0e6136546a8ce378f92be706bea10a3e753e7e33
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 static DEFINE_SPINLOCK(ptype_lock);
144 static DEFINE_SPINLOCK(offload_lock);
145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
146 struct list_head ptype_all __read_mostly; /* Taps */
147 static struct list_head offload_base __read_mostly;
148
149 /*
150 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
151 * semaphore.
152 *
153 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
154 *
155 * Writers must hold the rtnl semaphore while they loop through the
156 * dev_base_head list, and hold dev_base_lock for writing when they do the
157 * actual updates. This allows pure readers to access the list even
158 * while a writer is preparing to update it.
159 *
160 * To put it another way, dev_base_lock is held for writing only to
161 * protect against pure readers; the rtnl semaphore provides the
162 * protection against other writers.
163 *
164 * See, for example usages, register_netdevice() and
165 * unregister_netdevice(), which must be called with the rtnl
166 * semaphore held.
167 */
168 DEFINE_RWLOCK(dev_base_lock);
169 EXPORT_SYMBOL(dev_base_lock);
170
171 /* protects napi_hash addition/deletion and napi_gen_id */
172 static DEFINE_SPINLOCK(napi_hash_lock);
173
174 static unsigned int napi_gen_id;
175 static DEFINE_HASHTABLE(napi_hash, 8);
176
177 static seqcount_t devnet_rename_seq;
178
179 static inline void dev_base_seq_inc(struct net *net)
180 {
181 while (++net->dev_base_seq == 0);
182 }
183
184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
185 {
186 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
187
188 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
189 }
190
191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
192 {
193 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
194 }
195
196 static inline void rps_lock(struct softnet_data *sd)
197 {
198 #ifdef CONFIG_RPS
199 spin_lock(&sd->input_pkt_queue.lock);
200 #endif
201 }
202
203 static inline void rps_unlock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_unlock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 /* Device list insertion */
211 static void list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head_rcu(&dev->index_hlist,
221 dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223
224 dev_base_seq_inc(net);
225 }
226
227 /* Device list removal
228 * caller must respect a RCU grace period before freeing/reusing dev
229 */
230 static void unlist_netdevice(struct net_device *dev)
231 {
232 ASSERT_RTNL();
233
234 /* Unlink dev from the device chain */
235 write_lock_bh(&dev_base_lock);
236 list_del_rcu(&dev->dev_list);
237 hlist_del_rcu(&dev->name_hlist);
238 hlist_del_rcu(&dev->index_hlist);
239 write_unlock_bh(&dev_base_lock);
240
241 dev_base_seq_inc(dev_net(dev));
242 }
243
244 /*
245 * Our notifier list
246 */
247
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249
250 /*
251 * Device drivers call our routines to queue packets here. We empty the
252 * queue in the local softnet handler.
253 */
254
255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
256 EXPORT_PER_CPU_SYMBOL(softnet_data);
257
258 #ifdef CONFIG_LOCKDEP
259 /*
260 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
261 * according to dev->type
262 */
263 static const unsigned short netdev_lock_type[] =
264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
276 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
277 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
278 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
279
280 static const char *const netdev_lock_name[] =
281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
293 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
294 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
295 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
296
297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
299
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310
311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
313 {
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319 }
320
321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev->type);
326 lockdep_set_class_and_name(&dev->addr_list_lock,
327 &netdev_addr_lock_key[i],
328 netdev_lock_name[i]);
329 }
330 #else
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 unsigned short dev_type)
333 {
334 }
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 }
338 #endif
339
340 /*******************************************************************************
341
342 Protocol management and registration routines
343
344 *******************************************************************************/
345
346 /*
347 * Add a protocol ID to the list. Now that the input handler is
348 * smarter we can dispense with all the messy stuff that used to be
349 * here.
350 *
351 * BEWARE!!! Protocol handlers, mangling input packets,
352 * MUST BE last in hash buckets and checking protocol handlers
353 * MUST start from promiscuous ptype_all chain in net_bh.
354 * It is true now, do not change it.
355 * Explanation follows: if protocol handler, mangling packet, will
356 * be the first on list, it is not able to sense, that packet
357 * is cloned and should be copied-on-write, so that it will
358 * change it and subsequent readers will get broken packet.
359 * --ANK (980803)
360 */
361
362 static inline struct list_head *ptype_head(const struct packet_type *pt)
363 {
364 if (pt->type == htons(ETH_P_ALL))
365 return &ptype_all;
366 else
367 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
368 }
369
370 /**
371 * dev_add_pack - add packet handler
372 * @pt: packet type declaration
373 *
374 * Add a protocol handler to the networking stack. The passed &packet_type
375 * is linked into kernel lists and may not be freed until it has been
376 * removed from the kernel lists.
377 *
378 * This call does not sleep therefore it can not
379 * guarantee all CPU's that are in middle of receiving packets
380 * will see the new packet type (until the next received packet).
381 */
382
383 void dev_add_pack(struct packet_type *pt)
384 {
385 struct list_head *head = ptype_head(pt);
386
387 spin_lock(&ptype_lock);
388 list_add_rcu(&pt->list, head);
389 spin_unlock(&ptype_lock);
390 }
391 EXPORT_SYMBOL(dev_add_pack);
392
393 /**
394 * __dev_remove_pack - remove packet handler
395 * @pt: packet type declaration
396 *
397 * Remove a protocol handler that was previously added to the kernel
398 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
399 * from the kernel lists and can be freed or reused once this function
400 * returns.
401 *
402 * The packet type might still be in use by receivers
403 * and must not be freed until after all the CPU's have gone
404 * through a quiescent state.
405 */
406 void __dev_remove_pack(struct packet_type *pt)
407 {
408 struct list_head *head = ptype_head(pt);
409 struct packet_type *pt1;
410
411 spin_lock(&ptype_lock);
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 pr_warn("dev_remove_pack: %p not found\n", pt);
421 out:
422 spin_unlock(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425
426 /**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 __dev_remove_pack(pt);
441
442 synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445
446
447 /**
448 * dev_add_offload - register offload handlers
449 * @po: protocol offload declaration
450 *
451 * Add protocol offload handlers to the networking stack. The passed
452 * &proto_offload is linked into kernel lists and may not be freed until
453 * it has been removed from the kernel lists.
454 *
455 * This call does not sleep therefore it can not
456 * guarantee all CPU's that are in middle of receiving packets
457 * will see the new offload handlers (until the next received packet).
458 */
459 void dev_add_offload(struct packet_offload *po)
460 {
461 struct list_head *head = &offload_base;
462
463 spin_lock(&offload_lock);
464 list_add_rcu(&po->list, head);
465 spin_unlock(&offload_lock);
466 }
467 EXPORT_SYMBOL(dev_add_offload);
468
469 /**
470 * __dev_remove_offload - remove offload handler
471 * @po: packet offload declaration
472 *
473 * Remove a protocol offload handler that was previously added to the
474 * kernel offload handlers by dev_add_offload(). The passed &offload_type
475 * is removed from the kernel lists and can be freed or reused once this
476 * function returns.
477 *
478 * The packet type might still be in use by receivers
479 * and must not be freed until after all the CPU's have gone
480 * through a quiescent state.
481 */
482 void __dev_remove_offload(struct packet_offload *po)
483 {
484 struct list_head *head = &offload_base;
485 struct packet_offload *po1;
486
487 spin_lock(&offload_lock);
488
489 list_for_each_entry(po1, head, list) {
490 if (po == po1) {
491 list_del_rcu(&po->list);
492 goto out;
493 }
494 }
495
496 pr_warn("dev_remove_offload: %p not found\n", po);
497 out:
498 spin_unlock(&offload_lock);
499 }
500 EXPORT_SYMBOL(__dev_remove_offload);
501
502 /**
503 * dev_remove_offload - remove packet offload handler
504 * @po: packet offload declaration
505 *
506 * Remove a packet offload handler that was previously added to the kernel
507 * offload handlers by dev_add_offload(). The passed &offload_type is
508 * removed from the kernel lists and can be freed or reused once this
509 * function returns.
510 *
511 * This call sleeps to guarantee that no CPU is looking at the packet
512 * type after return.
513 */
514 void dev_remove_offload(struct packet_offload *po)
515 {
516 __dev_remove_offload(po);
517
518 synchronize_net();
519 }
520 EXPORT_SYMBOL(dev_remove_offload);
521
522 /******************************************************************************
523
524 Device Boot-time Settings Routines
525
526 *******************************************************************************/
527
528 /* Boot time configuration table */
529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
530
531 /**
532 * netdev_boot_setup_add - add new setup entry
533 * @name: name of the device
534 * @map: configured settings for the device
535 *
536 * Adds new setup entry to the dev_boot_setup list. The function
537 * returns 0 on error and 1 on success. This is a generic routine to
538 * all netdevices.
539 */
540 static int netdev_boot_setup_add(char *name, struct ifmap *map)
541 {
542 struct netdev_boot_setup *s;
543 int i;
544
545 s = dev_boot_setup;
546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
548 memset(s[i].name, 0, sizeof(s[i].name));
549 strlcpy(s[i].name, name, IFNAMSIZ);
550 memcpy(&s[i].map, map, sizeof(s[i].map));
551 break;
552 }
553 }
554
555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
556 }
557
558 /**
559 * netdev_boot_setup_check - check boot time settings
560 * @dev: the netdevice
561 *
562 * Check boot time settings for the device.
563 * The found settings are set for the device to be used
564 * later in the device probing.
565 * Returns 0 if no settings found, 1 if they are.
566 */
567 int netdev_boot_setup_check(struct net_device *dev)
568 {
569 struct netdev_boot_setup *s = dev_boot_setup;
570 int i;
571
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
574 !strcmp(dev->name, s[i].name)) {
575 dev->irq = s[i].map.irq;
576 dev->base_addr = s[i].map.base_addr;
577 dev->mem_start = s[i].map.mem_start;
578 dev->mem_end = s[i].map.mem_end;
579 return 1;
580 }
581 }
582 return 0;
583 }
584 EXPORT_SYMBOL(netdev_boot_setup_check);
585
586
587 /**
588 * netdev_boot_base - get address from boot time settings
589 * @prefix: prefix for network device
590 * @unit: id for network device
591 *
592 * Check boot time settings for the base address of device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found.
596 */
597 unsigned long netdev_boot_base(const char *prefix, int unit)
598 {
599 const struct netdev_boot_setup *s = dev_boot_setup;
600 char name[IFNAMSIZ];
601 int i;
602
603 sprintf(name, "%s%d", prefix, unit);
604
605 /*
606 * If device already registered then return base of 1
607 * to indicate not to probe for this interface
608 */
609 if (__dev_get_by_name(&init_net, name))
610 return 1;
611
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
613 if (!strcmp(name, s[i].name))
614 return s[i].map.base_addr;
615 return 0;
616 }
617
618 /*
619 * Saves at boot time configured settings for any netdevice.
620 */
621 int __init netdev_boot_setup(char *str)
622 {
623 int ints[5];
624 struct ifmap map;
625
626 str = get_options(str, ARRAY_SIZE(ints), ints);
627 if (!str || !*str)
628 return 0;
629
630 /* Save settings */
631 memset(&map, 0, sizeof(map));
632 if (ints[0] > 0)
633 map.irq = ints[1];
634 if (ints[0] > 1)
635 map.base_addr = ints[2];
636 if (ints[0] > 2)
637 map.mem_start = ints[3];
638 if (ints[0] > 3)
639 map.mem_end = ints[4];
640
641 /* Add new entry to the list */
642 return netdev_boot_setup_add(str, &map);
643 }
644
645 __setup("netdev=", netdev_boot_setup);
646
647 /*******************************************************************************
648
649 Device Interface Subroutines
650
651 *******************************************************************************/
652
653 /**
654 * __dev_get_by_name - find a device by its name
655 * @net: the applicable net namespace
656 * @name: name to find
657 *
658 * Find an interface by name. Must be called under RTNL semaphore
659 * or @dev_base_lock. If the name is found a pointer to the device
660 * is returned. If the name is not found then %NULL is returned. The
661 * reference counters are not incremented so the caller must be
662 * careful with locks.
663 */
664
665 struct net_device *__dev_get_by_name(struct net *net, const char *name)
666 {
667 struct net_device *dev;
668 struct hlist_head *head = dev_name_hash(net, name);
669
670 hlist_for_each_entry(dev, head, name_hlist)
671 if (!strncmp(dev->name, name, IFNAMSIZ))
672 return dev;
673
674 return NULL;
675 }
676 EXPORT_SYMBOL(__dev_get_by_name);
677
678 /**
679 * dev_get_by_name_rcu - find a device by its name
680 * @net: the applicable net namespace
681 * @name: name to find
682 *
683 * Find an interface by name.
684 * If the name is found a pointer to the device is returned.
685 * If the name is not found then %NULL is returned.
686 * The reference counters are not incremented so the caller must be
687 * careful with locks. The caller must hold RCU lock.
688 */
689
690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
691 {
692 struct net_device *dev;
693 struct hlist_head *head = dev_name_hash(net, name);
694
695 hlist_for_each_entry_rcu(dev, head, name_hlist)
696 if (!strncmp(dev->name, name, IFNAMSIZ))
697 return dev;
698
699 return NULL;
700 }
701 EXPORT_SYMBOL(dev_get_by_name_rcu);
702
703 /**
704 * dev_get_by_name - find a device by its name
705 * @net: the applicable net namespace
706 * @name: name to find
707 *
708 * Find an interface by name. This can be called from any
709 * context and does its own locking. The returned handle has
710 * the usage count incremented and the caller must use dev_put() to
711 * release it when it is no longer needed. %NULL is returned if no
712 * matching device is found.
713 */
714
715 struct net_device *dev_get_by_name(struct net *net, const char *name)
716 {
717 struct net_device *dev;
718
719 rcu_read_lock();
720 dev = dev_get_by_name_rcu(net, name);
721 if (dev)
722 dev_hold(dev);
723 rcu_read_unlock();
724 return dev;
725 }
726 EXPORT_SYMBOL(dev_get_by_name);
727
728 /**
729 * __dev_get_by_index - find a device by its ifindex
730 * @net: the applicable net namespace
731 * @ifindex: index of device
732 *
733 * Search for an interface by index. Returns %NULL if the device
734 * is not found or a pointer to the device. The device has not
735 * had its reference counter increased so the caller must be careful
736 * about locking. The caller must hold either the RTNL semaphore
737 * or @dev_base_lock.
738 */
739
740 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
741 {
742 struct net_device *dev;
743 struct hlist_head *head = dev_index_hash(net, ifindex);
744
745 hlist_for_each_entry(dev, head, index_hlist)
746 if (dev->ifindex == ifindex)
747 return dev;
748
749 return NULL;
750 }
751 EXPORT_SYMBOL(__dev_get_by_index);
752
753 /**
754 * dev_get_by_index_rcu - find a device by its ifindex
755 * @net: the applicable net namespace
756 * @ifindex: index of device
757 *
758 * Search for an interface by index. Returns %NULL if the device
759 * is not found or a pointer to the device. The device has not
760 * had its reference counter increased so the caller must be careful
761 * about locking. The caller must hold RCU lock.
762 */
763
764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
765 {
766 struct net_device *dev;
767 struct hlist_head *head = dev_index_hash(net, ifindex);
768
769 hlist_for_each_entry_rcu(dev, head, index_hlist)
770 if (dev->ifindex == ifindex)
771 return dev;
772
773 return NULL;
774 }
775 EXPORT_SYMBOL(dev_get_by_index_rcu);
776
777
778 /**
779 * dev_get_by_index - find a device by its ifindex
780 * @net: the applicable net namespace
781 * @ifindex: index of device
782 *
783 * Search for an interface by index. Returns NULL if the device
784 * is not found or a pointer to the device. The device returned has
785 * had a reference added and the pointer is safe until the user calls
786 * dev_put to indicate they have finished with it.
787 */
788
789 struct net_device *dev_get_by_index(struct net *net, int ifindex)
790 {
791 struct net_device *dev;
792
793 rcu_read_lock();
794 dev = dev_get_by_index_rcu(net, ifindex);
795 if (dev)
796 dev_hold(dev);
797 rcu_read_unlock();
798 return dev;
799 }
800 EXPORT_SYMBOL(dev_get_by_index);
801
802 /**
803 * netdev_get_name - get a netdevice name, knowing its ifindex.
804 * @net: network namespace
805 * @name: a pointer to the buffer where the name will be stored.
806 * @ifindex: the ifindex of the interface to get the name from.
807 *
808 * The use of raw_seqcount_begin() and cond_resched() before
809 * retrying is required as we want to give the writers a chance
810 * to complete when CONFIG_PREEMPT is not set.
811 */
812 int netdev_get_name(struct net *net, char *name, int ifindex)
813 {
814 struct net_device *dev;
815 unsigned int seq;
816
817 retry:
818 seq = raw_seqcount_begin(&devnet_rename_seq);
819 rcu_read_lock();
820 dev = dev_get_by_index_rcu(net, ifindex);
821 if (!dev) {
822 rcu_read_unlock();
823 return -ENODEV;
824 }
825
826 strcpy(name, dev->name);
827 rcu_read_unlock();
828 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
829 cond_resched();
830 goto retry;
831 }
832
833 return 0;
834 }
835
836 /**
837 * dev_getbyhwaddr_rcu - find a device by its hardware address
838 * @net: the applicable net namespace
839 * @type: media type of device
840 * @ha: hardware address
841 *
842 * Search for an interface by MAC address. Returns NULL if the device
843 * is not found or a pointer to the device.
844 * The caller must hold RCU or RTNL.
845 * The returned device has not had its ref count increased
846 * and the caller must therefore be careful about locking
847 *
848 */
849
850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
851 const char *ha)
852 {
853 struct net_device *dev;
854
855 for_each_netdev_rcu(net, dev)
856 if (dev->type == type &&
857 !memcmp(dev->dev_addr, ha, dev->addr_len))
858 return dev;
859
860 return NULL;
861 }
862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
863
864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
865 {
866 struct net_device *dev;
867
868 ASSERT_RTNL();
869 for_each_netdev(net, dev)
870 if (dev->type == type)
871 return dev;
872
873 return NULL;
874 }
875 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876
877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879 struct net_device *dev, *ret = NULL;
880
881 rcu_read_lock();
882 for_each_netdev_rcu(net, dev)
883 if (dev->type == type) {
884 dev_hold(dev);
885 ret = dev;
886 break;
887 }
888 rcu_read_unlock();
889 return ret;
890 }
891 EXPORT_SYMBOL(dev_getfirstbyhwtype);
892
893 /**
894 * dev_get_by_flags_rcu - find any device with given flags
895 * @net: the applicable net namespace
896 * @if_flags: IFF_* values
897 * @mask: bitmask of bits in if_flags to check
898 *
899 * Search for any interface with the given flags. Returns NULL if a device
900 * is not found or a pointer to the device. Must be called inside
901 * rcu_read_lock(), and result refcount is unchanged.
902 */
903
904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
905 unsigned short mask)
906 {
907 struct net_device *dev, *ret;
908
909 ret = NULL;
910 for_each_netdev_rcu(net, dev) {
911 if (((dev->flags ^ if_flags) & mask) == 0) {
912 ret = dev;
913 break;
914 }
915 }
916 return ret;
917 }
918 EXPORT_SYMBOL(dev_get_by_flags_rcu);
919
920 /**
921 * dev_valid_name - check if name is okay for network device
922 * @name: name string
923 *
924 * Network device names need to be valid file names to
925 * to allow sysfs to work. We also disallow any kind of
926 * whitespace.
927 */
928 bool dev_valid_name(const char *name)
929 {
930 if (*name == '\0')
931 return false;
932 if (strlen(name) >= IFNAMSIZ)
933 return false;
934 if (!strcmp(name, ".") || !strcmp(name, ".."))
935 return false;
936
937 while (*name) {
938 if (*name == '/' || isspace(*name))
939 return false;
940 name++;
941 }
942 return true;
943 }
944 EXPORT_SYMBOL(dev_valid_name);
945
946 /**
947 * __dev_alloc_name - allocate a name for a device
948 * @net: network namespace to allocate the device name in
949 * @name: name format string
950 * @buf: scratch buffer and result name string
951 *
952 * Passed a format string - eg "lt%d" it will try and find a suitable
953 * id. It scans list of devices to build up a free map, then chooses
954 * the first empty slot. The caller must hold the dev_base or rtnl lock
955 * while allocating the name and adding the device in order to avoid
956 * duplicates.
957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958 * Returns the number of the unit assigned or a negative errno code.
959 */
960
961 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
962 {
963 int i = 0;
964 const char *p;
965 const int max_netdevices = 8*PAGE_SIZE;
966 unsigned long *inuse;
967 struct net_device *d;
968
969 p = strnchr(name, IFNAMSIZ-1, '%');
970 if (p) {
971 /*
972 * Verify the string as this thing may have come from
973 * the user. There must be either one "%d" and no other "%"
974 * characters.
975 */
976 if (p[1] != 'd' || strchr(p + 2, '%'))
977 return -EINVAL;
978
979 /* Use one page as a bit array of possible slots */
980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
981 if (!inuse)
982 return -ENOMEM;
983
984 for_each_netdev(net, d) {
985 if (!sscanf(d->name, name, &i))
986 continue;
987 if (i < 0 || i >= max_netdevices)
988 continue;
989
990 /* avoid cases where sscanf is not exact inverse of printf */
991 snprintf(buf, IFNAMSIZ, name, i);
992 if (!strncmp(buf, d->name, IFNAMSIZ))
993 set_bit(i, inuse);
994 }
995
996 i = find_first_zero_bit(inuse, max_netdevices);
997 free_page((unsigned long) inuse);
998 }
999
1000 if (buf != name)
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!__dev_get_by_name(net, buf))
1003 return i;
1004
1005 /* It is possible to run out of possible slots
1006 * when the name is long and there isn't enough space left
1007 * for the digits, or if all bits are used.
1008 */
1009 return -ENFILE;
1010 }
1011
1012 /**
1013 * dev_alloc_name - allocate a name for a device
1014 * @dev: device
1015 * @name: name format string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026 int dev_alloc_name(struct net_device *dev, const char *name)
1027 {
1028 char buf[IFNAMSIZ];
1029 struct net *net;
1030 int ret;
1031
1032 BUG_ON(!dev_net(dev));
1033 net = dev_net(dev);
1034 ret = __dev_alloc_name(net, name, buf);
1035 if (ret >= 0)
1036 strlcpy(dev->name, buf, IFNAMSIZ);
1037 return ret;
1038 }
1039 EXPORT_SYMBOL(dev_alloc_name);
1040
1041 static int dev_alloc_name_ns(struct net *net,
1042 struct net_device *dev,
1043 const char *name)
1044 {
1045 char buf[IFNAMSIZ];
1046 int ret;
1047
1048 ret = __dev_alloc_name(net, name, buf);
1049 if (ret >= 0)
1050 strlcpy(dev->name, buf, IFNAMSIZ);
1051 return ret;
1052 }
1053
1054 static int dev_get_valid_name(struct net *net,
1055 struct net_device *dev,
1056 const char *name)
1057 {
1058 BUG_ON(!net);
1059
1060 if (!dev_valid_name(name))
1061 return -EINVAL;
1062
1063 if (strchr(name, '%'))
1064 return dev_alloc_name_ns(net, dev, name);
1065 else if (__dev_get_by_name(net, name))
1066 return -EEXIST;
1067 else if (dev->name != name)
1068 strlcpy(dev->name, name, IFNAMSIZ);
1069
1070 return 0;
1071 }
1072
1073 /**
1074 * dev_change_name - change name of a device
1075 * @dev: device
1076 * @newname: name (or format string) must be at least IFNAMSIZ
1077 *
1078 * Change name of a device, can pass format strings "eth%d".
1079 * for wildcarding.
1080 */
1081 int dev_change_name(struct net_device *dev, const char *newname)
1082 {
1083 char oldname[IFNAMSIZ];
1084 int err = 0;
1085 int ret;
1086 struct net *net;
1087
1088 ASSERT_RTNL();
1089 BUG_ON(!dev_net(dev));
1090
1091 net = dev_net(dev);
1092 if (dev->flags & IFF_UP)
1093 return -EBUSY;
1094
1095 write_seqcount_begin(&devnet_rename_seq);
1096
1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 write_seqcount_end(&devnet_rename_seq);
1099 return 0;
1100 }
1101
1102 memcpy(oldname, dev->name, IFNAMSIZ);
1103
1104 err = dev_get_valid_name(net, dev, newname);
1105 if (err < 0) {
1106 write_seqcount_end(&devnet_rename_seq);
1107 return err;
1108 }
1109
1110 rollback:
1111 ret = device_rename(&dev->dev, dev->name);
1112 if (ret) {
1113 memcpy(dev->name, oldname, IFNAMSIZ);
1114 write_seqcount_end(&devnet_rename_seq);
1115 return ret;
1116 }
1117
1118 write_seqcount_end(&devnet_rename_seq);
1119
1120 write_lock_bh(&dev_base_lock);
1121 hlist_del_rcu(&dev->name_hlist);
1122 write_unlock_bh(&dev_base_lock);
1123
1124 synchronize_rcu();
1125
1126 write_lock_bh(&dev_base_lock);
1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 write_unlock_bh(&dev_base_lock);
1129
1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 ret = notifier_to_errno(ret);
1132
1133 if (ret) {
1134 /* err >= 0 after dev_alloc_name() or stores the first errno */
1135 if (err >= 0) {
1136 err = ret;
1137 write_seqcount_begin(&devnet_rename_seq);
1138 memcpy(dev->name, oldname, IFNAMSIZ);
1139 goto rollback;
1140 } else {
1141 pr_err("%s: name change rollback failed: %d\n",
1142 dev->name, ret);
1143 }
1144 }
1145
1146 return err;
1147 }
1148
1149 /**
1150 * dev_set_alias - change ifalias of a device
1151 * @dev: device
1152 * @alias: name up to IFALIASZ
1153 * @len: limit of bytes to copy from info
1154 *
1155 * Set ifalias for a device,
1156 */
1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1158 {
1159 char *new_ifalias;
1160
1161 ASSERT_RTNL();
1162
1163 if (len >= IFALIASZ)
1164 return -EINVAL;
1165
1166 if (!len) {
1167 kfree(dev->ifalias);
1168 dev->ifalias = NULL;
1169 return 0;
1170 }
1171
1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1173 if (!new_ifalias)
1174 return -ENOMEM;
1175 dev->ifalias = new_ifalias;
1176
1177 strlcpy(dev->ifalias, alias, len+1);
1178 return len;
1179 }
1180
1181
1182 /**
1183 * netdev_features_change - device changes features
1184 * @dev: device to cause notification
1185 *
1186 * Called to indicate a device has changed features.
1187 */
1188 void netdev_features_change(struct net_device *dev)
1189 {
1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1191 }
1192 EXPORT_SYMBOL(netdev_features_change);
1193
1194 /**
1195 * netdev_state_change - device changes state
1196 * @dev: device to cause notification
1197 *
1198 * Called to indicate a device has changed state. This function calls
1199 * the notifier chains for netdev_chain and sends a NEWLINK message
1200 * to the routing socket.
1201 */
1202 void netdev_state_change(struct net_device *dev)
1203 {
1204 if (dev->flags & IFF_UP) {
1205 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1207 }
1208 }
1209 EXPORT_SYMBOL(netdev_state_change);
1210
1211 /**
1212 * netdev_notify_peers - notify network peers about existence of @dev
1213 * @dev: network device
1214 *
1215 * Generate traffic such that interested network peers are aware of
1216 * @dev, such as by generating a gratuitous ARP. This may be used when
1217 * a device wants to inform the rest of the network about some sort of
1218 * reconfiguration such as a failover event or virtual machine
1219 * migration.
1220 */
1221 void netdev_notify_peers(struct net_device *dev)
1222 {
1223 rtnl_lock();
1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1225 rtnl_unlock();
1226 }
1227 EXPORT_SYMBOL(netdev_notify_peers);
1228
1229 static int __dev_open(struct net_device *dev)
1230 {
1231 const struct net_device_ops *ops = dev->netdev_ops;
1232 int ret;
1233
1234 ASSERT_RTNL();
1235
1236 if (!netif_device_present(dev))
1237 return -ENODEV;
1238
1239 /* Block netpoll from trying to do any rx path servicing.
1240 * If we don't do this there is a chance ndo_poll_controller
1241 * or ndo_poll may be running while we open the device
1242 */
1243 netpoll_rx_disable(dev);
1244
1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1246 ret = notifier_to_errno(ret);
1247 if (ret)
1248 return ret;
1249
1250 set_bit(__LINK_STATE_START, &dev->state);
1251
1252 if (ops->ndo_validate_addr)
1253 ret = ops->ndo_validate_addr(dev);
1254
1255 if (!ret && ops->ndo_open)
1256 ret = ops->ndo_open(dev);
1257
1258 netpoll_rx_enable(dev);
1259
1260 if (ret)
1261 clear_bit(__LINK_STATE_START, &dev->state);
1262 else {
1263 dev->flags |= IFF_UP;
1264 net_dmaengine_get();
1265 dev_set_rx_mode(dev);
1266 dev_activate(dev);
1267 add_device_randomness(dev->dev_addr, dev->addr_len);
1268 }
1269
1270 return ret;
1271 }
1272
1273 /**
1274 * dev_open - prepare an interface for use.
1275 * @dev: device to open
1276 *
1277 * Takes a device from down to up state. The device's private open
1278 * function is invoked and then the multicast lists are loaded. Finally
1279 * the device is moved into the up state and a %NETDEV_UP message is
1280 * sent to the netdev notifier chain.
1281 *
1282 * Calling this function on an active interface is a nop. On a failure
1283 * a negative errno code is returned.
1284 */
1285 int dev_open(struct net_device *dev)
1286 {
1287 int ret;
1288
1289 if (dev->flags & IFF_UP)
1290 return 0;
1291
1292 ret = __dev_open(dev);
1293 if (ret < 0)
1294 return ret;
1295
1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1297 call_netdevice_notifiers(NETDEV_UP, dev);
1298
1299 return ret;
1300 }
1301 EXPORT_SYMBOL(dev_open);
1302
1303 static int __dev_close_many(struct list_head *head)
1304 {
1305 struct net_device *dev;
1306
1307 ASSERT_RTNL();
1308 might_sleep();
1309
1310 list_for_each_entry(dev, head, close_list) {
1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1312
1313 clear_bit(__LINK_STATE_START, &dev->state);
1314
1315 /* Synchronize to scheduled poll. We cannot touch poll list, it
1316 * can be even on different cpu. So just clear netif_running().
1317 *
1318 * dev->stop() will invoke napi_disable() on all of it's
1319 * napi_struct instances on this device.
1320 */
1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1322 }
1323
1324 dev_deactivate_many(head);
1325
1326 list_for_each_entry(dev, head, close_list) {
1327 const struct net_device_ops *ops = dev->netdev_ops;
1328
1329 /*
1330 * Call the device specific close. This cannot fail.
1331 * Only if device is UP
1332 *
1333 * We allow it to be called even after a DETACH hot-plug
1334 * event.
1335 */
1336 if (ops->ndo_stop)
1337 ops->ndo_stop(dev);
1338
1339 dev->flags &= ~IFF_UP;
1340 net_dmaengine_put();
1341 }
1342
1343 return 0;
1344 }
1345
1346 static int __dev_close(struct net_device *dev)
1347 {
1348 int retval;
1349 LIST_HEAD(single);
1350
1351 /* Temporarily disable netpoll until the interface is down */
1352 netpoll_rx_disable(dev);
1353
1354 list_add(&dev->close_list, &single);
1355 retval = __dev_close_many(&single);
1356 list_del(&single);
1357
1358 netpoll_rx_enable(dev);
1359 return retval;
1360 }
1361
1362 static int dev_close_many(struct list_head *head)
1363 {
1364 struct net_device *dev, *tmp;
1365
1366 /* Remove the devices that don't need to be closed */
1367 list_for_each_entry_safe(dev, tmp, head, close_list)
1368 if (!(dev->flags & IFF_UP))
1369 list_del_init(&dev->close_list);
1370
1371 __dev_close_many(head);
1372
1373 list_for_each_entry_safe(dev, tmp, head, close_list) {
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_DOWN, dev);
1376 list_del_init(&dev->close_list);
1377 }
1378
1379 return 0;
1380 }
1381
1382 /**
1383 * dev_close - shutdown an interface.
1384 * @dev: device to shutdown
1385 *
1386 * This function moves an active device into down state. A
1387 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1388 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1389 * chain.
1390 */
1391 int dev_close(struct net_device *dev)
1392 {
1393 if (dev->flags & IFF_UP) {
1394 LIST_HEAD(single);
1395
1396 /* Block netpoll rx while the interface is going down */
1397 netpoll_rx_disable(dev);
1398
1399 list_add(&dev->close_list, &single);
1400 dev_close_many(&single);
1401 list_del(&single);
1402
1403 netpoll_rx_enable(dev);
1404 }
1405 return 0;
1406 }
1407 EXPORT_SYMBOL(dev_close);
1408
1409
1410 /**
1411 * dev_disable_lro - disable Large Receive Offload on a device
1412 * @dev: device
1413 *
1414 * Disable Large Receive Offload (LRO) on a net device. Must be
1415 * called under RTNL. This is needed if received packets may be
1416 * forwarded to another interface.
1417 */
1418 void dev_disable_lro(struct net_device *dev)
1419 {
1420 /*
1421 * If we're trying to disable lro on a vlan device
1422 * use the underlying physical device instead
1423 */
1424 if (is_vlan_dev(dev))
1425 dev = vlan_dev_real_dev(dev);
1426
1427 dev->wanted_features &= ~NETIF_F_LRO;
1428 netdev_update_features(dev);
1429
1430 if (unlikely(dev->features & NETIF_F_LRO))
1431 netdev_WARN(dev, "failed to disable LRO!\n");
1432 }
1433 EXPORT_SYMBOL(dev_disable_lro);
1434
1435 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1436 struct net_device *dev)
1437 {
1438 struct netdev_notifier_info info;
1439
1440 netdev_notifier_info_init(&info, dev);
1441 return nb->notifier_call(nb, val, &info);
1442 }
1443
1444 static int dev_boot_phase = 1;
1445
1446 /**
1447 * register_netdevice_notifier - register a network notifier block
1448 * @nb: notifier
1449 *
1450 * Register a notifier to be called when network device events occur.
1451 * The notifier passed is linked into the kernel structures and must
1452 * not be reused until it has been unregistered. A negative errno code
1453 * is returned on a failure.
1454 *
1455 * When registered all registration and up events are replayed
1456 * to the new notifier to allow device to have a race free
1457 * view of the network device list.
1458 */
1459
1460 int register_netdevice_notifier(struct notifier_block *nb)
1461 {
1462 struct net_device *dev;
1463 struct net_device *last;
1464 struct net *net;
1465 int err;
1466
1467 rtnl_lock();
1468 err = raw_notifier_chain_register(&netdev_chain, nb);
1469 if (err)
1470 goto unlock;
1471 if (dev_boot_phase)
1472 goto unlock;
1473 for_each_net(net) {
1474 for_each_netdev(net, dev) {
1475 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1476 err = notifier_to_errno(err);
1477 if (err)
1478 goto rollback;
1479
1480 if (!(dev->flags & IFF_UP))
1481 continue;
1482
1483 call_netdevice_notifier(nb, NETDEV_UP, dev);
1484 }
1485 }
1486
1487 unlock:
1488 rtnl_unlock();
1489 return err;
1490
1491 rollback:
1492 last = dev;
1493 for_each_net(net) {
1494 for_each_netdev(net, dev) {
1495 if (dev == last)
1496 goto outroll;
1497
1498 if (dev->flags & IFF_UP) {
1499 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1500 dev);
1501 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1502 }
1503 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1504 }
1505 }
1506
1507 outroll:
1508 raw_notifier_chain_unregister(&netdev_chain, nb);
1509 goto unlock;
1510 }
1511 EXPORT_SYMBOL(register_netdevice_notifier);
1512
1513 /**
1514 * unregister_netdevice_notifier - unregister a network notifier block
1515 * @nb: notifier
1516 *
1517 * Unregister a notifier previously registered by
1518 * register_netdevice_notifier(). The notifier is unlinked into the
1519 * kernel structures and may then be reused. A negative errno code
1520 * is returned on a failure.
1521 *
1522 * After unregistering unregister and down device events are synthesized
1523 * for all devices on the device list to the removed notifier to remove
1524 * the need for special case cleanup code.
1525 */
1526
1527 int unregister_netdevice_notifier(struct notifier_block *nb)
1528 {
1529 struct net_device *dev;
1530 struct net *net;
1531 int err;
1532
1533 rtnl_lock();
1534 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1535 if (err)
1536 goto unlock;
1537
1538 for_each_net(net) {
1539 for_each_netdev(net, dev) {
1540 if (dev->flags & IFF_UP) {
1541 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1542 dev);
1543 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1544 }
1545 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1546 }
1547 }
1548 unlock:
1549 rtnl_unlock();
1550 return err;
1551 }
1552 EXPORT_SYMBOL(unregister_netdevice_notifier);
1553
1554 /**
1555 * call_netdevice_notifiers_info - call all network notifier blocks
1556 * @val: value passed unmodified to notifier function
1557 * @dev: net_device pointer passed unmodified to notifier function
1558 * @info: notifier information data
1559 *
1560 * Call all network notifier blocks. Parameters and return value
1561 * are as for raw_notifier_call_chain().
1562 */
1563
1564 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1565 struct netdev_notifier_info *info)
1566 {
1567 ASSERT_RTNL();
1568 netdev_notifier_info_init(info, dev);
1569 return raw_notifier_call_chain(&netdev_chain, val, info);
1570 }
1571 EXPORT_SYMBOL(call_netdevice_notifiers_info);
1572
1573 /**
1574 * call_netdevice_notifiers - call all network notifier blocks
1575 * @val: value passed unmodified to notifier function
1576 * @dev: net_device pointer passed unmodified to notifier function
1577 *
1578 * Call all network notifier blocks. Parameters and return value
1579 * are as for raw_notifier_call_chain().
1580 */
1581
1582 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1583 {
1584 struct netdev_notifier_info info;
1585
1586 return call_netdevice_notifiers_info(val, dev, &info);
1587 }
1588 EXPORT_SYMBOL(call_netdevice_notifiers);
1589
1590 static struct static_key netstamp_needed __read_mostly;
1591 #ifdef HAVE_JUMP_LABEL
1592 /* We are not allowed to call static_key_slow_dec() from irq context
1593 * If net_disable_timestamp() is called from irq context, defer the
1594 * static_key_slow_dec() calls.
1595 */
1596 static atomic_t netstamp_needed_deferred;
1597 #endif
1598
1599 void net_enable_timestamp(void)
1600 {
1601 #ifdef HAVE_JUMP_LABEL
1602 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1603
1604 if (deferred) {
1605 while (--deferred)
1606 static_key_slow_dec(&netstamp_needed);
1607 return;
1608 }
1609 #endif
1610 static_key_slow_inc(&netstamp_needed);
1611 }
1612 EXPORT_SYMBOL(net_enable_timestamp);
1613
1614 void net_disable_timestamp(void)
1615 {
1616 #ifdef HAVE_JUMP_LABEL
1617 if (in_interrupt()) {
1618 atomic_inc(&netstamp_needed_deferred);
1619 return;
1620 }
1621 #endif
1622 static_key_slow_dec(&netstamp_needed);
1623 }
1624 EXPORT_SYMBOL(net_disable_timestamp);
1625
1626 static inline void net_timestamp_set(struct sk_buff *skb)
1627 {
1628 skb->tstamp.tv64 = 0;
1629 if (static_key_false(&netstamp_needed))
1630 __net_timestamp(skb);
1631 }
1632
1633 #define net_timestamp_check(COND, SKB) \
1634 if (static_key_false(&netstamp_needed)) { \
1635 if ((COND) && !(SKB)->tstamp.tv64) \
1636 __net_timestamp(SKB); \
1637 } \
1638
1639 static inline bool is_skb_forwardable(struct net_device *dev,
1640 struct sk_buff *skb)
1641 {
1642 unsigned int len;
1643
1644 if (!(dev->flags & IFF_UP))
1645 return false;
1646
1647 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1648 if (skb->len <= len)
1649 return true;
1650
1651 /* if TSO is enabled, we don't care about the length as the packet
1652 * could be forwarded without being segmented before
1653 */
1654 if (skb_is_gso(skb))
1655 return true;
1656
1657 return false;
1658 }
1659
1660 /**
1661 * dev_forward_skb - loopback an skb to another netif
1662 *
1663 * @dev: destination network device
1664 * @skb: buffer to forward
1665 *
1666 * return values:
1667 * NET_RX_SUCCESS (no congestion)
1668 * NET_RX_DROP (packet was dropped, but freed)
1669 *
1670 * dev_forward_skb can be used for injecting an skb from the
1671 * start_xmit function of one device into the receive queue
1672 * of another device.
1673 *
1674 * The receiving device may be in another namespace, so
1675 * we have to clear all information in the skb that could
1676 * impact namespace isolation.
1677 */
1678 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1679 {
1680 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1681 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1682 atomic_long_inc(&dev->rx_dropped);
1683 kfree_skb(skb);
1684 return NET_RX_DROP;
1685 }
1686 }
1687
1688 if (unlikely(!is_skb_forwardable(dev, skb))) {
1689 atomic_long_inc(&dev->rx_dropped);
1690 kfree_skb(skb);
1691 return NET_RX_DROP;
1692 }
1693 skb->protocol = eth_type_trans(skb, dev);
1694
1695 /* eth_type_trans() can set pkt_type.
1696 * call skb_scrub_packet() after it to clear pkt_type _after_ calling
1697 * eth_type_trans().
1698 */
1699 skb_scrub_packet(skb, true);
1700
1701 return netif_rx(skb);
1702 }
1703 EXPORT_SYMBOL_GPL(dev_forward_skb);
1704
1705 static inline int deliver_skb(struct sk_buff *skb,
1706 struct packet_type *pt_prev,
1707 struct net_device *orig_dev)
1708 {
1709 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710 return -ENOMEM;
1711 atomic_inc(&skb->users);
1712 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1713 }
1714
1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1716 {
1717 if (!ptype->af_packet_priv || !skb->sk)
1718 return false;
1719
1720 if (ptype->id_match)
1721 return ptype->id_match(ptype, skb->sk);
1722 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723 return true;
1724
1725 return false;
1726 }
1727
1728 /*
1729 * Support routine. Sends outgoing frames to any network
1730 * taps currently in use.
1731 */
1732
1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1734 {
1735 struct packet_type *ptype;
1736 struct sk_buff *skb2 = NULL;
1737 struct packet_type *pt_prev = NULL;
1738
1739 rcu_read_lock();
1740 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741 /* Never send packets back to the socket
1742 * they originated from - MvS (miquels@drinkel.ow.org)
1743 */
1744 if ((ptype->dev == dev || !ptype->dev) &&
1745 (!skb_loop_sk(ptype, skb))) {
1746 if (pt_prev) {
1747 deliver_skb(skb2, pt_prev, skb->dev);
1748 pt_prev = ptype;
1749 continue;
1750 }
1751
1752 skb2 = skb_clone(skb, GFP_ATOMIC);
1753 if (!skb2)
1754 break;
1755
1756 net_timestamp_set(skb2);
1757
1758 /* skb->nh should be correctly
1759 set by sender, so that the second statement is
1760 just protection against buggy protocols.
1761 */
1762 skb_reset_mac_header(skb2);
1763
1764 if (skb_network_header(skb2) < skb2->data ||
1765 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767 ntohs(skb2->protocol),
1768 dev->name);
1769 skb_reset_network_header(skb2);
1770 }
1771
1772 skb2->transport_header = skb2->network_header;
1773 skb2->pkt_type = PACKET_OUTGOING;
1774 pt_prev = ptype;
1775 }
1776 }
1777 if (pt_prev)
1778 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1779 rcu_read_unlock();
1780 }
1781
1782 /**
1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784 * @dev: Network device
1785 * @txq: number of queues available
1786 *
1787 * If real_num_tx_queues is changed the tc mappings may no longer be
1788 * valid. To resolve this verify the tc mapping remains valid and if
1789 * not NULL the mapping. With no priorities mapping to this
1790 * offset/count pair it will no longer be used. In the worst case TC0
1791 * is invalid nothing can be done so disable priority mappings. If is
1792 * expected that drivers will fix this mapping if they can before
1793 * calling netif_set_real_num_tx_queues.
1794 */
1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1796 {
1797 int i;
1798 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1799
1800 /* If TC0 is invalidated disable TC mapping */
1801 if (tc->offset + tc->count > txq) {
1802 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1803 dev->num_tc = 0;
1804 return;
1805 }
1806
1807 /* Invalidated prio to tc mappings set to TC0 */
1808 for (i = 1; i < TC_BITMASK + 1; i++) {
1809 int q = netdev_get_prio_tc_map(dev, i);
1810
1811 tc = &dev->tc_to_txq[q];
1812 if (tc->offset + tc->count > txq) {
1813 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814 i, q);
1815 netdev_set_prio_tc_map(dev, i, 0);
1816 }
1817 }
1818 }
1819
1820 #ifdef CONFIG_XPS
1821 static DEFINE_MUTEX(xps_map_mutex);
1822 #define xmap_dereference(P) \
1823 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1824
1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826 int cpu, u16 index)
1827 {
1828 struct xps_map *map = NULL;
1829 int pos;
1830
1831 if (dev_maps)
1832 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1833
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] == index) {
1836 if (map->len > 1) {
1837 map->queues[pos] = map->queues[--map->len];
1838 } else {
1839 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840 kfree_rcu(map, rcu);
1841 map = NULL;
1842 }
1843 break;
1844 }
1845 }
1846
1847 return map;
1848 }
1849
1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1851 {
1852 struct xps_dev_maps *dev_maps;
1853 int cpu, i;
1854 bool active = false;
1855
1856 mutex_lock(&xps_map_mutex);
1857 dev_maps = xmap_dereference(dev->xps_maps);
1858
1859 if (!dev_maps)
1860 goto out_no_maps;
1861
1862 for_each_possible_cpu(cpu) {
1863 for (i = index; i < dev->num_tx_queues; i++) {
1864 if (!remove_xps_queue(dev_maps, cpu, i))
1865 break;
1866 }
1867 if (i == dev->num_tx_queues)
1868 active = true;
1869 }
1870
1871 if (!active) {
1872 RCU_INIT_POINTER(dev->xps_maps, NULL);
1873 kfree_rcu(dev_maps, rcu);
1874 }
1875
1876 for (i = index; i < dev->num_tx_queues; i++)
1877 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878 NUMA_NO_NODE);
1879
1880 out_no_maps:
1881 mutex_unlock(&xps_map_mutex);
1882 }
1883
1884 static struct xps_map *expand_xps_map(struct xps_map *map,
1885 int cpu, u16 index)
1886 {
1887 struct xps_map *new_map;
1888 int alloc_len = XPS_MIN_MAP_ALLOC;
1889 int i, pos;
1890
1891 for (pos = 0; map && pos < map->len; pos++) {
1892 if (map->queues[pos] != index)
1893 continue;
1894 return map;
1895 }
1896
1897 /* Need to add queue to this CPU's existing map */
1898 if (map) {
1899 if (pos < map->alloc_len)
1900 return map;
1901
1902 alloc_len = map->alloc_len * 2;
1903 }
1904
1905 /* Need to allocate new map to store queue on this CPU's map */
1906 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907 cpu_to_node(cpu));
1908 if (!new_map)
1909 return NULL;
1910
1911 for (i = 0; i < pos; i++)
1912 new_map->queues[i] = map->queues[i];
1913 new_map->alloc_len = alloc_len;
1914 new_map->len = pos;
1915
1916 return new_map;
1917 }
1918
1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920 u16 index)
1921 {
1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 struct xps_map *map, *new_map;
1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 int cpu, numa_node_id = -2;
1926 bool active = false;
1927
1928 mutex_lock(&xps_map_mutex);
1929
1930 dev_maps = xmap_dereference(dev->xps_maps);
1931
1932 /* allocate memory for queue storage */
1933 for_each_online_cpu(cpu) {
1934 if (!cpumask_test_cpu(cpu, mask))
1935 continue;
1936
1937 if (!new_dev_maps)
1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 if (!new_dev_maps) {
1940 mutex_unlock(&xps_map_mutex);
1941 return -ENOMEM;
1942 }
1943
1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 NULL;
1946
1947 map = expand_xps_map(map, cpu, index);
1948 if (!map)
1949 goto error;
1950
1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 }
1953
1954 if (!new_dev_maps)
1955 goto out_no_new_maps;
1956
1957 for_each_possible_cpu(cpu) {
1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 /* add queue to CPU maps */
1960 int pos = 0;
1961
1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 while ((pos < map->len) && (map->queues[pos] != index))
1964 pos++;
1965
1966 if (pos == map->len)
1967 map->queues[map->len++] = index;
1968 #ifdef CONFIG_NUMA
1969 if (numa_node_id == -2)
1970 numa_node_id = cpu_to_node(cpu);
1971 else if (numa_node_id != cpu_to_node(cpu))
1972 numa_node_id = -1;
1973 #endif
1974 } else if (dev_maps) {
1975 /* fill in the new device map from the old device map */
1976 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 }
1979
1980 }
1981
1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983
1984 /* Cleanup old maps */
1985 if (dev_maps) {
1986 for_each_possible_cpu(cpu) {
1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 if (map && map != new_map)
1990 kfree_rcu(map, rcu);
1991 }
1992
1993 kfree_rcu(dev_maps, rcu);
1994 }
1995
1996 dev_maps = new_dev_maps;
1997 active = true;
1998
1999 out_no_new_maps:
2000 /* update Tx queue numa node */
2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 (numa_node_id >= 0) ? numa_node_id :
2003 NUMA_NO_NODE);
2004
2005 if (!dev_maps)
2006 goto out_no_maps;
2007
2008 /* removes queue from unused CPUs */
2009 for_each_possible_cpu(cpu) {
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 continue;
2012
2013 if (remove_xps_queue(dev_maps, cpu, index))
2014 active = true;
2015 }
2016
2017 /* free map if not active */
2018 if (!active) {
2019 RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 kfree_rcu(dev_maps, rcu);
2021 }
2022
2023 out_no_maps:
2024 mutex_unlock(&xps_map_mutex);
2025
2026 return 0;
2027 error:
2028 /* remove any maps that we added */
2029 for_each_possible_cpu(cpu) {
2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 NULL;
2033 if (new_map && new_map != map)
2034 kfree(new_map);
2035 }
2036
2037 mutex_unlock(&xps_map_mutex);
2038
2039 kfree(new_dev_maps);
2040 return -ENOMEM;
2041 }
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2043
2044 #endif
2045 /*
2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048 */
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050 {
2051 int rc;
2052
2053 if (txq < 1 || txq > dev->num_tx_queues)
2054 return -EINVAL;
2055
2056 if (dev->reg_state == NETREG_REGISTERED ||
2057 dev->reg_state == NETREG_UNREGISTERING) {
2058 ASSERT_RTNL();
2059
2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 txq);
2062 if (rc)
2063 return rc;
2064
2065 if (dev->num_tc)
2066 netif_setup_tc(dev, txq);
2067
2068 if (txq < dev->real_num_tx_queues) {
2069 qdisc_reset_all_tx_gt(dev, txq);
2070 #ifdef CONFIG_XPS
2071 netif_reset_xps_queues_gt(dev, txq);
2072 #endif
2073 }
2074 }
2075
2076 dev->real_num_tx_queues = txq;
2077 return 0;
2078 }
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080
2081 #ifdef CONFIG_RPS
2082 /**
2083 * netif_set_real_num_rx_queues - set actual number of RX queues used
2084 * @dev: Network device
2085 * @rxq: Actual number of RX queues
2086 *
2087 * This must be called either with the rtnl_lock held or before
2088 * registration of the net device. Returns 0 on success, or a
2089 * negative error code. If called before registration, it always
2090 * succeeds.
2091 */
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093 {
2094 int rc;
2095
2096 if (rxq < 1 || rxq > dev->num_rx_queues)
2097 return -EINVAL;
2098
2099 if (dev->reg_state == NETREG_REGISTERED) {
2100 ASSERT_RTNL();
2101
2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 rxq);
2104 if (rc)
2105 return rc;
2106 }
2107
2108 dev->real_num_rx_queues = rxq;
2109 return 0;
2110 }
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112 #endif
2113
2114 /**
2115 * netif_get_num_default_rss_queues - default number of RSS queues
2116 *
2117 * This routine should set an upper limit on the number of RSS queues
2118 * used by default by multiqueue devices.
2119 */
2120 int netif_get_num_default_rss_queues(void)
2121 {
2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123 }
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125
2126 static inline void __netif_reschedule(struct Qdisc *q)
2127 {
2128 struct softnet_data *sd;
2129 unsigned long flags;
2130
2131 local_irq_save(flags);
2132 sd = &__get_cpu_var(softnet_data);
2133 q->next_sched = NULL;
2134 *sd->output_queue_tailp = q;
2135 sd->output_queue_tailp = &q->next_sched;
2136 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 local_irq_restore(flags);
2138 }
2139
2140 void __netif_schedule(struct Qdisc *q)
2141 {
2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 __netif_reschedule(q);
2144 }
2145 EXPORT_SYMBOL(__netif_schedule);
2146
2147 void dev_kfree_skb_irq(struct sk_buff *skb)
2148 {
2149 if (atomic_dec_and_test(&skb->users)) {
2150 struct softnet_data *sd;
2151 unsigned long flags;
2152
2153 local_irq_save(flags);
2154 sd = &__get_cpu_var(softnet_data);
2155 skb->next = sd->completion_queue;
2156 sd->completion_queue = skb;
2157 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2158 local_irq_restore(flags);
2159 }
2160 }
2161 EXPORT_SYMBOL(dev_kfree_skb_irq);
2162
2163 void dev_kfree_skb_any(struct sk_buff *skb)
2164 {
2165 if (in_irq() || irqs_disabled())
2166 dev_kfree_skb_irq(skb);
2167 else
2168 dev_kfree_skb(skb);
2169 }
2170 EXPORT_SYMBOL(dev_kfree_skb_any);
2171
2172
2173 /**
2174 * netif_device_detach - mark device as removed
2175 * @dev: network device
2176 *
2177 * Mark device as removed from system and therefore no longer available.
2178 */
2179 void netif_device_detach(struct net_device *dev)
2180 {
2181 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2182 netif_running(dev)) {
2183 netif_tx_stop_all_queues(dev);
2184 }
2185 }
2186 EXPORT_SYMBOL(netif_device_detach);
2187
2188 /**
2189 * netif_device_attach - mark device as attached
2190 * @dev: network device
2191 *
2192 * Mark device as attached from system and restart if needed.
2193 */
2194 void netif_device_attach(struct net_device *dev)
2195 {
2196 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2197 netif_running(dev)) {
2198 netif_tx_wake_all_queues(dev);
2199 __netdev_watchdog_up(dev);
2200 }
2201 }
2202 EXPORT_SYMBOL(netif_device_attach);
2203
2204 static void skb_warn_bad_offload(const struct sk_buff *skb)
2205 {
2206 static const netdev_features_t null_features = 0;
2207 struct net_device *dev = skb->dev;
2208 const char *driver = "";
2209
2210 if (!net_ratelimit())
2211 return;
2212
2213 if (dev && dev->dev.parent)
2214 driver = dev_driver_string(dev->dev.parent);
2215
2216 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2217 "gso_type=%d ip_summed=%d\n",
2218 driver, dev ? &dev->features : &null_features,
2219 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2220 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2221 skb_shinfo(skb)->gso_type, skb->ip_summed);
2222 }
2223
2224 /*
2225 * Invalidate hardware checksum when packet is to be mangled, and
2226 * complete checksum manually on outgoing path.
2227 */
2228 int skb_checksum_help(struct sk_buff *skb)
2229 {
2230 __wsum csum;
2231 int ret = 0, offset;
2232
2233 if (skb->ip_summed == CHECKSUM_COMPLETE)
2234 goto out_set_summed;
2235
2236 if (unlikely(skb_shinfo(skb)->gso_size)) {
2237 skb_warn_bad_offload(skb);
2238 return -EINVAL;
2239 }
2240
2241 /* Before computing a checksum, we should make sure no frag could
2242 * be modified by an external entity : checksum could be wrong.
2243 */
2244 if (skb_has_shared_frag(skb)) {
2245 ret = __skb_linearize(skb);
2246 if (ret)
2247 goto out;
2248 }
2249
2250 offset = skb_checksum_start_offset(skb);
2251 BUG_ON(offset >= skb_headlen(skb));
2252 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2253
2254 offset += skb->csum_offset;
2255 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2256
2257 if (skb_cloned(skb) &&
2258 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2259 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2260 if (ret)
2261 goto out;
2262 }
2263
2264 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2265 out_set_summed:
2266 skb->ip_summed = CHECKSUM_NONE;
2267 out:
2268 return ret;
2269 }
2270 EXPORT_SYMBOL(skb_checksum_help);
2271
2272 __be16 skb_network_protocol(struct sk_buff *skb)
2273 {
2274 __be16 type = skb->protocol;
2275 int vlan_depth = ETH_HLEN;
2276
2277 /* Tunnel gso handlers can set protocol to ethernet. */
2278 if (type == htons(ETH_P_TEB)) {
2279 struct ethhdr *eth;
2280
2281 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2282 return 0;
2283
2284 eth = (struct ethhdr *)skb_mac_header(skb);
2285 type = eth->h_proto;
2286 }
2287
2288 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2289 struct vlan_hdr *vh;
2290
2291 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2292 return 0;
2293
2294 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2295 type = vh->h_vlan_encapsulated_proto;
2296 vlan_depth += VLAN_HLEN;
2297 }
2298
2299 return type;
2300 }
2301
2302 /**
2303 * skb_mac_gso_segment - mac layer segmentation handler.
2304 * @skb: buffer to segment
2305 * @features: features for the output path (see dev->features)
2306 */
2307 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2308 netdev_features_t features)
2309 {
2310 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2311 struct packet_offload *ptype;
2312 __be16 type = skb_network_protocol(skb);
2313
2314 if (unlikely(!type))
2315 return ERR_PTR(-EINVAL);
2316
2317 __skb_pull(skb, skb->mac_len);
2318
2319 rcu_read_lock();
2320 list_for_each_entry_rcu(ptype, &offload_base, list) {
2321 if (ptype->type == type && ptype->callbacks.gso_segment) {
2322 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2323 int err;
2324
2325 err = ptype->callbacks.gso_send_check(skb);
2326 segs = ERR_PTR(err);
2327 if (err || skb_gso_ok(skb, features))
2328 break;
2329 __skb_push(skb, (skb->data -
2330 skb_network_header(skb)));
2331 }
2332 segs = ptype->callbacks.gso_segment(skb, features);
2333 break;
2334 }
2335 }
2336 rcu_read_unlock();
2337
2338 __skb_push(skb, skb->data - skb_mac_header(skb));
2339
2340 return segs;
2341 }
2342 EXPORT_SYMBOL(skb_mac_gso_segment);
2343
2344
2345 /* openvswitch calls this on rx path, so we need a different check.
2346 */
2347 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2348 {
2349 if (tx_path)
2350 return skb->ip_summed != CHECKSUM_PARTIAL;
2351 else
2352 return skb->ip_summed == CHECKSUM_NONE;
2353 }
2354
2355 /**
2356 * __skb_gso_segment - Perform segmentation on skb.
2357 * @skb: buffer to segment
2358 * @features: features for the output path (see dev->features)
2359 * @tx_path: whether it is called in TX path
2360 *
2361 * This function segments the given skb and returns a list of segments.
2362 *
2363 * It may return NULL if the skb requires no segmentation. This is
2364 * only possible when GSO is used for verifying header integrity.
2365 */
2366 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2367 netdev_features_t features, bool tx_path)
2368 {
2369 if (unlikely(skb_needs_check(skb, tx_path))) {
2370 int err;
2371
2372 skb_warn_bad_offload(skb);
2373
2374 if (skb_header_cloned(skb) &&
2375 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2376 return ERR_PTR(err);
2377 }
2378
2379 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2380 SKB_GSO_CB(skb)->encap_level = 0;
2381
2382 skb_reset_mac_header(skb);
2383 skb_reset_mac_len(skb);
2384
2385 return skb_mac_gso_segment(skb, features);
2386 }
2387 EXPORT_SYMBOL(__skb_gso_segment);
2388
2389 /* Take action when hardware reception checksum errors are detected. */
2390 #ifdef CONFIG_BUG
2391 void netdev_rx_csum_fault(struct net_device *dev)
2392 {
2393 if (net_ratelimit()) {
2394 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2395 dump_stack();
2396 }
2397 }
2398 EXPORT_SYMBOL(netdev_rx_csum_fault);
2399 #endif
2400
2401 /* Actually, we should eliminate this check as soon as we know, that:
2402 * 1. IOMMU is present and allows to map all the memory.
2403 * 2. No high memory really exists on this machine.
2404 */
2405
2406 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2407 {
2408 #ifdef CONFIG_HIGHMEM
2409 int i;
2410 if (!(dev->features & NETIF_F_HIGHDMA)) {
2411 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2412 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2413 if (PageHighMem(skb_frag_page(frag)))
2414 return 1;
2415 }
2416 }
2417
2418 if (PCI_DMA_BUS_IS_PHYS) {
2419 struct device *pdev = dev->dev.parent;
2420
2421 if (!pdev)
2422 return 0;
2423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2425 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2426 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2427 return 1;
2428 }
2429 }
2430 #endif
2431 return 0;
2432 }
2433
2434 struct dev_gso_cb {
2435 void (*destructor)(struct sk_buff *skb);
2436 };
2437
2438 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2439
2440 static void dev_gso_skb_destructor(struct sk_buff *skb)
2441 {
2442 struct dev_gso_cb *cb;
2443
2444 do {
2445 struct sk_buff *nskb = skb->next;
2446
2447 skb->next = nskb->next;
2448 nskb->next = NULL;
2449 kfree_skb(nskb);
2450 } while (skb->next);
2451
2452 cb = DEV_GSO_CB(skb);
2453 if (cb->destructor)
2454 cb->destructor(skb);
2455 }
2456
2457 /**
2458 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2459 * @skb: buffer to segment
2460 * @features: device features as applicable to this skb
2461 *
2462 * This function segments the given skb and stores the list of segments
2463 * in skb->next.
2464 */
2465 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2466 {
2467 struct sk_buff *segs;
2468
2469 segs = skb_gso_segment(skb, features);
2470
2471 /* Verifying header integrity only. */
2472 if (!segs)
2473 return 0;
2474
2475 if (IS_ERR(segs))
2476 return PTR_ERR(segs);
2477
2478 skb->next = segs;
2479 DEV_GSO_CB(skb)->destructor = skb->destructor;
2480 skb->destructor = dev_gso_skb_destructor;
2481
2482 return 0;
2483 }
2484
2485 static netdev_features_t harmonize_features(struct sk_buff *skb,
2486 netdev_features_t features)
2487 {
2488 if (skb->ip_summed != CHECKSUM_NONE &&
2489 !can_checksum_protocol(features, skb_network_protocol(skb))) {
2490 features &= ~NETIF_F_ALL_CSUM;
2491 } else if (illegal_highdma(skb->dev, skb)) {
2492 features &= ~NETIF_F_SG;
2493 }
2494
2495 return features;
2496 }
2497
2498 netdev_features_t netif_skb_features(struct sk_buff *skb)
2499 {
2500 __be16 protocol = skb->protocol;
2501 netdev_features_t features = skb->dev->features;
2502
2503 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2504 features &= ~NETIF_F_GSO_MASK;
2505
2506 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2507 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2508 protocol = veh->h_vlan_encapsulated_proto;
2509 } else if (!vlan_tx_tag_present(skb)) {
2510 return harmonize_features(skb, features);
2511 }
2512
2513 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2514 NETIF_F_HW_VLAN_STAG_TX);
2515
2516 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2517 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2518 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2519 NETIF_F_HW_VLAN_STAG_TX;
2520
2521 return harmonize_features(skb, features);
2522 }
2523 EXPORT_SYMBOL(netif_skb_features);
2524
2525 /*
2526 * Returns true if either:
2527 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2528 * 2. skb is fragmented and the device does not support SG.
2529 */
2530 static inline int skb_needs_linearize(struct sk_buff *skb,
2531 netdev_features_t features)
2532 {
2533 return skb_is_nonlinear(skb) &&
2534 ((skb_has_frag_list(skb) &&
2535 !(features & NETIF_F_FRAGLIST)) ||
2536 (skb_shinfo(skb)->nr_frags &&
2537 !(features & NETIF_F_SG)));
2538 }
2539
2540 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2541 struct netdev_queue *txq)
2542 {
2543 const struct net_device_ops *ops = dev->netdev_ops;
2544 int rc = NETDEV_TX_OK;
2545 unsigned int skb_len;
2546
2547 if (likely(!skb->next)) {
2548 netdev_features_t features;
2549
2550 /*
2551 * If device doesn't need skb->dst, release it right now while
2552 * its hot in this cpu cache
2553 */
2554 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2555 skb_dst_drop(skb);
2556
2557 features = netif_skb_features(skb);
2558
2559 if (vlan_tx_tag_present(skb) &&
2560 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2561 skb = __vlan_put_tag(skb, skb->vlan_proto,
2562 vlan_tx_tag_get(skb));
2563 if (unlikely(!skb))
2564 goto out;
2565
2566 skb->vlan_tci = 0;
2567 }
2568
2569 /* If encapsulation offload request, verify we are testing
2570 * hardware encapsulation features instead of standard
2571 * features for the netdev
2572 */
2573 if (skb->encapsulation)
2574 features &= dev->hw_enc_features;
2575
2576 if (netif_needs_gso(skb, features)) {
2577 if (unlikely(dev_gso_segment(skb, features)))
2578 goto out_kfree_skb;
2579 if (skb->next)
2580 goto gso;
2581 } else {
2582 if (skb_needs_linearize(skb, features) &&
2583 __skb_linearize(skb))
2584 goto out_kfree_skb;
2585
2586 /* If packet is not checksummed and device does not
2587 * support checksumming for this protocol, complete
2588 * checksumming here.
2589 */
2590 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2591 if (skb->encapsulation)
2592 skb_set_inner_transport_header(skb,
2593 skb_checksum_start_offset(skb));
2594 else
2595 skb_set_transport_header(skb,
2596 skb_checksum_start_offset(skb));
2597 if (!(features & NETIF_F_ALL_CSUM) &&
2598 skb_checksum_help(skb))
2599 goto out_kfree_skb;
2600 }
2601 }
2602
2603 if (!list_empty(&ptype_all))
2604 dev_queue_xmit_nit(skb, dev);
2605
2606 skb_len = skb->len;
2607 rc = ops->ndo_start_xmit(skb, dev);
2608 trace_net_dev_xmit(skb, rc, dev, skb_len);
2609 if (rc == NETDEV_TX_OK)
2610 txq_trans_update(txq);
2611 return rc;
2612 }
2613
2614 gso:
2615 do {
2616 struct sk_buff *nskb = skb->next;
2617
2618 skb->next = nskb->next;
2619 nskb->next = NULL;
2620
2621 if (!list_empty(&ptype_all))
2622 dev_queue_xmit_nit(nskb, dev);
2623
2624 skb_len = nskb->len;
2625 rc = ops->ndo_start_xmit(nskb, dev);
2626 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2627 if (unlikely(rc != NETDEV_TX_OK)) {
2628 if (rc & ~NETDEV_TX_MASK)
2629 goto out_kfree_gso_skb;
2630 nskb->next = skb->next;
2631 skb->next = nskb;
2632 return rc;
2633 }
2634 txq_trans_update(txq);
2635 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2636 return NETDEV_TX_BUSY;
2637 } while (skb->next);
2638
2639 out_kfree_gso_skb:
2640 if (likely(skb->next == NULL)) {
2641 skb->destructor = DEV_GSO_CB(skb)->destructor;
2642 consume_skb(skb);
2643 return rc;
2644 }
2645 out_kfree_skb:
2646 kfree_skb(skb);
2647 out:
2648 return rc;
2649 }
2650
2651 static void qdisc_pkt_len_init(struct sk_buff *skb)
2652 {
2653 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2654
2655 qdisc_skb_cb(skb)->pkt_len = skb->len;
2656
2657 /* To get more precise estimation of bytes sent on wire,
2658 * we add to pkt_len the headers size of all segments
2659 */
2660 if (shinfo->gso_size) {
2661 unsigned int hdr_len;
2662 u16 gso_segs = shinfo->gso_segs;
2663
2664 /* mac layer + network layer */
2665 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2666
2667 /* + transport layer */
2668 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2669 hdr_len += tcp_hdrlen(skb);
2670 else
2671 hdr_len += sizeof(struct udphdr);
2672
2673 if (shinfo->gso_type & SKB_GSO_DODGY)
2674 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2675 shinfo->gso_size);
2676
2677 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2678 }
2679 }
2680
2681 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2682 struct net_device *dev,
2683 struct netdev_queue *txq)
2684 {
2685 spinlock_t *root_lock = qdisc_lock(q);
2686 bool contended;
2687 int rc;
2688
2689 qdisc_pkt_len_init(skb);
2690 qdisc_calculate_pkt_len(skb, q);
2691 /*
2692 * Heuristic to force contended enqueues to serialize on a
2693 * separate lock before trying to get qdisc main lock.
2694 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2695 * and dequeue packets faster.
2696 */
2697 contended = qdisc_is_running(q);
2698 if (unlikely(contended))
2699 spin_lock(&q->busylock);
2700
2701 spin_lock(root_lock);
2702 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2703 kfree_skb(skb);
2704 rc = NET_XMIT_DROP;
2705 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2706 qdisc_run_begin(q)) {
2707 /*
2708 * This is a work-conserving queue; there are no old skbs
2709 * waiting to be sent out; and the qdisc is not running -
2710 * xmit the skb directly.
2711 */
2712 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2713 skb_dst_force(skb);
2714
2715 qdisc_bstats_update(q, skb);
2716
2717 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2718 if (unlikely(contended)) {
2719 spin_unlock(&q->busylock);
2720 contended = false;
2721 }
2722 __qdisc_run(q);
2723 } else
2724 qdisc_run_end(q);
2725
2726 rc = NET_XMIT_SUCCESS;
2727 } else {
2728 skb_dst_force(skb);
2729 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2730 if (qdisc_run_begin(q)) {
2731 if (unlikely(contended)) {
2732 spin_unlock(&q->busylock);
2733 contended = false;
2734 }
2735 __qdisc_run(q);
2736 }
2737 }
2738 spin_unlock(root_lock);
2739 if (unlikely(contended))
2740 spin_unlock(&q->busylock);
2741 return rc;
2742 }
2743
2744 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2745 static void skb_update_prio(struct sk_buff *skb)
2746 {
2747 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2748
2749 if (!skb->priority && skb->sk && map) {
2750 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2751
2752 if (prioidx < map->priomap_len)
2753 skb->priority = map->priomap[prioidx];
2754 }
2755 }
2756 #else
2757 #define skb_update_prio(skb)
2758 #endif
2759
2760 static DEFINE_PER_CPU(int, xmit_recursion);
2761 #define RECURSION_LIMIT 10
2762
2763 /**
2764 * dev_loopback_xmit - loop back @skb
2765 * @skb: buffer to transmit
2766 */
2767 int dev_loopback_xmit(struct sk_buff *skb)
2768 {
2769 skb_reset_mac_header(skb);
2770 __skb_pull(skb, skb_network_offset(skb));
2771 skb->pkt_type = PACKET_LOOPBACK;
2772 skb->ip_summed = CHECKSUM_UNNECESSARY;
2773 WARN_ON(!skb_dst(skb));
2774 skb_dst_force(skb);
2775 netif_rx_ni(skb);
2776 return 0;
2777 }
2778 EXPORT_SYMBOL(dev_loopback_xmit);
2779
2780 /**
2781 * dev_queue_xmit - transmit a buffer
2782 * @skb: buffer to transmit
2783 *
2784 * Queue a buffer for transmission to a network device. The caller must
2785 * have set the device and priority and built the buffer before calling
2786 * this function. The function can be called from an interrupt.
2787 *
2788 * A negative errno code is returned on a failure. A success does not
2789 * guarantee the frame will be transmitted as it may be dropped due
2790 * to congestion or traffic shaping.
2791 *
2792 * -----------------------------------------------------------------------------------
2793 * I notice this method can also return errors from the queue disciplines,
2794 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2795 * be positive.
2796 *
2797 * Regardless of the return value, the skb is consumed, so it is currently
2798 * difficult to retry a send to this method. (You can bump the ref count
2799 * before sending to hold a reference for retry if you are careful.)
2800 *
2801 * When calling this method, interrupts MUST be enabled. This is because
2802 * the BH enable code must have IRQs enabled so that it will not deadlock.
2803 * --BLG
2804 */
2805 int dev_queue_xmit(struct sk_buff *skb)
2806 {
2807 struct net_device *dev = skb->dev;
2808 struct netdev_queue *txq;
2809 struct Qdisc *q;
2810 int rc = -ENOMEM;
2811
2812 skb_reset_mac_header(skb);
2813
2814 /* Disable soft irqs for various locks below. Also
2815 * stops preemption for RCU.
2816 */
2817 rcu_read_lock_bh();
2818
2819 skb_update_prio(skb);
2820
2821 txq = netdev_pick_tx(dev, skb);
2822 q = rcu_dereference_bh(txq->qdisc);
2823
2824 #ifdef CONFIG_NET_CLS_ACT
2825 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2826 #endif
2827 trace_net_dev_queue(skb);
2828 if (q->enqueue) {
2829 rc = __dev_xmit_skb(skb, q, dev, txq);
2830 goto out;
2831 }
2832
2833 /* The device has no queue. Common case for software devices:
2834 loopback, all the sorts of tunnels...
2835
2836 Really, it is unlikely that netif_tx_lock protection is necessary
2837 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2838 counters.)
2839 However, it is possible, that they rely on protection
2840 made by us here.
2841
2842 Check this and shot the lock. It is not prone from deadlocks.
2843 Either shot noqueue qdisc, it is even simpler 8)
2844 */
2845 if (dev->flags & IFF_UP) {
2846 int cpu = smp_processor_id(); /* ok because BHs are off */
2847
2848 if (txq->xmit_lock_owner != cpu) {
2849
2850 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2851 goto recursion_alert;
2852
2853 HARD_TX_LOCK(dev, txq, cpu);
2854
2855 if (!netif_xmit_stopped(txq)) {
2856 __this_cpu_inc(xmit_recursion);
2857 rc = dev_hard_start_xmit(skb, dev, txq);
2858 __this_cpu_dec(xmit_recursion);
2859 if (dev_xmit_complete(rc)) {
2860 HARD_TX_UNLOCK(dev, txq);
2861 goto out;
2862 }
2863 }
2864 HARD_TX_UNLOCK(dev, txq);
2865 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2866 dev->name);
2867 } else {
2868 /* Recursion is detected! It is possible,
2869 * unfortunately
2870 */
2871 recursion_alert:
2872 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2873 dev->name);
2874 }
2875 }
2876
2877 rc = -ENETDOWN;
2878 rcu_read_unlock_bh();
2879
2880 kfree_skb(skb);
2881 return rc;
2882 out:
2883 rcu_read_unlock_bh();
2884 return rc;
2885 }
2886 EXPORT_SYMBOL(dev_queue_xmit);
2887
2888
2889 /*=======================================================================
2890 Receiver routines
2891 =======================================================================*/
2892
2893 int netdev_max_backlog __read_mostly = 1000;
2894 EXPORT_SYMBOL(netdev_max_backlog);
2895
2896 int netdev_tstamp_prequeue __read_mostly = 1;
2897 int netdev_budget __read_mostly = 300;
2898 int weight_p __read_mostly = 64; /* old backlog weight */
2899
2900 /* Called with irq disabled */
2901 static inline void ____napi_schedule(struct softnet_data *sd,
2902 struct napi_struct *napi)
2903 {
2904 list_add_tail(&napi->poll_list, &sd->poll_list);
2905 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2906 }
2907
2908 #ifdef CONFIG_RPS
2909
2910 /* One global table that all flow-based protocols share. */
2911 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2912 EXPORT_SYMBOL(rps_sock_flow_table);
2913
2914 struct static_key rps_needed __read_mostly;
2915
2916 static struct rps_dev_flow *
2917 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2918 struct rps_dev_flow *rflow, u16 next_cpu)
2919 {
2920 if (next_cpu != RPS_NO_CPU) {
2921 #ifdef CONFIG_RFS_ACCEL
2922 struct netdev_rx_queue *rxqueue;
2923 struct rps_dev_flow_table *flow_table;
2924 struct rps_dev_flow *old_rflow;
2925 u32 flow_id;
2926 u16 rxq_index;
2927 int rc;
2928
2929 /* Should we steer this flow to a different hardware queue? */
2930 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2931 !(dev->features & NETIF_F_NTUPLE))
2932 goto out;
2933 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2934 if (rxq_index == skb_get_rx_queue(skb))
2935 goto out;
2936
2937 rxqueue = dev->_rx + rxq_index;
2938 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2939 if (!flow_table)
2940 goto out;
2941 flow_id = skb->rxhash & flow_table->mask;
2942 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2943 rxq_index, flow_id);
2944 if (rc < 0)
2945 goto out;
2946 old_rflow = rflow;
2947 rflow = &flow_table->flows[flow_id];
2948 rflow->filter = rc;
2949 if (old_rflow->filter == rflow->filter)
2950 old_rflow->filter = RPS_NO_FILTER;
2951 out:
2952 #endif
2953 rflow->last_qtail =
2954 per_cpu(softnet_data, next_cpu).input_queue_head;
2955 }
2956
2957 rflow->cpu = next_cpu;
2958 return rflow;
2959 }
2960
2961 /*
2962 * get_rps_cpu is called from netif_receive_skb and returns the target
2963 * CPU from the RPS map of the receiving queue for a given skb.
2964 * rcu_read_lock must be held on entry.
2965 */
2966 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2967 struct rps_dev_flow **rflowp)
2968 {
2969 struct netdev_rx_queue *rxqueue;
2970 struct rps_map *map;
2971 struct rps_dev_flow_table *flow_table;
2972 struct rps_sock_flow_table *sock_flow_table;
2973 int cpu = -1;
2974 u16 tcpu;
2975
2976 if (skb_rx_queue_recorded(skb)) {
2977 u16 index = skb_get_rx_queue(skb);
2978 if (unlikely(index >= dev->real_num_rx_queues)) {
2979 WARN_ONCE(dev->real_num_rx_queues > 1,
2980 "%s received packet on queue %u, but number "
2981 "of RX queues is %u\n",
2982 dev->name, index, dev->real_num_rx_queues);
2983 goto done;
2984 }
2985 rxqueue = dev->_rx + index;
2986 } else
2987 rxqueue = dev->_rx;
2988
2989 map = rcu_dereference(rxqueue->rps_map);
2990 if (map) {
2991 if (map->len == 1 &&
2992 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2993 tcpu = map->cpus[0];
2994 if (cpu_online(tcpu))
2995 cpu = tcpu;
2996 goto done;
2997 }
2998 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2999 goto done;
3000 }
3001
3002 skb_reset_network_header(skb);
3003 if (!skb_get_rxhash(skb))
3004 goto done;
3005
3006 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3007 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3008 if (flow_table && sock_flow_table) {
3009 u16 next_cpu;
3010 struct rps_dev_flow *rflow;
3011
3012 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3013 tcpu = rflow->cpu;
3014
3015 next_cpu = sock_flow_table->ents[skb->rxhash &
3016 sock_flow_table->mask];
3017
3018 /*
3019 * If the desired CPU (where last recvmsg was done) is
3020 * different from current CPU (one in the rx-queue flow
3021 * table entry), switch if one of the following holds:
3022 * - Current CPU is unset (equal to RPS_NO_CPU).
3023 * - Current CPU is offline.
3024 * - The current CPU's queue tail has advanced beyond the
3025 * last packet that was enqueued using this table entry.
3026 * This guarantees that all previous packets for the flow
3027 * have been dequeued, thus preserving in order delivery.
3028 */
3029 if (unlikely(tcpu != next_cpu) &&
3030 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3031 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3032 rflow->last_qtail)) >= 0)) {
3033 tcpu = next_cpu;
3034 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3035 }
3036
3037 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3038 *rflowp = rflow;
3039 cpu = tcpu;
3040 goto done;
3041 }
3042 }
3043
3044 if (map) {
3045 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3046
3047 if (cpu_online(tcpu)) {
3048 cpu = tcpu;
3049 goto done;
3050 }
3051 }
3052
3053 done:
3054 return cpu;
3055 }
3056
3057 #ifdef CONFIG_RFS_ACCEL
3058
3059 /**
3060 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3061 * @dev: Device on which the filter was set
3062 * @rxq_index: RX queue index
3063 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3064 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3065 *
3066 * Drivers that implement ndo_rx_flow_steer() should periodically call
3067 * this function for each installed filter and remove the filters for
3068 * which it returns %true.
3069 */
3070 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3071 u32 flow_id, u16 filter_id)
3072 {
3073 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3074 struct rps_dev_flow_table *flow_table;
3075 struct rps_dev_flow *rflow;
3076 bool expire = true;
3077 int cpu;
3078
3079 rcu_read_lock();
3080 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3081 if (flow_table && flow_id <= flow_table->mask) {
3082 rflow = &flow_table->flows[flow_id];
3083 cpu = ACCESS_ONCE(rflow->cpu);
3084 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3085 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3086 rflow->last_qtail) <
3087 (int)(10 * flow_table->mask)))
3088 expire = false;
3089 }
3090 rcu_read_unlock();
3091 return expire;
3092 }
3093 EXPORT_SYMBOL(rps_may_expire_flow);
3094
3095 #endif /* CONFIG_RFS_ACCEL */
3096
3097 /* Called from hardirq (IPI) context */
3098 static void rps_trigger_softirq(void *data)
3099 {
3100 struct softnet_data *sd = data;
3101
3102 ____napi_schedule(sd, &sd->backlog);
3103 sd->received_rps++;
3104 }
3105
3106 #endif /* CONFIG_RPS */
3107
3108 /*
3109 * Check if this softnet_data structure is another cpu one
3110 * If yes, queue it to our IPI list and return 1
3111 * If no, return 0
3112 */
3113 static int rps_ipi_queued(struct softnet_data *sd)
3114 {
3115 #ifdef CONFIG_RPS
3116 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3117
3118 if (sd != mysd) {
3119 sd->rps_ipi_next = mysd->rps_ipi_list;
3120 mysd->rps_ipi_list = sd;
3121
3122 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3123 return 1;
3124 }
3125 #endif /* CONFIG_RPS */
3126 return 0;
3127 }
3128
3129 #ifdef CONFIG_NET_FLOW_LIMIT
3130 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3131 #endif
3132
3133 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3134 {
3135 #ifdef CONFIG_NET_FLOW_LIMIT
3136 struct sd_flow_limit *fl;
3137 struct softnet_data *sd;
3138 unsigned int old_flow, new_flow;
3139
3140 if (qlen < (netdev_max_backlog >> 1))
3141 return false;
3142
3143 sd = &__get_cpu_var(softnet_data);
3144
3145 rcu_read_lock();
3146 fl = rcu_dereference(sd->flow_limit);
3147 if (fl) {
3148 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3149 old_flow = fl->history[fl->history_head];
3150 fl->history[fl->history_head] = new_flow;
3151
3152 fl->history_head++;
3153 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3154
3155 if (likely(fl->buckets[old_flow]))
3156 fl->buckets[old_flow]--;
3157
3158 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3159 fl->count++;
3160 rcu_read_unlock();
3161 return true;
3162 }
3163 }
3164 rcu_read_unlock();
3165 #endif
3166 return false;
3167 }
3168
3169 /*
3170 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3171 * queue (may be a remote CPU queue).
3172 */
3173 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3174 unsigned int *qtail)
3175 {
3176 struct softnet_data *sd;
3177 unsigned long flags;
3178 unsigned int qlen;
3179
3180 sd = &per_cpu(softnet_data, cpu);
3181
3182 local_irq_save(flags);
3183
3184 rps_lock(sd);
3185 qlen = skb_queue_len(&sd->input_pkt_queue);
3186 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3187 if (skb_queue_len(&sd->input_pkt_queue)) {
3188 enqueue:
3189 __skb_queue_tail(&sd->input_pkt_queue, skb);
3190 input_queue_tail_incr_save(sd, qtail);
3191 rps_unlock(sd);
3192 local_irq_restore(flags);
3193 return NET_RX_SUCCESS;
3194 }
3195
3196 /* Schedule NAPI for backlog device
3197 * We can use non atomic operation since we own the queue lock
3198 */
3199 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3200 if (!rps_ipi_queued(sd))
3201 ____napi_schedule(sd, &sd->backlog);
3202 }
3203 goto enqueue;
3204 }
3205
3206 sd->dropped++;
3207 rps_unlock(sd);
3208
3209 local_irq_restore(flags);
3210
3211 atomic_long_inc(&skb->dev->rx_dropped);
3212 kfree_skb(skb);
3213 return NET_RX_DROP;
3214 }
3215
3216 /**
3217 * netif_rx - post buffer to the network code
3218 * @skb: buffer to post
3219 *
3220 * This function receives a packet from a device driver and queues it for
3221 * the upper (protocol) levels to process. It always succeeds. The buffer
3222 * may be dropped during processing for congestion control or by the
3223 * protocol layers.
3224 *
3225 * return values:
3226 * NET_RX_SUCCESS (no congestion)
3227 * NET_RX_DROP (packet was dropped)
3228 *
3229 */
3230
3231 int netif_rx(struct sk_buff *skb)
3232 {
3233 int ret;
3234
3235 /* if netpoll wants it, pretend we never saw it */
3236 if (netpoll_rx(skb))
3237 return NET_RX_DROP;
3238
3239 net_timestamp_check(netdev_tstamp_prequeue, skb);
3240
3241 trace_netif_rx(skb);
3242 #ifdef CONFIG_RPS
3243 if (static_key_false(&rps_needed)) {
3244 struct rps_dev_flow voidflow, *rflow = &voidflow;
3245 int cpu;
3246
3247 preempt_disable();
3248 rcu_read_lock();
3249
3250 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3251 if (cpu < 0)
3252 cpu = smp_processor_id();
3253
3254 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3255
3256 rcu_read_unlock();
3257 preempt_enable();
3258 } else
3259 #endif
3260 {
3261 unsigned int qtail;
3262 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3263 put_cpu();
3264 }
3265 return ret;
3266 }
3267 EXPORT_SYMBOL(netif_rx);
3268
3269 int netif_rx_ni(struct sk_buff *skb)
3270 {
3271 int err;
3272
3273 preempt_disable();
3274 err = netif_rx(skb);
3275 if (local_softirq_pending())
3276 do_softirq();
3277 preempt_enable();
3278
3279 return err;
3280 }
3281 EXPORT_SYMBOL(netif_rx_ni);
3282
3283 static void net_tx_action(struct softirq_action *h)
3284 {
3285 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3286
3287 if (sd->completion_queue) {
3288 struct sk_buff *clist;
3289
3290 local_irq_disable();
3291 clist = sd->completion_queue;
3292 sd->completion_queue = NULL;
3293 local_irq_enable();
3294
3295 while (clist) {
3296 struct sk_buff *skb = clist;
3297 clist = clist->next;
3298
3299 WARN_ON(atomic_read(&skb->users));
3300 trace_kfree_skb(skb, net_tx_action);
3301 __kfree_skb(skb);
3302 }
3303 }
3304
3305 if (sd->output_queue) {
3306 struct Qdisc *head;
3307
3308 local_irq_disable();
3309 head = sd->output_queue;
3310 sd->output_queue = NULL;
3311 sd->output_queue_tailp = &sd->output_queue;
3312 local_irq_enable();
3313
3314 while (head) {
3315 struct Qdisc *q = head;
3316 spinlock_t *root_lock;
3317
3318 head = head->next_sched;
3319
3320 root_lock = qdisc_lock(q);
3321 if (spin_trylock(root_lock)) {
3322 smp_mb__before_clear_bit();
3323 clear_bit(__QDISC_STATE_SCHED,
3324 &q->state);
3325 qdisc_run(q);
3326 spin_unlock(root_lock);
3327 } else {
3328 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3329 &q->state)) {
3330 __netif_reschedule(q);
3331 } else {
3332 smp_mb__before_clear_bit();
3333 clear_bit(__QDISC_STATE_SCHED,
3334 &q->state);
3335 }
3336 }
3337 }
3338 }
3339 }
3340
3341 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3342 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3343 /* This hook is defined here for ATM LANE */
3344 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3345 unsigned char *addr) __read_mostly;
3346 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3347 #endif
3348
3349 #ifdef CONFIG_NET_CLS_ACT
3350 /* TODO: Maybe we should just force sch_ingress to be compiled in
3351 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3352 * a compare and 2 stores extra right now if we dont have it on
3353 * but have CONFIG_NET_CLS_ACT
3354 * NOTE: This doesn't stop any functionality; if you dont have
3355 * the ingress scheduler, you just can't add policies on ingress.
3356 *
3357 */
3358 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3359 {
3360 struct net_device *dev = skb->dev;
3361 u32 ttl = G_TC_RTTL(skb->tc_verd);
3362 int result = TC_ACT_OK;
3363 struct Qdisc *q;
3364
3365 if (unlikely(MAX_RED_LOOP < ttl++)) {
3366 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3367 skb->skb_iif, dev->ifindex);
3368 return TC_ACT_SHOT;
3369 }
3370
3371 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3372 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3373
3374 q = rxq->qdisc;
3375 if (q != &noop_qdisc) {
3376 spin_lock(qdisc_lock(q));
3377 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3378 result = qdisc_enqueue_root(skb, q);
3379 spin_unlock(qdisc_lock(q));
3380 }
3381
3382 return result;
3383 }
3384
3385 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3386 struct packet_type **pt_prev,
3387 int *ret, struct net_device *orig_dev)
3388 {
3389 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3390
3391 if (!rxq || rxq->qdisc == &noop_qdisc)
3392 goto out;
3393
3394 if (*pt_prev) {
3395 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3396 *pt_prev = NULL;
3397 }
3398
3399 switch (ing_filter(skb, rxq)) {
3400 case TC_ACT_SHOT:
3401 case TC_ACT_STOLEN:
3402 kfree_skb(skb);
3403 return NULL;
3404 }
3405
3406 out:
3407 skb->tc_verd = 0;
3408 return skb;
3409 }
3410 #endif
3411
3412 /**
3413 * netdev_rx_handler_register - register receive handler
3414 * @dev: device to register a handler for
3415 * @rx_handler: receive handler to register
3416 * @rx_handler_data: data pointer that is used by rx handler
3417 *
3418 * Register a receive hander for a device. This handler will then be
3419 * called from __netif_receive_skb. A negative errno code is returned
3420 * on a failure.
3421 *
3422 * The caller must hold the rtnl_mutex.
3423 *
3424 * For a general description of rx_handler, see enum rx_handler_result.
3425 */
3426 int netdev_rx_handler_register(struct net_device *dev,
3427 rx_handler_func_t *rx_handler,
3428 void *rx_handler_data)
3429 {
3430 ASSERT_RTNL();
3431
3432 if (dev->rx_handler)
3433 return -EBUSY;
3434
3435 /* Note: rx_handler_data must be set before rx_handler */
3436 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3437 rcu_assign_pointer(dev->rx_handler, rx_handler);
3438
3439 return 0;
3440 }
3441 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3442
3443 /**
3444 * netdev_rx_handler_unregister - unregister receive handler
3445 * @dev: device to unregister a handler from
3446 *
3447 * Unregister a receive handler from a device.
3448 *
3449 * The caller must hold the rtnl_mutex.
3450 */
3451 void netdev_rx_handler_unregister(struct net_device *dev)
3452 {
3453
3454 ASSERT_RTNL();
3455 RCU_INIT_POINTER(dev->rx_handler, NULL);
3456 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3457 * section has a guarantee to see a non NULL rx_handler_data
3458 * as well.
3459 */
3460 synchronize_net();
3461 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3462 }
3463 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3464
3465 /*
3466 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3467 * the special handling of PFMEMALLOC skbs.
3468 */
3469 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3470 {
3471 switch (skb->protocol) {
3472 case __constant_htons(ETH_P_ARP):
3473 case __constant_htons(ETH_P_IP):
3474 case __constant_htons(ETH_P_IPV6):
3475 case __constant_htons(ETH_P_8021Q):
3476 case __constant_htons(ETH_P_8021AD):
3477 return true;
3478 default:
3479 return false;
3480 }
3481 }
3482
3483 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3484 {
3485 struct packet_type *ptype, *pt_prev;
3486 rx_handler_func_t *rx_handler;
3487 struct net_device *orig_dev;
3488 struct net_device *null_or_dev;
3489 bool deliver_exact = false;
3490 int ret = NET_RX_DROP;
3491 __be16 type;
3492
3493 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3494
3495 trace_netif_receive_skb(skb);
3496
3497 /* if we've gotten here through NAPI, check netpoll */
3498 if (netpoll_receive_skb(skb))
3499 goto out;
3500
3501 orig_dev = skb->dev;
3502
3503 skb_reset_network_header(skb);
3504 if (!skb_transport_header_was_set(skb))
3505 skb_reset_transport_header(skb);
3506 skb_reset_mac_len(skb);
3507
3508 pt_prev = NULL;
3509
3510 rcu_read_lock();
3511
3512 another_round:
3513 skb->skb_iif = skb->dev->ifindex;
3514
3515 __this_cpu_inc(softnet_data.processed);
3516
3517 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3518 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3519 skb = vlan_untag(skb);
3520 if (unlikely(!skb))
3521 goto unlock;
3522 }
3523
3524 #ifdef CONFIG_NET_CLS_ACT
3525 if (skb->tc_verd & TC_NCLS) {
3526 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3527 goto ncls;
3528 }
3529 #endif
3530
3531 if (pfmemalloc)
3532 goto skip_taps;
3533
3534 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3535 if (!ptype->dev || ptype->dev == skb->dev) {
3536 if (pt_prev)
3537 ret = deliver_skb(skb, pt_prev, orig_dev);
3538 pt_prev = ptype;
3539 }
3540 }
3541
3542 skip_taps:
3543 #ifdef CONFIG_NET_CLS_ACT
3544 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3545 if (!skb)
3546 goto unlock;
3547 ncls:
3548 #endif
3549
3550 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3551 goto drop;
3552
3553 if (vlan_tx_tag_present(skb)) {
3554 if (pt_prev) {
3555 ret = deliver_skb(skb, pt_prev, orig_dev);
3556 pt_prev = NULL;
3557 }
3558 if (vlan_do_receive(&skb))
3559 goto another_round;
3560 else if (unlikely(!skb))
3561 goto unlock;
3562 }
3563
3564 rx_handler = rcu_dereference(skb->dev->rx_handler);
3565 if (rx_handler) {
3566 if (pt_prev) {
3567 ret = deliver_skb(skb, pt_prev, orig_dev);
3568 pt_prev = NULL;
3569 }
3570 switch (rx_handler(&skb)) {
3571 case RX_HANDLER_CONSUMED:
3572 ret = NET_RX_SUCCESS;
3573 goto unlock;
3574 case RX_HANDLER_ANOTHER:
3575 goto another_round;
3576 case RX_HANDLER_EXACT:
3577 deliver_exact = true;
3578 case RX_HANDLER_PASS:
3579 break;
3580 default:
3581 BUG();
3582 }
3583 }
3584
3585 if (unlikely(vlan_tx_tag_present(skb))) {
3586 if (vlan_tx_tag_get_id(skb))
3587 skb->pkt_type = PACKET_OTHERHOST;
3588 /* Note: we might in the future use prio bits
3589 * and set skb->priority like in vlan_do_receive()
3590 * For the time being, just ignore Priority Code Point
3591 */
3592 skb->vlan_tci = 0;
3593 }
3594
3595 /* deliver only exact match when indicated */
3596 null_or_dev = deliver_exact ? skb->dev : NULL;
3597
3598 type = skb->protocol;
3599 list_for_each_entry_rcu(ptype,
3600 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3601 if (ptype->type == type &&
3602 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3603 ptype->dev == orig_dev)) {
3604 if (pt_prev)
3605 ret = deliver_skb(skb, pt_prev, orig_dev);
3606 pt_prev = ptype;
3607 }
3608 }
3609
3610 if (pt_prev) {
3611 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3612 goto drop;
3613 else
3614 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3615 } else {
3616 drop:
3617 atomic_long_inc(&skb->dev->rx_dropped);
3618 kfree_skb(skb);
3619 /* Jamal, now you will not able to escape explaining
3620 * me how you were going to use this. :-)
3621 */
3622 ret = NET_RX_DROP;
3623 }
3624
3625 unlock:
3626 rcu_read_unlock();
3627 out:
3628 return ret;
3629 }
3630
3631 static int __netif_receive_skb(struct sk_buff *skb)
3632 {
3633 int ret;
3634
3635 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3636 unsigned long pflags = current->flags;
3637
3638 /*
3639 * PFMEMALLOC skbs are special, they should
3640 * - be delivered to SOCK_MEMALLOC sockets only
3641 * - stay away from userspace
3642 * - have bounded memory usage
3643 *
3644 * Use PF_MEMALLOC as this saves us from propagating the allocation
3645 * context down to all allocation sites.
3646 */
3647 current->flags |= PF_MEMALLOC;
3648 ret = __netif_receive_skb_core(skb, true);
3649 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3650 } else
3651 ret = __netif_receive_skb_core(skb, false);
3652
3653 return ret;
3654 }
3655
3656 /**
3657 * netif_receive_skb - process receive buffer from network
3658 * @skb: buffer to process
3659 *
3660 * netif_receive_skb() is the main receive data processing function.
3661 * It always succeeds. The buffer may be dropped during processing
3662 * for congestion control or by the protocol layers.
3663 *
3664 * This function may only be called from softirq context and interrupts
3665 * should be enabled.
3666 *
3667 * Return values (usually ignored):
3668 * NET_RX_SUCCESS: no congestion
3669 * NET_RX_DROP: packet was dropped
3670 */
3671 int netif_receive_skb(struct sk_buff *skb)
3672 {
3673 net_timestamp_check(netdev_tstamp_prequeue, skb);
3674
3675 if (skb_defer_rx_timestamp(skb))
3676 return NET_RX_SUCCESS;
3677
3678 #ifdef CONFIG_RPS
3679 if (static_key_false(&rps_needed)) {
3680 struct rps_dev_flow voidflow, *rflow = &voidflow;
3681 int cpu, ret;
3682
3683 rcu_read_lock();
3684
3685 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3686
3687 if (cpu >= 0) {
3688 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3689 rcu_read_unlock();
3690 return ret;
3691 }
3692 rcu_read_unlock();
3693 }
3694 #endif
3695 return __netif_receive_skb(skb);
3696 }
3697 EXPORT_SYMBOL(netif_receive_skb);
3698
3699 /* Network device is going away, flush any packets still pending
3700 * Called with irqs disabled.
3701 */
3702 static void flush_backlog(void *arg)
3703 {
3704 struct net_device *dev = arg;
3705 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3706 struct sk_buff *skb, *tmp;
3707
3708 rps_lock(sd);
3709 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3710 if (skb->dev == dev) {
3711 __skb_unlink(skb, &sd->input_pkt_queue);
3712 kfree_skb(skb);
3713 input_queue_head_incr(sd);
3714 }
3715 }
3716 rps_unlock(sd);
3717
3718 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3719 if (skb->dev == dev) {
3720 __skb_unlink(skb, &sd->process_queue);
3721 kfree_skb(skb);
3722 input_queue_head_incr(sd);
3723 }
3724 }
3725 }
3726
3727 static int napi_gro_complete(struct sk_buff *skb)
3728 {
3729 struct packet_offload *ptype;
3730 __be16 type = skb->protocol;
3731 struct list_head *head = &offload_base;
3732 int err = -ENOENT;
3733
3734 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3735
3736 if (NAPI_GRO_CB(skb)->count == 1) {
3737 skb_shinfo(skb)->gso_size = 0;
3738 goto out;
3739 }
3740
3741 rcu_read_lock();
3742 list_for_each_entry_rcu(ptype, head, list) {
3743 if (ptype->type != type || !ptype->callbacks.gro_complete)
3744 continue;
3745
3746 err = ptype->callbacks.gro_complete(skb);
3747 break;
3748 }
3749 rcu_read_unlock();
3750
3751 if (err) {
3752 WARN_ON(&ptype->list == head);
3753 kfree_skb(skb);
3754 return NET_RX_SUCCESS;
3755 }
3756
3757 out:
3758 return netif_receive_skb(skb);
3759 }
3760
3761 /* napi->gro_list contains packets ordered by age.
3762 * youngest packets at the head of it.
3763 * Complete skbs in reverse order to reduce latencies.
3764 */
3765 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3766 {
3767 struct sk_buff *skb, *prev = NULL;
3768
3769 /* scan list and build reverse chain */
3770 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3771 skb->prev = prev;
3772 prev = skb;
3773 }
3774
3775 for (skb = prev; skb; skb = prev) {
3776 skb->next = NULL;
3777
3778 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3779 return;
3780
3781 prev = skb->prev;
3782 napi_gro_complete(skb);
3783 napi->gro_count--;
3784 }
3785
3786 napi->gro_list = NULL;
3787 }
3788 EXPORT_SYMBOL(napi_gro_flush);
3789
3790 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3791 {
3792 struct sk_buff *p;
3793 unsigned int maclen = skb->dev->hard_header_len;
3794
3795 for (p = napi->gro_list; p; p = p->next) {
3796 unsigned long diffs;
3797
3798 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3799 diffs |= p->vlan_tci ^ skb->vlan_tci;
3800 if (maclen == ETH_HLEN)
3801 diffs |= compare_ether_header(skb_mac_header(p),
3802 skb_gro_mac_header(skb));
3803 else if (!diffs)
3804 diffs = memcmp(skb_mac_header(p),
3805 skb_gro_mac_header(skb),
3806 maclen);
3807 NAPI_GRO_CB(p)->same_flow = !diffs;
3808 NAPI_GRO_CB(p)->flush = 0;
3809 }
3810 }
3811
3812 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3813 {
3814 struct sk_buff **pp = NULL;
3815 struct packet_offload *ptype;
3816 __be16 type = skb->protocol;
3817 struct list_head *head = &offload_base;
3818 int same_flow;
3819 enum gro_result ret;
3820
3821 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3822 goto normal;
3823
3824 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3825 goto normal;
3826
3827 gro_list_prepare(napi, skb);
3828
3829 rcu_read_lock();
3830 list_for_each_entry_rcu(ptype, head, list) {
3831 if (ptype->type != type || !ptype->callbacks.gro_receive)
3832 continue;
3833
3834 skb_set_network_header(skb, skb_gro_offset(skb));
3835 skb_reset_mac_len(skb);
3836 NAPI_GRO_CB(skb)->same_flow = 0;
3837 NAPI_GRO_CB(skb)->flush = 0;
3838 NAPI_GRO_CB(skb)->free = 0;
3839
3840 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3841 break;
3842 }
3843 rcu_read_unlock();
3844
3845 if (&ptype->list == head)
3846 goto normal;
3847
3848 same_flow = NAPI_GRO_CB(skb)->same_flow;
3849 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3850
3851 if (pp) {
3852 struct sk_buff *nskb = *pp;
3853
3854 *pp = nskb->next;
3855 nskb->next = NULL;
3856 napi_gro_complete(nskb);
3857 napi->gro_count--;
3858 }
3859
3860 if (same_flow)
3861 goto ok;
3862
3863 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3864 goto normal;
3865
3866 napi->gro_count++;
3867 NAPI_GRO_CB(skb)->count = 1;
3868 NAPI_GRO_CB(skb)->age = jiffies;
3869 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3870 skb->next = napi->gro_list;
3871 napi->gro_list = skb;
3872 ret = GRO_HELD;
3873
3874 pull:
3875 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3876 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3877
3878 BUG_ON(skb->end - skb->tail < grow);
3879
3880 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3881
3882 skb->tail += grow;
3883 skb->data_len -= grow;
3884
3885 skb_shinfo(skb)->frags[0].page_offset += grow;
3886 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3887
3888 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3889 skb_frag_unref(skb, 0);
3890 memmove(skb_shinfo(skb)->frags,
3891 skb_shinfo(skb)->frags + 1,
3892 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3893 }
3894 }
3895
3896 ok:
3897 return ret;
3898
3899 normal:
3900 ret = GRO_NORMAL;
3901 goto pull;
3902 }
3903
3904
3905 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3906 {
3907 switch (ret) {
3908 case GRO_NORMAL:
3909 if (netif_receive_skb(skb))
3910 ret = GRO_DROP;
3911 break;
3912
3913 case GRO_DROP:
3914 kfree_skb(skb);
3915 break;
3916
3917 case GRO_MERGED_FREE:
3918 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3919 kmem_cache_free(skbuff_head_cache, skb);
3920 else
3921 __kfree_skb(skb);
3922 break;
3923
3924 case GRO_HELD:
3925 case GRO_MERGED:
3926 break;
3927 }
3928
3929 return ret;
3930 }
3931
3932 static void skb_gro_reset_offset(struct sk_buff *skb)
3933 {
3934 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3935 const skb_frag_t *frag0 = &pinfo->frags[0];
3936
3937 NAPI_GRO_CB(skb)->data_offset = 0;
3938 NAPI_GRO_CB(skb)->frag0 = NULL;
3939 NAPI_GRO_CB(skb)->frag0_len = 0;
3940
3941 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3942 pinfo->nr_frags &&
3943 !PageHighMem(skb_frag_page(frag0))) {
3944 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3945 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3946 }
3947 }
3948
3949 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3950 {
3951 skb_gro_reset_offset(skb);
3952
3953 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3954 }
3955 EXPORT_SYMBOL(napi_gro_receive);
3956
3957 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3958 {
3959 __skb_pull(skb, skb_headlen(skb));
3960 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3961 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3962 skb->vlan_tci = 0;
3963 skb->dev = napi->dev;
3964 skb->skb_iif = 0;
3965
3966 napi->skb = skb;
3967 }
3968
3969 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3970 {
3971 struct sk_buff *skb = napi->skb;
3972
3973 if (!skb) {
3974 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3975 if (skb)
3976 napi->skb = skb;
3977 }
3978 return skb;
3979 }
3980 EXPORT_SYMBOL(napi_get_frags);
3981
3982 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3983 gro_result_t ret)
3984 {
3985 switch (ret) {
3986 case GRO_NORMAL:
3987 case GRO_HELD:
3988 skb->protocol = eth_type_trans(skb, skb->dev);
3989
3990 if (ret == GRO_HELD)
3991 skb_gro_pull(skb, -ETH_HLEN);
3992 else if (netif_receive_skb(skb))
3993 ret = GRO_DROP;
3994 break;
3995
3996 case GRO_DROP:
3997 case GRO_MERGED_FREE:
3998 napi_reuse_skb(napi, skb);
3999 break;
4000
4001 case GRO_MERGED:
4002 break;
4003 }
4004
4005 return ret;
4006 }
4007
4008 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4009 {
4010 struct sk_buff *skb = napi->skb;
4011 struct ethhdr *eth;
4012 unsigned int hlen;
4013 unsigned int off;
4014
4015 napi->skb = NULL;
4016
4017 skb_reset_mac_header(skb);
4018 skb_gro_reset_offset(skb);
4019
4020 off = skb_gro_offset(skb);
4021 hlen = off + sizeof(*eth);
4022 eth = skb_gro_header_fast(skb, off);
4023 if (skb_gro_header_hard(skb, hlen)) {
4024 eth = skb_gro_header_slow(skb, hlen, off);
4025 if (unlikely(!eth)) {
4026 napi_reuse_skb(napi, skb);
4027 skb = NULL;
4028 goto out;
4029 }
4030 }
4031
4032 skb_gro_pull(skb, sizeof(*eth));
4033
4034 /*
4035 * This works because the only protocols we care about don't require
4036 * special handling. We'll fix it up properly at the end.
4037 */
4038 skb->protocol = eth->h_proto;
4039
4040 out:
4041 return skb;
4042 }
4043
4044 gro_result_t napi_gro_frags(struct napi_struct *napi)
4045 {
4046 struct sk_buff *skb = napi_frags_skb(napi);
4047
4048 if (!skb)
4049 return GRO_DROP;
4050
4051 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4052 }
4053 EXPORT_SYMBOL(napi_gro_frags);
4054
4055 /*
4056 * net_rps_action sends any pending IPI's for rps.
4057 * Note: called with local irq disabled, but exits with local irq enabled.
4058 */
4059 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4060 {
4061 #ifdef CONFIG_RPS
4062 struct softnet_data *remsd = sd->rps_ipi_list;
4063
4064 if (remsd) {
4065 sd->rps_ipi_list = NULL;
4066
4067 local_irq_enable();
4068
4069 /* Send pending IPI's to kick RPS processing on remote cpus. */
4070 while (remsd) {
4071 struct softnet_data *next = remsd->rps_ipi_next;
4072
4073 if (cpu_online(remsd->cpu))
4074 __smp_call_function_single(remsd->cpu,
4075 &remsd->csd, 0);
4076 remsd = next;
4077 }
4078 } else
4079 #endif
4080 local_irq_enable();
4081 }
4082
4083 static int process_backlog(struct napi_struct *napi, int quota)
4084 {
4085 int work = 0;
4086 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4087
4088 #ifdef CONFIG_RPS
4089 /* Check if we have pending ipi, its better to send them now,
4090 * not waiting net_rx_action() end.
4091 */
4092 if (sd->rps_ipi_list) {
4093 local_irq_disable();
4094 net_rps_action_and_irq_enable(sd);
4095 }
4096 #endif
4097 napi->weight = weight_p;
4098 local_irq_disable();
4099 while (work < quota) {
4100 struct sk_buff *skb;
4101 unsigned int qlen;
4102
4103 while ((skb = __skb_dequeue(&sd->process_queue))) {
4104 local_irq_enable();
4105 __netif_receive_skb(skb);
4106 local_irq_disable();
4107 input_queue_head_incr(sd);
4108 if (++work >= quota) {
4109 local_irq_enable();
4110 return work;
4111 }
4112 }
4113
4114 rps_lock(sd);
4115 qlen = skb_queue_len(&sd->input_pkt_queue);
4116 if (qlen)
4117 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4118 &sd->process_queue);
4119
4120 if (qlen < quota - work) {
4121 /*
4122 * Inline a custom version of __napi_complete().
4123 * only current cpu owns and manipulates this napi,
4124 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4125 * we can use a plain write instead of clear_bit(),
4126 * and we dont need an smp_mb() memory barrier.
4127 */
4128 list_del(&napi->poll_list);
4129 napi->state = 0;
4130
4131 quota = work + qlen;
4132 }
4133 rps_unlock(sd);
4134 }
4135 local_irq_enable();
4136
4137 return work;
4138 }
4139
4140 /**
4141 * __napi_schedule - schedule for receive
4142 * @n: entry to schedule
4143 *
4144 * The entry's receive function will be scheduled to run
4145 */
4146 void __napi_schedule(struct napi_struct *n)
4147 {
4148 unsigned long flags;
4149
4150 local_irq_save(flags);
4151 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4152 local_irq_restore(flags);
4153 }
4154 EXPORT_SYMBOL(__napi_schedule);
4155
4156 void __napi_complete(struct napi_struct *n)
4157 {
4158 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4159 BUG_ON(n->gro_list);
4160
4161 list_del(&n->poll_list);
4162 smp_mb__before_clear_bit();
4163 clear_bit(NAPI_STATE_SCHED, &n->state);
4164 }
4165 EXPORT_SYMBOL(__napi_complete);
4166
4167 void napi_complete(struct napi_struct *n)
4168 {
4169 unsigned long flags;
4170
4171 /*
4172 * don't let napi dequeue from the cpu poll list
4173 * just in case its running on a different cpu
4174 */
4175 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4176 return;
4177
4178 napi_gro_flush(n, false);
4179 local_irq_save(flags);
4180 __napi_complete(n);
4181 local_irq_restore(flags);
4182 }
4183 EXPORT_SYMBOL(napi_complete);
4184
4185 /* must be called under rcu_read_lock(), as we dont take a reference */
4186 struct napi_struct *napi_by_id(unsigned int napi_id)
4187 {
4188 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4189 struct napi_struct *napi;
4190
4191 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4192 if (napi->napi_id == napi_id)
4193 return napi;
4194
4195 return NULL;
4196 }
4197 EXPORT_SYMBOL_GPL(napi_by_id);
4198
4199 void napi_hash_add(struct napi_struct *napi)
4200 {
4201 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4202
4203 spin_lock(&napi_hash_lock);
4204
4205 /* 0 is not a valid id, we also skip an id that is taken
4206 * we expect both events to be extremely rare
4207 */
4208 napi->napi_id = 0;
4209 while (!napi->napi_id) {
4210 napi->napi_id = ++napi_gen_id;
4211 if (napi_by_id(napi->napi_id))
4212 napi->napi_id = 0;
4213 }
4214
4215 hlist_add_head_rcu(&napi->napi_hash_node,
4216 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4217
4218 spin_unlock(&napi_hash_lock);
4219 }
4220 }
4221 EXPORT_SYMBOL_GPL(napi_hash_add);
4222
4223 /* Warning : caller is responsible to make sure rcu grace period
4224 * is respected before freeing memory containing @napi
4225 */
4226 void napi_hash_del(struct napi_struct *napi)
4227 {
4228 spin_lock(&napi_hash_lock);
4229
4230 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4231 hlist_del_rcu(&napi->napi_hash_node);
4232
4233 spin_unlock(&napi_hash_lock);
4234 }
4235 EXPORT_SYMBOL_GPL(napi_hash_del);
4236
4237 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4238 int (*poll)(struct napi_struct *, int), int weight)
4239 {
4240 INIT_LIST_HEAD(&napi->poll_list);
4241 napi->gro_count = 0;
4242 napi->gro_list = NULL;
4243 napi->skb = NULL;
4244 napi->poll = poll;
4245 if (weight > NAPI_POLL_WEIGHT)
4246 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4247 weight, dev->name);
4248 napi->weight = weight;
4249 list_add(&napi->dev_list, &dev->napi_list);
4250 napi->dev = dev;
4251 #ifdef CONFIG_NETPOLL
4252 spin_lock_init(&napi->poll_lock);
4253 napi->poll_owner = -1;
4254 #endif
4255 set_bit(NAPI_STATE_SCHED, &napi->state);
4256 }
4257 EXPORT_SYMBOL(netif_napi_add);
4258
4259 void netif_napi_del(struct napi_struct *napi)
4260 {
4261 struct sk_buff *skb, *next;
4262
4263 list_del_init(&napi->dev_list);
4264 napi_free_frags(napi);
4265
4266 for (skb = napi->gro_list; skb; skb = next) {
4267 next = skb->next;
4268 skb->next = NULL;
4269 kfree_skb(skb);
4270 }
4271
4272 napi->gro_list = NULL;
4273 napi->gro_count = 0;
4274 }
4275 EXPORT_SYMBOL(netif_napi_del);
4276
4277 static void net_rx_action(struct softirq_action *h)
4278 {
4279 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4280 unsigned long time_limit = jiffies + 2;
4281 int budget = netdev_budget;
4282 void *have;
4283
4284 local_irq_disable();
4285
4286 while (!list_empty(&sd->poll_list)) {
4287 struct napi_struct *n;
4288 int work, weight;
4289
4290 /* If softirq window is exhuasted then punt.
4291 * Allow this to run for 2 jiffies since which will allow
4292 * an average latency of 1.5/HZ.
4293 */
4294 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4295 goto softnet_break;
4296
4297 local_irq_enable();
4298
4299 /* Even though interrupts have been re-enabled, this
4300 * access is safe because interrupts can only add new
4301 * entries to the tail of this list, and only ->poll()
4302 * calls can remove this head entry from the list.
4303 */
4304 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4305
4306 have = netpoll_poll_lock(n);
4307
4308 weight = n->weight;
4309
4310 /* This NAPI_STATE_SCHED test is for avoiding a race
4311 * with netpoll's poll_napi(). Only the entity which
4312 * obtains the lock and sees NAPI_STATE_SCHED set will
4313 * actually make the ->poll() call. Therefore we avoid
4314 * accidentally calling ->poll() when NAPI is not scheduled.
4315 */
4316 work = 0;
4317 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4318 work = n->poll(n, weight);
4319 trace_napi_poll(n);
4320 }
4321
4322 WARN_ON_ONCE(work > weight);
4323
4324 budget -= work;
4325
4326 local_irq_disable();
4327
4328 /* Drivers must not modify the NAPI state if they
4329 * consume the entire weight. In such cases this code
4330 * still "owns" the NAPI instance and therefore can
4331 * move the instance around on the list at-will.
4332 */
4333 if (unlikely(work == weight)) {
4334 if (unlikely(napi_disable_pending(n))) {
4335 local_irq_enable();
4336 napi_complete(n);
4337 local_irq_disable();
4338 } else {
4339 if (n->gro_list) {
4340 /* flush too old packets
4341 * If HZ < 1000, flush all packets.
4342 */
4343 local_irq_enable();
4344 napi_gro_flush(n, HZ >= 1000);
4345 local_irq_disable();
4346 }
4347 list_move_tail(&n->poll_list, &sd->poll_list);
4348 }
4349 }
4350
4351 netpoll_poll_unlock(have);
4352 }
4353 out:
4354 net_rps_action_and_irq_enable(sd);
4355
4356 #ifdef CONFIG_NET_DMA
4357 /*
4358 * There may not be any more sk_buffs coming right now, so push
4359 * any pending DMA copies to hardware
4360 */
4361 dma_issue_pending_all();
4362 #endif
4363
4364 return;
4365
4366 softnet_break:
4367 sd->time_squeeze++;
4368 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4369 goto out;
4370 }
4371
4372 struct netdev_adjacent {
4373 struct net_device *dev;
4374
4375 /* upper master flag, there can only be one master device per list */
4376 bool master;
4377
4378 /* counter for the number of times this device was added to us */
4379 u16 ref_nr;
4380
4381 /* private field for the users */
4382 void *private;
4383
4384 struct list_head list;
4385 struct rcu_head rcu;
4386 };
4387
4388 static struct netdev_adjacent *__netdev_find_adj_rcu(struct net_device *dev,
4389 struct net_device *adj_dev,
4390 struct list_head *adj_list)
4391 {
4392 struct netdev_adjacent *adj;
4393
4394 list_for_each_entry_rcu(adj, adj_list, list) {
4395 if (adj->dev == adj_dev)
4396 return adj;
4397 }
4398 return NULL;
4399 }
4400
4401 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4402 struct net_device *adj_dev,
4403 struct list_head *adj_list)
4404 {
4405 struct netdev_adjacent *adj;
4406
4407 list_for_each_entry(adj, adj_list, list) {
4408 if (adj->dev == adj_dev)
4409 return adj;
4410 }
4411 return NULL;
4412 }
4413
4414 /**
4415 * netdev_has_upper_dev - Check if device is linked to an upper device
4416 * @dev: device
4417 * @upper_dev: upper device to check
4418 *
4419 * Find out if a device is linked to specified upper device and return true
4420 * in case it is. Note that this checks only immediate upper device,
4421 * not through a complete stack of devices. The caller must hold the RTNL lock.
4422 */
4423 bool netdev_has_upper_dev(struct net_device *dev,
4424 struct net_device *upper_dev)
4425 {
4426 ASSERT_RTNL();
4427
4428 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4429 }
4430 EXPORT_SYMBOL(netdev_has_upper_dev);
4431
4432 /**
4433 * netdev_has_any_upper_dev - Check if device is linked to some device
4434 * @dev: device
4435 *
4436 * Find out if a device is linked to an upper device and return true in case
4437 * it is. The caller must hold the RTNL lock.
4438 */
4439 bool netdev_has_any_upper_dev(struct net_device *dev)
4440 {
4441 ASSERT_RTNL();
4442
4443 return !list_empty(&dev->all_adj_list.upper);
4444 }
4445 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4446
4447 /**
4448 * netdev_master_upper_dev_get - Get master upper device
4449 * @dev: device
4450 *
4451 * Find a master upper device and return pointer to it or NULL in case
4452 * it's not there. The caller must hold the RTNL lock.
4453 */
4454 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4455 {
4456 struct netdev_adjacent *upper;
4457
4458 ASSERT_RTNL();
4459
4460 if (list_empty(&dev->adj_list.upper))
4461 return NULL;
4462
4463 upper = list_first_entry(&dev->adj_list.upper,
4464 struct netdev_adjacent, list);
4465 if (likely(upper->master))
4466 return upper->dev;
4467 return NULL;
4468 }
4469 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4470
4471 void *netdev_adjacent_get_private(struct list_head *adj_list)
4472 {
4473 struct netdev_adjacent *adj;
4474
4475 adj = list_entry(adj_list, struct netdev_adjacent, list);
4476
4477 return adj->private;
4478 }
4479 EXPORT_SYMBOL(netdev_adjacent_get_private);
4480
4481 /**
4482 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4483 * @dev: device
4484 * @iter: list_head ** of the current position
4485 *
4486 * Gets the next device from the dev's upper list, starting from iter
4487 * position. The caller must hold RCU read lock.
4488 */
4489 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4490 struct list_head **iter)
4491 {
4492 struct netdev_adjacent *upper;
4493
4494 WARN_ON_ONCE(!rcu_read_lock_held());
4495
4496 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4497
4498 if (&upper->list == &dev->all_adj_list.upper)
4499 return NULL;
4500
4501 *iter = &upper->list;
4502
4503 return upper->dev;
4504 }
4505 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4506
4507 /**
4508 * netdev_lower_get_next_private - Get the next ->private from the
4509 * lower neighbour list
4510 * @dev: device
4511 * @iter: list_head ** of the current position
4512 *
4513 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4514 * list, starting from iter position. The caller must hold either hold the
4515 * RTNL lock or its own locking that guarantees that the neighbour lower
4516 * list will remain unchainged.
4517 */
4518 void *netdev_lower_get_next_private(struct net_device *dev,
4519 struct list_head **iter)
4520 {
4521 struct netdev_adjacent *lower;
4522
4523 lower = list_entry(*iter, struct netdev_adjacent, list);
4524
4525 if (&lower->list == &dev->adj_list.lower)
4526 return NULL;
4527
4528 if (iter)
4529 *iter = lower->list.next;
4530
4531 return lower->private;
4532 }
4533 EXPORT_SYMBOL(netdev_lower_get_next_private);
4534
4535 /**
4536 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4537 * lower neighbour list, RCU
4538 * variant
4539 * @dev: device
4540 * @iter: list_head ** of the current position
4541 *
4542 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4543 * list, starting from iter position. The caller must hold RCU read lock.
4544 */
4545 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4546 struct list_head **iter)
4547 {
4548 struct netdev_adjacent *lower;
4549
4550 WARN_ON_ONCE(!rcu_read_lock_held());
4551
4552 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4553
4554 if (&lower->list == &dev->adj_list.lower)
4555 return NULL;
4556
4557 if (iter)
4558 *iter = &lower->list;
4559
4560 return lower->private;
4561 }
4562 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4563
4564 /**
4565 * netdev_master_upper_dev_get_rcu - Get master upper device
4566 * @dev: device
4567 *
4568 * Find a master upper device and return pointer to it or NULL in case
4569 * it's not there. The caller must hold the RCU read lock.
4570 */
4571 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4572 {
4573 struct netdev_adjacent *upper;
4574
4575 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4576 struct netdev_adjacent, list);
4577 if (upper && likely(upper->master))
4578 return upper->dev;
4579 return NULL;
4580 }
4581 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4582
4583 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4584 struct net_device *adj_dev,
4585 struct list_head *dev_list,
4586 void *private, bool master)
4587 {
4588 struct netdev_adjacent *adj;
4589 char linkname[IFNAMSIZ+7];
4590 int ret;
4591
4592 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4593
4594 if (adj) {
4595 adj->ref_nr++;
4596 return 0;
4597 }
4598
4599 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4600 if (!adj)
4601 return -ENOMEM;
4602
4603 adj->dev = adj_dev;
4604 adj->master = master;
4605 adj->ref_nr = 1;
4606 adj->private = private;
4607 dev_hold(adj_dev);
4608
4609 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4610 adj_dev->name, dev->name, adj_dev->name);
4611
4612 if (dev_list == &dev->adj_list.lower) {
4613 sprintf(linkname, "lower_%s", adj_dev->name);
4614 ret = sysfs_create_link(&(dev->dev.kobj),
4615 &(adj_dev->dev.kobj), linkname);
4616 if (ret)
4617 goto free_adj;
4618 } else if (dev_list == &dev->adj_list.upper) {
4619 sprintf(linkname, "upper_%s", adj_dev->name);
4620 ret = sysfs_create_link(&(dev->dev.kobj),
4621 &(adj_dev->dev.kobj), linkname);
4622 if (ret)
4623 goto free_adj;
4624 }
4625
4626 /* Ensure that master link is always the first item in list. */
4627 if (master) {
4628 ret = sysfs_create_link(&(dev->dev.kobj),
4629 &(adj_dev->dev.kobj), "master");
4630 if (ret)
4631 goto remove_symlinks;
4632
4633 list_add_rcu(&adj->list, dev_list);
4634 } else {
4635 list_add_tail_rcu(&adj->list, dev_list);
4636 }
4637
4638 return 0;
4639
4640 remove_symlinks:
4641 if (dev_list == &dev->adj_list.lower) {
4642 sprintf(linkname, "lower_%s", adj_dev->name);
4643 sysfs_remove_link(&(dev->dev.kobj), linkname);
4644 } else if (dev_list == &dev->adj_list.upper) {
4645 sprintf(linkname, "upper_%s", adj_dev->name);
4646 sysfs_remove_link(&(dev->dev.kobj), linkname);
4647 }
4648
4649 free_adj:
4650 kfree(adj);
4651 dev_put(adj_dev);
4652
4653 return ret;
4654 }
4655
4656 void __netdev_adjacent_dev_remove(struct net_device *dev,
4657 struct net_device *adj_dev,
4658 struct list_head *dev_list)
4659 {
4660 struct netdev_adjacent *adj;
4661 char linkname[IFNAMSIZ+7];
4662
4663 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4664
4665 if (!adj) {
4666 pr_err("tried to remove device %s from %s\n",
4667 dev->name, adj_dev->name);
4668 BUG();
4669 }
4670
4671 if (adj->ref_nr > 1) {
4672 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4673 adj->ref_nr-1);
4674 adj->ref_nr--;
4675 return;
4676 }
4677
4678 if (adj->master)
4679 sysfs_remove_link(&(dev->dev.kobj), "master");
4680
4681 if (dev_list == &dev->adj_list.lower) {
4682 sprintf(linkname, "lower_%s", adj_dev->name);
4683 sysfs_remove_link(&(dev->dev.kobj), linkname);
4684 } else if (dev_list == &dev->adj_list.upper) {
4685 sprintf(linkname, "upper_%s", adj_dev->name);
4686 sysfs_remove_link(&(dev->dev.kobj), linkname);
4687 }
4688
4689 list_del_rcu(&adj->list);
4690 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4691 adj_dev->name, dev->name, adj_dev->name);
4692 dev_put(adj_dev);
4693 kfree_rcu(adj, rcu);
4694 }
4695
4696 int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4697 struct net_device *upper_dev,
4698 struct list_head *up_list,
4699 struct list_head *down_list,
4700 void *private, bool master)
4701 {
4702 int ret;
4703
4704 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4705 master);
4706 if (ret)
4707 return ret;
4708
4709 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4710 false);
4711 if (ret) {
4712 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4713 return ret;
4714 }
4715
4716 return 0;
4717 }
4718
4719 int __netdev_adjacent_dev_link(struct net_device *dev,
4720 struct net_device *upper_dev)
4721 {
4722 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4723 &dev->all_adj_list.upper,
4724 &upper_dev->all_adj_list.lower,
4725 NULL, false);
4726 }
4727
4728 void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4729 struct net_device *upper_dev,
4730 struct list_head *up_list,
4731 struct list_head *down_list)
4732 {
4733 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4734 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4735 }
4736
4737 void __netdev_adjacent_dev_unlink(struct net_device *dev,
4738 struct net_device *upper_dev)
4739 {
4740 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4741 &dev->all_adj_list.upper,
4742 &upper_dev->all_adj_list.lower);
4743 }
4744
4745 int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4746 struct net_device *upper_dev,
4747 void *private, bool master)
4748 {
4749 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4750
4751 if (ret)
4752 return ret;
4753
4754 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4755 &dev->adj_list.upper,
4756 &upper_dev->adj_list.lower,
4757 private, master);
4758 if (ret) {
4759 __netdev_adjacent_dev_unlink(dev, upper_dev);
4760 return ret;
4761 }
4762
4763 return 0;
4764 }
4765
4766 void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4767 struct net_device *upper_dev)
4768 {
4769 __netdev_adjacent_dev_unlink(dev, upper_dev);
4770 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4771 &dev->adj_list.upper,
4772 &upper_dev->adj_list.lower);
4773 }
4774
4775 static int __netdev_upper_dev_link(struct net_device *dev,
4776 struct net_device *upper_dev, bool master,
4777 void *private)
4778 {
4779 struct netdev_adjacent *i, *j, *to_i, *to_j;
4780 int ret = 0;
4781
4782 ASSERT_RTNL();
4783
4784 if (dev == upper_dev)
4785 return -EBUSY;
4786
4787 /* To prevent loops, check if dev is not upper device to upper_dev. */
4788 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4789 return -EBUSY;
4790
4791 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4792 return -EEXIST;
4793
4794 if (master && netdev_master_upper_dev_get(dev))
4795 return -EBUSY;
4796
4797 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4798 master);
4799 if (ret)
4800 return ret;
4801
4802 /* Now that we linked these devs, make all the upper_dev's
4803 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4804 * versa, and don't forget the devices itself. All of these
4805 * links are non-neighbours.
4806 */
4807 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4808 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4809 pr_debug("Interlinking %s with %s, non-neighbour\n",
4810 i->dev->name, j->dev->name);
4811 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4812 if (ret)
4813 goto rollback_mesh;
4814 }
4815 }
4816
4817 /* add dev to every upper_dev's upper device */
4818 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4819 pr_debug("linking %s's upper device %s with %s\n",
4820 upper_dev->name, i->dev->name, dev->name);
4821 ret = __netdev_adjacent_dev_link(dev, i->dev);
4822 if (ret)
4823 goto rollback_upper_mesh;
4824 }
4825
4826 /* add upper_dev to every dev's lower device */
4827 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4828 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4829 i->dev->name, upper_dev->name);
4830 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4831 if (ret)
4832 goto rollback_lower_mesh;
4833 }
4834
4835 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4836 return 0;
4837
4838 rollback_lower_mesh:
4839 to_i = i;
4840 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4841 if (i == to_i)
4842 break;
4843 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4844 }
4845
4846 i = NULL;
4847
4848 rollback_upper_mesh:
4849 to_i = i;
4850 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4851 if (i == to_i)
4852 break;
4853 __netdev_adjacent_dev_unlink(dev, i->dev);
4854 }
4855
4856 i = j = NULL;
4857
4858 rollback_mesh:
4859 to_i = i;
4860 to_j = j;
4861 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4862 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4863 if (i == to_i && j == to_j)
4864 break;
4865 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4866 }
4867 if (i == to_i)
4868 break;
4869 }
4870
4871 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4872
4873 return ret;
4874 }
4875
4876 /**
4877 * netdev_upper_dev_link - Add a link to the upper device
4878 * @dev: device
4879 * @upper_dev: new upper device
4880 *
4881 * Adds a link to device which is upper to this one. The caller must hold
4882 * the RTNL lock. On a failure a negative errno code is returned.
4883 * On success the reference counts are adjusted and the function
4884 * returns zero.
4885 */
4886 int netdev_upper_dev_link(struct net_device *dev,
4887 struct net_device *upper_dev)
4888 {
4889 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4890 }
4891 EXPORT_SYMBOL(netdev_upper_dev_link);
4892
4893 /**
4894 * netdev_master_upper_dev_link - Add a master link to the upper device
4895 * @dev: device
4896 * @upper_dev: new upper device
4897 *
4898 * Adds a link to device which is upper to this one. In this case, only
4899 * one master upper device can be linked, although other non-master devices
4900 * might be linked as well. The caller must hold the RTNL lock.
4901 * On a failure a negative errno code is returned. On success the reference
4902 * counts are adjusted and the function returns zero.
4903 */
4904 int netdev_master_upper_dev_link(struct net_device *dev,
4905 struct net_device *upper_dev)
4906 {
4907 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4908 }
4909 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4910
4911 int netdev_master_upper_dev_link_private(struct net_device *dev,
4912 struct net_device *upper_dev,
4913 void *private)
4914 {
4915 return __netdev_upper_dev_link(dev, upper_dev, true, private);
4916 }
4917 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4918
4919 /**
4920 * netdev_upper_dev_unlink - Removes a link to upper device
4921 * @dev: device
4922 * @upper_dev: new upper device
4923 *
4924 * Removes a link to device which is upper to this one. The caller must hold
4925 * the RTNL lock.
4926 */
4927 void netdev_upper_dev_unlink(struct net_device *dev,
4928 struct net_device *upper_dev)
4929 {
4930 struct netdev_adjacent *i, *j;
4931 ASSERT_RTNL();
4932
4933 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4934
4935 /* Here is the tricky part. We must remove all dev's lower
4936 * devices from all upper_dev's upper devices and vice
4937 * versa, to maintain the graph relationship.
4938 */
4939 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4940 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
4941 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4942
4943 /* remove also the devices itself from lower/upper device
4944 * list
4945 */
4946 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4947 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4948
4949 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
4950 __netdev_adjacent_dev_unlink(dev, i->dev);
4951
4952 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4953 }
4954 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4955
4956 void *netdev_lower_dev_get_private_rcu(struct net_device *dev,
4957 struct net_device *lower_dev)
4958 {
4959 struct netdev_adjacent *lower;
4960
4961 if (!lower_dev)
4962 return NULL;
4963 lower = __netdev_find_adj_rcu(dev, lower_dev, &dev->adj_list.lower);
4964 if (!lower)
4965 return NULL;
4966
4967 return lower->private;
4968 }
4969 EXPORT_SYMBOL(netdev_lower_dev_get_private_rcu);
4970
4971 void *netdev_lower_dev_get_private(struct net_device *dev,
4972 struct net_device *lower_dev)
4973 {
4974 struct netdev_adjacent *lower;
4975
4976 if (!lower_dev)
4977 return NULL;
4978 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
4979 if (!lower)
4980 return NULL;
4981
4982 return lower->private;
4983 }
4984 EXPORT_SYMBOL(netdev_lower_dev_get_private);
4985
4986 static void dev_change_rx_flags(struct net_device *dev, int flags)
4987 {
4988 const struct net_device_ops *ops = dev->netdev_ops;
4989
4990 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4991 ops->ndo_change_rx_flags(dev, flags);
4992 }
4993
4994 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
4995 {
4996 unsigned int old_flags = dev->flags;
4997 kuid_t uid;
4998 kgid_t gid;
4999
5000 ASSERT_RTNL();
5001
5002 dev->flags |= IFF_PROMISC;
5003 dev->promiscuity += inc;
5004 if (dev->promiscuity == 0) {
5005 /*
5006 * Avoid overflow.
5007 * If inc causes overflow, untouch promisc and return error.
5008 */
5009 if (inc < 0)
5010 dev->flags &= ~IFF_PROMISC;
5011 else {
5012 dev->promiscuity -= inc;
5013 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5014 dev->name);
5015 return -EOVERFLOW;
5016 }
5017 }
5018 if (dev->flags != old_flags) {
5019 pr_info("device %s %s promiscuous mode\n",
5020 dev->name,
5021 dev->flags & IFF_PROMISC ? "entered" : "left");
5022 if (audit_enabled) {
5023 current_uid_gid(&uid, &gid);
5024 audit_log(current->audit_context, GFP_ATOMIC,
5025 AUDIT_ANOM_PROMISCUOUS,
5026 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5027 dev->name, (dev->flags & IFF_PROMISC),
5028 (old_flags & IFF_PROMISC),
5029 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5030 from_kuid(&init_user_ns, uid),
5031 from_kgid(&init_user_ns, gid),
5032 audit_get_sessionid(current));
5033 }
5034
5035 dev_change_rx_flags(dev, IFF_PROMISC);
5036 }
5037 if (notify)
5038 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5039 return 0;
5040 }
5041
5042 /**
5043 * dev_set_promiscuity - update promiscuity count on a device
5044 * @dev: device
5045 * @inc: modifier
5046 *
5047 * Add or remove promiscuity from a device. While the count in the device
5048 * remains above zero the interface remains promiscuous. Once it hits zero
5049 * the device reverts back to normal filtering operation. A negative inc
5050 * value is used to drop promiscuity on the device.
5051 * Return 0 if successful or a negative errno code on error.
5052 */
5053 int dev_set_promiscuity(struct net_device *dev, int inc)
5054 {
5055 unsigned int old_flags = dev->flags;
5056 int err;
5057
5058 err = __dev_set_promiscuity(dev, inc, true);
5059 if (err < 0)
5060 return err;
5061 if (dev->flags != old_flags)
5062 dev_set_rx_mode(dev);
5063 return err;
5064 }
5065 EXPORT_SYMBOL(dev_set_promiscuity);
5066
5067 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5068 {
5069 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5070
5071 ASSERT_RTNL();
5072
5073 dev->flags |= IFF_ALLMULTI;
5074 dev->allmulti += inc;
5075 if (dev->allmulti == 0) {
5076 /*
5077 * Avoid overflow.
5078 * If inc causes overflow, untouch allmulti and return error.
5079 */
5080 if (inc < 0)
5081 dev->flags &= ~IFF_ALLMULTI;
5082 else {
5083 dev->allmulti -= inc;
5084 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5085 dev->name);
5086 return -EOVERFLOW;
5087 }
5088 }
5089 if (dev->flags ^ old_flags) {
5090 dev_change_rx_flags(dev, IFF_ALLMULTI);
5091 dev_set_rx_mode(dev);
5092 if (notify)
5093 __dev_notify_flags(dev, old_flags,
5094 dev->gflags ^ old_gflags);
5095 }
5096 return 0;
5097 }
5098
5099 /**
5100 * dev_set_allmulti - update allmulti count on a device
5101 * @dev: device
5102 * @inc: modifier
5103 *
5104 * Add or remove reception of all multicast frames to a device. While the
5105 * count in the device remains above zero the interface remains listening
5106 * to all interfaces. Once it hits zero the device reverts back to normal
5107 * filtering operation. A negative @inc value is used to drop the counter
5108 * when releasing a resource needing all multicasts.
5109 * Return 0 if successful or a negative errno code on error.
5110 */
5111
5112 int dev_set_allmulti(struct net_device *dev, int inc)
5113 {
5114 return __dev_set_allmulti(dev, inc, true);
5115 }
5116 EXPORT_SYMBOL(dev_set_allmulti);
5117
5118 /*
5119 * Upload unicast and multicast address lists to device and
5120 * configure RX filtering. When the device doesn't support unicast
5121 * filtering it is put in promiscuous mode while unicast addresses
5122 * are present.
5123 */
5124 void __dev_set_rx_mode(struct net_device *dev)
5125 {
5126 const struct net_device_ops *ops = dev->netdev_ops;
5127
5128 /* dev_open will call this function so the list will stay sane. */
5129 if (!(dev->flags&IFF_UP))
5130 return;
5131
5132 if (!netif_device_present(dev))
5133 return;
5134
5135 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5136 /* Unicast addresses changes may only happen under the rtnl,
5137 * therefore calling __dev_set_promiscuity here is safe.
5138 */
5139 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5140 __dev_set_promiscuity(dev, 1, false);
5141 dev->uc_promisc = true;
5142 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5143 __dev_set_promiscuity(dev, -1, false);
5144 dev->uc_promisc = false;
5145 }
5146 }
5147
5148 if (ops->ndo_set_rx_mode)
5149 ops->ndo_set_rx_mode(dev);
5150 }
5151
5152 void dev_set_rx_mode(struct net_device *dev)
5153 {
5154 netif_addr_lock_bh(dev);
5155 __dev_set_rx_mode(dev);
5156 netif_addr_unlock_bh(dev);
5157 }
5158
5159 /**
5160 * dev_get_flags - get flags reported to userspace
5161 * @dev: device
5162 *
5163 * Get the combination of flag bits exported through APIs to userspace.
5164 */
5165 unsigned int dev_get_flags(const struct net_device *dev)
5166 {
5167 unsigned int flags;
5168
5169 flags = (dev->flags & ~(IFF_PROMISC |
5170 IFF_ALLMULTI |
5171 IFF_RUNNING |
5172 IFF_LOWER_UP |
5173 IFF_DORMANT)) |
5174 (dev->gflags & (IFF_PROMISC |
5175 IFF_ALLMULTI));
5176
5177 if (netif_running(dev)) {
5178 if (netif_oper_up(dev))
5179 flags |= IFF_RUNNING;
5180 if (netif_carrier_ok(dev))
5181 flags |= IFF_LOWER_UP;
5182 if (netif_dormant(dev))
5183 flags |= IFF_DORMANT;
5184 }
5185
5186 return flags;
5187 }
5188 EXPORT_SYMBOL(dev_get_flags);
5189
5190 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5191 {
5192 unsigned int old_flags = dev->flags;
5193 int ret;
5194
5195 ASSERT_RTNL();
5196
5197 /*
5198 * Set the flags on our device.
5199 */
5200
5201 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5202 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5203 IFF_AUTOMEDIA)) |
5204 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5205 IFF_ALLMULTI));
5206
5207 /*
5208 * Load in the correct multicast list now the flags have changed.
5209 */
5210
5211 if ((old_flags ^ flags) & IFF_MULTICAST)
5212 dev_change_rx_flags(dev, IFF_MULTICAST);
5213
5214 dev_set_rx_mode(dev);
5215
5216 /*
5217 * Have we downed the interface. We handle IFF_UP ourselves
5218 * according to user attempts to set it, rather than blindly
5219 * setting it.
5220 */
5221
5222 ret = 0;
5223 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5224 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5225
5226 if (!ret)
5227 dev_set_rx_mode(dev);
5228 }
5229
5230 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5231 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5232 unsigned int old_flags = dev->flags;
5233
5234 dev->gflags ^= IFF_PROMISC;
5235
5236 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5237 if (dev->flags != old_flags)
5238 dev_set_rx_mode(dev);
5239 }
5240
5241 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5242 is important. Some (broken) drivers set IFF_PROMISC, when
5243 IFF_ALLMULTI is requested not asking us and not reporting.
5244 */
5245 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5246 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5247
5248 dev->gflags ^= IFF_ALLMULTI;
5249 __dev_set_allmulti(dev, inc, false);
5250 }
5251
5252 return ret;
5253 }
5254
5255 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5256 unsigned int gchanges)
5257 {
5258 unsigned int changes = dev->flags ^ old_flags;
5259
5260 if (gchanges)
5261 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5262
5263 if (changes & IFF_UP) {
5264 if (dev->flags & IFF_UP)
5265 call_netdevice_notifiers(NETDEV_UP, dev);
5266 else
5267 call_netdevice_notifiers(NETDEV_DOWN, dev);
5268 }
5269
5270 if (dev->flags & IFF_UP &&
5271 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5272 struct netdev_notifier_change_info change_info;
5273
5274 change_info.flags_changed = changes;
5275 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5276 &change_info.info);
5277 }
5278 }
5279
5280 /**
5281 * dev_change_flags - change device settings
5282 * @dev: device
5283 * @flags: device state flags
5284 *
5285 * Change settings on device based state flags. The flags are
5286 * in the userspace exported format.
5287 */
5288 int dev_change_flags(struct net_device *dev, unsigned int flags)
5289 {
5290 int ret;
5291 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5292
5293 ret = __dev_change_flags(dev, flags);
5294 if (ret < 0)
5295 return ret;
5296
5297 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5298 __dev_notify_flags(dev, old_flags, changes);
5299 return ret;
5300 }
5301 EXPORT_SYMBOL(dev_change_flags);
5302
5303 /**
5304 * dev_set_mtu - Change maximum transfer unit
5305 * @dev: device
5306 * @new_mtu: new transfer unit
5307 *
5308 * Change the maximum transfer size of the network device.
5309 */
5310 int dev_set_mtu(struct net_device *dev, int new_mtu)
5311 {
5312 const struct net_device_ops *ops = dev->netdev_ops;
5313 int err;
5314
5315 if (new_mtu == dev->mtu)
5316 return 0;
5317
5318 /* MTU must be positive. */
5319 if (new_mtu < 0)
5320 return -EINVAL;
5321
5322 if (!netif_device_present(dev))
5323 return -ENODEV;
5324
5325 err = 0;
5326 if (ops->ndo_change_mtu)
5327 err = ops->ndo_change_mtu(dev, new_mtu);
5328 else
5329 dev->mtu = new_mtu;
5330
5331 if (!err)
5332 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5333 return err;
5334 }
5335 EXPORT_SYMBOL(dev_set_mtu);
5336
5337 /**
5338 * dev_set_group - Change group this device belongs to
5339 * @dev: device
5340 * @new_group: group this device should belong to
5341 */
5342 void dev_set_group(struct net_device *dev, int new_group)
5343 {
5344 dev->group = new_group;
5345 }
5346 EXPORT_SYMBOL(dev_set_group);
5347
5348 /**
5349 * dev_set_mac_address - Change Media Access Control Address
5350 * @dev: device
5351 * @sa: new address
5352 *
5353 * Change the hardware (MAC) address of the device
5354 */
5355 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5356 {
5357 const struct net_device_ops *ops = dev->netdev_ops;
5358 int err;
5359
5360 if (!ops->ndo_set_mac_address)
5361 return -EOPNOTSUPP;
5362 if (sa->sa_family != dev->type)
5363 return -EINVAL;
5364 if (!netif_device_present(dev))
5365 return -ENODEV;
5366 err = ops->ndo_set_mac_address(dev, sa);
5367 if (err)
5368 return err;
5369 dev->addr_assign_type = NET_ADDR_SET;
5370 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5371 add_device_randomness(dev->dev_addr, dev->addr_len);
5372 return 0;
5373 }
5374 EXPORT_SYMBOL(dev_set_mac_address);
5375
5376 /**
5377 * dev_change_carrier - Change device carrier
5378 * @dev: device
5379 * @new_carrier: new value
5380 *
5381 * Change device carrier
5382 */
5383 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5384 {
5385 const struct net_device_ops *ops = dev->netdev_ops;
5386
5387 if (!ops->ndo_change_carrier)
5388 return -EOPNOTSUPP;
5389 if (!netif_device_present(dev))
5390 return -ENODEV;
5391 return ops->ndo_change_carrier(dev, new_carrier);
5392 }
5393 EXPORT_SYMBOL(dev_change_carrier);
5394
5395 /**
5396 * dev_get_phys_port_id - Get device physical port ID
5397 * @dev: device
5398 * @ppid: port ID
5399 *
5400 * Get device physical port ID
5401 */
5402 int dev_get_phys_port_id(struct net_device *dev,
5403 struct netdev_phys_port_id *ppid)
5404 {
5405 const struct net_device_ops *ops = dev->netdev_ops;
5406
5407 if (!ops->ndo_get_phys_port_id)
5408 return -EOPNOTSUPP;
5409 return ops->ndo_get_phys_port_id(dev, ppid);
5410 }
5411 EXPORT_SYMBOL(dev_get_phys_port_id);
5412
5413 /**
5414 * dev_new_index - allocate an ifindex
5415 * @net: the applicable net namespace
5416 *
5417 * Returns a suitable unique value for a new device interface
5418 * number. The caller must hold the rtnl semaphore or the
5419 * dev_base_lock to be sure it remains unique.
5420 */
5421 static int dev_new_index(struct net *net)
5422 {
5423 int ifindex = net->ifindex;
5424 for (;;) {
5425 if (++ifindex <= 0)
5426 ifindex = 1;
5427 if (!__dev_get_by_index(net, ifindex))
5428 return net->ifindex = ifindex;
5429 }
5430 }
5431
5432 /* Delayed registration/unregisteration */
5433 static LIST_HEAD(net_todo_list);
5434 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5435
5436 static void net_set_todo(struct net_device *dev)
5437 {
5438 list_add_tail(&dev->todo_list, &net_todo_list);
5439 dev_net(dev)->dev_unreg_count++;
5440 }
5441
5442 static void rollback_registered_many(struct list_head *head)
5443 {
5444 struct net_device *dev, *tmp;
5445 LIST_HEAD(close_head);
5446
5447 BUG_ON(dev_boot_phase);
5448 ASSERT_RTNL();
5449
5450 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5451 /* Some devices call without registering
5452 * for initialization unwind. Remove those
5453 * devices and proceed with the remaining.
5454 */
5455 if (dev->reg_state == NETREG_UNINITIALIZED) {
5456 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5457 dev->name, dev);
5458
5459 WARN_ON(1);
5460 list_del(&dev->unreg_list);
5461 continue;
5462 }
5463 dev->dismantle = true;
5464 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5465 }
5466
5467 /* If device is running, close it first. */
5468 list_for_each_entry(dev, head, unreg_list)
5469 list_add_tail(&dev->close_list, &close_head);
5470 dev_close_many(&close_head);
5471
5472 list_for_each_entry(dev, head, unreg_list) {
5473 /* And unlink it from device chain. */
5474 unlist_netdevice(dev);
5475
5476 dev->reg_state = NETREG_UNREGISTERING;
5477 }
5478
5479 synchronize_net();
5480
5481 list_for_each_entry(dev, head, unreg_list) {
5482 /* Shutdown queueing discipline. */
5483 dev_shutdown(dev);
5484
5485
5486 /* Notify protocols, that we are about to destroy
5487 this device. They should clean all the things.
5488 */
5489 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5490
5491 if (!dev->rtnl_link_ops ||
5492 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5493 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5494
5495 /*
5496 * Flush the unicast and multicast chains
5497 */
5498 dev_uc_flush(dev);
5499 dev_mc_flush(dev);
5500
5501 if (dev->netdev_ops->ndo_uninit)
5502 dev->netdev_ops->ndo_uninit(dev);
5503
5504 /* Notifier chain MUST detach us all upper devices. */
5505 WARN_ON(netdev_has_any_upper_dev(dev));
5506
5507 /* Remove entries from kobject tree */
5508 netdev_unregister_kobject(dev);
5509 #ifdef CONFIG_XPS
5510 /* Remove XPS queueing entries */
5511 netif_reset_xps_queues_gt(dev, 0);
5512 #endif
5513 }
5514
5515 synchronize_net();
5516
5517 list_for_each_entry(dev, head, unreg_list)
5518 dev_put(dev);
5519 }
5520
5521 static void rollback_registered(struct net_device *dev)
5522 {
5523 LIST_HEAD(single);
5524
5525 list_add(&dev->unreg_list, &single);
5526 rollback_registered_many(&single);
5527 list_del(&single);
5528 }
5529
5530 static netdev_features_t netdev_fix_features(struct net_device *dev,
5531 netdev_features_t features)
5532 {
5533 /* Fix illegal checksum combinations */
5534 if ((features & NETIF_F_HW_CSUM) &&
5535 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5536 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5537 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5538 }
5539
5540 /* TSO requires that SG is present as well. */
5541 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5542 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5543 features &= ~NETIF_F_ALL_TSO;
5544 }
5545
5546 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5547 !(features & NETIF_F_IP_CSUM)) {
5548 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5549 features &= ~NETIF_F_TSO;
5550 features &= ~NETIF_F_TSO_ECN;
5551 }
5552
5553 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5554 !(features & NETIF_F_IPV6_CSUM)) {
5555 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5556 features &= ~NETIF_F_TSO6;
5557 }
5558
5559 /* TSO ECN requires that TSO is present as well. */
5560 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5561 features &= ~NETIF_F_TSO_ECN;
5562
5563 /* Software GSO depends on SG. */
5564 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5565 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5566 features &= ~NETIF_F_GSO;
5567 }
5568
5569 /* UFO needs SG and checksumming */
5570 if (features & NETIF_F_UFO) {
5571 /* maybe split UFO into V4 and V6? */
5572 if (!((features & NETIF_F_GEN_CSUM) ||
5573 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5574 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5575 netdev_dbg(dev,
5576 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5577 features &= ~NETIF_F_UFO;
5578 }
5579
5580 if (!(features & NETIF_F_SG)) {
5581 netdev_dbg(dev,
5582 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5583 features &= ~NETIF_F_UFO;
5584 }
5585 }
5586
5587 return features;
5588 }
5589
5590 int __netdev_update_features(struct net_device *dev)
5591 {
5592 netdev_features_t features;
5593 int err = 0;
5594
5595 ASSERT_RTNL();
5596
5597 features = netdev_get_wanted_features(dev);
5598
5599 if (dev->netdev_ops->ndo_fix_features)
5600 features = dev->netdev_ops->ndo_fix_features(dev, features);
5601
5602 /* driver might be less strict about feature dependencies */
5603 features = netdev_fix_features(dev, features);
5604
5605 if (dev->features == features)
5606 return 0;
5607
5608 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5609 &dev->features, &features);
5610
5611 if (dev->netdev_ops->ndo_set_features)
5612 err = dev->netdev_ops->ndo_set_features(dev, features);
5613
5614 if (unlikely(err < 0)) {
5615 netdev_err(dev,
5616 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5617 err, &features, &dev->features);
5618 return -1;
5619 }
5620
5621 if (!err)
5622 dev->features = features;
5623
5624 return 1;
5625 }
5626
5627 /**
5628 * netdev_update_features - recalculate device features
5629 * @dev: the device to check
5630 *
5631 * Recalculate dev->features set and send notifications if it
5632 * has changed. Should be called after driver or hardware dependent
5633 * conditions might have changed that influence the features.
5634 */
5635 void netdev_update_features(struct net_device *dev)
5636 {
5637 if (__netdev_update_features(dev))
5638 netdev_features_change(dev);
5639 }
5640 EXPORT_SYMBOL(netdev_update_features);
5641
5642 /**
5643 * netdev_change_features - recalculate device features
5644 * @dev: the device to check
5645 *
5646 * Recalculate dev->features set and send notifications even
5647 * if they have not changed. Should be called instead of
5648 * netdev_update_features() if also dev->vlan_features might
5649 * have changed to allow the changes to be propagated to stacked
5650 * VLAN devices.
5651 */
5652 void netdev_change_features(struct net_device *dev)
5653 {
5654 __netdev_update_features(dev);
5655 netdev_features_change(dev);
5656 }
5657 EXPORT_SYMBOL(netdev_change_features);
5658
5659 /**
5660 * netif_stacked_transfer_operstate - transfer operstate
5661 * @rootdev: the root or lower level device to transfer state from
5662 * @dev: the device to transfer operstate to
5663 *
5664 * Transfer operational state from root to device. This is normally
5665 * called when a stacking relationship exists between the root
5666 * device and the device(a leaf device).
5667 */
5668 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5669 struct net_device *dev)
5670 {
5671 if (rootdev->operstate == IF_OPER_DORMANT)
5672 netif_dormant_on(dev);
5673 else
5674 netif_dormant_off(dev);
5675
5676 if (netif_carrier_ok(rootdev)) {
5677 if (!netif_carrier_ok(dev))
5678 netif_carrier_on(dev);
5679 } else {
5680 if (netif_carrier_ok(dev))
5681 netif_carrier_off(dev);
5682 }
5683 }
5684 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5685
5686 #ifdef CONFIG_RPS
5687 static int netif_alloc_rx_queues(struct net_device *dev)
5688 {
5689 unsigned int i, count = dev->num_rx_queues;
5690 struct netdev_rx_queue *rx;
5691
5692 BUG_ON(count < 1);
5693
5694 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5695 if (!rx)
5696 return -ENOMEM;
5697
5698 dev->_rx = rx;
5699
5700 for (i = 0; i < count; i++)
5701 rx[i].dev = dev;
5702 return 0;
5703 }
5704 #endif
5705
5706 static void netdev_init_one_queue(struct net_device *dev,
5707 struct netdev_queue *queue, void *_unused)
5708 {
5709 /* Initialize queue lock */
5710 spin_lock_init(&queue->_xmit_lock);
5711 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5712 queue->xmit_lock_owner = -1;
5713 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5714 queue->dev = dev;
5715 #ifdef CONFIG_BQL
5716 dql_init(&queue->dql, HZ);
5717 #endif
5718 }
5719
5720 static void netif_free_tx_queues(struct net_device *dev)
5721 {
5722 if (is_vmalloc_addr(dev->_tx))
5723 vfree(dev->_tx);
5724 else
5725 kfree(dev->_tx);
5726 }
5727
5728 static int netif_alloc_netdev_queues(struct net_device *dev)
5729 {
5730 unsigned int count = dev->num_tx_queues;
5731 struct netdev_queue *tx;
5732 size_t sz = count * sizeof(*tx);
5733
5734 BUG_ON(count < 1 || count > 0xffff);
5735
5736 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5737 if (!tx) {
5738 tx = vzalloc(sz);
5739 if (!tx)
5740 return -ENOMEM;
5741 }
5742 dev->_tx = tx;
5743
5744 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5745 spin_lock_init(&dev->tx_global_lock);
5746
5747 return 0;
5748 }
5749
5750 /**
5751 * register_netdevice - register a network device
5752 * @dev: device to register
5753 *
5754 * Take a completed network device structure and add it to the kernel
5755 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5756 * chain. 0 is returned on success. A negative errno code is returned
5757 * on a failure to set up the device, or if the name is a duplicate.
5758 *
5759 * Callers must hold the rtnl semaphore. You may want
5760 * register_netdev() instead of this.
5761 *
5762 * BUGS:
5763 * The locking appears insufficient to guarantee two parallel registers
5764 * will not get the same name.
5765 */
5766
5767 int register_netdevice(struct net_device *dev)
5768 {
5769 int ret;
5770 struct net *net = dev_net(dev);
5771
5772 BUG_ON(dev_boot_phase);
5773 ASSERT_RTNL();
5774
5775 might_sleep();
5776
5777 /* When net_device's are persistent, this will be fatal. */
5778 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5779 BUG_ON(!net);
5780
5781 spin_lock_init(&dev->addr_list_lock);
5782 netdev_set_addr_lockdep_class(dev);
5783
5784 dev->iflink = -1;
5785
5786 ret = dev_get_valid_name(net, dev, dev->name);
5787 if (ret < 0)
5788 goto out;
5789
5790 /* Init, if this function is available */
5791 if (dev->netdev_ops->ndo_init) {
5792 ret = dev->netdev_ops->ndo_init(dev);
5793 if (ret) {
5794 if (ret > 0)
5795 ret = -EIO;
5796 goto out;
5797 }
5798 }
5799
5800 if (((dev->hw_features | dev->features) &
5801 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5802 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5803 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5804 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5805 ret = -EINVAL;
5806 goto err_uninit;
5807 }
5808
5809 ret = -EBUSY;
5810 if (!dev->ifindex)
5811 dev->ifindex = dev_new_index(net);
5812 else if (__dev_get_by_index(net, dev->ifindex))
5813 goto err_uninit;
5814
5815 if (dev->iflink == -1)
5816 dev->iflink = dev->ifindex;
5817
5818 /* Transfer changeable features to wanted_features and enable
5819 * software offloads (GSO and GRO).
5820 */
5821 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5822 dev->features |= NETIF_F_SOFT_FEATURES;
5823 dev->wanted_features = dev->features & dev->hw_features;
5824
5825 /* Turn on no cache copy if HW is doing checksum */
5826 if (!(dev->flags & IFF_LOOPBACK)) {
5827 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5828 if (dev->features & NETIF_F_ALL_CSUM) {
5829 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5830 dev->features |= NETIF_F_NOCACHE_COPY;
5831 }
5832 }
5833
5834 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5835 */
5836 dev->vlan_features |= NETIF_F_HIGHDMA;
5837
5838 /* Make NETIF_F_SG inheritable to tunnel devices.
5839 */
5840 dev->hw_enc_features |= NETIF_F_SG;
5841
5842 /* Make NETIF_F_SG inheritable to MPLS.
5843 */
5844 dev->mpls_features |= NETIF_F_SG;
5845
5846 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5847 ret = notifier_to_errno(ret);
5848 if (ret)
5849 goto err_uninit;
5850
5851 ret = netdev_register_kobject(dev);
5852 if (ret)
5853 goto err_uninit;
5854 dev->reg_state = NETREG_REGISTERED;
5855
5856 __netdev_update_features(dev);
5857
5858 /*
5859 * Default initial state at registry is that the
5860 * device is present.
5861 */
5862
5863 set_bit(__LINK_STATE_PRESENT, &dev->state);
5864
5865 linkwatch_init_dev(dev);
5866
5867 dev_init_scheduler(dev);
5868 dev_hold(dev);
5869 list_netdevice(dev);
5870 add_device_randomness(dev->dev_addr, dev->addr_len);
5871
5872 /* If the device has permanent device address, driver should
5873 * set dev_addr and also addr_assign_type should be set to
5874 * NET_ADDR_PERM (default value).
5875 */
5876 if (dev->addr_assign_type == NET_ADDR_PERM)
5877 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5878
5879 /* Notify protocols, that a new device appeared. */
5880 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5881 ret = notifier_to_errno(ret);
5882 if (ret) {
5883 rollback_registered(dev);
5884 dev->reg_state = NETREG_UNREGISTERED;
5885 }
5886 /*
5887 * Prevent userspace races by waiting until the network
5888 * device is fully setup before sending notifications.
5889 */
5890 if (!dev->rtnl_link_ops ||
5891 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5892 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5893
5894 out:
5895 return ret;
5896
5897 err_uninit:
5898 if (dev->netdev_ops->ndo_uninit)
5899 dev->netdev_ops->ndo_uninit(dev);
5900 goto out;
5901 }
5902 EXPORT_SYMBOL(register_netdevice);
5903
5904 /**
5905 * init_dummy_netdev - init a dummy network device for NAPI
5906 * @dev: device to init
5907 *
5908 * This takes a network device structure and initialize the minimum
5909 * amount of fields so it can be used to schedule NAPI polls without
5910 * registering a full blown interface. This is to be used by drivers
5911 * that need to tie several hardware interfaces to a single NAPI
5912 * poll scheduler due to HW limitations.
5913 */
5914 int init_dummy_netdev(struct net_device *dev)
5915 {
5916 /* Clear everything. Note we don't initialize spinlocks
5917 * are they aren't supposed to be taken by any of the
5918 * NAPI code and this dummy netdev is supposed to be
5919 * only ever used for NAPI polls
5920 */
5921 memset(dev, 0, sizeof(struct net_device));
5922
5923 /* make sure we BUG if trying to hit standard
5924 * register/unregister code path
5925 */
5926 dev->reg_state = NETREG_DUMMY;
5927
5928 /* NAPI wants this */
5929 INIT_LIST_HEAD(&dev->napi_list);
5930
5931 /* a dummy interface is started by default */
5932 set_bit(__LINK_STATE_PRESENT, &dev->state);
5933 set_bit(__LINK_STATE_START, &dev->state);
5934
5935 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5936 * because users of this 'device' dont need to change
5937 * its refcount.
5938 */
5939
5940 return 0;
5941 }
5942 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5943
5944
5945 /**
5946 * register_netdev - register a network device
5947 * @dev: device to register
5948 *
5949 * Take a completed network device structure and add it to the kernel
5950 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5951 * chain. 0 is returned on success. A negative errno code is returned
5952 * on a failure to set up the device, or if the name is a duplicate.
5953 *
5954 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5955 * and expands the device name if you passed a format string to
5956 * alloc_netdev.
5957 */
5958 int register_netdev(struct net_device *dev)
5959 {
5960 int err;
5961
5962 rtnl_lock();
5963 err = register_netdevice(dev);
5964 rtnl_unlock();
5965 return err;
5966 }
5967 EXPORT_SYMBOL(register_netdev);
5968
5969 int netdev_refcnt_read(const struct net_device *dev)
5970 {
5971 int i, refcnt = 0;
5972
5973 for_each_possible_cpu(i)
5974 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5975 return refcnt;
5976 }
5977 EXPORT_SYMBOL(netdev_refcnt_read);
5978
5979 /**
5980 * netdev_wait_allrefs - wait until all references are gone.
5981 * @dev: target net_device
5982 *
5983 * This is called when unregistering network devices.
5984 *
5985 * Any protocol or device that holds a reference should register
5986 * for netdevice notification, and cleanup and put back the
5987 * reference if they receive an UNREGISTER event.
5988 * We can get stuck here if buggy protocols don't correctly
5989 * call dev_put.
5990 */
5991 static void netdev_wait_allrefs(struct net_device *dev)
5992 {
5993 unsigned long rebroadcast_time, warning_time;
5994 int refcnt;
5995
5996 linkwatch_forget_dev(dev);
5997
5998 rebroadcast_time = warning_time = jiffies;
5999 refcnt = netdev_refcnt_read(dev);
6000
6001 while (refcnt != 0) {
6002 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6003 rtnl_lock();
6004
6005 /* Rebroadcast unregister notification */
6006 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6007
6008 __rtnl_unlock();
6009 rcu_barrier();
6010 rtnl_lock();
6011
6012 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6013 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6014 &dev->state)) {
6015 /* We must not have linkwatch events
6016 * pending on unregister. If this
6017 * happens, we simply run the queue
6018 * unscheduled, resulting in a noop
6019 * for this device.
6020 */
6021 linkwatch_run_queue();
6022 }
6023
6024 __rtnl_unlock();
6025
6026 rebroadcast_time = jiffies;
6027 }
6028
6029 msleep(250);
6030
6031 refcnt = netdev_refcnt_read(dev);
6032
6033 if (time_after(jiffies, warning_time + 10 * HZ)) {
6034 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6035 dev->name, refcnt);
6036 warning_time = jiffies;
6037 }
6038 }
6039 }
6040
6041 /* The sequence is:
6042 *
6043 * rtnl_lock();
6044 * ...
6045 * register_netdevice(x1);
6046 * register_netdevice(x2);
6047 * ...
6048 * unregister_netdevice(y1);
6049 * unregister_netdevice(y2);
6050 * ...
6051 * rtnl_unlock();
6052 * free_netdev(y1);
6053 * free_netdev(y2);
6054 *
6055 * We are invoked by rtnl_unlock().
6056 * This allows us to deal with problems:
6057 * 1) We can delete sysfs objects which invoke hotplug
6058 * without deadlocking with linkwatch via keventd.
6059 * 2) Since we run with the RTNL semaphore not held, we can sleep
6060 * safely in order to wait for the netdev refcnt to drop to zero.
6061 *
6062 * We must not return until all unregister events added during
6063 * the interval the lock was held have been completed.
6064 */
6065 void netdev_run_todo(void)
6066 {
6067 struct list_head list;
6068
6069 /* Snapshot list, allow later requests */
6070 list_replace_init(&net_todo_list, &list);
6071
6072 __rtnl_unlock();
6073
6074
6075 /* Wait for rcu callbacks to finish before next phase */
6076 if (!list_empty(&list))
6077 rcu_barrier();
6078
6079 while (!list_empty(&list)) {
6080 struct net_device *dev
6081 = list_first_entry(&list, struct net_device, todo_list);
6082 list_del(&dev->todo_list);
6083
6084 rtnl_lock();
6085 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6086 __rtnl_unlock();
6087
6088 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6089 pr_err("network todo '%s' but state %d\n",
6090 dev->name, dev->reg_state);
6091 dump_stack();
6092 continue;
6093 }
6094
6095 dev->reg_state = NETREG_UNREGISTERED;
6096
6097 on_each_cpu(flush_backlog, dev, 1);
6098
6099 netdev_wait_allrefs(dev);
6100
6101 /* paranoia */
6102 BUG_ON(netdev_refcnt_read(dev));
6103 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6104 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6105 WARN_ON(dev->dn_ptr);
6106
6107 if (dev->destructor)
6108 dev->destructor(dev);
6109
6110 /* Report a network device has been unregistered */
6111 rtnl_lock();
6112 dev_net(dev)->dev_unreg_count--;
6113 __rtnl_unlock();
6114 wake_up(&netdev_unregistering_wq);
6115
6116 /* Free network device */
6117 kobject_put(&dev->dev.kobj);
6118 }
6119 }
6120
6121 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6122 * fields in the same order, with only the type differing.
6123 */
6124 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6125 const struct net_device_stats *netdev_stats)
6126 {
6127 #if BITS_PER_LONG == 64
6128 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6129 memcpy(stats64, netdev_stats, sizeof(*stats64));
6130 #else
6131 size_t i, n = sizeof(*stats64) / sizeof(u64);
6132 const unsigned long *src = (const unsigned long *)netdev_stats;
6133 u64 *dst = (u64 *)stats64;
6134
6135 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6136 sizeof(*stats64) / sizeof(u64));
6137 for (i = 0; i < n; i++)
6138 dst[i] = src[i];
6139 #endif
6140 }
6141 EXPORT_SYMBOL(netdev_stats_to_stats64);
6142
6143 /**
6144 * dev_get_stats - get network device statistics
6145 * @dev: device to get statistics from
6146 * @storage: place to store stats
6147 *
6148 * Get network statistics from device. Return @storage.
6149 * The device driver may provide its own method by setting
6150 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6151 * otherwise the internal statistics structure is used.
6152 */
6153 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6154 struct rtnl_link_stats64 *storage)
6155 {
6156 const struct net_device_ops *ops = dev->netdev_ops;
6157
6158 if (ops->ndo_get_stats64) {
6159 memset(storage, 0, sizeof(*storage));
6160 ops->ndo_get_stats64(dev, storage);
6161 } else if (ops->ndo_get_stats) {
6162 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6163 } else {
6164 netdev_stats_to_stats64(storage, &dev->stats);
6165 }
6166 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6167 return storage;
6168 }
6169 EXPORT_SYMBOL(dev_get_stats);
6170
6171 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6172 {
6173 struct netdev_queue *queue = dev_ingress_queue(dev);
6174
6175 #ifdef CONFIG_NET_CLS_ACT
6176 if (queue)
6177 return queue;
6178 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6179 if (!queue)
6180 return NULL;
6181 netdev_init_one_queue(dev, queue, NULL);
6182 queue->qdisc = &noop_qdisc;
6183 queue->qdisc_sleeping = &noop_qdisc;
6184 rcu_assign_pointer(dev->ingress_queue, queue);
6185 #endif
6186 return queue;
6187 }
6188
6189 static const struct ethtool_ops default_ethtool_ops;
6190
6191 void netdev_set_default_ethtool_ops(struct net_device *dev,
6192 const struct ethtool_ops *ops)
6193 {
6194 if (dev->ethtool_ops == &default_ethtool_ops)
6195 dev->ethtool_ops = ops;
6196 }
6197 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6198
6199 void netdev_freemem(struct net_device *dev)
6200 {
6201 char *addr = (char *)dev - dev->padded;
6202
6203 if (is_vmalloc_addr(addr))
6204 vfree(addr);
6205 else
6206 kfree(addr);
6207 }
6208
6209 /**
6210 * alloc_netdev_mqs - allocate network device
6211 * @sizeof_priv: size of private data to allocate space for
6212 * @name: device name format string
6213 * @setup: callback to initialize device
6214 * @txqs: the number of TX subqueues to allocate
6215 * @rxqs: the number of RX subqueues to allocate
6216 *
6217 * Allocates a struct net_device with private data area for driver use
6218 * and performs basic initialization. Also allocates subquue structs
6219 * for each queue on the device.
6220 */
6221 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6222 void (*setup)(struct net_device *),
6223 unsigned int txqs, unsigned int rxqs)
6224 {
6225 struct net_device *dev;
6226 size_t alloc_size;
6227 struct net_device *p;
6228
6229 BUG_ON(strlen(name) >= sizeof(dev->name));
6230
6231 if (txqs < 1) {
6232 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6233 return NULL;
6234 }
6235
6236 #ifdef CONFIG_RPS
6237 if (rxqs < 1) {
6238 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6239 return NULL;
6240 }
6241 #endif
6242
6243 alloc_size = sizeof(struct net_device);
6244 if (sizeof_priv) {
6245 /* ensure 32-byte alignment of private area */
6246 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6247 alloc_size += sizeof_priv;
6248 }
6249 /* ensure 32-byte alignment of whole construct */
6250 alloc_size += NETDEV_ALIGN - 1;
6251
6252 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6253 if (!p)
6254 p = vzalloc(alloc_size);
6255 if (!p)
6256 return NULL;
6257
6258 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6259 dev->padded = (char *)dev - (char *)p;
6260
6261 dev->pcpu_refcnt = alloc_percpu(int);
6262 if (!dev->pcpu_refcnt)
6263 goto free_dev;
6264
6265 if (dev_addr_init(dev))
6266 goto free_pcpu;
6267
6268 dev_mc_init(dev);
6269 dev_uc_init(dev);
6270
6271 dev_net_set(dev, &init_net);
6272
6273 dev->gso_max_size = GSO_MAX_SIZE;
6274 dev->gso_max_segs = GSO_MAX_SEGS;
6275
6276 INIT_LIST_HEAD(&dev->napi_list);
6277 INIT_LIST_HEAD(&dev->unreg_list);
6278 INIT_LIST_HEAD(&dev->close_list);
6279 INIT_LIST_HEAD(&dev->link_watch_list);
6280 INIT_LIST_HEAD(&dev->adj_list.upper);
6281 INIT_LIST_HEAD(&dev->adj_list.lower);
6282 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6283 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6284 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6285 setup(dev);
6286
6287 dev->num_tx_queues = txqs;
6288 dev->real_num_tx_queues = txqs;
6289 if (netif_alloc_netdev_queues(dev))
6290 goto free_all;
6291
6292 #ifdef CONFIG_RPS
6293 dev->num_rx_queues = rxqs;
6294 dev->real_num_rx_queues = rxqs;
6295 if (netif_alloc_rx_queues(dev))
6296 goto free_all;
6297 #endif
6298
6299 strcpy(dev->name, name);
6300 dev->group = INIT_NETDEV_GROUP;
6301 if (!dev->ethtool_ops)
6302 dev->ethtool_ops = &default_ethtool_ops;
6303 return dev;
6304
6305 free_all:
6306 free_netdev(dev);
6307 return NULL;
6308
6309 free_pcpu:
6310 free_percpu(dev->pcpu_refcnt);
6311 netif_free_tx_queues(dev);
6312 #ifdef CONFIG_RPS
6313 kfree(dev->_rx);
6314 #endif
6315
6316 free_dev:
6317 netdev_freemem(dev);
6318 return NULL;
6319 }
6320 EXPORT_SYMBOL(alloc_netdev_mqs);
6321
6322 /**
6323 * free_netdev - free network device
6324 * @dev: device
6325 *
6326 * This function does the last stage of destroying an allocated device
6327 * interface. The reference to the device object is released.
6328 * If this is the last reference then it will be freed.
6329 */
6330 void free_netdev(struct net_device *dev)
6331 {
6332 struct napi_struct *p, *n;
6333
6334 release_net(dev_net(dev));
6335
6336 netif_free_tx_queues(dev);
6337 #ifdef CONFIG_RPS
6338 kfree(dev->_rx);
6339 #endif
6340
6341 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6342
6343 /* Flush device addresses */
6344 dev_addr_flush(dev);
6345
6346 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6347 netif_napi_del(p);
6348
6349 free_percpu(dev->pcpu_refcnt);
6350 dev->pcpu_refcnt = NULL;
6351
6352 /* Compatibility with error handling in drivers */
6353 if (dev->reg_state == NETREG_UNINITIALIZED) {
6354 netdev_freemem(dev);
6355 return;
6356 }
6357
6358 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6359 dev->reg_state = NETREG_RELEASED;
6360
6361 /* will free via device release */
6362 put_device(&dev->dev);
6363 }
6364 EXPORT_SYMBOL(free_netdev);
6365
6366 /**
6367 * synchronize_net - Synchronize with packet receive processing
6368 *
6369 * Wait for packets currently being received to be done.
6370 * Does not block later packets from starting.
6371 */
6372 void synchronize_net(void)
6373 {
6374 might_sleep();
6375 if (rtnl_is_locked())
6376 synchronize_rcu_expedited();
6377 else
6378 synchronize_rcu();
6379 }
6380 EXPORT_SYMBOL(synchronize_net);
6381
6382 /**
6383 * unregister_netdevice_queue - remove device from the kernel
6384 * @dev: device
6385 * @head: list
6386 *
6387 * This function shuts down a device interface and removes it
6388 * from the kernel tables.
6389 * If head not NULL, device is queued to be unregistered later.
6390 *
6391 * Callers must hold the rtnl semaphore. You may want
6392 * unregister_netdev() instead of this.
6393 */
6394
6395 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6396 {
6397 ASSERT_RTNL();
6398
6399 if (head) {
6400 list_move_tail(&dev->unreg_list, head);
6401 } else {
6402 rollback_registered(dev);
6403 /* Finish processing unregister after unlock */
6404 net_set_todo(dev);
6405 }
6406 }
6407 EXPORT_SYMBOL(unregister_netdevice_queue);
6408
6409 /**
6410 * unregister_netdevice_many - unregister many devices
6411 * @head: list of devices
6412 */
6413 void unregister_netdevice_many(struct list_head *head)
6414 {
6415 struct net_device *dev;
6416
6417 if (!list_empty(head)) {
6418 rollback_registered_many(head);
6419 list_for_each_entry(dev, head, unreg_list)
6420 net_set_todo(dev);
6421 }
6422 }
6423 EXPORT_SYMBOL(unregister_netdevice_many);
6424
6425 /**
6426 * unregister_netdev - remove device from the kernel
6427 * @dev: device
6428 *
6429 * This function shuts down a device interface and removes it
6430 * from the kernel tables.
6431 *
6432 * This is just a wrapper for unregister_netdevice that takes
6433 * the rtnl semaphore. In general you want to use this and not
6434 * unregister_netdevice.
6435 */
6436 void unregister_netdev(struct net_device *dev)
6437 {
6438 rtnl_lock();
6439 unregister_netdevice(dev);
6440 rtnl_unlock();
6441 }
6442 EXPORT_SYMBOL(unregister_netdev);
6443
6444 /**
6445 * dev_change_net_namespace - move device to different nethost namespace
6446 * @dev: device
6447 * @net: network namespace
6448 * @pat: If not NULL name pattern to try if the current device name
6449 * is already taken in the destination network namespace.
6450 *
6451 * This function shuts down a device interface and moves it
6452 * to a new network namespace. On success 0 is returned, on
6453 * a failure a netagive errno code is returned.
6454 *
6455 * Callers must hold the rtnl semaphore.
6456 */
6457
6458 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6459 {
6460 int err;
6461
6462 ASSERT_RTNL();
6463
6464 /* Don't allow namespace local devices to be moved. */
6465 err = -EINVAL;
6466 if (dev->features & NETIF_F_NETNS_LOCAL)
6467 goto out;
6468
6469 /* Ensure the device has been registrered */
6470 if (dev->reg_state != NETREG_REGISTERED)
6471 goto out;
6472
6473 /* Get out if there is nothing todo */
6474 err = 0;
6475 if (net_eq(dev_net(dev), net))
6476 goto out;
6477
6478 /* Pick the destination device name, and ensure
6479 * we can use it in the destination network namespace.
6480 */
6481 err = -EEXIST;
6482 if (__dev_get_by_name(net, dev->name)) {
6483 /* We get here if we can't use the current device name */
6484 if (!pat)
6485 goto out;
6486 if (dev_get_valid_name(net, dev, pat) < 0)
6487 goto out;
6488 }
6489
6490 /*
6491 * And now a mini version of register_netdevice unregister_netdevice.
6492 */
6493
6494 /* If device is running close it first. */
6495 dev_close(dev);
6496
6497 /* And unlink it from device chain */
6498 err = -ENODEV;
6499 unlist_netdevice(dev);
6500
6501 synchronize_net();
6502
6503 /* Shutdown queueing discipline. */
6504 dev_shutdown(dev);
6505
6506 /* Notify protocols, that we are about to destroy
6507 this device. They should clean all the things.
6508
6509 Note that dev->reg_state stays at NETREG_REGISTERED.
6510 This is wanted because this way 8021q and macvlan know
6511 the device is just moving and can keep their slaves up.
6512 */
6513 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6514 rcu_barrier();
6515 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6516 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6517
6518 /*
6519 * Flush the unicast and multicast chains
6520 */
6521 dev_uc_flush(dev);
6522 dev_mc_flush(dev);
6523
6524 /* Send a netdev-removed uevent to the old namespace */
6525 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6526
6527 /* Actually switch the network namespace */
6528 dev_net_set(dev, net);
6529
6530 /* If there is an ifindex conflict assign a new one */
6531 if (__dev_get_by_index(net, dev->ifindex)) {
6532 int iflink = (dev->iflink == dev->ifindex);
6533 dev->ifindex = dev_new_index(net);
6534 if (iflink)
6535 dev->iflink = dev->ifindex;
6536 }
6537
6538 /* Send a netdev-add uevent to the new namespace */
6539 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6540
6541 /* Fixup kobjects */
6542 err = device_rename(&dev->dev, dev->name);
6543 WARN_ON(err);
6544
6545 /* Add the device back in the hashes */
6546 list_netdevice(dev);
6547
6548 /* Notify protocols, that a new device appeared. */
6549 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6550
6551 /*
6552 * Prevent userspace races by waiting until the network
6553 * device is fully setup before sending notifications.
6554 */
6555 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6556
6557 synchronize_net();
6558 err = 0;
6559 out:
6560 return err;
6561 }
6562 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6563
6564 static int dev_cpu_callback(struct notifier_block *nfb,
6565 unsigned long action,
6566 void *ocpu)
6567 {
6568 struct sk_buff **list_skb;
6569 struct sk_buff *skb;
6570 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6571 struct softnet_data *sd, *oldsd;
6572
6573 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6574 return NOTIFY_OK;
6575
6576 local_irq_disable();
6577 cpu = smp_processor_id();
6578 sd = &per_cpu(softnet_data, cpu);
6579 oldsd = &per_cpu(softnet_data, oldcpu);
6580
6581 /* Find end of our completion_queue. */
6582 list_skb = &sd->completion_queue;
6583 while (*list_skb)
6584 list_skb = &(*list_skb)->next;
6585 /* Append completion queue from offline CPU. */
6586 *list_skb = oldsd->completion_queue;
6587 oldsd->completion_queue = NULL;
6588
6589 /* Append output queue from offline CPU. */
6590 if (oldsd->output_queue) {
6591 *sd->output_queue_tailp = oldsd->output_queue;
6592 sd->output_queue_tailp = oldsd->output_queue_tailp;
6593 oldsd->output_queue = NULL;
6594 oldsd->output_queue_tailp = &oldsd->output_queue;
6595 }
6596 /* Append NAPI poll list from offline CPU. */
6597 if (!list_empty(&oldsd->poll_list)) {
6598 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6599 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6600 }
6601
6602 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6603 local_irq_enable();
6604
6605 /* Process offline CPU's input_pkt_queue */
6606 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6607 netif_rx(skb);
6608 input_queue_head_incr(oldsd);
6609 }
6610 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6611 netif_rx(skb);
6612 input_queue_head_incr(oldsd);
6613 }
6614
6615 return NOTIFY_OK;
6616 }
6617
6618
6619 /**
6620 * netdev_increment_features - increment feature set by one
6621 * @all: current feature set
6622 * @one: new feature set
6623 * @mask: mask feature set
6624 *
6625 * Computes a new feature set after adding a device with feature set
6626 * @one to the master device with current feature set @all. Will not
6627 * enable anything that is off in @mask. Returns the new feature set.
6628 */
6629 netdev_features_t netdev_increment_features(netdev_features_t all,
6630 netdev_features_t one, netdev_features_t mask)
6631 {
6632 if (mask & NETIF_F_GEN_CSUM)
6633 mask |= NETIF_F_ALL_CSUM;
6634 mask |= NETIF_F_VLAN_CHALLENGED;
6635
6636 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6637 all &= one | ~NETIF_F_ALL_FOR_ALL;
6638
6639 /* If one device supports hw checksumming, set for all. */
6640 if (all & NETIF_F_GEN_CSUM)
6641 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6642
6643 return all;
6644 }
6645 EXPORT_SYMBOL(netdev_increment_features);
6646
6647 static struct hlist_head * __net_init netdev_create_hash(void)
6648 {
6649 int i;
6650 struct hlist_head *hash;
6651
6652 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6653 if (hash != NULL)
6654 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6655 INIT_HLIST_HEAD(&hash[i]);
6656
6657 return hash;
6658 }
6659
6660 /* Initialize per network namespace state */
6661 static int __net_init netdev_init(struct net *net)
6662 {
6663 if (net != &init_net)
6664 INIT_LIST_HEAD(&net->dev_base_head);
6665
6666 net->dev_name_head = netdev_create_hash();
6667 if (net->dev_name_head == NULL)
6668 goto err_name;
6669
6670 net->dev_index_head = netdev_create_hash();
6671 if (net->dev_index_head == NULL)
6672 goto err_idx;
6673
6674 return 0;
6675
6676 err_idx:
6677 kfree(net->dev_name_head);
6678 err_name:
6679 return -ENOMEM;
6680 }
6681
6682 /**
6683 * netdev_drivername - network driver for the device
6684 * @dev: network device
6685 *
6686 * Determine network driver for device.
6687 */
6688 const char *netdev_drivername(const struct net_device *dev)
6689 {
6690 const struct device_driver *driver;
6691 const struct device *parent;
6692 const char *empty = "";
6693
6694 parent = dev->dev.parent;
6695 if (!parent)
6696 return empty;
6697
6698 driver = parent->driver;
6699 if (driver && driver->name)
6700 return driver->name;
6701 return empty;
6702 }
6703
6704 static int __netdev_printk(const char *level, const struct net_device *dev,
6705 struct va_format *vaf)
6706 {
6707 int r;
6708
6709 if (dev && dev->dev.parent) {
6710 r = dev_printk_emit(level[1] - '0',
6711 dev->dev.parent,
6712 "%s %s %s: %pV",
6713 dev_driver_string(dev->dev.parent),
6714 dev_name(dev->dev.parent),
6715 netdev_name(dev), vaf);
6716 } else if (dev) {
6717 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6718 } else {
6719 r = printk("%s(NULL net_device): %pV", level, vaf);
6720 }
6721
6722 return r;
6723 }
6724
6725 int netdev_printk(const char *level, const struct net_device *dev,
6726 const char *format, ...)
6727 {
6728 struct va_format vaf;
6729 va_list args;
6730 int r;
6731
6732 va_start(args, format);
6733
6734 vaf.fmt = format;
6735 vaf.va = &args;
6736
6737 r = __netdev_printk(level, dev, &vaf);
6738
6739 va_end(args);
6740
6741 return r;
6742 }
6743 EXPORT_SYMBOL(netdev_printk);
6744
6745 #define define_netdev_printk_level(func, level) \
6746 int func(const struct net_device *dev, const char *fmt, ...) \
6747 { \
6748 int r; \
6749 struct va_format vaf; \
6750 va_list args; \
6751 \
6752 va_start(args, fmt); \
6753 \
6754 vaf.fmt = fmt; \
6755 vaf.va = &args; \
6756 \
6757 r = __netdev_printk(level, dev, &vaf); \
6758 \
6759 va_end(args); \
6760 \
6761 return r; \
6762 } \
6763 EXPORT_SYMBOL(func);
6764
6765 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6766 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6767 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6768 define_netdev_printk_level(netdev_err, KERN_ERR);
6769 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6770 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6771 define_netdev_printk_level(netdev_info, KERN_INFO);
6772
6773 static void __net_exit netdev_exit(struct net *net)
6774 {
6775 kfree(net->dev_name_head);
6776 kfree(net->dev_index_head);
6777 }
6778
6779 static struct pernet_operations __net_initdata netdev_net_ops = {
6780 .init = netdev_init,
6781 .exit = netdev_exit,
6782 };
6783
6784 static void __net_exit default_device_exit(struct net *net)
6785 {
6786 struct net_device *dev, *aux;
6787 /*
6788 * Push all migratable network devices back to the
6789 * initial network namespace
6790 */
6791 rtnl_lock();
6792 for_each_netdev_safe(net, dev, aux) {
6793 int err;
6794 char fb_name[IFNAMSIZ];
6795
6796 /* Ignore unmoveable devices (i.e. loopback) */
6797 if (dev->features & NETIF_F_NETNS_LOCAL)
6798 continue;
6799
6800 /* Leave virtual devices for the generic cleanup */
6801 if (dev->rtnl_link_ops)
6802 continue;
6803
6804 /* Push remaining network devices to init_net */
6805 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6806 err = dev_change_net_namespace(dev, &init_net, fb_name);
6807 if (err) {
6808 pr_emerg("%s: failed to move %s to init_net: %d\n",
6809 __func__, dev->name, err);
6810 BUG();
6811 }
6812 }
6813 rtnl_unlock();
6814 }
6815
6816 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6817 {
6818 /* Return with the rtnl_lock held when there are no network
6819 * devices unregistering in any network namespace in net_list.
6820 */
6821 struct net *net;
6822 bool unregistering;
6823 DEFINE_WAIT(wait);
6824
6825 for (;;) {
6826 prepare_to_wait(&netdev_unregistering_wq, &wait,
6827 TASK_UNINTERRUPTIBLE);
6828 unregistering = false;
6829 rtnl_lock();
6830 list_for_each_entry(net, net_list, exit_list) {
6831 if (net->dev_unreg_count > 0) {
6832 unregistering = true;
6833 break;
6834 }
6835 }
6836 if (!unregistering)
6837 break;
6838 __rtnl_unlock();
6839 schedule();
6840 }
6841 finish_wait(&netdev_unregistering_wq, &wait);
6842 }
6843
6844 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6845 {
6846 /* At exit all network devices most be removed from a network
6847 * namespace. Do this in the reverse order of registration.
6848 * Do this across as many network namespaces as possible to
6849 * improve batching efficiency.
6850 */
6851 struct net_device *dev;
6852 struct net *net;
6853 LIST_HEAD(dev_kill_list);
6854
6855 /* To prevent network device cleanup code from dereferencing
6856 * loopback devices or network devices that have been freed
6857 * wait here for all pending unregistrations to complete,
6858 * before unregistring the loopback device and allowing the
6859 * network namespace be freed.
6860 *
6861 * The netdev todo list containing all network devices
6862 * unregistrations that happen in default_device_exit_batch
6863 * will run in the rtnl_unlock() at the end of
6864 * default_device_exit_batch.
6865 */
6866 rtnl_lock_unregistering(net_list);
6867 list_for_each_entry(net, net_list, exit_list) {
6868 for_each_netdev_reverse(net, dev) {
6869 if (dev->rtnl_link_ops)
6870 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6871 else
6872 unregister_netdevice_queue(dev, &dev_kill_list);
6873 }
6874 }
6875 unregister_netdevice_many(&dev_kill_list);
6876 list_del(&dev_kill_list);
6877 rtnl_unlock();
6878 }
6879
6880 static struct pernet_operations __net_initdata default_device_ops = {
6881 .exit = default_device_exit,
6882 .exit_batch = default_device_exit_batch,
6883 };
6884
6885 /*
6886 * Initialize the DEV module. At boot time this walks the device list and
6887 * unhooks any devices that fail to initialise (normally hardware not
6888 * present) and leaves us with a valid list of present and active devices.
6889 *
6890 */
6891
6892 /*
6893 * This is called single threaded during boot, so no need
6894 * to take the rtnl semaphore.
6895 */
6896 static int __init net_dev_init(void)
6897 {
6898 int i, rc = -ENOMEM;
6899
6900 BUG_ON(!dev_boot_phase);
6901
6902 if (dev_proc_init())
6903 goto out;
6904
6905 if (netdev_kobject_init())
6906 goto out;
6907
6908 INIT_LIST_HEAD(&ptype_all);
6909 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6910 INIT_LIST_HEAD(&ptype_base[i]);
6911
6912 INIT_LIST_HEAD(&offload_base);
6913
6914 if (register_pernet_subsys(&netdev_net_ops))
6915 goto out;
6916
6917 /*
6918 * Initialise the packet receive queues.
6919 */
6920
6921 for_each_possible_cpu(i) {
6922 struct softnet_data *sd = &per_cpu(softnet_data, i);
6923
6924 memset(sd, 0, sizeof(*sd));
6925 skb_queue_head_init(&sd->input_pkt_queue);
6926 skb_queue_head_init(&sd->process_queue);
6927 sd->completion_queue = NULL;
6928 INIT_LIST_HEAD(&sd->poll_list);
6929 sd->output_queue = NULL;
6930 sd->output_queue_tailp = &sd->output_queue;
6931 #ifdef CONFIG_RPS
6932 sd->csd.func = rps_trigger_softirq;
6933 sd->csd.info = sd;
6934 sd->csd.flags = 0;
6935 sd->cpu = i;
6936 #endif
6937
6938 sd->backlog.poll = process_backlog;
6939 sd->backlog.weight = weight_p;
6940 sd->backlog.gro_list = NULL;
6941 sd->backlog.gro_count = 0;
6942
6943 #ifdef CONFIG_NET_FLOW_LIMIT
6944 sd->flow_limit = NULL;
6945 #endif
6946 }
6947
6948 dev_boot_phase = 0;
6949
6950 /* The loopback device is special if any other network devices
6951 * is present in a network namespace the loopback device must
6952 * be present. Since we now dynamically allocate and free the
6953 * loopback device ensure this invariant is maintained by
6954 * keeping the loopback device as the first device on the
6955 * list of network devices. Ensuring the loopback devices
6956 * is the first device that appears and the last network device
6957 * that disappears.
6958 */
6959 if (register_pernet_device(&loopback_net_ops))
6960 goto out;
6961
6962 if (register_pernet_device(&default_device_ops))
6963 goto out;
6964
6965 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6966 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6967
6968 hotcpu_notifier(dev_cpu_callback, 0);
6969 dst_init();
6970 rc = 0;
6971 out:
6972 return rc;
6973 }
6974
6975 subsys_initcall(net_dev_init);
This page took 0.183018 seconds and 4 git commands to generate.