net offloading: Pass features into netif_needs_gso().
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr_rcu - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device. The caller must hold RCU
753 * The returned device has not had its ref count increased
754 * and the caller must therefore be careful about locking
755 *
756 */
757
758 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
759 const char *ha)
760 {
761 struct net_device *dev;
762
763 for_each_netdev_rcu(net, dev)
764 if (dev->type == type &&
765 !memcmp(dev->dev_addr, ha, dev->addr_len))
766 return dev;
767
768 return NULL;
769 }
770 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
771
772 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
773 {
774 struct net_device *dev;
775
776 ASSERT_RTNL();
777 for_each_netdev(net, dev)
778 if (dev->type == type)
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
784
785 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev, *ret = NULL;
788
789 rcu_read_lock();
790 for_each_netdev_rcu(net, dev)
791 if (dev->type == type) {
792 dev_hold(dev);
793 ret = dev;
794 break;
795 }
796 rcu_read_unlock();
797 return ret;
798 }
799 EXPORT_SYMBOL(dev_getfirstbyhwtype);
800
801 /**
802 * dev_get_by_flags_rcu - find any device with given flags
803 * @net: the applicable net namespace
804 * @if_flags: IFF_* values
805 * @mask: bitmask of bits in if_flags to check
806 *
807 * Search for any interface with the given flags. Returns NULL if a device
808 * is not found or a pointer to the device. Must be called inside
809 * rcu_read_lock(), and result refcount is unchanged.
810 */
811
812 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
813 unsigned short mask)
814 {
815 struct net_device *dev, *ret;
816
817 ret = NULL;
818 for_each_netdev_rcu(net, dev) {
819 if (((dev->flags ^ if_flags) & mask) == 0) {
820 ret = dev;
821 break;
822 }
823 }
824 return ret;
825 }
826 EXPORT_SYMBOL(dev_get_by_flags_rcu);
827
828 /**
829 * dev_valid_name - check if name is okay for network device
830 * @name: name string
831 *
832 * Network device names need to be valid file names to
833 * to allow sysfs to work. We also disallow any kind of
834 * whitespace.
835 */
836 int dev_valid_name(const char *name)
837 {
838 if (*name == '\0')
839 return 0;
840 if (strlen(name) >= IFNAMSIZ)
841 return 0;
842 if (!strcmp(name, ".") || !strcmp(name, ".."))
843 return 0;
844
845 while (*name) {
846 if (*name == '/' || isspace(*name))
847 return 0;
848 name++;
849 }
850 return 1;
851 }
852 EXPORT_SYMBOL(dev_valid_name);
853
854 /**
855 * __dev_alloc_name - allocate a name for a device
856 * @net: network namespace to allocate the device name in
857 * @name: name format string
858 * @buf: scratch buffer and result name string
859 *
860 * Passed a format string - eg "lt%d" it will try and find a suitable
861 * id. It scans list of devices to build up a free map, then chooses
862 * the first empty slot. The caller must hold the dev_base or rtnl lock
863 * while allocating the name and adding the device in order to avoid
864 * duplicates.
865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866 * Returns the number of the unit assigned or a negative errno code.
867 */
868
869 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
870 {
871 int i = 0;
872 const char *p;
873 const int max_netdevices = 8*PAGE_SIZE;
874 unsigned long *inuse;
875 struct net_device *d;
876
877 p = strnchr(name, IFNAMSIZ-1, '%');
878 if (p) {
879 /*
880 * Verify the string as this thing may have come from
881 * the user. There must be either one "%d" and no other "%"
882 * characters.
883 */
884 if (p[1] != 'd' || strchr(p + 2, '%'))
885 return -EINVAL;
886
887 /* Use one page as a bit array of possible slots */
888 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
889 if (!inuse)
890 return -ENOMEM;
891
892 for_each_netdev(net, d) {
893 if (!sscanf(d->name, name, &i))
894 continue;
895 if (i < 0 || i >= max_netdevices)
896 continue;
897
898 /* avoid cases where sscanf is not exact inverse of printf */
899 snprintf(buf, IFNAMSIZ, name, i);
900 if (!strncmp(buf, d->name, IFNAMSIZ))
901 set_bit(i, inuse);
902 }
903
904 i = find_first_zero_bit(inuse, max_netdevices);
905 free_page((unsigned long) inuse);
906 }
907
908 if (buf != name)
909 snprintf(buf, IFNAMSIZ, name, i);
910 if (!__dev_get_by_name(net, buf))
911 return i;
912
913 /* It is possible to run out of possible slots
914 * when the name is long and there isn't enough space left
915 * for the digits, or if all bits are used.
916 */
917 return -ENFILE;
918 }
919
920 /**
921 * dev_alloc_name - allocate a name for a device
922 * @dev: device
923 * @name: name format string
924 *
925 * Passed a format string - eg "lt%d" it will try and find a suitable
926 * id. It scans list of devices to build up a free map, then chooses
927 * the first empty slot. The caller must hold the dev_base or rtnl lock
928 * while allocating the name and adding the device in order to avoid
929 * duplicates.
930 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
931 * Returns the number of the unit assigned or a negative errno code.
932 */
933
934 int dev_alloc_name(struct net_device *dev, const char *name)
935 {
936 char buf[IFNAMSIZ];
937 struct net *net;
938 int ret;
939
940 BUG_ON(!dev_net(dev));
941 net = dev_net(dev);
942 ret = __dev_alloc_name(net, name, buf);
943 if (ret >= 0)
944 strlcpy(dev->name, buf, IFNAMSIZ);
945 return ret;
946 }
947 EXPORT_SYMBOL(dev_alloc_name);
948
949 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
950 {
951 struct net *net;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955
956 if (!dev_valid_name(name))
957 return -EINVAL;
958
959 if (fmt && strchr(name, '%'))
960 return dev_alloc_name(dev, name);
961 else if (__dev_get_by_name(net, name))
962 return -EEXIST;
963 else if (dev->name != name)
964 strlcpy(dev->name, name, IFNAMSIZ);
965
966 return 0;
967 }
968
969 /**
970 * dev_change_name - change name of a device
971 * @dev: device
972 * @newname: name (or format string) must be at least IFNAMSIZ
973 *
974 * Change name of a device, can pass format strings "eth%d".
975 * for wildcarding.
976 */
977 int dev_change_name(struct net_device *dev, const char *newname)
978 {
979 char oldname[IFNAMSIZ];
980 int err = 0;
981 int ret;
982 struct net *net;
983
984 ASSERT_RTNL();
985 BUG_ON(!dev_net(dev));
986
987 net = dev_net(dev);
988 if (dev->flags & IFF_UP)
989 return -EBUSY;
990
991 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
992 return 0;
993
994 memcpy(oldname, dev->name, IFNAMSIZ);
995
996 err = dev_get_valid_name(dev, newname, 1);
997 if (err < 0)
998 return err;
999
1000 rollback:
1001 ret = device_rename(&dev->dev, dev->name);
1002 if (ret) {
1003 memcpy(dev->name, oldname, IFNAMSIZ);
1004 return ret;
1005 }
1006
1007 write_lock_bh(&dev_base_lock);
1008 hlist_del(&dev->name_hlist);
1009 write_unlock_bh(&dev_base_lock);
1010
1011 synchronize_rcu();
1012
1013 write_lock_bh(&dev_base_lock);
1014 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1015 write_unlock_bh(&dev_base_lock);
1016
1017 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1018 ret = notifier_to_errno(ret);
1019
1020 if (ret) {
1021 /* err >= 0 after dev_alloc_name() or stores the first errno */
1022 if (err >= 0) {
1023 err = ret;
1024 memcpy(dev->name, oldname, IFNAMSIZ);
1025 goto rollback;
1026 } else {
1027 printk(KERN_ERR
1028 "%s: name change rollback failed: %d.\n",
1029 dev->name, ret);
1030 }
1031 }
1032
1033 return err;
1034 }
1035
1036 /**
1037 * dev_set_alias - change ifalias of a device
1038 * @dev: device
1039 * @alias: name up to IFALIASZ
1040 * @len: limit of bytes to copy from info
1041 *
1042 * Set ifalias for a device,
1043 */
1044 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1045 {
1046 ASSERT_RTNL();
1047
1048 if (len >= IFALIASZ)
1049 return -EINVAL;
1050
1051 if (!len) {
1052 if (dev->ifalias) {
1053 kfree(dev->ifalias);
1054 dev->ifalias = NULL;
1055 }
1056 return 0;
1057 }
1058
1059 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1060 if (!dev->ifalias)
1061 return -ENOMEM;
1062
1063 strlcpy(dev->ifalias, alias, len+1);
1064 return len;
1065 }
1066
1067
1068 /**
1069 * netdev_features_change - device changes features
1070 * @dev: device to cause notification
1071 *
1072 * Called to indicate a device has changed features.
1073 */
1074 void netdev_features_change(struct net_device *dev)
1075 {
1076 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1077 }
1078 EXPORT_SYMBOL(netdev_features_change);
1079
1080 /**
1081 * netdev_state_change - device changes state
1082 * @dev: device to cause notification
1083 *
1084 * Called to indicate a device has changed state. This function calls
1085 * the notifier chains for netdev_chain and sends a NEWLINK message
1086 * to the routing socket.
1087 */
1088 void netdev_state_change(struct net_device *dev)
1089 {
1090 if (dev->flags & IFF_UP) {
1091 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1092 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1093 }
1094 }
1095 EXPORT_SYMBOL(netdev_state_change);
1096
1097 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1098 {
1099 return call_netdevice_notifiers(event, dev);
1100 }
1101 EXPORT_SYMBOL(netdev_bonding_change);
1102
1103 /**
1104 * dev_load - load a network module
1105 * @net: the applicable net namespace
1106 * @name: name of interface
1107 *
1108 * If a network interface is not present and the process has suitable
1109 * privileges this function loads the module. If module loading is not
1110 * available in this kernel then it becomes a nop.
1111 */
1112
1113 void dev_load(struct net *net, const char *name)
1114 {
1115 struct net_device *dev;
1116
1117 rcu_read_lock();
1118 dev = dev_get_by_name_rcu(net, name);
1119 rcu_read_unlock();
1120
1121 if (!dev && capable(CAP_NET_ADMIN))
1122 request_module("%s", name);
1123 }
1124 EXPORT_SYMBOL(dev_load);
1125
1126 static int __dev_open(struct net_device *dev)
1127 {
1128 const struct net_device_ops *ops = dev->netdev_ops;
1129 int ret;
1130
1131 ASSERT_RTNL();
1132
1133 /*
1134 * Is it even present?
1135 */
1136 if (!netif_device_present(dev))
1137 return -ENODEV;
1138
1139 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1140 ret = notifier_to_errno(ret);
1141 if (ret)
1142 return ret;
1143
1144 /*
1145 * Call device private open method
1146 */
1147 set_bit(__LINK_STATE_START, &dev->state);
1148
1149 if (ops->ndo_validate_addr)
1150 ret = ops->ndo_validate_addr(dev);
1151
1152 if (!ret && ops->ndo_open)
1153 ret = ops->ndo_open(dev);
1154
1155 /*
1156 * If it went open OK then:
1157 */
1158
1159 if (ret)
1160 clear_bit(__LINK_STATE_START, &dev->state);
1161 else {
1162 /*
1163 * Set the flags.
1164 */
1165 dev->flags |= IFF_UP;
1166
1167 /*
1168 * Enable NET_DMA
1169 */
1170 net_dmaengine_get();
1171
1172 /*
1173 * Initialize multicasting status
1174 */
1175 dev_set_rx_mode(dev);
1176
1177 /*
1178 * Wakeup transmit queue engine
1179 */
1180 dev_activate(dev);
1181 }
1182
1183 return ret;
1184 }
1185
1186 /**
1187 * dev_open - prepare an interface for use.
1188 * @dev: device to open
1189 *
1190 * Takes a device from down to up state. The device's private open
1191 * function is invoked and then the multicast lists are loaded. Finally
1192 * the device is moved into the up state and a %NETDEV_UP message is
1193 * sent to the netdev notifier chain.
1194 *
1195 * Calling this function on an active interface is a nop. On a failure
1196 * a negative errno code is returned.
1197 */
1198 int dev_open(struct net_device *dev)
1199 {
1200 int ret;
1201
1202 /*
1203 * Is it already up?
1204 */
1205 if (dev->flags & IFF_UP)
1206 return 0;
1207
1208 /*
1209 * Open device
1210 */
1211 ret = __dev_open(dev);
1212 if (ret < 0)
1213 return ret;
1214
1215 /*
1216 * ... and announce new interface.
1217 */
1218 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1219 call_netdevice_notifiers(NETDEV_UP, dev);
1220
1221 return ret;
1222 }
1223 EXPORT_SYMBOL(dev_open);
1224
1225 static int __dev_close_many(struct list_head *head)
1226 {
1227 struct net_device *dev;
1228
1229 ASSERT_RTNL();
1230 might_sleep();
1231
1232 list_for_each_entry(dev, head, unreg_list) {
1233 /*
1234 * Tell people we are going down, so that they can
1235 * prepare to death, when device is still operating.
1236 */
1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1238
1239 clear_bit(__LINK_STATE_START, &dev->state);
1240
1241 /* Synchronize to scheduled poll. We cannot touch poll list, it
1242 * can be even on different cpu. So just clear netif_running().
1243 *
1244 * dev->stop() will invoke napi_disable() on all of it's
1245 * napi_struct instances on this device.
1246 */
1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1248 }
1249
1250 dev_deactivate_many(head);
1251
1252 list_for_each_entry(dev, head, unreg_list) {
1253 const struct net_device_ops *ops = dev->netdev_ops;
1254
1255 /*
1256 * Call the device specific close. This cannot fail.
1257 * Only if device is UP
1258 *
1259 * We allow it to be called even after a DETACH hot-plug
1260 * event.
1261 */
1262 if (ops->ndo_stop)
1263 ops->ndo_stop(dev);
1264
1265 /*
1266 * Device is now down.
1267 */
1268
1269 dev->flags &= ~IFF_UP;
1270
1271 /*
1272 * Shutdown NET_DMA
1273 */
1274 net_dmaengine_put();
1275 }
1276
1277 return 0;
1278 }
1279
1280 static int __dev_close(struct net_device *dev)
1281 {
1282 LIST_HEAD(single);
1283
1284 list_add(&dev->unreg_list, &single);
1285 return __dev_close_many(&single);
1286 }
1287
1288 int dev_close_many(struct list_head *head)
1289 {
1290 struct net_device *dev, *tmp;
1291 LIST_HEAD(tmp_list);
1292
1293 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1294 if (!(dev->flags & IFF_UP))
1295 list_move(&dev->unreg_list, &tmp_list);
1296
1297 __dev_close_many(head);
1298
1299 /*
1300 * Tell people we are down
1301 */
1302 list_for_each_entry(dev, head, unreg_list) {
1303 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1304 call_netdevice_notifiers(NETDEV_DOWN, dev);
1305 }
1306
1307 /* rollback_registered_many needs the complete original list */
1308 list_splice(&tmp_list, head);
1309 return 0;
1310 }
1311
1312 /**
1313 * dev_close - shutdown an interface.
1314 * @dev: device to shutdown
1315 *
1316 * This function moves an active device into down state. A
1317 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1318 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1319 * chain.
1320 */
1321 int dev_close(struct net_device *dev)
1322 {
1323 LIST_HEAD(single);
1324
1325 list_add(&dev->unreg_list, &single);
1326 dev_close_many(&single);
1327
1328 return 0;
1329 }
1330 EXPORT_SYMBOL(dev_close);
1331
1332
1333 /**
1334 * dev_disable_lro - disable Large Receive Offload on a device
1335 * @dev: device
1336 *
1337 * Disable Large Receive Offload (LRO) on a net device. Must be
1338 * called under RTNL. This is needed if received packets may be
1339 * forwarded to another interface.
1340 */
1341 void dev_disable_lro(struct net_device *dev)
1342 {
1343 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1344 dev->ethtool_ops->set_flags) {
1345 u32 flags = dev->ethtool_ops->get_flags(dev);
1346 if (flags & ETH_FLAG_LRO) {
1347 flags &= ~ETH_FLAG_LRO;
1348 dev->ethtool_ops->set_flags(dev, flags);
1349 }
1350 }
1351 WARN_ON(dev->features & NETIF_F_LRO);
1352 }
1353 EXPORT_SYMBOL(dev_disable_lro);
1354
1355
1356 static int dev_boot_phase = 1;
1357
1358 /*
1359 * Device change register/unregister. These are not inline or static
1360 * as we export them to the world.
1361 */
1362
1363 /**
1364 * register_netdevice_notifier - register a network notifier block
1365 * @nb: notifier
1366 *
1367 * Register a notifier to be called when network device events occur.
1368 * The notifier passed is linked into the kernel structures and must
1369 * not be reused until it has been unregistered. A negative errno code
1370 * is returned on a failure.
1371 *
1372 * When registered all registration and up events are replayed
1373 * to the new notifier to allow device to have a race free
1374 * view of the network device list.
1375 */
1376
1377 int register_netdevice_notifier(struct notifier_block *nb)
1378 {
1379 struct net_device *dev;
1380 struct net_device *last;
1381 struct net *net;
1382 int err;
1383
1384 rtnl_lock();
1385 err = raw_notifier_chain_register(&netdev_chain, nb);
1386 if (err)
1387 goto unlock;
1388 if (dev_boot_phase)
1389 goto unlock;
1390 for_each_net(net) {
1391 for_each_netdev(net, dev) {
1392 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1393 err = notifier_to_errno(err);
1394 if (err)
1395 goto rollback;
1396
1397 if (!(dev->flags & IFF_UP))
1398 continue;
1399
1400 nb->notifier_call(nb, NETDEV_UP, dev);
1401 }
1402 }
1403
1404 unlock:
1405 rtnl_unlock();
1406 return err;
1407
1408 rollback:
1409 last = dev;
1410 for_each_net(net) {
1411 for_each_netdev(net, dev) {
1412 if (dev == last)
1413 break;
1414
1415 if (dev->flags & IFF_UP) {
1416 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1417 nb->notifier_call(nb, NETDEV_DOWN, dev);
1418 }
1419 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1420 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1421 }
1422 }
1423
1424 raw_notifier_chain_unregister(&netdev_chain, nb);
1425 goto unlock;
1426 }
1427 EXPORT_SYMBOL(register_netdevice_notifier);
1428
1429 /**
1430 * unregister_netdevice_notifier - unregister a network notifier block
1431 * @nb: notifier
1432 *
1433 * Unregister a notifier previously registered by
1434 * register_netdevice_notifier(). The notifier is unlinked into the
1435 * kernel structures and may then be reused. A negative errno code
1436 * is returned on a failure.
1437 */
1438
1439 int unregister_netdevice_notifier(struct notifier_block *nb)
1440 {
1441 int err;
1442
1443 rtnl_lock();
1444 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1445 rtnl_unlock();
1446 return err;
1447 }
1448 EXPORT_SYMBOL(unregister_netdevice_notifier);
1449
1450 /**
1451 * call_netdevice_notifiers - call all network notifier blocks
1452 * @val: value passed unmodified to notifier function
1453 * @dev: net_device pointer passed unmodified to notifier function
1454 *
1455 * Call all network notifier blocks. Parameters and return value
1456 * are as for raw_notifier_call_chain().
1457 */
1458
1459 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1460 {
1461 ASSERT_RTNL();
1462 return raw_notifier_call_chain(&netdev_chain, val, dev);
1463 }
1464
1465 /* When > 0 there are consumers of rx skb time stamps */
1466 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1467
1468 void net_enable_timestamp(void)
1469 {
1470 atomic_inc(&netstamp_needed);
1471 }
1472 EXPORT_SYMBOL(net_enable_timestamp);
1473
1474 void net_disable_timestamp(void)
1475 {
1476 atomic_dec(&netstamp_needed);
1477 }
1478 EXPORT_SYMBOL(net_disable_timestamp);
1479
1480 static inline void net_timestamp_set(struct sk_buff *skb)
1481 {
1482 if (atomic_read(&netstamp_needed))
1483 __net_timestamp(skb);
1484 else
1485 skb->tstamp.tv64 = 0;
1486 }
1487
1488 static inline void net_timestamp_check(struct sk_buff *skb)
1489 {
1490 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1491 __net_timestamp(skb);
1492 }
1493
1494 /**
1495 * dev_forward_skb - loopback an skb to another netif
1496 *
1497 * @dev: destination network device
1498 * @skb: buffer to forward
1499 *
1500 * return values:
1501 * NET_RX_SUCCESS (no congestion)
1502 * NET_RX_DROP (packet was dropped, but freed)
1503 *
1504 * dev_forward_skb can be used for injecting an skb from the
1505 * start_xmit function of one device into the receive queue
1506 * of another device.
1507 *
1508 * The receiving device may be in another namespace, so
1509 * we have to clear all information in the skb that could
1510 * impact namespace isolation.
1511 */
1512 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1513 {
1514 skb_orphan(skb);
1515 nf_reset(skb);
1516
1517 if (unlikely(!(dev->flags & IFF_UP) ||
1518 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1519 atomic_long_inc(&dev->rx_dropped);
1520 kfree_skb(skb);
1521 return NET_RX_DROP;
1522 }
1523 skb_set_dev(skb, dev);
1524 skb->tstamp.tv64 = 0;
1525 skb->pkt_type = PACKET_HOST;
1526 skb->protocol = eth_type_trans(skb, dev);
1527 return netif_rx(skb);
1528 }
1529 EXPORT_SYMBOL_GPL(dev_forward_skb);
1530
1531 static inline int deliver_skb(struct sk_buff *skb,
1532 struct packet_type *pt_prev,
1533 struct net_device *orig_dev)
1534 {
1535 atomic_inc(&skb->users);
1536 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1537 }
1538
1539 /*
1540 * Support routine. Sends outgoing frames to any network
1541 * taps currently in use.
1542 */
1543
1544 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1545 {
1546 struct packet_type *ptype;
1547 struct sk_buff *skb2 = NULL;
1548 struct packet_type *pt_prev = NULL;
1549
1550 rcu_read_lock();
1551 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1552 /* Never send packets back to the socket
1553 * they originated from - MvS (miquels@drinkel.ow.org)
1554 */
1555 if ((ptype->dev == dev || !ptype->dev) &&
1556 (ptype->af_packet_priv == NULL ||
1557 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1558 if (pt_prev) {
1559 deliver_skb(skb2, pt_prev, skb->dev);
1560 pt_prev = ptype;
1561 continue;
1562 }
1563
1564 skb2 = skb_clone(skb, GFP_ATOMIC);
1565 if (!skb2)
1566 break;
1567
1568 net_timestamp_set(skb2);
1569
1570 /* skb->nh should be correctly
1571 set by sender, so that the second statement is
1572 just protection against buggy protocols.
1573 */
1574 skb_reset_mac_header(skb2);
1575
1576 if (skb_network_header(skb2) < skb2->data ||
1577 skb2->network_header > skb2->tail) {
1578 if (net_ratelimit())
1579 printk(KERN_CRIT "protocol %04x is "
1580 "buggy, dev %s\n",
1581 ntohs(skb2->protocol),
1582 dev->name);
1583 skb_reset_network_header(skb2);
1584 }
1585
1586 skb2->transport_header = skb2->network_header;
1587 skb2->pkt_type = PACKET_OUTGOING;
1588 pt_prev = ptype;
1589 }
1590 }
1591 if (pt_prev)
1592 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1593 rcu_read_unlock();
1594 }
1595
1596 /*
1597 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1598 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1599 */
1600 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1601 {
1602 int rc;
1603
1604 if (txq < 1 || txq > dev->num_tx_queues)
1605 return -EINVAL;
1606
1607 if (dev->reg_state == NETREG_REGISTERED) {
1608 ASSERT_RTNL();
1609
1610 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1611 txq);
1612 if (rc)
1613 return rc;
1614
1615 if (txq < dev->real_num_tx_queues)
1616 qdisc_reset_all_tx_gt(dev, txq);
1617 }
1618
1619 dev->real_num_tx_queues = txq;
1620 return 0;
1621 }
1622 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1623
1624 #ifdef CONFIG_RPS
1625 /**
1626 * netif_set_real_num_rx_queues - set actual number of RX queues used
1627 * @dev: Network device
1628 * @rxq: Actual number of RX queues
1629 *
1630 * This must be called either with the rtnl_lock held or before
1631 * registration of the net device. Returns 0 on success, or a
1632 * negative error code. If called before registration, it always
1633 * succeeds.
1634 */
1635 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1636 {
1637 int rc;
1638
1639 if (rxq < 1 || rxq > dev->num_rx_queues)
1640 return -EINVAL;
1641
1642 if (dev->reg_state == NETREG_REGISTERED) {
1643 ASSERT_RTNL();
1644
1645 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1646 rxq);
1647 if (rc)
1648 return rc;
1649 }
1650
1651 dev->real_num_rx_queues = rxq;
1652 return 0;
1653 }
1654 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1655 #endif
1656
1657 static inline void __netif_reschedule(struct Qdisc *q)
1658 {
1659 struct softnet_data *sd;
1660 unsigned long flags;
1661
1662 local_irq_save(flags);
1663 sd = &__get_cpu_var(softnet_data);
1664 q->next_sched = NULL;
1665 *sd->output_queue_tailp = q;
1666 sd->output_queue_tailp = &q->next_sched;
1667 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1668 local_irq_restore(flags);
1669 }
1670
1671 void __netif_schedule(struct Qdisc *q)
1672 {
1673 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1674 __netif_reschedule(q);
1675 }
1676 EXPORT_SYMBOL(__netif_schedule);
1677
1678 void dev_kfree_skb_irq(struct sk_buff *skb)
1679 {
1680 if (atomic_dec_and_test(&skb->users)) {
1681 struct softnet_data *sd;
1682 unsigned long flags;
1683
1684 local_irq_save(flags);
1685 sd = &__get_cpu_var(softnet_data);
1686 skb->next = sd->completion_queue;
1687 sd->completion_queue = skb;
1688 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1689 local_irq_restore(flags);
1690 }
1691 }
1692 EXPORT_SYMBOL(dev_kfree_skb_irq);
1693
1694 void dev_kfree_skb_any(struct sk_buff *skb)
1695 {
1696 if (in_irq() || irqs_disabled())
1697 dev_kfree_skb_irq(skb);
1698 else
1699 dev_kfree_skb(skb);
1700 }
1701 EXPORT_SYMBOL(dev_kfree_skb_any);
1702
1703
1704 /**
1705 * netif_device_detach - mark device as removed
1706 * @dev: network device
1707 *
1708 * Mark device as removed from system and therefore no longer available.
1709 */
1710 void netif_device_detach(struct net_device *dev)
1711 {
1712 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1713 netif_running(dev)) {
1714 netif_tx_stop_all_queues(dev);
1715 }
1716 }
1717 EXPORT_SYMBOL(netif_device_detach);
1718
1719 /**
1720 * netif_device_attach - mark device as attached
1721 * @dev: network device
1722 *
1723 * Mark device as attached from system and restart if needed.
1724 */
1725 void netif_device_attach(struct net_device *dev)
1726 {
1727 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1728 netif_running(dev)) {
1729 netif_tx_wake_all_queues(dev);
1730 __netdev_watchdog_up(dev);
1731 }
1732 }
1733 EXPORT_SYMBOL(netif_device_attach);
1734
1735 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1736 {
1737 return ((features & NETIF_F_GEN_CSUM) ||
1738 ((features & NETIF_F_V4_CSUM) &&
1739 protocol == htons(ETH_P_IP)) ||
1740 ((features & NETIF_F_V6_CSUM) &&
1741 protocol == htons(ETH_P_IPV6)) ||
1742 ((features & NETIF_F_FCOE_CRC) &&
1743 protocol == htons(ETH_P_FCOE)));
1744 }
1745
1746 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1747 {
1748 __be16 protocol = skb->protocol;
1749 int features = dev->features;
1750
1751 if (vlan_tx_tag_present(skb)) {
1752 features &= dev->vlan_features;
1753 } else if (protocol == htons(ETH_P_8021Q)) {
1754 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1755 protocol = veh->h_vlan_encapsulated_proto;
1756 features &= dev->vlan_features;
1757 }
1758
1759 return can_checksum_protocol(features, protocol);
1760 }
1761
1762 /**
1763 * skb_dev_set -- assign a new device to a buffer
1764 * @skb: buffer for the new device
1765 * @dev: network device
1766 *
1767 * If an skb is owned by a device already, we have to reset
1768 * all data private to the namespace a device belongs to
1769 * before assigning it a new device.
1770 */
1771 #ifdef CONFIG_NET_NS
1772 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1773 {
1774 skb_dst_drop(skb);
1775 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1776 secpath_reset(skb);
1777 nf_reset(skb);
1778 skb_init_secmark(skb);
1779 skb->mark = 0;
1780 skb->priority = 0;
1781 skb->nf_trace = 0;
1782 skb->ipvs_property = 0;
1783 #ifdef CONFIG_NET_SCHED
1784 skb->tc_index = 0;
1785 #endif
1786 }
1787 skb->dev = dev;
1788 }
1789 EXPORT_SYMBOL(skb_set_dev);
1790 #endif /* CONFIG_NET_NS */
1791
1792 /*
1793 * Invalidate hardware checksum when packet is to be mangled, and
1794 * complete checksum manually on outgoing path.
1795 */
1796 int skb_checksum_help(struct sk_buff *skb)
1797 {
1798 __wsum csum;
1799 int ret = 0, offset;
1800
1801 if (skb->ip_summed == CHECKSUM_COMPLETE)
1802 goto out_set_summed;
1803
1804 if (unlikely(skb_shinfo(skb)->gso_size)) {
1805 /* Let GSO fix up the checksum. */
1806 goto out_set_summed;
1807 }
1808
1809 offset = skb_checksum_start_offset(skb);
1810 BUG_ON(offset >= skb_headlen(skb));
1811 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1812
1813 offset += skb->csum_offset;
1814 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1815
1816 if (skb_cloned(skb) &&
1817 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1818 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1819 if (ret)
1820 goto out;
1821 }
1822
1823 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1824 out_set_summed:
1825 skb->ip_summed = CHECKSUM_NONE;
1826 out:
1827 return ret;
1828 }
1829 EXPORT_SYMBOL(skb_checksum_help);
1830
1831 /**
1832 * skb_gso_segment - Perform segmentation on skb.
1833 * @skb: buffer to segment
1834 * @features: features for the output path (see dev->features)
1835 *
1836 * This function segments the given skb and returns a list of segments.
1837 *
1838 * It may return NULL if the skb requires no segmentation. This is
1839 * only possible when GSO is used for verifying header integrity.
1840 */
1841 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1842 {
1843 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1844 struct packet_type *ptype;
1845 __be16 type = skb->protocol;
1846 int vlan_depth = ETH_HLEN;
1847 int err;
1848
1849 while (type == htons(ETH_P_8021Q)) {
1850 struct vlan_hdr *vh;
1851
1852 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1853 return ERR_PTR(-EINVAL);
1854
1855 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1856 type = vh->h_vlan_encapsulated_proto;
1857 vlan_depth += VLAN_HLEN;
1858 }
1859
1860 skb_reset_mac_header(skb);
1861 skb->mac_len = skb->network_header - skb->mac_header;
1862 __skb_pull(skb, skb->mac_len);
1863
1864 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1865 struct net_device *dev = skb->dev;
1866 struct ethtool_drvinfo info = {};
1867
1868 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1869 dev->ethtool_ops->get_drvinfo(dev, &info);
1870
1871 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1872 info.driver, dev ? dev->features : 0L,
1873 skb->sk ? skb->sk->sk_route_caps : 0L,
1874 skb->len, skb->data_len, skb->ip_summed);
1875
1876 if (skb_header_cloned(skb) &&
1877 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1878 return ERR_PTR(err);
1879 }
1880
1881 rcu_read_lock();
1882 list_for_each_entry_rcu(ptype,
1883 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1884 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1885 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1886 err = ptype->gso_send_check(skb);
1887 segs = ERR_PTR(err);
1888 if (err || skb_gso_ok(skb, features))
1889 break;
1890 __skb_push(skb, (skb->data -
1891 skb_network_header(skb)));
1892 }
1893 segs = ptype->gso_segment(skb, features);
1894 break;
1895 }
1896 }
1897 rcu_read_unlock();
1898
1899 __skb_push(skb, skb->data - skb_mac_header(skb));
1900
1901 return segs;
1902 }
1903 EXPORT_SYMBOL(skb_gso_segment);
1904
1905 /* Take action when hardware reception checksum errors are detected. */
1906 #ifdef CONFIG_BUG
1907 void netdev_rx_csum_fault(struct net_device *dev)
1908 {
1909 if (net_ratelimit()) {
1910 printk(KERN_ERR "%s: hw csum failure.\n",
1911 dev ? dev->name : "<unknown>");
1912 dump_stack();
1913 }
1914 }
1915 EXPORT_SYMBOL(netdev_rx_csum_fault);
1916 #endif
1917
1918 /* Actually, we should eliminate this check as soon as we know, that:
1919 * 1. IOMMU is present and allows to map all the memory.
1920 * 2. No high memory really exists on this machine.
1921 */
1922
1923 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1924 {
1925 #ifdef CONFIG_HIGHMEM
1926 int i;
1927 if (!(dev->features & NETIF_F_HIGHDMA)) {
1928 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1929 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1930 return 1;
1931 }
1932
1933 if (PCI_DMA_BUS_IS_PHYS) {
1934 struct device *pdev = dev->dev.parent;
1935
1936 if (!pdev)
1937 return 0;
1938 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1939 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1940 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1941 return 1;
1942 }
1943 }
1944 #endif
1945 return 0;
1946 }
1947
1948 struct dev_gso_cb {
1949 void (*destructor)(struct sk_buff *skb);
1950 };
1951
1952 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1953
1954 static void dev_gso_skb_destructor(struct sk_buff *skb)
1955 {
1956 struct dev_gso_cb *cb;
1957
1958 do {
1959 struct sk_buff *nskb = skb->next;
1960
1961 skb->next = nskb->next;
1962 nskb->next = NULL;
1963 kfree_skb(nskb);
1964 } while (skb->next);
1965
1966 cb = DEV_GSO_CB(skb);
1967 if (cb->destructor)
1968 cb->destructor(skb);
1969 }
1970
1971 /**
1972 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1973 * @skb: buffer to segment
1974 *
1975 * This function segments the given skb and stores the list of segments
1976 * in skb->next.
1977 */
1978 static int dev_gso_segment(struct sk_buff *skb)
1979 {
1980 struct net_device *dev = skb->dev;
1981 struct sk_buff *segs;
1982 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1983 NETIF_F_SG : 0);
1984
1985 segs = skb_gso_segment(skb, features);
1986
1987 /* Verifying header integrity only. */
1988 if (!segs)
1989 return 0;
1990
1991 if (IS_ERR(segs))
1992 return PTR_ERR(segs);
1993
1994 skb->next = segs;
1995 DEV_GSO_CB(skb)->destructor = skb->destructor;
1996 skb->destructor = dev_gso_skb_destructor;
1997
1998 return 0;
1999 }
2000
2001 /*
2002 * Try to orphan skb early, right before transmission by the device.
2003 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2004 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2005 */
2006 static inline void skb_orphan_try(struct sk_buff *skb)
2007 {
2008 struct sock *sk = skb->sk;
2009
2010 if (sk && !skb_shinfo(skb)->tx_flags) {
2011 /* skb_tx_hash() wont be able to get sk.
2012 * We copy sk_hash into skb->rxhash
2013 */
2014 if (!skb->rxhash)
2015 skb->rxhash = sk->sk_hash;
2016 skb_orphan(skb);
2017 }
2018 }
2019
2020 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features)
2021 {
2022 if (!can_checksum_protocol(protocol, features)) {
2023 features &= ~NETIF_F_ALL_CSUM;
2024 features &= ~NETIF_F_SG;
2025 } else if (illegal_highdma(skb->dev, skb)) {
2026 features &= ~NETIF_F_SG;
2027 }
2028
2029 return features;
2030 }
2031
2032 int netif_skb_features(struct sk_buff *skb)
2033 {
2034 __be16 protocol = skb->protocol;
2035 int features = skb->dev->features;
2036
2037 if (protocol == htons(ETH_P_8021Q)) {
2038 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2039 protocol = veh->h_vlan_encapsulated_proto;
2040 } else if (!vlan_tx_tag_present(skb)) {
2041 return harmonize_features(skb, protocol, features);
2042 }
2043
2044 features &= skb->dev->vlan_features;
2045
2046 if (protocol != htons(ETH_P_8021Q)) {
2047 return harmonize_features(skb, protocol, features);
2048 } else {
2049 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2050 NETIF_F_GEN_CSUM;
2051 return harmonize_features(skb, protocol, features);
2052 }
2053 }
2054 EXPORT_SYMBOL(netif_skb_features);
2055
2056 /*
2057 * Returns true if either:
2058 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2059 * 2. skb is fragmented and the device does not support SG, or if
2060 * at least one of fragments is in highmem and device does not
2061 * support DMA from it.
2062 */
2063 static inline int skb_needs_linearize(struct sk_buff *skb,
2064 struct net_device *dev)
2065 {
2066 if (skb_is_nonlinear(skb)) {
2067 int features = dev->features;
2068
2069 if (vlan_tx_tag_present(skb))
2070 features &= dev->vlan_features;
2071
2072 return (skb_has_frag_list(skb) &&
2073 !(features & NETIF_F_FRAGLIST)) ||
2074 (skb_shinfo(skb)->nr_frags &&
2075 (!(features & NETIF_F_SG) ||
2076 illegal_highdma(dev, skb)));
2077 }
2078
2079 return 0;
2080 }
2081
2082 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2083 struct netdev_queue *txq)
2084 {
2085 const struct net_device_ops *ops = dev->netdev_ops;
2086 int rc = NETDEV_TX_OK;
2087
2088 if (likely(!skb->next)) {
2089 int features;
2090
2091 /*
2092 * If device doesnt need skb->dst, release it right now while
2093 * its hot in this cpu cache
2094 */
2095 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2096 skb_dst_drop(skb);
2097
2098 if (!list_empty(&ptype_all))
2099 dev_queue_xmit_nit(skb, dev);
2100
2101 skb_orphan_try(skb);
2102
2103 features = netif_skb_features(skb);
2104
2105 if (vlan_tx_tag_present(skb) &&
2106 !(features & NETIF_F_HW_VLAN_TX)) {
2107 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2108 if (unlikely(!skb))
2109 goto out;
2110
2111 skb->vlan_tci = 0;
2112 }
2113
2114 if (netif_needs_gso(skb, features)) {
2115 if (unlikely(dev_gso_segment(skb)))
2116 goto out_kfree_skb;
2117 if (skb->next)
2118 goto gso;
2119 } else {
2120 if (skb_needs_linearize(skb, dev) &&
2121 __skb_linearize(skb))
2122 goto out_kfree_skb;
2123
2124 /* If packet is not checksummed and device does not
2125 * support checksumming for this protocol, complete
2126 * checksumming here.
2127 */
2128 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2129 skb_set_transport_header(skb,
2130 skb_checksum_start_offset(skb));
2131 if (!dev_can_checksum(dev, skb) &&
2132 skb_checksum_help(skb))
2133 goto out_kfree_skb;
2134 }
2135 }
2136
2137 rc = ops->ndo_start_xmit(skb, dev);
2138 trace_net_dev_xmit(skb, rc);
2139 if (rc == NETDEV_TX_OK)
2140 txq_trans_update(txq);
2141 return rc;
2142 }
2143
2144 gso:
2145 do {
2146 struct sk_buff *nskb = skb->next;
2147
2148 skb->next = nskb->next;
2149 nskb->next = NULL;
2150
2151 /*
2152 * If device doesnt need nskb->dst, release it right now while
2153 * its hot in this cpu cache
2154 */
2155 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2156 skb_dst_drop(nskb);
2157
2158 rc = ops->ndo_start_xmit(nskb, dev);
2159 trace_net_dev_xmit(nskb, rc);
2160 if (unlikely(rc != NETDEV_TX_OK)) {
2161 if (rc & ~NETDEV_TX_MASK)
2162 goto out_kfree_gso_skb;
2163 nskb->next = skb->next;
2164 skb->next = nskb;
2165 return rc;
2166 }
2167 txq_trans_update(txq);
2168 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2169 return NETDEV_TX_BUSY;
2170 } while (skb->next);
2171
2172 out_kfree_gso_skb:
2173 if (likely(skb->next == NULL))
2174 skb->destructor = DEV_GSO_CB(skb)->destructor;
2175 out_kfree_skb:
2176 kfree_skb(skb);
2177 out:
2178 return rc;
2179 }
2180
2181 static u32 hashrnd __read_mostly;
2182
2183 /*
2184 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2185 * to be used as a distribution range.
2186 */
2187 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2188 unsigned int num_tx_queues)
2189 {
2190 u32 hash;
2191
2192 if (skb_rx_queue_recorded(skb)) {
2193 hash = skb_get_rx_queue(skb);
2194 while (unlikely(hash >= num_tx_queues))
2195 hash -= num_tx_queues;
2196 return hash;
2197 }
2198
2199 if (skb->sk && skb->sk->sk_hash)
2200 hash = skb->sk->sk_hash;
2201 else
2202 hash = (__force u16) skb->protocol ^ skb->rxhash;
2203 hash = jhash_1word(hash, hashrnd);
2204
2205 return (u16) (((u64) hash * num_tx_queues) >> 32);
2206 }
2207 EXPORT_SYMBOL(__skb_tx_hash);
2208
2209 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2210 {
2211 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2212 if (net_ratelimit()) {
2213 pr_warning("%s selects TX queue %d, but "
2214 "real number of TX queues is %d\n",
2215 dev->name, queue_index, dev->real_num_tx_queues);
2216 }
2217 return 0;
2218 }
2219 return queue_index;
2220 }
2221
2222 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2223 {
2224 #ifdef CONFIG_XPS
2225 struct xps_dev_maps *dev_maps;
2226 struct xps_map *map;
2227 int queue_index = -1;
2228
2229 rcu_read_lock();
2230 dev_maps = rcu_dereference(dev->xps_maps);
2231 if (dev_maps) {
2232 map = rcu_dereference(
2233 dev_maps->cpu_map[raw_smp_processor_id()]);
2234 if (map) {
2235 if (map->len == 1)
2236 queue_index = map->queues[0];
2237 else {
2238 u32 hash;
2239 if (skb->sk && skb->sk->sk_hash)
2240 hash = skb->sk->sk_hash;
2241 else
2242 hash = (__force u16) skb->protocol ^
2243 skb->rxhash;
2244 hash = jhash_1word(hash, hashrnd);
2245 queue_index = map->queues[
2246 ((u64)hash * map->len) >> 32];
2247 }
2248 if (unlikely(queue_index >= dev->real_num_tx_queues))
2249 queue_index = -1;
2250 }
2251 }
2252 rcu_read_unlock();
2253
2254 return queue_index;
2255 #else
2256 return -1;
2257 #endif
2258 }
2259
2260 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2261 struct sk_buff *skb)
2262 {
2263 int queue_index;
2264 const struct net_device_ops *ops = dev->netdev_ops;
2265
2266 if (dev->real_num_tx_queues == 1)
2267 queue_index = 0;
2268 else if (ops->ndo_select_queue) {
2269 queue_index = ops->ndo_select_queue(dev, skb);
2270 queue_index = dev_cap_txqueue(dev, queue_index);
2271 } else {
2272 struct sock *sk = skb->sk;
2273 queue_index = sk_tx_queue_get(sk);
2274
2275 if (queue_index < 0 || skb->ooo_okay ||
2276 queue_index >= dev->real_num_tx_queues) {
2277 int old_index = queue_index;
2278
2279 queue_index = get_xps_queue(dev, skb);
2280 if (queue_index < 0)
2281 queue_index = skb_tx_hash(dev, skb);
2282
2283 if (queue_index != old_index && sk) {
2284 struct dst_entry *dst =
2285 rcu_dereference_check(sk->sk_dst_cache, 1);
2286
2287 if (dst && skb_dst(skb) == dst)
2288 sk_tx_queue_set(sk, queue_index);
2289 }
2290 }
2291 }
2292
2293 skb_set_queue_mapping(skb, queue_index);
2294 return netdev_get_tx_queue(dev, queue_index);
2295 }
2296
2297 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2298 struct net_device *dev,
2299 struct netdev_queue *txq)
2300 {
2301 spinlock_t *root_lock = qdisc_lock(q);
2302 bool contended = qdisc_is_running(q);
2303 int rc;
2304
2305 /*
2306 * Heuristic to force contended enqueues to serialize on a
2307 * separate lock before trying to get qdisc main lock.
2308 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2309 * and dequeue packets faster.
2310 */
2311 if (unlikely(contended))
2312 spin_lock(&q->busylock);
2313
2314 spin_lock(root_lock);
2315 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2316 kfree_skb(skb);
2317 rc = NET_XMIT_DROP;
2318 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2319 qdisc_run_begin(q)) {
2320 /*
2321 * This is a work-conserving queue; there are no old skbs
2322 * waiting to be sent out; and the qdisc is not running -
2323 * xmit the skb directly.
2324 */
2325 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2326 skb_dst_force(skb);
2327 __qdisc_update_bstats(q, skb->len);
2328 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2329 if (unlikely(contended)) {
2330 spin_unlock(&q->busylock);
2331 contended = false;
2332 }
2333 __qdisc_run(q);
2334 } else
2335 qdisc_run_end(q);
2336
2337 rc = NET_XMIT_SUCCESS;
2338 } else {
2339 skb_dst_force(skb);
2340 rc = qdisc_enqueue_root(skb, q);
2341 if (qdisc_run_begin(q)) {
2342 if (unlikely(contended)) {
2343 spin_unlock(&q->busylock);
2344 contended = false;
2345 }
2346 __qdisc_run(q);
2347 }
2348 }
2349 spin_unlock(root_lock);
2350 if (unlikely(contended))
2351 spin_unlock(&q->busylock);
2352 return rc;
2353 }
2354
2355 static DEFINE_PER_CPU(int, xmit_recursion);
2356 #define RECURSION_LIMIT 10
2357
2358 /**
2359 * dev_queue_xmit - transmit a buffer
2360 * @skb: buffer to transmit
2361 *
2362 * Queue a buffer for transmission to a network device. The caller must
2363 * have set the device and priority and built the buffer before calling
2364 * this function. The function can be called from an interrupt.
2365 *
2366 * A negative errno code is returned on a failure. A success does not
2367 * guarantee the frame will be transmitted as it may be dropped due
2368 * to congestion or traffic shaping.
2369 *
2370 * -----------------------------------------------------------------------------------
2371 * I notice this method can also return errors from the queue disciplines,
2372 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2373 * be positive.
2374 *
2375 * Regardless of the return value, the skb is consumed, so it is currently
2376 * difficult to retry a send to this method. (You can bump the ref count
2377 * before sending to hold a reference for retry if you are careful.)
2378 *
2379 * When calling this method, interrupts MUST be enabled. This is because
2380 * the BH enable code must have IRQs enabled so that it will not deadlock.
2381 * --BLG
2382 */
2383 int dev_queue_xmit(struct sk_buff *skb)
2384 {
2385 struct net_device *dev = skb->dev;
2386 struct netdev_queue *txq;
2387 struct Qdisc *q;
2388 int rc = -ENOMEM;
2389
2390 /* Disable soft irqs for various locks below. Also
2391 * stops preemption for RCU.
2392 */
2393 rcu_read_lock_bh();
2394
2395 txq = dev_pick_tx(dev, skb);
2396 q = rcu_dereference_bh(txq->qdisc);
2397
2398 #ifdef CONFIG_NET_CLS_ACT
2399 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2400 #endif
2401 trace_net_dev_queue(skb);
2402 if (q->enqueue) {
2403 rc = __dev_xmit_skb(skb, q, dev, txq);
2404 goto out;
2405 }
2406
2407 /* The device has no queue. Common case for software devices:
2408 loopback, all the sorts of tunnels...
2409
2410 Really, it is unlikely that netif_tx_lock protection is necessary
2411 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2412 counters.)
2413 However, it is possible, that they rely on protection
2414 made by us here.
2415
2416 Check this and shot the lock. It is not prone from deadlocks.
2417 Either shot noqueue qdisc, it is even simpler 8)
2418 */
2419 if (dev->flags & IFF_UP) {
2420 int cpu = smp_processor_id(); /* ok because BHs are off */
2421
2422 if (txq->xmit_lock_owner != cpu) {
2423
2424 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2425 goto recursion_alert;
2426
2427 HARD_TX_LOCK(dev, txq, cpu);
2428
2429 if (!netif_tx_queue_stopped(txq)) {
2430 __this_cpu_inc(xmit_recursion);
2431 rc = dev_hard_start_xmit(skb, dev, txq);
2432 __this_cpu_dec(xmit_recursion);
2433 if (dev_xmit_complete(rc)) {
2434 HARD_TX_UNLOCK(dev, txq);
2435 goto out;
2436 }
2437 }
2438 HARD_TX_UNLOCK(dev, txq);
2439 if (net_ratelimit())
2440 printk(KERN_CRIT "Virtual device %s asks to "
2441 "queue packet!\n", dev->name);
2442 } else {
2443 /* Recursion is detected! It is possible,
2444 * unfortunately
2445 */
2446 recursion_alert:
2447 if (net_ratelimit())
2448 printk(KERN_CRIT "Dead loop on virtual device "
2449 "%s, fix it urgently!\n", dev->name);
2450 }
2451 }
2452
2453 rc = -ENETDOWN;
2454 rcu_read_unlock_bh();
2455
2456 kfree_skb(skb);
2457 return rc;
2458 out:
2459 rcu_read_unlock_bh();
2460 return rc;
2461 }
2462 EXPORT_SYMBOL(dev_queue_xmit);
2463
2464
2465 /*=======================================================================
2466 Receiver routines
2467 =======================================================================*/
2468
2469 int netdev_max_backlog __read_mostly = 1000;
2470 int netdev_tstamp_prequeue __read_mostly = 1;
2471 int netdev_budget __read_mostly = 300;
2472 int weight_p __read_mostly = 64; /* old backlog weight */
2473
2474 /* Called with irq disabled */
2475 static inline void ____napi_schedule(struct softnet_data *sd,
2476 struct napi_struct *napi)
2477 {
2478 list_add_tail(&napi->poll_list, &sd->poll_list);
2479 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2480 }
2481
2482 /*
2483 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2484 * and src/dst port numbers. Returns a non-zero hash number on success
2485 * and 0 on failure.
2486 */
2487 __u32 __skb_get_rxhash(struct sk_buff *skb)
2488 {
2489 int nhoff, hash = 0, poff;
2490 struct ipv6hdr *ip6;
2491 struct iphdr *ip;
2492 u8 ip_proto;
2493 u32 addr1, addr2, ihl;
2494 union {
2495 u32 v32;
2496 u16 v16[2];
2497 } ports;
2498
2499 nhoff = skb_network_offset(skb);
2500
2501 switch (skb->protocol) {
2502 case __constant_htons(ETH_P_IP):
2503 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2504 goto done;
2505
2506 ip = (struct iphdr *) (skb->data + nhoff);
2507 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2508 ip_proto = 0;
2509 else
2510 ip_proto = ip->protocol;
2511 addr1 = (__force u32) ip->saddr;
2512 addr2 = (__force u32) ip->daddr;
2513 ihl = ip->ihl;
2514 break;
2515 case __constant_htons(ETH_P_IPV6):
2516 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2517 goto done;
2518
2519 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2520 ip_proto = ip6->nexthdr;
2521 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2522 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2523 ihl = (40 >> 2);
2524 break;
2525 default:
2526 goto done;
2527 }
2528
2529 ports.v32 = 0;
2530 poff = proto_ports_offset(ip_proto);
2531 if (poff >= 0) {
2532 nhoff += ihl * 4 + poff;
2533 if (pskb_may_pull(skb, nhoff + 4)) {
2534 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2535 if (ports.v16[1] < ports.v16[0])
2536 swap(ports.v16[0], ports.v16[1]);
2537 }
2538 }
2539
2540 /* get a consistent hash (same value on both flow directions) */
2541 if (addr2 < addr1)
2542 swap(addr1, addr2);
2543
2544 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2545 if (!hash)
2546 hash = 1;
2547
2548 done:
2549 return hash;
2550 }
2551 EXPORT_SYMBOL(__skb_get_rxhash);
2552
2553 #ifdef CONFIG_RPS
2554
2555 /* One global table that all flow-based protocols share. */
2556 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2557 EXPORT_SYMBOL(rps_sock_flow_table);
2558
2559 /*
2560 * get_rps_cpu is called from netif_receive_skb and returns the target
2561 * CPU from the RPS map of the receiving queue for a given skb.
2562 * rcu_read_lock must be held on entry.
2563 */
2564 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2565 struct rps_dev_flow **rflowp)
2566 {
2567 struct netdev_rx_queue *rxqueue;
2568 struct rps_map *map;
2569 struct rps_dev_flow_table *flow_table;
2570 struct rps_sock_flow_table *sock_flow_table;
2571 int cpu = -1;
2572 u16 tcpu;
2573
2574 if (skb_rx_queue_recorded(skb)) {
2575 u16 index = skb_get_rx_queue(skb);
2576 if (unlikely(index >= dev->real_num_rx_queues)) {
2577 WARN_ONCE(dev->real_num_rx_queues > 1,
2578 "%s received packet on queue %u, but number "
2579 "of RX queues is %u\n",
2580 dev->name, index, dev->real_num_rx_queues);
2581 goto done;
2582 }
2583 rxqueue = dev->_rx + index;
2584 } else
2585 rxqueue = dev->_rx;
2586
2587 map = rcu_dereference(rxqueue->rps_map);
2588 if (map) {
2589 if (map->len == 1) {
2590 tcpu = map->cpus[0];
2591 if (cpu_online(tcpu))
2592 cpu = tcpu;
2593 goto done;
2594 }
2595 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2596 goto done;
2597 }
2598
2599 skb_reset_network_header(skb);
2600 if (!skb_get_rxhash(skb))
2601 goto done;
2602
2603 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2604 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2605 if (flow_table && sock_flow_table) {
2606 u16 next_cpu;
2607 struct rps_dev_flow *rflow;
2608
2609 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2610 tcpu = rflow->cpu;
2611
2612 next_cpu = sock_flow_table->ents[skb->rxhash &
2613 sock_flow_table->mask];
2614
2615 /*
2616 * If the desired CPU (where last recvmsg was done) is
2617 * different from current CPU (one in the rx-queue flow
2618 * table entry), switch if one of the following holds:
2619 * - Current CPU is unset (equal to RPS_NO_CPU).
2620 * - Current CPU is offline.
2621 * - The current CPU's queue tail has advanced beyond the
2622 * last packet that was enqueued using this table entry.
2623 * This guarantees that all previous packets for the flow
2624 * have been dequeued, thus preserving in order delivery.
2625 */
2626 if (unlikely(tcpu != next_cpu) &&
2627 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2628 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2629 rflow->last_qtail)) >= 0)) {
2630 tcpu = rflow->cpu = next_cpu;
2631 if (tcpu != RPS_NO_CPU)
2632 rflow->last_qtail = per_cpu(softnet_data,
2633 tcpu).input_queue_head;
2634 }
2635 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2636 *rflowp = rflow;
2637 cpu = tcpu;
2638 goto done;
2639 }
2640 }
2641
2642 if (map) {
2643 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2644
2645 if (cpu_online(tcpu)) {
2646 cpu = tcpu;
2647 goto done;
2648 }
2649 }
2650
2651 done:
2652 return cpu;
2653 }
2654
2655 /* Called from hardirq (IPI) context */
2656 static void rps_trigger_softirq(void *data)
2657 {
2658 struct softnet_data *sd = data;
2659
2660 ____napi_schedule(sd, &sd->backlog);
2661 sd->received_rps++;
2662 }
2663
2664 #endif /* CONFIG_RPS */
2665
2666 /*
2667 * Check if this softnet_data structure is another cpu one
2668 * If yes, queue it to our IPI list and return 1
2669 * If no, return 0
2670 */
2671 static int rps_ipi_queued(struct softnet_data *sd)
2672 {
2673 #ifdef CONFIG_RPS
2674 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2675
2676 if (sd != mysd) {
2677 sd->rps_ipi_next = mysd->rps_ipi_list;
2678 mysd->rps_ipi_list = sd;
2679
2680 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2681 return 1;
2682 }
2683 #endif /* CONFIG_RPS */
2684 return 0;
2685 }
2686
2687 /*
2688 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2689 * queue (may be a remote CPU queue).
2690 */
2691 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2692 unsigned int *qtail)
2693 {
2694 struct softnet_data *sd;
2695 unsigned long flags;
2696
2697 sd = &per_cpu(softnet_data, cpu);
2698
2699 local_irq_save(flags);
2700
2701 rps_lock(sd);
2702 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2703 if (skb_queue_len(&sd->input_pkt_queue)) {
2704 enqueue:
2705 __skb_queue_tail(&sd->input_pkt_queue, skb);
2706 input_queue_tail_incr_save(sd, qtail);
2707 rps_unlock(sd);
2708 local_irq_restore(flags);
2709 return NET_RX_SUCCESS;
2710 }
2711
2712 /* Schedule NAPI for backlog device
2713 * We can use non atomic operation since we own the queue lock
2714 */
2715 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2716 if (!rps_ipi_queued(sd))
2717 ____napi_schedule(sd, &sd->backlog);
2718 }
2719 goto enqueue;
2720 }
2721
2722 sd->dropped++;
2723 rps_unlock(sd);
2724
2725 local_irq_restore(flags);
2726
2727 atomic_long_inc(&skb->dev->rx_dropped);
2728 kfree_skb(skb);
2729 return NET_RX_DROP;
2730 }
2731
2732 /**
2733 * netif_rx - post buffer to the network code
2734 * @skb: buffer to post
2735 *
2736 * This function receives a packet from a device driver and queues it for
2737 * the upper (protocol) levels to process. It always succeeds. The buffer
2738 * may be dropped during processing for congestion control or by the
2739 * protocol layers.
2740 *
2741 * return values:
2742 * NET_RX_SUCCESS (no congestion)
2743 * NET_RX_DROP (packet was dropped)
2744 *
2745 */
2746
2747 int netif_rx(struct sk_buff *skb)
2748 {
2749 int ret;
2750
2751 /* if netpoll wants it, pretend we never saw it */
2752 if (netpoll_rx(skb))
2753 return NET_RX_DROP;
2754
2755 if (netdev_tstamp_prequeue)
2756 net_timestamp_check(skb);
2757
2758 trace_netif_rx(skb);
2759 #ifdef CONFIG_RPS
2760 {
2761 struct rps_dev_flow voidflow, *rflow = &voidflow;
2762 int cpu;
2763
2764 preempt_disable();
2765 rcu_read_lock();
2766
2767 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2768 if (cpu < 0)
2769 cpu = smp_processor_id();
2770
2771 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2772
2773 rcu_read_unlock();
2774 preempt_enable();
2775 }
2776 #else
2777 {
2778 unsigned int qtail;
2779 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2780 put_cpu();
2781 }
2782 #endif
2783 return ret;
2784 }
2785 EXPORT_SYMBOL(netif_rx);
2786
2787 int netif_rx_ni(struct sk_buff *skb)
2788 {
2789 int err;
2790
2791 preempt_disable();
2792 err = netif_rx(skb);
2793 if (local_softirq_pending())
2794 do_softirq();
2795 preempt_enable();
2796
2797 return err;
2798 }
2799 EXPORT_SYMBOL(netif_rx_ni);
2800
2801 static void net_tx_action(struct softirq_action *h)
2802 {
2803 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2804
2805 if (sd->completion_queue) {
2806 struct sk_buff *clist;
2807
2808 local_irq_disable();
2809 clist = sd->completion_queue;
2810 sd->completion_queue = NULL;
2811 local_irq_enable();
2812
2813 while (clist) {
2814 struct sk_buff *skb = clist;
2815 clist = clist->next;
2816
2817 WARN_ON(atomic_read(&skb->users));
2818 trace_kfree_skb(skb, net_tx_action);
2819 __kfree_skb(skb);
2820 }
2821 }
2822
2823 if (sd->output_queue) {
2824 struct Qdisc *head;
2825
2826 local_irq_disable();
2827 head = sd->output_queue;
2828 sd->output_queue = NULL;
2829 sd->output_queue_tailp = &sd->output_queue;
2830 local_irq_enable();
2831
2832 while (head) {
2833 struct Qdisc *q = head;
2834 spinlock_t *root_lock;
2835
2836 head = head->next_sched;
2837
2838 root_lock = qdisc_lock(q);
2839 if (spin_trylock(root_lock)) {
2840 smp_mb__before_clear_bit();
2841 clear_bit(__QDISC_STATE_SCHED,
2842 &q->state);
2843 qdisc_run(q);
2844 spin_unlock(root_lock);
2845 } else {
2846 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2847 &q->state)) {
2848 __netif_reschedule(q);
2849 } else {
2850 smp_mb__before_clear_bit();
2851 clear_bit(__QDISC_STATE_SCHED,
2852 &q->state);
2853 }
2854 }
2855 }
2856 }
2857 }
2858
2859 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2860 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2861 /* This hook is defined here for ATM LANE */
2862 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2863 unsigned char *addr) __read_mostly;
2864 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2865 #endif
2866
2867 #ifdef CONFIG_NET_CLS_ACT
2868 /* TODO: Maybe we should just force sch_ingress to be compiled in
2869 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2870 * a compare and 2 stores extra right now if we dont have it on
2871 * but have CONFIG_NET_CLS_ACT
2872 * NOTE: This doesnt stop any functionality; if you dont have
2873 * the ingress scheduler, you just cant add policies on ingress.
2874 *
2875 */
2876 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2877 {
2878 struct net_device *dev = skb->dev;
2879 u32 ttl = G_TC_RTTL(skb->tc_verd);
2880 int result = TC_ACT_OK;
2881 struct Qdisc *q;
2882
2883 if (unlikely(MAX_RED_LOOP < ttl++)) {
2884 if (net_ratelimit())
2885 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2886 skb->skb_iif, dev->ifindex);
2887 return TC_ACT_SHOT;
2888 }
2889
2890 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2891 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2892
2893 q = rxq->qdisc;
2894 if (q != &noop_qdisc) {
2895 spin_lock(qdisc_lock(q));
2896 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2897 result = qdisc_enqueue_root(skb, q);
2898 spin_unlock(qdisc_lock(q));
2899 }
2900
2901 return result;
2902 }
2903
2904 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2905 struct packet_type **pt_prev,
2906 int *ret, struct net_device *orig_dev)
2907 {
2908 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2909
2910 if (!rxq || rxq->qdisc == &noop_qdisc)
2911 goto out;
2912
2913 if (*pt_prev) {
2914 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2915 *pt_prev = NULL;
2916 }
2917
2918 switch (ing_filter(skb, rxq)) {
2919 case TC_ACT_SHOT:
2920 case TC_ACT_STOLEN:
2921 kfree_skb(skb);
2922 return NULL;
2923 }
2924
2925 out:
2926 skb->tc_verd = 0;
2927 return skb;
2928 }
2929 #endif
2930
2931 /**
2932 * netdev_rx_handler_register - register receive handler
2933 * @dev: device to register a handler for
2934 * @rx_handler: receive handler to register
2935 * @rx_handler_data: data pointer that is used by rx handler
2936 *
2937 * Register a receive hander for a device. This handler will then be
2938 * called from __netif_receive_skb. A negative errno code is returned
2939 * on a failure.
2940 *
2941 * The caller must hold the rtnl_mutex.
2942 */
2943 int netdev_rx_handler_register(struct net_device *dev,
2944 rx_handler_func_t *rx_handler,
2945 void *rx_handler_data)
2946 {
2947 ASSERT_RTNL();
2948
2949 if (dev->rx_handler)
2950 return -EBUSY;
2951
2952 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2953 rcu_assign_pointer(dev->rx_handler, rx_handler);
2954
2955 return 0;
2956 }
2957 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2958
2959 /**
2960 * netdev_rx_handler_unregister - unregister receive handler
2961 * @dev: device to unregister a handler from
2962 *
2963 * Unregister a receive hander from a device.
2964 *
2965 * The caller must hold the rtnl_mutex.
2966 */
2967 void netdev_rx_handler_unregister(struct net_device *dev)
2968 {
2969
2970 ASSERT_RTNL();
2971 rcu_assign_pointer(dev->rx_handler, NULL);
2972 rcu_assign_pointer(dev->rx_handler_data, NULL);
2973 }
2974 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2975
2976 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2977 struct net_device *master)
2978 {
2979 if (skb->pkt_type == PACKET_HOST) {
2980 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2981
2982 memcpy(dest, master->dev_addr, ETH_ALEN);
2983 }
2984 }
2985
2986 /* On bonding slaves other than the currently active slave, suppress
2987 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2988 * ARP on active-backup slaves with arp_validate enabled.
2989 */
2990 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2991 {
2992 struct net_device *dev = skb->dev;
2993
2994 if (master->priv_flags & IFF_MASTER_ARPMON)
2995 dev->last_rx = jiffies;
2996
2997 if ((master->priv_flags & IFF_MASTER_ALB) &&
2998 (master->priv_flags & IFF_BRIDGE_PORT)) {
2999 /* Do address unmangle. The local destination address
3000 * will be always the one master has. Provides the right
3001 * functionality in a bridge.
3002 */
3003 skb_bond_set_mac_by_master(skb, master);
3004 }
3005
3006 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
3007 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
3008 skb->protocol == __cpu_to_be16(ETH_P_ARP))
3009 return 0;
3010
3011 if (master->priv_flags & IFF_MASTER_ALB) {
3012 if (skb->pkt_type != PACKET_BROADCAST &&
3013 skb->pkt_type != PACKET_MULTICAST)
3014 return 0;
3015 }
3016 if (master->priv_flags & IFF_MASTER_8023AD &&
3017 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
3018 return 0;
3019
3020 return 1;
3021 }
3022 return 0;
3023 }
3024 EXPORT_SYMBOL(__skb_bond_should_drop);
3025
3026 static int __netif_receive_skb(struct sk_buff *skb)
3027 {
3028 struct packet_type *ptype, *pt_prev;
3029 rx_handler_func_t *rx_handler;
3030 struct net_device *orig_dev;
3031 struct net_device *master;
3032 struct net_device *null_or_orig;
3033 struct net_device *orig_or_bond;
3034 int ret = NET_RX_DROP;
3035 __be16 type;
3036
3037 if (!netdev_tstamp_prequeue)
3038 net_timestamp_check(skb);
3039
3040 trace_netif_receive_skb(skb);
3041
3042 /* if we've gotten here through NAPI, check netpoll */
3043 if (netpoll_receive_skb(skb))
3044 return NET_RX_DROP;
3045
3046 if (!skb->skb_iif)
3047 skb->skb_iif = skb->dev->ifindex;
3048
3049 /*
3050 * bonding note: skbs received on inactive slaves should only
3051 * be delivered to pkt handlers that are exact matches. Also
3052 * the deliver_no_wcard flag will be set. If packet handlers
3053 * are sensitive to duplicate packets these skbs will need to
3054 * be dropped at the handler.
3055 */
3056 null_or_orig = NULL;
3057 orig_dev = skb->dev;
3058 master = ACCESS_ONCE(orig_dev->master);
3059 if (skb->deliver_no_wcard)
3060 null_or_orig = orig_dev;
3061 else if (master) {
3062 if (skb_bond_should_drop(skb, master)) {
3063 skb->deliver_no_wcard = 1;
3064 null_or_orig = orig_dev; /* deliver only exact match */
3065 } else
3066 skb->dev = master;
3067 }
3068
3069 __this_cpu_inc(softnet_data.processed);
3070 skb_reset_network_header(skb);
3071 skb_reset_transport_header(skb);
3072 skb->mac_len = skb->network_header - skb->mac_header;
3073
3074 pt_prev = NULL;
3075
3076 rcu_read_lock();
3077
3078 #ifdef CONFIG_NET_CLS_ACT
3079 if (skb->tc_verd & TC_NCLS) {
3080 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3081 goto ncls;
3082 }
3083 #endif
3084
3085 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3086 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3087 ptype->dev == orig_dev) {
3088 if (pt_prev)
3089 ret = deliver_skb(skb, pt_prev, orig_dev);
3090 pt_prev = ptype;
3091 }
3092 }
3093
3094 #ifdef CONFIG_NET_CLS_ACT
3095 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3096 if (!skb)
3097 goto out;
3098 ncls:
3099 #endif
3100
3101 /* Handle special case of bridge or macvlan */
3102 rx_handler = rcu_dereference(skb->dev->rx_handler);
3103 if (rx_handler) {
3104 if (pt_prev) {
3105 ret = deliver_skb(skb, pt_prev, orig_dev);
3106 pt_prev = NULL;
3107 }
3108 skb = rx_handler(skb);
3109 if (!skb)
3110 goto out;
3111 }
3112
3113 if (vlan_tx_tag_present(skb)) {
3114 if (pt_prev) {
3115 ret = deliver_skb(skb, pt_prev, orig_dev);
3116 pt_prev = NULL;
3117 }
3118 if (vlan_hwaccel_do_receive(&skb)) {
3119 ret = __netif_receive_skb(skb);
3120 goto out;
3121 } else if (unlikely(!skb))
3122 goto out;
3123 }
3124
3125 /*
3126 * Make sure frames received on VLAN interfaces stacked on
3127 * bonding interfaces still make their way to any base bonding
3128 * device that may have registered for a specific ptype. The
3129 * handler may have to adjust skb->dev and orig_dev.
3130 */
3131 orig_or_bond = orig_dev;
3132 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3133 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3134 orig_or_bond = vlan_dev_real_dev(skb->dev);
3135 }
3136
3137 type = skb->protocol;
3138 list_for_each_entry_rcu(ptype,
3139 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3140 if (ptype->type == type && (ptype->dev == null_or_orig ||
3141 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3142 ptype->dev == orig_or_bond)) {
3143 if (pt_prev)
3144 ret = deliver_skb(skb, pt_prev, orig_dev);
3145 pt_prev = ptype;
3146 }
3147 }
3148
3149 if (pt_prev) {
3150 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3151 } else {
3152 atomic_long_inc(&skb->dev->rx_dropped);
3153 kfree_skb(skb);
3154 /* Jamal, now you will not able to escape explaining
3155 * me how you were going to use this. :-)
3156 */
3157 ret = NET_RX_DROP;
3158 }
3159
3160 out:
3161 rcu_read_unlock();
3162 return ret;
3163 }
3164
3165 /**
3166 * netif_receive_skb - process receive buffer from network
3167 * @skb: buffer to process
3168 *
3169 * netif_receive_skb() is the main receive data processing function.
3170 * It always succeeds. The buffer may be dropped during processing
3171 * for congestion control or by the protocol layers.
3172 *
3173 * This function may only be called from softirq context and interrupts
3174 * should be enabled.
3175 *
3176 * Return values (usually ignored):
3177 * NET_RX_SUCCESS: no congestion
3178 * NET_RX_DROP: packet was dropped
3179 */
3180 int netif_receive_skb(struct sk_buff *skb)
3181 {
3182 if (netdev_tstamp_prequeue)
3183 net_timestamp_check(skb);
3184
3185 if (skb_defer_rx_timestamp(skb))
3186 return NET_RX_SUCCESS;
3187
3188 #ifdef CONFIG_RPS
3189 {
3190 struct rps_dev_flow voidflow, *rflow = &voidflow;
3191 int cpu, ret;
3192
3193 rcu_read_lock();
3194
3195 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3196
3197 if (cpu >= 0) {
3198 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3199 rcu_read_unlock();
3200 } else {
3201 rcu_read_unlock();
3202 ret = __netif_receive_skb(skb);
3203 }
3204
3205 return ret;
3206 }
3207 #else
3208 return __netif_receive_skb(skb);
3209 #endif
3210 }
3211 EXPORT_SYMBOL(netif_receive_skb);
3212
3213 /* Network device is going away, flush any packets still pending
3214 * Called with irqs disabled.
3215 */
3216 static void flush_backlog(void *arg)
3217 {
3218 struct net_device *dev = arg;
3219 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3220 struct sk_buff *skb, *tmp;
3221
3222 rps_lock(sd);
3223 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3224 if (skb->dev == dev) {
3225 __skb_unlink(skb, &sd->input_pkt_queue);
3226 kfree_skb(skb);
3227 input_queue_head_incr(sd);
3228 }
3229 }
3230 rps_unlock(sd);
3231
3232 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3233 if (skb->dev == dev) {
3234 __skb_unlink(skb, &sd->process_queue);
3235 kfree_skb(skb);
3236 input_queue_head_incr(sd);
3237 }
3238 }
3239 }
3240
3241 static int napi_gro_complete(struct sk_buff *skb)
3242 {
3243 struct packet_type *ptype;
3244 __be16 type = skb->protocol;
3245 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3246 int err = -ENOENT;
3247
3248 if (NAPI_GRO_CB(skb)->count == 1) {
3249 skb_shinfo(skb)->gso_size = 0;
3250 goto out;
3251 }
3252
3253 rcu_read_lock();
3254 list_for_each_entry_rcu(ptype, head, list) {
3255 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3256 continue;
3257
3258 err = ptype->gro_complete(skb);
3259 break;
3260 }
3261 rcu_read_unlock();
3262
3263 if (err) {
3264 WARN_ON(&ptype->list == head);
3265 kfree_skb(skb);
3266 return NET_RX_SUCCESS;
3267 }
3268
3269 out:
3270 return netif_receive_skb(skb);
3271 }
3272
3273 inline void napi_gro_flush(struct napi_struct *napi)
3274 {
3275 struct sk_buff *skb, *next;
3276
3277 for (skb = napi->gro_list; skb; skb = next) {
3278 next = skb->next;
3279 skb->next = NULL;
3280 napi_gro_complete(skb);
3281 }
3282
3283 napi->gro_count = 0;
3284 napi->gro_list = NULL;
3285 }
3286 EXPORT_SYMBOL(napi_gro_flush);
3287
3288 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3289 {
3290 struct sk_buff **pp = NULL;
3291 struct packet_type *ptype;
3292 __be16 type = skb->protocol;
3293 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3294 int same_flow;
3295 int mac_len;
3296 enum gro_result ret;
3297
3298 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3299 goto normal;
3300
3301 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3302 goto normal;
3303
3304 rcu_read_lock();
3305 list_for_each_entry_rcu(ptype, head, list) {
3306 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3307 continue;
3308
3309 skb_set_network_header(skb, skb_gro_offset(skb));
3310 mac_len = skb->network_header - skb->mac_header;
3311 skb->mac_len = mac_len;
3312 NAPI_GRO_CB(skb)->same_flow = 0;
3313 NAPI_GRO_CB(skb)->flush = 0;
3314 NAPI_GRO_CB(skb)->free = 0;
3315
3316 pp = ptype->gro_receive(&napi->gro_list, skb);
3317 break;
3318 }
3319 rcu_read_unlock();
3320
3321 if (&ptype->list == head)
3322 goto normal;
3323
3324 same_flow = NAPI_GRO_CB(skb)->same_flow;
3325 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3326
3327 if (pp) {
3328 struct sk_buff *nskb = *pp;
3329
3330 *pp = nskb->next;
3331 nskb->next = NULL;
3332 napi_gro_complete(nskb);
3333 napi->gro_count--;
3334 }
3335
3336 if (same_flow)
3337 goto ok;
3338
3339 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3340 goto normal;
3341
3342 napi->gro_count++;
3343 NAPI_GRO_CB(skb)->count = 1;
3344 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3345 skb->next = napi->gro_list;
3346 napi->gro_list = skb;
3347 ret = GRO_HELD;
3348
3349 pull:
3350 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3351 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3352
3353 BUG_ON(skb->end - skb->tail < grow);
3354
3355 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3356
3357 skb->tail += grow;
3358 skb->data_len -= grow;
3359
3360 skb_shinfo(skb)->frags[0].page_offset += grow;
3361 skb_shinfo(skb)->frags[0].size -= grow;
3362
3363 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3364 put_page(skb_shinfo(skb)->frags[0].page);
3365 memmove(skb_shinfo(skb)->frags,
3366 skb_shinfo(skb)->frags + 1,
3367 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3368 }
3369 }
3370
3371 ok:
3372 return ret;
3373
3374 normal:
3375 ret = GRO_NORMAL;
3376 goto pull;
3377 }
3378 EXPORT_SYMBOL(dev_gro_receive);
3379
3380 static inline gro_result_t
3381 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3382 {
3383 struct sk_buff *p;
3384
3385 for (p = napi->gro_list; p; p = p->next) {
3386 unsigned long diffs;
3387
3388 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3389 diffs |= p->vlan_tci ^ skb->vlan_tci;
3390 diffs |= compare_ether_header(skb_mac_header(p),
3391 skb_gro_mac_header(skb));
3392 NAPI_GRO_CB(p)->same_flow = !diffs;
3393 NAPI_GRO_CB(p)->flush = 0;
3394 }
3395
3396 return dev_gro_receive(napi, skb);
3397 }
3398
3399 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3400 {
3401 switch (ret) {
3402 case GRO_NORMAL:
3403 if (netif_receive_skb(skb))
3404 ret = GRO_DROP;
3405 break;
3406
3407 case GRO_DROP:
3408 case GRO_MERGED_FREE:
3409 kfree_skb(skb);
3410 break;
3411
3412 case GRO_HELD:
3413 case GRO_MERGED:
3414 break;
3415 }
3416
3417 return ret;
3418 }
3419 EXPORT_SYMBOL(napi_skb_finish);
3420
3421 void skb_gro_reset_offset(struct sk_buff *skb)
3422 {
3423 NAPI_GRO_CB(skb)->data_offset = 0;
3424 NAPI_GRO_CB(skb)->frag0 = NULL;
3425 NAPI_GRO_CB(skb)->frag0_len = 0;
3426
3427 if (skb->mac_header == skb->tail &&
3428 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3429 NAPI_GRO_CB(skb)->frag0 =
3430 page_address(skb_shinfo(skb)->frags[0].page) +
3431 skb_shinfo(skb)->frags[0].page_offset;
3432 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3433 }
3434 }
3435 EXPORT_SYMBOL(skb_gro_reset_offset);
3436
3437 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3438 {
3439 skb_gro_reset_offset(skb);
3440
3441 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3442 }
3443 EXPORT_SYMBOL(napi_gro_receive);
3444
3445 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3446 {
3447 __skb_pull(skb, skb_headlen(skb));
3448 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3449 skb->vlan_tci = 0;
3450
3451 napi->skb = skb;
3452 }
3453
3454 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3455 {
3456 struct sk_buff *skb = napi->skb;
3457
3458 if (!skb) {
3459 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3460 if (skb)
3461 napi->skb = skb;
3462 }
3463 return skb;
3464 }
3465 EXPORT_SYMBOL(napi_get_frags);
3466
3467 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3468 gro_result_t ret)
3469 {
3470 switch (ret) {
3471 case GRO_NORMAL:
3472 case GRO_HELD:
3473 skb->protocol = eth_type_trans(skb, skb->dev);
3474
3475 if (ret == GRO_HELD)
3476 skb_gro_pull(skb, -ETH_HLEN);
3477 else if (netif_receive_skb(skb))
3478 ret = GRO_DROP;
3479 break;
3480
3481 case GRO_DROP:
3482 case GRO_MERGED_FREE:
3483 napi_reuse_skb(napi, skb);
3484 break;
3485
3486 case GRO_MERGED:
3487 break;
3488 }
3489
3490 return ret;
3491 }
3492 EXPORT_SYMBOL(napi_frags_finish);
3493
3494 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3495 {
3496 struct sk_buff *skb = napi->skb;
3497 struct ethhdr *eth;
3498 unsigned int hlen;
3499 unsigned int off;
3500
3501 napi->skb = NULL;
3502
3503 skb_reset_mac_header(skb);
3504 skb_gro_reset_offset(skb);
3505
3506 off = skb_gro_offset(skb);
3507 hlen = off + sizeof(*eth);
3508 eth = skb_gro_header_fast(skb, off);
3509 if (skb_gro_header_hard(skb, hlen)) {
3510 eth = skb_gro_header_slow(skb, hlen, off);
3511 if (unlikely(!eth)) {
3512 napi_reuse_skb(napi, skb);
3513 skb = NULL;
3514 goto out;
3515 }
3516 }
3517
3518 skb_gro_pull(skb, sizeof(*eth));
3519
3520 /*
3521 * This works because the only protocols we care about don't require
3522 * special handling. We'll fix it up properly at the end.
3523 */
3524 skb->protocol = eth->h_proto;
3525
3526 out:
3527 return skb;
3528 }
3529 EXPORT_SYMBOL(napi_frags_skb);
3530
3531 gro_result_t napi_gro_frags(struct napi_struct *napi)
3532 {
3533 struct sk_buff *skb = napi_frags_skb(napi);
3534
3535 if (!skb)
3536 return GRO_DROP;
3537
3538 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3539 }
3540 EXPORT_SYMBOL(napi_gro_frags);
3541
3542 /*
3543 * net_rps_action sends any pending IPI's for rps.
3544 * Note: called with local irq disabled, but exits with local irq enabled.
3545 */
3546 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3547 {
3548 #ifdef CONFIG_RPS
3549 struct softnet_data *remsd = sd->rps_ipi_list;
3550
3551 if (remsd) {
3552 sd->rps_ipi_list = NULL;
3553
3554 local_irq_enable();
3555
3556 /* Send pending IPI's to kick RPS processing on remote cpus. */
3557 while (remsd) {
3558 struct softnet_data *next = remsd->rps_ipi_next;
3559
3560 if (cpu_online(remsd->cpu))
3561 __smp_call_function_single(remsd->cpu,
3562 &remsd->csd, 0);
3563 remsd = next;
3564 }
3565 } else
3566 #endif
3567 local_irq_enable();
3568 }
3569
3570 static int process_backlog(struct napi_struct *napi, int quota)
3571 {
3572 int work = 0;
3573 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3574
3575 #ifdef CONFIG_RPS
3576 /* Check if we have pending ipi, its better to send them now,
3577 * not waiting net_rx_action() end.
3578 */
3579 if (sd->rps_ipi_list) {
3580 local_irq_disable();
3581 net_rps_action_and_irq_enable(sd);
3582 }
3583 #endif
3584 napi->weight = weight_p;
3585 local_irq_disable();
3586 while (work < quota) {
3587 struct sk_buff *skb;
3588 unsigned int qlen;
3589
3590 while ((skb = __skb_dequeue(&sd->process_queue))) {
3591 local_irq_enable();
3592 __netif_receive_skb(skb);
3593 local_irq_disable();
3594 input_queue_head_incr(sd);
3595 if (++work >= quota) {
3596 local_irq_enable();
3597 return work;
3598 }
3599 }
3600
3601 rps_lock(sd);
3602 qlen = skb_queue_len(&sd->input_pkt_queue);
3603 if (qlen)
3604 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3605 &sd->process_queue);
3606
3607 if (qlen < quota - work) {
3608 /*
3609 * Inline a custom version of __napi_complete().
3610 * only current cpu owns and manipulates this napi,
3611 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3612 * we can use a plain write instead of clear_bit(),
3613 * and we dont need an smp_mb() memory barrier.
3614 */
3615 list_del(&napi->poll_list);
3616 napi->state = 0;
3617
3618 quota = work + qlen;
3619 }
3620 rps_unlock(sd);
3621 }
3622 local_irq_enable();
3623
3624 return work;
3625 }
3626
3627 /**
3628 * __napi_schedule - schedule for receive
3629 * @n: entry to schedule
3630 *
3631 * The entry's receive function will be scheduled to run
3632 */
3633 void __napi_schedule(struct napi_struct *n)
3634 {
3635 unsigned long flags;
3636
3637 local_irq_save(flags);
3638 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3639 local_irq_restore(flags);
3640 }
3641 EXPORT_SYMBOL(__napi_schedule);
3642
3643 void __napi_complete(struct napi_struct *n)
3644 {
3645 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3646 BUG_ON(n->gro_list);
3647
3648 list_del(&n->poll_list);
3649 smp_mb__before_clear_bit();
3650 clear_bit(NAPI_STATE_SCHED, &n->state);
3651 }
3652 EXPORT_SYMBOL(__napi_complete);
3653
3654 void napi_complete(struct napi_struct *n)
3655 {
3656 unsigned long flags;
3657
3658 /*
3659 * don't let napi dequeue from the cpu poll list
3660 * just in case its running on a different cpu
3661 */
3662 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3663 return;
3664
3665 napi_gro_flush(n);
3666 local_irq_save(flags);
3667 __napi_complete(n);
3668 local_irq_restore(flags);
3669 }
3670 EXPORT_SYMBOL(napi_complete);
3671
3672 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3673 int (*poll)(struct napi_struct *, int), int weight)
3674 {
3675 INIT_LIST_HEAD(&napi->poll_list);
3676 napi->gro_count = 0;
3677 napi->gro_list = NULL;
3678 napi->skb = NULL;
3679 napi->poll = poll;
3680 napi->weight = weight;
3681 list_add(&napi->dev_list, &dev->napi_list);
3682 napi->dev = dev;
3683 #ifdef CONFIG_NETPOLL
3684 spin_lock_init(&napi->poll_lock);
3685 napi->poll_owner = -1;
3686 #endif
3687 set_bit(NAPI_STATE_SCHED, &napi->state);
3688 }
3689 EXPORT_SYMBOL(netif_napi_add);
3690
3691 void netif_napi_del(struct napi_struct *napi)
3692 {
3693 struct sk_buff *skb, *next;
3694
3695 list_del_init(&napi->dev_list);
3696 napi_free_frags(napi);
3697
3698 for (skb = napi->gro_list; skb; skb = next) {
3699 next = skb->next;
3700 skb->next = NULL;
3701 kfree_skb(skb);
3702 }
3703
3704 napi->gro_list = NULL;
3705 napi->gro_count = 0;
3706 }
3707 EXPORT_SYMBOL(netif_napi_del);
3708
3709 static void net_rx_action(struct softirq_action *h)
3710 {
3711 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3712 unsigned long time_limit = jiffies + 2;
3713 int budget = netdev_budget;
3714 void *have;
3715
3716 local_irq_disable();
3717
3718 while (!list_empty(&sd->poll_list)) {
3719 struct napi_struct *n;
3720 int work, weight;
3721
3722 /* If softirq window is exhuasted then punt.
3723 * Allow this to run for 2 jiffies since which will allow
3724 * an average latency of 1.5/HZ.
3725 */
3726 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3727 goto softnet_break;
3728
3729 local_irq_enable();
3730
3731 /* Even though interrupts have been re-enabled, this
3732 * access is safe because interrupts can only add new
3733 * entries to the tail of this list, and only ->poll()
3734 * calls can remove this head entry from the list.
3735 */
3736 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3737
3738 have = netpoll_poll_lock(n);
3739
3740 weight = n->weight;
3741
3742 /* This NAPI_STATE_SCHED test is for avoiding a race
3743 * with netpoll's poll_napi(). Only the entity which
3744 * obtains the lock and sees NAPI_STATE_SCHED set will
3745 * actually make the ->poll() call. Therefore we avoid
3746 * accidently calling ->poll() when NAPI is not scheduled.
3747 */
3748 work = 0;
3749 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3750 work = n->poll(n, weight);
3751 trace_napi_poll(n);
3752 }
3753
3754 WARN_ON_ONCE(work > weight);
3755
3756 budget -= work;
3757
3758 local_irq_disable();
3759
3760 /* Drivers must not modify the NAPI state if they
3761 * consume the entire weight. In such cases this code
3762 * still "owns" the NAPI instance and therefore can
3763 * move the instance around on the list at-will.
3764 */
3765 if (unlikely(work == weight)) {
3766 if (unlikely(napi_disable_pending(n))) {
3767 local_irq_enable();
3768 napi_complete(n);
3769 local_irq_disable();
3770 } else
3771 list_move_tail(&n->poll_list, &sd->poll_list);
3772 }
3773
3774 netpoll_poll_unlock(have);
3775 }
3776 out:
3777 net_rps_action_and_irq_enable(sd);
3778
3779 #ifdef CONFIG_NET_DMA
3780 /*
3781 * There may not be any more sk_buffs coming right now, so push
3782 * any pending DMA copies to hardware
3783 */
3784 dma_issue_pending_all();
3785 #endif
3786
3787 return;
3788
3789 softnet_break:
3790 sd->time_squeeze++;
3791 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3792 goto out;
3793 }
3794
3795 static gifconf_func_t *gifconf_list[NPROTO];
3796
3797 /**
3798 * register_gifconf - register a SIOCGIF handler
3799 * @family: Address family
3800 * @gifconf: Function handler
3801 *
3802 * Register protocol dependent address dumping routines. The handler
3803 * that is passed must not be freed or reused until it has been replaced
3804 * by another handler.
3805 */
3806 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3807 {
3808 if (family >= NPROTO)
3809 return -EINVAL;
3810 gifconf_list[family] = gifconf;
3811 return 0;
3812 }
3813 EXPORT_SYMBOL(register_gifconf);
3814
3815
3816 /*
3817 * Map an interface index to its name (SIOCGIFNAME)
3818 */
3819
3820 /*
3821 * We need this ioctl for efficient implementation of the
3822 * if_indextoname() function required by the IPv6 API. Without
3823 * it, we would have to search all the interfaces to find a
3824 * match. --pb
3825 */
3826
3827 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3828 {
3829 struct net_device *dev;
3830 struct ifreq ifr;
3831
3832 /*
3833 * Fetch the caller's info block.
3834 */
3835
3836 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3837 return -EFAULT;
3838
3839 rcu_read_lock();
3840 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3841 if (!dev) {
3842 rcu_read_unlock();
3843 return -ENODEV;
3844 }
3845
3846 strcpy(ifr.ifr_name, dev->name);
3847 rcu_read_unlock();
3848
3849 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3850 return -EFAULT;
3851 return 0;
3852 }
3853
3854 /*
3855 * Perform a SIOCGIFCONF call. This structure will change
3856 * size eventually, and there is nothing I can do about it.
3857 * Thus we will need a 'compatibility mode'.
3858 */
3859
3860 static int dev_ifconf(struct net *net, char __user *arg)
3861 {
3862 struct ifconf ifc;
3863 struct net_device *dev;
3864 char __user *pos;
3865 int len;
3866 int total;
3867 int i;
3868
3869 /*
3870 * Fetch the caller's info block.
3871 */
3872
3873 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3874 return -EFAULT;
3875
3876 pos = ifc.ifc_buf;
3877 len = ifc.ifc_len;
3878
3879 /*
3880 * Loop over the interfaces, and write an info block for each.
3881 */
3882
3883 total = 0;
3884 for_each_netdev(net, dev) {
3885 for (i = 0; i < NPROTO; i++) {
3886 if (gifconf_list[i]) {
3887 int done;
3888 if (!pos)
3889 done = gifconf_list[i](dev, NULL, 0);
3890 else
3891 done = gifconf_list[i](dev, pos + total,
3892 len - total);
3893 if (done < 0)
3894 return -EFAULT;
3895 total += done;
3896 }
3897 }
3898 }
3899
3900 /*
3901 * All done. Write the updated control block back to the caller.
3902 */
3903 ifc.ifc_len = total;
3904
3905 /*
3906 * Both BSD and Solaris return 0 here, so we do too.
3907 */
3908 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3909 }
3910
3911 #ifdef CONFIG_PROC_FS
3912 /*
3913 * This is invoked by the /proc filesystem handler to display a device
3914 * in detail.
3915 */
3916 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3917 __acquires(RCU)
3918 {
3919 struct net *net = seq_file_net(seq);
3920 loff_t off;
3921 struct net_device *dev;
3922
3923 rcu_read_lock();
3924 if (!*pos)
3925 return SEQ_START_TOKEN;
3926
3927 off = 1;
3928 for_each_netdev_rcu(net, dev)
3929 if (off++ == *pos)
3930 return dev;
3931
3932 return NULL;
3933 }
3934
3935 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3936 {
3937 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3938 first_net_device(seq_file_net(seq)) :
3939 next_net_device((struct net_device *)v);
3940
3941 ++*pos;
3942 return rcu_dereference(dev);
3943 }
3944
3945 void dev_seq_stop(struct seq_file *seq, void *v)
3946 __releases(RCU)
3947 {
3948 rcu_read_unlock();
3949 }
3950
3951 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3952 {
3953 struct rtnl_link_stats64 temp;
3954 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3955
3956 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3957 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3958 dev->name, stats->rx_bytes, stats->rx_packets,
3959 stats->rx_errors,
3960 stats->rx_dropped + stats->rx_missed_errors,
3961 stats->rx_fifo_errors,
3962 stats->rx_length_errors + stats->rx_over_errors +
3963 stats->rx_crc_errors + stats->rx_frame_errors,
3964 stats->rx_compressed, stats->multicast,
3965 stats->tx_bytes, stats->tx_packets,
3966 stats->tx_errors, stats->tx_dropped,
3967 stats->tx_fifo_errors, stats->collisions,
3968 stats->tx_carrier_errors +
3969 stats->tx_aborted_errors +
3970 stats->tx_window_errors +
3971 stats->tx_heartbeat_errors,
3972 stats->tx_compressed);
3973 }
3974
3975 /*
3976 * Called from the PROCfs module. This now uses the new arbitrary sized
3977 * /proc/net interface to create /proc/net/dev
3978 */
3979 static int dev_seq_show(struct seq_file *seq, void *v)
3980 {
3981 if (v == SEQ_START_TOKEN)
3982 seq_puts(seq, "Inter-| Receive "
3983 " | Transmit\n"
3984 " face |bytes packets errs drop fifo frame "
3985 "compressed multicast|bytes packets errs "
3986 "drop fifo colls carrier compressed\n");
3987 else
3988 dev_seq_printf_stats(seq, v);
3989 return 0;
3990 }
3991
3992 static struct softnet_data *softnet_get_online(loff_t *pos)
3993 {
3994 struct softnet_data *sd = NULL;
3995
3996 while (*pos < nr_cpu_ids)
3997 if (cpu_online(*pos)) {
3998 sd = &per_cpu(softnet_data, *pos);
3999 break;
4000 } else
4001 ++*pos;
4002 return sd;
4003 }
4004
4005 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4006 {
4007 return softnet_get_online(pos);
4008 }
4009
4010 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4011 {
4012 ++*pos;
4013 return softnet_get_online(pos);
4014 }
4015
4016 static void softnet_seq_stop(struct seq_file *seq, void *v)
4017 {
4018 }
4019
4020 static int softnet_seq_show(struct seq_file *seq, void *v)
4021 {
4022 struct softnet_data *sd = v;
4023
4024 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4025 sd->processed, sd->dropped, sd->time_squeeze, 0,
4026 0, 0, 0, 0, /* was fastroute */
4027 sd->cpu_collision, sd->received_rps);
4028 return 0;
4029 }
4030
4031 static const struct seq_operations dev_seq_ops = {
4032 .start = dev_seq_start,
4033 .next = dev_seq_next,
4034 .stop = dev_seq_stop,
4035 .show = dev_seq_show,
4036 };
4037
4038 static int dev_seq_open(struct inode *inode, struct file *file)
4039 {
4040 return seq_open_net(inode, file, &dev_seq_ops,
4041 sizeof(struct seq_net_private));
4042 }
4043
4044 static const struct file_operations dev_seq_fops = {
4045 .owner = THIS_MODULE,
4046 .open = dev_seq_open,
4047 .read = seq_read,
4048 .llseek = seq_lseek,
4049 .release = seq_release_net,
4050 };
4051
4052 static const struct seq_operations softnet_seq_ops = {
4053 .start = softnet_seq_start,
4054 .next = softnet_seq_next,
4055 .stop = softnet_seq_stop,
4056 .show = softnet_seq_show,
4057 };
4058
4059 static int softnet_seq_open(struct inode *inode, struct file *file)
4060 {
4061 return seq_open(file, &softnet_seq_ops);
4062 }
4063
4064 static const struct file_operations softnet_seq_fops = {
4065 .owner = THIS_MODULE,
4066 .open = softnet_seq_open,
4067 .read = seq_read,
4068 .llseek = seq_lseek,
4069 .release = seq_release,
4070 };
4071
4072 static void *ptype_get_idx(loff_t pos)
4073 {
4074 struct packet_type *pt = NULL;
4075 loff_t i = 0;
4076 int t;
4077
4078 list_for_each_entry_rcu(pt, &ptype_all, list) {
4079 if (i == pos)
4080 return pt;
4081 ++i;
4082 }
4083
4084 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4085 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4086 if (i == pos)
4087 return pt;
4088 ++i;
4089 }
4090 }
4091 return NULL;
4092 }
4093
4094 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4095 __acquires(RCU)
4096 {
4097 rcu_read_lock();
4098 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4099 }
4100
4101 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4102 {
4103 struct packet_type *pt;
4104 struct list_head *nxt;
4105 int hash;
4106
4107 ++*pos;
4108 if (v == SEQ_START_TOKEN)
4109 return ptype_get_idx(0);
4110
4111 pt = v;
4112 nxt = pt->list.next;
4113 if (pt->type == htons(ETH_P_ALL)) {
4114 if (nxt != &ptype_all)
4115 goto found;
4116 hash = 0;
4117 nxt = ptype_base[0].next;
4118 } else
4119 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4120
4121 while (nxt == &ptype_base[hash]) {
4122 if (++hash >= PTYPE_HASH_SIZE)
4123 return NULL;
4124 nxt = ptype_base[hash].next;
4125 }
4126 found:
4127 return list_entry(nxt, struct packet_type, list);
4128 }
4129
4130 static void ptype_seq_stop(struct seq_file *seq, void *v)
4131 __releases(RCU)
4132 {
4133 rcu_read_unlock();
4134 }
4135
4136 static int ptype_seq_show(struct seq_file *seq, void *v)
4137 {
4138 struct packet_type *pt = v;
4139
4140 if (v == SEQ_START_TOKEN)
4141 seq_puts(seq, "Type Device Function\n");
4142 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4143 if (pt->type == htons(ETH_P_ALL))
4144 seq_puts(seq, "ALL ");
4145 else
4146 seq_printf(seq, "%04x", ntohs(pt->type));
4147
4148 seq_printf(seq, " %-8s %pF\n",
4149 pt->dev ? pt->dev->name : "", pt->func);
4150 }
4151
4152 return 0;
4153 }
4154
4155 static const struct seq_operations ptype_seq_ops = {
4156 .start = ptype_seq_start,
4157 .next = ptype_seq_next,
4158 .stop = ptype_seq_stop,
4159 .show = ptype_seq_show,
4160 };
4161
4162 static int ptype_seq_open(struct inode *inode, struct file *file)
4163 {
4164 return seq_open_net(inode, file, &ptype_seq_ops,
4165 sizeof(struct seq_net_private));
4166 }
4167
4168 static const struct file_operations ptype_seq_fops = {
4169 .owner = THIS_MODULE,
4170 .open = ptype_seq_open,
4171 .read = seq_read,
4172 .llseek = seq_lseek,
4173 .release = seq_release_net,
4174 };
4175
4176
4177 static int __net_init dev_proc_net_init(struct net *net)
4178 {
4179 int rc = -ENOMEM;
4180
4181 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4182 goto out;
4183 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4184 goto out_dev;
4185 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4186 goto out_softnet;
4187
4188 if (wext_proc_init(net))
4189 goto out_ptype;
4190 rc = 0;
4191 out:
4192 return rc;
4193 out_ptype:
4194 proc_net_remove(net, "ptype");
4195 out_softnet:
4196 proc_net_remove(net, "softnet_stat");
4197 out_dev:
4198 proc_net_remove(net, "dev");
4199 goto out;
4200 }
4201
4202 static void __net_exit dev_proc_net_exit(struct net *net)
4203 {
4204 wext_proc_exit(net);
4205
4206 proc_net_remove(net, "ptype");
4207 proc_net_remove(net, "softnet_stat");
4208 proc_net_remove(net, "dev");
4209 }
4210
4211 static struct pernet_operations __net_initdata dev_proc_ops = {
4212 .init = dev_proc_net_init,
4213 .exit = dev_proc_net_exit,
4214 };
4215
4216 static int __init dev_proc_init(void)
4217 {
4218 return register_pernet_subsys(&dev_proc_ops);
4219 }
4220 #else
4221 #define dev_proc_init() 0
4222 #endif /* CONFIG_PROC_FS */
4223
4224
4225 /**
4226 * netdev_set_master - set up master/slave pair
4227 * @slave: slave device
4228 * @master: new master device
4229 *
4230 * Changes the master device of the slave. Pass %NULL to break the
4231 * bonding. The caller must hold the RTNL semaphore. On a failure
4232 * a negative errno code is returned. On success the reference counts
4233 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4234 * function returns zero.
4235 */
4236 int netdev_set_master(struct net_device *slave, struct net_device *master)
4237 {
4238 struct net_device *old = slave->master;
4239
4240 ASSERT_RTNL();
4241
4242 if (master) {
4243 if (old)
4244 return -EBUSY;
4245 dev_hold(master);
4246 }
4247
4248 slave->master = master;
4249
4250 if (old) {
4251 synchronize_net();
4252 dev_put(old);
4253 }
4254 if (master)
4255 slave->flags |= IFF_SLAVE;
4256 else
4257 slave->flags &= ~IFF_SLAVE;
4258
4259 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4260 return 0;
4261 }
4262 EXPORT_SYMBOL(netdev_set_master);
4263
4264 static void dev_change_rx_flags(struct net_device *dev, int flags)
4265 {
4266 const struct net_device_ops *ops = dev->netdev_ops;
4267
4268 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4269 ops->ndo_change_rx_flags(dev, flags);
4270 }
4271
4272 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4273 {
4274 unsigned short old_flags = dev->flags;
4275 uid_t uid;
4276 gid_t gid;
4277
4278 ASSERT_RTNL();
4279
4280 dev->flags |= IFF_PROMISC;
4281 dev->promiscuity += inc;
4282 if (dev->promiscuity == 0) {
4283 /*
4284 * Avoid overflow.
4285 * If inc causes overflow, untouch promisc and return error.
4286 */
4287 if (inc < 0)
4288 dev->flags &= ~IFF_PROMISC;
4289 else {
4290 dev->promiscuity -= inc;
4291 printk(KERN_WARNING "%s: promiscuity touches roof, "
4292 "set promiscuity failed, promiscuity feature "
4293 "of device might be broken.\n", dev->name);
4294 return -EOVERFLOW;
4295 }
4296 }
4297 if (dev->flags != old_flags) {
4298 printk(KERN_INFO "device %s %s promiscuous mode\n",
4299 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4300 "left");
4301 if (audit_enabled) {
4302 current_uid_gid(&uid, &gid);
4303 audit_log(current->audit_context, GFP_ATOMIC,
4304 AUDIT_ANOM_PROMISCUOUS,
4305 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4306 dev->name, (dev->flags & IFF_PROMISC),
4307 (old_flags & IFF_PROMISC),
4308 audit_get_loginuid(current),
4309 uid, gid,
4310 audit_get_sessionid(current));
4311 }
4312
4313 dev_change_rx_flags(dev, IFF_PROMISC);
4314 }
4315 return 0;
4316 }
4317
4318 /**
4319 * dev_set_promiscuity - update promiscuity count on a device
4320 * @dev: device
4321 * @inc: modifier
4322 *
4323 * Add or remove promiscuity from a device. While the count in the device
4324 * remains above zero the interface remains promiscuous. Once it hits zero
4325 * the device reverts back to normal filtering operation. A negative inc
4326 * value is used to drop promiscuity on the device.
4327 * Return 0 if successful or a negative errno code on error.
4328 */
4329 int dev_set_promiscuity(struct net_device *dev, int inc)
4330 {
4331 unsigned short old_flags = dev->flags;
4332 int err;
4333
4334 err = __dev_set_promiscuity(dev, inc);
4335 if (err < 0)
4336 return err;
4337 if (dev->flags != old_flags)
4338 dev_set_rx_mode(dev);
4339 return err;
4340 }
4341 EXPORT_SYMBOL(dev_set_promiscuity);
4342
4343 /**
4344 * dev_set_allmulti - update allmulti count on a device
4345 * @dev: device
4346 * @inc: modifier
4347 *
4348 * Add or remove reception of all multicast frames to a device. While the
4349 * count in the device remains above zero the interface remains listening
4350 * to all interfaces. Once it hits zero the device reverts back to normal
4351 * filtering operation. A negative @inc value is used to drop the counter
4352 * when releasing a resource needing all multicasts.
4353 * Return 0 if successful or a negative errno code on error.
4354 */
4355
4356 int dev_set_allmulti(struct net_device *dev, int inc)
4357 {
4358 unsigned short old_flags = dev->flags;
4359
4360 ASSERT_RTNL();
4361
4362 dev->flags |= IFF_ALLMULTI;
4363 dev->allmulti += inc;
4364 if (dev->allmulti == 0) {
4365 /*
4366 * Avoid overflow.
4367 * If inc causes overflow, untouch allmulti and return error.
4368 */
4369 if (inc < 0)
4370 dev->flags &= ~IFF_ALLMULTI;
4371 else {
4372 dev->allmulti -= inc;
4373 printk(KERN_WARNING "%s: allmulti touches roof, "
4374 "set allmulti failed, allmulti feature of "
4375 "device might be broken.\n", dev->name);
4376 return -EOVERFLOW;
4377 }
4378 }
4379 if (dev->flags ^ old_flags) {
4380 dev_change_rx_flags(dev, IFF_ALLMULTI);
4381 dev_set_rx_mode(dev);
4382 }
4383 return 0;
4384 }
4385 EXPORT_SYMBOL(dev_set_allmulti);
4386
4387 /*
4388 * Upload unicast and multicast address lists to device and
4389 * configure RX filtering. When the device doesn't support unicast
4390 * filtering it is put in promiscuous mode while unicast addresses
4391 * are present.
4392 */
4393 void __dev_set_rx_mode(struct net_device *dev)
4394 {
4395 const struct net_device_ops *ops = dev->netdev_ops;
4396
4397 /* dev_open will call this function so the list will stay sane. */
4398 if (!(dev->flags&IFF_UP))
4399 return;
4400
4401 if (!netif_device_present(dev))
4402 return;
4403
4404 if (ops->ndo_set_rx_mode)
4405 ops->ndo_set_rx_mode(dev);
4406 else {
4407 /* Unicast addresses changes may only happen under the rtnl,
4408 * therefore calling __dev_set_promiscuity here is safe.
4409 */
4410 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4411 __dev_set_promiscuity(dev, 1);
4412 dev->uc_promisc = 1;
4413 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4414 __dev_set_promiscuity(dev, -1);
4415 dev->uc_promisc = 0;
4416 }
4417
4418 if (ops->ndo_set_multicast_list)
4419 ops->ndo_set_multicast_list(dev);
4420 }
4421 }
4422
4423 void dev_set_rx_mode(struct net_device *dev)
4424 {
4425 netif_addr_lock_bh(dev);
4426 __dev_set_rx_mode(dev);
4427 netif_addr_unlock_bh(dev);
4428 }
4429
4430 /**
4431 * dev_get_flags - get flags reported to userspace
4432 * @dev: device
4433 *
4434 * Get the combination of flag bits exported through APIs to userspace.
4435 */
4436 unsigned dev_get_flags(const struct net_device *dev)
4437 {
4438 unsigned flags;
4439
4440 flags = (dev->flags & ~(IFF_PROMISC |
4441 IFF_ALLMULTI |
4442 IFF_RUNNING |
4443 IFF_LOWER_UP |
4444 IFF_DORMANT)) |
4445 (dev->gflags & (IFF_PROMISC |
4446 IFF_ALLMULTI));
4447
4448 if (netif_running(dev)) {
4449 if (netif_oper_up(dev))
4450 flags |= IFF_RUNNING;
4451 if (netif_carrier_ok(dev))
4452 flags |= IFF_LOWER_UP;
4453 if (netif_dormant(dev))
4454 flags |= IFF_DORMANT;
4455 }
4456
4457 return flags;
4458 }
4459 EXPORT_SYMBOL(dev_get_flags);
4460
4461 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4462 {
4463 int old_flags = dev->flags;
4464 int ret;
4465
4466 ASSERT_RTNL();
4467
4468 /*
4469 * Set the flags on our device.
4470 */
4471
4472 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4473 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4474 IFF_AUTOMEDIA)) |
4475 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4476 IFF_ALLMULTI));
4477
4478 /*
4479 * Load in the correct multicast list now the flags have changed.
4480 */
4481
4482 if ((old_flags ^ flags) & IFF_MULTICAST)
4483 dev_change_rx_flags(dev, IFF_MULTICAST);
4484
4485 dev_set_rx_mode(dev);
4486
4487 /*
4488 * Have we downed the interface. We handle IFF_UP ourselves
4489 * according to user attempts to set it, rather than blindly
4490 * setting it.
4491 */
4492
4493 ret = 0;
4494 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4495 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4496
4497 if (!ret)
4498 dev_set_rx_mode(dev);
4499 }
4500
4501 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4502 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4503
4504 dev->gflags ^= IFF_PROMISC;
4505 dev_set_promiscuity(dev, inc);
4506 }
4507
4508 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4509 is important. Some (broken) drivers set IFF_PROMISC, when
4510 IFF_ALLMULTI is requested not asking us and not reporting.
4511 */
4512 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4513 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4514
4515 dev->gflags ^= IFF_ALLMULTI;
4516 dev_set_allmulti(dev, inc);
4517 }
4518
4519 return ret;
4520 }
4521
4522 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4523 {
4524 unsigned int changes = dev->flags ^ old_flags;
4525
4526 if (changes & IFF_UP) {
4527 if (dev->flags & IFF_UP)
4528 call_netdevice_notifiers(NETDEV_UP, dev);
4529 else
4530 call_netdevice_notifiers(NETDEV_DOWN, dev);
4531 }
4532
4533 if (dev->flags & IFF_UP &&
4534 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4535 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4536 }
4537
4538 /**
4539 * dev_change_flags - change device settings
4540 * @dev: device
4541 * @flags: device state flags
4542 *
4543 * Change settings on device based state flags. The flags are
4544 * in the userspace exported format.
4545 */
4546 int dev_change_flags(struct net_device *dev, unsigned flags)
4547 {
4548 int ret, changes;
4549 int old_flags = dev->flags;
4550
4551 ret = __dev_change_flags(dev, flags);
4552 if (ret < 0)
4553 return ret;
4554
4555 changes = old_flags ^ dev->flags;
4556 if (changes)
4557 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4558
4559 __dev_notify_flags(dev, old_flags);
4560 return ret;
4561 }
4562 EXPORT_SYMBOL(dev_change_flags);
4563
4564 /**
4565 * dev_set_mtu - Change maximum transfer unit
4566 * @dev: device
4567 * @new_mtu: new transfer unit
4568 *
4569 * Change the maximum transfer size of the network device.
4570 */
4571 int dev_set_mtu(struct net_device *dev, int new_mtu)
4572 {
4573 const struct net_device_ops *ops = dev->netdev_ops;
4574 int err;
4575
4576 if (new_mtu == dev->mtu)
4577 return 0;
4578
4579 /* MTU must be positive. */
4580 if (new_mtu < 0)
4581 return -EINVAL;
4582
4583 if (!netif_device_present(dev))
4584 return -ENODEV;
4585
4586 err = 0;
4587 if (ops->ndo_change_mtu)
4588 err = ops->ndo_change_mtu(dev, new_mtu);
4589 else
4590 dev->mtu = new_mtu;
4591
4592 if (!err && dev->flags & IFF_UP)
4593 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4594 return err;
4595 }
4596 EXPORT_SYMBOL(dev_set_mtu);
4597
4598 /**
4599 * dev_set_mac_address - Change Media Access Control Address
4600 * @dev: device
4601 * @sa: new address
4602 *
4603 * Change the hardware (MAC) address of the device
4604 */
4605 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4606 {
4607 const struct net_device_ops *ops = dev->netdev_ops;
4608 int err;
4609
4610 if (!ops->ndo_set_mac_address)
4611 return -EOPNOTSUPP;
4612 if (sa->sa_family != dev->type)
4613 return -EINVAL;
4614 if (!netif_device_present(dev))
4615 return -ENODEV;
4616 err = ops->ndo_set_mac_address(dev, sa);
4617 if (!err)
4618 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4619 return err;
4620 }
4621 EXPORT_SYMBOL(dev_set_mac_address);
4622
4623 /*
4624 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4625 */
4626 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4627 {
4628 int err;
4629 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4630
4631 if (!dev)
4632 return -ENODEV;
4633
4634 switch (cmd) {
4635 case SIOCGIFFLAGS: /* Get interface flags */
4636 ifr->ifr_flags = (short) dev_get_flags(dev);
4637 return 0;
4638
4639 case SIOCGIFMETRIC: /* Get the metric on the interface
4640 (currently unused) */
4641 ifr->ifr_metric = 0;
4642 return 0;
4643
4644 case SIOCGIFMTU: /* Get the MTU of a device */
4645 ifr->ifr_mtu = dev->mtu;
4646 return 0;
4647
4648 case SIOCGIFHWADDR:
4649 if (!dev->addr_len)
4650 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4651 else
4652 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4653 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4654 ifr->ifr_hwaddr.sa_family = dev->type;
4655 return 0;
4656
4657 case SIOCGIFSLAVE:
4658 err = -EINVAL;
4659 break;
4660
4661 case SIOCGIFMAP:
4662 ifr->ifr_map.mem_start = dev->mem_start;
4663 ifr->ifr_map.mem_end = dev->mem_end;
4664 ifr->ifr_map.base_addr = dev->base_addr;
4665 ifr->ifr_map.irq = dev->irq;
4666 ifr->ifr_map.dma = dev->dma;
4667 ifr->ifr_map.port = dev->if_port;
4668 return 0;
4669
4670 case SIOCGIFINDEX:
4671 ifr->ifr_ifindex = dev->ifindex;
4672 return 0;
4673
4674 case SIOCGIFTXQLEN:
4675 ifr->ifr_qlen = dev->tx_queue_len;
4676 return 0;
4677
4678 default:
4679 /* dev_ioctl() should ensure this case
4680 * is never reached
4681 */
4682 WARN_ON(1);
4683 err = -EINVAL;
4684 break;
4685
4686 }
4687 return err;
4688 }
4689
4690 /*
4691 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4692 */
4693 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4694 {
4695 int err;
4696 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4697 const struct net_device_ops *ops;
4698
4699 if (!dev)
4700 return -ENODEV;
4701
4702 ops = dev->netdev_ops;
4703
4704 switch (cmd) {
4705 case SIOCSIFFLAGS: /* Set interface flags */
4706 return dev_change_flags(dev, ifr->ifr_flags);
4707
4708 case SIOCSIFMETRIC: /* Set the metric on the interface
4709 (currently unused) */
4710 return -EOPNOTSUPP;
4711
4712 case SIOCSIFMTU: /* Set the MTU of a device */
4713 return dev_set_mtu(dev, ifr->ifr_mtu);
4714
4715 case SIOCSIFHWADDR:
4716 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4717
4718 case SIOCSIFHWBROADCAST:
4719 if (ifr->ifr_hwaddr.sa_family != dev->type)
4720 return -EINVAL;
4721 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4722 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4723 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4724 return 0;
4725
4726 case SIOCSIFMAP:
4727 if (ops->ndo_set_config) {
4728 if (!netif_device_present(dev))
4729 return -ENODEV;
4730 return ops->ndo_set_config(dev, &ifr->ifr_map);
4731 }
4732 return -EOPNOTSUPP;
4733
4734 case SIOCADDMULTI:
4735 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4736 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4737 return -EINVAL;
4738 if (!netif_device_present(dev))
4739 return -ENODEV;
4740 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4741
4742 case SIOCDELMULTI:
4743 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4744 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4745 return -EINVAL;
4746 if (!netif_device_present(dev))
4747 return -ENODEV;
4748 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4749
4750 case SIOCSIFTXQLEN:
4751 if (ifr->ifr_qlen < 0)
4752 return -EINVAL;
4753 dev->tx_queue_len = ifr->ifr_qlen;
4754 return 0;
4755
4756 case SIOCSIFNAME:
4757 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4758 return dev_change_name(dev, ifr->ifr_newname);
4759
4760 /*
4761 * Unknown or private ioctl
4762 */
4763 default:
4764 if ((cmd >= SIOCDEVPRIVATE &&
4765 cmd <= SIOCDEVPRIVATE + 15) ||
4766 cmd == SIOCBONDENSLAVE ||
4767 cmd == SIOCBONDRELEASE ||
4768 cmd == SIOCBONDSETHWADDR ||
4769 cmd == SIOCBONDSLAVEINFOQUERY ||
4770 cmd == SIOCBONDINFOQUERY ||
4771 cmd == SIOCBONDCHANGEACTIVE ||
4772 cmd == SIOCGMIIPHY ||
4773 cmd == SIOCGMIIREG ||
4774 cmd == SIOCSMIIREG ||
4775 cmd == SIOCBRADDIF ||
4776 cmd == SIOCBRDELIF ||
4777 cmd == SIOCSHWTSTAMP ||
4778 cmd == SIOCWANDEV) {
4779 err = -EOPNOTSUPP;
4780 if (ops->ndo_do_ioctl) {
4781 if (netif_device_present(dev))
4782 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4783 else
4784 err = -ENODEV;
4785 }
4786 } else
4787 err = -EINVAL;
4788
4789 }
4790 return err;
4791 }
4792
4793 /*
4794 * This function handles all "interface"-type I/O control requests. The actual
4795 * 'doing' part of this is dev_ifsioc above.
4796 */
4797
4798 /**
4799 * dev_ioctl - network device ioctl
4800 * @net: the applicable net namespace
4801 * @cmd: command to issue
4802 * @arg: pointer to a struct ifreq in user space
4803 *
4804 * Issue ioctl functions to devices. This is normally called by the
4805 * user space syscall interfaces but can sometimes be useful for
4806 * other purposes. The return value is the return from the syscall if
4807 * positive or a negative errno code on error.
4808 */
4809
4810 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4811 {
4812 struct ifreq ifr;
4813 int ret;
4814 char *colon;
4815
4816 /* One special case: SIOCGIFCONF takes ifconf argument
4817 and requires shared lock, because it sleeps writing
4818 to user space.
4819 */
4820
4821 if (cmd == SIOCGIFCONF) {
4822 rtnl_lock();
4823 ret = dev_ifconf(net, (char __user *) arg);
4824 rtnl_unlock();
4825 return ret;
4826 }
4827 if (cmd == SIOCGIFNAME)
4828 return dev_ifname(net, (struct ifreq __user *)arg);
4829
4830 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4831 return -EFAULT;
4832
4833 ifr.ifr_name[IFNAMSIZ-1] = 0;
4834
4835 colon = strchr(ifr.ifr_name, ':');
4836 if (colon)
4837 *colon = 0;
4838
4839 /*
4840 * See which interface the caller is talking about.
4841 */
4842
4843 switch (cmd) {
4844 /*
4845 * These ioctl calls:
4846 * - can be done by all.
4847 * - atomic and do not require locking.
4848 * - return a value
4849 */
4850 case SIOCGIFFLAGS:
4851 case SIOCGIFMETRIC:
4852 case SIOCGIFMTU:
4853 case SIOCGIFHWADDR:
4854 case SIOCGIFSLAVE:
4855 case SIOCGIFMAP:
4856 case SIOCGIFINDEX:
4857 case SIOCGIFTXQLEN:
4858 dev_load(net, ifr.ifr_name);
4859 rcu_read_lock();
4860 ret = dev_ifsioc_locked(net, &ifr, cmd);
4861 rcu_read_unlock();
4862 if (!ret) {
4863 if (colon)
4864 *colon = ':';
4865 if (copy_to_user(arg, &ifr,
4866 sizeof(struct ifreq)))
4867 ret = -EFAULT;
4868 }
4869 return ret;
4870
4871 case SIOCETHTOOL:
4872 dev_load(net, ifr.ifr_name);
4873 rtnl_lock();
4874 ret = dev_ethtool(net, &ifr);
4875 rtnl_unlock();
4876 if (!ret) {
4877 if (colon)
4878 *colon = ':';
4879 if (copy_to_user(arg, &ifr,
4880 sizeof(struct ifreq)))
4881 ret = -EFAULT;
4882 }
4883 return ret;
4884
4885 /*
4886 * These ioctl calls:
4887 * - require superuser power.
4888 * - require strict serialization.
4889 * - return a value
4890 */
4891 case SIOCGMIIPHY:
4892 case SIOCGMIIREG:
4893 case SIOCSIFNAME:
4894 if (!capable(CAP_NET_ADMIN))
4895 return -EPERM;
4896 dev_load(net, ifr.ifr_name);
4897 rtnl_lock();
4898 ret = dev_ifsioc(net, &ifr, cmd);
4899 rtnl_unlock();
4900 if (!ret) {
4901 if (colon)
4902 *colon = ':';
4903 if (copy_to_user(arg, &ifr,
4904 sizeof(struct ifreq)))
4905 ret = -EFAULT;
4906 }
4907 return ret;
4908
4909 /*
4910 * These ioctl calls:
4911 * - require superuser power.
4912 * - require strict serialization.
4913 * - do not return a value
4914 */
4915 case SIOCSIFFLAGS:
4916 case SIOCSIFMETRIC:
4917 case SIOCSIFMTU:
4918 case SIOCSIFMAP:
4919 case SIOCSIFHWADDR:
4920 case SIOCSIFSLAVE:
4921 case SIOCADDMULTI:
4922 case SIOCDELMULTI:
4923 case SIOCSIFHWBROADCAST:
4924 case SIOCSIFTXQLEN:
4925 case SIOCSMIIREG:
4926 case SIOCBONDENSLAVE:
4927 case SIOCBONDRELEASE:
4928 case SIOCBONDSETHWADDR:
4929 case SIOCBONDCHANGEACTIVE:
4930 case SIOCBRADDIF:
4931 case SIOCBRDELIF:
4932 case SIOCSHWTSTAMP:
4933 if (!capable(CAP_NET_ADMIN))
4934 return -EPERM;
4935 /* fall through */
4936 case SIOCBONDSLAVEINFOQUERY:
4937 case SIOCBONDINFOQUERY:
4938 dev_load(net, ifr.ifr_name);
4939 rtnl_lock();
4940 ret = dev_ifsioc(net, &ifr, cmd);
4941 rtnl_unlock();
4942 return ret;
4943
4944 case SIOCGIFMEM:
4945 /* Get the per device memory space. We can add this but
4946 * currently do not support it */
4947 case SIOCSIFMEM:
4948 /* Set the per device memory buffer space.
4949 * Not applicable in our case */
4950 case SIOCSIFLINK:
4951 return -EINVAL;
4952
4953 /*
4954 * Unknown or private ioctl.
4955 */
4956 default:
4957 if (cmd == SIOCWANDEV ||
4958 (cmd >= SIOCDEVPRIVATE &&
4959 cmd <= SIOCDEVPRIVATE + 15)) {
4960 dev_load(net, ifr.ifr_name);
4961 rtnl_lock();
4962 ret = dev_ifsioc(net, &ifr, cmd);
4963 rtnl_unlock();
4964 if (!ret && copy_to_user(arg, &ifr,
4965 sizeof(struct ifreq)))
4966 ret = -EFAULT;
4967 return ret;
4968 }
4969 /* Take care of Wireless Extensions */
4970 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4971 return wext_handle_ioctl(net, &ifr, cmd, arg);
4972 return -EINVAL;
4973 }
4974 }
4975
4976
4977 /**
4978 * dev_new_index - allocate an ifindex
4979 * @net: the applicable net namespace
4980 *
4981 * Returns a suitable unique value for a new device interface
4982 * number. The caller must hold the rtnl semaphore or the
4983 * dev_base_lock to be sure it remains unique.
4984 */
4985 static int dev_new_index(struct net *net)
4986 {
4987 static int ifindex;
4988 for (;;) {
4989 if (++ifindex <= 0)
4990 ifindex = 1;
4991 if (!__dev_get_by_index(net, ifindex))
4992 return ifindex;
4993 }
4994 }
4995
4996 /* Delayed registration/unregisteration */
4997 static LIST_HEAD(net_todo_list);
4998
4999 static void net_set_todo(struct net_device *dev)
5000 {
5001 list_add_tail(&dev->todo_list, &net_todo_list);
5002 }
5003
5004 static void rollback_registered_many(struct list_head *head)
5005 {
5006 struct net_device *dev, *tmp;
5007
5008 BUG_ON(dev_boot_phase);
5009 ASSERT_RTNL();
5010
5011 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5012 /* Some devices call without registering
5013 * for initialization unwind. Remove those
5014 * devices and proceed with the remaining.
5015 */
5016 if (dev->reg_state == NETREG_UNINITIALIZED) {
5017 pr_debug("unregister_netdevice: device %s/%p never "
5018 "was registered\n", dev->name, dev);
5019
5020 WARN_ON(1);
5021 list_del(&dev->unreg_list);
5022 continue;
5023 }
5024
5025 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5026 }
5027
5028 /* If device is running, close it first. */
5029 dev_close_many(head);
5030
5031 list_for_each_entry(dev, head, unreg_list) {
5032 /* And unlink it from device chain. */
5033 unlist_netdevice(dev);
5034
5035 dev->reg_state = NETREG_UNREGISTERING;
5036 }
5037
5038 synchronize_net();
5039
5040 list_for_each_entry(dev, head, unreg_list) {
5041 /* Shutdown queueing discipline. */
5042 dev_shutdown(dev);
5043
5044
5045 /* Notify protocols, that we are about to destroy
5046 this device. They should clean all the things.
5047 */
5048 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5049
5050 if (!dev->rtnl_link_ops ||
5051 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5052 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5053
5054 /*
5055 * Flush the unicast and multicast chains
5056 */
5057 dev_uc_flush(dev);
5058 dev_mc_flush(dev);
5059
5060 if (dev->netdev_ops->ndo_uninit)
5061 dev->netdev_ops->ndo_uninit(dev);
5062
5063 /* Notifier chain MUST detach us from master device. */
5064 WARN_ON(dev->master);
5065
5066 /* Remove entries from kobject tree */
5067 netdev_unregister_kobject(dev);
5068 }
5069
5070 /* Process any work delayed until the end of the batch */
5071 dev = list_first_entry(head, struct net_device, unreg_list);
5072 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5073
5074 rcu_barrier();
5075
5076 list_for_each_entry(dev, head, unreg_list)
5077 dev_put(dev);
5078 }
5079
5080 static void rollback_registered(struct net_device *dev)
5081 {
5082 LIST_HEAD(single);
5083
5084 list_add(&dev->unreg_list, &single);
5085 rollback_registered_many(&single);
5086 }
5087
5088 unsigned long netdev_fix_features(unsigned long features, const char *name)
5089 {
5090 /* Fix illegal SG+CSUM combinations. */
5091 if ((features & NETIF_F_SG) &&
5092 !(features & NETIF_F_ALL_CSUM)) {
5093 if (name)
5094 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5095 "checksum feature.\n", name);
5096 features &= ~NETIF_F_SG;
5097 }
5098
5099 /* TSO requires that SG is present as well. */
5100 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5101 if (name)
5102 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5103 "SG feature.\n", name);
5104 features &= ~NETIF_F_TSO;
5105 }
5106
5107 if (features & NETIF_F_UFO) {
5108 /* maybe split UFO into V4 and V6? */
5109 if (!((features & NETIF_F_GEN_CSUM) ||
5110 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5111 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5112 if (name)
5113 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5114 "since no checksum offload features.\n",
5115 name);
5116 features &= ~NETIF_F_UFO;
5117 }
5118
5119 if (!(features & NETIF_F_SG)) {
5120 if (name)
5121 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5122 "since no NETIF_F_SG feature.\n", name);
5123 features &= ~NETIF_F_UFO;
5124 }
5125 }
5126
5127 return features;
5128 }
5129 EXPORT_SYMBOL(netdev_fix_features);
5130
5131 /**
5132 * netif_stacked_transfer_operstate - transfer operstate
5133 * @rootdev: the root or lower level device to transfer state from
5134 * @dev: the device to transfer operstate to
5135 *
5136 * Transfer operational state from root to device. This is normally
5137 * called when a stacking relationship exists between the root
5138 * device and the device(a leaf device).
5139 */
5140 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5141 struct net_device *dev)
5142 {
5143 if (rootdev->operstate == IF_OPER_DORMANT)
5144 netif_dormant_on(dev);
5145 else
5146 netif_dormant_off(dev);
5147
5148 if (netif_carrier_ok(rootdev)) {
5149 if (!netif_carrier_ok(dev))
5150 netif_carrier_on(dev);
5151 } else {
5152 if (netif_carrier_ok(dev))
5153 netif_carrier_off(dev);
5154 }
5155 }
5156 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5157
5158 #ifdef CONFIG_RPS
5159 static int netif_alloc_rx_queues(struct net_device *dev)
5160 {
5161 unsigned int i, count = dev->num_rx_queues;
5162 struct netdev_rx_queue *rx;
5163
5164 BUG_ON(count < 1);
5165
5166 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5167 if (!rx) {
5168 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5169 return -ENOMEM;
5170 }
5171 dev->_rx = rx;
5172
5173 for (i = 0; i < count; i++)
5174 rx[i].dev = dev;
5175 return 0;
5176 }
5177 #endif
5178
5179 static void netdev_init_one_queue(struct net_device *dev,
5180 struct netdev_queue *queue, void *_unused)
5181 {
5182 /* Initialize queue lock */
5183 spin_lock_init(&queue->_xmit_lock);
5184 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5185 queue->xmit_lock_owner = -1;
5186 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5187 queue->dev = dev;
5188 }
5189
5190 static int netif_alloc_netdev_queues(struct net_device *dev)
5191 {
5192 unsigned int count = dev->num_tx_queues;
5193 struct netdev_queue *tx;
5194
5195 BUG_ON(count < 1);
5196
5197 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5198 if (!tx) {
5199 pr_err("netdev: Unable to allocate %u tx queues.\n",
5200 count);
5201 return -ENOMEM;
5202 }
5203 dev->_tx = tx;
5204
5205 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5206 spin_lock_init(&dev->tx_global_lock);
5207
5208 return 0;
5209 }
5210
5211 /**
5212 * register_netdevice - register a network device
5213 * @dev: device to register
5214 *
5215 * Take a completed network device structure and add it to the kernel
5216 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5217 * chain. 0 is returned on success. A negative errno code is returned
5218 * on a failure to set up the device, or if the name is a duplicate.
5219 *
5220 * Callers must hold the rtnl semaphore. You may want
5221 * register_netdev() instead of this.
5222 *
5223 * BUGS:
5224 * The locking appears insufficient to guarantee two parallel registers
5225 * will not get the same name.
5226 */
5227
5228 int register_netdevice(struct net_device *dev)
5229 {
5230 int ret;
5231 struct net *net = dev_net(dev);
5232
5233 BUG_ON(dev_boot_phase);
5234 ASSERT_RTNL();
5235
5236 might_sleep();
5237
5238 /* When net_device's are persistent, this will be fatal. */
5239 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5240 BUG_ON(!net);
5241
5242 spin_lock_init(&dev->addr_list_lock);
5243 netdev_set_addr_lockdep_class(dev);
5244
5245 dev->iflink = -1;
5246
5247 /* Init, if this function is available */
5248 if (dev->netdev_ops->ndo_init) {
5249 ret = dev->netdev_ops->ndo_init(dev);
5250 if (ret) {
5251 if (ret > 0)
5252 ret = -EIO;
5253 goto out;
5254 }
5255 }
5256
5257 ret = dev_get_valid_name(dev, dev->name, 0);
5258 if (ret)
5259 goto err_uninit;
5260
5261 dev->ifindex = dev_new_index(net);
5262 if (dev->iflink == -1)
5263 dev->iflink = dev->ifindex;
5264
5265 /* Fix illegal checksum combinations */
5266 if ((dev->features & NETIF_F_HW_CSUM) &&
5267 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5268 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5269 dev->name);
5270 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5271 }
5272
5273 if ((dev->features & NETIF_F_NO_CSUM) &&
5274 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5275 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5276 dev->name);
5277 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5278 }
5279
5280 dev->features = netdev_fix_features(dev->features, dev->name);
5281
5282 /* Enable software GSO if SG is supported. */
5283 if (dev->features & NETIF_F_SG)
5284 dev->features |= NETIF_F_GSO;
5285
5286 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5287 * vlan_dev_init() will do the dev->features check, so these features
5288 * are enabled only if supported by underlying device.
5289 */
5290 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5291
5292 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5293 ret = notifier_to_errno(ret);
5294 if (ret)
5295 goto err_uninit;
5296
5297 ret = netdev_register_kobject(dev);
5298 if (ret)
5299 goto err_uninit;
5300 dev->reg_state = NETREG_REGISTERED;
5301
5302 /*
5303 * Default initial state at registry is that the
5304 * device is present.
5305 */
5306
5307 set_bit(__LINK_STATE_PRESENT, &dev->state);
5308
5309 dev_init_scheduler(dev);
5310 dev_hold(dev);
5311 list_netdevice(dev);
5312
5313 /* Notify protocols, that a new device appeared. */
5314 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5315 ret = notifier_to_errno(ret);
5316 if (ret) {
5317 rollback_registered(dev);
5318 dev->reg_state = NETREG_UNREGISTERED;
5319 }
5320 /*
5321 * Prevent userspace races by waiting until the network
5322 * device is fully setup before sending notifications.
5323 */
5324 if (!dev->rtnl_link_ops ||
5325 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5326 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5327
5328 out:
5329 return ret;
5330
5331 err_uninit:
5332 if (dev->netdev_ops->ndo_uninit)
5333 dev->netdev_ops->ndo_uninit(dev);
5334 goto out;
5335 }
5336 EXPORT_SYMBOL(register_netdevice);
5337
5338 /**
5339 * init_dummy_netdev - init a dummy network device for NAPI
5340 * @dev: device to init
5341 *
5342 * This takes a network device structure and initialize the minimum
5343 * amount of fields so it can be used to schedule NAPI polls without
5344 * registering a full blown interface. This is to be used by drivers
5345 * that need to tie several hardware interfaces to a single NAPI
5346 * poll scheduler due to HW limitations.
5347 */
5348 int init_dummy_netdev(struct net_device *dev)
5349 {
5350 /* Clear everything. Note we don't initialize spinlocks
5351 * are they aren't supposed to be taken by any of the
5352 * NAPI code and this dummy netdev is supposed to be
5353 * only ever used for NAPI polls
5354 */
5355 memset(dev, 0, sizeof(struct net_device));
5356
5357 /* make sure we BUG if trying to hit standard
5358 * register/unregister code path
5359 */
5360 dev->reg_state = NETREG_DUMMY;
5361
5362 /* NAPI wants this */
5363 INIT_LIST_HEAD(&dev->napi_list);
5364
5365 /* a dummy interface is started by default */
5366 set_bit(__LINK_STATE_PRESENT, &dev->state);
5367 set_bit(__LINK_STATE_START, &dev->state);
5368
5369 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5370 * because users of this 'device' dont need to change
5371 * its refcount.
5372 */
5373
5374 return 0;
5375 }
5376 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5377
5378
5379 /**
5380 * register_netdev - register a network device
5381 * @dev: device to register
5382 *
5383 * Take a completed network device structure and add it to the kernel
5384 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5385 * chain. 0 is returned on success. A negative errno code is returned
5386 * on a failure to set up the device, or if the name is a duplicate.
5387 *
5388 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5389 * and expands the device name if you passed a format string to
5390 * alloc_netdev.
5391 */
5392 int register_netdev(struct net_device *dev)
5393 {
5394 int err;
5395
5396 rtnl_lock();
5397
5398 /*
5399 * If the name is a format string the caller wants us to do a
5400 * name allocation.
5401 */
5402 if (strchr(dev->name, '%')) {
5403 err = dev_alloc_name(dev, dev->name);
5404 if (err < 0)
5405 goto out;
5406 }
5407
5408 err = register_netdevice(dev);
5409 out:
5410 rtnl_unlock();
5411 return err;
5412 }
5413 EXPORT_SYMBOL(register_netdev);
5414
5415 int netdev_refcnt_read(const struct net_device *dev)
5416 {
5417 int i, refcnt = 0;
5418
5419 for_each_possible_cpu(i)
5420 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5421 return refcnt;
5422 }
5423 EXPORT_SYMBOL(netdev_refcnt_read);
5424
5425 /*
5426 * netdev_wait_allrefs - wait until all references are gone.
5427 *
5428 * This is called when unregistering network devices.
5429 *
5430 * Any protocol or device that holds a reference should register
5431 * for netdevice notification, and cleanup and put back the
5432 * reference if they receive an UNREGISTER event.
5433 * We can get stuck here if buggy protocols don't correctly
5434 * call dev_put.
5435 */
5436 static void netdev_wait_allrefs(struct net_device *dev)
5437 {
5438 unsigned long rebroadcast_time, warning_time;
5439 int refcnt;
5440
5441 linkwatch_forget_dev(dev);
5442
5443 rebroadcast_time = warning_time = jiffies;
5444 refcnt = netdev_refcnt_read(dev);
5445
5446 while (refcnt != 0) {
5447 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5448 rtnl_lock();
5449
5450 /* Rebroadcast unregister notification */
5451 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5452 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5453 * should have already handle it the first time */
5454
5455 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5456 &dev->state)) {
5457 /* We must not have linkwatch events
5458 * pending on unregister. If this
5459 * happens, we simply run the queue
5460 * unscheduled, resulting in a noop
5461 * for this device.
5462 */
5463 linkwatch_run_queue();
5464 }
5465
5466 __rtnl_unlock();
5467
5468 rebroadcast_time = jiffies;
5469 }
5470
5471 msleep(250);
5472
5473 refcnt = netdev_refcnt_read(dev);
5474
5475 if (time_after(jiffies, warning_time + 10 * HZ)) {
5476 printk(KERN_EMERG "unregister_netdevice: "
5477 "waiting for %s to become free. Usage "
5478 "count = %d\n",
5479 dev->name, refcnt);
5480 warning_time = jiffies;
5481 }
5482 }
5483 }
5484
5485 /* The sequence is:
5486 *
5487 * rtnl_lock();
5488 * ...
5489 * register_netdevice(x1);
5490 * register_netdevice(x2);
5491 * ...
5492 * unregister_netdevice(y1);
5493 * unregister_netdevice(y2);
5494 * ...
5495 * rtnl_unlock();
5496 * free_netdev(y1);
5497 * free_netdev(y2);
5498 *
5499 * We are invoked by rtnl_unlock().
5500 * This allows us to deal with problems:
5501 * 1) We can delete sysfs objects which invoke hotplug
5502 * without deadlocking with linkwatch via keventd.
5503 * 2) Since we run with the RTNL semaphore not held, we can sleep
5504 * safely in order to wait for the netdev refcnt to drop to zero.
5505 *
5506 * We must not return until all unregister events added during
5507 * the interval the lock was held have been completed.
5508 */
5509 void netdev_run_todo(void)
5510 {
5511 struct list_head list;
5512
5513 /* Snapshot list, allow later requests */
5514 list_replace_init(&net_todo_list, &list);
5515
5516 __rtnl_unlock();
5517
5518 while (!list_empty(&list)) {
5519 struct net_device *dev
5520 = list_first_entry(&list, struct net_device, todo_list);
5521 list_del(&dev->todo_list);
5522
5523 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5524 printk(KERN_ERR "network todo '%s' but state %d\n",
5525 dev->name, dev->reg_state);
5526 dump_stack();
5527 continue;
5528 }
5529
5530 dev->reg_state = NETREG_UNREGISTERED;
5531
5532 on_each_cpu(flush_backlog, dev, 1);
5533
5534 netdev_wait_allrefs(dev);
5535
5536 /* paranoia */
5537 BUG_ON(netdev_refcnt_read(dev));
5538 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5539 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5540 WARN_ON(dev->dn_ptr);
5541
5542 if (dev->destructor)
5543 dev->destructor(dev);
5544
5545 /* Free network device */
5546 kobject_put(&dev->dev.kobj);
5547 }
5548 }
5549
5550 /**
5551 * dev_txq_stats_fold - fold tx_queues stats
5552 * @dev: device to get statistics from
5553 * @stats: struct rtnl_link_stats64 to hold results
5554 */
5555 void dev_txq_stats_fold(const struct net_device *dev,
5556 struct rtnl_link_stats64 *stats)
5557 {
5558 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5559 unsigned int i;
5560 struct netdev_queue *txq;
5561
5562 for (i = 0; i < dev->num_tx_queues; i++) {
5563 txq = netdev_get_tx_queue(dev, i);
5564 spin_lock_bh(&txq->_xmit_lock);
5565 tx_bytes += txq->tx_bytes;
5566 tx_packets += txq->tx_packets;
5567 tx_dropped += txq->tx_dropped;
5568 spin_unlock_bh(&txq->_xmit_lock);
5569 }
5570 if (tx_bytes || tx_packets || tx_dropped) {
5571 stats->tx_bytes = tx_bytes;
5572 stats->tx_packets = tx_packets;
5573 stats->tx_dropped = tx_dropped;
5574 }
5575 }
5576 EXPORT_SYMBOL(dev_txq_stats_fold);
5577
5578 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5579 * fields in the same order, with only the type differing.
5580 */
5581 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5582 const struct net_device_stats *netdev_stats)
5583 {
5584 #if BITS_PER_LONG == 64
5585 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5586 memcpy(stats64, netdev_stats, sizeof(*stats64));
5587 #else
5588 size_t i, n = sizeof(*stats64) / sizeof(u64);
5589 const unsigned long *src = (const unsigned long *)netdev_stats;
5590 u64 *dst = (u64 *)stats64;
5591
5592 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5593 sizeof(*stats64) / sizeof(u64));
5594 for (i = 0; i < n; i++)
5595 dst[i] = src[i];
5596 #endif
5597 }
5598
5599 /**
5600 * dev_get_stats - get network device statistics
5601 * @dev: device to get statistics from
5602 * @storage: place to store stats
5603 *
5604 * Get network statistics from device. Return @storage.
5605 * The device driver may provide its own method by setting
5606 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5607 * otherwise the internal statistics structure is used.
5608 */
5609 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5610 struct rtnl_link_stats64 *storage)
5611 {
5612 const struct net_device_ops *ops = dev->netdev_ops;
5613
5614 if (ops->ndo_get_stats64) {
5615 memset(storage, 0, sizeof(*storage));
5616 ops->ndo_get_stats64(dev, storage);
5617 } else if (ops->ndo_get_stats) {
5618 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5619 } else {
5620 netdev_stats_to_stats64(storage, &dev->stats);
5621 dev_txq_stats_fold(dev, storage);
5622 }
5623 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5624 return storage;
5625 }
5626 EXPORT_SYMBOL(dev_get_stats);
5627
5628 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5629 {
5630 struct netdev_queue *queue = dev_ingress_queue(dev);
5631
5632 #ifdef CONFIG_NET_CLS_ACT
5633 if (queue)
5634 return queue;
5635 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5636 if (!queue)
5637 return NULL;
5638 netdev_init_one_queue(dev, queue, NULL);
5639 queue->qdisc = &noop_qdisc;
5640 queue->qdisc_sleeping = &noop_qdisc;
5641 rcu_assign_pointer(dev->ingress_queue, queue);
5642 #endif
5643 return queue;
5644 }
5645
5646 /**
5647 * alloc_netdev_mq - allocate network device
5648 * @sizeof_priv: size of private data to allocate space for
5649 * @name: device name format string
5650 * @setup: callback to initialize device
5651 * @queue_count: the number of subqueues to allocate
5652 *
5653 * Allocates a struct net_device with private data area for driver use
5654 * and performs basic initialization. Also allocates subquue structs
5655 * for each queue on the device at the end of the netdevice.
5656 */
5657 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5658 void (*setup)(struct net_device *), unsigned int queue_count)
5659 {
5660 struct net_device *dev;
5661 size_t alloc_size;
5662 struct net_device *p;
5663
5664 BUG_ON(strlen(name) >= sizeof(dev->name));
5665
5666 if (queue_count < 1) {
5667 pr_err("alloc_netdev: Unable to allocate device "
5668 "with zero queues.\n");
5669 return NULL;
5670 }
5671
5672 alloc_size = sizeof(struct net_device);
5673 if (sizeof_priv) {
5674 /* ensure 32-byte alignment of private area */
5675 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5676 alloc_size += sizeof_priv;
5677 }
5678 /* ensure 32-byte alignment of whole construct */
5679 alloc_size += NETDEV_ALIGN - 1;
5680
5681 p = kzalloc(alloc_size, GFP_KERNEL);
5682 if (!p) {
5683 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5684 return NULL;
5685 }
5686
5687 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5688 dev->padded = (char *)dev - (char *)p;
5689
5690 dev->pcpu_refcnt = alloc_percpu(int);
5691 if (!dev->pcpu_refcnt)
5692 goto free_p;
5693
5694 if (dev_addr_init(dev))
5695 goto free_pcpu;
5696
5697 dev_mc_init(dev);
5698 dev_uc_init(dev);
5699
5700 dev_net_set(dev, &init_net);
5701
5702 dev->num_tx_queues = queue_count;
5703 dev->real_num_tx_queues = queue_count;
5704 if (netif_alloc_netdev_queues(dev))
5705 goto free_pcpu;
5706
5707 #ifdef CONFIG_RPS
5708 dev->num_rx_queues = queue_count;
5709 dev->real_num_rx_queues = queue_count;
5710 if (netif_alloc_rx_queues(dev))
5711 goto free_pcpu;
5712 #endif
5713
5714 dev->gso_max_size = GSO_MAX_SIZE;
5715
5716 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5717 dev->ethtool_ntuple_list.count = 0;
5718 INIT_LIST_HEAD(&dev->napi_list);
5719 INIT_LIST_HEAD(&dev->unreg_list);
5720 INIT_LIST_HEAD(&dev->link_watch_list);
5721 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5722 setup(dev);
5723 strcpy(dev->name, name);
5724 return dev;
5725
5726 free_pcpu:
5727 free_percpu(dev->pcpu_refcnt);
5728 kfree(dev->_tx);
5729 #ifdef CONFIG_RPS
5730 kfree(dev->_rx);
5731 #endif
5732
5733 free_p:
5734 kfree(p);
5735 return NULL;
5736 }
5737 EXPORT_SYMBOL(alloc_netdev_mq);
5738
5739 /**
5740 * free_netdev - free network device
5741 * @dev: device
5742 *
5743 * This function does the last stage of destroying an allocated device
5744 * interface. The reference to the device object is released.
5745 * If this is the last reference then it will be freed.
5746 */
5747 void free_netdev(struct net_device *dev)
5748 {
5749 struct napi_struct *p, *n;
5750
5751 release_net(dev_net(dev));
5752
5753 kfree(dev->_tx);
5754 #ifdef CONFIG_RPS
5755 kfree(dev->_rx);
5756 #endif
5757
5758 kfree(rcu_dereference_raw(dev->ingress_queue));
5759
5760 /* Flush device addresses */
5761 dev_addr_flush(dev);
5762
5763 /* Clear ethtool n-tuple list */
5764 ethtool_ntuple_flush(dev);
5765
5766 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5767 netif_napi_del(p);
5768
5769 free_percpu(dev->pcpu_refcnt);
5770 dev->pcpu_refcnt = NULL;
5771
5772 /* Compatibility with error handling in drivers */
5773 if (dev->reg_state == NETREG_UNINITIALIZED) {
5774 kfree((char *)dev - dev->padded);
5775 return;
5776 }
5777
5778 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5779 dev->reg_state = NETREG_RELEASED;
5780
5781 /* will free via device release */
5782 put_device(&dev->dev);
5783 }
5784 EXPORT_SYMBOL(free_netdev);
5785
5786 /**
5787 * synchronize_net - Synchronize with packet receive processing
5788 *
5789 * Wait for packets currently being received to be done.
5790 * Does not block later packets from starting.
5791 */
5792 void synchronize_net(void)
5793 {
5794 might_sleep();
5795 synchronize_rcu();
5796 }
5797 EXPORT_SYMBOL(synchronize_net);
5798
5799 /**
5800 * unregister_netdevice_queue - remove device from the kernel
5801 * @dev: device
5802 * @head: list
5803 *
5804 * This function shuts down a device interface and removes it
5805 * from the kernel tables.
5806 * If head not NULL, device is queued to be unregistered later.
5807 *
5808 * Callers must hold the rtnl semaphore. You may want
5809 * unregister_netdev() instead of this.
5810 */
5811
5812 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5813 {
5814 ASSERT_RTNL();
5815
5816 if (head) {
5817 list_move_tail(&dev->unreg_list, head);
5818 } else {
5819 rollback_registered(dev);
5820 /* Finish processing unregister after unlock */
5821 net_set_todo(dev);
5822 }
5823 }
5824 EXPORT_SYMBOL(unregister_netdevice_queue);
5825
5826 /**
5827 * unregister_netdevice_many - unregister many devices
5828 * @head: list of devices
5829 */
5830 void unregister_netdevice_many(struct list_head *head)
5831 {
5832 struct net_device *dev;
5833
5834 if (!list_empty(head)) {
5835 rollback_registered_many(head);
5836 list_for_each_entry(dev, head, unreg_list)
5837 net_set_todo(dev);
5838 }
5839 }
5840 EXPORT_SYMBOL(unregister_netdevice_many);
5841
5842 /**
5843 * unregister_netdev - remove device from the kernel
5844 * @dev: device
5845 *
5846 * This function shuts down a device interface and removes it
5847 * from the kernel tables.
5848 *
5849 * This is just a wrapper for unregister_netdevice that takes
5850 * the rtnl semaphore. In general you want to use this and not
5851 * unregister_netdevice.
5852 */
5853 void unregister_netdev(struct net_device *dev)
5854 {
5855 rtnl_lock();
5856 unregister_netdevice(dev);
5857 rtnl_unlock();
5858 }
5859 EXPORT_SYMBOL(unregister_netdev);
5860
5861 /**
5862 * dev_change_net_namespace - move device to different nethost namespace
5863 * @dev: device
5864 * @net: network namespace
5865 * @pat: If not NULL name pattern to try if the current device name
5866 * is already taken in the destination network namespace.
5867 *
5868 * This function shuts down a device interface and moves it
5869 * to a new network namespace. On success 0 is returned, on
5870 * a failure a netagive errno code is returned.
5871 *
5872 * Callers must hold the rtnl semaphore.
5873 */
5874
5875 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5876 {
5877 int err;
5878
5879 ASSERT_RTNL();
5880
5881 /* Don't allow namespace local devices to be moved. */
5882 err = -EINVAL;
5883 if (dev->features & NETIF_F_NETNS_LOCAL)
5884 goto out;
5885
5886 /* Ensure the device has been registrered */
5887 err = -EINVAL;
5888 if (dev->reg_state != NETREG_REGISTERED)
5889 goto out;
5890
5891 /* Get out if there is nothing todo */
5892 err = 0;
5893 if (net_eq(dev_net(dev), net))
5894 goto out;
5895
5896 /* Pick the destination device name, and ensure
5897 * we can use it in the destination network namespace.
5898 */
5899 err = -EEXIST;
5900 if (__dev_get_by_name(net, dev->name)) {
5901 /* We get here if we can't use the current device name */
5902 if (!pat)
5903 goto out;
5904 if (dev_get_valid_name(dev, pat, 1))
5905 goto out;
5906 }
5907
5908 /*
5909 * And now a mini version of register_netdevice unregister_netdevice.
5910 */
5911
5912 /* If device is running close it first. */
5913 dev_close(dev);
5914
5915 /* And unlink it from device chain */
5916 err = -ENODEV;
5917 unlist_netdevice(dev);
5918
5919 synchronize_net();
5920
5921 /* Shutdown queueing discipline. */
5922 dev_shutdown(dev);
5923
5924 /* Notify protocols, that we are about to destroy
5925 this device. They should clean all the things.
5926
5927 Note that dev->reg_state stays at NETREG_REGISTERED.
5928 This is wanted because this way 8021q and macvlan know
5929 the device is just moving and can keep their slaves up.
5930 */
5931 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5932 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5933
5934 /*
5935 * Flush the unicast and multicast chains
5936 */
5937 dev_uc_flush(dev);
5938 dev_mc_flush(dev);
5939
5940 /* Actually switch the network namespace */
5941 dev_net_set(dev, net);
5942
5943 /* If there is an ifindex conflict assign a new one */
5944 if (__dev_get_by_index(net, dev->ifindex)) {
5945 int iflink = (dev->iflink == dev->ifindex);
5946 dev->ifindex = dev_new_index(net);
5947 if (iflink)
5948 dev->iflink = dev->ifindex;
5949 }
5950
5951 /* Fixup kobjects */
5952 err = device_rename(&dev->dev, dev->name);
5953 WARN_ON(err);
5954
5955 /* Add the device back in the hashes */
5956 list_netdevice(dev);
5957
5958 /* Notify protocols, that a new device appeared. */
5959 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5960
5961 /*
5962 * Prevent userspace races by waiting until the network
5963 * device is fully setup before sending notifications.
5964 */
5965 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5966
5967 synchronize_net();
5968 err = 0;
5969 out:
5970 return err;
5971 }
5972 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5973
5974 static int dev_cpu_callback(struct notifier_block *nfb,
5975 unsigned long action,
5976 void *ocpu)
5977 {
5978 struct sk_buff **list_skb;
5979 struct sk_buff *skb;
5980 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5981 struct softnet_data *sd, *oldsd;
5982
5983 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5984 return NOTIFY_OK;
5985
5986 local_irq_disable();
5987 cpu = smp_processor_id();
5988 sd = &per_cpu(softnet_data, cpu);
5989 oldsd = &per_cpu(softnet_data, oldcpu);
5990
5991 /* Find end of our completion_queue. */
5992 list_skb = &sd->completion_queue;
5993 while (*list_skb)
5994 list_skb = &(*list_skb)->next;
5995 /* Append completion queue from offline CPU. */
5996 *list_skb = oldsd->completion_queue;
5997 oldsd->completion_queue = NULL;
5998
5999 /* Append output queue from offline CPU. */
6000 if (oldsd->output_queue) {
6001 *sd->output_queue_tailp = oldsd->output_queue;
6002 sd->output_queue_tailp = oldsd->output_queue_tailp;
6003 oldsd->output_queue = NULL;
6004 oldsd->output_queue_tailp = &oldsd->output_queue;
6005 }
6006
6007 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6008 local_irq_enable();
6009
6010 /* Process offline CPU's input_pkt_queue */
6011 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6012 netif_rx(skb);
6013 input_queue_head_incr(oldsd);
6014 }
6015 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6016 netif_rx(skb);
6017 input_queue_head_incr(oldsd);
6018 }
6019
6020 return NOTIFY_OK;
6021 }
6022
6023
6024 /**
6025 * netdev_increment_features - increment feature set by one
6026 * @all: current feature set
6027 * @one: new feature set
6028 * @mask: mask feature set
6029 *
6030 * Computes a new feature set after adding a device with feature set
6031 * @one to the master device with current feature set @all. Will not
6032 * enable anything that is off in @mask. Returns the new feature set.
6033 */
6034 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6035 unsigned long mask)
6036 {
6037 /* If device needs checksumming, downgrade to it. */
6038 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6039 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6040 else if (mask & NETIF_F_ALL_CSUM) {
6041 /* If one device supports v4/v6 checksumming, set for all. */
6042 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6043 !(all & NETIF_F_GEN_CSUM)) {
6044 all &= ~NETIF_F_ALL_CSUM;
6045 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6046 }
6047
6048 /* If one device supports hw checksumming, set for all. */
6049 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6050 all &= ~NETIF_F_ALL_CSUM;
6051 all |= NETIF_F_HW_CSUM;
6052 }
6053 }
6054
6055 one |= NETIF_F_ALL_CSUM;
6056
6057 one |= all & NETIF_F_ONE_FOR_ALL;
6058 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6059 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6060
6061 return all;
6062 }
6063 EXPORT_SYMBOL(netdev_increment_features);
6064
6065 static struct hlist_head *netdev_create_hash(void)
6066 {
6067 int i;
6068 struct hlist_head *hash;
6069
6070 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6071 if (hash != NULL)
6072 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6073 INIT_HLIST_HEAD(&hash[i]);
6074
6075 return hash;
6076 }
6077
6078 /* Initialize per network namespace state */
6079 static int __net_init netdev_init(struct net *net)
6080 {
6081 INIT_LIST_HEAD(&net->dev_base_head);
6082
6083 net->dev_name_head = netdev_create_hash();
6084 if (net->dev_name_head == NULL)
6085 goto err_name;
6086
6087 net->dev_index_head = netdev_create_hash();
6088 if (net->dev_index_head == NULL)
6089 goto err_idx;
6090
6091 return 0;
6092
6093 err_idx:
6094 kfree(net->dev_name_head);
6095 err_name:
6096 return -ENOMEM;
6097 }
6098
6099 /**
6100 * netdev_drivername - network driver for the device
6101 * @dev: network device
6102 * @buffer: buffer for resulting name
6103 * @len: size of buffer
6104 *
6105 * Determine network driver for device.
6106 */
6107 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6108 {
6109 const struct device_driver *driver;
6110 const struct device *parent;
6111
6112 if (len <= 0 || !buffer)
6113 return buffer;
6114 buffer[0] = 0;
6115
6116 parent = dev->dev.parent;
6117
6118 if (!parent)
6119 return buffer;
6120
6121 driver = parent->driver;
6122 if (driver && driver->name)
6123 strlcpy(buffer, driver->name, len);
6124 return buffer;
6125 }
6126
6127 static int __netdev_printk(const char *level, const struct net_device *dev,
6128 struct va_format *vaf)
6129 {
6130 int r;
6131
6132 if (dev && dev->dev.parent)
6133 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6134 netdev_name(dev), vaf);
6135 else if (dev)
6136 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6137 else
6138 r = printk("%s(NULL net_device): %pV", level, vaf);
6139
6140 return r;
6141 }
6142
6143 int netdev_printk(const char *level, const struct net_device *dev,
6144 const char *format, ...)
6145 {
6146 struct va_format vaf;
6147 va_list args;
6148 int r;
6149
6150 va_start(args, format);
6151
6152 vaf.fmt = format;
6153 vaf.va = &args;
6154
6155 r = __netdev_printk(level, dev, &vaf);
6156 va_end(args);
6157
6158 return r;
6159 }
6160 EXPORT_SYMBOL(netdev_printk);
6161
6162 #define define_netdev_printk_level(func, level) \
6163 int func(const struct net_device *dev, const char *fmt, ...) \
6164 { \
6165 int r; \
6166 struct va_format vaf; \
6167 va_list args; \
6168 \
6169 va_start(args, fmt); \
6170 \
6171 vaf.fmt = fmt; \
6172 vaf.va = &args; \
6173 \
6174 r = __netdev_printk(level, dev, &vaf); \
6175 va_end(args); \
6176 \
6177 return r; \
6178 } \
6179 EXPORT_SYMBOL(func);
6180
6181 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6182 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6183 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6184 define_netdev_printk_level(netdev_err, KERN_ERR);
6185 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6186 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6187 define_netdev_printk_level(netdev_info, KERN_INFO);
6188
6189 static void __net_exit netdev_exit(struct net *net)
6190 {
6191 kfree(net->dev_name_head);
6192 kfree(net->dev_index_head);
6193 }
6194
6195 static struct pernet_operations __net_initdata netdev_net_ops = {
6196 .init = netdev_init,
6197 .exit = netdev_exit,
6198 };
6199
6200 static void __net_exit default_device_exit(struct net *net)
6201 {
6202 struct net_device *dev, *aux;
6203 /*
6204 * Push all migratable network devices back to the
6205 * initial network namespace
6206 */
6207 rtnl_lock();
6208 for_each_netdev_safe(net, dev, aux) {
6209 int err;
6210 char fb_name[IFNAMSIZ];
6211
6212 /* Ignore unmoveable devices (i.e. loopback) */
6213 if (dev->features & NETIF_F_NETNS_LOCAL)
6214 continue;
6215
6216 /* Leave virtual devices for the generic cleanup */
6217 if (dev->rtnl_link_ops)
6218 continue;
6219
6220 /* Push remaing network devices to init_net */
6221 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6222 err = dev_change_net_namespace(dev, &init_net, fb_name);
6223 if (err) {
6224 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6225 __func__, dev->name, err);
6226 BUG();
6227 }
6228 }
6229 rtnl_unlock();
6230 }
6231
6232 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6233 {
6234 /* At exit all network devices most be removed from a network
6235 * namespace. Do this in the reverse order of registeration.
6236 * Do this across as many network namespaces as possible to
6237 * improve batching efficiency.
6238 */
6239 struct net_device *dev;
6240 struct net *net;
6241 LIST_HEAD(dev_kill_list);
6242
6243 rtnl_lock();
6244 list_for_each_entry(net, net_list, exit_list) {
6245 for_each_netdev_reverse(net, dev) {
6246 if (dev->rtnl_link_ops)
6247 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6248 else
6249 unregister_netdevice_queue(dev, &dev_kill_list);
6250 }
6251 }
6252 unregister_netdevice_many(&dev_kill_list);
6253 rtnl_unlock();
6254 }
6255
6256 static struct pernet_operations __net_initdata default_device_ops = {
6257 .exit = default_device_exit,
6258 .exit_batch = default_device_exit_batch,
6259 };
6260
6261 /*
6262 * Initialize the DEV module. At boot time this walks the device list and
6263 * unhooks any devices that fail to initialise (normally hardware not
6264 * present) and leaves us with a valid list of present and active devices.
6265 *
6266 */
6267
6268 /*
6269 * This is called single threaded during boot, so no need
6270 * to take the rtnl semaphore.
6271 */
6272 static int __init net_dev_init(void)
6273 {
6274 int i, rc = -ENOMEM;
6275
6276 BUG_ON(!dev_boot_phase);
6277
6278 if (dev_proc_init())
6279 goto out;
6280
6281 if (netdev_kobject_init())
6282 goto out;
6283
6284 INIT_LIST_HEAD(&ptype_all);
6285 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6286 INIT_LIST_HEAD(&ptype_base[i]);
6287
6288 if (register_pernet_subsys(&netdev_net_ops))
6289 goto out;
6290
6291 /*
6292 * Initialise the packet receive queues.
6293 */
6294
6295 for_each_possible_cpu(i) {
6296 struct softnet_data *sd = &per_cpu(softnet_data, i);
6297
6298 memset(sd, 0, sizeof(*sd));
6299 skb_queue_head_init(&sd->input_pkt_queue);
6300 skb_queue_head_init(&sd->process_queue);
6301 sd->completion_queue = NULL;
6302 INIT_LIST_HEAD(&sd->poll_list);
6303 sd->output_queue = NULL;
6304 sd->output_queue_tailp = &sd->output_queue;
6305 #ifdef CONFIG_RPS
6306 sd->csd.func = rps_trigger_softirq;
6307 sd->csd.info = sd;
6308 sd->csd.flags = 0;
6309 sd->cpu = i;
6310 #endif
6311
6312 sd->backlog.poll = process_backlog;
6313 sd->backlog.weight = weight_p;
6314 sd->backlog.gro_list = NULL;
6315 sd->backlog.gro_count = 0;
6316 }
6317
6318 dev_boot_phase = 0;
6319
6320 /* The loopback device is special if any other network devices
6321 * is present in a network namespace the loopback device must
6322 * be present. Since we now dynamically allocate and free the
6323 * loopback device ensure this invariant is maintained by
6324 * keeping the loopback device as the first device on the
6325 * list of network devices. Ensuring the loopback devices
6326 * is the first device that appears and the last network device
6327 * that disappears.
6328 */
6329 if (register_pernet_device(&loopback_net_ops))
6330 goto out;
6331
6332 if (register_pernet_device(&default_device_ops))
6333 goto out;
6334
6335 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6336 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6337
6338 hotcpu_notifier(dev_cpu_callback, 0);
6339 dst_init();
6340 dev_mcast_init();
6341 rc = 0;
6342 out:
6343 return rc;
6344 }
6345
6346 subsys_initcall(net_dev_init);
6347
6348 static int __init initialize_hashrnd(void)
6349 {
6350 get_random_bytes(&hashrnd, sizeof(hashrnd));
6351 return 0;
6352 }
6353
6354 late_initcall_sync(initialize_hashrnd);
6355
This page took 0.170025 seconds and 5 git commands to generate.