11560e3258b525ace5b5c328bf7cbbc9dd1f0677
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/napi.h>
130
131 #include "net-sysfs.h"
132
133 /* Instead of increasing this, you should create a hash table. */
134 #define MAX_GRO_SKBS 8
135
136 /* This should be increased if a protocol with a bigger head is added. */
137 #define GRO_MAX_HEAD (MAX_HEADER + 128)
138
139 /*
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
142 *
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
145 *
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
152 *
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
165 */
166
167 #define PTYPE_HASH_SIZE (16)
168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
169
170 static DEFINE_SPINLOCK(ptype_lock);
171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 static struct list_head ptype_all __read_mostly; /* Taps */
173
174 /*
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
193 DEFINE_RWLOCK(dev_base_lock);
194
195 EXPORT_SYMBOL(dev_base_lock);
196
197 #define NETDEV_HASHBITS 8
198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
209 }
210
211 /* Device list insertion */
212 static int list_netdevice(struct net_device *dev)
213 {
214 struct net *net = dev_net(dev);
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
224 }
225
226 /* Device list removal */
227 static void unlist_netdevice(struct net_device *dev)
228 {
229 ASSERT_RTNL();
230
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
237 }
238
239 /*
240 * Our notifier list
241 */
242
243 static RAW_NOTIFIER_HEAD(netdev_chain);
244
245 /*
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
248 */
249
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, ARPHRD_IEEE802154_PHY,
273 ARPHRD_VOID, ARPHRD_NONE};
274
275 static const char *netdev_lock_name[] =
276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", "_xmit_IEEE802154_PHY",
291 "_xmit_VOID", "_xmit_NONE"};
292
293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
295
296 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
297 {
298 int i;
299
300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
301 if (netdev_lock_type[i] == dev_type)
302 return i;
303 /* the last key is used by default */
304 return ARRAY_SIZE(netdev_lock_type) - 1;
305 }
306
307 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
308 unsigned short dev_type)
309 {
310 int i;
311
312 i = netdev_lock_pos(dev_type);
313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
314 netdev_lock_name[i]);
315 }
316
317 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
318 {
319 int i;
320
321 i = netdev_lock_pos(dev->type);
322 lockdep_set_class_and_name(&dev->addr_list_lock,
323 &netdev_addr_lock_key[i],
324 netdev_lock_name[i]);
325 }
326 #else
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 }
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333 }
334 #endif
335
336 /*******************************************************************************
337
338 Protocol management and registration routines
339
340 *******************************************************************************/
341
342 /*
343 * Add a protocol ID to the list. Now that the input handler is
344 * smarter we can dispense with all the messy stuff that used to be
345 * here.
346 *
347 * BEWARE!!! Protocol handlers, mangling input packets,
348 * MUST BE last in hash buckets and checking protocol handlers
349 * MUST start from promiscuous ptype_all chain in net_bh.
350 * It is true now, do not change it.
351 * Explanation follows: if protocol handler, mangling packet, will
352 * be the first on list, it is not able to sense, that packet
353 * is cloned and should be copied-on-write, so that it will
354 * change it and subsequent readers will get broken packet.
355 * --ANK (980803)
356 */
357
358 /**
359 * dev_add_pack - add packet handler
360 * @pt: packet type declaration
361 *
362 * Add a protocol handler to the networking stack. The passed &packet_type
363 * is linked into kernel lists and may not be freed until it has been
364 * removed from the kernel lists.
365 *
366 * This call does not sleep therefore it can not
367 * guarantee all CPU's that are in middle of receiving packets
368 * will see the new packet type (until the next received packet).
369 */
370
371 void dev_add_pack(struct packet_type *pt)
372 {
373 int hash;
374
375 spin_lock_bh(&ptype_lock);
376 if (pt->type == htons(ETH_P_ALL))
377 list_add_rcu(&pt->list, &ptype_all);
378 else {
379 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
380 list_add_rcu(&pt->list, &ptype_base[hash]);
381 }
382 spin_unlock_bh(&ptype_lock);
383 }
384
385 /**
386 * __dev_remove_pack - remove packet handler
387 * @pt: packet type declaration
388 *
389 * Remove a protocol handler that was previously added to the kernel
390 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
391 * from the kernel lists and can be freed or reused once this function
392 * returns.
393 *
394 * The packet type might still be in use by receivers
395 * and must not be freed until after all the CPU's have gone
396 * through a quiescent state.
397 */
398 void __dev_remove_pack(struct packet_type *pt)
399 {
400 struct list_head *head;
401 struct packet_type *pt1;
402
403 spin_lock_bh(&ptype_lock);
404
405 if (pt->type == htons(ETH_P_ALL))
406 head = &ptype_all;
407 else
408 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
409
410 list_for_each_entry(pt1, head, list) {
411 if (pt == pt1) {
412 list_del_rcu(&pt->list);
413 goto out;
414 }
415 }
416
417 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
418 out:
419 spin_unlock_bh(&ptype_lock);
420 }
421 /**
422 * dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
424 *
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
428 * returns.
429 *
430 * This call sleeps to guarantee that no CPU is looking at the packet
431 * type after return.
432 */
433 void dev_remove_pack(struct packet_type *pt)
434 {
435 __dev_remove_pack(pt);
436
437 synchronize_net();
438 }
439
440 /******************************************************************************
441
442 Device Boot-time Settings Routines
443
444 *******************************************************************************/
445
446 /* Boot time configuration table */
447 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
448
449 /**
450 * netdev_boot_setup_add - add new setup entry
451 * @name: name of the device
452 * @map: configured settings for the device
453 *
454 * Adds new setup entry to the dev_boot_setup list. The function
455 * returns 0 on error and 1 on success. This is a generic routine to
456 * all netdevices.
457 */
458 static int netdev_boot_setup_add(char *name, struct ifmap *map)
459 {
460 struct netdev_boot_setup *s;
461 int i;
462
463 s = dev_boot_setup;
464 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
465 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
466 memset(s[i].name, 0, sizeof(s[i].name));
467 strlcpy(s[i].name, name, IFNAMSIZ);
468 memcpy(&s[i].map, map, sizeof(s[i].map));
469 break;
470 }
471 }
472
473 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
474 }
475
476 /**
477 * netdev_boot_setup_check - check boot time settings
478 * @dev: the netdevice
479 *
480 * Check boot time settings for the device.
481 * The found settings are set for the device to be used
482 * later in the device probing.
483 * Returns 0 if no settings found, 1 if they are.
484 */
485 int netdev_boot_setup_check(struct net_device *dev)
486 {
487 struct netdev_boot_setup *s = dev_boot_setup;
488 int i;
489
490 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
491 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
492 !strcmp(dev->name, s[i].name)) {
493 dev->irq = s[i].map.irq;
494 dev->base_addr = s[i].map.base_addr;
495 dev->mem_start = s[i].map.mem_start;
496 dev->mem_end = s[i].map.mem_end;
497 return 1;
498 }
499 }
500 return 0;
501 }
502
503
504 /**
505 * netdev_boot_base - get address from boot time settings
506 * @prefix: prefix for network device
507 * @unit: id for network device
508 *
509 * Check boot time settings for the base address of device.
510 * The found settings are set for the device to be used
511 * later in the device probing.
512 * Returns 0 if no settings found.
513 */
514 unsigned long netdev_boot_base(const char *prefix, int unit)
515 {
516 const struct netdev_boot_setup *s = dev_boot_setup;
517 char name[IFNAMSIZ];
518 int i;
519
520 sprintf(name, "%s%d", prefix, unit);
521
522 /*
523 * If device already registered then return base of 1
524 * to indicate not to probe for this interface
525 */
526 if (__dev_get_by_name(&init_net, name))
527 return 1;
528
529 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
530 if (!strcmp(name, s[i].name))
531 return s[i].map.base_addr;
532 return 0;
533 }
534
535 /*
536 * Saves at boot time configured settings for any netdevice.
537 */
538 int __init netdev_boot_setup(char *str)
539 {
540 int ints[5];
541 struct ifmap map;
542
543 str = get_options(str, ARRAY_SIZE(ints), ints);
544 if (!str || !*str)
545 return 0;
546
547 /* Save settings */
548 memset(&map, 0, sizeof(map));
549 if (ints[0] > 0)
550 map.irq = ints[1];
551 if (ints[0] > 1)
552 map.base_addr = ints[2];
553 if (ints[0] > 2)
554 map.mem_start = ints[3];
555 if (ints[0] > 3)
556 map.mem_end = ints[4];
557
558 /* Add new entry to the list */
559 return netdev_boot_setup_add(str, &map);
560 }
561
562 __setup("netdev=", netdev_boot_setup);
563
564 /*******************************************************************************
565
566 Device Interface Subroutines
567
568 *******************************************************************************/
569
570 /**
571 * __dev_get_by_name - find a device by its name
572 * @net: the applicable net namespace
573 * @name: name to find
574 *
575 * Find an interface by name. Must be called under RTNL semaphore
576 * or @dev_base_lock. If the name is found a pointer to the device
577 * is returned. If the name is not found then %NULL is returned. The
578 * reference counters are not incremented so the caller must be
579 * careful with locks.
580 */
581
582 struct net_device *__dev_get_by_name(struct net *net, const char *name)
583 {
584 struct hlist_node *p;
585
586 hlist_for_each(p, dev_name_hash(net, name)) {
587 struct net_device *dev
588 = hlist_entry(p, struct net_device, name_hlist);
589 if (!strncmp(dev->name, name, IFNAMSIZ))
590 return dev;
591 }
592 return NULL;
593 }
594
595 /**
596 * dev_get_by_name - find a device by its name
597 * @net: the applicable net namespace
598 * @name: name to find
599 *
600 * Find an interface by name. This can be called from any
601 * context and does its own locking. The returned handle has
602 * the usage count incremented and the caller must use dev_put() to
603 * release it when it is no longer needed. %NULL is returned if no
604 * matching device is found.
605 */
606
607 struct net_device *dev_get_by_name(struct net *net, const char *name)
608 {
609 struct net_device *dev;
610
611 read_lock(&dev_base_lock);
612 dev = __dev_get_by_name(net, name);
613 if (dev)
614 dev_hold(dev);
615 read_unlock(&dev_base_lock);
616 return dev;
617 }
618
619 /**
620 * __dev_get_by_index - find a device by its ifindex
621 * @net: the applicable net namespace
622 * @ifindex: index of device
623 *
624 * Search for an interface by index. Returns %NULL if the device
625 * is not found or a pointer to the device. The device has not
626 * had its reference counter increased so the caller must be careful
627 * about locking. The caller must hold either the RTNL semaphore
628 * or @dev_base_lock.
629 */
630
631 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
632 {
633 struct hlist_node *p;
634
635 hlist_for_each(p, dev_index_hash(net, ifindex)) {
636 struct net_device *dev
637 = hlist_entry(p, struct net_device, index_hlist);
638 if (dev->ifindex == ifindex)
639 return dev;
640 }
641 return NULL;
642 }
643
644
645 /**
646 * dev_get_by_index - find a device by its ifindex
647 * @net: the applicable net namespace
648 * @ifindex: index of device
649 *
650 * Search for an interface by index. Returns NULL if the device
651 * is not found or a pointer to the device. The device returned has
652 * had a reference added and the pointer is safe until the user calls
653 * dev_put to indicate they have finished with it.
654 */
655
656 struct net_device *dev_get_by_index(struct net *net, int ifindex)
657 {
658 struct net_device *dev;
659
660 read_lock(&dev_base_lock);
661 dev = __dev_get_by_index(net, ifindex);
662 if (dev)
663 dev_hold(dev);
664 read_unlock(&dev_base_lock);
665 return dev;
666 }
667
668 /**
669 * dev_getbyhwaddr - find a device by its hardware address
670 * @net: the applicable net namespace
671 * @type: media type of device
672 * @ha: hardware address
673 *
674 * Search for an interface by MAC address. Returns NULL if the device
675 * is not found or a pointer to the device. The caller must hold the
676 * rtnl semaphore. The returned device has not had its ref count increased
677 * and the caller must therefore be careful about locking
678 *
679 * BUGS:
680 * If the API was consistent this would be __dev_get_by_hwaddr
681 */
682
683 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
684 {
685 struct net_device *dev;
686
687 ASSERT_RTNL();
688
689 for_each_netdev(net, dev)
690 if (dev->type == type &&
691 !memcmp(dev->dev_addr, ha, dev->addr_len))
692 return dev;
693
694 return NULL;
695 }
696
697 EXPORT_SYMBOL(dev_getbyhwaddr);
698
699 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
700 {
701 struct net_device *dev;
702
703 ASSERT_RTNL();
704 for_each_netdev(net, dev)
705 if (dev->type == type)
706 return dev;
707
708 return NULL;
709 }
710
711 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
712
713 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
714 {
715 struct net_device *dev;
716
717 rtnl_lock();
718 dev = __dev_getfirstbyhwtype(net, type);
719 if (dev)
720 dev_hold(dev);
721 rtnl_unlock();
722 return dev;
723 }
724
725 EXPORT_SYMBOL(dev_getfirstbyhwtype);
726
727 /**
728 * dev_get_by_flags - find any device with given flags
729 * @net: the applicable net namespace
730 * @if_flags: IFF_* values
731 * @mask: bitmask of bits in if_flags to check
732 *
733 * Search for any interface with the given flags. Returns NULL if a device
734 * is not found or a pointer to the device. The device returned has
735 * had a reference added and the pointer is safe until the user calls
736 * dev_put to indicate they have finished with it.
737 */
738
739 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
740 {
741 struct net_device *dev, *ret;
742
743 ret = NULL;
744 read_lock(&dev_base_lock);
745 for_each_netdev(net, dev) {
746 if (((dev->flags ^ if_flags) & mask) == 0) {
747 dev_hold(dev);
748 ret = dev;
749 break;
750 }
751 }
752 read_unlock(&dev_base_lock);
753 return ret;
754 }
755
756 /**
757 * dev_valid_name - check if name is okay for network device
758 * @name: name string
759 *
760 * Network device names need to be valid file names to
761 * to allow sysfs to work. We also disallow any kind of
762 * whitespace.
763 */
764 int dev_valid_name(const char *name)
765 {
766 if (*name == '\0')
767 return 0;
768 if (strlen(name) >= IFNAMSIZ)
769 return 0;
770 if (!strcmp(name, ".") || !strcmp(name, ".."))
771 return 0;
772
773 while (*name) {
774 if (*name == '/' || isspace(*name))
775 return 0;
776 name++;
777 }
778 return 1;
779 }
780
781 /**
782 * __dev_alloc_name - allocate a name for a device
783 * @net: network namespace to allocate the device name in
784 * @name: name format string
785 * @buf: scratch buffer and result name string
786 *
787 * Passed a format string - eg "lt%d" it will try and find a suitable
788 * id. It scans list of devices to build up a free map, then chooses
789 * the first empty slot. The caller must hold the dev_base or rtnl lock
790 * while allocating the name and adding the device in order to avoid
791 * duplicates.
792 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
793 * Returns the number of the unit assigned or a negative errno code.
794 */
795
796 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
797 {
798 int i = 0;
799 const char *p;
800 const int max_netdevices = 8*PAGE_SIZE;
801 unsigned long *inuse;
802 struct net_device *d;
803
804 p = strnchr(name, IFNAMSIZ-1, '%');
805 if (p) {
806 /*
807 * Verify the string as this thing may have come from
808 * the user. There must be either one "%d" and no other "%"
809 * characters.
810 */
811 if (p[1] != 'd' || strchr(p + 2, '%'))
812 return -EINVAL;
813
814 /* Use one page as a bit array of possible slots */
815 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
816 if (!inuse)
817 return -ENOMEM;
818
819 for_each_netdev(net, d) {
820 if (!sscanf(d->name, name, &i))
821 continue;
822 if (i < 0 || i >= max_netdevices)
823 continue;
824
825 /* avoid cases where sscanf is not exact inverse of printf */
826 snprintf(buf, IFNAMSIZ, name, i);
827 if (!strncmp(buf, d->name, IFNAMSIZ))
828 set_bit(i, inuse);
829 }
830
831 i = find_first_zero_bit(inuse, max_netdevices);
832 free_page((unsigned long) inuse);
833 }
834
835 snprintf(buf, IFNAMSIZ, name, i);
836 if (!__dev_get_by_name(net, buf))
837 return i;
838
839 /* It is possible to run out of possible slots
840 * when the name is long and there isn't enough space left
841 * for the digits, or if all bits are used.
842 */
843 return -ENFILE;
844 }
845
846 /**
847 * dev_alloc_name - allocate a name for a device
848 * @dev: device
849 * @name: name format string
850 *
851 * Passed a format string - eg "lt%d" it will try and find a suitable
852 * id. It scans list of devices to build up a free map, then chooses
853 * the first empty slot. The caller must hold the dev_base or rtnl lock
854 * while allocating the name and adding the device in order to avoid
855 * duplicates.
856 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
857 * Returns the number of the unit assigned or a negative errno code.
858 */
859
860 int dev_alloc_name(struct net_device *dev, const char *name)
861 {
862 char buf[IFNAMSIZ];
863 struct net *net;
864 int ret;
865
866 BUG_ON(!dev_net(dev));
867 net = dev_net(dev);
868 ret = __dev_alloc_name(net, name, buf);
869 if (ret >= 0)
870 strlcpy(dev->name, buf, IFNAMSIZ);
871 return ret;
872 }
873
874
875 /**
876 * dev_change_name - change name of a device
877 * @dev: device
878 * @newname: name (or format string) must be at least IFNAMSIZ
879 *
880 * Change name of a device, can pass format strings "eth%d".
881 * for wildcarding.
882 */
883 int dev_change_name(struct net_device *dev, const char *newname)
884 {
885 char oldname[IFNAMSIZ];
886 int err = 0;
887 int ret;
888 struct net *net;
889
890 ASSERT_RTNL();
891 BUG_ON(!dev_net(dev));
892
893 net = dev_net(dev);
894 if (dev->flags & IFF_UP)
895 return -EBUSY;
896
897 if (!dev_valid_name(newname))
898 return -EINVAL;
899
900 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
901 return 0;
902
903 memcpy(oldname, dev->name, IFNAMSIZ);
904
905 if (strchr(newname, '%')) {
906 err = dev_alloc_name(dev, newname);
907 if (err < 0)
908 return err;
909 }
910 else if (__dev_get_by_name(net, newname))
911 return -EEXIST;
912 else
913 strlcpy(dev->name, newname, IFNAMSIZ);
914
915 rollback:
916 /* For now only devices in the initial network namespace
917 * are in sysfs.
918 */
919 if (net == &init_net) {
920 ret = device_rename(&dev->dev, dev->name);
921 if (ret) {
922 memcpy(dev->name, oldname, IFNAMSIZ);
923 return ret;
924 }
925 }
926
927 write_lock_bh(&dev_base_lock);
928 hlist_del(&dev->name_hlist);
929 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
930 write_unlock_bh(&dev_base_lock);
931
932 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
933 ret = notifier_to_errno(ret);
934
935 if (ret) {
936 if (err) {
937 printk(KERN_ERR
938 "%s: name change rollback failed: %d.\n",
939 dev->name, ret);
940 } else {
941 err = ret;
942 memcpy(dev->name, oldname, IFNAMSIZ);
943 goto rollback;
944 }
945 }
946
947 return err;
948 }
949
950 /**
951 * dev_set_alias - change ifalias of a device
952 * @dev: device
953 * @alias: name up to IFALIASZ
954 * @len: limit of bytes to copy from info
955 *
956 * Set ifalias for a device,
957 */
958 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
959 {
960 ASSERT_RTNL();
961
962 if (len >= IFALIASZ)
963 return -EINVAL;
964
965 if (!len) {
966 if (dev->ifalias) {
967 kfree(dev->ifalias);
968 dev->ifalias = NULL;
969 }
970 return 0;
971 }
972
973 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
974 if (!dev->ifalias)
975 return -ENOMEM;
976
977 strlcpy(dev->ifalias, alias, len+1);
978 return len;
979 }
980
981
982 /**
983 * netdev_features_change - device changes features
984 * @dev: device to cause notification
985 *
986 * Called to indicate a device has changed features.
987 */
988 void netdev_features_change(struct net_device *dev)
989 {
990 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
991 }
992 EXPORT_SYMBOL(netdev_features_change);
993
994 /**
995 * netdev_state_change - device changes state
996 * @dev: device to cause notification
997 *
998 * Called to indicate a device has changed state. This function calls
999 * the notifier chains for netdev_chain and sends a NEWLINK message
1000 * to the routing socket.
1001 */
1002 void netdev_state_change(struct net_device *dev)
1003 {
1004 if (dev->flags & IFF_UP) {
1005 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1006 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1007 }
1008 }
1009
1010 void netdev_bonding_change(struct net_device *dev)
1011 {
1012 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1013 }
1014 EXPORT_SYMBOL(netdev_bonding_change);
1015
1016 /**
1017 * dev_load - load a network module
1018 * @net: the applicable net namespace
1019 * @name: name of interface
1020 *
1021 * If a network interface is not present and the process has suitable
1022 * privileges this function loads the module. If module loading is not
1023 * available in this kernel then it becomes a nop.
1024 */
1025
1026 void dev_load(struct net *net, const char *name)
1027 {
1028 struct net_device *dev;
1029
1030 read_lock(&dev_base_lock);
1031 dev = __dev_get_by_name(net, name);
1032 read_unlock(&dev_base_lock);
1033
1034 if (!dev && capable(CAP_SYS_MODULE))
1035 request_module("%s", name);
1036 }
1037
1038 /**
1039 * dev_open - prepare an interface for use.
1040 * @dev: device to open
1041 *
1042 * Takes a device from down to up state. The device's private open
1043 * function is invoked and then the multicast lists are loaded. Finally
1044 * the device is moved into the up state and a %NETDEV_UP message is
1045 * sent to the netdev notifier chain.
1046 *
1047 * Calling this function on an active interface is a nop. On a failure
1048 * a negative errno code is returned.
1049 */
1050 int dev_open(struct net_device *dev)
1051 {
1052 const struct net_device_ops *ops = dev->netdev_ops;
1053 int ret;
1054
1055 ASSERT_RTNL();
1056
1057 /*
1058 * Is it already up?
1059 */
1060
1061 if (dev->flags & IFF_UP)
1062 return 0;
1063
1064 /*
1065 * Is it even present?
1066 */
1067 if (!netif_device_present(dev))
1068 return -ENODEV;
1069
1070 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1071 ret = notifier_to_errno(ret);
1072 if (ret)
1073 return ret;
1074
1075 /*
1076 * Call device private open method
1077 */
1078 set_bit(__LINK_STATE_START, &dev->state);
1079
1080 if (ops->ndo_validate_addr)
1081 ret = ops->ndo_validate_addr(dev);
1082
1083 if (!ret && ops->ndo_open)
1084 ret = ops->ndo_open(dev);
1085
1086 /*
1087 * If it went open OK then:
1088 */
1089
1090 if (ret)
1091 clear_bit(__LINK_STATE_START, &dev->state);
1092 else {
1093 /*
1094 * Set the flags.
1095 */
1096 dev->flags |= IFF_UP;
1097
1098 /*
1099 * Enable NET_DMA
1100 */
1101 net_dmaengine_get();
1102
1103 /*
1104 * Initialize multicasting status
1105 */
1106 dev_set_rx_mode(dev);
1107
1108 /*
1109 * Wakeup transmit queue engine
1110 */
1111 dev_activate(dev);
1112
1113 /*
1114 * ... and announce new interface.
1115 */
1116 call_netdevice_notifiers(NETDEV_UP, dev);
1117 }
1118
1119 return ret;
1120 }
1121
1122 /**
1123 * dev_close - shutdown an interface.
1124 * @dev: device to shutdown
1125 *
1126 * This function moves an active device into down state. A
1127 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1128 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1129 * chain.
1130 */
1131 int dev_close(struct net_device *dev)
1132 {
1133 const struct net_device_ops *ops = dev->netdev_ops;
1134 ASSERT_RTNL();
1135
1136 might_sleep();
1137
1138 if (!(dev->flags & IFF_UP))
1139 return 0;
1140
1141 /*
1142 * Tell people we are going down, so that they can
1143 * prepare to death, when device is still operating.
1144 */
1145 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1146
1147 clear_bit(__LINK_STATE_START, &dev->state);
1148
1149 /* Synchronize to scheduled poll. We cannot touch poll list,
1150 * it can be even on different cpu. So just clear netif_running().
1151 *
1152 * dev->stop() will invoke napi_disable() on all of it's
1153 * napi_struct instances on this device.
1154 */
1155 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1156
1157 dev_deactivate(dev);
1158
1159 /*
1160 * Call the device specific close. This cannot fail.
1161 * Only if device is UP
1162 *
1163 * We allow it to be called even after a DETACH hot-plug
1164 * event.
1165 */
1166 if (ops->ndo_stop)
1167 ops->ndo_stop(dev);
1168
1169 /*
1170 * Device is now down.
1171 */
1172
1173 dev->flags &= ~IFF_UP;
1174
1175 /*
1176 * Tell people we are down
1177 */
1178 call_netdevice_notifiers(NETDEV_DOWN, dev);
1179
1180 /*
1181 * Shutdown NET_DMA
1182 */
1183 net_dmaengine_put();
1184
1185 return 0;
1186 }
1187
1188
1189 /**
1190 * dev_disable_lro - disable Large Receive Offload on a device
1191 * @dev: device
1192 *
1193 * Disable Large Receive Offload (LRO) on a net device. Must be
1194 * called under RTNL. This is needed if received packets may be
1195 * forwarded to another interface.
1196 */
1197 void dev_disable_lro(struct net_device *dev)
1198 {
1199 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1200 dev->ethtool_ops->set_flags) {
1201 u32 flags = dev->ethtool_ops->get_flags(dev);
1202 if (flags & ETH_FLAG_LRO) {
1203 flags &= ~ETH_FLAG_LRO;
1204 dev->ethtool_ops->set_flags(dev, flags);
1205 }
1206 }
1207 WARN_ON(dev->features & NETIF_F_LRO);
1208 }
1209 EXPORT_SYMBOL(dev_disable_lro);
1210
1211
1212 static int dev_boot_phase = 1;
1213
1214 /*
1215 * Device change register/unregister. These are not inline or static
1216 * as we export them to the world.
1217 */
1218
1219 /**
1220 * register_netdevice_notifier - register a network notifier block
1221 * @nb: notifier
1222 *
1223 * Register a notifier to be called when network device events occur.
1224 * The notifier passed is linked into the kernel structures and must
1225 * not be reused until it has been unregistered. A negative errno code
1226 * is returned on a failure.
1227 *
1228 * When registered all registration and up events are replayed
1229 * to the new notifier to allow device to have a race free
1230 * view of the network device list.
1231 */
1232
1233 int register_netdevice_notifier(struct notifier_block *nb)
1234 {
1235 struct net_device *dev;
1236 struct net_device *last;
1237 struct net *net;
1238 int err;
1239
1240 rtnl_lock();
1241 err = raw_notifier_chain_register(&netdev_chain, nb);
1242 if (err)
1243 goto unlock;
1244 if (dev_boot_phase)
1245 goto unlock;
1246 for_each_net(net) {
1247 for_each_netdev(net, dev) {
1248 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1249 err = notifier_to_errno(err);
1250 if (err)
1251 goto rollback;
1252
1253 if (!(dev->flags & IFF_UP))
1254 continue;
1255
1256 nb->notifier_call(nb, NETDEV_UP, dev);
1257 }
1258 }
1259
1260 unlock:
1261 rtnl_unlock();
1262 return err;
1263
1264 rollback:
1265 last = dev;
1266 for_each_net(net) {
1267 for_each_netdev(net, dev) {
1268 if (dev == last)
1269 break;
1270
1271 if (dev->flags & IFF_UP) {
1272 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1273 nb->notifier_call(nb, NETDEV_DOWN, dev);
1274 }
1275 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1276 }
1277 }
1278
1279 raw_notifier_chain_unregister(&netdev_chain, nb);
1280 goto unlock;
1281 }
1282
1283 /**
1284 * unregister_netdevice_notifier - unregister a network notifier block
1285 * @nb: notifier
1286 *
1287 * Unregister a notifier previously registered by
1288 * register_netdevice_notifier(). The notifier is unlinked into the
1289 * kernel structures and may then be reused. A negative errno code
1290 * is returned on a failure.
1291 */
1292
1293 int unregister_netdevice_notifier(struct notifier_block *nb)
1294 {
1295 int err;
1296
1297 rtnl_lock();
1298 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1299 rtnl_unlock();
1300 return err;
1301 }
1302
1303 /**
1304 * call_netdevice_notifiers - call all network notifier blocks
1305 * @val: value passed unmodified to notifier function
1306 * @dev: net_device pointer passed unmodified to notifier function
1307 *
1308 * Call all network notifier blocks. Parameters and return value
1309 * are as for raw_notifier_call_chain().
1310 */
1311
1312 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1313 {
1314 return raw_notifier_call_chain(&netdev_chain, val, dev);
1315 }
1316
1317 /* When > 0 there are consumers of rx skb time stamps */
1318 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1319
1320 void net_enable_timestamp(void)
1321 {
1322 atomic_inc(&netstamp_needed);
1323 }
1324
1325 void net_disable_timestamp(void)
1326 {
1327 atomic_dec(&netstamp_needed);
1328 }
1329
1330 static inline void net_timestamp(struct sk_buff *skb)
1331 {
1332 if (atomic_read(&netstamp_needed))
1333 __net_timestamp(skb);
1334 else
1335 skb->tstamp.tv64 = 0;
1336 }
1337
1338 /*
1339 * Support routine. Sends outgoing frames to any network
1340 * taps currently in use.
1341 */
1342
1343 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1344 {
1345 struct packet_type *ptype;
1346
1347 #ifdef CONFIG_NET_CLS_ACT
1348 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1349 net_timestamp(skb);
1350 #else
1351 net_timestamp(skb);
1352 #endif
1353
1354 rcu_read_lock();
1355 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1356 /* Never send packets back to the socket
1357 * they originated from - MvS (miquels@drinkel.ow.org)
1358 */
1359 if ((ptype->dev == dev || !ptype->dev) &&
1360 (ptype->af_packet_priv == NULL ||
1361 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1362 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1363 if (!skb2)
1364 break;
1365
1366 /* skb->nh should be correctly
1367 set by sender, so that the second statement is
1368 just protection against buggy protocols.
1369 */
1370 skb_reset_mac_header(skb2);
1371
1372 if (skb_network_header(skb2) < skb2->data ||
1373 skb2->network_header > skb2->tail) {
1374 if (net_ratelimit())
1375 printk(KERN_CRIT "protocol %04x is "
1376 "buggy, dev %s\n",
1377 skb2->protocol, dev->name);
1378 skb_reset_network_header(skb2);
1379 }
1380
1381 skb2->transport_header = skb2->network_header;
1382 skb2->pkt_type = PACKET_OUTGOING;
1383 ptype->func(skb2, skb->dev, ptype, skb->dev);
1384 }
1385 }
1386 rcu_read_unlock();
1387 }
1388
1389
1390 static inline void __netif_reschedule(struct Qdisc *q)
1391 {
1392 struct softnet_data *sd;
1393 unsigned long flags;
1394
1395 local_irq_save(flags);
1396 sd = &__get_cpu_var(softnet_data);
1397 q->next_sched = sd->output_queue;
1398 sd->output_queue = q;
1399 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1400 local_irq_restore(flags);
1401 }
1402
1403 void __netif_schedule(struct Qdisc *q)
1404 {
1405 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1406 __netif_reschedule(q);
1407 }
1408 EXPORT_SYMBOL(__netif_schedule);
1409
1410 void dev_kfree_skb_irq(struct sk_buff *skb)
1411 {
1412 if (atomic_dec_and_test(&skb->users)) {
1413 struct softnet_data *sd;
1414 unsigned long flags;
1415
1416 local_irq_save(flags);
1417 sd = &__get_cpu_var(softnet_data);
1418 skb->next = sd->completion_queue;
1419 sd->completion_queue = skb;
1420 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1421 local_irq_restore(flags);
1422 }
1423 }
1424 EXPORT_SYMBOL(dev_kfree_skb_irq);
1425
1426 void dev_kfree_skb_any(struct sk_buff *skb)
1427 {
1428 if (in_irq() || irqs_disabled())
1429 dev_kfree_skb_irq(skb);
1430 else
1431 dev_kfree_skb(skb);
1432 }
1433 EXPORT_SYMBOL(dev_kfree_skb_any);
1434
1435
1436 /**
1437 * netif_device_detach - mark device as removed
1438 * @dev: network device
1439 *
1440 * Mark device as removed from system and therefore no longer available.
1441 */
1442 void netif_device_detach(struct net_device *dev)
1443 {
1444 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1445 netif_running(dev)) {
1446 netif_tx_stop_all_queues(dev);
1447 }
1448 }
1449 EXPORT_SYMBOL(netif_device_detach);
1450
1451 /**
1452 * netif_device_attach - mark device as attached
1453 * @dev: network device
1454 *
1455 * Mark device as attached from system and restart if needed.
1456 */
1457 void netif_device_attach(struct net_device *dev)
1458 {
1459 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1460 netif_running(dev)) {
1461 netif_tx_wake_all_queues(dev);
1462 __netdev_watchdog_up(dev);
1463 }
1464 }
1465 EXPORT_SYMBOL(netif_device_attach);
1466
1467 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1468 {
1469 return ((features & NETIF_F_GEN_CSUM) ||
1470 ((features & NETIF_F_IP_CSUM) &&
1471 protocol == htons(ETH_P_IP)) ||
1472 ((features & NETIF_F_IPV6_CSUM) &&
1473 protocol == htons(ETH_P_IPV6)) ||
1474 ((features & NETIF_F_FCOE_CRC) &&
1475 protocol == htons(ETH_P_FCOE)));
1476 }
1477
1478 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1479 {
1480 if (can_checksum_protocol(dev->features, skb->protocol))
1481 return true;
1482
1483 if (skb->protocol == htons(ETH_P_8021Q)) {
1484 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1485 if (can_checksum_protocol(dev->features & dev->vlan_features,
1486 veh->h_vlan_encapsulated_proto))
1487 return true;
1488 }
1489
1490 return false;
1491 }
1492
1493 /*
1494 * Invalidate hardware checksum when packet is to be mangled, and
1495 * complete checksum manually on outgoing path.
1496 */
1497 int skb_checksum_help(struct sk_buff *skb)
1498 {
1499 __wsum csum;
1500 int ret = 0, offset;
1501
1502 if (skb->ip_summed == CHECKSUM_COMPLETE)
1503 goto out_set_summed;
1504
1505 if (unlikely(skb_shinfo(skb)->gso_size)) {
1506 /* Let GSO fix up the checksum. */
1507 goto out_set_summed;
1508 }
1509
1510 offset = skb->csum_start - skb_headroom(skb);
1511 BUG_ON(offset >= skb_headlen(skb));
1512 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1513
1514 offset += skb->csum_offset;
1515 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1516
1517 if (skb_cloned(skb) &&
1518 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1519 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1520 if (ret)
1521 goto out;
1522 }
1523
1524 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1525 out_set_summed:
1526 skb->ip_summed = CHECKSUM_NONE;
1527 out:
1528 return ret;
1529 }
1530
1531 /**
1532 * skb_gso_segment - Perform segmentation on skb.
1533 * @skb: buffer to segment
1534 * @features: features for the output path (see dev->features)
1535 *
1536 * This function segments the given skb and returns a list of segments.
1537 *
1538 * It may return NULL if the skb requires no segmentation. This is
1539 * only possible when GSO is used for verifying header integrity.
1540 */
1541 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1542 {
1543 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1544 struct packet_type *ptype;
1545 __be16 type = skb->protocol;
1546 int err;
1547
1548 skb_reset_mac_header(skb);
1549 skb->mac_len = skb->network_header - skb->mac_header;
1550 __skb_pull(skb, skb->mac_len);
1551
1552 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1553 struct net_device *dev = skb->dev;
1554 struct ethtool_drvinfo info = {};
1555
1556 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1557 dev->ethtool_ops->get_drvinfo(dev, &info);
1558
1559 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1560 "ip_summed=%d",
1561 info.driver, dev ? dev->features : 0L,
1562 skb->sk ? skb->sk->sk_route_caps : 0L,
1563 skb->len, skb->data_len, skb->ip_summed);
1564
1565 if (skb_header_cloned(skb) &&
1566 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1567 return ERR_PTR(err);
1568 }
1569
1570 rcu_read_lock();
1571 list_for_each_entry_rcu(ptype,
1572 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1573 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1574 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1575 err = ptype->gso_send_check(skb);
1576 segs = ERR_PTR(err);
1577 if (err || skb_gso_ok(skb, features))
1578 break;
1579 __skb_push(skb, (skb->data -
1580 skb_network_header(skb)));
1581 }
1582 segs = ptype->gso_segment(skb, features);
1583 break;
1584 }
1585 }
1586 rcu_read_unlock();
1587
1588 __skb_push(skb, skb->data - skb_mac_header(skb));
1589
1590 return segs;
1591 }
1592
1593 EXPORT_SYMBOL(skb_gso_segment);
1594
1595 /* Take action when hardware reception checksum errors are detected. */
1596 #ifdef CONFIG_BUG
1597 void netdev_rx_csum_fault(struct net_device *dev)
1598 {
1599 if (net_ratelimit()) {
1600 printk(KERN_ERR "%s: hw csum failure.\n",
1601 dev ? dev->name : "<unknown>");
1602 dump_stack();
1603 }
1604 }
1605 EXPORT_SYMBOL(netdev_rx_csum_fault);
1606 #endif
1607
1608 /* Actually, we should eliminate this check as soon as we know, that:
1609 * 1. IOMMU is present and allows to map all the memory.
1610 * 2. No high memory really exists on this machine.
1611 */
1612
1613 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1614 {
1615 #ifdef CONFIG_HIGHMEM
1616 int i;
1617
1618 if (dev->features & NETIF_F_HIGHDMA)
1619 return 0;
1620
1621 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1622 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1623 return 1;
1624
1625 #endif
1626 return 0;
1627 }
1628
1629 struct dev_gso_cb {
1630 void (*destructor)(struct sk_buff *skb);
1631 };
1632
1633 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1634
1635 static void dev_gso_skb_destructor(struct sk_buff *skb)
1636 {
1637 struct dev_gso_cb *cb;
1638
1639 do {
1640 struct sk_buff *nskb = skb->next;
1641
1642 skb->next = nskb->next;
1643 nskb->next = NULL;
1644 kfree_skb(nskb);
1645 } while (skb->next);
1646
1647 cb = DEV_GSO_CB(skb);
1648 if (cb->destructor)
1649 cb->destructor(skb);
1650 }
1651
1652 /**
1653 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1654 * @skb: buffer to segment
1655 *
1656 * This function segments the given skb and stores the list of segments
1657 * in skb->next.
1658 */
1659 static int dev_gso_segment(struct sk_buff *skb)
1660 {
1661 struct net_device *dev = skb->dev;
1662 struct sk_buff *segs;
1663 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1664 NETIF_F_SG : 0);
1665
1666 segs = skb_gso_segment(skb, features);
1667
1668 /* Verifying header integrity only. */
1669 if (!segs)
1670 return 0;
1671
1672 if (IS_ERR(segs))
1673 return PTR_ERR(segs);
1674
1675 skb->next = segs;
1676 DEV_GSO_CB(skb)->destructor = skb->destructor;
1677 skb->destructor = dev_gso_skb_destructor;
1678
1679 return 0;
1680 }
1681
1682 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1683 struct netdev_queue *txq)
1684 {
1685 const struct net_device_ops *ops = dev->netdev_ops;
1686 int rc;
1687
1688 if (likely(!skb->next)) {
1689 if (!list_empty(&ptype_all))
1690 dev_queue_xmit_nit(skb, dev);
1691
1692 if (netif_needs_gso(dev, skb)) {
1693 if (unlikely(dev_gso_segment(skb)))
1694 goto out_kfree_skb;
1695 if (skb->next)
1696 goto gso;
1697 }
1698
1699 /*
1700 * If device doesnt need skb->dst, release it right now while
1701 * its hot in this cpu cache
1702 */
1703 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1704 skb_dst_drop(skb);
1705
1706 rc = ops->ndo_start_xmit(skb, dev);
1707 if (rc == 0)
1708 txq_trans_update(txq);
1709 /*
1710 * TODO: if skb_orphan() was called by
1711 * dev->hard_start_xmit() (for example, the unmodified
1712 * igb driver does that; bnx2 doesn't), then
1713 * skb_tx_software_timestamp() will be unable to send
1714 * back the time stamp.
1715 *
1716 * How can this be prevented? Always create another
1717 * reference to the socket before calling
1718 * dev->hard_start_xmit()? Prevent that skb_orphan()
1719 * does anything in dev->hard_start_xmit() by clearing
1720 * the skb destructor before the call and restoring it
1721 * afterwards, then doing the skb_orphan() ourselves?
1722 */
1723 return rc;
1724 }
1725
1726 gso:
1727 do {
1728 struct sk_buff *nskb = skb->next;
1729
1730 skb->next = nskb->next;
1731 nskb->next = NULL;
1732 rc = ops->ndo_start_xmit(nskb, dev);
1733 if (unlikely(rc)) {
1734 nskb->next = skb->next;
1735 skb->next = nskb;
1736 return rc;
1737 }
1738 txq_trans_update(txq);
1739 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1740 return NETDEV_TX_BUSY;
1741 } while (skb->next);
1742
1743 skb->destructor = DEV_GSO_CB(skb)->destructor;
1744
1745 out_kfree_skb:
1746 kfree_skb(skb);
1747 return 0;
1748 }
1749
1750 static u32 skb_tx_hashrnd;
1751
1752 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1753 {
1754 u32 hash;
1755
1756 if (skb_rx_queue_recorded(skb)) {
1757 hash = skb_get_rx_queue(skb);
1758 while (unlikely (hash >= dev->real_num_tx_queues))
1759 hash -= dev->real_num_tx_queues;
1760 return hash;
1761 }
1762
1763 if (skb->sk && skb->sk->sk_hash)
1764 hash = skb->sk->sk_hash;
1765 else
1766 hash = skb->protocol;
1767
1768 hash = jhash_1word(hash, skb_tx_hashrnd);
1769
1770 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1771 }
1772 EXPORT_SYMBOL(skb_tx_hash);
1773
1774 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1775 struct sk_buff *skb)
1776 {
1777 const struct net_device_ops *ops = dev->netdev_ops;
1778 u16 queue_index = 0;
1779
1780 if (ops->ndo_select_queue)
1781 queue_index = ops->ndo_select_queue(dev, skb);
1782 else if (dev->real_num_tx_queues > 1)
1783 queue_index = skb_tx_hash(dev, skb);
1784
1785 skb_set_queue_mapping(skb, queue_index);
1786 return netdev_get_tx_queue(dev, queue_index);
1787 }
1788
1789 /**
1790 * dev_queue_xmit - transmit a buffer
1791 * @skb: buffer to transmit
1792 *
1793 * Queue a buffer for transmission to a network device. The caller must
1794 * have set the device and priority and built the buffer before calling
1795 * this function. The function can be called from an interrupt.
1796 *
1797 * A negative errno code is returned on a failure. A success does not
1798 * guarantee the frame will be transmitted as it may be dropped due
1799 * to congestion or traffic shaping.
1800 *
1801 * -----------------------------------------------------------------------------------
1802 * I notice this method can also return errors from the queue disciplines,
1803 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1804 * be positive.
1805 *
1806 * Regardless of the return value, the skb is consumed, so it is currently
1807 * difficult to retry a send to this method. (You can bump the ref count
1808 * before sending to hold a reference for retry if you are careful.)
1809 *
1810 * When calling this method, interrupts MUST be enabled. This is because
1811 * the BH enable code must have IRQs enabled so that it will not deadlock.
1812 * --BLG
1813 */
1814 int dev_queue_xmit(struct sk_buff *skb)
1815 {
1816 struct net_device *dev = skb->dev;
1817 struct netdev_queue *txq;
1818 struct Qdisc *q;
1819 int rc = -ENOMEM;
1820
1821 /* GSO will handle the following emulations directly. */
1822 if (netif_needs_gso(dev, skb))
1823 goto gso;
1824
1825 if (skb_has_frags(skb) &&
1826 !(dev->features & NETIF_F_FRAGLIST) &&
1827 __skb_linearize(skb))
1828 goto out_kfree_skb;
1829
1830 /* Fragmented skb is linearized if device does not support SG,
1831 * or if at least one of fragments is in highmem and device
1832 * does not support DMA from it.
1833 */
1834 if (skb_shinfo(skb)->nr_frags &&
1835 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1836 __skb_linearize(skb))
1837 goto out_kfree_skb;
1838
1839 /* If packet is not checksummed and device does not support
1840 * checksumming for this protocol, complete checksumming here.
1841 */
1842 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1843 skb_set_transport_header(skb, skb->csum_start -
1844 skb_headroom(skb));
1845 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1846 goto out_kfree_skb;
1847 }
1848
1849 gso:
1850 /* Disable soft irqs for various locks below. Also
1851 * stops preemption for RCU.
1852 */
1853 rcu_read_lock_bh();
1854
1855 txq = dev_pick_tx(dev, skb);
1856 q = rcu_dereference(txq->qdisc);
1857
1858 #ifdef CONFIG_NET_CLS_ACT
1859 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1860 #endif
1861 if (q->enqueue) {
1862 spinlock_t *root_lock = qdisc_lock(q);
1863
1864 spin_lock(root_lock);
1865
1866 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1867 kfree_skb(skb);
1868 rc = NET_XMIT_DROP;
1869 } else {
1870 rc = qdisc_enqueue_root(skb, q);
1871 qdisc_run(q);
1872 }
1873 spin_unlock(root_lock);
1874
1875 goto out;
1876 }
1877
1878 /* The device has no queue. Common case for software devices:
1879 loopback, all the sorts of tunnels...
1880
1881 Really, it is unlikely that netif_tx_lock protection is necessary
1882 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1883 counters.)
1884 However, it is possible, that they rely on protection
1885 made by us here.
1886
1887 Check this and shot the lock. It is not prone from deadlocks.
1888 Either shot noqueue qdisc, it is even simpler 8)
1889 */
1890 if (dev->flags & IFF_UP) {
1891 int cpu = smp_processor_id(); /* ok because BHs are off */
1892
1893 if (txq->xmit_lock_owner != cpu) {
1894
1895 HARD_TX_LOCK(dev, txq, cpu);
1896
1897 if (!netif_tx_queue_stopped(txq)) {
1898 rc = 0;
1899 if (!dev_hard_start_xmit(skb, dev, txq)) {
1900 HARD_TX_UNLOCK(dev, txq);
1901 goto out;
1902 }
1903 }
1904 HARD_TX_UNLOCK(dev, txq);
1905 if (net_ratelimit())
1906 printk(KERN_CRIT "Virtual device %s asks to "
1907 "queue packet!\n", dev->name);
1908 } else {
1909 /* Recursion is detected! It is possible,
1910 * unfortunately */
1911 if (net_ratelimit())
1912 printk(KERN_CRIT "Dead loop on virtual device "
1913 "%s, fix it urgently!\n", dev->name);
1914 }
1915 }
1916
1917 rc = -ENETDOWN;
1918 rcu_read_unlock_bh();
1919
1920 out_kfree_skb:
1921 kfree_skb(skb);
1922 return rc;
1923 out:
1924 rcu_read_unlock_bh();
1925 return rc;
1926 }
1927
1928
1929 /*=======================================================================
1930 Receiver routines
1931 =======================================================================*/
1932
1933 int netdev_max_backlog __read_mostly = 1000;
1934 int netdev_budget __read_mostly = 300;
1935 int weight_p __read_mostly = 64; /* old backlog weight */
1936
1937 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1938
1939
1940 /**
1941 * netif_rx - post buffer to the network code
1942 * @skb: buffer to post
1943 *
1944 * This function receives a packet from a device driver and queues it for
1945 * the upper (protocol) levels to process. It always succeeds. The buffer
1946 * may be dropped during processing for congestion control or by the
1947 * protocol layers.
1948 *
1949 * return values:
1950 * NET_RX_SUCCESS (no congestion)
1951 * NET_RX_DROP (packet was dropped)
1952 *
1953 */
1954
1955 int netif_rx(struct sk_buff *skb)
1956 {
1957 struct softnet_data *queue;
1958 unsigned long flags;
1959
1960 /* if netpoll wants it, pretend we never saw it */
1961 if (netpoll_rx(skb))
1962 return NET_RX_DROP;
1963
1964 if (!skb->tstamp.tv64)
1965 net_timestamp(skb);
1966
1967 /*
1968 * The code is rearranged so that the path is the most
1969 * short when CPU is congested, but is still operating.
1970 */
1971 local_irq_save(flags);
1972 queue = &__get_cpu_var(softnet_data);
1973
1974 __get_cpu_var(netdev_rx_stat).total++;
1975 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1976 if (queue->input_pkt_queue.qlen) {
1977 enqueue:
1978 __skb_queue_tail(&queue->input_pkt_queue, skb);
1979 local_irq_restore(flags);
1980 return NET_RX_SUCCESS;
1981 }
1982
1983 napi_schedule(&queue->backlog);
1984 goto enqueue;
1985 }
1986
1987 __get_cpu_var(netdev_rx_stat).dropped++;
1988 local_irq_restore(flags);
1989
1990 kfree_skb(skb);
1991 return NET_RX_DROP;
1992 }
1993
1994 int netif_rx_ni(struct sk_buff *skb)
1995 {
1996 int err;
1997
1998 preempt_disable();
1999 err = netif_rx(skb);
2000 if (local_softirq_pending())
2001 do_softirq();
2002 preempt_enable();
2003
2004 return err;
2005 }
2006
2007 EXPORT_SYMBOL(netif_rx_ni);
2008
2009 static void net_tx_action(struct softirq_action *h)
2010 {
2011 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2012
2013 if (sd->completion_queue) {
2014 struct sk_buff *clist;
2015
2016 local_irq_disable();
2017 clist = sd->completion_queue;
2018 sd->completion_queue = NULL;
2019 local_irq_enable();
2020
2021 while (clist) {
2022 struct sk_buff *skb = clist;
2023 clist = clist->next;
2024
2025 WARN_ON(atomic_read(&skb->users));
2026 __kfree_skb(skb);
2027 }
2028 }
2029
2030 if (sd->output_queue) {
2031 struct Qdisc *head;
2032
2033 local_irq_disable();
2034 head = sd->output_queue;
2035 sd->output_queue = NULL;
2036 local_irq_enable();
2037
2038 while (head) {
2039 struct Qdisc *q = head;
2040 spinlock_t *root_lock;
2041
2042 head = head->next_sched;
2043
2044 root_lock = qdisc_lock(q);
2045 if (spin_trylock(root_lock)) {
2046 smp_mb__before_clear_bit();
2047 clear_bit(__QDISC_STATE_SCHED,
2048 &q->state);
2049 qdisc_run(q);
2050 spin_unlock(root_lock);
2051 } else {
2052 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2053 &q->state)) {
2054 __netif_reschedule(q);
2055 } else {
2056 smp_mb__before_clear_bit();
2057 clear_bit(__QDISC_STATE_SCHED,
2058 &q->state);
2059 }
2060 }
2061 }
2062 }
2063 }
2064
2065 static inline int deliver_skb(struct sk_buff *skb,
2066 struct packet_type *pt_prev,
2067 struct net_device *orig_dev)
2068 {
2069 atomic_inc(&skb->users);
2070 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2071 }
2072
2073 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2074 /* These hooks defined here for ATM */
2075 struct net_bridge;
2076 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2077 unsigned char *addr);
2078 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2079
2080 /*
2081 * If bridge module is loaded call bridging hook.
2082 * returns NULL if packet was consumed.
2083 */
2084 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2085 struct sk_buff *skb) __read_mostly;
2086 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2087 struct packet_type **pt_prev, int *ret,
2088 struct net_device *orig_dev)
2089 {
2090 struct net_bridge_port *port;
2091
2092 if (skb->pkt_type == PACKET_LOOPBACK ||
2093 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2094 return skb;
2095
2096 if (*pt_prev) {
2097 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2098 *pt_prev = NULL;
2099 }
2100
2101 return br_handle_frame_hook(port, skb);
2102 }
2103 #else
2104 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2105 #endif
2106
2107 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2108 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2109 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2110
2111 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2112 struct packet_type **pt_prev,
2113 int *ret,
2114 struct net_device *orig_dev)
2115 {
2116 if (skb->dev->macvlan_port == NULL)
2117 return skb;
2118
2119 if (*pt_prev) {
2120 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2121 *pt_prev = NULL;
2122 }
2123 return macvlan_handle_frame_hook(skb);
2124 }
2125 #else
2126 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2127 #endif
2128
2129 #ifdef CONFIG_NET_CLS_ACT
2130 /* TODO: Maybe we should just force sch_ingress to be compiled in
2131 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2132 * a compare and 2 stores extra right now if we dont have it on
2133 * but have CONFIG_NET_CLS_ACT
2134 * NOTE: This doesnt stop any functionality; if you dont have
2135 * the ingress scheduler, you just cant add policies on ingress.
2136 *
2137 */
2138 static int ing_filter(struct sk_buff *skb)
2139 {
2140 struct net_device *dev = skb->dev;
2141 u32 ttl = G_TC_RTTL(skb->tc_verd);
2142 struct netdev_queue *rxq;
2143 int result = TC_ACT_OK;
2144 struct Qdisc *q;
2145
2146 if (MAX_RED_LOOP < ttl++) {
2147 printk(KERN_WARNING
2148 "Redir loop detected Dropping packet (%d->%d)\n",
2149 skb->iif, dev->ifindex);
2150 return TC_ACT_SHOT;
2151 }
2152
2153 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2154 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2155
2156 rxq = &dev->rx_queue;
2157
2158 q = rxq->qdisc;
2159 if (q != &noop_qdisc) {
2160 spin_lock(qdisc_lock(q));
2161 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2162 result = qdisc_enqueue_root(skb, q);
2163 spin_unlock(qdisc_lock(q));
2164 }
2165
2166 return result;
2167 }
2168
2169 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2170 struct packet_type **pt_prev,
2171 int *ret, struct net_device *orig_dev)
2172 {
2173 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2174 goto out;
2175
2176 if (*pt_prev) {
2177 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2178 *pt_prev = NULL;
2179 } else {
2180 /* Huh? Why does turning on AF_PACKET affect this? */
2181 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2182 }
2183
2184 switch (ing_filter(skb)) {
2185 case TC_ACT_SHOT:
2186 case TC_ACT_STOLEN:
2187 kfree_skb(skb);
2188 return NULL;
2189 }
2190
2191 out:
2192 skb->tc_verd = 0;
2193 return skb;
2194 }
2195 #endif
2196
2197 /*
2198 * netif_nit_deliver - deliver received packets to network taps
2199 * @skb: buffer
2200 *
2201 * This function is used to deliver incoming packets to network
2202 * taps. It should be used when the normal netif_receive_skb path
2203 * is bypassed, for example because of VLAN acceleration.
2204 */
2205 void netif_nit_deliver(struct sk_buff *skb)
2206 {
2207 struct packet_type *ptype;
2208
2209 if (list_empty(&ptype_all))
2210 return;
2211
2212 skb_reset_network_header(skb);
2213 skb_reset_transport_header(skb);
2214 skb->mac_len = skb->network_header - skb->mac_header;
2215
2216 rcu_read_lock();
2217 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2218 if (!ptype->dev || ptype->dev == skb->dev)
2219 deliver_skb(skb, ptype, skb->dev);
2220 }
2221 rcu_read_unlock();
2222 }
2223
2224 /**
2225 * netif_receive_skb - process receive buffer from network
2226 * @skb: buffer to process
2227 *
2228 * netif_receive_skb() is the main receive data processing function.
2229 * It always succeeds. The buffer may be dropped during processing
2230 * for congestion control or by the protocol layers.
2231 *
2232 * This function may only be called from softirq context and interrupts
2233 * should be enabled.
2234 *
2235 * Return values (usually ignored):
2236 * NET_RX_SUCCESS: no congestion
2237 * NET_RX_DROP: packet was dropped
2238 */
2239 int netif_receive_skb(struct sk_buff *skb)
2240 {
2241 struct packet_type *ptype, *pt_prev;
2242 struct net_device *orig_dev;
2243 struct net_device *null_or_orig;
2244 int ret = NET_RX_DROP;
2245 __be16 type;
2246
2247 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2248 return NET_RX_SUCCESS;
2249
2250 /* if we've gotten here through NAPI, check netpoll */
2251 if (netpoll_receive_skb(skb))
2252 return NET_RX_DROP;
2253
2254 if (!skb->tstamp.tv64)
2255 net_timestamp(skb);
2256
2257 if (!skb->iif)
2258 skb->iif = skb->dev->ifindex;
2259
2260 null_or_orig = NULL;
2261 orig_dev = skb->dev;
2262 if (orig_dev->master) {
2263 if (skb_bond_should_drop(skb))
2264 null_or_orig = orig_dev; /* deliver only exact match */
2265 else
2266 skb->dev = orig_dev->master;
2267 }
2268
2269 __get_cpu_var(netdev_rx_stat).total++;
2270
2271 skb_reset_network_header(skb);
2272 skb_reset_transport_header(skb);
2273 skb->mac_len = skb->network_header - skb->mac_header;
2274
2275 pt_prev = NULL;
2276
2277 rcu_read_lock();
2278
2279 #ifdef CONFIG_NET_CLS_ACT
2280 if (skb->tc_verd & TC_NCLS) {
2281 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2282 goto ncls;
2283 }
2284 #endif
2285
2286 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2287 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2288 ptype->dev == orig_dev) {
2289 if (pt_prev)
2290 ret = deliver_skb(skb, pt_prev, orig_dev);
2291 pt_prev = ptype;
2292 }
2293 }
2294
2295 #ifdef CONFIG_NET_CLS_ACT
2296 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2297 if (!skb)
2298 goto out;
2299 ncls:
2300 #endif
2301
2302 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2303 if (!skb)
2304 goto out;
2305 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2306 if (!skb)
2307 goto out;
2308
2309 skb_orphan(skb);
2310
2311 type = skb->protocol;
2312 list_for_each_entry_rcu(ptype,
2313 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2314 if (ptype->type == type &&
2315 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2316 ptype->dev == orig_dev)) {
2317 if (pt_prev)
2318 ret = deliver_skb(skb, pt_prev, orig_dev);
2319 pt_prev = ptype;
2320 }
2321 }
2322
2323 if (pt_prev) {
2324 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2325 } else {
2326 kfree_skb(skb);
2327 /* Jamal, now you will not able to escape explaining
2328 * me how you were going to use this. :-)
2329 */
2330 ret = NET_RX_DROP;
2331 }
2332
2333 out:
2334 rcu_read_unlock();
2335 return ret;
2336 }
2337
2338 /* Network device is going away, flush any packets still pending */
2339 static void flush_backlog(void *arg)
2340 {
2341 struct net_device *dev = arg;
2342 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2343 struct sk_buff *skb, *tmp;
2344
2345 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2346 if (skb->dev == dev) {
2347 __skb_unlink(skb, &queue->input_pkt_queue);
2348 kfree_skb(skb);
2349 }
2350 }
2351
2352 static int napi_gro_complete(struct sk_buff *skb)
2353 {
2354 struct packet_type *ptype;
2355 __be16 type = skb->protocol;
2356 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2357 int err = -ENOENT;
2358
2359 if (NAPI_GRO_CB(skb)->count == 1) {
2360 skb_shinfo(skb)->gso_size = 0;
2361 goto out;
2362 }
2363
2364 rcu_read_lock();
2365 list_for_each_entry_rcu(ptype, head, list) {
2366 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2367 continue;
2368
2369 err = ptype->gro_complete(skb);
2370 break;
2371 }
2372 rcu_read_unlock();
2373
2374 if (err) {
2375 WARN_ON(&ptype->list == head);
2376 kfree_skb(skb);
2377 return NET_RX_SUCCESS;
2378 }
2379
2380 out:
2381 return netif_receive_skb(skb);
2382 }
2383
2384 void napi_gro_flush(struct napi_struct *napi)
2385 {
2386 struct sk_buff *skb, *next;
2387
2388 for (skb = napi->gro_list; skb; skb = next) {
2389 next = skb->next;
2390 skb->next = NULL;
2391 napi_gro_complete(skb);
2392 }
2393
2394 napi->gro_count = 0;
2395 napi->gro_list = NULL;
2396 }
2397 EXPORT_SYMBOL(napi_gro_flush);
2398
2399 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2400 {
2401 struct sk_buff **pp = NULL;
2402 struct packet_type *ptype;
2403 __be16 type = skb->protocol;
2404 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2405 int same_flow;
2406 int mac_len;
2407 int ret;
2408
2409 if (!(skb->dev->features & NETIF_F_GRO))
2410 goto normal;
2411
2412 if (skb_is_gso(skb) || skb_has_frags(skb))
2413 goto normal;
2414
2415 rcu_read_lock();
2416 list_for_each_entry_rcu(ptype, head, list) {
2417 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2418 continue;
2419
2420 skb_set_network_header(skb, skb_gro_offset(skb));
2421 mac_len = skb->network_header - skb->mac_header;
2422 skb->mac_len = mac_len;
2423 NAPI_GRO_CB(skb)->same_flow = 0;
2424 NAPI_GRO_CB(skb)->flush = 0;
2425 NAPI_GRO_CB(skb)->free = 0;
2426
2427 pp = ptype->gro_receive(&napi->gro_list, skb);
2428 break;
2429 }
2430 rcu_read_unlock();
2431
2432 if (&ptype->list == head)
2433 goto normal;
2434
2435 same_flow = NAPI_GRO_CB(skb)->same_flow;
2436 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2437
2438 if (pp) {
2439 struct sk_buff *nskb = *pp;
2440
2441 *pp = nskb->next;
2442 nskb->next = NULL;
2443 napi_gro_complete(nskb);
2444 napi->gro_count--;
2445 }
2446
2447 if (same_flow)
2448 goto ok;
2449
2450 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2451 goto normal;
2452
2453 napi->gro_count++;
2454 NAPI_GRO_CB(skb)->count = 1;
2455 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2456 skb->next = napi->gro_list;
2457 napi->gro_list = skb;
2458 ret = GRO_HELD;
2459
2460 pull:
2461 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2462 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2463
2464 BUG_ON(skb->end - skb->tail < grow);
2465
2466 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2467
2468 skb->tail += grow;
2469 skb->data_len -= grow;
2470
2471 skb_shinfo(skb)->frags[0].page_offset += grow;
2472 skb_shinfo(skb)->frags[0].size -= grow;
2473
2474 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2475 put_page(skb_shinfo(skb)->frags[0].page);
2476 memmove(skb_shinfo(skb)->frags,
2477 skb_shinfo(skb)->frags + 1,
2478 --skb_shinfo(skb)->nr_frags);
2479 }
2480 }
2481
2482 ok:
2483 return ret;
2484
2485 normal:
2486 ret = GRO_NORMAL;
2487 goto pull;
2488 }
2489 EXPORT_SYMBOL(dev_gro_receive);
2490
2491 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2492 {
2493 struct sk_buff *p;
2494
2495 if (netpoll_rx_on(skb))
2496 return GRO_NORMAL;
2497
2498 for (p = napi->gro_list; p; p = p->next) {
2499 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2500 && !compare_ether_header(skb_mac_header(p),
2501 skb_gro_mac_header(skb));
2502 NAPI_GRO_CB(p)->flush = 0;
2503 }
2504
2505 return dev_gro_receive(napi, skb);
2506 }
2507
2508 int napi_skb_finish(int ret, struct sk_buff *skb)
2509 {
2510 int err = NET_RX_SUCCESS;
2511
2512 switch (ret) {
2513 case GRO_NORMAL:
2514 return netif_receive_skb(skb);
2515
2516 case GRO_DROP:
2517 err = NET_RX_DROP;
2518 /* fall through */
2519
2520 case GRO_MERGED_FREE:
2521 kfree_skb(skb);
2522 break;
2523 }
2524
2525 return err;
2526 }
2527 EXPORT_SYMBOL(napi_skb_finish);
2528
2529 void skb_gro_reset_offset(struct sk_buff *skb)
2530 {
2531 NAPI_GRO_CB(skb)->data_offset = 0;
2532 NAPI_GRO_CB(skb)->frag0 = NULL;
2533 NAPI_GRO_CB(skb)->frag0_len = 0;
2534
2535 if (skb->mac_header == skb->tail &&
2536 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2537 NAPI_GRO_CB(skb)->frag0 =
2538 page_address(skb_shinfo(skb)->frags[0].page) +
2539 skb_shinfo(skb)->frags[0].page_offset;
2540 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2541 }
2542 }
2543 EXPORT_SYMBOL(skb_gro_reset_offset);
2544
2545 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2546 {
2547 skb_gro_reset_offset(skb);
2548
2549 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2550 }
2551 EXPORT_SYMBOL(napi_gro_receive);
2552
2553 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2554 {
2555 __skb_pull(skb, skb_headlen(skb));
2556 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2557
2558 napi->skb = skb;
2559 }
2560 EXPORT_SYMBOL(napi_reuse_skb);
2561
2562 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2563 {
2564 struct net_device *dev = napi->dev;
2565 struct sk_buff *skb = napi->skb;
2566
2567 if (!skb) {
2568 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2569 if (!skb)
2570 goto out;
2571
2572 skb_reserve(skb, NET_IP_ALIGN);
2573
2574 napi->skb = skb;
2575 }
2576
2577 out:
2578 return skb;
2579 }
2580 EXPORT_SYMBOL(napi_get_frags);
2581
2582 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2583 {
2584 int err = NET_RX_SUCCESS;
2585
2586 switch (ret) {
2587 case GRO_NORMAL:
2588 case GRO_HELD:
2589 skb->protocol = eth_type_trans(skb, napi->dev);
2590
2591 if (ret == GRO_NORMAL)
2592 return netif_receive_skb(skb);
2593
2594 skb_gro_pull(skb, -ETH_HLEN);
2595 break;
2596
2597 case GRO_DROP:
2598 err = NET_RX_DROP;
2599 /* fall through */
2600
2601 case GRO_MERGED_FREE:
2602 napi_reuse_skb(napi, skb);
2603 break;
2604 }
2605
2606 return err;
2607 }
2608 EXPORT_SYMBOL(napi_frags_finish);
2609
2610 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2611 {
2612 struct sk_buff *skb = napi->skb;
2613 struct ethhdr *eth;
2614 unsigned int hlen;
2615 unsigned int off;
2616
2617 napi->skb = NULL;
2618
2619 skb_reset_mac_header(skb);
2620 skb_gro_reset_offset(skb);
2621
2622 off = skb_gro_offset(skb);
2623 hlen = off + sizeof(*eth);
2624 eth = skb_gro_header_fast(skb, off);
2625 if (skb_gro_header_hard(skb, hlen)) {
2626 eth = skb_gro_header_slow(skb, hlen, off);
2627 if (unlikely(!eth)) {
2628 napi_reuse_skb(napi, skb);
2629 skb = NULL;
2630 goto out;
2631 }
2632 }
2633
2634 skb_gro_pull(skb, sizeof(*eth));
2635
2636 /*
2637 * This works because the only protocols we care about don't require
2638 * special handling. We'll fix it up properly at the end.
2639 */
2640 skb->protocol = eth->h_proto;
2641
2642 out:
2643 return skb;
2644 }
2645 EXPORT_SYMBOL(napi_frags_skb);
2646
2647 int napi_gro_frags(struct napi_struct *napi)
2648 {
2649 struct sk_buff *skb = napi_frags_skb(napi);
2650
2651 if (!skb)
2652 return NET_RX_DROP;
2653
2654 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2655 }
2656 EXPORT_SYMBOL(napi_gro_frags);
2657
2658 static int process_backlog(struct napi_struct *napi, int quota)
2659 {
2660 int work = 0;
2661 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2662 unsigned long start_time = jiffies;
2663
2664 napi->weight = weight_p;
2665 do {
2666 struct sk_buff *skb;
2667
2668 local_irq_disable();
2669 skb = __skb_dequeue(&queue->input_pkt_queue);
2670 if (!skb) {
2671 __napi_complete(napi);
2672 local_irq_enable();
2673 break;
2674 }
2675 local_irq_enable();
2676
2677 netif_receive_skb(skb);
2678 } while (++work < quota && jiffies == start_time);
2679
2680 return work;
2681 }
2682
2683 /**
2684 * __napi_schedule - schedule for receive
2685 * @n: entry to schedule
2686 *
2687 * The entry's receive function will be scheduled to run
2688 */
2689 void __napi_schedule(struct napi_struct *n)
2690 {
2691 unsigned long flags;
2692
2693 local_irq_save(flags);
2694 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2695 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2696 local_irq_restore(flags);
2697 }
2698 EXPORT_SYMBOL(__napi_schedule);
2699
2700 void __napi_complete(struct napi_struct *n)
2701 {
2702 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2703 BUG_ON(n->gro_list);
2704
2705 list_del(&n->poll_list);
2706 smp_mb__before_clear_bit();
2707 clear_bit(NAPI_STATE_SCHED, &n->state);
2708 }
2709 EXPORT_SYMBOL(__napi_complete);
2710
2711 void napi_complete(struct napi_struct *n)
2712 {
2713 unsigned long flags;
2714
2715 /*
2716 * don't let napi dequeue from the cpu poll list
2717 * just in case its running on a different cpu
2718 */
2719 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2720 return;
2721
2722 napi_gro_flush(n);
2723 local_irq_save(flags);
2724 __napi_complete(n);
2725 local_irq_restore(flags);
2726 }
2727 EXPORT_SYMBOL(napi_complete);
2728
2729 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2730 int (*poll)(struct napi_struct *, int), int weight)
2731 {
2732 INIT_LIST_HEAD(&napi->poll_list);
2733 napi->gro_count = 0;
2734 napi->gro_list = NULL;
2735 napi->skb = NULL;
2736 napi->poll = poll;
2737 napi->weight = weight;
2738 list_add(&napi->dev_list, &dev->napi_list);
2739 napi->dev = dev;
2740 #ifdef CONFIG_NETPOLL
2741 spin_lock_init(&napi->poll_lock);
2742 napi->poll_owner = -1;
2743 #endif
2744 set_bit(NAPI_STATE_SCHED, &napi->state);
2745 }
2746 EXPORT_SYMBOL(netif_napi_add);
2747
2748 void netif_napi_del(struct napi_struct *napi)
2749 {
2750 struct sk_buff *skb, *next;
2751
2752 list_del_init(&napi->dev_list);
2753 napi_free_frags(napi);
2754
2755 for (skb = napi->gro_list; skb; skb = next) {
2756 next = skb->next;
2757 skb->next = NULL;
2758 kfree_skb(skb);
2759 }
2760
2761 napi->gro_list = NULL;
2762 napi->gro_count = 0;
2763 }
2764 EXPORT_SYMBOL(netif_napi_del);
2765
2766
2767 static void net_rx_action(struct softirq_action *h)
2768 {
2769 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2770 unsigned long time_limit = jiffies + 2;
2771 int budget = netdev_budget;
2772 void *have;
2773
2774 local_irq_disable();
2775
2776 while (!list_empty(list)) {
2777 struct napi_struct *n;
2778 int work, weight;
2779
2780 /* If softirq window is exhuasted then punt.
2781 * Allow this to run for 2 jiffies since which will allow
2782 * an average latency of 1.5/HZ.
2783 */
2784 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2785 goto softnet_break;
2786
2787 local_irq_enable();
2788
2789 /* Even though interrupts have been re-enabled, this
2790 * access is safe because interrupts can only add new
2791 * entries to the tail of this list, and only ->poll()
2792 * calls can remove this head entry from the list.
2793 */
2794 n = list_entry(list->next, struct napi_struct, poll_list);
2795
2796 have = netpoll_poll_lock(n);
2797
2798 weight = n->weight;
2799
2800 /* This NAPI_STATE_SCHED test is for avoiding a race
2801 * with netpoll's poll_napi(). Only the entity which
2802 * obtains the lock and sees NAPI_STATE_SCHED set will
2803 * actually make the ->poll() call. Therefore we avoid
2804 * accidently calling ->poll() when NAPI is not scheduled.
2805 */
2806 work = 0;
2807 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2808 work = n->poll(n, weight);
2809 trace_napi_poll(n);
2810 }
2811
2812 WARN_ON_ONCE(work > weight);
2813
2814 budget -= work;
2815
2816 local_irq_disable();
2817
2818 /* Drivers must not modify the NAPI state if they
2819 * consume the entire weight. In such cases this code
2820 * still "owns" the NAPI instance and therefore can
2821 * move the instance around on the list at-will.
2822 */
2823 if (unlikely(work == weight)) {
2824 if (unlikely(napi_disable_pending(n)))
2825 __napi_complete(n);
2826 else
2827 list_move_tail(&n->poll_list, list);
2828 }
2829
2830 netpoll_poll_unlock(have);
2831 }
2832 out:
2833 local_irq_enable();
2834
2835 #ifdef CONFIG_NET_DMA
2836 /*
2837 * There may not be any more sk_buffs coming right now, so push
2838 * any pending DMA copies to hardware
2839 */
2840 dma_issue_pending_all();
2841 #endif
2842
2843 return;
2844
2845 softnet_break:
2846 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2847 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2848 goto out;
2849 }
2850
2851 static gifconf_func_t * gifconf_list [NPROTO];
2852
2853 /**
2854 * register_gifconf - register a SIOCGIF handler
2855 * @family: Address family
2856 * @gifconf: Function handler
2857 *
2858 * Register protocol dependent address dumping routines. The handler
2859 * that is passed must not be freed or reused until it has been replaced
2860 * by another handler.
2861 */
2862 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2863 {
2864 if (family >= NPROTO)
2865 return -EINVAL;
2866 gifconf_list[family] = gifconf;
2867 return 0;
2868 }
2869
2870
2871 /*
2872 * Map an interface index to its name (SIOCGIFNAME)
2873 */
2874
2875 /*
2876 * We need this ioctl for efficient implementation of the
2877 * if_indextoname() function required by the IPv6 API. Without
2878 * it, we would have to search all the interfaces to find a
2879 * match. --pb
2880 */
2881
2882 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2883 {
2884 struct net_device *dev;
2885 struct ifreq ifr;
2886
2887 /*
2888 * Fetch the caller's info block.
2889 */
2890
2891 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2892 return -EFAULT;
2893
2894 read_lock(&dev_base_lock);
2895 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2896 if (!dev) {
2897 read_unlock(&dev_base_lock);
2898 return -ENODEV;
2899 }
2900
2901 strcpy(ifr.ifr_name, dev->name);
2902 read_unlock(&dev_base_lock);
2903
2904 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2905 return -EFAULT;
2906 return 0;
2907 }
2908
2909 /*
2910 * Perform a SIOCGIFCONF call. This structure will change
2911 * size eventually, and there is nothing I can do about it.
2912 * Thus we will need a 'compatibility mode'.
2913 */
2914
2915 static int dev_ifconf(struct net *net, char __user *arg)
2916 {
2917 struct ifconf ifc;
2918 struct net_device *dev;
2919 char __user *pos;
2920 int len;
2921 int total;
2922 int i;
2923
2924 /*
2925 * Fetch the caller's info block.
2926 */
2927
2928 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2929 return -EFAULT;
2930
2931 pos = ifc.ifc_buf;
2932 len = ifc.ifc_len;
2933
2934 /*
2935 * Loop over the interfaces, and write an info block for each.
2936 */
2937
2938 total = 0;
2939 for_each_netdev(net, dev) {
2940 for (i = 0; i < NPROTO; i++) {
2941 if (gifconf_list[i]) {
2942 int done;
2943 if (!pos)
2944 done = gifconf_list[i](dev, NULL, 0);
2945 else
2946 done = gifconf_list[i](dev, pos + total,
2947 len - total);
2948 if (done < 0)
2949 return -EFAULT;
2950 total += done;
2951 }
2952 }
2953 }
2954
2955 /*
2956 * All done. Write the updated control block back to the caller.
2957 */
2958 ifc.ifc_len = total;
2959
2960 /*
2961 * Both BSD and Solaris return 0 here, so we do too.
2962 */
2963 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2964 }
2965
2966 #ifdef CONFIG_PROC_FS
2967 /*
2968 * This is invoked by the /proc filesystem handler to display a device
2969 * in detail.
2970 */
2971 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2972 __acquires(dev_base_lock)
2973 {
2974 struct net *net = seq_file_net(seq);
2975 loff_t off;
2976 struct net_device *dev;
2977
2978 read_lock(&dev_base_lock);
2979 if (!*pos)
2980 return SEQ_START_TOKEN;
2981
2982 off = 1;
2983 for_each_netdev(net, dev)
2984 if (off++ == *pos)
2985 return dev;
2986
2987 return NULL;
2988 }
2989
2990 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2991 {
2992 struct net *net = seq_file_net(seq);
2993 ++*pos;
2994 return v == SEQ_START_TOKEN ?
2995 first_net_device(net) : next_net_device((struct net_device *)v);
2996 }
2997
2998 void dev_seq_stop(struct seq_file *seq, void *v)
2999 __releases(dev_base_lock)
3000 {
3001 read_unlock(&dev_base_lock);
3002 }
3003
3004 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3005 {
3006 const struct net_device_stats *stats = dev_get_stats(dev);
3007
3008 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3009 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3010 dev->name, stats->rx_bytes, stats->rx_packets,
3011 stats->rx_errors,
3012 stats->rx_dropped + stats->rx_missed_errors,
3013 stats->rx_fifo_errors,
3014 stats->rx_length_errors + stats->rx_over_errors +
3015 stats->rx_crc_errors + stats->rx_frame_errors,
3016 stats->rx_compressed, stats->multicast,
3017 stats->tx_bytes, stats->tx_packets,
3018 stats->tx_errors, stats->tx_dropped,
3019 stats->tx_fifo_errors, stats->collisions,
3020 stats->tx_carrier_errors +
3021 stats->tx_aborted_errors +
3022 stats->tx_window_errors +
3023 stats->tx_heartbeat_errors,
3024 stats->tx_compressed);
3025 }
3026
3027 /*
3028 * Called from the PROCfs module. This now uses the new arbitrary sized
3029 * /proc/net interface to create /proc/net/dev
3030 */
3031 static int dev_seq_show(struct seq_file *seq, void *v)
3032 {
3033 if (v == SEQ_START_TOKEN)
3034 seq_puts(seq, "Inter-| Receive "
3035 " | Transmit\n"
3036 " face |bytes packets errs drop fifo frame "
3037 "compressed multicast|bytes packets errs "
3038 "drop fifo colls carrier compressed\n");
3039 else
3040 dev_seq_printf_stats(seq, v);
3041 return 0;
3042 }
3043
3044 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3045 {
3046 struct netif_rx_stats *rc = NULL;
3047
3048 while (*pos < nr_cpu_ids)
3049 if (cpu_online(*pos)) {
3050 rc = &per_cpu(netdev_rx_stat, *pos);
3051 break;
3052 } else
3053 ++*pos;
3054 return rc;
3055 }
3056
3057 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3058 {
3059 return softnet_get_online(pos);
3060 }
3061
3062 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3063 {
3064 ++*pos;
3065 return softnet_get_online(pos);
3066 }
3067
3068 static void softnet_seq_stop(struct seq_file *seq, void *v)
3069 {
3070 }
3071
3072 static int softnet_seq_show(struct seq_file *seq, void *v)
3073 {
3074 struct netif_rx_stats *s = v;
3075
3076 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3077 s->total, s->dropped, s->time_squeeze, 0,
3078 0, 0, 0, 0, /* was fastroute */
3079 s->cpu_collision );
3080 return 0;
3081 }
3082
3083 static const struct seq_operations dev_seq_ops = {
3084 .start = dev_seq_start,
3085 .next = dev_seq_next,
3086 .stop = dev_seq_stop,
3087 .show = dev_seq_show,
3088 };
3089
3090 static int dev_seq_open(struct inode *inode, struct file *file)
3091 {
3092 return seq_open_net(inode, file, &dev_seq_ops,
3093 sizeof(struct seq_net_private));
3094 }
3095
3096 static const struct file_operations dev_seq_fops = {
3097 .owner = THIS_MODULE,
3098 .open = dev_seq_open,
3099 .read = seq_read,
3100 .llseek = seq_lseek,
3101 .release = seq_release_net,
3102 };
3103
3104 static const struct seq_operations softnet_seq_ops = {
3105 .start = softnet_seq_start,
3106 .next = softnet_seq_next,
3107 .stop = softnet_seq_stop,
3108 .show = softnet_seq_show,
3109 };
3110
3111 static int softnet_seq_open(struct inode *inode, struct file *file)
3112 {
3113 return seq_open(file, &softnet_seq_ops);
3114 }
3115
3116 static const struct file_operations softnet_seq_fops = {
3117 .owner = THIS_MODULE,
3118 .open = softnet_seq_open,
3119 .read = seq_read,
3120 .llseek = seq_lseek,
3121 .release = seq_release,
3122 };
3123
3124 static void *ptype_get_idx(loff_t pos)
3125 {
3126 struct packet_type *pt = NULL;
3127 loff_t i = 0;
3128 int t;
3129
3130 list_for_each_entry_rcu(pt, &ptype_all, list) {
3131 if (i == pos)
3132 return pt;
3133 ++i;
3134 }
3135
3136 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3137 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3138 if (i == pos)
3139 return pt;
3140 ++i;
3141 }
3142 }
3143 return NULL;
3144 }
3145
3146 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3147 __acquires(RCU)
3148 {
3149 rcu_read_lock();
3150 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3151 }
3152
3153 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3154 {
3155 struct packet_type *pt;
3156 struct list_head *nxt;
3157 int hash;
3158
3159 ++*pos;
3160 if (v == SEQ_START_TOKEN)
3161 return ptype_get_idx(0);
3162
3163 pt = v;
3164 nxt = pt->list.next;
3165 if (pt->type == htons(ETH_P_ALL)) {
3166 if (nxt != &ptype_all)
3167 goto found;
3168 hash = 0;
3169 nxt = ptype_base[0].next;
3170 } else
3171 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3172
3173 while (nxt == &ptype_base[hash]) {
3174 if (++hash >= PTYPE_HASH_SIZE)
3175 return NULL;
3176 nxt = ptype_base[hash].next;
3177 }
3178 found:
3179 return list_entry(nxt, struct packet_type, list);
3180 }
3181
3182 static void ptype_seq_stop(struct seq_file *seq, void *v)
3183 __releases(RCU)
3184 {
3185 rcu_read_unlock();
3186 }
3187
3188 static int ptype_seq_show(struct seq_file *seq, void *v)
3189 {
3190 struct packet_type *pt = v;
3191
3192 if (v == SEQ_START_TOKEN)
3193 seq_puts(seq, "Type Device Function\n");
3194 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3195 if (pt->type == htons(ETH_P_ALL))
3196 seq_puts(seq, "ALL ");
3197 else
3198 seq_printf(seq, "%04x", ntohs(pt->type));
3199
3200 seq_printf(seq, " %-8s %pF\n",
3201 pt->dev ? pt->dev->name : "", pt->func);
3202 }
3203
3204 return 0;
3205 }
3206
3207 static const struct seq_operations ptype_seq_ops = {
3208 .start = ptype_seq_start,
3209 .next = ptype_seq_next,
3210 .stop = ptype_seq_stop,
3211 .show = ptype_seq_show,
3212 };
3213
3214 static int ptype_seq_open(struct inode *inode, struct file *file)
3215 {
3216 return seq_open_net(inode, file, &ptype_seq_ops,
3217 sizeof(struct seq_net_private));
3218 }
3219
3220 static const struct file_operations ptype_seq_fops = {
3221 .owner = THIS_MODULE,
3222 .open = ptype_seq_open,
3223 .read = seq_read,
3224 .llseek = seq_lseek,
3225 .release = seq_release_net,
3226 };
3227
3228
3229 static int __net_init dev_proc_net_init(struct net *net)
3230 {
3231 int rc = -ENOMEM;
3232
3233 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3234 goto out;
3235 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3236 goto out_dev;
3237 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3238 goto out_softnet;
3239
3240 if (wext_proc_init(net))
3241 goto out_ptype;
3242 rc = 0;
3243 out:
3244 return rc;
3245 out_ptype:
3246 proc_net_remove(net, "ptype");
3247 out_softnet:
3248 proc_net_remove(net, "softnet_stat");
3249 out_dev:
3250 proc_net_remove(net, "dev");
3251 goto out;
3252 }
3253
3254 static void __net_exit dev_proc_net_exit(struct net *net)
3255 {
3256 wext_proc_exit(net);
3257
3258 proc_net_remove(net, "ptype");
3259 proc_net_remove(net, "softnet_stat");
3260 proc_net_remove(net, "dev");
3261 }
3262
3263 static struct pernet_operations __net_initdata dev_proc_ops = {
3264 .init = dev_proc_net_init,
3265 .exit = dev_proc_net_exit,
3266 };
3267
3268 static int __init dev_proc_init(void)
3269 {
3270 return register_pernet_subsys(&dev_proc_ops);
3271 }
3272 #else
3273 #define dev_proc_init() 0
3274 #endif /* CONFIG_PROC_FS */
3275
3276
3277 /**
3278 * netdev_set_master - set up master/slave pair
3279 * @slave: slave device
3280 * @master: new master device
3281 *
3282 * Changes the master device of the slave. Pass %NULL to break the
3283 * bonding. The caller must hold the RTNL semaphore. On a failure
3284 * a negative errno code is returned. On success the reference counts
3285 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3286 * function returns zero.
3287 */
3288 int netdev_set_master(struct net_device *slave, struct net_device *master)
3289 {
3290 struct net_device *old = slave->master;
3291
3292 ASSERT_RTNL();
3293
3294 if (master) {
3295 if (old)
3296 return -EBUSY;
3297 dev_hold(master);
3298 }
3299
3300 slave->master = master;
3301
3302 synchronize_net();
3303
3304 if (old)
3305 dev_put(old);
3306
3307 if (master)
3308 slave->flags |= IFF_SLAVE;
3309 else
3310 slave->flags &= ~IFF_SLAVE;
3311
3312 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3313 return 0;
3314 }
3315
3316 static void dev_change_rx_flags(struct net_device *dev, int flags)
3317 {
3318 const struct net_device_ops *ops = dev->netdev_ops;
3319
3320 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3321 ops->ndo_change_rx_flags(dev, flags);
3322 }
3323
3324 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3325 {
3326 unsigned short old_flags = dev->flags;
3327 uid_t uid;
3328 gid_t gid;
3329
3330 ASSERT_RTNL();
3331
3332 dev->flags |= IFF_PROMISC;
3333 dev->promiscuity += inc;
3334 if (dev->promiscuity == 0) {
3335 /*
3336 * Avoid overflow.
3337 * If inc causes overflow, untouch promisc and return error.
3338 */
3339 if (inc < 0)
3340 dev->flags &= ~IFF_PROMISC;
3341 else {
3342 dev->promiscuity -= inc;
3343 printk(KERN_WARNING "%s: promiscuity touches roof, "
3344 "set promiscuity failed, promiscuity feature "
3345 "of device might be broken.\n", dev->name);
3346 return -EOVERFLOW;
3347 }
3348 }
3349 if (dev->flags != old_flags) {
3350 printk(KERN_INFO "device %s %s promiscuous mode\n",
3351 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3352 "left");
3353 if (audit_enabled) {
3354 current_uid_gid(&uid, &gid);
3355 audit_log(current->audit_context, GFP_ATOMIC,
3356 AUDIT_ANOM_PROMISCUOUS,
3357 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3358 dev->name, (dev->flags & IFF_PROMISC),
3359 (old_flags & IFF_PROMISC),
3360 audit_get_loginuid(current),
3361 uid, gid,
3362 audit_get_sessionid(current));
3363 }
3364
3365 dev_change_rx_flags(dev, IFF_PROMISC);
3366 }
3367 return 0;
3368 }
3369
3370 /**
3371 * dev_set_promiscuity - update promiscuity count on a device
3372 * @dev: device
3373 * @inc: modifier
3374 *
3375 * Add or remove promiscuity from a device. While the count in the device
3376 * remains above zero the interface remains promiscuous. Once it hits zero
3377 * the device reverts back to normal filtering operation. A negative inc
3378 * value is used to drop promiscuity on the device.
3379 * Return 0 if successful or a negative errno code on error.
3380 */
3381 int dev_set_promiscuity(struct net_device *dev, int inc)
3382 {
3383 unsigned short old_flags = dev->flags;
3384 int err;
3385
3386 err = __dev_set_promiscuity(dev, inc);
3387 if (err < 0)
3388 return err;
3389 if (dev->flags != old_flags)
3390 dev_set_rx_mode(dev);
3391 return err;
3392 }
3393
3394 /**
3395 * dev_set_allmulti - update allmulti count on a device
3396 * @dev: device
3397 * @inc: modifier
3398 *
3399 * Add or remove reception of all multicast frames to a device. While the
3400 * count in the device remains above zero the interface remains listening
3401 * to all interfaces. Once it hits zero the device reverts back to normal
3402 * filtering operation. A negative @inc value is used to drop the counter
3403 * when releasing a resource needing all multicasts.
3404 * Return 0 if successful or a negative errno code on error.
3405 */
3406
3407 int dev_set_allmulti(struct net_device *dev, int inc)
3408 {
3409 unsigned short old_flags = dev->flags;
3410
3411 ASSERT_RTNL();
3412
3413 dev->flags |= IFF_ALLMULTI;
3414 dev->allmulti += inc;
3415 if (dev->allmulti == 0) {
3416 /*
3417 * Avoid overflow.
3418 * If inc causes overflow, untouch allmulti and return error.
3419 */
3420 if (inc < 0)
3421 dev->flags &= ~IFF_ALLMULTI;
3422 else {
3423 dev->allmulti -= inc;
3424 printk(KERN_WARNING "%s: allmulti touches roof, "
3425 "set allmulti failed, allmulti feature of "
3426 "device might be broken.\n", dev->name);
3427 return -EOVERFLOW;
3428 }
3429 }
3430 if (dev->flags ^ old_flags) {
3431 dev_change_rx_flags(dev, IFF_ALLMULTI);
3432 dev_set_rx_mode(dev);
3433 }
3434 return 0;
3435 }
3436
3437 /*
3438 * Upload unicast and multicast address lists to device and
3439 * configure RX filtering. When the device doesn't support unicast
3440 * filtering it is put in promiscuous mode while unicast addresses
3441 * are present.
3442 */
3443 void __dev_set_rx_mode(struct net_device *dev)
3444 {
3445 const struct net_device_ops *ops = dev->netdev_ops;
3446
3447 /* dev_open will call this function so the list will stay sane. */
3448 if (!(dev->flags&IFF_UP))
3449 return;
3450
3451 if (!netif_device_present(dev))
3452 return;
3453
3454 if (ops->ndo_set_rx_mode)
3455 ops->ndo_set_rx_mode(dev);
3456 else {
3457 /* Unicast addresses changes may only happen under the rtnl,
3458 * therefore calling __dev_set_promiscuity here is safe.
3459 */
3460 if (dev->uc_count > 0 && !dev->uc_promisc) {
3461 __dev_set_promiscuity(dev, 1);
3462 dev->uc_promisc = 1;
3463 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3464 __dev_set_promiscuity(dev, -1);
3465 dev->uc_promisc = 0;
3466 }
3467
3468 if (ops->ndo_set_multicast_list)
3469 ops->ndo_set_multicast_list(dev);
3470 }
3471 }
3472
3473 void dev_set_rx_mode(struct net_device *dev)
3474 {
3475 netif_addr_lock_bh(dev);
3476 __dev_set_rx_mode(dev);
3477 netif_addr_unlock_bh(dev);
3478 }
3479
3480 /* hw addresses list handling functions */
3481
3482 static int __hw_addr_add(struct list_head *list, int *delta,
3483 unsigned char *addr, int addr_len,
3484 unsigned char addr_type)
3485 {
3486 struct netdev_hw_addr *ha;
3487 int alloc_size;
3488
3489 if (addr_len > MAX_ADDR_LEN)
3490 return -EINVAL;
3491
3492 list_for_each_entry(ha, list, list) {
3493 if (!memcmp(ha->addr, addr, addr_len) &&
3494 ha->type == addr_type) {
3495 ha->refcount++;
3496 return 0;
3497 }
3498 }
3499
3500
3501 alloc_size = sizeof(*ha);
3502 if (alloc_size < L1_CACHE_BYTES)
3503 alloc_size = L1_CACHE_BYTES;
3504 ha = kmalloc(alloc_size, GFP_ATOMIC);
3505 if (!ha)
3506 return -ENOMEM;
3507 memcpy(ha->addr, addr, addr_len);
3508 ha->type = addr_type;
3509 ha->refcount = 1;
3510 ha->synced = false;
3511 list_add_tail_rcu(&ha->list, list);
3512 if (delta)
3513 (*delta)++;
3514 return 0;
3515 }
3516
3517 static void ha_rcu_free(struct rcu_head *head)
3518 {
3519 struct netdev_hw_addr *ha;
3520
3521 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3522 kfree(ha);
3523 }
3524
3525 static int __hw_addr_del(struct list_head *list, int *delta,
3526 unsigned char *addr, int addr_len,
3527 unsigned char addr_type)
3528 {
3529 struct netdev_hw_addr *ha;
3530
3531 list_for_each_entry(ha, list, list) {
3532 if (!memcmp(ha->addr, addr, addr_len) &&
3533 (ha->type == addr_type || !addr_type)) {
3534 if (--ha->refcount)
3535 return 0;
3536 list_del_rcu(&ha->list);
3537 call_rcu(&ha->rcu_head, ha_rcu_free);
3538 if (delta)
3539 (*delta)--;
3540 return 0;
3541 }
3542 }
3543 return -ENOENT;
3544 }
3545
3546 static int __hw_addr_add_multiple(struct list_head *to_list, int *to_delta,
3547 struct list_head *from_list, int addr_len,
3548 unsigned char addr_type)
3549 {
3550 int err;
3551 struct netdev_hw_addr *ha, *ha2;
3552 unsigned char type;
3553
3554 list_for_each_entry(ha, from_list, list) {
3555 type = addr_type ? addr_type : ha->type;
3556 err = __hw_addr_add(to_list, to_delta, ha->addr,
3557 addr_len, type);
3558 if (err)
3559 goto unroll;
3560 }
3561 return 0;
3562
3563 unroll:
3564 list_for_each_entry(ha2, from_list, list) {
3565 if (ha2 == ha)
3566 break;
3567 type = addr_type ? addr_type : ha2->type;
3568 __hw_addr_del(to_list, to_delta, ha2->addr,
3569 addr_len, type);
3570 }
3571 return err;
3572 }
3573
3574 static void __hw_addr_del_multiple(struct list_head *to_list, int *to_delta,
3575 struct list_head *from_list, int addr_len,
3576 unsigned char addr_type)
3577 {
3578 struct netdev_hw_addr *ha;
3579 unsigned char type;
3580
3581 list_for_each_entry(ha, from_list, list) {
3582 type = addr_type ? addr_type : ha->type;
3583 __hw_addr_del(to_list, to_delta, ha->addr,
3584 addr_len, addr_type);
3585 }
3586 }
3587
3588 static int __hw_addr_sync(struct list_head *to_list, int *to_delta,
3589 struct list_head *from_list, int *from_delta,
3590 int addr_len)
3591 {
3592 int err = 0;
3593 struct netdev_hw_addr *ha, *tmp;
3594
3595 list_for_each_entry_safe(ha, tmp, from_list, list) {
3596 if (!ha->synced) {
3597 err = __hw_addr_add(to_list, to_delta, ha->addr,
3598 addr_len, ha->type);
3599 if (err)
3600 break;
3601 ha->synced = true;
3602 ha->refcount++;
3603 } else if (ha->refcount == 1) {
3604 __hw_addr_del(to_list, to_delta, ha->addr,
3605 addr_len, ha->type);
3606 __hw_addr_del(from_list, from_delta, ha->addr,
3607 addr_len, ha->type);
3608 }
3609 }
3610 return err;
3611 }
3612
3613 static void __hw_addr_unsync(struct list_head *to_list, int *to_delta,
3614 struct list_head *from_list, int *from_delta,
3615 int addr_len)
3616 {
3617 struct netdev_hw_addr *ha, *tmp;
3618
3619 list_for_each_entry_safe(ha, tmp, from_list, list) {
3620 if (ha->synced) {
3621 __hw_addr_del(to_list, to_delta, ha->addr,
3622 addr_len, ha->type);
3623 ha->synced = false;
3624 __hw_addr_del(from_list, from_delta, ha->addr,
3625 addr_len, ha->type);
3626 }
3627 }
3628 }
3629
3630
3631 static void __hw_addr_flush(struct list_head *list)
3632 {
3633 struct netdev_hw_addr *ha, *tmp;
3634
3635 list_for_each_entry_safe(ha, tmp, list, list) {
3636 list_del_rcu(&ha->list);
3637 call_rcu(&ha->rcu_head, ha_rcu_free);
3638 }
3639 }
3640
3641 /* Device addresses handling functions */
3642
3643 static void dev_addr_flush(struct net_device *dev)
3644 {
3645 /* rtnl_mutex must be held here */
3646
3647 __hw_addr_flush(&dev->dev_addr_list);
3648 dev->dev_addr = NULL;
3649 }
3650
3651 static int dev_addr_init(struct net_device *dev)
3652 {
3653 unsigned char addr[MAX_ADDR_LEN];
3654 struct netdev_hw_addr *ha;
3655 int err;
3656
3657 /* rtnl_mutex must be held here */
3658
3659 INIT_LIST_HEAD(&dev->dev_addr_list);
3660 memset(addr, 0, sizeof(addr));
3661 err = __hw_addr_add(&dev->dev_addr_list, NULL, addr, sizeof(addr),
3662 NETDEV_HW_ADDR_T_LAN);
3663 if (!err) {
3664 /*
3665 * Get the first (previously created) address from the list
3666 * and set dev_addr pointer to this location.
3667 */
3668 ha = list_first_entry(&dev->dev_addr_list,
3669 struct netdev_hw_addr, list);
3670 dev->dev_addr = ha->addr;
3671 }
3672 return err;
3673 }
3674
3675 /**
3676 * dev_addr_add - Add a device address
3677 * @dev: device
3678 * @addr: address to add
3679 * @addr_type: address type
3680 *
3681 * Add a device address to the device or increase the reference count if
3682 * it already exists.
3683 *
3684 * The caller must hold the rtnl_mutex.
3685 */
3686 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3687 unsigned char addr_type)
3688 {
3689 int err;
3690
3691 ASSERT_RTNL();
3692
3693 err = __hw_addr_add(&dev->dev_addr_list, NULL, addr, dev->addr_len,
3694 addr_type);
3695 if (!err)
3696 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3697 return err;
3698 }
3699 EXPORT_SYMBOL(dev_addr_add);
3700
3701 /**
3702 * dev_addr_del - Release a device address.
3703 * @dev: device
3704 * @addr: address to delete
3705 * @addr_type: address type
3706 *
3707 * Release reference to a device address and remove it from the device
3708 * if the reference count drops to zero.
3709 *
3710 * The caller must hold the rtnl_mutex.
3711 */
3712 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3713 unsigned char addr_type)
3714 {
3715 int err;
3716 struct netdev_hw_addr *ha;
3717
3718 ASSERT_RTNL();
3719
3720 /*
3721 * We can not remove the first address from the list because
3722 * dev->dev_addr points to that.
3723 */
3724 ha = list_first_entry(&dev->dev_addr_list, struct netdev_hw_addr, list);
3725 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3726 return -ENOENT;
3727
3728 err = __hw_addr_del(&dev->dev_addr_list, NULL, addr, dev->addr_len,
3729 addr_type);
3730 if (!err)
3731 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3732 return err;
3733 }
3734 EXPORT_SYMBOL(dev_addr_del);
3735
3736 /**
3737 * dev_addr_add_multiple - Add device addresses from another device
3738 * @to_dev: device to which addresses will be added
3739 * @from_dev: device from which addresses will be added
3740 * @addr_type: address type - 0 means type will be used from from_dev
3741 *
3742 * Add device addresses of the one device to another.
3743 **
3744 * The caller must hold the rtnl_mutex.
3745 */
3746 int dev_addr_add_multiple(struct net_device *to_dev,
3747 struct net_device *from_dev,
3748 unsigned char addr_type)
3749 {
3750 int err;
3751
3752 ASSERT_RTNL();
3753
3754 if (from_dev->addr_len != to_dev->addr_len)
3755 return -EINVAL;
3756 err = __hw_addr_add_multiple(&to_dev->dev_addr_list, NULL,
3757 &from_dev->dev_addr_list,
3758 to_dev->addr_len, addr_type);
3759 if (!err)
3760 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3761 return err;
3762 }
3763 EXPORT_SYMBOL(dev_addr_add_multiple);
3764
3765 /**
3766 * dev_addr_del_multiple - Delete device addresses by another device
3767 * @to_dev: device where the addresses will be deleted
3768 * @from_dev: device by which addresses the addresses will be deleted
3769 * @addr_type: address type - 0 means type will used from from_dev
3770 *
3771 * Deletes addresses in to device by the list of addresses in from device.
3772 *
3773 * The caller must hold the rtnl_mutex.
3774 */
3775 int dev_addr_del_multiple(struct net_device *to_dev,
3776 struct net_device *from_dev,
3777 unsigned char addr_type)
3778 {
3779 ASSERT_RTNL();
3780
3781 if (from_dev->addr_len != to_dev->addr_len)
3782 return -EINVAL;
3783 __hw_addr_del_multiple(&to_dev->dev_addr_list, NULL,
3784 &from_dev->dev_addr_list,
3785 to_dev->addr_len, addr_type);
3786 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3787 return 0;
3788 }
3789 EXPORT_SYMBOL(dev_addr_del_multiple);
3790
3791 /* unicast and multicast addresses handling functions */
3792
3793 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3794 void *addr, int alen, int glbl)
3795 {
3796 struct dev_addr_list *da;
3797
3798 for (; (da = *list) != NULL; list = &da->next) {
3799 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3800 alen == da->da_addrlen) {
3801 if (glbl) {
3802 int old_glbl = da->da_gusers;
3803 da->da_gusers = 0;
3804 if (old_glbl == 0)
3805 break;
3806 }
3807 if (--da->da_users)
3808 return 0;
3809
3810 *list = da->next;
3811 kfree(da);
3812 (*count)--;
3813 return 0;
3814 }
3815 }
3816 return -ENOENT;
3817 }
3818
3819 int __dev_addr_add(struct dev_addr_list **list, int *count,
3820 void *addr, int alen, int glbl)
3821 {
3822 struct dev_addr_list *da;
3823
3824 for (da = *list; da != NULL; da = da->next) {
3825 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3826 da->da_addrlen == alen) {
3827 if (glbl) {
3828 int old_glbl = da->da_gusers;
3829 da->da_gusers = 1;
3830 if (old_glbl)
3831 return 0;
3832 }
3833 da->da_users++;
3834 return 0;
3835 }
3836 }
3837
3838 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3839 if (da == NULL)
3840 return -ENOMEM;
3841 memcpy(da->da_addr, addr, alen);
3842 da->da_addrlen = alen;
3843 da->da_users = 1;
3844 da->da_gusers = glbl ? 1 : 0;
3845 da->next = *list;
3846 *list = da;
3847 (*count)++;
3848 return 0;
3849 }
3850
3851 /**
3852 * dev_unicast_delete - Release secondary unicast address.
3853 * @dev: device
3854 * @addr: address to delete
3855 *
3856 * Release reference to a secondary unicast address and remove it
3857 * from the device if the reference count drops to zero.
3858 *
3859 * The caller must hold the rtnl_mutex.
3860 */
3861 int dev_unicast_delete(struct net_device *dev, void *addr)
3862 {
3863 int err;
3864
3865 ASSERT_RTNL();
3866
3867 err = __hw_addr_del(&dev->uc_list, &dev->uc_count, addr,
3868 dev->addr_len, NETDEV_HW_ADDR_T_UNICAST);
3869 if (!err)
3870 __dev_set_rx_mode(dev);
3871 return err;
3872 }
3873 EXPORT_SYMBOL(dev_unicast_delete);
3874
3875 /**
3876 * dev_unicast_add - add a secondary unicast address
3877 * @dev: device
3878 * @addr: address to add
3879 *
3880 * Add a secondary unicast address to the device or increase
3881 * the reference count if it already exists.
3882 *
3883 * The caller must hold the rtnl_mutex.
3884 */
3885 int dev_unicast_add(struct net_device *dev, void *addr)
3886 {
3887 int err;
3888
3889 ASSERT_RTNL();
3890
3891 err = __hw_addr_add(&dev->uc_list, &dev->uc_count, addr,
3892 dev->addr_len, NETDEV_HW_ADDR_T_UNICAST);
3893 if (!err)
3894 __dev_set_rx_mode(dev);
3895 return err;
3896 }
3897 EXPORT_SYMBOL(dev_unicast_add);
3898
3899 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3900 struct dev_addr_list **from, int *from_count)
3901 {
3902 struct dev_addr_list *da, *next;
3903 int err = 0;
3904
3905 da = *from;
3906 while (da != NULL) {
3907 next = da->next;
3908 if (!da->da_synced) {
3909 err = __dev_addr_add(to, to_count,
3910 da->da_addr, da->da_addrlen, 0);
3911 if (err < 0)
3912 break;
3913 da->da_synced = 1;
3914 da->da_users++;
3915 } else if (da->da_users == 1) {
3916 __dev_addr_delete(to, to_count,
3917 da->da_addr, da->da_addrlen, 0);
3918 __dev_addr_delete(from, from_count,
3919 da->da_addr, da->da_addrlen, 0);
3920 }
3921 da = next;
3922 }
3923 return err;
3924 }
3925
3926 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3927 struct dev_addr_list **from, int *from_count)
3928 {
3929 struct dev_addr_list *da, *next;
3930
3931 da = *from;
3932 while (da != NULL) {
3933 next = da->next;
3934 if (da->da_synced) {
3935 __dev_addr_delete(to, to_count,
3936 da->da_addr, da->da_addrlen, 0);
3937 da->da_synced = 0;
3938 __dev_addr_delete(from, from_count,
3939 da->da_addr, da->da_addrlen, 0);
3940 }
3941 da = next;
3942 }
3943 }
3944
3945 /**
3946 * dev_unicast_sync - Synchronize device's unicast list to another device
3947 * @to: destination device
3948 * @from: source device
3949 *
3950 * Add newly added addresses to the destination device and release
3951 * addresses that have no users left.
3952 *
3953 * This function is intended to be called from the dev->set_rx_mode
3954 * function of layered software devices.
3955 */
3956 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3957 {
3958 int err = 0;
3959
3960 ASSERT_RTNL();
3961
3962 if (to->addr_len != from->addr_len)
3963 return -EINVAL;
3964
3965 err = __hw_addr_sync(&to->uc_list, &to->uc_count,
3966 &from->uc_list, &from->uc_count, to->addr_len);
3967 if (!err)
3968 __dev_set_rx_mode(to);
3969 return err;
3970 }
3971 EXPORT_SYMBOL(dev_unicast_sync);
3972
3973 /**
3974 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3975 * @to: destination device
3976 * @from: source device
3977 *
3978 * Remove all addresses that were added to the destination device by
3979 * dev_unicast_sync(). This function is intended to be called from the
3980 * dev->stop function of layered software devices.
3981 */
3982 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3983 {
3984 ASSERT_RTNL();
3985
3986 if (to->addr_len != from->addr_len)
3987 return;
3988
3989 __hw_addr_unsync(&to->uc_list, &to->uc_count,
3990 &from->uc_list, &from->uc_count, to->addr_len);
3991 __dev_set_rx_mode(to);
3992 }
3993 EXPORT_SYMBOL(dev_unicast_unsync);
3994
3995 static void dev_unicast_flush(struct net_device *dev)
3996 {
3997 /* rtnl_mutex must be held here */
3998
3999 __hw_addr_flush(&dev->uc_list);
4000 dev->uc_count = 0;
4001 }
4002
4003 static void dev_unicast_init(struct net_device *dev)
4004 {
4005 /* rtnl_mutex must be held here */
4006
4007 INIT_LIST_HEAD(&dev->uc_list);
4008 }
4009
4010
4011 static void __dev_addr_discard(struct dev_addr_list **list)
4012 {
4013 struct dev_addr_list *tmp;
4014
4015 while (*list != NULL) {
4016 tmp = *list;
4017 *list = tmp->next;
4018 if (tmp->da_users > tmp->da_gusers)
4019 printk("__dev_addr_discard: address leakage! "
4020 "da_users=%d\n", tmp->da_users);
4021 kfree(tmp);
4022 }
4023 }
4024
4025 static void dev_addr_discard(struct net_device *dev)
4026 {
4027 netif_addr_lock_bh(dev);
4028
4029 __dev_addr_discard(&dev->mc_list);
4030 dev->mc_count = 0;
4031
4032 netif_addr_unlock_bh(dev);
4033 }
4034
4035 /**
4036 * dev_get_flags - get flags reported to userspace
4037 * @dev: device
4038 *
4039 * Get the combination of flag bits exported through APIs to userspace.
4040 */
4041 unsigned dev_get_flags(const struct net_device *dev)
4042 {
4043 unsigned flags;
4044
4045 flags = (dev->flags & ~(IFF_PROMISC |
4046 IFF_ALLMULTI |
4047 IFF_RUNNING |
4048 IFF_LOWER_UP |
4049 IFF_DORMANT)) |
4050 (dev->gflags & (IFF_PROMISC |
4051 IFF_ALLMULTI));
4052
4053 if (netif_running(dev)) {
4054 if (netif_oper_up(dev))
4055 flags |= IFF_RUNNING;
4056 if (netif_carrier_ok(dev))
4057 flags |= IFF_LOWER_UP;
4058 if (netif_dormant(dev))
4059 flags |= IFF_DORMANT;
4060 }
4061
4062 return flags;
4063 }
4064
4065 /**
4066 * dev_change_flags - change device settings
4067 * @dev: device
4068 * @flags: device state flags
4069 *
4070 * Change settings on device based state flags. The flags are
4071 * in the userspace exported format.
4072 */
4073 int dev_change_flags(struct net_device *dev, unsigned flags)
4074 {
4075 int ret, changes;
4076 int old_flags = dev->flags;
4077
4078 ASSERT_RTNL();
4079
4080 /*
4081 * Set the flags on our device.
4082 */
4083
4084 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4085 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4086 IFF_AUTOMEDIA)) |
4087 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4088 IFF_ALLMULTI));
4089
4090 /*
4091 * Load in the correct multicast list now the flags have changed.
4092 */
4093
4094 if ((old_flags ^ flags) & IFF_MULTICAST)
4095 dev_change_rx_flags(dev, IFF_MULTICAST);
4096
4097 dev_set_rx_mode(dev);
4098
4099 /*
4100 * Have we downed the interface. We handle IFF_UP ourselves
4101 * according to user attempts to set it, rather than blindly
4102 * setting it.
4103 */
4104
4105 ret = 0;
4106 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4107 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4108
4109 if (!ret)
4110 dev_set_rx_mode(dev);
4111 }
4112
4113 if (dev->flags & IFF_UP &&
4114 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4115 IFF_VOLATILE)))
4116 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4117
4118 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4119 int inc = (flags & IFF_PROMISC) ? +1 : -1;
4120 dev->gflags ^= IFF_PROMISC;
4121 dev_set_promiscuity(dev, inc);
4122 }
4123
4124 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4125 is important. Some (broken) drivers set IFF_PROMISC, when
4126 IFF_ALLMULTI is requested not asking us and not reporting.
4127 */
4128 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4129 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
4130 dev->gflags ^= IFF_ALLMULTI;
4131 dev_set_allmulti(dev, inc);
4132 }
4133
4134 /* Exclude state transition flags, already notified */
4135 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4136 if (changes)
4137 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4138
4139 return ret;
4140 }
4141
4142 /**
4143 * dev_set_mtu - Change maximum transfer unit
4144 * @dev: device
4145 * @new_mtu: new transfer unit
4146 *
4147 * Change the maximum transfer size of the network device.
4148 */
4149 int dev_set_mtu(struct net_device *dev, int new_mtu)
4150 {
4151 const struct net_device_ops *ops = dev->netdev_ops;
4152 int err;
4153
4154 if (new_mtu == dev->mtu)
4155 return 0;
4156
4157 /* MTU must be positive. */
4158 if (new_mtu < 0)
4159 return -EINVAL;
4160
4161 if (!netif_device_present(dev))
4162 return -ENODEV;
4163
4164 err = 0;
4165 if (ops->ndo_change_mtu)
4166 err = ops->ndo_change_mtu(dev, new_mtu);
4167 else
4168 dev->mtu = new_mtu;
4169
4170 if (!err && dev->flags & IFF_UP)
4171 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4172 return err;
4173 }
4174
4175 /**
4176 * dev_set_mac_address - Change Media Access Control Address
4177 * @dev: device
4178 * @sa: new address
4179 *
4180 * Change the hardware (MAC) address of the device
4181 */
4182 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4183 {
4184 const struct net_device_ops *ops = dev->netdev_ops;
4185 int err;
4186
4187 if (!ops->ndo_set_mac_address)
4188 return -EOPNOTSUPP;
4189 if (sa->sa_family != dev->type)
4190 return -EINVAL;
4191 if (!netif_device_present(dev))
4192 return -ENODEV;
4193 err = ops->ndo_set_mac_address(dev, sa);
4194 if (!err)
4195 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4196 return err;
4197 }
4198
4199 /*
4200 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4201 */
4202 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4203 {
4204 int err;
4205 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4206
4207 if (!dev)
4208 return -ENODEV;
4209
4210 switch (cmd) {
4211 case SIOCGIFFLAGS: /* Get interface flags */
4212 ifr->ifr_flags = dev_get_flags(dev);
4213 return 0;
4214
4215 case SIOCGIFMETRIC: /* Get the metric on the interface
4216 (currently unused) */
4217 ifr->ifr_metric = 0;
4218 return 0;
4219
4220 case SIOCGIFMTU: /* Get the MTU of a device */
4221 ifr->ifr_mtu = dev->mtu;
4222 return 0;
4223
4224 case SIOCGIFHWADDR:
4225 if (!dev->addr_len)
4226 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4227 else
4228 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4229 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4230 ifr->ifr_hwaddr.sa_family = dev->type;
4231 return 0;
4232
4233 case SIOCGIFSLAVE:
4234 err = -EINVAL;
4235 break;
4236
4237 case SIOCGIFMAP:
4238 ifr->ifr_map.mem_start = dev->mem_start;
4239 ifr->ifr_map.mem_end = dev->mem_end;
4240 ifr->ifr_map.base_addr = dev->base_addr;
4241 ifr->ifr_map.irq = dev->irq;
4242 ifr->ifr_map.dma = dev->dma;
4243 ifr->ifr_map.port = dev->if_port;
4244 return 0;
4245
4246 case SIOCGIFINDEX:
4247 ifr->ifr_ifindex = dev->ifindex;
4248 return 0;
4249
4250 case SIOCGIFTXQLEN:
4251 ifr->ifr_qlen = dev->tx_queue_len;
4252 return 0;
4253
4254 default:
4255 /* dev_ioctl() should ensure this case
4256 * is never reached
4257 */
4258 WARN_ON(1);
4259 err = -EINVAL;
4260 break;
4261
4262 }
4263 return err;
4264 }
4265
4266 /*
4267 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4268 */
4269 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4270 {
4271 int err;
4272 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4273 const struct net_device_ops *ops;
4274
4275 if (!dev)
4276 return -ENODEV;
4277
4278 ops = dev->netdev_ops;
4279
4280 switch (cmd) {
4281 case SIOCSIFFLAGS: /* Set interface flags */
4282 return dev_change_flags(dev, ifr->ifr_flags);
4283
4284 case SIOCSIFMETRIC: /* Set the metric on the interface
4285 (currently unused) */
4286 return -EOPNOTSUPP;
4287
4288 case SIOCSIFMTU: /* Set the MTU of a device */
4289 return dev_set_mtu(dev, ifr->ifr_mtu);
4290
4291 case SIOCSIFHWADDR:
4292 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4293
4294 case SIOCSIFHWBROADCAST:
4295 if (ifr->ifr_hwaddr.sa_family != dev->type)
4296 return -EINVAL;
4297 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4298 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4299 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4300 return 0;
4301
4302 case SIOCSIFMAP:
4303 if (ops->ndo_set_config) {
4304 if (!netif_device_present(dev))
4305 return -ENODEV;
4306 return ops->ndo_set_config(dev, &ifr->ifr_map);
4307 }
4308 return -EOPNOTSUPP;
4309
4310 case SIOCADDMULTI:
4311 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4312 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4313 return -EINVAL;
4314 if (!netif_device_present(dev))
4315 return -ENODEV;
4316 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4317 dev->addr_len, 1);
4318
4319 case SIOCDELMULTI:
4320 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4321 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4322 return -EINVAL;
4323 if (!netif_device_present(dev))
4324 return -ENODEV;
4325 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4326 dev->addr_len, 1);
4327
4328 case SIOCSIFTXQLEN:
4329 if (ifr->ifr_qlen < 0)
4330 return -EINVAL;
4331 dev->tx_queue_len = ifr->ifr_qlen;
4332 return 0;
4333
4334 case SIOCSIFNAME:
4335 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4336 return dev_change_name(dev, ifr->ifr_newname);
4337
4338 /*
4339 * Unknown or private ioctl
4340 */
4341
4342 default:
4343 if ((cmd >= SIOCDEVPRIVATE &&
4344 cmd <= SIOCDEVPRIVATE + 15) ||
4345 cmd == SIOCBONDENSLAVE ||
4346 cmd == SIOCBONDRELEASE ||
4347 cmd == SIOCBONDSETHWADDR ||
4348 cmd == SIOCBONDSLAVEINFOQUERY ||
4349 cmd == SIOCBONDINFOQUERY ||
4350 cmd == SIOCBONDCHANGEACTIVE ||
4351 cmd == SIOCGMIIPHY ||
4352 cmd == SIOCGMIIREG ||
4353 cmd == SIOCSMIIREG ||
4354 cmd == SIOCBRADDIF ||
4355 cmd == SIOCBRDELIF ||
4356 cmd == SIOCSHWTSTAMP ||
4357 cmd == SIOCWANDEV) {
4358 err = -EOPNOTSUPP;
4359 if (ops->ndo_do_ioctl) {
4360 if (netif_device_present(dev))
4361 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4362 else
4363 err = -ENODEV;
4364 }
4365 } else
4366 err = -EINVAL;
4367
4368 }
4369 return err;
4370 }
4371
4372 /*
4373 * This function handles all "interface"-type I/O control requests. The actual
4374 * 'doing' part of this is dev_ifsioc above.
4375 */
4376
4377 /**
4378 * dev_ioctl - network device ioctl
4379 * @net: the applicable net namespace
4380 * @cmd: command to issue
4381 * @arg: pointer to a struct ifreq in user space
4382 *
4383 * Issue ioctl functions to devices. This is normally called by the
4384 * user space syscall interfaces but can sometimes be useful for
4385 * other purposes. The return value is the return from the syscall if
4386 * positive or a negative errno code on error.
4387 */
4388
4389 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4390 {
4391 struct ifreq ifr;
4392 int ret;
4393 char *colon;
4394
4395 /* One special case: SIOCGIFCONF takes ifconf argument
4396 and requires shared lock, because it sleeps writing
4397 to user space.
4398 */
4399
4400 if (cmd == SIOCGIFCONF) {
4401 rtnl_lock();
4402 ret = dev_ifconf(net, (char __user *) arg);
4403 rtnl_unlock();
4404 return ret;
4405 }
4406 if (cmd == SIOCGIFNAME)
4407 return dev_ifname(net, (struct ifreq __user *)arg);
4408
4409 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4410 return -EFAULT;
4411
4412 ifr.ifr_name[IFNAMSIZ-1] = 0;
4413
4414 colon = strchr(ifr.ifr_name, ':');
4415 if (colon)
4416 *colon = 0;
4417
4418 /*
4419 * See which interface the caller is talking about.
4420 */
4421
4422 switch (cmd) {
4423 /*
4424 * These ioctl calls:
4425 * - can be done by all.
4426 * - atomic and do not require locking.
4427 * - return a value
4428 */
4429 case SIOCGIFFLAGS:
4430 case SIOCGIFMETRIC:
4431 case SIOCGIFMTU:
4432 case SIOCGIFHWADDR:
4433 case SIOCGIFSLAVE:
4434 case SIOCGIFMAP:
4435 case SIOCGIFINDEX:
4436 case SIOCGIFTXQLEN:
4437 dev_load(net, ifr.ifr_name);
4438 read_lock(&dev_base_lock);
4439 ret = dev_ifsioc_locked(net, &ifr, cmd);
4440 read_unlock(&dev_base_lock);
4441 if (!ret) {
4442 if (colon)
4443 *colon = ':';
4444 if (copy_to_user(arg, &ifr,
4445 sizeof(struct ifreq)))
4446 ret = -EFAULT;
4447 }
4448 return ret;
4449
4450 case SIOCETHTOOL:
4451 dev_load(net, ifr.ifr_name);
4452 rtnl_lock();
4453 ret = dev_ethtool(net, &ifr);
4454 rtnl_unlock();
4455 if (!ret) {
4456 if (colon)
4457 *colon = ':';
4458 if (copy_to_user(arg, &ifr,
4459 sizeof(struct ifreq)))
4460 ret = -EFAULT;
4461 }
4462 return ret;
4463
4464 /*
4465 * These ioctl calls:
4466 * - require superuser power.
4467 * - require strict serialization.
4468 * - return a value
4469 */
4470 case SIOCGMIIPHY:
4471 case SIOCGMIIREG:
4472 case SIOCSIFNAME:
4473 if (!capable(CAP_NET_ADMIN))
4474 return -EPERM;
4475 dev_load(net, ifr.ifr_name);
4476 rtnl_lock();
4477 ret = dev_ifsioc(net, &ifr, cmd);
4478 rtnl_unlock();
4479 if (!ret) {
4480 if (colon)
4481 *colon = ':';
4482 if (copy_to_user(arg, &ifr,
4483 sizeof(struct ifreq)))
4484 ret = -EFAULT;
4485 }
4486 return ret;
4487
4488 /*
4489 * These ioctl calls:
4490 * - require superuser power.
4491 * - require strict serialization.
4492 * - do not return a value
4493 */
4494 case SIOCSIFFLAGS:
4495 case SIOCSIFMETRIC:
4496 case SIOCSIFMTU:
4497 case SIOCSIFMAP:
4498 case SIOCSIFHWADDR:
4499 case SIOCSIFSLAVE:
4500 case SIOCADDMULTI:
4501 case SIOCDELMULTI:
4502 case SIOCSIFHWBROADCAST:
4503 case SIOCSIFTXQLEN:
4504 case SIOCSMIIREG:
4505 case SIOCBONDENSLAVE:
4506 case SIOCBONDRELEASE:
4507 case SIOCBONDSETHWADDR:
4508 case SIOCBONDCHANGEACTIVE:
4509 case SIOCBRADDIF:
4510 case SIOCBRDELIF:
4511 case SIOCSHWTSTAMP:
4512 if (!capable(CAP_NET_ADMIN))
4513 return -EPERM;
4514 /* fall through */
4515 case SIOCBONDSLAVEINFOQUERY:
4516 case SIOCBONDINFOQUERY:
4517 dev_load(net, ifr.ifr_name);
4518 rtnl_lock();
4519 ret = dev_ifsioc(net, &ifr, cmd);
4520 rtnl_unlock();
4521 return ret;
4522
4523 case SIOCGIFMEM:
4524 /* Get the per device memory space. We can add this but
4525 * currently do not support it */
4526 case SIOCSIFMEM:
4527 /* Set the per device memory buffer space.
4528 * Not applicable in our case */
4529 case SIOCSIFLINK:
4530 return -EINVAL;
4531
4532 /*
4533 * Unknown or private ioctl.
4534 */
4535 default:
4536 if (cmd == SIOCWANDEV ||
4537 (cmd >= SIOCDEVPRIVATE &&
4538 cmd <= SIOCDEVPRIVATE + 15)) {
4539 dev_load(net, ifr.ifr_name);
4540 rtnl_lock();
4541 ret = dev_ifsioc(net, &ifr, cmd);
4542 rtnl_unlock();
4543 if (!ret && copy_to_user(arg, &ifr,
4544 sizeof(struct ifreq)))
4545 ret = -EFAULT;
4546 return ret;
4547 }
4548 /* Take care of Wireless Extensions */
4549 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4550 return wext_handle_ioctl(net, &ifr, cmd, arg);
4551 return -EINVAL;
4552 }
4553 }
4554
4555
4556 /**
4557 * dev_new_index - allocate an ifindex
4558 * @net: the applicable net namespace
4559 *
4560 * Returns a suitable unique value for a new device interface
4561 * number. The caller must hold the rtnl semaphore or the
4562 * dev_base_lock to be sure it remains unique.
4563 */
4564 static int dev_new_index(struct net *net)
4565 {
4566 static int ifindex;
4567 for (;;) {
4568 if (++ifindex <= 0)
4569 ifindex = 1;
4570 if (!__dev_get_by_index(net, ifindex))
4571 return ifindex;
4572 }
4573 }
4574
4575 /* Delayed registration/unregisteration */
4576 static LIST_HEAD(net_todo_list);
4577
4578 static void net_set_todo(struct net_device *dev)
4579 {
4580 list_add_tail(&dev->todo_list, &net_todo_list);
4581 }
4582
4583 static void rollback_registered(struct net_device *dev)
4584 {
4585 BUG_ON(dev_boot_phase);
4586 ASSERT_RTNL();
4587
4588 /* Some devices call without registering for initialization unwind. */
4589 if (dev->reg_state == NETREG_UNINITIALIZED) {
4590 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4591 "was registered\n", dev->name, dev);
4592
4593 WARN_ON(1);
4594 return;
4595 }
4596
4597 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4598
4599 /* If device is running, close it first. */
4600 dev_close(dev);
4601
4602 /* And unlink it from device chain. */
4603 unlist_netdevice(dev);
4604
4605 dev->reg_state = NETREG_UNREGISTERING;
4606
4607 synchronize_net();
4608
4609 /* Shutdown queueing discipline. */
4610 dev_shutdown(dev);
4611
4612
4613 /* Notify protocols, that we are about to destroy
4614 this device. They should clean all the things.
4615 */
4616 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4617
4618 /*
4619 * Flush the unicast and multicast chains
4620 */
4621 dev_unicast_flush(dev);
4622 dev_addr_discard(dev);
4623
4624 if (dev->netdev_ops->ndo_uninit)
4625 dev->netdev_ops->ndo_uninit(dev);
4626
4627 /* Notifier chain MUST detach us from master device. */
4628 WARN_ON(dev->master);
4629
4630 /* Remove entries from kobject tree */
4631 netdev_unregister_kobject(dev);
4632
4633 synchronize_net();
4634
4635 dev_put(dev);
4636 }
4637
4638 static void __netdev_init_queue_locks_one(struct net_device *dev,
4639 struct netdev_queue *dev_queue,
4640 void *_unused)
4641 {
4642 spin_lock_init(&dev_queue->_xmit_lock);
4643 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4644 dev_queue->xmit_lock_owner = -1;
4645 }
4646
4647 static void netdev_init_queue_locks(struct net_device *dev)
4648 {
4649 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4650 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4651 }
4652
4653 unsigned long netdev_fix_features(unsigned long features, const char *name)
4654 {
4655 /* Fix illegal SG+CSUM combinations. */
4656 if ((features & NETIF_F_SG) &&
4657 !(features & NETIF_F_ALL_CSUM)) {
4658 if (name)
4659 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4660 "checksum feature.\n", name);
4661 features &= ~NETIF_F_SG;
4662 }
4663
4664 /* TSO requires that SG is present as well. */
4665 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4666 if (name)
4667 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4668 "SG feature.\n", name);
4669 features &= ~NETIF_F_TSO;
4670 }
4671
4672 if (features & NETIF_F_UFO) {
4673 if (!(features & NETIF_F_GEN_CSUM)) {
4674 if (name)
4675 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4676 "since no NETIF_F_HW_CSUM feature.\n",
4677 name);
4678 features &= ~NETIF_F_UFO;
4679 }
4680
4681 if (!(features & NETIF_F_SG)) {
4682 if (name)
4683 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4684 "since no NETIF_F_SG feature.\n", name);
4685 features &= ~NETIF_F_UFO;
4686 }
4687 }
4688
4689 return features;
4690 }
4691 EXPORT_SYMBOL(netdev_fix_features);
4692
4693 /**
4694 * register_netdevice - register a network device
4695 * @dev: device to register
4696 *
4697 * Take a completed network device structure and add it to the kernel
4698 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4699 * chain. 0 is returned on success. A negative errno code is returned
4700 * on a failure to set up the device, or if the name is a duplicate.
4701 *
4702 * Callers must hold the rtnl semaphore. You may want
4703 * register_netdev() instead of this.
4704 *
4705 * BUGS:
4706 * The locking appears insufficient to guarantee two parallel registers
4707 * will not get the same name.
4708 */
4709
4710 int register_netdevice(struct net_device *dev)
4711 {
4712 struct hlist_head *head;
4713 struct hlist_node *p;
4714 int ret;
4715 struct net *net = dev_net(dev);
4716
4717 BUG_ON(dev_boot_phase);
4718 ASSERT_RTNL();
4719
4720 might_sleep();
4721
4722 /* When net_device's are persistent, this will be fatal. */
4723 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4724 BUG_ON(!net);
4725
4726 spin_lock_init(&dev->addr_list_lock);
4727 netdev_set_addr_lockdep_class(dev);
4728 netdev_init_queue_locks(dev);
4729
4730 dev->iflink = -1;
4731
4732 /* Init, if this function is available */
4733 if (dev->netdev_ops->ndo_init) {
4734 ret = dev->netdev_ops->ndo_init(dev);
4735 if (ret) {
4736 if (ret > 0)
4737 ret = -EIO;
4738 goto out;
4739 }
4740 }
4741
4742 if (!dev_valid_name(dev->name)) {
4743 ret = -EINVAL;
4744 goto err_uninit;
4745 }
4746
4747 dev->ifindex = dev_new_index(net);
4748 if (dev->iflink == -1)
4749 dev->iflink = dev->ifindex;
4750
4751 /* Check for existence of name */
4752 head = dev_name_hash(net, dev->name);
4753 hlist_for_each(p, head) {
4754 struct net_device *d
4755 = hlist_entry(p, struct net_device, name_hlist);
4756 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4757 ret = -EEXIST;
4758 goto err_uninit;
4759 }
4760 }
4761
4762 /* Fix illegal checksum combinations */
4763 if ((dev->features & NETIF_F_HW_CSUM) &&
4764 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4765 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4766 dev->name);
4767 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4768 }
4769
4770 if ((dev->features & NETIF_F_NO_CSUM) &&
4771 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4772 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4773 dev->name);
4774 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4775 }
4776
4777 dev->features = netdev_fix_features(dev->features, dev->name);
4778
4779 /* Enable software GSO if SG is supported. */
4780 if (dev->features & NETIF_F_SG)
4781 dev->features |= NETIF_F_GSO;
4782
4783 netdev_initialize_kobject(dev);
4784 ret = netdev_register_kobject(dev);
4785 if (ret)
4786 goto err_uninit;
4787 dev->reg_state = NETREG_REGISTERED;
4788
4789 /*
4790 * Default initial state at registry is that the
4791 * device is present.
4792 */
4793
4794 set_bit(__LINK_STATE_PRESENT, &dev->state);
4795
4796 dev_init_scheduler(dev);
4797 dev_hold(dev);
4798 list_netdevice(dev);
4799
4800 /* Notify protocols, that a new device appeared. */
4801 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4802 ret = notifier_to_errno(ret);
4803 if (ret) {
4804 rollback_registered(dev);
4805 dev->reg_state = NETREG_UNREGISTERED;
4806 }
4807
4808 out:
4809 return ret;
4810
4811 err_uninit:
4812 if (dev->netdev_ops->ndo_uninit)
4813 dev->netdev_ops->ndo_uninit(dev);
4814 goto out;
4815 }
4816
4817 /**
4818 * init_dummy_netdev - init a dummy network device for NAPI
4819 * @dev: device to init
4820 *
4821 * This takes a network device structure and initialize the minimum
4822 * amount of fields so it can be used to schedule NAPI polls without
4823 * registering a full blown interface. This is to be used by drivers
4824 * that need to tie several hardware interfaces to a single NAPI
4825 * poll scheduler due to HW limitations.
4826 */
4827 int init_dummy_netdev(struct net_device *dev)
4828 {
4829 /* Clear everything. Note we don't initialize spinlocks
4830 * are they aren't supposed to be taken by any of the
4831 * NAPI code and this dummy netdev is supposed to be
4832 * only ever used for NAPI polls
4833 */
4834 memset(dev, 0, sizeof(struct net_device));
4835
4836 /* make sure we BUG if trying to hit standard
4837 * register/unregister code path
4838 */
4839 dev->reg_state = NETREG_DUMMY;
4840
4841 /* initialize the ref count */
4842 atomic_set(&dev->refcnt, 1);
4843
4844 /* NAPI wants this */
4845 INIT_LIST_HEAD(&dev->napi_list);
4846
4847 /* a dummy interface is started by default */
4848 set_bit(__LINK_STATE_PRESENT, &dev->state);
4849 set_bit(__LINK_STATE_START, &dev->state);
4850
4851 return 0;
4852 }
4853 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4854
4855
4856 /**
4857 * register_netdev - register a network device
4858 * @dev: device to register
4859 *
4860 * Take a completed network device structure and add it to the kernel
4861 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4862 * chain. 0 is returned on success. A negative errno code is returned
4863 * on a failure to set up the device, or if the name is a duplicate.
4864 *
4865 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4866 * and expands the device name if you passed a format string to
4867 * alloc_netdev.
4868 */
4869 int register_netdev(struct net_device *dev)
4870 {
4871 int err;
4872
4873 rtnl_lock();
4874
4875 /*
4876 * If the name is a format string the caller wants us to do a
4877 * name allocation.
4878 */
4879 if (strchr(dev->name, '%')) {
4880 err = dev_alloc_name(dev, dev->name);
4881 if (err < 0)
4882 goto out;
4883 }
4884
4885 err = register_netdevice(dev);
4886 out:
4887 rtnl_unlock();
4888 return err;
4889 }
4890 EXPORT_SYMBOL(register_netdev);
4891
4892 /*
4893 * netdev_wait_allrefs - wait until all references are gone.
4894 *
4895 * This is called when unregistering network devices.
4896 *
4897 * Any protocol or device that holds a reference should register
4898 * for netdevice notification, and cleanup and put back the
4899 * reference if they receive an UNREGISTER event.
4900 * We can get stuck here if buggy protocols don't correctly
4901 * call dev_put.
4902 */
4903 static void netdev_wait_allrefs(struct net_device *dev)
4904 {
4905 unsigned long rebroadcast_time, warning_time;
4906
4907 rebroadcast_time = warning_time = jiffies;
4908 while (atomic_read(&dev->refcnt) != 0) {
4909 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4910 rtnl_lock();
4911
4912 /* Rebroadcast unregister notification */
4913 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4914
4915 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4916 &dev->state)) {
4917 /* We must not have linkwatch events
4918 * pending on unregister. If this
4919 * happens, we simply run the queue
4920 * unscheduled, resulting in a noop
4921 * for this device.
4922 */
4923 linkwatch_run_queue();
4924 }
4925
4926 __rtnl_unlock();
4927
4928 rebroadcast_time = jiffies;
4929 }
4930
4931 msleep(250);
4932
4933 if (time_after(jiffies, warning_time + 10 * HZ)) {
4934 printk(KERN_EMERG "unregister_netdevice: "
4935 "waiting for %s to become free. Usage "
4936 "count = %d\n",
4937 dev->name, atomic_read(&dev->refcnt));
4938 warning_time = jiffies;
4939 }
4940 }
4941 }
4942
4943 /* The sequence is:
4944 *
4945 * rtnl_lock();
4946 * ...
4947 * register_netdevice(x1);
4948 * register_netdevice(x2);
4949 * ...
4950 * unregister_netdevice(y1);
4951 * unregister_netdevice(y2);
4952 * ...
4953 * rtnl_unlock();
4954 * free_netdev(y1);
4955 * free_netdev(y2);
4956 *
4957 * We are invoked by rtnl_unlock().
4958 * This allows us to deal with problems:
4959 * 1) We can delete sysfs objects which invoke hotplug
4960 * without deadlocking with linkwatch via keventd.
4961 * 2) Since we run with the RTNL semaphore not held, we can sleep
4962 * safely in order to wait for the netdev refcnt to drop to zero.
4963 *
4964 * We must not return until all unregister events added during
4965 * the interval the lock was held have been completed.
4966 */
4967 void netdev_run_todo(void)
4968 {
4969 struct list_head list;
4970
4971 /* Snapshot list, allow later requests */
4972 list_replace_init(&net_todo_list, &list);
4973
4974 __rtnl_unlock();
4975
4976 while (!list_empty(&list)) {
4977 struct net_device *dev
4978 = list_entry(list.next, struct net_device, todo_list);
4979 list_del(&dev->todo_list);
4980
4981 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4982 printk(KERN_ERR "network todo '%s' but state %d\n",
4983 dev->name, dev->reg_state);
4984 dump_stack();
4985 continue;
4986 }
4987
4988 dev->reg_state = NETREG_UNREGISTERED;
4989
4990 on_each_cpu(flush_backlog, dev, 1);
4991
4992 netdev_wait_allrefs(dev);
4993
4994 /* paranoia */
4995 BUG_ON(atomic_read(&dev->refcnt));
4996 WARN_ON(dev->ip_ptr);
4997 WARN_ON(dev->ip6_ptr);
4998 WARN_ON(dev->dn_ptr);
4999
5000 if (dev->destructor)
5001 dev->destructor(dev);
5002
5003 /* Free network device */
5004 kobject_put(&dev->dev.kobj);
5005 }
5006 }
5007
5008 /**
5009 * dev_get_stats - get network device statistics
5010 * @dev: device to get statistics from
5011 *
5012 * Get network statistics from device. The device driver may provide
5013 * its own method by setting dev->netdev_ops->get_stats; otherwise
5014 * the internal statistics structure is used.
5015 */
5016 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5017 {
5018 const struct net_device_ops *ops = dev->netdev_ops;
5019
5020 if (ops->ndo_get_stats)
5021 return ops->ndo_get_stats(dev);
5022 else {
5023 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5024 struct net_device_stats *stats = &dev->stats;
5025 unsigned int i;
5026 struct netdev_queue *txq;
5027
5028 for (i = 0; i < dev->num_tx_queues; i++) {
5029 txq = netdev_get_tx_queue(dev, i);
5030 tx_bytes += txq->tx_bytes;
5031 tx_packets += txq->tx_packets;
5032 tx_dropped += txq->tx_dropped;
5033 }
5034 if (tx_bytes || tx_packets || tx_dropped) {
5035 stats->tx_bytes = tx_bytes;
5036 stats->tx_packets = tx_packets;
5037 stats->tx_dropped = tx_dropped;
5038 }
5039 return stats;
5040 }
5041 }
5042 EXPORT_SYMBOL(dev_get_stats);
5043
5044 static void netdev_init_one_queue(struct net_device *dev,
5045 struct netdev_queue *queue,
5046 void *_unused)
5047 {
5048 queue->dev = dev;
5049 }
5050
5051 static void netdev_init_queues(struct net_device *dev)
5052 {
5053 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5054 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5055 spin_lock_init(&dev->tx_global_lock);
5056 }
5057
5058 /**
5059 * alloc_netdev_mq - allocate network device
5060 * @sizeof_priv: size of private data to allocate space for
5061 * @name: device name format string
5062 * @setup: callback to initialize device
5063 * @queue_count: the number of subqueues to allocate
5064 *
5065 * Allocates a struct net_device with private data area for driver use
5066 * and performs basic initialization. Also allocates subquue structs
5067 * for each queue on the device at the end of the netdevice.
5068 */
5069 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5070 void (*setup)(struct net_device *), unsigned int queue_count)
5071 {
5072 struct netdev_queue *tx;
5073 struct net_device *dev;
5074 size_t alloc_size;
5075 struct net_device *p;
5076
5077 BUG_ON(strlen(name) >= sizeof(dev->name));
5078
5079 alloc_size = sizeof(struct net_device);
5080 if (sizeof_priv) {
5081 /* ensure 32-byte alignment of private area */
5082 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5083 alloc_size += sizeof_priv;
5084 }
5085 /* ensure 32-byte alignment of whole construct */
5086 alloc_size += NETDEV_ALIGN - 1;
5087
5088 p = kzalloc(alloc_size, GFP_KERNEL);
5089 if (!p) {
5090 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5091 return NULL;
5092 }
5093
5094 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5095 if (!tx) {
5096 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5097 "tx qdiscs.\n");
5098 goto free_p;
5099 }
5100
5101 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5102 dev->padded = (char *)dev - (char *)p;
5103
5104 if (dev_addr_init(dev))
5105 goto free_tx;
5106
5107 dev_unicast_init(dev);
5108
5109 dev_net_set(dev, &init_net);
5110
5111 dev->_tx = tx;
5112 dev->num_tx_queues = queue_count;
5113 dev->real_num_tx_queues = queue_count;
5114
5115 dev->gso_max_size = GSO_MAX_SIZE;
5116
5117 netdev_init_queues(dev);
5118
5119 INIT_LIST_HEAD(&dev->napi_list);
5120 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5121 setup(dev);
5122 strcpy(dev->name, name);
5123 return dev;
5124
5125 free_tx:
5126 kfree(tx);
5127
5128 free_p:
5129 kfree(p);
5130 return NULL;
5131 }
5132 EXPORT_SYMBOL(alloc_netdev_mq);
5133
5134 /**
5135 * free_netdev - free network device
5136 * @dev: device
5137 *
5138 * This function does the last stage of destroying an allocated device
5139 * interface. The reference to the device object is released.
5140 * If this is the last reference then it will be freed.
5141 */
5142 void free_netdev(struct net_device *dev)
5143 {
5144 struct napi_struct *p, *n;
5145
5146 release_net(dev_net(dev));
5147
5148 kfree(dev->_tx);
5149
5150 /* Flush device addresses */
5151 dev_addr_flush(dev);
5152
5153 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5154 netif_napi_del(p);
5155
5156 /* Compatibility with error handling in drivers */
5157 if (dev->reg_state == NETREG_UNINITIALIZED) {
5158 kfree((char *)dev - dev->padded);
5159 return;
5160 }
5161
5162 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5163 dev->reg_state = NETREG_RELEASED;
5164
5165 /* will free via device release */
5166 put_device(&dev->dev);
5167 }
5168
5169 /**
5170 * synchronize_net - Synchronize with packet receive processing
5171 *
5172 * Wait for packets currently being received to be done.
5173 * Does not block later packets from starting.
5174 */
5175 void synchronize_net(void)
5176 {
5177 might_sleep();
5178 synchronize_rcu();
5179 }
5180
5181 /**
5182 * unregister_netdevice - remove device from the kernel
5183 * @dev: device
5184 *
5185 * This function shuts down a device interface and removes it
5186 * from the kernel tables.
5187 *
5188 * Callers must hold the rtnl semaphore. You may want
5189 * unregister_netdev() instead of this.
5190 */
5191
5192 void unregister_netdevice(struct net_device *dev)
5193 {
5194 ASSERT_RTNL();
5195
5196 rollback_registered(dev);
5197 /* Finish processing unregister after unlock */
5198 net_set_todo(dev);
5199 }
5200
5201 /**
5202 * unregister_netdev - remove device from the kernel
5203 * @dev: device
5204 *
5205 * This function shuts down a device interface and removes it
5206 * from the kernel tables.
5207 *
5208 * This is just a wrapper for unregister_netdevice that takes
5209 * the rtnl semaphore. In general you want to use this and not
5210 * unregister_netdevice.
5211 */
5212 void unregister_netdev(struct net_device *dev)
5213 {
5214 rtnl_lock();
5215 unregister_netdevice(dev);
5216 rtnl_unlock();
5217 }
5218
5219 EXPORT_SYMBOL(unregister_netdev);
5220
5221 /**
5222 * dev_change_net_namespace - move device to different nethost namespace
5223 * @dev: device
5224 * @net: network namespace
5225 * @pat: If not NULL name pattern to try if the current device name
5226 * is already taken in the destination network namespace.
5227 *
5228 * This function shuts down a device interface and moves it
5229 * to a new network namespace. On success 0 is returned, on
5230 * a failure a netagive errno code is returned.
5231 *
5232 * Callers must hold the rtnl semaphore.
5233 */
5234
5235 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5236 {
5237 char buf[IFNAMSIZ];
5238 const char *destname;
5239 int err;
5240
5241 ASSERT_RTNL();
5242
5243 /* Don't allow namespace local devices to be moved. */
5244 err = -EINVAL;
5245 if (dev->features & NETIF_F_NETNS_LOCAL)
5246 goto out;
5247
5248 #ifdef CONFIG_SYSFS
5249 /* Don't allow real devices to be moved when sysfs
5250 * is enabled.
5251 */
5252 err = -EINVAL;
5253 if (dev->dev.parent)
5254 goto out;
5255 #endif
5256
5257 /* Ensure the device has been registrered */
5258 err = -EINVAL;
5259 if (dev->reg_state != NETREG_REGISTERED)
5260 goto out;
5261
5262 /* Get out if there is nothing todo */
5263 err = 0;
5264 if (net_eq(dev_net(dev), net))
5265 goto out;
5266
5267 /* Pick the destination device name, and ensure
5268 * we can use it in the destination network namespace.
5269 */
5270 err = -EEXIST;
5271 destname = dev->name;
5272 if (__dev_get_by_name(net, destname)) {
5273 /* We get here if we can't use the current device name */
5274 if (!pat)
5275 goto out;
5276 if (!dev_valid_name(pat))
5277 goto out;
5278 if (strchr(pat, '%')) {
5279 if (__dev_alloc_name(net, pat, buf) < 0)
5280 goto out;
5281 destname = buf;
5282 } else
5283 destname = pat;
5284 if (__dev_get_by_name(net, destname))
5285 goto out;
5286 }
5287
5288 /*
5289 * And now a mini version of register_netdevice unregister_netdevice.
5290 */
5291
5292 /* If device is running close it first. */
5293 dev_close(dev);
5294
5295 /* And unlink it from device chain */
5296 err = -ENODEV;
5297 unlist_netdevice(dev);
5298
5299 synchronize_net();
5300
5301 /* Shutdown queueing discipline. */
5302 dev_shutdown(dev);
5303
5304 /* Notify protocols, that we are about to destroy
5305 this device. They should clean all the things.
5306 */
5307 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5308
5309 /*
5310 * Flush the unicast and multicast chains
5311 */
5312 dev_unicast_flush(dev);
5313 dev_addr_discard(dev);
5314
5315 netdev_unregister_kobject(dev);
5316
5317 /* Actually switch the network namespace */
5318 dev_net_set(dev, net);
5319
5320 /* Assign the new device name */
5321 if (destname != dev->name)
5322 strcpy(dev->name, destname);
5323
5324 /* If there is an ifindex conflict assign a new one */
5325 if (__dev_get_by_index(net, dev->ifindex)) {
5326 int iflink = (dev->iflink == dev->ifindex);
5327 dev->ifindex = dev_new_index(net);
5328 if (iflink)
5329 dev->iflink = dev->ifindex;
5330 }
5331
5332 /* Fixup kobjects */
5333 err = netdev_register_kobject(dev);
5334 WARN_ON(err);
5335
5336 /* Add the device back in the hashes */
5337 list_netdevice(dev);
5338
5339 /* Notify protocols, that a new device appeared. */
5340 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5341
5342 synchronize_net();
5343 err = 0;
5344 out:
5345 return err;
5346 }
5347
5348 static int dev_cpu_callback(struct notifier_block *nfb,
5349 unsigned long action,
5350 void *ocpu)
5351 {
5352 struct sk_buff **list_skb;
5353 struct Qdisc **list_net;
5354 struct sk_buff *skb;
5355 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5356 struct softnet_data *sd, *oldsd;
5357
5358 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5359 return NOTIFY_OK;
5360
5361 local_irq_disable();
5362 cpu = smp_processor_id();
5363 sd = &per_cpu(softnet_data, cpu);
5364 oldsd = &per_cpu(softnet_data, oldcpu);
5365
5366 /* Find end of our completion_queue. */
5367 list_skb = &sd->completion_queue;
5368 while (*list_skb)
5369 list_skb = &(*list_skb)->next;
5370 /* Append completion queue from offline CPU. */
5371 *list_skb = oldsd->completion_queue;
5372 oldsd->completion_queue = NULL;
5373
5374 /* Find end of our output_queue. */
5375 list_net = &sd->output_queue;
5376 while (*list_net)
5377 list_net = &(*list_net)->next_sched;
5378 /* Append output queue from offline CPU. */
5379 *list_net = oldsd->output_queue;
5380 oldsd->output_queue = NULL;
5381
5382 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5383 local_irq_enable();
5384
5385 /* Process offline CPU's input_pkt_queue */
5386 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5387 netif_rx(skb);
5388
5389 return NOTIFY_OK;
5390 }
5391
5392
5393 /**
5394 * netdev_increment_features - increment feature set by one
5395 * @all: current feature set
5396 * @one: new feature set
5397 * @mask: mask feature set
5398 *
5399 * Computes a new feature set after adding a device with feature set
5400 * @one to the master device with current feature set @all. Will not
5401 * enable anything that is off in @mask. Returns the new feature set.
5402 */
5403 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5404 unsigned long mask)
5405 {
5406 /* If device needs checksumming, downgrade to it. */
5407 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5408 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5409 else if (mask & NETIF_F_ALL_CSUM) {
5410 /* If one device supports v4/v6 checksumming, set for all. */
5411 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5412 !(all & NETIF_F_GEN_CSUM)) {
5413 all &= ~NETIF_F_ALL_CSUM;
5414 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5415 }
5416
5417 /* If one device supports hw checksumming, set for all. */
5418 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5419 all &= ~NETIF_F_ALL_CSUM;
5420 all |= NETIF_F_HW_CSUM;
5421 }
5422 }
5423
5424 one |= NETIF_F_ALL_CSUM;
5425
5426 one |= all & NETIF_F_ONE_FOR_ALL;
5427 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5428 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5429
5430 return all;
5431 }
5432 EXPORT_SYMBOL(netdev_increment_features);
5433
5434 static struct hlist_head *netdev_create_hash(void)
5435 {
5436 int i;
5437 struct hlist_head *hash;
5438
5439 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5440 if (hash != NULL)
5441 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5442 INIT_HLIST_HEAD(&hash[i]);
5443
5444 return hash;
5445 }
5446
5447 /* Initialize per network namespace state */
5448 static int __net_init netdev_init(struct net *net)
5449 {
5450 INIT_LIST_HEAD(&net->dev_base_head);
5451
5452 net->dev_name_head = netdev_create_hash();
5453 if (net->dev_name_head == NULL)
5454 goto err_name;
5455
5456 net->dev_index_head = netdev_create_hash();
5457 if (net->dev_index_head == NULL)
5458 goto err_idx;
5459
5460 return 0;
5461
5462 err_idx:
5463 kfree(net->dev_name_head);
5464 err_name:
5465 return -ENOMEM;
5466 }
5467
5468 /**
5469 * netdev_drivername - network driver for the device
5470 * @dev: network device
5471 * @buffer: buffer for resulting name
5472 * @len: size of buffer
5473 *
5474 * Determine network driver for device.
5475 */
5476 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5477 {
5478 const struct device_driver *driver;
5479 const struct device *parent;
5480
5481 if (len <= 0 || !buffer)
5482 return buffer;
5483 buffer[0] = 0;
5484
5485 parent = dev->dev.parent;
5486
5487 if (!parent)
5488 return buffer;
5489
5490 driver = parent->driver;
5491 if (driver && driver->name)
5492 strlcpy(buffer, driver->name, len);
5493 return buffer;
5494 }
5495
5496 static void __net_exit netdev_exit(struct net *net)
5497 {
5498 kfree(net->dev_name_head);
5499 kfree(net->dev_index_head);
5500 }
5501
5502 static struct pernet_operations __net_initdata netdev_net_ops = {
5503 .init = netdev_init,
5504 .exit = netdev_exit,
5505 };
5506
5507 static void __net_exit default_device_exit(struct net *net)
5508 {
5509 struct net_device *dev;
5510 /*
5511 * Push all migratable of the network devices back to the
5512 * initial network namespace
5513 */
5514 rtnl_lock();
5515 restart:
5516 for_each_netdev(net, dev) {
5517 int err;
5518 char fb_name[IFNAMSIZ];
5519
5520 /* Ignore unmoveable devices (i.e. loopback) */
5521 if (dev->features & NETIF_F_NETNS_LOCAL)
5522 continue;
5523
5524 /* Delete virtual devices */
5525 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5526 dev->rtnl_link_ops->dellink(dev);
5527 goto restart;
5528 }
5529
5530 /* Push remaing network devices to init_net */
5531 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5532 err = dev_change_net_namespace(dev, &init_net, fb_name);
5533 if (err) {
5534 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5535 __func__, dev->name, err);
5536 BUG();
5537 }
5538 goto restart;
5539 }
5540 rtnl_unlock();
5541 }
5542
5543 static struct pernet_operations __net_initdata default_device_ops = {
5544 .exit = default_device_exit,
5545 };
5546
5547 /*
5548 * Initialize the DEV module. At boot time this walks the device list and
5549 * unhooks any devices that fail to initialise (normally hardware not
5550 * present) and leaves us with a valid list of present and active devices.
5551 *
5552 */
5553
5554 /*
5555 * This is called single threaded during boot, so no need
5556 * to take the rtnl semaphore.
5557 */
5558 static int __init net_dev_init(void)
5559 {
5560 int i, rc = -ENOMEM;
5561
5562 BUG_ON(!dev_boot_phase);
5563
5564 if (dev_proc_init())
5565 goto out;
5566
5567 if (netdev_kobject_init())
5568 goto out;
5569
5570 INIT_LIST_HEAD(&ptype_all);
5571 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5572 INIT_LIST_HEAD(&ptype_base[i]);
5573
5574 if (register_pernet_subsys(&netdev_net_ops))
5575 goto out;
5576
5577 /*
5578 * Initialise the packet receive queues.
5579 */
5580
5581 for_each_possible_cpu(i) {
5582 struct softnet_data *queue;
5583
5584 queue = &per_cpu(softnet_data, i);
5585 skb_queue_head_init(&queue->input_pkt_queue);
5586 queue->completion_queue = NULL;
5587 INIT_LIST_HEAD(&queue->poll_list);
5588
5589 queue->backlog.poll = process_backlog;
5590 queue->backlog.weight = weight_p;
5591 queue->backlog.gro_list = NULL;
5592 queue->backlog.gro_count = 0;
5593 }
5594
5595 dev_boot_phase = 0;
5596
5597 /* The loopback device is special if any other network devices
5598 * is present in a network namespace the loopback device must
5599 * be present. Since we now dynamically allocate and free the
5600 * loopback device ensure this invariant is maintained by
5601 * keeping the loopback device as the first device on the
5602 * list of network devices. Ensuring the loopback devices
5603 * is the first device that appears and the last network device
5604 * that disappears.
5605 */
5606 if (register_pernet_device(&loopback_net_ops))
5607 goto out;
5608
5609 if (register_pernet_device(&default_device_ops))
5610 goto out;
5611
5612 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5613 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5614
5615 hotcpu_notifier(dev_cpu_callback, 0);
5616 dst_init();
5617 dev_mcast_init();
5618 rc = 0;
5619 out:
5620 return rc;
5621 }
5622
5623 subsys_initcall(net_dev_init);
5624
5625 static int __init initialize_hashrnd(void)
5626 {
5627 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5628 return 0;
5629 }
5630
5631 late_initcall_sync(initialize_hashrnd);
5632
5633 EXPORT_SYMBOL(__dev_get_by_index);
5634 EXPORT_SYMBOL(__dev_get_by_name);
5635 EXPORT_SYMBOL(__dev_remove_pack);
5636 EXPORT_SYMBOL(dev_valid_name);
5637 EXPORT_SYMBOL(dev_add_pack);
5638 EXPORT_SYMBOL(dev_alloc_name);
5639 EXPORT_SYMBOL(dev_close);
5640 EXPORT_SYMBOL(dev_get_by_flags);
5641 EXPORT_SYMBOL(dev_get_by_index);
5642 EXPORT_SYMBOL(dev_get_by_name);
5643 EXPORT_SYMBOL(dev_open);
5644 EXPORT_SYMBOL(dev_queue_xmit);
5645 EXPORT_SYMBOL(dev_remove_pack);
5646 EXPORT_SYMBOL(dev_set_allmulti);
5647 EXPORT_SYMBOL(dev_set_promiscuity);
5648 EXPORT_SYMBOL(dev_change_flags);
5649 EXPORT_SYMBOL(dev_set_mtu);
5650 EXPORT_SYMBOL(dev_set_mac_address);
5651 EXPORT_SYMBOL(free_netdev);
5652 EXPORT_SYMBOL(netdev_boot_setup_check);
5653 EXPORT_SYMBOL(netdev_set_master);
5654 EXPORT_SYMBOL(netdev_state_change);
5655 EXPORT_SYMBOL(netif_receive_skb);
5656 EXPORT_SYMBOL(netif_rx);
5657 EXPORT_SYMBOL(register_gifconf);
5658 EXPORT_SYMBOL(register_netdevice);
5659 EXPORT_SYMBOL(register_netdevice_notifier);
5660 EXPORT_SYMBOL(skb_checksum_help);
5661 EXPORT_SYMBOL(synchronize_net);
5662 EXPORT_SYMBOL(unregister_netdevice);
5663 EXPORT_SYMBOL(unregister_netdevice_notifier);
5664 EXPORT_SYMBOL(net_enable_timestamp);
5665 EXPORT_SYMBOL(net_disable_timestamp);
5666 EXPORT_SYMBOL(dev_get_flags);
5667
5668 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5669 EXPORT_SYMBOL(br_handle_frame_hook);
5670 EXPORT_SYMBOL(br_fdb_get_hook);
5671 EXPORT_SYMBOL(br_fdb_put_hook);
5672 #endif
5673
5674 EXPORT_SYMBOL(dev_load);
5675
5676 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.134381 seconds and 4 git commands to generate.