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3317
3318 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3319 ceph_msg_type_name(type), middle_len);
3320 BUG_ON(!middle_len);
3321 BUG_ON(msg->middle);
3322
3323 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3324 if (!msg->middle)
3325 return -ENOMEM;
3326 return 0;
3327 }
3328
3329 /*
3330 * Allocate a message for receiving an incoming message on a
3331 * connection, and save the result in con->in_msg. Uses the
3332 * connection's private alloc_msg op if available.
3333 *
3334 * Returns 0 on success, or a negative error code.
3335 *
3336 * On success, if we set *skip = 1:
3337 * - the next message should be skipped and ignored.
3338 * - con->in_msg == NULL
3339 * or if we set *skip = 0:
3340 * - con->in_msg is non-null.
3341 * On error (ENOMEM, EAGAIN, ...),
3342 * - con->in_msg == NULL
3343 */
3344 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3345 {
3346 struct ceph_msg_header *hdr = &con->in_hdr;
3347 int middle_len = le32_to_cpu(hdr->middle_len);
3348 struct ceph_msg *msg;
3349 int ret = 0;
3350
3351 BUG_ON(con->in_msg != NULL);
3352 BUG_ON(!con->ops->alloc_msg);
3353
3354 mutex_unlock(&con->mutex);
3355 msg = con->ops->alloc_msg(con, hdr, skip);
3356 mutex_lock(&con->mutex);
3357 if (con->state != CON_STATE_OPEN) {
3358 if (msg)
3359 ceph_msg_put(msg);
3360 return -EAGAIN;
3361 }
3362 if (msg) {
3363 BUG_ON(*skip);
3364 msg_con_set(msg, con);
3365 con->in_msg = msg;
3366 } else {
3367 /*
3368 * Null message pointer means either we should skip
3369 * this message or we couldn't allocate memory. The
3370 * former is not an error.
3371 */
3372 if (*skip)
3373 return 0;
3374
3375 con->error_msg = "error allocating memory for incoming message";
3376 return -ENOMEM;
3377 }
3378 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3379
3380 if (middle_len && !con->in_msg->middle) {
3381 ret = ceph_alloc_middle(con, con->in_msg);
3382 if (ret < 0) {
3383 ceph_msg_put(con->in_msg);
3384 con->in_msg = NULL;
3385 }
3386 }
3387
3388 return ret;
3389 }
3390
3391
3392 /*
3393 * Free a generically kmalloc'd message.
3394 */
3395 static void ceph_msg_free(struct ceph_msg *m)
3396 {
3397 dout("%s %p\n", __func__, m);
3398 kvfree(m->front.iov_base);
3399 kmem_cache_free(ceph_msg_cache, m);
3400 }
3401
3402 static void ceph_msg_release(struct kref *kref)
3403 {
3404 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3405 struct ceph_msg_data *data, *next;
3406
3407 dout("%s %p\n", __func__, m);
3408 WARN_ON(!list_empty(&m->list_head));
3409
3410 msg_con_set(m, NULL);
3411
3412 /* drop middle, data, if any */
3413 if (m->middle) {
3414 ceph_buffer_put(m->middle);
3415 m->middle = NULL;
3416 }
3417
3418 list_for_each_entry_safe(data, next, &m->data, links) {
3419 list_del_init(&data->links);
3420 ceph_msg_data_destroy(data);
3421 }
3422 m->data_length = 0;
3423
3424 if (m->pool)
3425 ceph_msgpool_put(m->pool, m);
3426 else
3427 ceph_msg_free(m);
3428 }
3429
3430 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3431 {
3432 dout("%s %p (was %d)\n", __func__, msg,
3433 atomic_read(&msg->kref.refcount));
3434 kref_get(&msg->kref);
3435 return msg;
3436 }
3437 EXPORT_SYMBOL(ceph_msg_get);
3438
3439 void ceph_msg_put(struct ceph_msg *msg)
3440 {
3441 dout("%s %p (was %d)\n", __func__, msg,
3442 atomic_read(&msg->kref.refcount));
3443 kref_put(&msg->kref, ceph_msg_release);
3444 }
3445 EXPORT_SYMBOL(ceph_msg_put);
3446
3447 void ceph_msg_dump(struct ceph_msg *msg)
3448 {
3449 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3450 msg->front_alloc_len, msg->data_length);
3451 print_hex_dump(KERN_DEBUG, "header: ",
3452 DUMP_PREFIX_OFFSET, 16, 1,
3453 &msg->hdr, sizeof(msg->hdr), true);
3454 print_hex_dump(KERN_DEBUG, " front: ",
3455 DUMP_PREFIX_OFFSET, 16, 1,
3456 msg->front.iov_base, msg->front.iov_len, true);
3457 if (msg->middle)
3458 print_hex_dump(KERN_DEBUG, "middle: ",
3459 DUMP_PREFIX_OFFSET, 16, 1,
3460 msg->middle->vec.iov_base,
3461 msg->middle->vec.iov_len, true);
3462 print_hex_dump(KERN_DEBUG, "footer: ",
3463 DUMP_PREFIX_OFFSET, 16, 1,
3464 &msg->footer, sizeof(msg->footer), true);
3465 }
3466 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.09927 seconds and 6 git commands to generate.