netdev: Move queue_lock into struct netdev_queue.
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124
125 #include "net-sysfs.h"
126
127 /*
128 * The list of packet types we will receive (as opposed to discard)
129 * and the routines to invoke.
130 *
131 * Why 16. Because with 16 the only overlap we get on a hash of the
132 * low nibble of the protocol value is RARP/SNAP/X.25.
133 *
134 * NOTE: That is no longer true with the addition of VLAN tags. Not
135 * sure which should go first, but I bet it won't make much
136 * difference if we are running VLANs. The good news is that
137 * this protocol won't be in the list unless compiled in, so
138 * the average user (w/out VLANs) will not be adversely affected.
139 * --BLG
140 *
141 * 0800 IP
142 * 8100 802.1Q VLAN
143 * 0001 802.3
144 * 0002 AX.25
145 * 0004 802.2
146 * 8035 RARP
147 * 0005 SNAP
148 * 0805 X.25
149 * 0806 ARP
150 * 8137 IPX
151 * 0009 Localtalk
152 * 86DD IPv6
153 */
154
155 #define PTYPE_HASH_SIZE (16)
156 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 static struct list_head ptype_all __read_mostly; /* Taps */
161
162 #ifdef CONFIG_NET_DMA
163 struct net_dma {
164 struct dma_client client;
165 spinlock_t lock;
166 cpumask_t channel_mask;
167 struct dma_chan **channels;
168 };
169
170 static enum dma_state_client
171 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
172 enum dma_state state);
173
174 static struct net_dma net_dma = {
175 .client = {
176 .event_callback = netdev_dma_event,
177 },
178 };
179 #endif
180
181 /*
182 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
183 * semaphore.
184 *
185 * Pure readers hold dev_base_lock for reading.
186 *
187 * Writers must hold the rtnl semaphore while they loop through the
188 * dev_base_head list, and hold dev_base_lock for writing when they do the
189 * actual updates. This allows pure readers to access the list even
190 * while a writer is preparing to update it.
191 *
192 * To put it another way, dev_base_lock is held for writing only to
193 * protect against pure readers; the rtnl semaphore provides the
194 * protection against other writers.
195 *
196 * See, for example usages, register_netdevice() and
197 * unregister_netdevice(), which must be called with the rtnl
198 * semaphore held.
199 */
200 DEFINE_RWLOCK(dev_base_lock);
201
202 EXPORT_SYMBOL(dev_base_lock);
203
204 #define NETDEV_HASHBITS 8
205 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
216 }
217
218 /* Device list insertion */
219 static int list_netdevice(struct net_device *dev)
220 {
221 struct net *net = dev_net(dev);
222
223 ASSERT_RTNL();
224
225 write_lock_bh(&dev_base_lock);
226 list_add_tail(&dev->dev_list, &net->dev_base_head);
227 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
228 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230 return 0;
231 }
232
233 /* Device list removal */
234 static void unlist_netdevice(struct net_device *dev)
235 {
236 ASSERT_RTNL();
237
238 /* Unlink dev from the device chain */
239 write_lock_bh(&dev_base_lock);
240 list_del(&dev->dev_list);
241 hlist_del(&dev->name_hlist);
242 hlist_del(&dev->index_hlist);
243 write_unlock_bh(&dev_base_lock);
244 }
245
246 /*
247 * Our notifier list
248 */
249
250 static RAW_NOTIFIER_HEAD(netdev_chain);
251
252 /*
253 * Device drivers call our routines to queue packets here. We empty the
254 * queue in the local softnet handler.
255 */
256
257 DEFINE_PER_CPU(struct softnet_data, softnet_data);
258
259 #ifdef CONFIG_DEBUG_LOCK_ALLOC
260 /*
261 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
262 * according to dev->type
263 */
264 static const unsigned short netdev_lock_type[] =
265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
277 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
278 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
279 ARPHRD_NONE};
280
281 static const char *netdev_lock_name[] =
282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
294 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
295 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
296 "_xmit_NONE"};
297
298 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
299
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310
311 static inline void netdev_set_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
313 {
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319 }
320 #else
321 static inline void netdev_set_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
323 {
324 }
325 #endif
326
327 /*******************************************************************************
328
329 Protocol management and registration routines
330
331 *******************************************************************************/
332
333 /*
334 * Add a protocol ID to the list. Now that the input handler is
335 * smarter we can dispense with all the messy stuff that used to be
336 * here.
337 *
338 * BEWARE!!! Protocol handlers, mangling input packets,
339 * MUST BE last in hash buckets and checking protocol handlers
340 * MUST start from promiscuous ptype_all chain in net_bh.
341 * It is true now, do not change it.
342 * Explanation follows: if protocol handler, mangling packet, will
343 * be the first on list, it is not able to sense, that packet
344 * is cloned and should be copied-on-write, so that it will
345 * change it and subsequent readers will get broken packet.
346 * --ANK (980803)
347 */
348
349 /**
350 * dev_add_pack - add packet handler
351 * @pt: packet type declaration
352 *
353 * Add a protocol handler to the networking stack. The passed &packet_type
354 * is linked into kernel lists and may not be freed until it has been
355 * removed from the kernel lists.
356 *
357 * This call does not sleep therefore it can not
358 * guarantee all CPU's that are in middle of receiving packets
359 * will see the new packet type (until the next received packet).
360 */
361
362 void dev_add_pack(struct packet_type *pt)
363 {
364 int hash;
365
366 spin_lock_bh(&ptype_lock);
367 if (pt->type == htons(ETH_P_ALL))
368 list_add_rcu(&pt->list, &ptype_all);
369 else {
370 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
371 list_add_rcu(&pt->list, &ptype_base[hash]);
372 }
373 spin_unlock_bh(&ptype_lock);
374 }
375
376 /**
377 * __dev_remove_pack - remove packet handler
378 * @pt: packet type declaration
379 *
380 * Remove a protocol handler that was previously added to the kernel
381 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
382 * from the kernel lists and can be freed or reused once this function
383 * returns.
384 *
385 * The packet type might still be in use by receivers
386 * and must not be freed until after all the CPU's have gone
387 * through a quiescent state.
388 */
389 void __dev_remove_pack(struct packet_type *pt)
390 {
391 struct list_head *head;
392 struct packet_type *pt1;
393
394 spin_lock_bh(&ptype_lock);
395
396 if (pt->type == htons(ETH_P_ALL))
397 head = &ptype_all;
398 else
399 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
400
401 list_for_each_entry(pt1, head, list) {
402 if (pt == pt1) {
403 list_del_rcu(&pt->list);
404 goto out;
405 }
406 }
407
408 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
409 out:
410 spin_unlock_bh(&ptype_lock);
411 }
412 /**
413 * dev_remove_pack - remove packet handler
414 * @pt: packet type declaration
415 *
416 * Remove a protocol handler that was previously added to the kernel
417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
418 * from the kernel lists and can be freed or reused once this function
419 * returns.
420 *
421 * This call sleeps to guarantee that no CPU is looking at the packet
422 * type after return.
423 */
424 void dev_remove_pack(struct packet_type *pt)
425 {
426 __dev_remove_pack(pt);
427
428 synchronize_net();
429 }
430
431 /******************************************************************************
432
433 Device Boot-time Settings Routines
434
435 *******************************************************************************/
436
437 /* Boot time configuration table */
438 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
439
440 /**
441 * netdev_boot_setup_add - add new setup entry
442 * @name: name of the device
443 * @map: configured settings for the device
444 *
445 * Adds new setup entry to the dev_boot_setup list. The function
446 * returns 0 on error and 1 on success. This is a generic routine to
447 * all netdevices.
448 */
449 static int netdev_boot_setup_add(char *name, struct ifmap *map)
450 {
451 struct netdev_boot_setup *s;
452 int i;
453
454 s = dev_boot_setup;
455 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
456 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
457 memset(s[i].name, 0, sizeof(s[i].name));
458 strlcpy(s[i].name, name, IFNAMSIZ);
459 memcpy(&s[i].map, map, sizeof(s[i].map));
460 break;
461 }
462 }
463
464 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
465 }
466
467 /**
468 * netdev_boot_setup_check - check boot time settings
469 * @dev: the netdevice
470 *
471 * Check boot time settings for the device.
472 * The found settings are set for the device to be used
473 * later in the device probing.
474 * Returns 0 if no settings found, 1 if they are.
475 */
476 int netdev_boot_setup_check(struct net_device *dev)
477 {
478 struct netdev_boot_setup *s = dev_boot_setup;
479 int i;
480
481 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
482 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
483 !strcmp(dev->name, s[i].name)) {
484 dev->irq = s[i].map.irq;
485 dev->base_addr = s[i].map.base_addr;
486 dev->mem_start = s[i].map.mem_start;
487 dev->mem_end = s[i].map.mem_end;
488 return 1;
489 }
490 }
491 return 0;
492 }
493
494
495 /**
496 * netdev_boot_base - get address from boot time settings
497 * @prefix: prefix for network device
498 * @unit: id for network device
499 *
500 * Check boot time settings for the base address of device.
501 * The found settings are set for the device to be used
502 * later in the device probing.
503 * Returns 0 if no settings found.
504 */
505 unsigned long netdev_boot_base(const char *prefix, int unit)
506 {
507 const struct netdev_boot_setup *s = dev_boot_setup;
508 char name[IFNAMSIZ];
509 int i;
510
511 sprintf(name, "%s%d", prefix, unit);
512
513 /*
514 * If device already registered then return base of 1
515 * to indicate not to probe for this interface
516 */
517 if (__dev_get_by_name(&init_net, name))
518 return 1;
519
520 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
521 if (!strcmp(name, s[i].name))
522 return s[i].map.base_addr;
523 return 0;
524 }
525
526 /*
527 * Saves at boot time configured settings for any netdevice.
528 */
529 int __init netdev_boot_setup(char *str)
530 {
531 int ints[5];
532 struct ifmap map;
533
534 str = get_options(str, ARRAY_SIZE(ints), ints);
535 if (!str || !*str)
536 return 0;
537
538 /* Save settings */
539 memset(&map, 0, sizeof(map));
540 if (ints[0] > 0)
541 map.irq = ints[1];
542 if (ints[0] > 1)
543 map.base_addr = ints[2];
544 if (ints[0] > 2)
545 map.mem_start = ints[3];
546 if (ints[0] > 3)
547 map.mem_end = ints[4];
548
549 /* Add new entry to the list */
550 return netdev_boot_setup_add(str, &map);
551 }
552
553 __setup("netdev=", netdev_boot_setup);
554
555 /*******************************************************************************
556
557 Device Interface Subroutines
558
559 *******************************************************************************/
560
561 /**
562 * __dev_get_by_name - find a device by its name
563 * @net: the applicable net namespace
564 * @name: name to find
565 *
566 * Find an interface by name. Must be called under RTNL semaphore
567 * or @dev_base_lock. If the name is found a pointer to the device
568 * is returned. If the name is not found then %NULL is returned. The
569 * reference counters are not incremented so the caller must be
570 * careful with locks.
571 */
572
573 struct net_device *__dev_get_by_name(struct net *net, const char *name)
574 {
575 struct hlist_node *p;
576
577 hlist_for_each(p, dev_name_hash(net, name)) {
578 struct net_device *dev
579 = hlist_entry(p, struct net_device, name_hlist);
580 if (!strncmp(dev->name, name, IFNAMSIZ))
581 return dev;
582 }
583 return NULL;
584 }
585
586 /**
587 * dev_get_by_name - find a device by its name
588 * @net: the applicable net namespace
589 * @name: name to find
590 *
591 * Find an interface by name. This can be called from any
592 * context and does its own locking. The returned handle has
593 * the usage count incremented and the caller must use dev_put() to
594 * release it when it is no longer needed. %NULL is returned if no
595 * matching device is found.
596 */
597
598 struct net_device *dev_get_by_name(struct net *net, const char *name)
599 {
600 struct net_device *dev;
601
602 read_lock(&dev_base_lock);
603 dev = __dev_get_by_name(net, name);
604 if (dev)
605 dev_hold(dev);
606 read_unlock(&dev_base_lock);
607 return dev;
608 }
609
610 /**
611 * __dev_get_by_index - find a device by its ifindex
612 * @net: the applicable net namespace
613 * @ifindex: index of device
614 *
615 * Search for an interface by index. Returns %NULL if the device
616 * is not found or a pointer to the device. The device has not
617 * had its reference counter increased so the caller must be careful
618 * about locking. The caller must hold either the RTNL semaphore
619 * or @dev_base_lock.
620 */
621
622 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
623 {
624 struct hlist_node *p;
625
626 hlist_for_each(p, dev_index_hash(net, ifindex)) {
627 struct net_device *dev
628 = hlist_entry(p, struct net_device, index_hlist);
629 if (dev->ifindex == ifindex)
630 return dev;
631 }
632 return NULL;
633 }
634
635
636 /**
637 * dev_get_by_index - find a device by its ifindex
638 * @net: the applicable net namespace
639 * @ifindex: index of device
640 *
641 * Search for an interface by index. Returns NULL if the device
642 * is not found or a pointer to the device. The device returned has
643 * had a reference added and the pointer is safe until the user calls
644 * dev_put to indicate they have finished with it.
645 */
646
647 struct net_device *dev_get_by_index(struct net *net, int ifindex)
648 {
649 struct net_device *dev;
650
651 read_lock(&dev_base_lock);
652 dev = __dev_get_by_index(net, ifindex);
653 if (dev)
654 dev_hold(dev);
655 read_unlock(&dev_base_lock);
656 return dev;
657 }
658
659 /**
660 * dev_getbyhwaddr - find a device by its hardware address
661 * @net: the applicable net namespace
662 * @type: media type of device
663 * @ha: hardware address
664 *
665 * Search for an interface by MAC address. Returns NULL if the device
666 * is not found or a pointer to the device. The caller must hold the
667 * rtnl semaphore. The returned device has not had its ref count increased
668 * and the caller must therefore be careful about locking
669 *
670 * BUGS:
671 * If the API was consistent this would be __dev_get_by_hwaddr
672 */
673
674 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
675 {
676 struct net_device *dev;
677
678 ASSERT_RTNL();
679
680 for_each_netdev(net, dev)
681 if (dev->type == type &&
682 !memcmp(dev->dev_addr, ha, dev->addr_len))
683 return dev;
684
685 return NULL;
686 }
687
688 EXPORT_SYMBOL(dev_getbyhwaddr);
689
690 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
691 {
692 struct net_device *dev;
693
694 ASSERT_RTNL();
695 for_each_netdev(net, dev)
696 if (dev->type == type)
697 return dev;
698
699 return NULL;
700 }
701
702 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
703
704 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
705 {
706 struct net_device *dev;
707
708 rtnl_lock();
709 dev = __dev_getfirstbyhwtype(net, type);
710 if (dev)
711 dev_hold(dev);
712 rtnl_unlock();
713 return dev;
714 }
715
716 EXPORT_SYMBOL(dev_getfirstbyhwtype);
717
718 /**
719 * dev_get_by_flags - find any device with given flags
720 * @net: the applicable net namespace
721 * @if_flags: IFF_* values
722 * @mask: bitmask of bits in if_flags to check
723 *
724 * Search for any interface with the given flags. Returns NULL if a device
725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
728 */
729
730 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
731 {
732 struct net_device *dev, *ret;
733
734 ret = NULL;
735 read_lock(&dev_base_lock);
736 for_each_netdev(net, dev) {
737 if (((dev->flags ^ if_flags) & mask) == 0) {
738 dev_hold(dev);
739 ret = dev;
740 break;
741 }
742 }
743 read_unlock(&dev_base_lock);
744 return ret;
745 }
746
747 /**
748 * dev_valid_name - check if name is okay for network device
749 * @name: name string
750 *
751 * Network device names need to be valid file names to
752 * to allow sysfs to work. We also disallow any kind of
753 * whitespace.
754 */
755 int dev_valid_name(const char *name)
756 {
757 if (*name == '\0')
758 return 0;
759 if (strlen(name) >= IFNAMSIZ)
760 return 0;
761 if (!strcmp(name, ".") || !strcmp(name, ".."))
762 return 0;
763
764 while (*name) {
765 if (*name == '/' || isspace(*name))
766 return 0;
767 name++;
768 }
769 return 1;
770 }
771
772 /**
773 * __dev_alloc_name - allocate a name for a device
774 * @net: network namespace to allocate the device name in
775 * @name: name format string
776 * @buf: scratch buffer and result name string
777 *
778 * Passed a format string - eg "lt%d" it will try and find a suitable
779 * id. It scans list of devices to build up a free map, then chooses
780 * the first empty slot. The caller must hold the dev_base or rtnl lock
781 * while allocating the name and adding the device in order to avoid
782 * duplicates.
783 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
784 * Returns the number of the unit assigned or a negative errno code.
785 */
786
787 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
788 {
789 int i = 0;
790 const char *p;
791 const int max_netdevices = 8*PAGE_SIZE;
792 unsigned long *inuse;
793 struct net_device *d;
794
795 p = strnchr(name, IFNAMSIZ-1, '%');
796 if (p) {
797 /*
798 * Verify the string as this thing may have come from
799 * the user. There must be either one "%d" and no other "%"
800 * characters.
801 */
802 if (p[1] != 'd' || strchr(p + 2, '%'))
803 return -EINVAL;
804
805 /* Use one page as a bit array of possible slots */
806 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
807 if (!inuse)
808 return -ENOMEM;
809
810 for_each_netdev(net, d) {
811 if (!sscanf(d->name, name, &i))
812 continue;
813 if (i < 0 || i >= max_netdevices)
814 continue;
815
816 /* avoid cases where sscanf is not exact inverse of printf */
817 snprintf(buf, IFNAMSIZ, name, i);
818 if (!strncmp(buf, d->name, IFNAMSIZ))
819 set_bit(i, inuse);
820 }
821
822 i = find_first_zero_bit(inuse, max_netdevices);
823 free_page((unsigned long) inuse);
824 }
825
826 snprintf(buf, IFNAMSIZ, name, i);
827 if (!__dev_get_by_name(net, buf))
828 return i;
829
830 /* It is possible to run out of possible slots
831 * when the name is long and there isn't enough space left
832 * for the digits, or if all bits are used.
833 */
834 return -ENFILE;
835 }
836
837 /**
838 * dev_alloc_name - allocate a name for a device
839 * @dev: device
840 * @name: name format string
841 *
842 * Passed a format string - eg "lt%d" it will try and find a suitable
843 * id. It scans list of devices to build up a free map, then chooses
844 * the first empty slot. The caller must hold the dev_base or rtnl lock
845 * while allocating the name and adding the device in order to avoid
846 * duplicates.
847 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
848 * Returns the number of the unit assigned or a negative errno code.
849 */
850
851 int dev_alloc_name(struct net_device *dev, const char *name)
852 {
853 char buf[IFNAMSIZ];
854 struct net *net;
855 int ret;
856
857 BUG_ON(!dev_net(dev));
858 net = dev_net(dev);
859 ret = __dev_alloc_name(net, name, buf);
860 if (ret >= 0)
861 strlcpy(dev->name, buf, IFNAMSIZ);
862 return ret;
863 }
864
865
866 /**
867 * dev_change_name - change name of a device
868 * @dev: device
869 * @newname: name (or format string) must be at least IFNAMSIZ
870 *
871 * Change name of a device, can pass format strings "eth%d".
872 * for wildcarding.
873 */
874 int dev_change_name(struct net_device *dev, char *newname)
875 {
876 char oldname[IFNAMSIZ];
877 int err = 0;
878 int ret;
879 struct net *net;
880
881 ASSERT_RTNL();
882 BUG_ON(!dev_net(dev));
883
884 net = dev_net(dev);
885 if (dev->flags & IFF_UP)
886 return -EBUSY;
887
888 if (!dev_valid_name(newname))
889 return -EINVAL;
890
891 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
892 return 0;
893
894 memcpy(oldname, dev->name, IFNAMSIZ);
895
896 if (strchr(newname, '%')) {
897 err = dev_alloc_name(dev, newname);
898 if (err < 0)
899 return err;
900 strcpy(newname, dev->name);
901 }
902 else if (__dev_get_by_name(net, newname))
903 return -EEXIST;
904 else
905 strlcpy(dev->name, newname, IFNAMSIZ);
906
907 rollback:
908 err = device_rename(&dev->dev, dev->name);
909 if (err) {
910 memcpy(dev->name, oldname, IFNAMSIZ);
911 return err;
912 }
913
914 write_lock_bh(&dev_base_lock);
915 hlist_del(&dev->name_hlist);
916 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
917 write_unlock_bh(&dev_base_lock);
918
919 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
920 ret = notifier_to_errno(ret);
921
922 if (ret) {
923 if (err) {
924 printk(KERN_ERR
925 "%s: name change rollback failed: %d.\n",
926 dev->name, ret);
927 } else {
928 err = ret;
929 memcpy(dev->name, oldname, IFNAMSIZ);
930 goto rollback;
931 }
932 }
933
934 return err;
935 }
936
937 /**
938 * netdev_features_change - device changes features
939 * @dev: device to cause notification
940 *
941 * Called to indicate a device has changed features.
942 */
943 void netdev_features_change(struct net_device *dev)
944 {
945 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
946 }
947 EXPORT_SYMBOL(netdev_features_change);
948
949 /**
950 * netdev_state_change - device changes state
951 * @dev: device to cause notification
952 *
953 * Called to indicate a device has changed state. This function calls
954 * the notifier chains for netdev_chain and sends a NEWLINK message
955 * to the routing socket.
956 */
957 void netdev_state_change(struct net_device *dev)
958 {
959 if (dev->flags & IFF_UP) {
960 call_netdevice_notifiers(NETDEV_CHANGE, dev);
961 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
962 }
963 }
964
965 void netdev_bonding_change(struct net_device *dev)
966 {
967 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
968 }
969 EXPORT_SYMBOL(netdev_bonding_change);
970
971 /**
972 * dev_load - load a network module
973 * @net: the applicable net namespace
974 * @name: name of interface
975 *
976 * If a network interface is not present and the process has suitable
977 * privileges this function loads the module. If module loading is not
978 * available in this kernel then it becomes a nop.
979 */
980
981 void dev_load(struct net *net, const char *name)
982 {
983 struct net_device *dev;
984
985 read_lock(&dev_base_lock);
986 dev = __dev_get_by_name(net, name);
987 read_unlock(&dev_base_lock);
988
989 if (!dev && capable(CAP_SYS_MODULE))
990 request_module("%s", name);
991 }
992
993 /**
994 * dev_open - prepare an interface for use.
995 * @dev: device to open
996 *
997 * Takes a device from down to up state. The device's private open
998 * function is invoked and then the multicast lists are loaded. Finally
999 * the device is moved into the up state and a %NETDEV_UP message is
1000 * sent to the netdev notifier chain.
1001 *
1002 * Calling this function on an active interface is a nop. On a failure
1003 * a negative errno code is returned.
1004 */
1005 int dev_open(struct net_device *dev)
1006 {
1007 int ret = 0;
1008
1009 ASSERT_RTNL();
1010
1011 /*
1012 * Is it already up?
1013 */
1014
1015 if (dev->flags & IFF_UP)
1016 return 0;
1017
1018 /*
1019 * Is it even present?
1020 */
1021 if (!netif_device_present(dev))
1022 return -ENODEV;
1023
1024 /*
1025 * Call device private open method
1026 */
1027 set_bit(__LINK_STATE_START, &dev->state);
1028
1029 if (dev->validate_addr)
1030 ret = dev->validate_addr(dev);
1031
1032 if (!ret && dev->open)
1033 ret = dev->open(dev);
1034
1035 /*
1036 * If it went open OK then:
1037 */
1038
1039 if (ret)
1040 clear_bit(__LINK_STATE_START, &dev->state);
1041 else {
1042 /*
1043 * Set the flags.
1044 */
1045 dev->flags |= IFF_UP;
1046
1047 /*
1048 * Initialize multicasting status
1049 */
1050 dev_set_rx_mode(dev);
1051
1052 /*
1053 * Wakeup transmit queue engine
1054 */
1055 dev_activate(dev);
1056
1057 /*
1058 * ... and announce new interface.
1059 */
1060 call_netdevice_notifiers(NETDEV_UP, dev);
1061 }
1062
1063 return ret;
1064 }
1065
1066 /**
1067 * dev_close - shutdown an interface.
1068 * @dev: device to shutdown
1069 *
1070 * This function moves an active device into down state. A
1071 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1072 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1073 * chain.
1074 */
1075 int dev_close(struct net_device *dev)
1076 {
1077 ASSERT_RTNL();
1078
1079 might_sleep();
1080
1081 if (!(dev->flags & IFF_UP))
1082 return 0;
1083
1084 /*
1085 * Tell people we are going down, so that they can
1086 * prepare to death, when device is still operating.
1087 */
1088 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1089
1090 clear_bit(__LINK_STATE_START, &dev->state);
1091
1092 /* Synchronize to scheduled poll. We cannot touch poll list,
1093 * it can be even on different cpu. So just clear netif_running().
1094 *
1095 * dev->stop() will invoke napi_disable() on all of it's
1096 * napi_struct instances on this device.
1097 */
1098 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1099
1100 dev_deactivate(dev);
1101
1102 /*
1103 * Call the device specific close. This cannot fail.
1104 * Only if device is UP
1105 *
1106 * We allow it to be called even after a DETACH hot-plug
1107 * event.
1108 */
1109 if (dev->stop)
1110 dev->stop(dev);
1111
1112 /*
1113 * Device is now down.
1114 */
1115
1116 dev->flags &= ~IFF_UP;
1117
1118 /*
1119 * Tell people we are down
1120 */
1121 call_netdevice_notifiers(NETDEV_DOWN, dev);
1122
1123 return 0;
1124 }
1125
1126
1127 /**
1128 * dev_disable_lro - disable Large Receive Offload on a device
1129 * @dev: device
1130 *
1131 * Disable Large Receive Offload (LRO) on a net device. Must be
1132 * called under RTNL. This is needed if received packets may be
1133 * forwarded to another interface.
1134 */
1135 void dev_disable_lro(struct net_device *dev)
1136 {
1137 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1138 dev->ethtool_ops->set_flags) {
1139 u32 flags = dev->ethtool_ops->get_flags(dev);
1140 if (flags & ETH_FLAG_LRO) {
1141 flags &= ~ETH_FLAG_LRO;
1142 dev->ethtool_ops->set_flags(dev, flags);
1143 }
1144 }
1145 WARN_ON(dev->features & NETIF_F_LRO);
1146 }
1147 EXPORT_SYMBOL(dev_disable_lro);
1148
1149
1150 static int dev_boot_phase = 1;
1151
1152 /*
1153 * Device change register/unregister. These are not inline or static
1154 * as we export them to the world.
1155 */
1156
1157 /**
1158 * register_netdevice_notifier - register a network notifier block
1159 * @nb: notifier
1160 *
1161 * Register a notifier to be called when network device events occur.
1162 * The notifier passed is linked into the kernel structures and must
1163 * not be reused until it has been unregistered. A negative errno code
1164 * is returned on a failure.
1165 *
1166 * When registered all registration and up events are replayed
1167 * to the new notifier to allow device to have a race free
1168 * view of the network device list.
1169 */
1170
1171 int register_netdevice_notifier(struct notifier_block *nb)
1172 {
1173 struct net_device *dev;
1174 struct net_device *last;
1175 struct net *net;
1176 int err;
1177
1178 rtnl_lock();
1179 err = raw_notifier_chain_register(&netdev_chain, nb);
1180 if (err)
1181 goto unlock;
1182 if (dev_boot_phase)
1183 goto unlock;
1184 for_each_net(net) {
1185 for_each_netdev(net, dev) {
1186 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1187 err = notifier_to_errno(err);
1188 if (err)
1189 goto rollback;
1190
1191 if (!(dev->flags & IFF_UP))
1192 continue;
1193
1194 nb->notifier_call(nb, NETDEV_UP, dev);
1195 }
1196 }
1197
1198 unlock:
1199 rtnl_unlock();
1200 return err;
1201
1202 rollback:
1203 last = dev;
1204 for_each_net(net) {
1205 for_each_netdev(net, dev) {
1206 if (dev == last)
1207 break;
1208
1209 if (dev->flags & IFF_UP) {
1210 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1211 nb->notifier_call(nb, NETDEV_DOWN, dev);
1212 }
1213 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1214 }
1215 }
1216
1217 raw_notifier_chain_unregister(&netdev_chain, nb);
1218 goto unlock;
1219 }
1220
1221 /**
1222 * unregister_netdevice_notifier - unregister a network notifier block
1223 * @nb: notifier
1224 *
1225 * Unregister a notifier previously registered by
1226 * register_netdevice_notifier(). The notifier is unlinked into the
1227 * kernel structures and may then be reused. A negative errno code
1228 * is returned on a failure.
1229 */
1230
1231 int unregister_netdevice_notifier(struct notifier_block *nb)
1232 {
1233 int err;
1234
1235 rtnl_lock();
1236 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1237 rtnl_unlock();
1238 return err;
1239 }
1240
1241 /**
1242 * call_netdevice_notifiers - call all network notifier blocks
1243 * @val: value passed unmodified to notifier function
1244 * @dev: net_device pointer passed unmodified to notifier function
1245 *
1246 * Call all network notifier blocks. Parameters and return value
1247 * are as for raw_notifier_call_chain().
1248 */
1249
1250 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1251 {
1252 return raw_notifier_call_chain(&netdev_chain, val, dev);
1253 }
1254
1255 /* When > 0 there are consumers of rx skb time stamps */
1256 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1257
1258 void net_enable_timestamp(void)
1259 {
1260 atomic_inc(&netstamp_needed);
1261 }
1262
1263 void net_disable_timestamp(void)
1264 {
1265 atomic_dec(&netstamp_needed);
1266 }
1267
1268 static inline void net_timestamp(struct sk_buff *skb)
1269 {
1270 if (atomic_read(&netstamp_needed))
1271 __net_timestamp(skb);
1272 else
1273 skb->tstamp.tv64 = 0;
1274 }
1275
1276 /*
1277 * Support routine. Sends outgoing frames to any network
1278 * taps currently in use.
1279 */
1280
1281 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1282 {
1283 struct packet_type *ptype;
1284
1285 net_timestamp(skb);
1286
1287 rcu_read_lock();
1288 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1289 /* Never send packets back to the socket
1290 * they originated from - MvS (miquels@drinkel.ow.org)
1291 */
1292 if ((ptype->dev == dev || !ptype->dev) &&
1293 (ptype->af_packet_priv == NULL ||
1294 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1295 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1296 if (!skb2)
1297 break;
1298
1299 /* skb->nh should be correctly
1300 set by sender, so that the second statement is
1301 just protection against buggy protocols.
1302 */
1303 skb_reset_mac_header(skb2);
1304
1305 if (skb_network_header(skb2) < skb2->data ||
1306 skb2->network_header > skb2->tail) {
1307 if (net_ratelimit())
1308 printk(KERN_CRIT "protocol %04x is "
1309 "buggy, dev %s\n",
1310 skb2->protocol, dev->name);
1311 skb_reset_network_header(skb2);
1312 }
1313
1314 skb2->transport_header = skb2->network_header;
1315 skb2->pkt_type = PACKET_OUTGOING;
1316 ptype->func(skb2, skb->dev, ptype, skb->dev);
1317 }
1318 }
1319 rcu_read_unlock();
1320 }
1321
1322
1323 void __netif_schedule(struct net_device *dev)
1324 {
1325 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1326 unsigned long flags;
1327 struct softnet_data *sd;
1328
1329 local_irq_save(flags);
1330 sd = &__get_cpu_var(softnet_data);
1331 dev->next_sched = sd->output_queue;
1332 sd->output_queue = dev;
1333 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1334 local_irq_restore(flags);
1335 }
1336 }
1337 EXPORT_SYMBOL(__netif_schedule);
1338
1339 void dev_kfree_skb_irq(struct sk_buff *skb)
1340 {
1341 if (atomic_dec_and_test(&skb->users)) {
1342 struct softnet_data *sd;
1343 unsigned long flags;
1344
1345 local_irq_save(flags);
1346 sd = &__get_cpu_var(softnet_data);
1347 skb->next = sd->completion_queue;
1348 sd->completion_queue = skb;
1349 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1350 local_irq_restore(flags);
1351 }
1352 }
1353 EXPORT_SYMBOL(dev_kfree_skb_irq);
1354
1355 void dev_kfree_skb_any(struct sk_buff *skb)
1356 {
1357 if (in_irq() || irqs_disabled())
1358 dev_kfree_skb_irq(skb);
1359 else
1360 dev_kfree_skb(skb);
1361 }
1362 EXPORT_SYMBOL(dev_kfree_skb_any);
1363
1364
1365 /**
1366 * netif_device_detach - mark device as removed
1367 * @dev: network device
1368 *
1369 * Mark device as removed from system and therefore no longer available.
1370 */
1371 void netif_device_detach(struct net_device *dev)
1372 {
1373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1374 netif_running(dev)) {
1375 netif_stop_queue(dev);
1376 }
1377 }
1378 EXPORT_SYMBOL(netif_device_detach);
1379
1380 /**
1381 * netif_device_attach - mark device as attached
1382 * @dev: network device
1383 *
1384 * Mark device as attached from system and restart if needed.
1385 */
1386 void netif_device_attach(struct net_device *dev)
1387 {
1388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1389 netif_running(dev)) {
1390 netif_wake_queue(dev);
1391 __netdev_watchdog_up(dev);
1392 }
1393 }
1394 EXPORT_SYMBOL(netif_device_attach);
1395
1396 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1397 {
1398 return ((features & NETIF_F_GEN_CSUM) ||
1399 ((features & NETIF_F_IP_CSUM) &&
1400 protocol == htons(ETH_P_IP)) ||
1401 ((features & NETIF_F_IPV6_CSUM) &&
1402 protocol == htons(ETH_P_IPV6)));
1403 }
1404
1405 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1406 {
1407 if (can_checksum_protocol(dev->features, skb->protocol))
1408 return true;
1409
1410 if (skb->protocol == htons(ETH_P_8021Q)) {
1411 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1412 if (can_checksum_protocol(dev->features & dev->vlan_features,
1413 veh->h_vlan_encapsulated_proto))
1414 return true;
1415 }
1416
1417 return false;
1418 }
1419
1420 /*
1421 * Invalidate hardware checksum when packet is to be mangled, and
1422 * complete checksum manually on outgoing path.
1423 */
1424 int skb_checksum_help(struct sk_buff *skb)
1425 {
1426 __wsum csum;
1427 int ret = 0, offset;
1428
1429 if (skb->ip_summed == CHECKSUM_COMPLETE)
1430 goto out_set_summed;
1431
1432 if (unlikely(skb_shinfo(skb)->gso_size)) {
1433 /* Let GSO fix up the checksum. */
1434 goto out_set_summed;
1435 }
1436
1437 offset = skb->csum_start - skb_headroom(skb);
1438 BUG_ON(offset >= skb_headlen(skb));
1439 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1440
1441 offset += skb->csum_offset;
1442 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1443
1444 if (skb_cloned(skb) &&
1445 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1446 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1447 if (ret)
1448 goto out;
1449 }
1450
1451 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1452 out_set_summed:
1453 skb->ip_summed = CHECKSUM_NONE;
1454 out:
1455 return ret;
1456 }
1457
1458 /**
1459 * skb_gso_segment - Perform segmentation on skb.
1460 * @skb: buffer to segment
1461 * @features: features for the output path (see dev->features)
1462 *
1463 * This function segments the given skb and returns a list of segments.
1464 *
1465 * It may return NULL if the skb requires no segmentation. This is
1466 * only possible when GSO is used for verifying header integrity.
1467 */
1468 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1469 {
1470 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1471 struct packet_type *ptype;
1472 __be16 type = skb->protocol;
1473 int err;
1474
1475 BUG_ON(skb_shinfo(skb)->frag_list);
1476
1477 skb_reset_mac_header(skb);
1478 skb->mac_len = skb->network_header - skb->mac_header;
1479 __skb_pull(skb, skb->mac_len);
1480
1481 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1482 if (skb_header_cloned(skb) &&
1483 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1484 return ERR_PTR(err);
1485 }
1486
1487 rcu_read_lock();
1488 list_for_each_entry_rcu(ptype,
1489 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1490 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1491 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1492 err = ptype->gso_send_check(skb);
1493 segs = ERR_PTR(err);
1494 if (err || skb_gso_ok(skb, features))
1495 break;
1496 __skb_push(skb, (skb->data -
1497 skb_network_header(skb)));
1498 }
1499 segs = ptype->gso_segment(skb, features);
1500 break;
1501 }
1502 }
1503 rcu_read_unlock();
1504
1505 __skb_push(skb, skb->data - skb_mac_header(skb));
1506
1507 return segs;
1508 }
1509
1510 EXPORT_SYMBOL(skb_gso_segment);
1511
1512 /* Take action when hardware reception checksum errors are detected. */
1513 #ifdef CONFIG_BUG
1514 void netdev_rx_csum_fault(struct net_device *dev)
1515 {
1516 if (net_ratelimit()) {
1517 printk(KERN_ERR "%s: hw csum failure.\n",
1518 dev ? dev->name : "<unknown>");
1519 dump_stack();
1520 }
1521 }
1522 EXPORT_SYMBOL(netdev_rx_csum_fault);
1523 #endif
1524
1525 /* Actually, we should eliminate this check as soon as we know, that:
1526 * 1. IOMMU is present and allows to map all the memory.
1527 * 2. No high memory really exists on this machine.
1528 */
1529
1530 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1531 {
1532 #ifdef CONFIG_HIGHMEM
1533 int i;
1534
1535 if (dev->features & NETIF_F_HIGHDMA)
1536 return 0;
1537
1538 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1539 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1540 return 1;
1541
1542 #endif
1543 return 0;
1544 }
1545
1546 struct dev_gso_cb {
1547 void (*destructor)(struct sk_buff *skb);
1548 };
1549
1550 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1551
1552 static void dev_gso_skb_destructor(struct sk_buff *skb)
1553 {
1554 struct dev_gso_cb *cb;
1555
1556 do {
1557 struct sk_buff *nskb = skb->next;
1558
1559 skb->next = nskb->next;
1560 nskb->next = NULL;
1561 kfree_skb(nskb);
1562 } while (skb->next);
1563
1564 cb = DEV_GSO_CB(skb);
1565 if (cb->destructor)
1566 cb->destructor(skb);
1567 }
1568
1569 /**
1570 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1571 * @skb: buffer to segment
1572 *
1573 * This function segments the given skb and stores the list of segments
1574 * in skb->next.
1575 */
1576 static int dev_gso_segment(struct sk_buff *skb)
1577 {
1578 struct net_device *dev = skb->dev;
1579 struct sk_buff *segs;
1580 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1581 NETIF_F_SG : 0);
1582
1583 segs = skb_gso_segment(skb, features);
1584
1585 /* Verifying header integrity only. */
1586 if (!segs)
1587 return 0;
1588
1589 if (IS_ERR(segs))
1590 return PTR_ERR(segs);
1591
1592 skb->next = segs;
1593 DEV_GSO_CB(skb)->destructor = skb->destructor;
1594 skb->destructor = dev_gso_skb_destructor;
1595
1596 return 0;
1597 }
1598
1599 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1600 {
1601 if (likely(!skb->next)) {
1602 if (!list_empty(&ptype_all))
1603 dev_queue_xmit_nit(skb, dev);
1604
1605 if (netif_needs_gso(dev, skb)) {
1606 if (unlikely(dev_gso_segment(skb)))
1607 goto out_kfree_skb;
1608 if (skb->next)
1609 goto gso;
1610 }
1611
1612 return dev->hard_start_xmit(skb, dev);
1613 }
1614
1615 gso:
1616 do {
1617 struct sk_buff *nskb = skb->next;
1618 int rc;
1619
1620 skb->next = nskb->next;
1621 nskb->next = NULL;
1622 rc = dev->hard_start_xmit(nskb, dev);
1623 if (unlikely(rc)) {
1624 nskb->next = skb->next;
1625 skb->next = nskb;
1626 return rc;
1627 }
1628 if (unlikely((netif_queue_stopped(dev) ||
1629 netif_subqueue_stopped(dev, skb)) &&
1630 skb->next))
1631 return NETDEV_TX_BUSY;
1632 } while (skb->next);
1633
1634 skb->destructor = DEV_GSO_CB(skb)->destructor;
1635
1636 out_kfree_skb:
1637 kfree_skb(skb);
1638 return 0;
1639 }
1640
1641 /**
1642 * dev_queue_xmit - transmit a buffer
1643 * @skb: buffer to transmit
1644 *
1645 * Queue a buffer for transmission to a network device. The caller must
1646 * have set the device and priority and built the buffer before calling
1647 * this function. The function can be called from an interrupt.
1648 *
1649 * A negative errno code is returned on a failure. A success does not
1650 * guarantee the frame will be transmitted as it may be dropped due
1651 * to congestion or traffic shaping.
1652 *
1653 * -----------------------------------------------------------------------------------
1654 * I notice this method can also return errors from the queue disciplines,
1655 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1656 * be positive.
1657 *
1658 * Regardless of the return value, the skb is consumed, so it is currently
1659 * difficult to retry a send to this method. (You can bump the ref count
1660 * before sending to hold a reference for retry if you are careful.)
1661 *
1662 * When calling this method, interrupts MUST be enabled. This is because
1663 * the BH enable code must have IRQs enabled so that it will not deadlock.
1664 * --BLG
1665 */
1666
1667 int dev_queue_xmit(struct sk_buff *skb)
1668 {
1669 struct net_device *dev = skb->dev;
1670 struct netdev_queue *txq;
1671 struct Qdisc *q;
1672 int rc = -ENOMEM;
1673
1674 /* GSO will handle the following emulations directly. */
1675 if (netif_needs_gso(dev, skb))
1676 goto gso;
1677
1678 if (skb_shinfo(skb)->frag_list &&
1679 !(dev->features & NETIF_F_FRAGLIST) &&
1680 __skb_linearize(skb))
1681 goto out_kfree_skb;
1682
1683 /* Fragmented skb is linearized if device does not support SG,
1684 * or if at least one of fragments is in highmem and device
1685 * does not support DMA from it.
1686 */
1687 if (skb_shinfo(skb)->nr_frags &&
1688 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1689 __skb_linearize(skb))
1690 goto out_kfree_skb;
1691
1692 /* If packet is not checksummed and device does not support
1693 * checksumming for this protocol, complete checksumming here.
1694 */
1695 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1696 skb_set_transport_header(skb, skb->csum_start -
1697 skb_headroom(skb));
1698 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1699 goto out_kfree_skb;
1700 }
1701
1702 gso:
1703 txq = &dev->tx_queue;
1704 spin_lock_prefetch(&txq->lock);
1705
1706 /* Disable soft irqs for various locks below. Also
1707 * stops preemption for RCU.
1708 */
1709 rcu_read_lock_bh();
1710
1711 /* Updates of qdisc are serialized by queue->lock.
1712 * The struct Qdisc which is pointed to by qdisc is now a
1713 * rcu structure - it may be accessed without acquiring
1714 * a lock (but the structure may be stale.) The freeing of the
1715 * qdisc will be deferred until it's known that there are no
1716 * more references to it.
1717 *
1718 * If the qdisc has an enqueue function, we still need to
1719 * hold the queue->lock before calling it, since queue->lock
1720 * also serializes access to the device queue.
1721 */
1722
1723 q = rcu_dereference(dev->qdisc);
1724 #ifdef CONFIG_NET_CLS_ACT
1725 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1726 #endif
1727 if (q->enqueue) {
1728 /* Grab device queue */
1729 spin_lock(&txq->lock);
1730 q = dev->qdisc;
1731 if (q->enqueue) {
1732 /* reset queue_mapping to zero */
1733 skb_set_queue_mapping(skb, 0);
1734 rc = q->enqueue(skb, q);
1735 qdisc_run(dev);
1736 spin_unlock(&txq->lock);
1737
1738 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1739 goto out;
1740 }
1741 spin_unlock(&txq->lock);
1742 }
1743
1744 /* The device has no queue. Common case for software devices:
1745 loopback, all the sorts of tunnels...
1746
1747 Really, it is unlikely that netif_tx_lock protection is necessary
1748 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1749 counters.)
1750 However, it is possible, that they rely on protection
1751 made by us here.
1752
1753 Check this and shot the lock. It is not prone from deadlocks.
1754 Either shot noqueue qdisc, it is even simpler 8)
1755 */
1756 if (dev->flags & IFF_UP) {
1757 int cpu = smp_processor_id(); /* ok because BHs are off */
1758
1759 if (dev->xmit_lock_owner != cpu) {
1760
1761 HARD_TX_LOCK(dev, cpu);
1762
1763 if (!netif_queue_stopped(dev) &&
1764 !netif_subqueue_stopped(dev, skb)) {
1765 rc = 0;
1766 if (!dev_hard_start_xmit(skb, dev)) {
1767 HARD_TX_UNLOCK(dev);
1768 goto out;
1769 }
1770 }
1771 HARD_TX_UNLOCK(dev);
1772 if (net_ratelimit())
1773 printk(KERN_CRIT "Virtual device %s asks to "
1774 "queue packet!\n", dev->name);
1775 } else {
1776 /* Recursion is detected! It is possible,
1777 * unfortunately */
1778 if (net_ratelimit())
1779 printk(KERN_CRIT "Dead loop on virtual device "
1780 "%s, fix it urgently!\n", dev->name);
1781 }
1782 }
1783
1784 rc = -ENETDOWN;
1785 rcu_read_unlock_bh();
1786
1787 out_kfree_skb:
1788 kfree_skb(skb);
1789 return rc;
1790 out:
1791 rcu_read_unlock_bh();
1792 return rc;
1793 }
1794
1795
1796 /*=======================================================================
1797 Receiver routines
1798 =======================================================================*/
1799
1800 int netdev_max_backlog __read_mostly = 1000;
1801 int netdev_budget __read_mostly = 300;
1802 int weight_p __read_mostly = 64; /* old backlog weight */
1803
1804 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1805
1806
1807 /**
1808 * netif_rx - post buffer to the network code
1809 * @skb: buffer to post
1810 *
1811 * This function receives a packet from a device driver and queues it for
1812 * the upper (protocol) levels to process. It always succeeds. The buffer
1813 * may be dropped during processing for congestion control or by the
1814 * protocol layers.
1815 *
1816 * return values:
1817 * NET_RX_SUCCESS (no congestion)
1818 * NET_RX_DROP (packet was dropped)
1819 *
1820 */
1821
1822 int netif_rx(struct sk_buff *skb)
1823 {
1824 struct softnet_data *queue;
1825 unsigned long flags;
1826
1827 /* if netpoll wants it, pretend we never saw it */
1828 if (netpoll_rx(skb))
1829 return NET_RX_DROP;
1830
1831 if (!skb->tstamp.tv64)
1832 net_timestamp(skb);
1833
1834 /*
1835 * The code is rearranged so that the path is the most
1836 * short when CPU is congested, but is still operating.
1837 */
1838 local_irq_save(flags);
1839 queue = &__get_cpu_var(softnet_data);
1840
1841 __get_cpu_var(netdev_rx_stat).total++;
1842 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1843 if (queue->input_pkt_queue.qlen) {
1844 enqueue:
1845 dev_hold(skb->dev);
1846 __skb_queue_tail(&queue->input_pkt_queue, skb);
1847 local_irq_restore(flags);
1848 return NET_RX_SUCCESS;
1849 }
1850
1851 napi_schedule(&queue->backlog);
1852 goto enqueue;
1853 }
1854
1855 __get_cpu_var(netdev_rx_stat).dropped++;
1856 local_irq_restore(flags);
1857
1858 kfree_skb(skb);
1859 return NET_RX_DROP;
1860 }
1861
1862 int netif_rx_ni(struct sk_buff *skb)
1863 {
1864 int err;
1865
1866 preempt_disable();
1867 err = netif_rx(skb);
1868 if (local_softirq_pending())
1869 do_softirq();
1870 preempt_enable();
1871
1872 return err;
1873 }
1874
1875 EXPORT_SYMBOL(netif_rx_ni);
1876
1877 static inline struct net_device *skb_bond(struct sk_buff *skb)
1878 {
1879 struct net_device *dev = skb->dev;
1880
1881 if (dev->master) {
1882 if (skb_bond_should_drop(skb)) {
1883 kfree_skb(skb);
1884 return NULL;
1885 }
1886 skb->dev = dev->master;
1887 }
1888
1889 return dev;
1890 }
1891
1892
1893 static void net_tx_action(struct softirq_action *h)
1894 {
1895 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1896
1897 if (sd->completion_queue) {
1898 struct sk_buff *clist;
1899
1900 local_irq_disable();
1901 clist = sd->completion_queue;
1902 sd->completion_queue = NULL;
1903 local_irq_enable();
1904
1905 while (clist) {
1906 struct sk_buff *skb = clist;
1907 clist = clist->next;
1908
1909 BUG_TRAP(!atomic_read(&skb->users));
1910 __kfree_skb(skb);
1911 }
1912 }
1913
1914 if (sd->output_queue) {
1915 struct net_device *head;
1916
1917 local_irq_disable();
1918 head = sd->output_queue;
1919 sd->output_queue = NULL;
1920 local_irq_enable();
1921
1922 while (head) {
1923 struct net_device *dev = head;
1924 struct netdev_queue *txq;
1925 head = head->next_sched;
1926
1927 txq = &dev->tx_queue;
1928
1929 smp_mb__before_clear_bit();
1930 clear_bit(__LINK_STATE_SCHED, &dev->state);
1931
1932 if (spin_trylock(&txq->lock)) {
1933 qdisc_run(dev);
1934 spin_unlock(&txq->lock);
1935 } else {
1936 netif_schedule(dev);
1937 }
1938 }
1939 }
1940 }
1941
1942 static inline int deliver_skb(struct sk_buff *skb,
1943 struct packet_type *pt_prev,
1944 struct net_device *orig_dev)
1945 {
1946 atomic_inc(&skb->users);
1947 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1948 }
1949
1950 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1951 /* These hooks defined here for ATM */
1952 struct net_bridge;
1953 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1954 unsigned char *addr);
1955 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1956
1957 /*
1958 * If bridge module is loaded call bridging hook.
1959 * returns NULL if packet was consumed.
1960 */
1961 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1962 struct sk_buff *skb) __read_mostly;
1963 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1964 struct packet_type **pt_prev, int *ret,
1965 struct net_device *orig_dev)
1966 {
1967 struct net_bridge_port *port;
1968
1969 if (skb->pkt_type == PACKET_LOOPBACK ||
1970 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1971 return skb;
1972
1973 if (*pt_prev) {
1974 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1975 *pt_prev = NULL;
1976 }
1977
1978 return br_handle_frame_hook(port, skb);
1979 }
1980 #else
1981 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1982 #endif
1983
1984 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1985 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1986 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1987
1988 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1989 struct packet_type **pt_prev,
1990 int *ret,
1991 struct net_device *orig_dev)
1992 {
1993 if (skb->dev->macvlan_port == NULL)
1994 return skb;
1995
1996 if (*pt_prev) {
1997 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1998 *pt_prev = NULL;
1999 }
2000 return macvlan_handle_frame_hook(skb);
2001 }
2002 #else
2003 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2004 #endif
2005
2006 #ifdef CONFIG_NET_CLS_ACT
2007 /* TODO: Maybe we should just force sch_ingress to be compiled in
2008 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2009 * a compare and 2 stores extra right now if we dont have it on
2010 * but have CONFIG_NET_CLS_ACT
2011 * NOTE: This doesnt stop any functionality; if you dont have
2012 * the ingress scheduler, you just cant add policies on ingress.
2013 *
2014 */
2015 static int ing_filter(struct sk_buff *skb)
2016 {
2017 struct Qdisc *q;
2018 struct net_device *dev = skb->dev;
2019 int result = TC_ACT_OK;
2020 u32 ttl = G_TC_RTTL(skb->tc_verd);
2021
2022 if (MAX_RED_LOOP < ttl++) {
2023 printk(KERN_WARNING
2024 "Redir loop detected Dropping packet (%d->%d)\n",
2025 skb->iif, dev->ifindex);
2026 return TC_ACT_SHOT;
2027 }
2028
2029 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2030 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2031
2032 spin_lock(&dev->ingress_lock);
2033 if ((q = dev->qdisc_ingress) != NULL)
2034 result = q->enqueue(skb, q);
2035 spin_unlock(&dev->ingress_lock);
2036
2037 return result;
2038 }
2039
2040 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2041 struct packet_type **pt_prev,
2042 int *ret, struct net_device *orig_dev)
2043 {
2044 if (!skb->dev->qdisc_ingress)
2045 goto out;
2046
2047 if (*pt_prev) {
2048 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2049 *pt_prev = NULL;
2050 } else {
2051 /* Huh? Why does turning on AF_PACKET affect this? */
2052 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2053 }
2054
2055 switch (ing_filter(skb)) {
2056 case TC_ACT_SHOT:
2057 case TC_ACT_STOLEN:
2058 kfree_skb(skb);
2059 return NULL;
2060 }
2061
2062 out:
2063 skb->tc_verd = 0;
2064 return skb;
2065 }
2066 #endif
2067
2068 /**
2069 * netif_receive_skb - process receive buffer from network
2070 * @skb: buffer to process
2071 *
2072 * netif_receive_skb() is the main receive data processing function.
2073 * It always succeeds. The buffer may be dropped during processing
2074 * for congestion control or by the protocol layers.
2075 *
2076 * This function may only be called from softirq context and interrupts
2077 * should be enabled.
2078 *
2079 * Return values (usually ignored):
2080 * NET_RX_SUCCESS: no congestion
2081 * NET_RX_DROP: packet was dropped
2082 */
2083 int netif_receive_skb(struct sk_buff *skb)
2084 {
2085 struct packet_type *ptype, *pt_prev;
2086 struct net_device *orig_dev;
2087 int ret = NET_RX_DROP;
2088 __be16 type;
2089
2090 /* if we've gotten here through NAPI, check netpoll */
2091 if (netpoll_receive_skb(skb))
2092 return NET_RX_DROP;
2093
2094 if (!skb->tstamp.tv64)
2095 net_timestamp(skb);
2096
2097 if (!skb->iif)
2098 skb->iif = skb->dev->ifindex;
2099
2100 orig_dev = skb_bond(skb);
2101
2102 if (!orig_dev)
2103 return NET_RX_DROP;
2104
2105 __get_cpu_var(netdev_rx_stat).total++;
2106
2107 skb_reset_network_header(skb);
2108 skb_reset_transport_header(skb);
2109 skb->mac_len = skb->network_header - skb->mac_header;
2110
2111 pt_prev = NULL;
2112
2113 rcu_read_lock();
2114
2115 /* Don't receive packets in an exiting network namespace */
2116 if (!net_alive(dev_net(skb->dev)))
2117 goto out;
2118
2119 #ifdef CONFIG_NET_CLS_ACT
2120 if (skb->tc_verd & TC_NCLS) {
2121 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2122 goto ncls;
2123 }
2124 #endif
2125
2126 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2127 if (!ptype->dev || ptype->dev == skb->dev) {
2128 if (pt_prev)
2129 ret = deliver_skb(skb, pt_prev, orig_dev);
2130 pt_prev = ptype;
2131 }
2132 }
2133
2134 #ifdef CONFIG_NET_CLS_ACT
2135 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2136 if (!skb)
2137 goto out;
2138 ncls:
2139 #endif
2140
2141 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2142 if (!skb)
2143 goto out;
2144 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2145 if (!skb)
2146 goto out;
2147
2148 type = skb->protocol;
2149 list_for_each_entry_rcu(ptype,
2150 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2151 if (ptype->type == type &&
2152 (!ptype->dev || ptype->dev == skb->dev)) {
2153 if (pt_prev)
2154 ret = deliver_skb(skb, pt_prev, orig_dev);
2155 pt_prev = ptype;
2156 }
2157 }
2158
2159 if (pt_prev) {
2160 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2161 } else {
2162 kfree_skb(skb);
2163 /* Jamal, now you will not able to escape explaining
2164 * me how you were going to use this. :-)
2165 */
2166 ret = NET_RX_DROP;
2167 }
2168
2169 out:
2170 rcu_read_unlock();
2171 return ret;
2172 }
2173
2174 static int process_backlog(struct napi_struct *napi, int quota)
2175 {
2176 int work = 0;
2177 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2178 unsigned long start_time = jiffies;
2179
2180 napi->weight = weight_p;
2181 do {
2182 struct sk_buff *skb;
2183 struct net_device *dev;
2184
2185 local_irq_disable();
2186 skb = __skb_dequeue(&queue->input_pkt_queue);
2187 if (!skb) {
2188 __napi_complete(napi);
2189 local_irq_enable();
2190 break;
2191 }
2192
2193 local_irq_enable();
2194
2195 dev = skb->dev;
2196
2197 netif_receive_skb(skb);
2198
2199 dev_put(dev);
2200 } while (++work < quota && jiffies == start_time);
2201
2202 return work;
2203 }
2204
2205 /**
2206 * __napi_schedule - schedule for receive
2207 * @n: entry to schedule
2208 *
2209 * The entry's receive function will be scheduled to run
2210 */
2211 void __napi_schedule(struct napi_struct *n)
2212 {
2213 unsigned long flags;
2214
2215 local_irq_save(flags);
2216 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2217 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2218 local_irq_restore(flags);
2219 }
2220 EXPORT_SYMBOL(__napi_schedule);
2221
2222
2223 static void net_rx_action(struct softirq_action *h)
2224 {
2225 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2226 unsigned long start_time = jiffies;
2227 int budget = netdev_budget;
2228 void *have;
2229
2230 local_irq_disable();
2231
2232 while (!list_empty(list)) {
2233 struct napi_struct *n;
2234 int work, weight;
2235
2236 /* If softirq window is exhuasted then punt.
2237 *
2238 * Note that this is a slight policy change from the
2239 * previous NAPI code, which would allow up to 2
2240 * jiffies to pass before breaking out. The test
2241 * used to be "jiffies - start_time > 1".
2242 */
2243 if (unlikely(budget <= 0 || jiffies != start_time))
2244 goto softnet_break;
2245
2246 local_irq_enable();
2247
2248 /* Even though interrupts have been re-enabled, this
2249 * access is safe because interrupts can only add new
2250 * entries to the tail of this list, and only ->poll()
2251 * calls can remove this head entry from the list.
2252 */
2253 n = list_entry(list->next, struct napi_struct, poll_list);
2254
2255 have = netpoll_poll_lock(n);
2256
2257 weight = n->weight;
2258
2259 /* This NAPI_STATE_SCHED test is for avoiding a race
2260 * with netpoll's poll_napi(). Only the entity which
2261 * obtains the lock and sees NAPI_STATE_SCHED set will
2262 * actually make the ->poll() call. Therefore we avoid
2263 * accidently calling ->poll() when NAPI is not scheduled.
2264 */
2265 work = 0;
2266 if (test_bit(NAPI_STATE_SCHED, &n->state))
2267 work = n->poll(n, weight);
2268
2269 WARN_ON_ONCE(work > weight);
2270
2271 budget -= work;
2272
2273 local_irq_disable();
2274
2275 /* Drivers must not modify the NAPI state if they
2276 * consume the entire weight. In such cases this code
2277 * still "owns" the NAPI instance and therefore can
2278 * move the instance around on the list at-will.
2279 */
2280 if (unlikely(work == weight)) {
2281 if (unlikely(napi_disable_pending(n)))
2282 __napi_complete(n);
2283 else
2284 list_move_tail(&n->poll_list, list);
2285 }
2286
2287 netpoll_poll_unlock(have);
2288 }
2289 out:
2290 local_irq_enable();
2291
2292 #ifdef CONFIG_NET_DMA
2293 /*
2294 * There may not be any more sk_buffs coming right now, so push
2295 * any pending DMA copies to hardware
2296 */
2297 if (!cpus_empty(net_dma.channel_mask)) {
2298 int chan_idx;
2299 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2300 struct dma_chan *chan = net_dma.channels[chan_idx];
2301 if (chan)
2302 dma_async_memcpy_issue_pending(chan);
2303 }
2304 }
2305 #endif
2306
2307 return;
2308
2309 softnet_break:
2310 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2311 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2312 goto out;
2313 }
2314
2315 static gifconf_func_t * gifconf_list [NPROTO];
2316
2317 /**
2318 * register_gifconf - register a SIOCGIF handler
2319 * @family: Address family
2320 * @gifconf: Function handler
2321 *
2322 * Register protocol dependent address dumping routines. The handler
2323 * that is passed must not be freed or reused until it has been replaced
2324 * by another handler.
2325 */
2326 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2327 {
2328 if (family >= NPROTO)
2329 return -EINVAL;
2330 gifconf_list[family] = gifconf;
2331 return 0;
2332 }
2333
2334
2335 /*
2336 * Map an interface index to its name (SIOCGIFNAME)
2337 */
2338
2339 /*
2340 * We need this ioctl for efficient implementation of the
2341 * if_indextoname() function required by the IPv6 API. Without
2342 * it, we would have to search all the interfaces to find a
2343 * match. --pb
2344 */
2345
2346 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2347 {
2348 struct net_device *dev;
2349 struct ifreq ifr;
2350
2351 /*
2352 * Fetch the caller's info block.
2353 */
2354
2355 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2356 return -EFAULT;
2357
2358 read_lock(&dev_base_lock);
2359 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2360 if (!dev) {
2361 read_unlock(&dev_base_lock);
2362 return -ENODEV;
2363 }
2364
2365 strcpy(ifr.ifr_name, dev->name);
2366 read_unlock(&dev_base_lock);
2367
2368 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2369 return -EFAULT;
2370 return 0;
2371 }
2372
2373 /*
2374 * Perform a SIOCGIFCONF call. This structure will change
2375 * size eventually, and there is nothing I can do about it.
2376 * Thus we will need a 'compatibility mode'.
2377 */
2378
2379 static int dev_ifconf(struct net *net, char __user *arg)
2380 {
2381 struct ifconf ifc;
2382 struct net_device *dev;
2383 char __user *pos;
2384 int len;
2385 int total;
2386 int i;
2387
2388 /*
2389 * Fetch the caller's info block.
2390 */
2391
2392 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2393 return -EFAULT;
2394
2395 pos = ifc.ifc_buf;
2396 len = ifc.ifc_len;
2397
2398 /*
2399 * Loop over the interfaces, and write an info block for each.
2400 */
2401
2402 total = 0;
2403 for_each_netdev(net, dev) {
2404 for (i = 0; i < NPROTO; i++) {
2405 if (gifconf_list[i]) {
2406 int done;
2407 if (!pos)
2408 done = gifconf_list[i](dev, NULL, 0);
2409 else
2410 done = gifconf_list[i](dev, pos + total,
2411 len - total);
2412 if (done < 0)
2413 return -EFAULT;
2414 total += done;
2415 }
2416 }
2417 }
2418
2419 /*
2420 * All done. Write the updated control block back to the caller.
2421 */
2422 ifc.ifc_len = total;
2423
2424 /*
2425 * Both BSD and Solaris return 0 here, so we do too.
2426 */
2427 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2428 }
2429
2430 #ifdef CONFIG_PROC_FS
2431 /*
2432 * This is invoked by the /proc filesystem handler to display a device
2433 * in detail.
2434 */
2435 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2436 __acquires(dev_base_lock)
2437 {
2438 struct net *net = seq_file_net(seq);
2439 loff_t off;
2440 struct net_device *dev;
2441
2442 read_lock(&dev_base_lock);
2443 if (!*pos)
2444 return SEQ_START_TOKEN;
2445
2446 off = 1;
2447 for_each_netdev(net, dev)
2448 if (off++ == *pos)
2449 return dev;
2450
2451 return NULL;
2452 }
2453
2454 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2455 {
2456 struct net *net = seq_file_net(seq);
2457 ++*pos;
2458 return v == SEQ_START_TOKEN ?
2459 first_net_device(net) : next_net_device((struct net_device *)v);
2460 }
2461
2462 void dev_seq_stop(struct seq_file *seq, void *v)
2463 __releases(dev_base_lock)
2464 {
2465 read_unlock(&dev_base_lock);
2466 }
2467
2468 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2469 {
2470 struct net_device_stats *stats = dev->get_stats(dev);
2471
2472 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2473 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2474 dev->name, stats->rx_bytes, stats->rx_packets,
2475 stats->rx_errors,
2476 stats->rx_dropped + stats->rx_missed_errors,
2477 stats->rx_fifo_errors,
2478 stats->rx_length_errors + stats->rx_over_errors +
2479 stats->rx_crc_errors + stats->rx_frame_errors,
2480 stats->rx_compressed, stats->multicast,
2481 stats->tx_bytes, stats->tx_packets,
2482 stats->tx_errors, stats->tx_dropped,
2483 stats->tx_fifo_errors, stats->collisions,
2484 stats->tx_carrier_errors +
2485 stats->tx_aborted_errors +
2486 stats->tx_window_errors +
2487 stats->tx_heartbeat_errors,
2488 stats->tx_compressed);
2489 }
2490
2491 /*
2492 * Called from the PROCfs module. This now uses the new arbitrary sized
2493 * /proc/net interface to create /proc/net/dev
2494 */
2495 static int dev_seq_show(struct seq_file *seq, void *v)
2496 {
2497 if (v == SEQ_START_TOKEN)
2498 seq_puts(seq, "Inter-| Receive "
2499 " | Transmit\n"
2500 " face |bytes packets errs drop fifo frame "
2501 "compressed multicast|bytes packets errs "
2502 "drop fifo colls carrier compressed\n");
2503 else
2504 dev_seq_printf_stats(seq, v);
2505 return 0;
2506 }
2507
2508 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2509 {
2510 struct netif_rx_stats *rc = NULL;
2511
2512 while (*pos < nr_cpu_ids)
2513 if (cpu_online(*pos)) {
2514 rc = &per_cpu(netdev_rx_stat, *pos);
2515 break;
2516 } else
2517 ++*pos;
2518 return rc;
2519 }
2520
2521 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2522 {
2523 return softnet_get_online(pos);
2524 }
2525
2526 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2527 {
2528 ++*pos;
2529 return softnet_get_online(pos);
2530 }
2531
2532 static void softnet_seq_stop(struct seq_file *seq, void *v)
2533 {
2534 }
2535
2536 static int softnet_seq_show(struct seq_file *seq, void *v)
2537 {
2538 struct netif_rx_stats *s = v;
2539
2540 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2541 s->total, s->dropped, s->time_squeeze, 0,
2542 0, 0, 0, 0, /* was fastroute */
2543 s->cpu_collision );
2544 return 0;
2545 }
2546
2547 static const struct seq_operations dev_seq_ops = {
2548 .start = dev_seq_start,
2549 .next = dev_seq_next,
2550 .stop = dev_seq_stop,
2551 .show = dev_seq_show,
2552 };
2553
2554 static int dev_seq_open(struct inode *inode, struct file *file)
2555 {
2556 return seq_open_net(inode, file, &dev_seq_ops,
2557 sizeof(struct seq_net_private));
2558 }
2559
2560 static const struct file_operations dev_seq_fops = {
2561 .owner = THIS_MODULE,
2562 .open = dev_seq_open,
2563 .read = seq_read,
2564 .llseek = seq_lseek,
2565 .release = seq_release_net,
2566 };
2567
2568 static const struct seq_operations softnet_seq_ops = {
2569 .start = softnet_seq_start,
2570 .next = softnet_seq_next,
2571 .stop = softnet_seq_stop,
2572 .show = softnet_seq_show,
2573 };
2574
2575 static int softnet_seq_open(struct inode *inode, struct file *file)
2576 {
2577 return seq_open(file, &softnet_seq_ops);
2578 }
2579
2580 static const struct file_operations softnet_seq_fops = {
2581 .owner = THIS_MODULE,
2582 .open = softnet_seq_open,
2583 .read = seq_read,
2584 .llseek = seq_lseek,
2585 .release = seq_release,
2586 };
2587
2588 static void *ptype_get_idx(loff_t pos)
2589 {
2590 struct packet_type *pt = NULL;
2591 loff_t i = 0;
2592 int t;
2593
2594 list_for_each_entry_rcu(pt, &ptype_all, list) {
2595 if (i == pos)
2596 return pt;
2597 ++i;
2598 }
2599
2600 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2601 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2602 if (i == pos)
2603 return pt;
2604 ++i;
2605 }
2606 }
2607 return NULL;
2608 }
2609
2610 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2611 __acquires(RCU)
2612 {
2613 rcu_read_lock();
2614 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2615 }
2616
2617 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2618 {
2619 struct packet_type *pt;
2620 struct list_head *nxt;
2621 int hash;
2622
2623 ++*pos;
2624 if (v == SEQ_START_TOKEN)
2625 return ptype_get_idx(0);
2626
2627 pt = v;
2628 nxt = pt->list.next;
2629 if (pt->type == htons(ETH_P_ALL)) {
2630 if (nxt != &ptype_all)
2631 goto found;
2632 hash = 0;
2633 nxt = ptype_base[0].next;
2634 } else
2635 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2636
2637 while (nxt == &ptype_base[hash]) {
2638 if (++hash >= PTYPE_HASH_SIZE)
2639 return NULL;
2640 nxt = ptype_base[hash].next;
2641 }
2642 found:
2643 return list_entry(nxt, struct packet_type, list);
2644 }
2645
2646 static void ptype_seq_stop(struct seq_file *seq, void *v)
2647 __releases(RCU)
2648 {
2649 rcu_read_unlock();
2650 }
2651
2652 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2653 {
2654 #ifdef CONFIG_KALLSYMS
2655 unsigned long offset = 0, symsize;
2656 const char *symname;
2657 char *modname;
2658 char namebuf[128];
2659
2660 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2661 &modname, namebuf);
2662
2663 if (symname) {
2664 char *delim = ":";
2665
2666 if (!modname)
2667 modname = delim = "";
2668 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2669 symname, offset);
2670 return;
2671 }
2672 #endif
2673
2674 seq_printf(seq, "[%p]", sym);
2675 }
2676
2677 static int ptype_seq_show(struct seq_file *seq, void *v)
2678 {
2679 struct packet_type *pt = v;
2680
2681 if (v == SEQ_START_TOKEN)
2682 seq_puts(seq, "Type Device Function\n");
2683 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2684 if (pt->type == htons(ETH_P_ALL))
2685 seq_puts(seq, "ALL ");
2686 else
2687 seq_printf(seq, "%04x", ntohs(pt->type));
2688
2689 seq_printf(seq, " %-8s ",
2690 pt->dev ? pt->dev->name : "");
2691 ptype_seq_decode(seq, pt->func);
2692 seq_putc(seq, '\n');
2693 }
2694
2695 return 0;
2696 }
2697
2698 static const struct seq_operations ptype_seq_ops = {
2699 .start = ptype_seq_start,
2700 .next = ptype_seq_next,
2701 .stop = ptype_seq_stop,
2702 .show = ptype_seq_show,
2703 };
2704
2705 static int ptype_seq_open(struct inode *inode, struct file *file)
2706 {
2707 return seq_open_net(inode, file, &ptype_seq_ops,
2708 sizeof(struct seq_net_private));
2709 }
2710
2711 static const struct file_operations ptype_seq_fops = {
2712 .owner = THIS_MODULE,
2713 .open = ptype_seq_open,
2714 .read = seq_read,
2715 .llseek = seq_lseek,
2716 .release = seq_release_net,
2717 };
2718
2719
2720 static int __net_init dev_proc_net_init(struct net *net)
2721 {
2722 int rc = -ENOMEM;
2723
2724 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2725 goto out;
2726 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2727 goto out_dev;
2728 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2729 goto out_softnet;
2730
2731 if (wext_proc_init(net))
2732 goto out_ptype;
2733 rc = 0;
2734 out:
2735 return rc;
2736 out_ptype:
2737 proc_net_remove(net, "ptype");
2738 out_softnet:
2739 proc_net_remove(net, "softnet_stat");
2740 out_dev:
2741 proc_net_remove(net, "dev");
2742 goto out;
2743 }
2744
2745 static void __net_exit dev_proc_net_exit(struct net *net)
2746 {
2747 wext_proc_exit(net);
2748
2749 proc_net_remove(net, "ptype");
2750 proc_net_remove(net, "softnet_stat");
2751 proc_net_remove(net, "dev");
2752 }
2753
2754 static struct pernet_operations __net_initdata dev_proc_ops = {
2755 .init = dev_proc_net_init,
2756 .exit = dev_proc_net_exit,
2757 };
2758
2759 static int __init dev_proc_init(void)
2760 {
2761 return register_pernet_subsys(&dev_proc_ops);
2762 }
2763 #else
2764 #define dev_proc_init() 0
2765 #endif /* CONFIG_PROC_FS */
2766
2767
2768 /**
2769 * netdev_set_master - set up master/slave pair
2770 * @slave: slave device
2771 * @master: new master device
2772 *
2773 * Changes the master device of the slave. Pass %NULL to break the
2774 * bonding. The caller must hold the RTNL semaphore. On a failure
2775 * a negative errno code is returned. On success the reference counts
2776 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2777 * function returns zero.
2778 */
2779 int netdev_set_master(struct net_device *slave, struct net_device *master)
2780 {
2781 struct net_device *old = slave->master;
2782
2783 ASSERT_RTNL();
2784
2785 if (master) {
2786 if (old)
2787 return -EBUSY;
2788 dev_hold(master);
2789 }
2790
2791 slave->master = master;
2792
2793 synchronize_net();
2794
2795 if (old)
2796 dev_put(old);
2797
2798 if (master)
2799 slave->flags |= IFF_SLAVE;
2800 else
2801 slave->flags &= ~IFF_SLAVE;
2802
2803 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2804 return 0;
2805 }
2806
2807 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2808 {
2809 unsigned short old_flags = dev->flags;
2810
2811 ASSERT_RTNL();
2812
2813 dev->flags |= IFF_PROMISC;
2814 dev->promiscuity += inc;
2815 if (dev->promiscuity == 0) {
2816 /*
2817 * Avoid overflow.
2818 * If inc causes overflow, untouch promisc and return error.
2819 */
2820 if (inc < 0)
2821 dev->flags &= ~IFF_PROMISC;
2822 else {
2823 dev->promiscuity -= inc;
2824 printk(KERN_WARNING "%s: promiscuity touches roof, "
2825 "set promiscuity failed, promiscuity feature "
2826 "of device might be broken.\n", dev->name);
2827 return -EOVERFLOW;
2828 }
2829 }
2830 if (dev->flags != old_flags) {
2831 printk(KERN_INFO "device %s %s promiscuous mode\n",
2832 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2833 "left");
2834 if (audit_enabled)
2835 audit_log(current->audit_context, GFP_ATOMIC,
2836 AUDIT_ANOM_PROMISCUOUS,
2837 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2838 dev->name, (dev->flags & IFF_PROMISC),
2839 (old_flags & IFF_PROMISC),
2840 audit_get_loginuid(current),
2841 current->uid, current->gid,
2842 audit_get_sessionid(current));
2843
2844 if (dev->change_rx_flags)
2845 dev->change_rx_flags(dev, IFF_PROMISC);
2846 }
2847 return 0;
2848 }
2849
2850 /**
2851 * dev_set_promiscuity - update promiscuity count on a device
2852 * @dev: device
2853 * @inc: modifier
2854 *
2855 * Add or remove promiscuity from a device. While the count in the device
2856 * remains above zero the interface remains promiscuous. Once it hits zero
2857 * the device reverts back to normal filtering operation. A negative inc
2858 * value is used to drop promiscuity on the device.
2859 * Return 0 if successful or a negative errno code on error.
2860 */
2861 int dev_set_promiscuity(struct net_device *dev, int inc)
2862 {
2863 unsigned short old_flags = dev->flags;
2864 int err;
2865
2866 err = __dev_set_promiscuity(dev, inc);
2867 if (err < 0)
2868 return err;
2869 if (dev->flags != old_flags)
2870 dev_set_rx_mode(dev);
2871 return err;
2872 }
2873
2874 /**
2875 * dev_set_allmulti - update allmulti count on a device
2876 * @dev: device
2877 * @inc: modifier
2878 *
2879 * Add or remove reception of all multicast frames to a device. While the
2880 * count in the device remains above zero the interface remains listening
2881 * to all interfaces. Once it hits zero the device reverts back to normal
2882 * filtering operation. A negative @inc value is used to drop the counter
2883 * when releasing a resource needing all multicasts.
2884 * Return 0 if successful or a negative errno code on error.
2885 */
2886
2887 int dev_set_allmulti(struct net_device *dev, int inc)
2888 {
2889 unsigned short old_flags = dev->flags;
2890
2891 ASSERT_RTNL();
2892
2893 dev->flags |= IFF_ALLMULTI;
2894 dev->allmulti += inc;
2895 if (dev->allmulti == 0) {
2896 /*
2897 * Avoid overflow.
2898 * If inc causes overflow, untouch allmulti and return error.
2899 */
2900 if (inc < 0)
2901 dev->flags &= ~IFF_ALLMULTI;
2902 else {
2903 dev->allmulti -= inc;
2904 printk(KERN_WARNING "%s: allmulti touches roof, "
2905 "set allmulti failed, allmulti feature of "
2906 "device might be broken.\n", dev->name);
2907 return -EOVERFLOW;
2908 }
2909 }
2910 if (dev->flags ^ old_flags) {
2911 if (dev->change_rx_flags)
2912 dev->change_rx_flags(dev, IFF_ALLMULTI);
2913 dev_set_rx_mode(dev);
2914 }
2915 return 0;
2916 }
2917
2918 /*
2919 * Upload unicast and multicast address lists to device and
2920 * configure RX filtering. When the device doesn't support unicast
2921 * filtering it is put in promiscuous mode while unicast addresses
2922 * are present.
2923 */
2924 void __dev_set_rx_mode(struct net_device *dev)
2925 {
2926 /* dev_open will call this function so the list will stay sane. */
2927 if (!(dev->flags&IFF_UP))
2928 return;
2929
2930 if (!netif_device_present(dev))
2931 return;
2932
2933 if (dev->set_rx_mode)
2934 dev->set_rx_mode(dev);
2935 else {
2936 /* Unicast addresses changes may only happen under the rtnl,
2937 * therefore calling __dev_set_promiscuity here is safe.
2938 */
2939 if (dev->uc_count > 0 && !dev->uc_promisc) {
2940 __dev_set_promiscuity(dev, 1);
2941 dev->uc_promisc = 1;
2942 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2943 __dev_set_promiscuity(dev, -1);
2944 dev->uc_promisc = 0;
2945 }
2946
2947 if (dev->set_multicast_list)
2948 dev->set_multicast_list(dev);
2949 }
2950 }
2951
2952 void dev_set_rx_mode(struct net_device *dev)
2953 {
2954 netif_tx_lock_bh(dev);
2955 __dev_set_rx_mode(dev);
2956 netif_tx_unlock_bh(dev);
2957 }
2958
2959 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2960 void *addr, int alen, int glbl)
2961 {
2962 struct dev_addr_list *da;
2963
2964 for (; (da = *list) != NULL; list = &da->next) {
2965 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2966 alen == da->da_addrlen) {
2967 if (glbl) {
2968 int old_glbl = da->da_gusers;
2969 da->da_gusers = 0;
2970 if (old_glbl == 0)
2971 break;
2972 }
2973 if (--da->da_users)
2974 return 0;
2975
2976 *list = da->next;
2977 kfree(da);
2978 (*count)--;
2979 return 0;
2980 }
2981 }
2982 return -ENOENT;
2983 }
2984
2985 int __dev_addr_add(struct dev_addr_list **list, int *count,
2986 void *addr, int alen, int glbl)
2987 {
2988 struct dev_addr_list *da;
2989
2990 for (da = *list; da != NULL; da = da->next) {
2991 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2992 da->da_addrlen == alen) {
2993 if (glbl) {
2994 int old_glbl = da->da_gusers;
2995 da->da_gusers = 1;
2996 if (old_glbl)
2997 return 0;
2998 }
2999 da->da_users++;
3000 return 0;
3001 }
3002 }
3003
3004 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3005 if (da == NULL)
3006 return -ENOMEM;
3007 memcpy(da->da_addr, addr, alen);
3008 da->da_addrlen = alen;
3009 da->da_users = 1;
3010 da->da_gusers = glbl ? 1 : 0;
3011 da->next = *list;
3012 *list = da;
3013 (*count)++;
3014 return 0;
3015 }
3016
3017 /**
3018 * dev_unicast_delete - Release secondary unicast address.
3019 * @dev: device
3020 * @addr: address to delete
3021 * @alen: length of @addr
3022 *
3023 * Release reference to a secondary unicast address and remove it
3024 * from the device if the reference count drops to zero.
3025 *
3026 * The caller must hold the rtnl_mutex.
3027 */
3028 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3029 {
3030 int err;
3031
3032 ASSERT_RTNL();
3033
3034 netif_tx_lock_bh(dev);
3035 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3036 if (!err)
3037 __dev_set_rx_mode(dev);
3038 netif_tx_unlock_bh(dev);
3039 return err;
3040 }
3041 EXPORT_SYMBOL(dev_unicast_delete);
3042
3043 /**
3044 * dev_unicast_add - add a secondary unicast address
3045 * @dev: device
3046 * @addr: address to add
3047 * @alen: length of @addr
3048 *
3049 * Add a secondary unicast address to the device or increase
3050 * the reference count if it already exists.
3051 *
3052 * The caller must hold the rtnl_mutex.
3053 */
3054 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3055 {
3056 int err;
3057
3058 ASSERT_RTNL();
3059
3060 netif_tx_lock_bh(dev);
3061 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3062 if (!err)
3063 __dev_set_rx_mode(dev);
3064 netif_tx_unlock_bh(dev);
3065 return err;
3066 }
3067 EXPORT_SYMBOL(dev_unicast_add);
3068
3069 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3070 struct dev_addr_list **from, int *from_count)
3071 {
3072 struct dev_addr_list *da, *next;
3073 int err = 0;
3074
3075 da = *from;
3076 while (da != NULL) {
3077 next = da->next;
3078 if (!da->da_synced) {
3079 err = __dev_addr_add(to, to_count,
3080 da->da_addr, da->da_addrlen, 0);
3081 if (err < 0)
3082 break;
3083 da->da_synced = 1;
3084 da->da_users++;
3085 } else if (da->da_users == 1) {
3086 __dev_addr_delete(to, to_count,
3087 da->da_addr, da->da_addrlen, 0);
3088 __dev_addr_delete(from, from_count,
3089 da->da_addr, da->da_addrlen, 0);
3090 }
3091 da = next;
3092 }
3093 return err;
3094 }
3095
3096 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3097 struct dev_addr_list **from, int *from_count)
3098 {
3099 struct dev_addr_list *da, *next;
3100
3101 da = *from;
3102 while (da != NULL) {
3103 next = da->next;
3104 if (da->da_synced) {
3105 __dev_addr_delete(to, to_count,
3106 da->da_addr, da->da_addrlen, 0);
3107 da->da_synced = 0;
3108 __dev_addr_delete(from, from_count,
3109 da->da_addr, da->da_addrlen, 0);
3110 }
3111 da = next;
3112 }
3113 }
3114
3115 /**
3116 * dev_unicast_sync - Synchronize device's unicast list to another device
3117 * @to: destination device
3118 * @from: source device
3119 *
3120 * Add newly added addresses to the destination device and release
3121 * addresses that have no users left. The source device must be
3122 * locked by netif_tx_lock_bh.
3123 *
3124 * This function is intended to be called from the dev->set_rx_mode
3125 * function of layered software devices.
3126 */
3127 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3128 {
3129 int err = 0;
3130
3131 netif_tx_lock_bh(to);
3132 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3133 &from->uc_list, &from->uc_count);
3134 if (!err)
3135 __dev_set_rx_mode(to);
3136 netif_tx_unlock_bh(to);
3137 return err;
3138 }
3139 EXPORT_SYMBOL(dev_unicast_sync);
3140
3141 /**
3142 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3143 * @to: destination device
3144 * @from: source device
3145 *
3146 * Remove all addresses that were added to the destination device by
3147 * dev_unicast_sync(). This function is intended to be called from the
3148 * dev->stop function of layered software devices.
3149 */
3150 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3151 {
3152 netif_tx_lock_bh(from);
3153 netif_tx_lock_bh(to);
3154
3155 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3156 &from->uc_list, &from->uc_count);
3157 __dev_set_rx_mode(to);
3158
3159 netif_tx_unlock_bh(to);
3160 netif_tx_unlock_bh(from);
3161 }
3162 EXPORT_SYMBOL(dev_unicast_unsync);
3163
3164 static void __dev_addr_discard(struct dev_addr_list **list)
3165 {
3166 struct dev_addr_list *tmp;
3167
3168 while (*list != NULL) {
3169 tmp = *list;
3170 *list = tmp->next;
3171 if (tmp->da_users > tmp->da_gusers)
3172 printk("__dev_addr_discard: address leakage! "
3173 "da_users=%d\n", tmp->da_users);
3174 kfree(tmp);
3175 }
3176 }
3177
3178 static void dev_addr_discard(struct net_device *dev)
3179 {
3180 netif_tx_lock_bh(dev);
3181
3182 __dev_addr_discard(&dev->uc_list);
3183 dev->uc_count = 0;
3184
3185 __dev_addr_discard(&dev->mc_list);
3186 dev->mc_count = 0;
3187
3188 netif_tx_unlock_bh(dev);
3189 }
3190
3191 unsigned dev_get_flags(const struct net_device *dev)
3192 {
3193 unsigned flags;
3194
3195 flags = (dev->flags & ~(IFF_PROMISC |
3196 IFF_ALLMULTI |
3197 IFF_RUNNING |
3198 IFF_LOWER_UP |
3199 IFF_DORMANT)) |
3200 (dev->gflags & (IFF_PROMISC |
3201 IFF_ALLMULTI));
3202
3203 if (netif_running(dev)) {
3204 if (netif_oper_up(dev))
3205 flags |= IFF_RUNNING;
3206 if (netif_carrier_ok(dev))
3207 flags |= IFF_LOWER_UP;
3208 if (netif_dormant(dev))
3209 flags |= IFF_DORMANT;
3210 }
3211
3212 return flags;
3213 }
3214
3215 int dev_change_flags(struct net_device *dev, unsigned flags)
3216 {
3217 int ret, changes;
3218 int old_flags = dev->flags;
3219
3220 ASSERT_RTNL();
3221
3222 /*
3223 * Set the flags on our device.
3224 */
3225
3226 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3227 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3228 IFF_AUTOMEDIA)) |
3229 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3230 IFF_ALLMULTI));
3231
3232 /*
3233 * Load in the correct multicast list now the flags have changed.
3234 */
3235
3236 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3237 dev->change_rx_flags(dev, IFF_MULTICAST);
3238
3239 dev_set_rx_mode(dev);
3240
3241 /*
3242 * Have we downed the interface. We handle IFF_UP ourselves
3243 * according to user attempts to set it, rather than blindly
3244 * setting it.
3245 */
3246
3247 ret = 0;
3248 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3249 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3250
3251 if (!ret)
3252 dev_set_rx_mode(dev);
3253 }
3254
3255 if (dev->flags & IFF_UP &&
3256 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3257 IFF_VOLATILE)))
3258 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3259
3260 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3261 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3262 dev->gflags ^= IFF_PROMISC;
3263 dev_set_promiscuity(dev, inc);
3264 }
3265
3266 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3267 is important. Some (broken) drivers set IFF_PROMISC, when
3268 IFF_ALLMULTI is requested not asking us and not reporting.
3269 */
3270 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3271 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3272 dev->gflags ^= IFF_ALLMULTI;
3273 dev_set_allmulti(dev, inc);
3274 }
3275
3276 /* Exclude state transition flags, already notified */
3277 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3278 if (changes)
3279 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3280
3281 return ret;
3282 }
3283
3284 int dev_set_mtu(struct net_device *dev, int new_mtu)
3285 {
3286 int err;
3287
3288 if (new_mtu == dev->mtu)
3289 return 0;
3290
3291 /* MTU must be positive. */
3292 if (new_mtu < 0)
3293 return -EINVAL;
3294
3295 if (!netif_device_present(dev))
3296 return -ENODEV;
3297
3298 err = 0;
3299 if (dev->change_mtu)
3300 err = dev->change_mtu(dev, new_mtu);
3301 else
3302 dev->mtu = new_mtu;
3303 if (!err && dev->flags & IFF_UP)
3304 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3305 return err;
3306 }
3307
3308 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3309 {
3310 int err;
3311
3312 if (!dev->set_mac_address)
3313 return -EOPNOTSUPP;
3314 if (sa->sa_family != dev->type)
3315 return -EINVAL;
3316 if (!netif_device_present(dev))
3317 return -ENODEV;
3318 err = dev->set_mac_address(dev, sa);
3319 if (!err)
3320 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3321 return err;
3322 }
3323
3324 /*
3325 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3326 */
3327 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3328 {
3329 int err;
3330 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3331
3332 if (!dev)
3333 return -ENODEV;
3334
3335 switch (cmd) {
3336 case SIOCGIFFLAGS: /* Get interface flags */
3337 ifr->ifr_flags = dev_get_flags(dev);
3338 return 0;
3339
3340 case SIOCGIFMETRIC: /* Get the metric on the interface
3341 (currently unused) */
3342 ifr->ifr_metric = 0;
3343 return 0;
3344
3345 case SIOCGIFMTU: /* Get the MTU of a device */
3346 ifr->ifr_mtu = dev->mtu;
3347 return 0;
3348
3349 case SIOCGIFHWADDR:
3350 if (!dev->addr_len)
3351 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3352 else
3353 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3354 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3355 ifr->ifr_hwaddr.sa_family = dev->type;
3356 return 0;
3357
3358 case SIOCGIFSLAVE:
3359 err = -EINVAL;
3360 break;
3361
3362 case SIOCGIFMAP:
3363 ifr->ifr_map.mem_start = dev->mem_start;
3364 ifr->ifr_map.mem_end = dev->mem_end;
3365 ifr->ifr_map.base_addr = dev->base_addr;
3366 ifr->ifr_map.irq = dev->irq;
3367 ifr->ifr_map.dma = dev->dma;
3368 ifr->ifr_map.port = dev->if_port;
3369 return 0;
3370
3371 case SIOCGIFINDEX:
3372 ifr->ifr_ifindex = dev->ifindex;
3373 return 0;
3374
3375 case SIOCGIFTXQLEN:
3376 ifr->ifr_qlen = dev->tx_queue_len;
3377 return 0;
3378
3379 default:
3380 /* dev_ioctl() should ensure this case
3381 * is never reached
3382 */
3383 WARN_ON(1);
3384 err = -EINVAL;
3385 break;
3386
3387 }
3388 return err;
3389 }
3390
3391 /*
3392 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3393 */
3394 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3395 {
3396 int err;
3397 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3398
3399 if (!dev)
3400 return -ENODEV;
3401
3402 switch (cmd) {
3403 case SIOCSIFFLAGS: /* Set interface flags */
3404 return dev_change_flags(dev, ifr->ifr_flags);
3405
3406 case SIOCSIFMETRIC: /* Set the metric on the interface
3407 (currently unused) */
3408 return -EOPNOTSUPP;
3409
3410 case SIOCSIFMTU: /* Set the MTU of a device */
3411 return dev_set_mtu(dev, ifr->ifr_mtu);
3412
3413 case SIOCSIFHWADDR:
3414 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3415
3416 case SIOCSIFHWBROADCAST:
3417 if (ifr->ifr_hwaddr.sa_family != dev->type)
3418 return -EINVAL;
3419 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3420 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3421 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3422 return 0;
3423
3424 case SIOCSIFMAP:
3425 if (dev->set_config) {
3426 if (!netif_device_present(dev))
3427 return -ENODEV;
3428 return dev->set_config(dev, &ifr->ifr_map);
3429 }
3430 return -EOPNOTSUPP;
3431
3432 case SIOCADDMULTI:
3433 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3434 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3435 return -EINVAL;
3436 if (!netif_device_present(dev))
3437 return -ENODEV;
3438 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3439 dev->addr_len, 1);
3440
3441 case SIOCDELMULTI:
3442 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3443 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3444 return -EINVAL;
3445 if (!netif_device_present(dev))
3446 return -ENODEV;
3447 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3448 dev->addr_len, 1);
3449
3450 case SIOCSIFTXQLEN:
3451 if (ifr->ifr_qlen < 0)
3452 return -EINVAL;
3453 dev->tx_queue_len = ifr->ifr_qlen;
3454 return 0;
3455
3456 case SIOCSIFNAME:
3457 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3458 return dev_change_name(dev, ifr->ifr_newname);
3459
3460 /*
3461 * Unknown or private ioctl
3462 */
3463
3464 default:
3465 if ((cmd >= SIOCDEVPRIVATE &&
3466 cmd <= SIOCDEVPRIVATE + 15) ||
3467 cmd == SIOCBONDENSLAVE ||
3468 cmd == SIOCBONDRELEASE ||
3469 cmd == SIOCBONDSETHWADDR ||
3470 cmd == SIOCBONDSLAVEINFOQUERY ||
3471 cmd == SIOCBONDINFOQUERY ||
3472 cmd == SIOCBONDCHANGEACTIVE ||
3473 cmd == SIOCGMIIPHY ||
3474 cmd == SIOCGMIIREG ||
3475 cmd == SIOCSMIIREG ||
3476 cmd == SIOCBRADDIF ||
3477 cmd == SIOCBRDELIF ||
3478 cmd == SIOCWANDEV) {
3479 err = -EOPNOTSUPP;
3480 if (dev->do_ioctl) {
3481 if (netif_device_present(dev))
3482 err = dev->do_ioctl(dev, ifr,
3483 cmd);
3484 else
3485 err = -ENODEV;
3486 }
3487 } else
3488 err = -EINVAL;
3489
3490 }
3491 return err;
3492 }
3493
3494 /*
3495 * This function handles all "interface"-type I/O control requests. The actual
3496 * 'doing' part of this is dev_ifsioc above.
3497 */
3498
3499 /**
3500 * dev_ioctl - network device ioctl
3501 * @net: the applicable net namespace
3502 * @cmd: command to issue
3503 * @arg: pointer to a struct ifreq in user space
3504 *
3505 * Issue ioctl functions to devices. This is normally called by the
3506 * user space syscall interfaces but can sometimes be useful for
3507 * other purposes. The return value is the return from the syscall if
3508 * positive or a negative errno code on error.
3509 */
3510
3511 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3512 {
3513 struct ifreq ifr;
3514 int ret;
3515 char *colon;
3516
3517 /* One special case: SIOCGIFCONF takes ifconf argument
3518 and requires shared lock, because it sleeps writing
3519 to user space.
3520 */
3521
3522 if (cmd == SIOCGIFCONF) {
3523 rtnl_lock();
3524 ret = dev_ifconf(net, (char __user *) arg);
3525 rtnl_unlock();
3526 return ret;
3527 }
3528 if (cmd == SIOCGIFNAME)
3529 return dev_ifname(net, (struct ifreq __user *)arg);
3530
3531 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3532 return -EFAULT;
3533
3534 ifr.ifr_name[IFNAMSIZ-1] = 0;
3535
3536 colon = strchr(ifr.ifr_name, ':');
3537 if (colon)
3538 *colon = 0;
3539
3540 /*
3541 * See which interface the caller is talking about.
3542 */
3543
3544 switch (cmd) {
3545 /*
3546 * These ioctl calls:
3547 * - can be done by all.
3548 * - atomic and do not require locking.
3549 * - return a value
3550 */
3551 case SIOCGIFFLAGS:
3552 case SIOCGIFMETRIC:
3553 case SIOCGIFMTU:
3554 case SIOCGIFHWADDR:
3555 case SIOCGIFSLAVE:
3556 case SIOCGIFMAP:
3557 case SIOCGIFINDEX:
3558 case SIOCGIFTXQLEN:
3559 dev_load(net, ifr.ifr_name);
3560 read_lock(&dev_base_lock);
3561 ret = dev_ifsioc_locked(net, &ifr, cmd);
3562 read_unlock(&dev_base_lock);
3563 if (!ret) {
3564 if (colon)
3565 *colon = ':';
3566 if (copy_to_user(arg, &ifr,
3567 sizeof(struct ifreq)))
3568 ret = -EFAULT;
3569 }
3570 return ret;
3571
3572 case SIOCETHTOOL:
3573 dev_load(net, ifr.ifr_name);
3574 rtnl_lock();
3575 ret = dev_ethtool(net, &ifr);
3576 rtnl_unlock();
3577 if (!ret) {
3578 if (colon)
3579 *colon = ':';
3580 if (copy_to_user(arg, &ifr,
3581 sizeof(struct ifreq)))
3582 ret = -EFAULT;
3583 }
3584 return ret;
3585
3586 /*
3587 * These ioctl calls:
3588 * - require superuser power.
3589 * - require strict serialization.
3590 * - return a value
3591 */
3592 case SIOCGMIIPHY:
3593 case SIOCGMIIREG:
3594 case SIOCSIFNAME:
3595 if (!capable(CAP_NET_ADMIN))
3596 return -EPERM;
3597 dev_load(net, ifr.ifr_name);
3598 rtnl_lock();
3599 ret = dev_ifsioc(net, &ifr, cmd);
3600 rtnl_unlock();
3601 if (!ret) {
3602 if (colon)
3603 *colon = ':';
3604 if (copy_to_user(arg, &ifr,
3605 sizeof(struct ifreq)))
3606 ret = -EFAULT;
3607 }
3608 return ret;
3609
3610 /*
3611 * These ioctl calls:
3612 * - require superuser power.
3613 * - require strict serialization.
3614 * - do not return a value
3615 */
3616 case SIOCSIFFLAGS:
3617 case SIOCSIFMETRIC:
3618 case SIOCSIFMTU:
3619 case SIOCSIFMAP:
3620 case SIOCSIFHWADDR:
3621 case SIOCSIFSLAVE:
3622 case SIOCADDMULTI:
3623 case SIOCDELMULTI:
3624 case SIOCSIFHWBROADCAST:
3625 case SIOCSIFTXQLEN:
3626 case SIOCSMIIREG:
3627 case SIOCBONDENSLAVE:
3628 case SIOCBONDRELEASE:
3629 case SIOCBONDSETHWADDR:
3630 case SIOCBONDCHANGEACTIVE:
3631 case SIOCBRADDIF:
3632 case SIOCBRDELIF:
3633 if (!capable(CAP_NET_ADMIN))
3634 return -EPERM;
3635 /* fall through */
3636 case SIOCBONDSLAVEINFOQUERY:
3637 case SIOCBONDINFOQUERY:
3638 dev_load(net, ifr.ifr_name);
3639 rtnl_lock();
3640 ret = dev_ifsioc(net, &ifr, cmd);
3641 rtnl_unlock();
3642 return ret;
3643
3644 case SIOCGIFMEM:
3645 /* Get the per device memory space. We can add this but
3646 * currently do not support it */
3647 case SIOCSIFMEM:
3648 /* Set the per device memory buffer space.
3649 * Not applicable in our case */
3650 case SIOCSIFLINK:
3651 return -EINVAL;
3652
3653 /*
3654 * Unknown or private ioctl.
3655 */
3656 default:
3657 if (cmd == SIOCWANDEV ||
3658 (cmd >= SIOCDEVPRIVATE &&
3659 cmd <= SIOCDEVPRIVATE + 15)) {
3660 dev_load(net, ifr.ifr_name);
3661 rtnl_lock();
3662 ret = dev_ifsioc(net, &ifr, cmd);
3663 rtnl_unlock();
3664 if (!ret && copy_to_user(arg, &ifr,
3665 sizeof(struct ifreq)))
3666 ret = -EFAULT;
3667 return ret;
3668 }
3669 /* Take care of Wireless Extensions */
3670 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3671 return wext_handle_ioctl(net, &ifr, cmd, arg);
3672 return -EINVAL;
3673 }
3674 }
3675
3676
3677 /**
3678 * dev_new_index - allocate an ifindex
3679 * @net: the applicable net namespace
3680 *
3681 * Returns a suitable unique value for a new device interface
3682 * number. The caller must hold the rtnl semaphore or the
3683 * dev_base_lock to be sure it remains unique.
3684 */
3685 static int dev_new_index(struct net *net)
3686 {
3687 static int ifindex;
3688 for (;;) {
3689 if (++ifindex <= 0)
3690 ifindex = 1;
3691 if (!__dev_get_by_index(net, ifindex))
3692 return ifindex;
3693 }
3694 }
3695
3696 /* Delayed registration/unregisteration */
3697 static DEFINE_SPINLOCK(net_todo_list_lock);
3698 static LIST_HEAD(net_todo_list);
3699
3700 static void net_set_todo(struct net_device *dev)
3701 {
3702 spin_lock(&net_todo_list_lock);
3703 list_add_tail(&dev->todo_list, &net_todo_list);
3704 spin_unlock(&net_todo_list_lock);
3705 }
3706
3707 static void rollback_registered(struct net_device *dev)
3708 {
3709 BUG_ON(dev_boot_phase);
3710 ASSERT_RTNL();
3711
3712 /* Some devices call without registering for initialization unwind. */
3713 if (dev->reg_state == NETREG_UNINITIALIZED) {
3714 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3715 "was registered\n", dev->name, dev);
3716
3717 WARN_ON(1);
3718 return;
3719 }
3720
3721 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3722
3723 /* If device is running, close it first. */
3724 dev_close(dev);
3725
3726 /* And unlink it from device chain. */
3727 unlist_netdevice(dev);
3728
3729 dev->reg_state = NETREG_UNREGISTERING;
3730
3731 synchronize_net();
3732
3733 /* Shutdown queueing discipline. */
3734 dev_shutdown(dev);
3735
3736
3737 /* Notify protocols, that we are about to destroy
3738 this device. They should clean all the things.
3739 */
3740 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3741
3742 /*
3743 * Flush the unicast and multicast chains
3744 */
3745 dev_addr_discard(dev);
3746
3747 if (dev->uninit)
3748 dev->uninit(dev);
3749
3750 /* Notifier chain MUST detach us from master device. */
3751 BUG_TRAP(!dev->master);
3752
3753 /* Remove entries from kobject tree */
3754 netdev_unregister_kobject(dev);
3755
3756 synchronize_net();
3757
3758 dev_put(dev);
3759 }
3760
3761 /**
3762 * register_netdevice - register a network device
3763 * @dev: device to register
3764 *
3765 * Take a completed network device structure and add it to the kernel
3766 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3767 * chain. 0 is returned on success. A negative errno code is returned
3768 * on a failure to set up the device, or if the name is a duplicate.
3769 *
3770 * Callers must hold the rtnl semaphore. You may want
3771 * register_netdev() instead of this.
3772 *
3773 * BUGS:
3774 * The locking appears insufficient to guarantee two parallel registers
3775 * will not get the same name.
3776 */
3777
3778 int register_netdevice(struct net_device *dev)
3779 {
3780 struct hlist_head *head;
3781 struct hlist_node *p;
3782 int ret;
3783 struct net *net;
3784
3785 BUG_ON(dev_boot_phase);
3786 ASSERT_RTNL();
3787
3788 might_sleep();
3789
3790 /* When net_device's are persistent, this will be fatal. */
3791 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3792 BUG_ON(!dev_net(dev));
3793 net = dev_net(dev);
3794
3795 spin_lock_init(&dev->_xmit_lock);
3796 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3797 dev->xmit_lock_owner = -1;
3798 spin_lock_init(&dev->ingress_lock);
3799
3800 dev->iflink = -1;
3801
3802 /* Init, if this function is available */
3803 if (dev->init) {
3804 ret = dev->init(dev);
3805 if (ret) {
3806 if (ret > 0)
3807 ret = -EIO;
3808 goto out;
3809 }
3810 }
3811
3812 if (!dev_valid_name(dev->name)) {
3813 ret = -EINVAL;
3814 goto err_uninit;
3815 }
3816
3817 dev->ifindex = dev_new_index(net);
3818 if (dev->iflink == -1)
3819 dev->iflink = dev->ifindex;
3820
3821 /* Check for existence of name */
3822 head = dev_name_hash(net, dev->name);
3823 hlist_for_each(p, head) {
3824 struct net_device *d
3825 = hlist_entry(p, struct net_device, name_hlist);
3826 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3827 ret = -EEXIST;
3828 goto err_uninit;
3829 }
3830 }
3831
3832 /* Fix illegal checksum combinations */
3833 if ((dev->features & NETIF_F_HW_CSUM) &&
3834 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3835 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3836 dev->name);
3837 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3838 }
3839
3840 if ((dev->features & NETIF_F_NO_CSUM) &&
3841 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3842 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3843 dev->name);
3844 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3845 }
3846
3847
3848 /* Fix illegal SG+CSUM combinations. */
3849 if ((dev->features & NETIF_F_SG) &&
3850 !(dev->features & NETIF_F_ALL_CSUM)) {
3851 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3852 dev->name);
3853 dev->features &= ~NETIF_F_SG;
3854 }
3855
3856 /* TSO requires that SG is present as well. */
3857 if ((dev->features & NETIF_F_TSO) &&
3858 !(dev->features & NETIF_F_SG)) {
3859 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3860 dev->name);
3861 dev->features &= ~NETIF_F_TSO;
3862 }
3863 if (dev->features & NETIF_F_UFO) {
3864 if (!(dev->features & NETIF_F_HW_CSUM)) {
3865 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3866 "NETIF_F_HW_CSUM feature.\n",
3867 dev->name);
3868 dev->features &= ~NETIF_F_UFO;
3869 }
3870 if (!(dev->features & NETIF_F_SG)) {
3871 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3872 "NETIF_F_SG feature.\n",
3873 dev->name);
3874 dev->features &= ~NETIF_F_UFO;
3875 }
3876 }
3877
3878 netdev_initialize_kobject(dev);
3879 ret = netdev_register_kobject(dev);
3880 if (ret)
3881 goto err_uninit;
3882 dev->reg_state = NETREG_REGISTERED;
3883
3884 /*
3885 * Default initial state at registry is that the
3886 * device is present.
3887 */
3888
3889 set_bit(__LINK_STATE_PRESENT, &dev->state);
3890
3891 dev_init_scheduler(dev);
3892 dev_hold(dev);
3893 list_netdevice(dev);
3894
3895 /* Notify protocols, that a new device appeared. */
3896 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3897 ret = notifier_to_errno(ret);
3898 if (ret) {
3899 rollback_registered(dev);
3900 dev->reg_state = NETREG_UNREGISTERED;
3901 }
3902
3903 out:
3904 return ret;
3905
3906 err_uninit:
3907 if (dev->uninit)
3908 dev->uninit(dev);
3909 goto out;
3910 }
3911
3912 /**
3913 * register_netdev - register a network device
3914 * @dev: device to register
3915 *
3916 * Take a completed network device structure and add it to the kernel
3917 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3918 * chain. 0 is returned on success. A negative errno code is returned
3919 * on a failure to set up the device, or if the name is a duplicate.
3920 *
3921 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3922 * and expands the device name if you passed a format string to
3923 * alloc_netdev.
3924 */
3925 int register_netdev(struct net_device *dev)
3926 {
3927 int err;
3928
3929 rtnl_lock();
3930
3931 /*
3932 * If the name is a format string the caller wants us to do a
3933 * name allocation.
3934 */
3935 if (strchr(dev->name, '%')) {
3936 err = dev_alloc_name(dev, dev->name);
3937 if (err < 0)
3938 goto out;
3939 }
3940
3941 err = register_netdevice(dev);
3942 out:
3943 rtnl_unlock();
3944 return err;
3945 }
3946 EXPORT_SYMBOL(register_netdev);
3947
3948 /*
3949 * netdev_wait_allrefs - wait until all references are gone.
3950 *
3951 * This is called when unregistering network devices.
3952 *
3953 * Any protocol or device that holds a reference should register
3954 * for netdevice notification, and cleanup and put back the
3955 * reference if they receive an UNREGISTER event.
3956 * We can get stuck here if buggy protocols don't correctly
3957 * call dev_put.
3958 */
3959 static void netdev_wait_allrefs(struct net_device *dev)
3960 {
3961 unsigned long rebroadcast_time, warning_time;
3962
3963 rebroadcast_time = warning_time = jiffies;
3964 while (atomic_read(&dev->refcnt) != 0) {
3965 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3966 rtnl_lock();
3967
3968 /* Rebroadcast unregister notification */
3969 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3970
3971 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3972 &dev->state)) {
3973 /* We must not have linkwatch events
3974 * pending on unregister. If this
3975 * happens, we simply run the queue
3976 * unscheduled, resulting in a noop
3977 * for this device.
3978 */
3979 linkwatch_run_queue();
3980 }
3981
3982 __rtnl_unlock();
3983
3984 rebroadcast_time = jiffies;
3985 }
3986
3987 msleep(250);
3988
3989 if (time_after(jiffies, warning_time + 10 * HZ)) {
3990 printk(KERN_EMERG "unregister_netdevice: "
3991 "waiting for %s to become free. Usage "
3992 "count = %d\n",
3993 dev->name, atomic_read(&dev->refcnt));
3994 warning_time = jiffies;
3995 }
3996 }
3997 }
3998
3999 /* The sequence is:
4000 *
4001 * rtnl_lock();
4002 * ...
4003 * register_netdevice(x1);
4004 * register_netdevice(x2);
4005 * ...
4006 * unregister_netdevice(y1);
4007 * unregister_netdevice(y2);
4008 * ...
4009 * rtnl_unlock();
4010 * free_netdev(y1);
4011 * free_netdev(y2);
4012 *
4013 * We are invoked by rtnl_unlock() after it drops the semaphore.
4014 * This allows us to deal with problems:
4015 * 1) We can delete sysfs objects which invoke hotplug
4016 * without deadlocking with linkwatch via keventd.
4017 * 2) Since we run with the RTNL semaphore not held, we can sleep
4018 * safely in order to wait for the netdev refcnt to drop to zero.
4019 */
4020 static DEFINE_MUTEX(net_todo_run_mutex);
4021 void netdev_run_todo(void)
4022 {
4023 struct list_head list;
4024
4025 /* Need to guard against multiple cpu's getting out of order. */
4026 mutex_lock(&net_todo_run_mutex);
4027
4028 /* Not safe to do outside the semaphore. We must not return
4029 * until all unregister events invoked by the local processor
4030 * have been completed (either by this todo run, or one on
4031 * another cpu).
4032 */
4033 if (list_empty(&net_todo_list))
4034 goto out;
4035
4036 /* Snapshot list, allow later requests */
4037 spin_lock(&net_todo_list_lock);
4038 list_replace_init(&net_todo_list, &list);
4039 spin_unlock(&net_todo_list_lock);
4040
4041 while (!list_empty(&list)) {
4042 struct net_device *dev
4043 = list_entry(list.next, struct net_device, todo_list);
4044 list_del(&dev->todo_list);
4045
4046 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4047 printk(KERN_ERR "network todo '%s' but state %d\n",
4048 dev->name, dev->reg_state);
4049 dump_stack();
4050 continue;
4051 }
4052
4053 dev->reg_state = NETREG_UNREGISTERED;
4054
4055 netdev_wait_allrefs(dev);
4056
4057 /* paranoia */
4058 BUG_ON(atomic_read(&dev->refcnt));
4059 BUG_TRAP(!dev->ip_ptr);
4060 BUG_TRAP(!dev->ip6_ptr);
4061 BUG_TRAP(!dev->dn_ptr);
4062
4063 if (dev->destructor)
4064 dev->destructor(dev);
4065
4066 /* Free network device */
4067 kobject_put(&dev->dev.kobj);
4068 }
4069
4070 out:
4071 mutex_unlock(&net_todo_run_mutex);
4072 }
4073
4074 static struct net_device_stats *internal_stats(struct net_device *dev)
4075 {
4076 return &dev->stats;
4077 }
4078
4079 static void netdev_init_one_queue(struct net_device *dev,
4080 struct netdev_queue *queue)
4081 {
4082 spin_lock_init(&queue->lock);
4083 queue->dev = dev;
4084 }
4085
4086 static void netdev_init_queues(struct net_device *dev)
4087 {
4088 netdev_init_one_queue(dev, &dev->rx_queue);
4089 netdev_init_one_queue(dev, &dev->tx_queue);
4090 }
4091
4092 /**
4093 * alloc_netdev_mq - allocate network device
4094 * @sizeof_priv: size of private data to allocate space for
4095 * @name: device name format string
4096 * @setup: callback to initialize device
4097 * @queue_count: the number of subqueues to allocate
4098 *
4099 * Allocates a struct net_device with private data area for driver use
4100 * and performs basic initialization. Also allocates subquue structs
4101 * for each queue on the device at the end of the netdevice.
4102 */
4103 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4104 void (*setup)(struct net_device *), unsigned int queue_count)
4105 {
4106 void *p;
4107 struct net_device *dev;
4108 int alloc_size;
4109
4110 BUG_ON(strlen(name) >= sizeof(dev->name));
4111
4112 alloc_size = sizeof(struct net_device) +
4113 sizeof(struct net_device_subqueue) * (queue_count - 1);
4114 if (sizeof_priv) {
4115 /* ensure 32-byte alignment of private area */
4116 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4117 alloc_size += sizeof_priv;
4118 }
4119 /* ensure 32-byte alignment of whole construct */
4120 alloc_size += NETDEV_ALIGN_CONST;
4121
4122 p = kzalloc(alloc_size, GFP_KERNEL);
4123 if (!p) {
4124 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4125 return NULL;
4126 }
4127
4128 dev = (struct net_device *)
4129 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4130 dev->padded = (char *)dev - (char *)p;
4131 dev_net_set(dev, &init_net);
4132
4133 if (sizeof_priv) {
4134 dev->priv = ((char *)dev +
4135 ((sizeof(struct net_device) +
4136 (sizeof(struct net_device_subqueue) *
4137 (queue_count - 1)) + NETDEV_ALIGN_CONST)
4138 & ~NETDEV_ALIGN_CONST));
4139 }
4140
4141 dev->egress_subqueue_count = queue_count;
4142 dev->gso_max_size = GSO_MAX_SIZE;
4143
4144 netdev_init_queues(dev);
4145
4146 dev->get_stats = internal_stats;
4147 netpoll_netdev_init(dev);
4148 setup(dev);
4149 strcpy(dev->name, name);
4150 return dev;
4151 }
4152 EXPORT_SYMBOL(alloc_netdev_mq);
4153
4154 /**
4155 * free_netdev - free network device
4156 * @dev: device
4157 *
4158 * This function does the last stage of destroying an allocated device
4159 * interface. The reference to the device object is released.
4160 * If this is the last reference then it will be freed.
4161 */
4162 void free_netdev(struct net_device *dev)
4163 {
4164 release_net(dev_net(dev));
4165
4166 /* Compatibility with error handling in drivers */
4167 if (dev->reg_state == NETREG_UNINITIALIZED) {
4168 kfree((char *)dev - dev->padded);
4169 return;
4170 }
4171
4172 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4173 dev->reg_state = NETREG_RELEASED;
4174
4175 /* will free via device release */
4176 put_device(&dev->dev);
4177 }
4178
4179 /* Synchronize with packet receive processing. */
4180 void synchronize_net(void)
4181 {
4182 might_sleep();
4183 synchronize_rcu();
4184 }
4185
4186 /**
4187 * unregister_netdevice - remove device from the kernel
4188 * @dev: device
4189 *
4190 * This function shuts down a device interface and removes it
4191 * from the kernel tables.
4192 *
4193 * Callers must hold the rtnl semaphore. You may want
4194 * unregister_netdev() instead of this.
4195 */
4196
4197 void unregister_netdevice(struct net_device *dev)
4198 {
4199 ASSERT_RTNL();
4200
4201 rollback_registered(dev);
4202 /* Finish processing unregister after unlock */
4203 net_set_todo(dev);
4204 }
4205
4206 /**
4207 * unregister_netdev - remove device from the kernel
4208 * @dev: device
4209 *
4210 * This function shuts down a device interface and removes it
4211 * from the kernel tables.
4212 *
4213 * This is just a wrapper for unregister_netdevice that takes
4214 * the rtnl semaphore. In general you want to use this and not
4215 * unregister_netdevice.
4216 */
4217 void unregister_netdev(struct net_device *dev)
4218 {
4219 rtnl_lock();
4220 unregister_netdevice(dev);
4221 rtnl_unlock();
4222 }
4223
4224 EXPORT_SYMBOL(unregister_netdev);
4225
4226 /**
4227 * dev_change_net_namespace - move device to different nethost namespace
4228 * @dev: device
4229 * @net: network namespace
4230 * @pat: If not NULL name pattern to try if the current device name
4231 * is already taken in the destination network namespace.
4232 *
4233 * This function shuts down a device interface and moves it
4234 * to a new network namespace. On success 0 is returned, on
4235 * a failure a netagive errno code is returned.
4236 *
4237 * Callers must hold the rtnl semaphore.
4238 */
4239
4240 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4241 {
4242 char buf[IFNAMSIZ];
4243 const char *destname;
4244 int err;
4245
4246 ASSERT_RTNL();
4247
4248 /* Don't allow namespace local devices to be moved. */
4249 err = -EINVAL;
4250 if (dev->features & NETIF_F_NETNS_LOCAL)
4251 goto out;
4252
4253 /* Ensure the device has been registrered */
4254 err = -EINVAL;
4255 if (dev->reg_state != NETREG_REGISTERED)
4256 goto out;
4257
4258 /* Get out if there is nothing todo */
4259 err = 0;
4260 if (net_eq(dev_net(dev), net))
4261 goto out;
4262
4263 /* Pick the destination device name, and ensure
4264 * we can use it in the destination network namespace.
4265 */
4266 err = -EEXIST;
4267 destname = dev->name;
4268 if (__dev_get_by_name(net, destname)) {
4269 /* We get here if we can't use the current device name */
4270 if (!pat)
4271 goto out;
4272 if (!dev_valid_name(pat))
4273 goto out;
4274 if (strchr(pat, '%')) {
4275 if (__dev_alloc_name(net, pat, buf) < 0)
4276 goto out;
4277 destname = buf;
4278 } else
4279 destname = pat;
4280 if (__dev_get_by_name(net, destname))
4281 goto out;
4282 }
4283
4284 /*
4285 * And now a mini version of register_netdevice unregister_netdevice.
4286 */
4287
4288 /* If device is running close it first. */
4289 dev_close(dev);
4290
4291 /* And unlink it from device chain */
4292 err = -ENODEV;
4293 unlist_netdevice(dev);
4294
4295 synchronize_net();
4296
4297 /* Shutdown queueing discipline. */
4298 dev_shutdown(dev);
4299
4300 /* Notify protocols, that we are about to destroy
4301 this device. They should clean all the things.
4302 */
4303 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4304
4305 /*
4306 * Flush the unicast and multicast chains
4307 */
4308 dev_addr_discard(dev);
4309
4310 /* Actually switch the network namespace */
4311 dev_net_set(dev, net);
4312
4313 /* Assign the new device name */
4314 if (destname != dev->name)
4315 strcpy(dev->name, destname);
4316
4317 /* If there is an ifindex conflict assign a new one */
4318 if (__dev_get_by_index(net, dev->ifindex)) {
4319 int iflink = (dev->iflink == dev->ifindex);
4320 dev->ifindex = dev_new_index(net);
4321 if (iflink)
4322 dev->iflink = dev->ifindex;
4323 }
4324
4325 /* Fixup kobjects */
4326 netdev_unregister_kobject(dev);
4327 err = netdev_register_kobject(dev);
4328 WARN_ON(err);
4329
4330 /* Add the device back in the hashes */
4331 list_netdevice(dev);
4332
4333 /* Notify protocols, that a new device appeared. */
4334 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4335
4336 synchronize_net();
4337 err = 0;
4338 out:
4339 return err;
4340 }
4341
4342 static int dev_cpu_callback(struct notifier_block *nfb,
4343 unsigned long action,
4344 void *ocpu)
4345 {
4346 struct sk_buff **list_skb;
4347 struct net_device **list_net;
4348 struct sk_buff *skb;
4349 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4350 struct softnet_data *sd, *oldsd;
4351
4352 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4353 return NOTIFY_OK;
4354
4355 local_irq_disable();
4356 cpu = smp_processor_id();
4357 sd = &per_cpu(softnet_data, cpu);
4358 oldsd = &per_cpu(softnet_data, oldcpu);
4359
4360 /* Find end of our completion_queue. */
4361 list_skb = &sd->completion_queue;
4362 while (*list_skb)
4363 list_skb = &(*list_skb)->next;
4364 /* Append completion queue from offline CPU. */
4365 *list_skb = oldsd->completion_queue;
4366 oldsd->completion_queue = NULL;
4367
4368 /* Find end of our output_queue. */
4369 list_net = &sd->output_queue;
4370 while (*list_net)
4371 list_net = &(*list_net)->next_sched;
4372 /* Append output queue from offline CPU. */
4373 *list_net = oldsd->output_queue;
4374 oldsd->output_queue = NULL;
4375
4376 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4377 local_irq_enable();
4378
4379 /* Process offline CPU's input_pkt_queue */
4380 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4381 netif_rx(skb);
4382
4383 return NOTIFY_OK;
4384 }
4385
4386 #ifdef CONFIG_NET_DMA
4387 /**
4388 * net_dma_rebalance - try to maintain one DMA channel per CPU
4389 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4390 *
4391 * This is called when the number of channels allocated to the net_dma client
4392 * changes. The net_dma client tries to have one DMA channel per CPU.
4393 */
4394
4395 static void net_dma_rebalance(struct net_dma *net_dma)
4396 {
4397 unsigned int cpu, i, n, chan_idx;
4398 struct dma_chan *chan;
4399
4400 if (cpus_empty(net_dma->channel_mask)) {
4401 for_each_online_cpu(cpu)
4402 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4403 return;
4404 }
4405
4406 i = 0;
4407 cpu = first_cpu(cpu_online_map);
4408
4409 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4410 chan = net_dma->channels[chan_idx];
4411
4412 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4413 + (i < (num_online_cpus() %
4414 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4415
4416 while(n) {
4417 per_cpu(softnet_data, cpu).net_dma = chan;
4418 cpu = next_cpu(cpu, cpu_online_map);
4419 n--;
4420 }
4421 i++;
4422 }
4423 }
4424
4425 /**
4426 * netdev_dma_event - event callback for the net_dma_client
4427 * @client: should always be net_dma_client
4428 * @chan: DMA channel for the event
4429 * @state: DMA state to be handled
4430 */
4431 static enum dma_state_client
4432 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4433 enum dma_state state)
4434 {
4435 int i, found = 0, pos = -1;
4436 struct net_dma *net_dma =
4437 container_of(client, struct net_dma, client);
4438 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4439
4440 spin_lock(&net_dma->lock);
4441 switch (state) {
4442 case DMA_RESOURCE_AVAILABLE:
4443 for (i = 0; i < nr_cpu_ids; i++)
4444 if (net_dma->channels[i] == chan) {
4445 found = 1;
4446 break;
4447 } else if (net_dma->channels[i] == NULL && pos < 0)
4448 pos = i;
4449
4450 if (!found && pos >= 0) {
4451 ack = DMA_ACK;
4452 net_dma->channels[pos] = chan;
4453 cpu_set(pos, net_dma->channel_mask);
4454 net_dma_rebalance(net_dma);
4455 }
4456 break;
4457 case DMA_RESOURCE_REMOVED:
4458 for (i = 0; i < nr_cpu_ids; i++)
4459 if (net_dma->channels[i] == chan) {
4460 found = 1;
4461 pos = i;
4462 break;
4463 }
4464
4465 if (found) {
4466 ack = DMA_ACK;
4467 cpu_clear(pos, net_dma->channel_mask);
4468 net_dma->channels[i] = NULL;
4469 net_dma_rebalance(net_dma);
4470 }
4471 break;
4472 default:
4473 break;
4474 }
4475 spin_unlock(&net_dma->lock);
4476
4477 return ack;
4478 }
4479
4480 /**
4481 * netdev_dma_regiser - register the networking subsystem as a DMA client
4482 */
4483 static int __init netdev_dma_register(void)
4484 {
4485 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4486 GFP_KERNEL);
4487 if (unlikely(!net_dma.channels)) {
4488 printk(KERN_NOTICE
4489 "netdev_dma: no memory for net_dma.channels\n");
4490 return -ENOMEM;
4491 }
4492 spin_lock_init(&net_dma.lock);
4493 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4494 dma_async_client_register(&net_dma.client);
4495 dma_async_client_chan_request(&net_dma.client);
4496 return 0;
4497 }
4498
4499 #else
4500 static int __init netdev_dma_register(void) { return -ENODEV; }
4501 #endif /* CONFIG_NET_DMA */
4502
4503 /**
4504 * netdev_compute_feature - compute conjunction of two feature sets
4505 * @all: first feature set
4506 * @one: second feature set
4507 *
4508 * Computes a new feature set after adding a device with feature set
4509 * @one to the master device with current feature set @all. Returns
4510 * the new feature set.
4511 */
4512 int netdev_compute_features(unsigned long all, unsigned long one)
4513 {
4514 /* if device needs checksumming, downgrade to hw checksumming */
4515 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4516 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4517
4518 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4519 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4520 all ^= NETIF_F_HW_CSUM
4521 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4522
4523 if (one & NETIF_F_GSO)
4524 one |= NETIF_F_GSO_SOFTWARE;
4525 one |= NETIF_F_GSO;
4526
4527 /* If even one device supports robust GSO, enable it for all. */
4528 if (one & NETIF_F_GSO_ROBUST)
4529 all |= NETIF_F_GSO_ROBUST;
4530
4531 all &= one | NETIF_F_LLTX;
4532
4533 if (!(all & NETIF_F_ALL_CSUM))
4534 all &= ~NETIF_F_SG;
4535 if (!(all & NETIF_F_SG))
4536 all &= ~NETIF_F_GSO_MASK;
4537
4538 return all;
4539 }
4540 EXPORT_SYMBOL(netdev_compute_features);
4541
4542 static struct hlist_head *netdev_create_hash(void)
4543 {
4544 int i;
4545 struct hlist_head *hash;
4546
4547 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4548 if (hash != NULL)
4549 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4550 INIT_HLIST_HEAD(&hash[i]);
4551
4552 return hash;
4553 }
4554
4555 /* Initialize per network namespace state */
4556 static int __net_init netdev_init(struct net *net)
4557 {
4558 INIT_LIST_HEAD(&net->dev_base_head);
4559
4560 net->dev_name_head = netdev_create_hash();
4561 if (net->dev_name_head == NULL)
4562 goto err_name;
4563
4564 net->dev_index_head = netdev_create_hash();
4565 if (net->dev_index_head == NULL)
4566 goto err_idx;
4567
4568 return 0;
4569
4570 err_idx:
4571 kfree(net->dev_name_head);
4572 err_name:
4573 return -ENOMEM;
4574 }
4575
4576 static void __net_exit netdev_exit(struct net *net)
4577 {
4578 kfree(net->dev_name_head);
4579 kfree(net->dev_index_head);
4580 }
4581
4582 static struct pernet_operations __net_initdata netdev_net_ops = {
4583 .init = netdev_init,
4584 .exit = netdev_exit,
4585 };
4586
4587 static void __net_exit default_device_exit(struct net *net)
4588 {
4589 struct net_device *dev, *next;
4590 /*
4591 * Push all migratable of the network devices back to the
4592 * initial network namespace
4593 */
4594 rtnl_lock();
4595 for_each_netdev_safe(net, dev, next) {
4596 int err;
4597 char fb_name[IFNAMSIZ];
4598
4599 /* Ignore unmoveable devices (i.e. loopback) */
4600 if (dev->features & NETIF_F_NETNS_LOCAL)
4601 continue;
4602
4603 /* Push remaing network devices to init_net */
4604 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4605 err = dev_change_net_namespace(dev, &init_net, fb_name);
4606 if (err) {
4607 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4608 __func__, dev->name, err);
4609 BUG();
4610 }
4611 }
4612 rtnl_unlock();
4613 }
4614
4615 static struct pernet_operations __net_initdata default_device_ops = {
4616 .exit = default_device_exit,
4617 };
4618
4619 /*
4620 * Initialize the DEV module. At boot time this walks the device list and
4621 * unhooks any devices that fail to initialise (normally hardware not
4622 * present) and leaves us with a valid list of present and active devices.
4623 *
4624 */
4625
4626 /*
4627 * This is called single threaded during boot, so no need
4628 * to take the rtnl semaphore.
4629 */
4630 static int __init net_dev_init(void)
4631 {
4632 int i, rc = -ENOMEM;
4633
4634 BUG_ON(!dev_boot_phase);
4635
4636 if (dev_proc_init())
4637 goto out;
4638
4639 if (netdev_kobject_init())
4640 goto out;
4641
4642 INIT_LIST_HEAD(&ptype_all);
4643 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4644 INIT_LIST_HEAD(&ptype_base[i]);
4645
4646 if (register_pernet_subsys(&netdev_net_ops))
4647 goto out;
4648
4649 if (register_pernet_device(&default_device_ops))
4650 goto out;
4651
4652 /*
4653 * Initialise the packet receive queues.
4654 */
4655
4656 for_each_possible_cpu(i) {
4657 struct softnet_data *queue;
4658
4659 queue = &per_cpu(softnet_data, i);
4660 skb_queue_head_init(&queue->input_pkt_queue);
4661 queue->completion_queue = NULL;
4662 INIT_LIST_HEAD(&queue->poll_list);
4663
4664 queue->backlog.poll = process_backlog;
4665 queue->backlog.weight = weight_p;
4666 }
4667
4668 netdev_dma_register();
4669
4670 dev_boot_phase = 0;
4671
4672 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4673 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4674
4675 hotcpu_notifier(dev_cpu_callback, 0);
4676 dst_init();
4677 dev_mcast_init();
4678 rc = 0;
4679 out:
4680 return rc;
4681 }
4682
4683 subsys_initcall(net_dev_init);
4684
4685 EXPORT_SYMBOL(__dev_get_by_index);
4686 EXPORT_SYMBOL(__dev_get_by_name);
4687 EXPORT_SYMBOL(__dev_remove_pack);
4688 EXPORT_SYMBOL(dev_valid_name);
4689 EXPORT_SYMBOL(dev_add_pack);
4690 EXPORT_SYMBOL(dev_alloc_name);
4691 EXPORT_SYMBOL(dev_close);
4692 EXPORT_SYMBOL(dev_get_by_flags);
4693 EXPORT_SYMBOL(dev_get_by_index);
4694 EXPORT_SYMBOL(dev_get_by_name);
4695 EXPORT_SYMBOL(dev_open);
4696 EXPORT_SYMBOL(dev_queue_xmit);
4697 EXPORT_SYMBOL(dev_remove_pack);
4698 EXPORT_SYMBOL(dev_set_allmulti);
4699 EXPORT_SYMBOL(dev_set_promiscuity);
4700 EXPORT_SYMBOL(dev_change_flags);
4701 EXPORT_SYMBOL(dev_set_mtu);
4702 EXPORT_SYMBOL(dev_set_mac_address);
4703 EXPORT_SYMBOL(free_netdev);
4704 EXPORT_SYMBOL(netdev_boot_setup_check);
4705 EXPORT_SYMBOL(netdev_set_master);
4706 EXPORT_SYMBOL(netdev_state_change);
4707 EXPORT_SYMBOL(netif_receive_skb);
4708 EXPORT_SYMBOL(netif_rx);
4709 EXPORT_SYMBOL(register_gifconf);
4710 EXPORT_SYMBOL(register_netdevice);
4711 EXPORT_SYMBOL(register_netdevice_notifier);
4712 EXPORT_SYMBOL(skb_checksum_help);
4713 EXPORT_SYMBOL(synchronize_net);
4714 EXPORT_SYMBOL(unregister_netdevice);
4715 EXPORT_SYMBOL(unregister_netdevice_notifier);
4716 EXPORT_SYMBOL(net_enable_timestamp);
4717 EXPORT_SYMBOL(net_disable_timestamp);
4718 EXPORT_SYMBOL(dev_get_flags);
4719
4720 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4721 EXPORT_SYMBOL(br_handle_frame_hook);
4722 EXPORT_SYMBOL(br_fdb_get_hook);
4723 EXPORT_SYMBOL(br_fdb_put_hook);
4724 #endif
4725
4726 #ifdef CONFIG_KMOD
4727 EXPORT_SYMBOL(dev_load);
4728 #endif
4729
4730 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.130526 seconds and 5 git commands to generate.