Merge branch 'i2c/for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 static DEFINE_SPINLOCK(ptype_lock);
144 static DEFINE_SPINLOCK(offload_lock);
145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
146 struct list_head ptype_all __read_mostly; /* Taps */
147 static struct list_head offload_base __read_mostly;
148
149 /*
150 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
151 * semaphore.
152 *
153 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
154 *
155 * Writers must hold the rtnl semaphore while they loop through the
156 * dev_base_head list, and hold dev_base_lock for writing when they do the
157 * actual updates. This allows pure readers to access the list even
158 * while a writer is preparing to update it.
159 *
160 * To put it another way, dev_base_lock is held for writing only to
161 * protect against pure readers; the rtnl semaphore provides the
162 * protection against other writers.
163 *
164 * See, for example usages, register_netdevice() and
165 * unregister_netdevice(), which must be called with the rtnl
166 * semaphore held.
167 */
168 DEFINE_RWLOCK(dev_base_lock);
169 EXPORT_SYMBOL(dev_base_lock);
170
171 /* protects napi_hash addition/deletion and napi_gen_id */
172 static DEFINE_SPINLOCK(napi_hash_lock);
173
174 static unsigned int napi_gen_id;
175 static DEFINE_HASHTABLE(napi_hash, 8);
176
177 seqcount_t devnet_rename_seq;
178
179 static inline void dev_base_seq_inc(struct net *net)
180 {
181 while (++net->dev_base_seq == 0);
182 }
183
184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
185 {
186 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
187
188 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
189 }
190
191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
192 {
193 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
194 }
195
196 static inline void rps_lock(struct softnet_data *sd)
197 {
198 #ifdef CONFIG_RPS
199 spin_lock(&sd->input_pkt_queue.lock);
200 #endif
201 }
202
203 static inline void rps_unlock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_unlock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 /* Device list insertion */
211 static void list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head_rcu(&dev->index_hlist,
221 dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223
224 dev_base_seq_inc(net);
225 }
226
227 /* Device list removal
228 * caller must respect a RCU grace period before freeing/reusing dev
229 */
230 static void unlist_netdevice(struct net_device *dev)
231 {
232 ASSERT_RTNL();
233
234 /* Unlink dev from the device chain */
235 write_lock_bh(&dev_base_lock);
236 list_del_rcu(&dev->dev_list);
237 hlist_del_rcu(&dev->name_hlist);
238 hlist_del_rcu(&dev->index_hlist);
239 write_unlock_bh(&dev_base_lock);
240
241 dev_base_seq_inc(dev_net(dev));
242 }
243
244 /*
245 * Our notifier list
246 */
247
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249
250 /*
251 * Device drivers call our routines to queue packets here. We empty the
252 * queue in the local softnet handler.
253 */
254
255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
256 EXPORT_PER_CPU_SYMBOL(softnet_data);
257
258 #ifdef CONFIG_LOCKDEP
259 /*
260 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
261 * according to dev->type
262 */
263 static const unsigned short netdev_lock_type[] =
264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
276 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
277 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
278 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
279
280 static const char *const netdev_lock_name[] =
281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
293 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
294 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
295 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
296
297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
299
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310
311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
313 {
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319 }
320
321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev->type);
326 lockdep_set_class_and_name(&dev->addr_list_lock,
327 &netdev_addr_lock_key[i],
328 netdev_lock_name[i]);
329 }
330 #else
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 unsigned short dev_type)
333 {
334 }
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 }
338 #endif
339
340 /*******************************************************************************
341
342 Protocol management and registration routines
343
344 *******************************************************************************/
345
346 /*
347 * Add a protocol ID to the list. Now that the input handler is
348 * smarter we can dispense with all the messy stuff that used to be
349 * here.
350 *
351 * BEWARE!!! Protocol handlers, mangling input packets,
352 * MUST BE last in hash buckets and checking protocol handlers
353 * MUST start from promiscuous ptype_all chain in net_bh.
354 * It is true now, do not change it.
355 * Explanation follows: if protocol handler, mangling packet, will
356 * be the first on list, it is not able to sense, that packet
357 * is cloned and should be copied-on-write, so that it will
358 * change it and subsequent readers will get broken packet.
359 * --ANK (980803)
360 */
361
362 static inline struct list_head *ptype_head(const struct packet_type *pt)
363 {
364 if (pt->type == htons(ETH_P_ALL))
365 return &ptype_all;
366 else
367 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
368 }
369
370 /**
371 * dev_add_pack - add packet handler
372 * @pt: packet type declaration
373 *
374 * Add a protocol handler to the networking stack. The passed &packet_type
375 * is linked into kernel lists and may not be freed until it has been
376 * removed from the kernel lists.
377 *
378 * This call does not sleep therefore it can not
379 * guarantee all CPU's that are in middle of receiving packets
380 * will see the new packet type (until the next received packet).
381 */
382
383 void dev_add_pack(struct packet_type *pt)
384 {
385 struct list_head *head = ptype_head(pt);
386
387 spin_lock(&ptype_lock);
388 list_add_rcu(&pt->list, head);
389 spin_unlock(&ptype_lock);
390 }
391 EXPORT_SYMBOL(dev_add_pack);
392
393 /**
394 * __dev_remove_pack - remove packet handler
395 * @pt: packet type declaration
396 *
397 * Remove a protocol handler that was previously added to the kernel
398 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
399 * from the kernel lists and can be freed or reused once this function
400 * returns.
401 *
402 * The packet type might still be in use by receivers
403 * and must not be freed until after all the CPU's have gone
404 * through a quiescent state.
405 */
406 void __dev_remove_pack(struct packet_type *pt)
407 {
408 struct list_head *head = ptype_head(pt);
409 struct packet_type *pt1;
410
411 spin_lock(&ptype_lock);
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 pr_warn("dev_remove_pack: %p not found\n", pt);
421 out:
422 spin_unlock(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425
426 /**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 __dev_remove_pack(pt);
441
442 synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445
446
447 /**
448 * dev_add_offload - register offload handlers
449 * @po: protocol offload declaration
450 *
451 * Add protocol offload handlers to the networking stack. The passed
452 * &proto_offload is linked into kernel lists and may not be freed until
453 * it has been removed from the kernel lists.
454 *
455 * This call does not sleep therefore it can not
456 * guarantee all CPU's that are in middle of receiving packets
457 * will see the new offload handlers (until the next received packet).
458 */
459 void dev_add_offload(struct packet_offload *po)
460 {
461 struct list_head *head = &offload_base;
462
463 spin_lock(&offload_lock);
464 list_add_rcu(&po->list, head);
465 spin_unlock(&offload_lock);
466 }
467 EXPORT_SYMBOL(dev_add_offload);
468
469 /**
470 * __dev_remove_offload - remove offload handler
471 * @po: packet offload declaration
472 *
473 * Remove a protocol offload handler that was previously added to the
474 * kernel offload handlers by dev_add_offload(). The passed &offload_type
475 * is removed from the kernel lists and can be freed or reused once this
476 * function returns.
477 *
478 * The packet type might still be in use by receivers
479 * and must not be freed until after all the CPU's have gone
480 * through a quiescent state.
481 */
482 void __dev_remove_offload(struct packet_offload *po)
483 {
484 struct list_head *head = &offload_base;
485 struct packet_offload *po1;
486
487 spin_lock(&offload_lock);
488
489 list_for_each_entry(po1, head, list) {
490 if (po == po1) {
491 list_del_rcu(&po->list);
492 goto out;
493 }
494 }
495
496 pr_warn("dev_remove_offload: %p not found\n", po);
497 out:
498 spin_unlock(&offload_lock);
499 }
500 EXPORT_SYMBOL(__dev_remove_offload);
501
502 /**
503 * dev_remove_offload - remove packet offload handler
504 * @po: packet offload declaration
505 *
506 * Remove a packet offload handler that was previously added to the kernel
507 * offload handlers by dev_add_offload(). The passed &offload_type is
508 * removed from the kernel lists and can be freed or reused once this
509 * function returns.
510 *
511 * This call sleeps to guarantee that no CPU is looking at the packet
512 * type after return.
513 */
514 void dev_remove_offload(struct packet_offload *po)
515 {
516 __dev_remove_offload(po);
517
518 synchronize_net();
519 }
520 EXPORT_SYMBOL(dev_remove_offload);
521
522 /******************************************************************************
523
524 Device Boot-time Settings Routines
525
526 *******************************************************************************/
527
528 /* Boot time configuration table */
529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
530
531 /**
532 * netdev_boot_setup_add - add new setup entry
533 * @name: name of the device
534 * @map: configured settings for the device
535 *
536 * Adds new setup entry to the dev_boot_setup list. The function
537 * returns 0 on error and 1 on success. This is a generic routine to
538 * all netdevices.
539 */
540 static int netdev_boot_setup_add(char *name, struct ifmap *map)
541 {
542 struct netdev_boot_setup *s;
543 int i;
544
545 s = dev_boot_setup;
546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
548 memset(s[i].name, 0, sizeof(s[i].name));
549 strlcpy(s[i].name, name, IFNAMSIZ);
550 memcpy(&s[i].map, map, sizeof(s[i].map));
551 break;
552 }
553 }
554
555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
556 }
557
558 /**
559 * netdev_boot_setup_check - check boot time settings
560 * @dev: the netdevice
561 *
562 * Check boot time settings for the device.
563 * The found settings are set for the device to be used
564 * later in the device probing.
565 * Returns 0 if no settings found, 1 if they are.
566 */
567 int netdev_boot_setup_check(struct net_device *dev)
568 {
569 struct netdev_boot_setup *s = dev_boot_setup;
570 int i;
571
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
574 !strcmp(dev->name, s[i].name)) {
575 dev->irq = s[i].map.irq;
576 dev->base_addr = s[i].map.base_addr;
577 dev->mem_start = s[i].map.mem_start;
578 dev->mem_end = s[i].map.mem_end;
579 return 1;
580 }
581 }
582 return 0;
583 }
584 EXPORT_SYMBOL(netdev_boot_setup_check);
585
586
587 /**
588 * netdev_boot_base - get address from boot time settings
589 * @prefix: prefix for network device
590 * @unit: id for network device
591 *
592 * Check boot time settings for the base address of device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found.
596 */
597 unsigned long netdev_boot_base(const char *prefix, int unit)
598 {
599 const struct netdev_boot_setup *s = dev_boot_setup;
600 char name[IFNAMSIZ];
601 int i;
602
603 sprintf(name, "%s%d", prefix, unit);
604
605 /*
606 * If device already registered then return base of 1
607 * to indicate not to probe for this interface
608 */
609 if (__dev_get_by_name(&init_net, name))
610 return 1;
611
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
613 if (!strcmp(name, s[i].name))
614 return s[i].map.base_addr;
615 return 0;
616 }
617
618 /*
619 * Saves at boot time configured settings for any netdevice.
620 */
621 int __init netdev_boot_setup(char *str)
622 {
623 int ints[5];
624 struct ifmap map;
625
626 str = get_options(str, ARRAY_SIZE(ints), ints);
627 if (!str || !*str)
628 return 0;
629
630 /* Save settings */
631 memset(&map, 0, sizeof(map));
632 if (ints[0] > 0)
633 map.irq = ints[1];
634 if (ints[0] > 1)
635 map.base_addr = ints[2];
636 if (ints[0] > 2)
637 map.mem_start = ints[3];
638 if (ints[0] > 3)
639 map.mem_end = ints[4];
640
641 /* Add new entry to the list */
642 return netdev_boot_setup_add(str, &map);
643 }
644
645 __setup("netdev=", netdev_boot_setup);
646
647 /*******************************************************************************
648
649 Device Interface Subroutines
650
651 *******************************************************************************/
652
653 /**
654 * __dev_get_by_name - find a device by its name
655 * @net: the applicable net namespace
656 * @name: name to find
657 *
658 * Find an interface by name. Must be called under RTNL semaphore
659 * or @dev_base_lock. If the name is found a pointer to the device
660 * is returned. If the name is not found then %NULL is returned. The
661 * reference counters are not incremented so the caller must be
662 * careful with locks.
663 */
664
665 struct net_device *__dev_get_by_name(struct net *net, const char *name)
666 {
667 struct net_device *dev;
668 struct hlist_head *head = dev_name_hash(net, name);
669
670 hlist_for_each_entry(dev, head, name_hlist)
671 if (!strncmp(dev->name, name, IFNAMSIZ))
672 return dev;
673
674 return NULL;
675 }
676 EXPORT_SYMBOL(__dev_get_by_name);
677
678 /**
679 * dev_get_by_name_rcu - find a device by its name
680 * @net: the applicable net namespace
681 * @name: name to find
682 *
683 * Find an interface by name.
684 * If the name is found a pointer to the device is returned.
685 * If the name is not found then %NULL is returned.
686 * The reference counters are not incremented so the caller must be
687 * careful with locks. The caller must hold RCU lock.
688 */
689
690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
691 {
692 struct net_device *dev;
693 struct hlist_head *head = dev_name_hash(net, name);
694
695 hlist_for_each_entry_rcu(dev, head, name_hlist)
696 if (!strncmp(dev->name, name, IFNAMSIZ))
697 return dev;
698
699 return NULL;
700 }
701 EXPORT_SYMBOL(dev_get_by_name_rcu);
702
703 /**
704 * dev_get_by_name - find a device by its name
705 * @net: the applicable net namespace
706 * @name: name to find
707 *
708 * Find an interface by name. This can be called from any
709 * context and does its own locking. The returned handle has
710 * the usage count incremented and the caller must use dev_put() to
711 * release it when it is no longer needed. %NULL is returned if no
712 * matching device is found.
713 */
714
715 struct net_device *dev_get_by_name(struct net *net, const char *name)
716 {
717 struct net_device *dev;
718
719 rcu_read_lock();
720 dev = dev_get_by_name_rcu(net, name);
721 if (dev)
722 dev_hold(dev);
723 rcu_read_unlock();
724 return dev;
725 }
726 EXPORT_SYMBOL(dev_get_by_name);
727
728 /**
729 * __dev_get_by_index - find a device by its ifindex
730 * @net: the applicable net namespace
731 * @ifindex: index of device
732 *
733 * Search for an interface by index. Returns %NULL if the device
734 * is not found or a pointer to the device. The device has not
735 * had its reference counter increased so the caller must be careful
736 * about locking. The caller must hold either the RTNL semaphore
737 * or @dev_base_lock.
738 */
739
740 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
741 {
742 struct net_device *dev;
743 struct hlist_head *head = dev_index_hash(net, ifindex);
744
745 hlist_for_each_entry(dev, head, index_hlist)
746 if (dev->ifindex == ifindex)
747 return dev;
748
749 return NULL;
750 }
751 EXPORT_SYMBOL(__dev_get_by_index);
752
753 /**
754 * dev_get_by_index_rcu - find a device by its ifindex
755 * @net: the applicable net namespace
756 * @ifindex: index of device
757 *
758 * Search for an interface by index. Returns %NULL if the device
759 * is not found or a pointer to the device. The device has not
760 * had its reference counter increased so the caller must be careful
761 * about locking. The caller must hold RCU lock.
762 */
763
764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
765 {
766 struct net_device *dev;
767 struct hlist_head *head = dev_index_hash(net, ifindex);
768
769 hlist_for_each_entry_rcu(dev, head, index_hlist)
770 if (dev->ifindex == ifindex)
771 return dev;
772
773 return NULL;
774 }
775 EXPORT_SYMBOL(dev_get_by_index_rcu);
776
777
778 /**
779 * dev_get_by_index - find a device by its ifindex
780 * @net: the applicable net namespace
781 * @ifindex: index of device
782 *
783 * Search for an interface by index. Returns NULL if the device
784 * is not found or a pointer to the device. The device returned has
785 * had a reference added and the pointer is safe until the user calls
786 * dev_put to indicate they have finished with it.
787 */
788
789 struct net_device *dev_get_by_index(struct net *net, int ifindex)
790 {
791 struct net_device *dev;
792
793 rcu_read_lock();
794 dev = dev_get_by_index_rcu(net, ifindex);
795 if (dev)
796 dev_hold(dev);
797 rcu_read_unlock();
798 return dev;
799 }
800 EXPORT_SYMBOL(dev_get_by_index);
801
802 /**
803 * netdev_get_name - get a netdevice name, knowing its ifindex.
804 * @net: network namespace
805 * @name: a pointer to the buffer where the name will be stored.
806 * @ifindex: the ifindex of the interface to get the name from.
807 *
808 * The use of raw_seqcount_begin() and cond_resched() before
809 * retrying is required as we want to give the writers a chance
810 * to complete when CONFIG_PREEMPT is not set.
811 */
812 int netdev_get_name(struct net *net, char *name, int ifindex)
813 {
814 struct net_device *dev;
815 unsigned int seq;
816
817 retry:
818 seq = raw_seqcount_begin(&devnet_rename_seq);
819 rcu_read_lock();
820 dev = dev_get_by_index_rcu(net, ifindex);
821 if (!dev) {
822 rcu_read_unlock();
823 return -ENODEV;
824 }
825
826 strcpy(name, dev->name);
827 rcu_read_unlock();
828 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
829 cond_resched();
830 goto retry;
831 }
832
833 return 0;
834 }
835
836 /**
837 * dev_getbyhwaddr_rcu - find a device by its hardware address
838 * @net: the applicable net namespace
839 * @type: media type of device
840 * @ha: hardware address
841 *
842 * Search for an interface by MAC address. Returns NULL if the device
843 * is not found or a pointer to the device.
844 * The caller must hold RCU or RTNL.
845 * The returned device has not had its ref count increased
846 * and the caller must therefore be careful about locking
847 *
848 */
849
850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
851 const char *ha)
852 {
853 struct net_device *dev;
854
855 for_each_netdev_rcu(net, dev)
856 if (dev->type == type &&
857 !memcmp(dev->dev_addr, ha, dev->addr_len))
858 return dev;
859
860 return NULL;
861 }
862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
863
864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
865 {
866 struct net_device *dev;
867
868 ASSERT_RTNL();
869 for_each_netdev(net, dev)
870 if (dev->type == type)
871 return dev;
872
873 return NULL;
874 }
875 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876
877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879 struct net_device *dev, *ret = NULL;
880
881 rcu_read_lock();
882 for_each_netdev_rcu(net, dev)
883 if (dev->type == type) {
884 dev_hold(dev);
885 ret = dev;
886 break;
887 }
888 rcu_read_unlock();
889 return ret;
890 }
891 EXPORT_SYMBOL(dev_getfirstbyhwtype);
892
893 /**
894 * dev_get_by_flags_rcu - find any device with given flags
895 * @net: the applicable net namespace
896 * @if_flags: IFF_* values
897 * @mask: bitmask of bits in if_flags to check
898 *
899 * Search for any interface with the given flags. Returns NULL if a device
900 * is not found or a pointer to the device. Must be called inside
901 * rcu_read_lock(), and result refcount is unchanged.
902 */
903
904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
905 unsigned short mask)
906 {
907 struct net_device *dev, *ret;
908
909 ret = NULL;
910 for_each_netdev_rcu(net, dev) {
911 if (((dev->flags ^ if_flags) & mask) == 0) {
912 ret = dev;
913 break;
914 }
915 }
916 return ret;
917 }
918 EXPORT_SYMBOL(dev_get_by_flags_rcu);
919
920 /**
921 * dev_valid_name - check if name is okay for network device
922 * @name: name string
923 *
924 * Network device names need to be valid file names to
925 * to allow sysfs to work. We also disallow any kind of
926 * whitespace.
927 */
928 bool dev_valid_name(const char *name)
929 {
930 if (*name == '\0')
931 return false;
932 if (strlen(name) >= IFNAMSIZ)
933 return false;
934 if (!strcmp(name, ".") || !strcmp(name, ".."))
935 return false;
936
937 while (*name) {
938 if (*name == '/' || isspace(*name))
939 return false;
940 name++;
941 }
942 return true;
943 }
944 EXPORT_SYMBOL(dev_valid_name);
945
946 /**
947 * __dev_alloc_name - allocate a name for a device
948 * @net: network namespace to allocate the device name in
949 * @name: name format string
950 * @buf: scratch buffer and result name string
951 *
952 * Passed a format string - eg "lt%d" it will try and find a suitable
953 * id. It scans list of devices to build up a free map, then chooses
954 * the first empty slot. The caller must hold the dev_base or rtnl lock
955 * while allocating the name and adding the device in order to avoid
956 * duplicates.
957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958 * Returns the number of the unit assigned or a negative errno code.
959 */
960
961 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
962 {
963 int i = 0;
964 const char *p;
965 const int max_netdevices = 8*PAGE_SIZE;
966 unsigned long *inuse;
967 struct net_device *d;
968
969 p = strnchr(name, IFNAMSIZ-1, '%');
970 if (p) {
971 /*
972 * Verify the string as this thing may have come from
973 * the user. There must be either one "%d" and no other "%"
974 * characters.
975 */
976 if (p[1] != 'd' || strchr(p + 2, '%'))
977 return -EINVAL;
978
979 /* Use one page as a bit array of possible slots */
980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
981 if (!inuse)
982 return -ENOMEM;
983
984 for_each_netdev(net, d) {
985 if (!sscanf(d->name, name, &i))
986 continue;
987 if (i < 0 || i >= max_netdevices)
988 continue;
989
990 /* avoid cases where sscanf is not exact inverse of printf */
991 snprintf(buf, IFNAMSIZ, name, i);
992 if (!strncmp(buf, d->name, IFNAMSIZ))
993 set_bit(i, inuse);
994 }
995
996 i = find_first_zero_bit(inuse, max_netdevices);
997 free_page((unsigned long) inuse);
998 }
999
1000 if (buf != name)
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!__dev_get_by_name(net, buf))
1003 return i;
1004
1005 /* It is possible to run out of possible slots
1006 * when the name is long and there isn't enough space left
1007 * for the digits, or if all bits are used.
1008 */
1009 return -ENFILE;
1010 }
1011
1012 /**
1013 * dev_alloc_name - allocate a name for a device
1014 * @dev: device
1015 * @name: name format string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026 int dev_alloc_name(struct net_device *dev, const char *name)
1027 {
1028 char buf[IFNAMSIZ];
1029 struct net *net;
1030 int ret;
1031
1032 BUG_ON(!dev_net(dev));
1033 net = dev_net(dev);
1034 ret = __dev_alloc_name(net, name, buf);
1035 if (ret >= 0)
1036 strlcpy(dev->name, buf, IFNAMSIZ);
1037 return ret;
1038 }
1039 EXPORT_SYMBOL(dev_alloc_name);
1040
1041 static int dev_alloc_name_ns(struct net *net,
1042 struct net_device *dev,
1043 const char *name)
1044 {
1045 char buf[IFNAMSIZ];
1046 int ret;
1047
1048 ret = __dev_alloc_name(net, name, buf);
1049 if (ret >= 0)
1050 strlcpy(dev->name, buf, IFNAMSIZ);
1051 return ret;
1052 }
1053
1054 static int dev_get_valid_name(struct net *net,
1055 struct net_device *dev,
1056 const char *name)
1057 {
1058 BUG_ON(!net);
1059
1060 if (!dev_valid_name(name))
1061 return -EINVAL;
1062
1063 if (strchr(name, '%'))
1064 return dev_alloc_name_ns(net, dev, name);
1065 else if (__dev_get_by_name(net, name))
1066 return -EEXIST;
1067 else if (dev->name != name)
1068 strlcpy(dev->name, name, IFNAMSIZ);
1069
1070 return 0;
1071 }
1072
1073 /**
1074 * dev_change_name - change name of a device
1075 * @dev: device
1076 * @newname: name (or format string) must be at least IFNAMSIZ
1077 *
1078 * Change name of a device, can pass format strings "eth%d".
1079 * for wildcarding.
1080 */
1081 int dev_change_name(struct net_device *dev, const char *newname)
1082 {
1083 char oldname[IFNAMSIZ];
1084 int err = 0;
1085 int ret;
1086 struct net *net;
1087
1088 ASSERT_RTNL();
1089 BUG_ON(!dev_net(dev));
1090
1091 net = dev_net(dev);
1092 if (dev->flags & IFF_UP)
1093 return -EBUSY;
1094
1095 write_seqcount_begin(&devnet_rename_seq);
1096
1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 write_seqcount_end(&devnet_rename_seq);
1099 return 0;
1100 }
1101
1102 memcpy(oldname, dev->name, IFNAMSIZ);
1103
1104 err = dev_get_valid_name(net, dev, newname);
1105 if (err < 0) {
1106 write_seqcount_end(&devnet_rename_seq);
1107 return err;
1108 }
1109
1110 rollback:
1111 ret = device_rename(&dev->dev, dev->name);
1112 if (ret) {
1113 memcpy(dev->name, oldname, IFNAMSIZ);
1114 write_seqcount_end(&devnet_rename_seq);
1115 return ret;
1116 }
1117
1118 write_seqcount_end(&devnet_rename_seq);
1119
1120 write_lock_bh(&dev_base_lock);
1121 hlist_del_rcu(&dev->name_hlist);
1122 write_unlock_bh(&dev_base_lock);
1123
1124 synchronize_rcu();
1125
1126 write_lock_bh(&dev_base_lock);
1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 write_unlock_bh(&dev_base_lock);
1129
1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 ret = notifier_to_errno(ret);
1132
1133 if (ret) {
1134 /* err >= 0 after dev_alloc_name() or stores the first errno */
1135 if (err >= 0) {
1136 err = ret;
1137 write_seqcount_begin(&devnet_rename_seq);
1138 memcpy(dev->name, oldname, IFNAMSIZ);
1139 goto rollback;
1140 } else {
1141 pr_err("%s: name change rollback failed: %d\n",
1142 dev->name, ret);
1143 }
1144 }
1145
1146 return err;
1147 }
1148
1149 /**
1150 * dev_set_alias - change ifalias of a device
1151 * @dev: device
1152 * @alias: name up to IFALIASZ
1153 * @len: limit of bytes to copy from info
1154 *
1155 * Set ifalias for a device,
1156 */
1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1158 {
1159 char *new_ifalias;
1160
1161 ASSERT_RTNL();
1162
1163 if (len >= IFALIASZ)
1164 return -EINVAL;
1165
1166 if (!len) {
1167 kfree(dev->ifalias);
1168 dev->ifalias = NULL;
1169 return 0;
1170 }
1171
1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1173 if (!new_ifalias)
1174 return -ENOMEM;
1175 dev->ifalias = new_ifalias;
1176
1177 strlcpy(dev->ifalias, alias, len+1);
1178 return len;
1179 }
1180
1181
1182 /**
1183 * netdev_features_change - device changes features
1184 * @dev: device to cause notification
1185 *
1186 * Called to indicate a device has changed features.
1187 */
1188 void netdev_features_change(struct net_device *dev)
1189 {
1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1191 }
1192 EXPORT_SYMBOL(netdev_features_change);
1193
1194 /**
1195 * netdev_state_change - device changes state
1196 * @dev: device to cause notification
1197 *
1198 * Called to indicate a device has changed state. This function calls
1199 * the notifier chains for netdev_chain and sends a NEWLINK message
1200 * to the routing socket.
1201 */
1202 void netdev_state_change(struct net_device *dev)
1203 {
1204 if (dev->flags & IFF_UP) {
1205 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1207 }
1208 }
1209 EXPORT_SYMBOL(netdev_state_change);
1210
1211 /**
1212 * netdev_notify_peers - notify network peers about existence of @dev
1213 * @dev: network device
1214 *
1215 * Generate traffic such that interested network peers are aware of
1216 * @dev, such as by generating a gratuitous ARP. This may be used when
1217 * a device wants to inform the rest of the network about some sort of
1218 * reconfiguration such as a failover event or virtual machine
1219 * migration.
1220 */
1221 void netdev_notify_peers(struct net_device *dev)
1222 {
1223 rtnl_lock();
1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1225 rtnl_unlock();
1226 }
1227 EXPORT_SYMBOL(netdev_notify_peers);
1228
1229 static int __dev_open(struct net_device *dev)
1230 {
1231 const struct net_device_ops *ops = dev->netdev_ops;
1232 int ret;
1233
1234 ASSERT_RTNL();
1235
1236 if (!netif_device_present(dev))
1237 return -ENODEV;
1238
1239 /* Block netpoll from trying to do any rx path servicing.
1240 * If we don't do this there is a chance ndo_poll_controller
1241 * or ndo_poll may be running while we open the device
1242 */
1243 netpoll_rx_disable(dev);
1244
1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1246 ret = notifier_to_errno(ret);
1247 if (ret)
1248 return ret;
1249
1250 set_bit(__LINK_STATE_START, &dev->state);
1251
1252 if (ops->ndo_validate_addr)
1253 ret = ops->ndo_validate_addr(dev);
1254
1255 if (!ret && ops->ndo_open)
1256 ret = ops->ndo_open(dev);
1257
1258 netpoll_rx_enable(dev);
1259
1260 if (ret)
1261 clear_bit(__LINK_STATE_START, &dev->state);
1262 else {
1263 dev->flags |= IFF_UP;
1264 net_dmaengine_get();
1265 dev_set_rx_mode(dev);
1266 dev_activate(dev);
1267 add_device_randomness(dev->dev_addr, dev->addr_len);
1268 }
1269
1270 return ret;
1271 }
1272
1273 /**
1274 * dev_open - prepare an interface for use.
1275 * @dev: device to open
1276 *
1277 * Takes a device from down to up state. The device's private open
1278 * function is invoked and then the multicast lists are loaded. Finally
1279 * the device is moved into the up state and a %NETDEV_UP message is
1280 * sent to the netdev notifier chain.
1281 *
1282 * Calling this function on an active interface is a nop. On a failure
1283 * a negative errno code is returned.
1284 */
1285 int dev_open(struct net_device *dev)
1286 {
1287 int ret;
1288
1289 if (dev->flags & IFF_UP)
1290 return 0;
1291
1292 ret = __dev_open(dev);
1293 if (ret < 0)
1294 return ret;
1295
1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1297 call_netdevice_notifiers(NETDEV_UP, dev);
1298
1299 return ret;
1300 }
1301 EXPORT_SYMBOL(dev_open);
1302
1303 static int __dev_close_many(struct list_head *head)
1304 {
1305 struct net_device *dev;
1306
1307 ASSERT_RTNL();
1308 might_sleep();
1309
1310 list_for_each_entry(dev, head, unreg_list) {
1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1312
1313 clear_bit(__LINK_STATE_START, &dev->state);
1314
1315 /* Synchronize to scheduled poll. We cannot touch poll list, it
1316 * can be even on different cpu. So just clear netif_running().
1317 *
1318 * dev->stop() will invoke napi_disable() on all of it's
1319 * napi_struct instances on this device.
1320 */
1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1322 }
1323
1324 dev_deactivate_many(head);
1325
1326 list_for_each_entry(dev, head, unreg_list) {
1327 const struct net_device_ops *ops = dev->netdev_ops;
1328
1329 /*
1330 * Call the device specific close. This cannot fail.
1331 * Only if device is UP
1332 *
1333 * We allow it to be called even after a DETACH hot-plug
1334 * event.
1335 */
1336 if (ops->ndo_stop)
1337 ops->ndo_stop(dev);
1338
1339 dev->flags &= ~IFF_UP;
1340 net_dmaengine_put();
1341 }
1342
1343 return 0;
1344 }
1345
1346 static int __dev_close(struct net_device *dev)
1347 {
1348 int retval;
1349 LIST_HEAD(single);
1350
1351 /* Temporarily disable netpoll until the interface is down */
1352 netpoll_rx_disable(dev);
1353
1354 list_add(&dev->unreg_list, &single);
1355 retval = __dev_close_many(&single);
1356 list_del(&single);
1357
1358 netpoll_rx_enable(dev);
1359 return retval;
1360 }
1361
1362 static int dev_close_many(struct list_head *head)
1363 {
1364 struct net_device *dev, *tmp;
1365 LIST_HEAD(tmp_list);
1366
1367 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1368 if (!(dev->flags & IFF_UP))
1369 list_move(&dev->unreg_list, &tmp_list);
1370
1371 __dev_close_many(head);
1372
1373 list_for_each_entry(dev, head, unreg_list) {
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1375 call_netdevice_notifiers(NETDEV_DOWN, dev);
1376 }
1377
1378 /* rollback_registered_many needs the complete original list */
1379 list_splice(&tmp_list, head);
1380 return 0;
1381 }
1382
1383 /**
1384 * dev_close - shutdown an interface.
1385 * @dev: device to shutdown
1386 *
1387 * This function moves an active device into down state. A
1388 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1389 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1390 * chain.
1391 */
1392 int dev_close(struct net_device *dev)
1393 {
1394 if (dev->flags & IFF_UP) {
1395 LIST_HEAD(single);
1396
1397 /* Block netpoll rx while the interface is going down */
1398 netpoll_rx_disable(dev);
1399
1400 list_add(&dev->unreg_list, &single);
1401 dev_close_many(&single);
1402 list_del(&single);
1403
1404 netpoll_rx_enable(dev);
1405 }
1406 return 0;
1407 }
1408 EXPORT_SYMBOL(dev_close);
1409
1410
1411 /**
1412 * dev_disable_lro - disable Large Receive Offload on a device
1413 * @dev: device
1414 *
1415 * Disable Large Receive Offload (LRO) on a net device. Must be
1416 * called under RTNL. This is needed if received packets may be
1417 * forwarded to another interface.
1418 */
1419 void dev_disable_lro(struct net_device *dev)
1420 {
1421 /*
1422 * If we're trying to disable lro on a vlan device
1423 * use the underlying physical device instead
1424 */
1425 if (is_vlan_dev(dev))
1426 dev = vlan_dev_real_dev(dev);
1427
1428 dev->wanted_features &= ~NETIF_F_LRO;
1429 netdev_update_features(dev);
1430
1431 if (unlikely(dev->features & NETIF_F_LRO))
1432 netdev_WARN(dev, "failed to disable LRO!\n");
1433 }
1434 EXPORT_SYMBOL(dev_disable_lro);
1435
1436 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1437 struct net_device *dev)
1438 {
1439 struct netdev_notifier_info info;
1440
1441 netdev_notifier_info_init(&info, dev);
1442 return nb->notifier_call(nb, val, &info);
1443 }
1444
1445 static int dev_boot_phase = 1;
1446
1447 /**
1448 * register_netdevice_notifier - register a network notifier block
1449 * @nb: notifier
1450 *
1451 * Register a notifier to be called when network device events occur.
1452 * The notifier passed is linked into the kernel structures and must
1453 * not be reused until it has been unregistered. A negative errno code
1454 * is returned on a failure.
1455 *
1456 * When registered all registration and up events are replayed
1457 * to the new notifier to allow device to have a race free
1458 * view of the network device list.
1459 */
1460
1461 int register_netdevice_notifier(struct notifier_block *nb)
1462 {
1463 struct net_device *dev;
1464 struct net_device *last;
1465 struct net *net;
1466 int err;
1467
1468 rtnl_lock();
1469 err = raw_notifier_chain_register(&netdev_chain, nb);
1470 if (err)
1471 goto unlock;
1472 if (dev_boot_phase)
1473 goto unlock;
1474 for_each_net(net) {
1475 for_each_netdev(net, dev) {
1476 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1477 err = notifier_to_errno(err);
1478 if (err)
1479 goto rollback;
1480
1481 if (!(dev->flags & IFF_UP))
1482 continue;
1483
1484 call_netdevice_notifier(nb, NETDEV_UP, dev);
1485 }
1486 }
1487
1488 unlock:
1489 rtnl_unlock();
1490 return err;
1491
1492 rollback:
1493 last = dev;
1494 for_each_net(net) {
1495 for_each_netdev(net, dev) {
1496 if (dev == last)
1497 goto outroll;
1498
1499 if (dev->flags & IFF_UP) {
1500 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1501 dev);
1502 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1503 }
1504 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1505 }
1506 }
1507
1508 outroll:
1509 raw_notifier_chain_unregister(&netdev_chain, nb);
1510 goto unlock;
1511 }
1512 EXPORT_SYMBOL(register_netdevice_notifier);
1513
1514 /**
1515 * unregister_netdevice_notifier - unregister a network notifier block
1516 * @nb: notifier
1517 *
1518 * Unregister a notifier previously registered by
1519 * register_netdevice_notifier(). The notifier is unlinked into the
1520 * kernel structures and may then be reused. A negative errno code
1521 * is returned on a failure.
1522 *
1523 * After unregistering unregister and down device events are synthesized
1524 * for all devices on the device list to the removed notifier to remove
1525 * the need for special case cleanup code.
1526 */
1527
1528 int unregister_netdevice_notifier(struct notifier_block *nb)
1529 {
1530 struct net_device *dev;
1531 struct net *net;
1532 int err;
1533
1534 rtnl_lock();
1535 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1536 if (err)
1537 goto unlock;
1538
1539 for_each_net(net) {
1540 for_each_netdev(net, dev) {
1541 if (dev->flags & IFF_UP) {
1542 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1543 dev);
1544 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1545 }
1546 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1547 }
1548 }
1549 unlock:
1550 rtnl_unlock();
1551 return err;
1552 }
1553 EXPORT_SYMBOL(unregister_netdevice_notifier);
1554
1555 /**
1556 * call_netdevice_notifiers_info - call all network notifier blocks
1557 * @val: value passed unmodified to notifier function
1558 * @dev: net_device pointer passed unmodified to notifier function
1559 * @info: notifier information data
1560 *
1561 * Call all network notifier blocks. Parameters and return value
1562 * are as for raw_notifier_call_chain().
1563 */
1564
1565 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1566 struct netdev_notifier_info *info)
1567 {
1568 ASSERT_RTNL();
1569 netdev_notifier_info_init(info, dev);
1570 return raw_notifier_call_chain(&netdev_chain, val, info);
1571 }
1572 EXPORT_SYMBOL(call_netdevice_notifiers_info);
1573
1574 /**
1575 * call_netdevice_notifiers - call all network notifier blocks
1576 * @val: value passed unmodified to notifier function
1577 * @dev: net_device pointer passed unmodified to notifier function
1578 *
1579 * Call all network notifier blocks. Parameters and return value
1580 * are as for raw_notifier_call_chain().
1581 */
1582
1583 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1584 {
1585 struct netdev_notifier_info info;
1586
1587 return call_netdevice_notifiers_info(val, dev, &info);
1588 }
1589 EXPORT_SYMBOL(call_netdevice_notifiers);
1590
1591 static struct static_key netstamp_needed __read_mostly;
1592 #ifdef HAVE_JUMP_LABEL
1593 /* We are not allowed to call static_key_slow_dec() from irq context
1594 * If net_disable_timestamp() is called from irq context, defer the
1595 * static_key_slow_dec() calls.
1596 */
1597 static atomic_t netstamp_needed_deferred;
1598 #endif
1599
1600 void net_enable_timestamp(void)
1601 {
1602 #ifdef HAVE_JUMP_LABEL
1603 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1604
1605 if (deferred) {
1606 while (--deferred)
1607 static_key_slow_dec(&netstamp_needed);
1608 return;
1609 }
1610 #endif
1611 static_key_slow_inc(&netstamp_needed);
1612 }
1613 EXPORT_SYMBOL(net_enable_timestamp);
1614
1615 void net_disable_timestamp(void)
1616 {
1617 #ifdef HAVE_JUMP_LABEL
1618 if (in_interrupt()) {
1619 atomic_inc(&netstamp_needed_deferred);
1620 return;
1621 }
1622 #endif
1623 static_key_slow_dec(&netstamp_needed);
1624 }
1625 EXPORT_SYMBOL(net_disable_timestamp);
1626
1627 static inline void net_timestamp_set(struct sk_buff *skb)
1628 {
1629 skb->tstamp.tv64 = 0;
1630 if (static_key_false(&netstamp_needed))
1631 __net_timestamp(skb);
1632 }
1633
1634 #define net_timestamp_check(COND, SKB) \
1635 if (static_key_false(&netstamp_needed)) { \
1636 if ((COND) && !(SKB)->tstamp.tv64) \
1637 __net_timestamp(SKB); \
1638 } \
1639
1640 static inline bool is_skb_forwardable(struct net_device *dev,
1641 struct sk_buff *skb)
1642 {
1643 unsigned int len;
1644
1645 if (!(dev->flags & IFF_UP))
1646 return false;
1647
1648 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1649 if (skb->len <= len)
1650 return true;
1651
1652 /* if TSO is enabled, we don't care about the length as the packet
1653 * could be forwarded without being segmented before
1654 */
1655 if (skb_is_gso(skb))
1656 return true;
1657
1658 return false;
1659 }
1660
1661 /**
1662 * dev_forward_skb - loopback an skb to another netif
1663 *
1664 * @dev: destination network device
1665 * @skb: buffer to forward
1666 *
1667 * return values:
1668 * NET_RX_SUCCESS (no congestion)
1669 * NET_RX_DROP (packet was dropped, but freed)
1670 *
1671 * dev_forward_skb can be used for injecting an skb from the
1672 * start_xmit function of one device into the receive queue
1673 * of another device.
1674 *
1675 * The receiving device may be in another namespace, so
1676 * we have to clear all information in the skb that could
1677 * impact namespace isolation.
1678 */
1679 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680 {
1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683 atomic_long_inc(&dev->rx_dropped);
1684 kfree_skb(skb);
1685 return NET_RX_DROP;
1686 }
1687 }
1688
1689 if (unlikely(!is_skb_forwardable(dev, skb))) {
1690 atomic_long_inc(&dev->rx_dropped);
1691 kfree_skb(skb);
1692 return NET_RX_DROP;
1693 }
1694 skb_scrub_packet(skb);
1695 skb->protocol = eth_type_trans(skb, dev);
1696
1697 /* eth_type_trans() can set pkt_type.
1698 * clear pkt_type _after_ calling eth_type_trans()
1699 */
1700 skb->pkt_type = PACKET_HOST;
1701
1702 return netif_rx(skb);
1703 }
1704 EXPORT_SYMBOL_GPL(dev_forward_skb);
1705
1706 static inline int deliver_skb(struct sk_buff *skb,
1707 struct packet_type *pt_prev,
1708 struct net_device *orig_dev)
1709 {
1710 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1711 return -ENOMEM;
1712 atomic_inc(&skb->users);
1713 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1714 }
1715
1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1717 {
1718 if (!ptype->af_packet_priv || !skb->sk)
1719 return false;
1720
1721 if (ptype->id_match)
1722 return ptype->id_match(ptype, skb->sk);
1723 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1724 return true;
1725
1726 return false;
1727 }
1728
1729 /*
1730 * Support routine. Sends outgoing frames to any network
1731 * taps currently in use.
1732 */
1733
1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1735 {
1736 struct packet_type *ptype;
1737 struct sk_buff *skb2 = NULL;
1738 struct packet_type *pt_prev = NULL;
1739
1740 rcu_read_lock();
1741 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1742 /* Never send packets back to the socket
1743 * they originated from - MvS (miquels@drinkel.ow.org)
1744 */
1745 if ((ptype->dev == dev || !ptype->dev) &&
1746 (!skb_loop_sk(ptype, skb))) {
1747 if (pt_prev) {
1748 deliver_skb(skb2, pt_prev, skb->dev);
1749 pt_prev = ptype;
1750 continue;
1751 }
1752
1753 skb2 = skb_clone(skb, GFP_ATOMIC);
1754 if (!skb2)
1755 break;
1756
1757 net_timestamp_set(skb2);
1758
1759 /* skb->nh should be correctly
1760 set by sender, so that the second statement is
1761 just protection against buggy protocols.
1762 */
1763 skb_reset_mac_header(skb2);
1764
1765 if (skb_network_header(skb2) < skb2->data ||
1766 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1767 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1768 ntohs(skb2->protocol),
1769 dev->name);
1770 skb_reset_network_header(skb2);
1771 }
1772
1773 skb2->transport_header = skb2->network_header;
1774 skb2->pkt_type = PACKET_OUTGOING;
1775 pt_prev = ptype;
1776 }
1777 }
1778 if (pt_prev)
1779 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1780 rcu_read_unlock();
1781 }
1782
1783 /**
1784 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1785 * @dev: Network device
1786 * @txq: number of queues available
1787 *
1788 * If real_num_tx_queues is changed the tc mappings may no longer be
1789 * valid. To resolve this verify the tc mapping remains valid and if
1790 * not NULL the mapping. With no priorities mapping to this
1791 * offset/count pair it will no longer be used. In the worst case TC0
1792 * is invalid nothing can be done so disable priority mappings. If is
1793 * expected that drivers will fix this mapping if they can before
1794 * calling netif_set_real_num_tx_queues.
1795 */
1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1797 {
1798 int i;
1799 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1800
1801 /* If TC0 is invalidated disable TC mapping */
1802 if (tc->offset + tc->count > txq) {
1803 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1804 dev->num_tc = 0;
1805 return;
1806 }
1807
1808 /* Invalidated prio to tc mappings set to TC0 */
1809 for (i = 1; i < TC_BITMASK + 1; i++) {
1810 int q = netdev_get_prio_tc_map(dev, i);
1811
1812 tc = &dev->tc_to_txq[q];
1813 if (tc->offset + tc->count > txq) {
1814 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1815 i, q);
1816 netdev_set_prio_tc_map(dev, i, 0);
1817 }
1818 }
1819 }
1820
1821 #ifdef CONFIG_XPS
1822 static DEFINE_MUTEX(xps_map_mutex);
1823 #define xmap_dereference(P) \
1824 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1825
1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1827 int cpu, u16 index)
1828 {
1829 struct xps_map *map = NULL;
1830 int pos;
1831
1832 if (dev_maps)
1833 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1834
1835 for (pos = 0; map && pos < map->len; pos++) {
1836 if (map->queues[pos] == index) {
1837 if (map->len > 1) {
1838 map->queues[pos] = map->queues[--map->len];
1839 } else {
1840 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1841 kfree_rcu(map, rcu);
1842 map = NULL;
1843 }
1844 break;
1845 }
1846 }
1847
1848 return map;
1849 }
1850
1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1852 {
1853 struct xps_dev_maps *dev_maps;
1854 int cpu, i;
1855 bool active = false;
1856
1857 mutex_lock(&xps_map_mutex);
1858 dev_maps = xmap_dereference(dev->xps_maps);
1859
1860 if (!dev_maps)
1861 goto out_no_maps;
1862
1863 for_each_possible_cpu(cpu) {
1864 for (i = index; i < dev->num_tx_queues; i++) {
1865 if (!remove_xps_queue(dev_maps, cpu, i))
1866 break;
1867 }
1868 if (i == dev->num_tx_queues)
1869 active = true;
1870 }
1871
1872 if (!active) {
1873 RCU_INIT_POINTER(dev->xps_maps, NULL);
1874 kfree_rcu(dev_maps, rcu);
1875 }
1876
1877 for (i = index; i < dev->num_tx_queues; i++)
1878 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1879 NUMA_NO_NODE);
1880
1881 out_no_maps:
1882 mutex_unlock(&xps_map_mutex);
1883 }
1884
1885 static struct xps_map *expand_xps_map(struct xps_map *map,
1886 int cpu, u16 index)
1887 {
1888 struct xps_map *new_map;
1889 int alloc_len = XPS_MIN_MAP_ALLOC;
1890 int i, pos;
1891
1892 for (pos = 0; map && pos < map->len; pos++) {
1893 if (map->queues[pos] != index)
1894 continue;
1895 return map;
1896 }
1897
1898 /* Need to add queue to this CPU's existing map */
1899 if (map) {
1900 if (pos < map->alloc_len)
1901 return map;
1902
1903 alloc_len = map->alloc_len * 2;
1904 }
1905
1906 /* Need to allocate new map to store queue on this CPU's map */
1907 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1908 cpu_to_node(cpu));
1909 if (!new_map)
1910 return NULL;
1911
1912 for (i = 0; i < pos; i++)
1913 new_map->queues[i] = map->queues[i];
1914 new_map->alloc_len = alloc_len;
1915 new_map->len = pos;
1916
1917 return new_map;
1918 }
1919
1920 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1921 {
1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 struct xps_map *map, *new_map;
1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 int cpu, numa_node_id = -2;
1926 bool active = false;
1927
1928 mutex_lock(&xps_map_mutex);
1929
1930 dev_maps = xmap_dereference(dev->xps_maps);
1931
1932 /* allocate memory for queue storage */
1933 for_each_online_cpu(cpu) {
1934 if (!cpumask_test_cpu(cpu, mask))
1935 continue;
1936
1937 if (!new_dev_maps)
1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 if (!new_dev_maps) {
1940 mutex_unlock(&xps_map_mutex);
1941 return -ENOMEM;
1942 }
1943
1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 NULL;
1946
1947 map = expand_xps_map(map, cpu, index);
1948 if (!map)
1949 goto error;
1950
1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 }
1953
1954 if (!new_dev_maps)
1955 goto out_no_new_maps;
1956
1957 for_each_possible_cpu(cpu) {
1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 /* add queue to CPU maps */
1960 int pos = 0;
1961
1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 while ((pos < map->len) && (map->queues[pos] != index))
1964 pos++;
1965
1966 if (pos == map->len)
1967 map->queues[map->len++] = index;
1968 #ifdef CONFIG_NUMA
1969 if (numa_node_id == -2)
1970 numa_node_id = cpu_to_node(cpu);
1971 else if (numa_node_id != cpu_to_node(cpu))
1972 numa_node_id = -1;
1973 #endif
1974 } else if (dev_maps) {
1975 /* fill in the new device map from the old device map */
1976 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 }
1979
1980 }
1981
1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983
1984 /* Cleanup old maps */
1985 if (dev_maps) {
1986 for_each_possible_cpu(cpu) {
1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 if (map && map != new_map)
1990 kfree_rcu(map, rcu);
1991 }
1992
1993 kfree_rcu(dev_maps, rcu);
1994 }
1995
1996 dev_maps = new_dev_maps;
1997 active = true;
1998
1999 out_no_new_maps:
2000 /* update Tx queue numa node */
2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 (numa_node_id >= 0) ? numa_node_id :
2003 NUMA_NO_NODE);
2004
2005 if (!dev_maps)
2006 goto out_no_maps;
2007
2008 /* removes queue from unused CPUs */
2009 for_each_possible_cpu(cpu) {
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 continue;
2012
2013 if (remove_xps_queue(dev_maps, cpu, index))
2014 active = true;
2015 }
2016
2017 /* free map if not active */
2018 if (!active) {
2019 RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 kfree_rcu(dev_maps, rcu);
2021 }
2022
2023 out_no_maps:
2024 mutex_unlock(&xps_map_mutex);
2025
2026 return 0;
2027 error:
2028 /* remove any maps that we added */
2029 for_each_possible_cpu(cpu) {
2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 NULL;
2033 if (new_map && new_map != map)
2034 kfree(new_map);
2035 }
2036
2037 mutex_unlock(&xps_map_mutex);
2038
2039 kfree(new_dev_maps);
2040 return -ENOMEM;
2041 }
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2043
2044 #endif
2045 /*
2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048 */
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050 {
2051 int rc;
2052
2053 if (txq < 1 || txq > dev->num_tx_queues)
2054 return -EINVAL;
2055
2056 if (dev->reg_state == NETREG_REGISTERED ||
2057 dev->reg_state == NETREG_UNREGISTERING) {
2058 ASSERT_RTNL();
2059
2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 txq);
2062 if (rc)
2063 return rc;
2064
2065 if (dev->num_tc)
2066 netif_setup_tc(dev, txq);
2067
2068 if (txq < dev->real_num_tx_queues) {
2069 qdisc_reset_all_tx_gt(dev, txq);
2070 #ifdef CONFIG_XPS
2071 netif_reset_xps_queues_gt(dev, txq);
2072 #endif
2073 }
2074 }
2075
2076 dev->real_num_tx_queues = txq;
2077 return 0;
2078 }
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080
2081 #ifdef CONFIG_RPS
2082 /**
2083 * netif_set_real_num_rx_queues - set actual number of RX queues used
2084 * @dev: Network device
2085 * @rxq: Actual number of RX queues
2086 *
2087 * This must be called either with the rtnl_lock held or before
2088 * registration of the net device. Returns 0 on success, or a
2089 * negative error code. If called before registration, it always
2090 * succeeds.
2091 */
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093 {
2094 int rc;
2095
2096 if (rxq < 1 || rxq > dev->num_rx_queues)
2097 return -EINVAL;
2098
2099 if (dev->reg_state == NETREG_REGISTERED) {
2100 ASSERT_RTNL();
2101
2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 rxq);
2104 if (rc)
2105 return rc;
2106 }
2107
2108 dev->real_num_rx_queues = rxq;
2109 return 0;
2110 }
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112 #endif
2113
2114 /**
2115 * netif_get_num_default_rss_queues - default number of RSS queues
2116 *
2117 * This routine should set an upper limit on the number of RSS queues
2118 * used by default by multiqueue devices.
2119 */
2120 int netif_get_num_default_rss_queues(void)
2121 {
2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123 }
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125
2126 static inline void __netif_reschedule(struct Qdisc *q)
2127 {
2128 struct softnet_data *sd;
2129 unsigned long flags;
2130
2131 local_irq_save(flags);
2132 sd = &__get_cpu_var(softnet_data);
2133 q->next_sched = NULL;
2134 *sd->output_queue_tailp = q;
2135 sd->output_queue_tailp = &q->next_sched;
2136 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 local_irq_restore(flags);
2138 }
2139
2140 void __netif_schedule(struct Qdisc *q)
2141 {
2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 __netif_reschedule(q);
2144 }
2145 EXPORT_SYMBOL(__netif_schedule);
2146
2147 void dev_kfree_skb_irq(struct sk_buff *skb)
2148 {
2149 if (atomic_dec_and_test(&skb->users)) {
2150 struct softnet_data *sd;
2151 unsigned long flags;
2152
2153 local_irq_save(flags);
2154 sd = &__get_cpu_var(softnet_data);
2155 skb->next = sd->completion_queue;
2156 sd->completion_queue = skb;
2157 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2158 local_irq_restore(flags);
2159 }
2160 }
2161 EXPORT_SYMBOL(dev_kfree_skb_irq);
2162
2163 void dev_kfree_skb_any(struct sk_buff *skb)
2164 {
2165 if (in_irq() || irqs_disabled())
2166 dev_kfree_skb_irq(skb);
2167 else
2168 dev_kfree_skb(skb);
2169 }
2170 EXPORT_SYMBOL(dev_kfree_skb_any);
2171
2172
2173 /**
2174 * netif_device_detach - mark device as removed
2175 * @dev: network device
2176 *
2177 * Mark device as removed from system and therefore no longer available.
2178 */
2179 void netif_device_detach(struct net_device *dev)
2180 {
2181 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2182 netif_running(dev)) {
2183 netif_tx_stop_all_queues(dev);
2184 }
2185 }
2186 EXPORT_SYMBOL(netif_device_detach);
2187
2188 /**
2189 * netif_device_attach - mark device as attached
2190 * @dev: network device
2191 *
2192 * Mark device as attached from system and restart if needed.
2193 */
2194 void netif_device_attach(struct net_device *dev)
2195 {
2196 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2197 netif_running(dev)) {
2198 netif_tx_wake_all_queues(dev);
2199 __netdev_watchdog_up(dev);
2200 }
2201 }
2202 EXPORT_SYMBOL(netif_device_attach);
2203
2204 static void skb_warn_bad_offload(const struct sk_buff *skb)
2205 {
2206 static const netdev_features_t null_features = 0;
2207 struct net_device *dev = skb->dev;
2208 const char *driver = "";
2209
2210 if (!net_ratelimit())
2211 return;
2212
2213 if (dev && dev->dev.parent)
2214 driver = dev_driver_string(dev->dev.parent);
2215
2216 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2217 "gso_type=%d ip_summed=%d\n",
2218 driver, dev ? &dev->features : &null_features,
2219 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2220 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2221 skb_shinfo(skb)->gso_type, skb->ip_summed);
2222 }
2223
2224 /*
2225 * Invalidate hardware checksum when packet is to be mangled, and
2226 * complete checksum manually on outgoing path.
2227 */
2228 int skb_checksum_help(struct sk_buff *skb)
2229 {
2230 __wsum csum;
2231 int ret = 0, offset;
2232
2233 if (skb->ip_summed == CHECKSUM_COMPLETE)
2234 goto out_set_summed;
2235
2236 if (unlikely(skb_shinfo(skb)->gso_size)) {
2237 skb_warn_bad_offload(skb);
2238 return -EINVAL;
2239 }
2240
2241 /* Before computing a checksum, we should make sure no frag could
2242 * be modified by an external entity : checksum could be wrong.
2243 */
2244 if (skb_has_shared_frag(skb)) {
2245 ret = __skb_linearize(skb);
2246 if (ret)
2247 goto out;
2248 }
2249
2250 offset = skb_checksum_start_offset(skb);
2251 BUG_ON(offset >= skb_headlen(skb));
2252 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2253
2254 offset += skb->csum_offset;
2255 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2256
2257 if (skb_cloned(skb) &&
2258 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2259 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2260 if (ret)
2261 goto out;
2262 }
2263
2264 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2265 out_set_summed:
2266 skb->ip_summed = CHECKSUM_NONE;
2267 out:
2268 return ret;
2269 }
2270 EXPORT_SYMBOL(skb_checksum_help);
2271
2272 __be16 skb_network_protocol(struct sk_buff *skb)
2273 {
2274 __be16 type = skb->protocol;
2275 int vlan_depth = ETH_HLEN;
2276
2277 /* Tunnel gso handlers can set protocol to ethernet. */
2278 if (type == htons(ETH_P_TEB)) {
2279 struct ethhdr *eth;
2280
2281 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2282 return 0;
2283
2284 eth = (struct ethhdr *)skb_mac_header(skb);
2285 type = eth->h_proto;
2286 }
2287
2288 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2289 struct vlan_hdr *vh;
2290
2291 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2292 return 0;
2293
2294 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2295 type = vh->h_vlan_encapsulated_proto;
2296 vlan_depth += VLAN_HLEN;
2297 }
2298
2299 return type;
2300 }
2301
2302 /**
2303 * skb_mac_gso_segment - mac layer segmentation handler.
2304 * @skb: buffer to segment
2305 * @features: features for the output path (see dev->features)
2306 */
2307 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2308 netdev_features_t features)
2309 {
2310 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2311 struct packet_offload *ptype;
2312 __be16 type = skb_network_protocol(skb);
2313
2314 if (unlikely(!type))
2315 return ERR_PTR(-EINVAL);
2316
2317 __skb_pull(skb, skb->mac_len);
2318
2319 rcu_read_lock();
2320 list_for_each_entry_rcu(ptype, &offload_base, list) {
2321 if (ptype->type == type && ptype->callbacks.gso_segment) {
2322 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2323 int err;
2324
2325 err = ptype->callbacks.gso_send_check(skb);
2326 segs = ERR_PTR(err);
2327 if (err || skb_gso_ok(skb, features))
2328 break;
2329 __skb_push(skb, (skb->data -
2330 skb_network_header(skb)));
2331 }
2332 segs = ptype->callbacks.gso_segment(skb, features);
2333 break;
2334 }
2335 }
2336 rcu_read_unlock();
2337
2338 __skb_push(skb, skb->data - skb_mac_header(skb));
2339
2340 return segs;
2341 }
2342 EXPORT_SYMBOL(skb_mac_gso_segment);
2343
2344
2345 /* openvswitch calls this on rx path, so we need a different check.
2346 */
2347 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2348 {
2349 if (tx_path)
2350 return skb->ip_summed != CHECKSUM_PARTIAL;
2351 else
2352 return skb->ip_summed == CHECKSUM_NONE;
2353 }
2354
2355 /**
2356 * __skb_gso_segment - Perform segmentation on skb.
2357 * @skb: buffer to segment
2358 * @features: features for the output path (see dev->features)
2359 * @tx_path: whether it is called in TX path
2360 *
2361 * This function segments the given skb and returns a list of segments.
2362 *
2363 * It may return NULL if the skb requires no segmentation. This is
2364 * only possible when GSO is used for verifying header integrity.
2365 */
2366 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2367 netdev_features_t features, bool tx_path)
2368 {
2369 if (unlikely(skb_needs_check(skb, tx_path))) {
2370 int err;
2371
2372 skb_warn_bad_offload(skb);
2373
2374 if (skb_header_cloned(skb) &&
2375 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2376 return ERR_PTR(err);
2377 }
2378
2379 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2380 skb_reset_mac_header(skb);
2381 skb_reset_mac_len(skb);
2382
2383 return skb_mac_gso_segment(skb, features);
2384 }
2385 EXPORT_SYMBOL(__skb_gso_segment);
2386
2387 /* Take action when hardware reception checksum errors are detected. */
2388 #ifdef CONFIG_BUG
2389 void netdev_rx_csum_fault(struct net_device *dev)
2390 {
2391 if (net_ratelimit()) {
2392 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2393 dump_stack();
2394 }
2395 }
2396 EXPORT_SYMBOL(netdev_rx_csum_fault);
2397 #endif
2398
2399 /* Actually, we should eliminate this check as soon as we know, that:
2400 * 1. IOMMU is present and allows to map all the memory.
2401 * 2. No high memory really exists on this machine.
2402 */
2403
2404 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2405 {
2406 #ifdef CONFIG_HIGHMEM
2407 int i;
2408 if (!(dev->features & NETIF_F_HIGHDMA)) {
2409 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2410 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2411 if (PageHighMem(skb_frag_page(frag)))
2412 return 1;
2413 }
2414 }
2415
2416 if (PCI_DMA_BUS_IS_PHYS) {
2417 struct device *pdev = dev->dev.parent;
2418
2419 if (!pdev)
2420 return 0;
2421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2422 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2423 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2424 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2425 return 1;
2426 }
2427 }
2428 #endif
2429 return 0;
2430 }
2431
2432 struct dev_gso_cb {
2433 void (*destructor)(struct sk_buff *skb);
2434 };
2435
2436 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2437
2438 static void dev_gso_skb_destructor(struct sk_buff *skb)
2439 {
2440 struct dev_gso_cb *cb;
2441
2442 do {
2443 struct sk_buff *nskb = skb->next;
2444
2445 skb->next = nskb->next;
2446 nskb->next = NULL;
2447 kfree_skb(nskb);
2448 } while (skb->next);
2449
2450 cb = DEV_GSO_CB(skb);
2451 if (cb->destructor)
2452 cb->destructor(skb);
2453 }
2454
2455 /**
2456 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2457 * @skb: buffer to segment
2458 * @features: device features as applicable to this skb
2459 *
2460 * This function segments the given skb and stores the list of segments
2461 * in skb->next.
2462 */
2463 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2464 {
2465 struct sk_buff *segs;
2466
2467 segs = skb_gso_segment(skb, features);
2468
2469 /* Verifying header integrity only. */
2470 if (!segs)
2471 return 0;
2472
2473 if (IS_ERR(segs))
2474 return PTR_ERR(segs);
2475
2476 skb->next = segs;
2477 DEV_GSO_CB(skb)->destructor = skb->destructor;
2478 skb->destructor = dev_gso_skb_destructor;
2479
2480 return 0;
2481 }
2482
2483 static netdev_features_t harmonize_features(struct sk_buff *skb,
2484 netdev_features_t features)
2485 {
2486 if (skb->ip_summed != CHECKSUM_NONE &&
2487 !can_checksum_protocol(features, skb_network_protocol(skb))) {
2488 features &= ~NETIF_F_ALL_CSUM;
2489 } else if (illegal_highdma(skb->dev, skb)) {
2490 features &= ~NETIF_F_SG;
2491 }
2492
2493 return features;
2494 }
2495
2496 netdev_features_t netif_skb_features(struct sk_buff *skb)
2497 {
2498 __be16 protocol = skb->protocol;
2499 netdev_features_t features = skb->dev->features;
2500
2501 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2502 features &= ~NETIF_F_GSO_MASK;
2503
2504 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2505 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2506 protocol = veh->h_vlan_encapsulated_proto;
2507 } else if (!vlan_tx_tag_present(skb)) {
2508 return harmonize_features(skb, features);
2509 }
2510
2511 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2512 NETIF_F_HW_VLAN_STAG_TX);
2513
2514 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2515 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2516 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2517 NETIF_F_HW_VLAN_STAG_TX;
2518
2519 return harmonize_features(skb, features);
2520 }
2521 EXPORT_SYMBOL(netif_skb_features);
2522
2523 /*
2524 * Returns true if either:
2525 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2526 * 2. skb is fragmented and the device does not support SG.
2527 */
2528 static inline int skb_needs_linearize(struct sk_buff *skb,
2529 netdev_features_t features)
2530 {
2531 return skb_is_nonlinear(skb) &&
2532 ((skb_has_frag_list(skb) &&
2533 !(features & NETIF_F_FRAGLIST)) ||
2534 (skb_shinfo(skb)->nr_frags &&
2535 !(features & NETIF_F_SG)));
2536 }
2537
2538 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2539 struct netdev_queue *txq)
2540 {
2541 const struct net_device_ops *ops = dev->netdev_ops;
2542 int rc = NETDEV_TX_OK;
2543 unsigned int skb_len;
2544
2545 if (likely(!skb->next)) {
2546 netdev_features_t features;
2547
2548 /*
2549 * If device doesn't need skb->dst, release it right now while
2550 * its hot in this cpu cache
2551 */
2552 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2553 skb_dst_drop(skb);
2554
2555 features = netif_skb_features(skb);
2556
2557 if (vlan_tx_tag_present(skb) &&
2558 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2559 skb = __vlan_put_tag(skb, skb->vlan_proto,
2560 vlan_tx_tag_get(skb));
2561 if (unlikely(!skb))
2562 goto out;
2563
2564 skb->vlan_tci = 0;
2565 }
2566
2567 /* If encapsulation offload request, verify we are testing
2568 * hardware encapsulation features instead of standard
2569 * features for the netdev
2570 */
2571 if (skb->encapsulation)
2572 features &= dev->hw_enc_features;
2573
2574 if (netif_needs_gso(skb, features)) {
2575 if (unlikely(dev_gso_segment(skb, features)))
2576 goto out_kfree_skb;
2577 if (skb->next)
2578 goto gso;
2579 } else {
2580 if (skb_needs_linearize(skb, features) &&
2581 __skb_linearize(skb))
2582 goto out_kfree_skb;
2583
2584 /* If packet is not checksummed and device does not
2585 * support checksumming for this protocol, complete
2586 * checksumming here.
2587 */
2588 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2589 if (skb->encapsulation)
2590 skb_set_inner_transport_header(skb,
2591 skb_checksum_start_offset(skb));
2592 else
2593 skb_set_transport_header(skb,
2594 skb_checksum_start_offset(skb));
2595 if (!(features & NETIF_F_ALL_CSUM) &&
2596 skb_checksum_help(skb))
2597 goto out_kfree_skb;
2598 }
2599 }
2600
2601 if (!list_empty(&ptype_all))
2602 dev_queue_xmit_nit(skb, dev);
2603
2604 skb_len = skb->len;
2605 rc = ops->ndo_start_xmit(skb, dev);
2606 trace_net_dev_xmit(skb, rc, dev, skb_len);
2607 if (rc == NETDEV_TX_OK)
2608 txq_trans_update(txq);
2609 return rc;
2610 }
2611
2612 gso:
2613 do {
2614 struct sk_buff *nskb = skb->next;
2615
2616 skb->next = nskb->next;
2617 nskb->next = NULL;
2618
2619 if (!list_empty(&ptype_all))
2620 dev_queue_xmit_nit(nskb, dev);
2621
2622 skb_len = nskb->len;
2623 rc = ops->ndo_start_xmit(nskb, dev);
2624 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2625 if (unlikely(rc != NETDEV_TX_OK)) {
2626 if (rc & ~NETDEV_TX_MASK)
2627 goto out_kfree_gso_skb;
2628 nskb->next = skb->next;
2629 skb->next = nskb;
2630 return rc;
2631 }
2632 txq_trans_update(txq);
2633 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2634 return NETDEV_TX_BUSY;
2635 } while (skb->next);
2636
2637 out_kfree_gso_skb:
2638 if (likely(skb->next == NULL)) {
2639 skb->destructor = DEV_GSO_CB(skb)->destructor;
2640 consume_skb(skb);
2641 return rc;
2642 }
2643 out_kfree_skb:
2644 kfree_skb(skb);
2645 out:
2646 return rc;
2647 }
2648
2649 static void qdisc_pkt_len_init(struct sk_buff *skb)
2650 {
2651 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2652
2653 qdisc_skb_cb(skb)->pkt_len = skb->len;
2654
2655 /* To get more precise estimation of bytes sent on wire,
2656 * we add to pkt_len the headers size of all segments
2657 */
2658 if (shinfo->gso_size) {
2659 unsigned int hdr_len;
2660 u16 gso_segs = shinfo->gso_segs;
2661
2662 /* mac layer + network layer */
2663 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2664
2665 /* + transport layer */
2666 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2667 hdr_len += tcp_hdrlen(skb);
2668 else
2669 hdr_len += sizeof(struct udphdr);
2670
2671 if (shinfo->gso_type & SKB_GSO_DODGY)
2672 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2673 shinfo->gso_size);
2674
2675 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2676 }
2677 }
2678
2679 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2680 struct net_device *dev,
2681 struct netdev_queue *txq)
2682 {
2683 spinlock_t *root_lock = qdisc_lock(q);
2684 bool contended;
2685 int rc;
2686
2687 qdisc_pkt_len_init(skb);
2688 qdisc_calculate_pkt_len(skb, q);
2689 /*
2690 * Heuristic to force contended enqueues to serialize on a
2691 * separate lock before trying to get qdisc main lock.
2692 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2693 * and dequeue packets faster.
2694 */
2695 contended = qdisc_is_running(q);
2696 if (unlikely(contended))
2697 spin_lock(&q->busylock);
2698
2699 spin_lock(root_lock);
2700 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2701 kfree_skb(skb);
2702 rc = NET_XMIT_DROP;
2703 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2704 qdisc_run_begin(q)) {
2705 /*
2706 * This is a work-conserving queue; there are no old skbs
2707 * waiting to be sent out; and the qdisc is not running -
2708 * xmit the skb directly.
2709 */
2710 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2711 skb_dst_force(skb);
2712
2713 qdisc_bstats_update(q, skb);
2714
2715 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2716 if (unlikely(contended)) {
2717 spin_unlock(&q->busylock);
2718 contended = false;
2719 }
2720 __qdisc_run(q);
2721 } else
2722 qdisc_run_end(q);
2723
2724 rc = NET_XMIT_SUCCESS;
2725 } else {
2726 skb_dst_force(skb);
2727 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2728 if (qdisc_run_begin(q)) {
2729 if (unlikely(contended)) {
2730 spin_unlock(&q->busylock);
2731 contended = false;
2732 }
2733 __qdisc_run(q);
2734 }
2735 }
2736 spin_unlock(root_lock);
2737 if (unlikely(contended))
2738 spin_unlock(&q->busylock);
2739 return rc;
2740 }
2741
2742 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2743 static void skb_update_prio(struct sk_buff *skb)
2744 {
2745 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2746
2747 if (!skb->priority && skb->sk && map) {
2748 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2749
2750 if (prioidx < map->priomap_len)
2751 skb->priority = map->priomap[prioidx];
2752 }
2753 }
2754 #else
2755 #define skb_update_prio(skb)
2756 #endif
2757
2758 static DEFINE_PER_CPU(int, xmit_recursion);
2759 #define RECURSION_LIMIT 10
2760
2761 /**
2762 * dev_loopback_xmit - loop back @skb
2763 * @skb: buffer to transmit
2764 */
2765 int dev_loopback_xmit(struct sk_buff *skb)
2766 {
2767 skb_reset_mac_header(skb);
2768 __skb_pull(skb, skb_network_offset(skb));
2769 skb->pkt_type = PACKET_LOOPBACK;
2770 skb->ip_summed = CHECKSUM_UNNECESSARY;
2771 WARN_ON(!skb_dst(skb));
2772 skb_dst_force(skb);
2773 netif_rx_ni(skb);
2774 return 0;
2775 }
2776 EXPORT_SYMBOL(dev_loopback_xmit);
2777
2778 /**
2779 * dev_queue_xmit - transmit a buffer
2780 * @skb: buffer to transmit
2781 *
2782 * Queue a buffer for transmission to a network device. The caller must
2783 * have set the device and priority and built the buffer before calling
2784 * this function. The function can be called from an interrupt.
2785 *
2786 * A negative errno code is returned on a failure. A success does not
2787 * guarantee the frame will be transmitted as it may be dropped due
2788 * to congestion or traffic shaping.
2789 *
2790 * -----------------------------------------------------------------------------------
2791 * I notice this method can also return errors from the queue disciplines,
2792 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2793 * be positive.
2794 *
2795 * Regardless of the return value, the skb is consumed, so it is currently
2796 * difficult to retry a send to this method. (You can bump the ref count
2797 * before sending to hold a reference for retry if you are careful.)
2798 *
2799 * When calling this method, interrupts MUST be enabled. This is because
2800 * the BH enable code must have IRQs enabled so that it will not deadlock.
2801 * --BLG
2802 */
2803 int dev_queue_xmit(struct sk_buff *skb)
2804 {
2805 struct net_device *dev = skb->dev;
2806 struct netdev_queue *txq;
2807 struct Qdisc *q;
2808 int rc = -ENOMEM;
2809
2810 skb_reset_mac_header(skb);
2811
2812 /* Disable soft irqs for various locks below. Also
2813 * stops preemption for RCU.
2814 */
2815 rcu_read_lock_bh();
2816
2817 skb_update_prio(skb);
2818
2819 txq = netdev_pick_tx(dev, skb);
2820 q = rcu_dereference_bh(txq->qdisc);
2821
2822 #ifdef CONFIG_NET_CLS_ACT
2823 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2824 #endif
2825 trace_net_dev_queue(skb);
2826 if (q->enqueue) {
2827 rc = __dev_xmit_skb(skb, q, dev, txq);
2828 goto out;
2829 }
2830
2831 /* The device has no queue. Common case for software devices:
2832 loopback, all the sorts of tunnels...
2833
2834 Really, it is unlikely that netif_tx_lock protection is necessary
2835 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2836 counters.)
2837 However, it is possible, that they rely on protection
2838 made by us here.
2839
2840 Check this and shot the lock. It is not prone from deadlocks.
2841 Either shot noqueue qdisc, it is even simpler 8)
2842 */
2843 if (dev->flags & IFF_UP) {
2844 int cpu = smp_processor_id(); /* ok because BHs are off */
2845
2846 if (txq->xmit_lock_owner != cpu) {
2847
2848 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2849 goto recursion_alert;
2850
2851 HARD_TX_LOCK(dev, txq, cpu);
2852
2853 if (!netif_xmit_stopped(txq)) {
2854 __this_cpu_inc(xmit_recursion);
2855 rc = dev_hard_start_xmit(skb, dev, txq);
2856 __this_cpu_dec(xmit_recursion);
2857 if (dev_xmit_complete(rc)) {
2858 HARD_TX_UNLOCK(dev, txq);
2859 goto out;
2860 }
2861 }
2862 HARD_TX_UNLOCK(dev, txq);
2863 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2864 dev->name);
2865 } else {
2866 /* Recursion is detected! It is possible,
2867 * unfortunately
2868 */
2869 recursion_alert:
2870 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2871 dev->name);
2872 }
2873 }
2874
2875 rc = -ENETDOWN;
2876 rcu_read_unlock_bh();
2877
2878 kfree_skb(skb);
2879 return rc;
2880 out:
2881 rcu_read_unlock_bh();
2882 return rc;
2883 }
2884 EXPORT_SYMBOL(dev_queue_xmit);
2885
2886
2887 /*=======================================================================
2888 Receiver routines
2889 =======================================================================*/
2890
2891 int netdev_max_backlog __read_mostly = 1000;
2892 EXPORT_SYMBOL(netdev_max_backlog);
2893
2894 int netdev_tstamp_prequeue __read_mostly = 1;
2895 int netdev_budget __read_mostly = 300;
2896 int weight_p __read_mostly = 64; /* old backlog weight */
2897
2898 /* Called with irq disabled */
2899 static inline void ____napi_schedule(struct softnet_data *sd,
2900 struct napi_struct *napi)
2901 {
2902 list_add_tail(&napi->poll_list, &sd->poll_list);
2903 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2904 }
2905
2906 #ifdef CONFIG_RPS
2907
2908 /* One global table that all flow-based protocols share. */
2909 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2910 EXPORT_SYMBOL(rps_sock_flow_table);
2911
2912 struct static_key rps_needed __read_mostly;
2913
2914 static struct rps_dev_flow *
2915 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2916 struct rps_dev_flow *rflow, u16 next_cpu)
2917 {
2918 if (next_cpu != RPS_NO_CPU) {
2919 #ifdef CONFIG_RFS_ACCEL
2920 struct netdev_rx_queue *rxqueue;
2921 struct rps_dev_flow_table *flow_table;
2922 struct rps_dev_flow *old_rflow;
2923 u32 flow_id;
2924 u16 rxq_index;
2925 int rc;
2926
2927 /* Should we steer this flow to a different hardware queue? */
2928 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2929 !(dev->features & NETIF_F_NTUPLE))
2930 goto out;
2931 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2932 if (rxq_index == skb_get_rx_queue(skb))
2933 goto out;
2934
2935 rxqueue = dev->_rx + rxq_index;
2936 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2937 if (!flow_table)
2938 goto out;
2939 flow_id = skb->rxhash & flow_table->mask;
2940 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2941 rxq_index, flow_id);
2942 if (rc < 0)
2943 goto out;
2944 old_rflow = rflow;
2945 rflow = &flow_table->flows[flow_id];
2946 rflow->filter = rc;
2947 if (old_rflow->filter == rflow->filter)
2948 old_rflow->filter = RPS_NO_FILTER;
2949 out:
2950 #endif
2951 rflow->last_qtail =
2952 per_cpu(softnet_data, next_cpu).input_queue_head;
2953 }
2954
2955 rflow->cpu = next_cpu;
2956 return rflow;
2957 }
2958
2959 /*
2960 * get_rps_cpu is called from netif_receive_skb and returns the target
2961 * CPU from the RPS map of the receiving queue for a given skb.
2962 * rcu_read_lock must be held on entry.
2963 */
2964 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2965 struct rps_dev_flow **rflowp)
2966 {
2967 struct netdev_rx_queue *rxqueue;
2968 struct rps_map *map;
2969 struct rps_dev_flow_table *flow_table;
2970 struct rps_sock_flow_table *sock_flow_table;
2971 int cpu = -1;
2972 u16 tcpu;
2973
2974 if (skb_rx_queue_recorded(skb)) {
2975 u16 index = skb_get_rx_queue(skb);
2976 if (unlikely(index >= dev->real_num_rx_queues)) {
2977 WARN_ONCE(dev->real_num_rx_queues > 1,
2978 "%s received packet on queue %u, but number "
2979 "of RX queues is %u\n",
2980 dev->name, index, dev->real_num_rx_queues);
2981 goto done;
2982 }
2983 rxqueue = dev->_rx + index;
2984 } else
2985 rxqueue = dev->_rx;
2986
2987 map = rcu_dereference(rxqueue->rps_map);
2988 if (map) {
2989 if (map->len == 1 &&
2990 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2991 tcpu = map->cpus[0];
2992 if (cpu_online(tcpu))
2993 cpu = tcpu;
2994 goto done;
2995 }
2996 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2997 goto done;
2998 }
2999
3000 skb_reset_network_header(skb);
3001 if (!skb_get_rxhash(skb))
3002 goto done;
3003
3004 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3005 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3006 if (flow_table && sock_flow_table) {
3007 u16 next_cpu;
3008 struct rps_dev_flow *rflow;
3009
3010 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3011 tcpu = rflow->cpu;
3012
3013 next_cpu = sock_flow_table->ents[skb->rxhash &
3014 sock_flow_table->mask];
3015
3016 /*
3017 * If the desired CPU (where last recvmsg was done) is
3018 * different from current CPU (one in the rx-queue flow
3019 * table entry), switch if one of the following holds:
3020 * - Current CPU is unset (equal to RPS_NO_CPU).
3021 * - Current CPU is offline.
3022 * - The current CPU's queue tail has advanced beyond the
3023 * last packet that was enqueued using this table entry.
3024 * This guarantees that all previous packets for the flow
3025 * have been dequeued, thus preserving in order delivery.
3026 */
3027 if (unlikely(tcpu != next_cpu) &&
3028 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3029 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3030 rflow->last_qtail)) >= 0)) {
3031 tcpu = next_cpu;
3032 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3033 }
3034
3035 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3036 *rflowp = rflow;
3037 cpu = tcpu;
3038 goto done;
3039 }
3040 }
3041
3042 if (map) {
3043 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3044
3045 if (cpu_online(tcpu)) {
3046 cpu = tcpu;
3047 goto done;
3048 }
3049 }
3050
3051 done:
3052 return cpu;
3053 }
3054
3055 #ifdef CONFIG_RFS_ACCEL
3056
3057 /**
3058 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3059 * @dev: Device on which the filter was set
3060 * @rxq_index: RX queue index
3061 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3062 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3063 *
3064 * Drivers that implement ndo_rx_flow_steer() should periodically call
3065 * this function for each installed filter and remove the filters for
3066 * which it returns %true.
3067 */
3068 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3069 u32 flow_id, u16 filter_id)
3070 {
3071 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3072 struct rps_dev_flow_table *flow_table;
3073 struct rps_dev_flow *rflow;
3074 bool expire = true;
3075 int cpu;
3076
3077 rcu_read_lock();
3078 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3079 if (flow_table && flow_id <= flow_table->mask) {
3080 rflow = &flow_table->flows[flow_id];
3081 cpu = ACCESS_ONCE(rflow->cpu);
3082 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3083 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3084 rflow->last_qtail) <
3085 (int)(10 * flow_table->mask)))
3086 expire = false;
3087 }
3088 rcu_read_unlock();
3089 return expire;
3090 }
3091 EXPORT_SYMBOL(rps_may_expire_flow);
3092
3093 #endif /* CONFIG_RFS_ACCEL */
3094
3095 /* Called from hardirq (IPI) context */
3096 static void rps_trigger_softirq(void *data)
3097 {
3098 struct softnet_data *sd = data;
3099
3100 ____napi_schedule(sd, &sd->backlog);
3101 sd->received_rps++;
3102 }
3103
3104 #endif /* CONFIG_RPS */
3105
3106 /*
3107 * Check if this softnet_data structure is another cpu one
3108 * If yes, queue it to our IPI list and return 1
3109 * If no, return 0
3110 */
3111 static int rps_ipi_queued(struct softnet_data *sd)
3112 {
3113 #ifdef CONFIG_RPS
3114 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3115
3116 if (sd != mysd) {
3117 sd->rps_ipi_next = mysd->rps_ipi_list;
3118 mysd->rps_ipi_list = sd;
3119
3120 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3121 return 1;
3122 }
3123 #endif /* CONFIG_RPS */
3124 return 0;
3125 }
3126
3127 #ifdef CONFIG_NET_FLOW_LIMIT
3128 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3129 #endif
3130
3131 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3132 {
3133 #ifdef CONFIG_NET_FLOW_LIMIT
3134 struct sd_flow_limit *fl;
3135 struct softnet_data *sd;
3136 unsigned int old_flow, new_flow;
3137
3138 if (qlen < (netdev_max_backlog >> 1))
3139 return false;
3140
3141 sd = &__get_cpu_var(softnet_data);
3142
3143 rcu_read_lock();
3144 fl = rcu_dereference(sd->flow_limit);
3145 if (fl) {
3146 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3147 old_flow = fl->history[fl->history_head];
3148 fl->history[fl->history_head] = new_flow;
3149
3150 fl->history_head++;
3151 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3152
3153 if (likely(fl->buckets[old_flow]))
3154 fl->buckets[old_flow]--;
3155
3156 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3157 fl->count++;
3158 rcu_read_unlock();
3159 return true;
3160 }
3161 }
3162 rcu_read_unlock();
3163 #endif
3164 return false;
3165 }
3166
3167 /*
3168 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3169 * queue (may be a remote CPU queue).
3170 */
3171 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3172 unsigned int *qtail)
3173 {
3174 struct softnet_data *sd;
3175 unsigned long flags;
3176 unsigned int qlen;
3177
3178 sd = &per_cpu(softnet_data, cpu);
3179
3180 local_irq_save(flags);
3181
3182 rps_lock(sd);
3183 qlen = skb_queue_len(&sd->input_pkt_queue);
3184 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3185 if (skb_queue_len(&sd->input_pkt_queue)) {
3186 enqueue:
3187 __skb_queue_tail(&sd->input_pkt_queue, skb);
3188 input_queue_tail_incr_save(sd, qtail);
3189 rps_unlock(sd);
3190 local_irq_restore(flags);
3191 return NET_RX_SUCCESS;
3192 }
3193
3194 /* Schedule NAPI for backlog device
3195 * We can use non atomic operation since we own the queue lock
3196 */
3197 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3198 if (!rps_ipi_queued(sd))
3199 ____napi_schedule(sd, &sd->backlog);
3200 }
3201 goto enqueue;
3202 }
3203
3204 sd->dropped++;
3205 rps_unlock(sd);
3206
3207 local_irq_restore(flags);
3208
3209 atomic_long_inc(&skb->dev->rx_dropped);
3210 kfree_skb(skb);
3211 return NET_RX_DROP;
3212 }
3213
3214 /**
3215 * netif_rx - post buffer to the network code
3216 * @skb: buffer to post
3217 *
3218 * This function receives a packet from a device driver and queues it for
3219 * the upper (protocol) levels to process. It always succeeds. The buffer
3220 * may be dropped during processing for congestion control or by the
3221 * protocol layers.
3222 *
3223 * return values:
3224 * NET_RX_SUCCESS (no congestion)
3225 * NET_RX_DROP (packet was dropped)
3226 *
3227 */
3228
3229 int netif_rx(struct sk_buff *skb)
3230 {
3231 int ret;
3232
3233 /* if netpoll wants it, pretend we never saw it */
3234 if (netpoll_rx(skb))
3235 return NET_RX_DROP;
3236
3237 net_timestamp_check(netdev_tstamp_prequeue, skb);
3238
3239 trace_netif_rx(skb);
3240 #ifdef CONFIG_RPS
3241 if (static_key_false(&rps_needed)) {
3242 struct rps_dev_flow voidflow, *rflow = &voidflow;
3243 int cpu;
3244
3245 preempt_disable();
3246 rcu_read_lock();
3247
3248 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3249 if (cpu < 0)
3250 cpu = smp_processor_id();
3251
3252 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3253
3254 rcu_read_unlock();
3255 preempt_enable();
3256 } else
3257 #endif
3258 {
3259 unsigned int qtail;
3260 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3261 put_cpu();
3262 }
3263 return ret;
3264 }
3265 EXPORT_SYMBOL(netif_rx);
3266
3267 int netif_rx_ni(struct sk_buff *skb)
3268 {
3269 int err;
3270
3271 preempt_disable();
3272 err = netif_rx(skb);
3273 if (local_softirq_pending())
3274 do_softirq();
3275 preempt_enable();
3276
3277 return err;
3278 }
3279 EXPORT_SYMBOL(netif_rx_ni);
3280
3281 static void net_tx_action(struct softirq_action *h)
3282 {
3283 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3284
3285 if (sd->completion_queue) {
3286 struct sk_buff *clist;
3287
3288 local_irq_disable();
3289 clist = sd->completion_queue;
3290 sd->completion_queue = NULL;
3291 local_irq_enable();
3292
3293 while (clist) {
3294 struct sk_buff *skb = clist;
3295 clist = clist->next;
3296
3297 WARN_ON(atomic_read(&skb->users));
3298 trace_kfree_skb(skb, net_tx_action);
3299 __kfree_skb(skb);
3300 }
3301 }
3302
3303 if (sd->output_queue) {
3304 struct Qdisc *head;
3305
3306 local_irq_disable();
3307 head = sd->output_queue;
3308 sd->output_queue = NULL;
3309 sd->output_queue_tailp = &sd->output_queue;
3310 local_irq_enable();
3311
3312 while (head) {
3313 struct Qdisc *q = head;
3314 spinlock_t *root_lock;
3315
3316 head = head->next_sched;
3317
3318 root_lock = qdisc_lock(q);
3319 if (spin_trylock(root_lock)) {
3320 smp_mb__before_clear_bit();
3321 clear_bit(__QDISC_STATE_SCHED,
3322 &q->state);
3323 qdisc_run(q);
3324 spin_unlock(root_lock);
3325 } else {
3326 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3327 &q->state)) {
3328 __netif_reschedule(q);
3329 } else {
3330 smp_mb__before_clear_bit();
3331 clear_bit(__QDISC_STATE_SCHED,
3332 &q->state);
3333 }
3334 }
3335 }
3336 }
3337 }
3338
3339 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3340 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3341 /* This hook is defined here for ATM LANE */
3342 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3343 unsigned char *addr) __read_mostly;
3344 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3345 #endif
3346
3347 #ifdef CONFIG_NET_CLS_ACT
3348 /* TODO: Maybe we should just force sch_ingress to be compiled in
3349 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3350 * a compare and 2 stores extra right now if we dont have it on
3351 * but have CONFIG_NET_CLS_ACT
3352 * NOTE: This doesn't stop any functionality; if you dont have
3353 * the ingress scheduler, you just can't add policies on ingress.
3354 *
3355 */
3356 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3357 {
3358 struct net_device *dev = skb->dev;
3359 u32 ttl = G_TC_RTTL(skb->tc_verd);
3360 int result = TC_ACT_OK;
3361 struct Qdisc *q;
3362
3363 if (unlikely(MAX_RED_LOOP < ttl++)) {
3364 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3365 skb->skb_iif, dev->ifindex);
3366 return TC_ACT_SHOT;
3367 }
3368
3369 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3370 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3371
3372 q = rxq->qdisc;
3373 if (q != &noop_qdisc) {
3374 spin_lock(qdisc_lock(q));
3375 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3376 result = qdisc_enqueue_root(skb, q);
3377 spin_unlock(qdisc_lock(q));
3378 }
3379
3380 return result;
3381 }
3382
3383 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3384 struct packet_type **pt_prev,
3385 int *ret, struct net_device *orig_dev)
3386 {
3387 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3388
3389 if (!rxq || rxq->qdisc == &noop_qdisc)
3390 goto out;
3391
3392 if (*pt_prev) {
3393 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3394 *pt_prev = NULL;
3395 }
3396
3397 switch (ing_filter(skb, rxq)) {
3398 case TC_ACT_SHOT:
3399 case TC_ACT_STOLEN:
3400 kfree_skb(skb);
3401 return NULL;
3402 }
3403
3404 out:
3405 skb->tc_verd = 0;
3406 return skb;
3407 }
3408 #endif
3409
3410 /**
3411 * netdev_rx_handler_register - register receive handler
3412 * @dev: device to register a handler for
3413 * @rx_handler: receive handler to register
3414 * @rx_handler_data: data pointer that is used by rx handler
3415 *
3416 * Register a receive hander for a device. This handler will then be
3417 * called from __netif_receive_skb. A negative errno code is returned
3418 * on a failure.
3419 *
3420 * The caller must hold the rtnl_mutex.
3421 *
3422 * For a general description of rx_handler, see enum rx_handler_result.
3423 */
3424 int netdev_rx_handler_register(struct net_device *dev,
3425 rx_handler_func_t *rx_handler,
3426 void *rx_handler_data)
3427 {
3428 ASSERT_RTNL();
3429
3430 if (dev->rx_handler)
3431 return -EBUSY;
3432
3433 /* Note: rx_handler_data must be set before rx_handler */
3434 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3435 rcu_assign_pointer(dev->rx_handler, rx_handler);
3436
3437 return 0;
3438 }
3439 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3440
3441 /**
3442 * netdev_rx_handler_unregister - unregister receive handler
3443 * @dev: device to unregister a handler from
3444 *
3445 * Unregister a receive handler from a device.
3446 *
3447 * The caller must hold the rtnl_mutex.
3448 */
3449 void netdev_rx_handler_unregister(struct net_device *dev)
3450 {
3451
3452 ASSERT_RTNL();
3453 RCU_INIT_POINTER(dev->rx_handler, NULL);
3454 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3455 * section has a guarantee to see a non NULL rx_handler_data
3456 * as well.
3457 */
3458 synchronize_net();
3459 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3460 }
3461 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3462
3463 /*
3464 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3465 * the special handling of PFMEMALLOC skbs.
3466 */
3467 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3468 {
3469 switch (skb->protocol) {
3470 case __constant_htons(ETH_P_ARP):
3471 case __constant_htons(ETH_P_IP):
3472 case __constant_htons(ETH_P_IPV6):
3473 case __constant_htons(ETH_P_8021Q):
3474 case __constant_htons(ETH_P_8021AD):
3475 return true;
3476 default:
3477 return false;
3478 }
3479 }
3480
3481 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3482 {
3483 struct packet_type *ptype, *pt_prev;
3484 rx_handler_func_t *rx_handler;
3485 struct net_device *orig_dev;
3486 struct net_device *null_or_dev;
3487 bool deliver_exact = false;
3488 int ret = NET_RX_DROP;
3489 __be16 type;
3490
3491 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3492
3493 trace_netif_receive_skb(skb);
3494
3495 /* if we've gotten here through NAPI, check netpoll */
3496 if (netpoll_receive_skb(skb))
3497 goto out;
3498
3499 orig_dev = skb->dev;
3500
3501 skb_reset_network_header(skb);
3502 if (!skb_transport_header_was_set(skb))
3503 skb_reset_transport_header(skb);
3504 skb_reset_mac_len(skb);
3505
3506 pt_prev = NULL;
3507
3508 rcu_read_lock();
3509
3510 another_round:
3511 skb->skb_iif = skb->dev->ifindex;
3512
3513 __this_cpu_inc(softnet_data.processed);
3514
3515 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3516 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3517 skb = vlan_untag(skb);
3518 if (unlikely(!skb))
3519 goto unlock;
3520 }
3521
3522 #ifdef CONFIG_NET_CLS_ACT
3523 if (skb->tc_verd & TC_NCLS) {
3524 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3525 goto ncls;
3526 }
3527 #endif
3528
3529 if (pfmemalloc)
3530 goto skip_taps;
3531
3532 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3533 if (!ptype->dev || ptype->dev == skb->dev) {
3534 if (pt_prev)
3535 ret = deliver_skb(skb, pt_prev, orig_dev);
3536 pt_prev = ptype;
3537 }
3538 }
3539
3540 skip_taps:
3541 #ifdef CONFIG_NET_CLS_ACT
3542 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3543 if (!skb)
3544 goto unlock;
3545 ncls:
3546 #endif
3547
3548 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3549 goto drop;
3550
3551 if (vlan_tx_tag_present(skb)) {
3552 if (pt_prev) {
3553 ret = deliver_skb(skb, pt_prev, orig_dev);
3554 pt_prev = NULL;
3555 }
3556 if (vlan_do_receive(&skb))
3557 goto another_round;
3558 else if (unlikely(!skb))
3559 goto unlock;
3560 }
3561
3562 rx_handler = rcu_dereference(skb->dev->rx_handler);
3563 if (rx_handler) {
3564 if (pt_prev) {
3565 ret = deliver_skb(skb, pt_prev, orig_dev);
3566 pt_prev = NULL;
3567 }
3568 switch (rx_handler(&skb)) {
3569 case RX_HANDLER_CONSUMED:
3570 ret = NET_RX_SUCCESS;
3571 goto unlock;
3572 case RX_HANDLER_ANOTHER:
3573 goto another_round;
3574 case RX_HANDLER_EXACT:
3575 deliver_exact = true;
3576 case RX_HANDLER_PASS:
3577 break;
3578 default:
3579 BUG();
3580 }
3581 }
3582
3583 if (unlikely(vlan_tx_tag_present(skb))) {
3584 if (vlan_tx_tag_get_id(skb))
3585 skb->pkt_type = PACKET_OTHERHOST;
3586 /* Note: we might in the future use prio bits
3587 * and set skb->priority like in vlan_do_receive()
3588 * For the time being, just ignore Priority Code Point
3589 */
3590 skb->vlan_tci = 0;
3591 }
3592
3593 /* deliver only exact match when indicated */
3594 null_or_dev = deliver_exact ? skb->dev : NULL;
3595
3596 type = skb->protocol;
3597 list_for_each_entry_rcu(ptype,
3598 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3599 if (ptype->type == type &&
3600 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3601 ptype->dev == orig_dev)) {
3602 if (pt_prev)
3603 ret = deliver_skb(skb, pt_prev, orig_dev);
3604 pt_prev = ptype;
3605 }
3606 }
3607
3608 if (pt_prev) {
3609 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3610 goto drop;
3611 else
3612 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3613 } else {
3614 drop:
3615 atomic_long_inc(&skb->dev->rx_dropped);
3616 kfree_skb(skb);
3617 /* Jamal, now you will not able to escape explaining
3618 * me how you were going to use this. :-)
3619 */
3620 ret = NET_RX_DROP;
3621 }
3622
3623 unlock:
3624 rcu_read_unlock();
3625 out:
3626 return ret;
3627 }
3628
3629 static int __netif_receive_skb(struct sk_buff *skb)
3630 {
3631 int ret;
3632
3633 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3634 unsigned long pflags = current->flags;
3635
3636 /*
3637 * PFMEMALLOC skbs are special, they should
3638 * - be delivered to SOCK_MEMALLOC sockets only
3639 * - stay away from userspace
3640 * - have bounded memory usage
3641 *
3642 * Use PF_MEMALLOC as this saves us from propagating the allocation
3643 * context down to all allocation sites.
3644 */
3645 current->flags |= PF_MEMALLOC;
3646 ret = __netif_receive_skb_core(skb, true);
3647 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3648 } else
3649 ret = __netif_receive_skb_core(skb, false);
3650
3651 return ret;
3652 }
3653
3654 /**
3655 * netif_receive_skb - process receive buffer from network
3656 * @skb: buffer to process
3657 *
3658 * netif_receive_skb() is the main receive data processing function.
3659 * It always succeeds. The buffer may be dropped during processing
3660 * for congestion control or by the protocol layers.
3661 *
3662 * This function may only be called from softirq context and interrupts
3663 * should be enabled.
3664 *
3665 * Return values (usually ignored):
3666 * NET_RX_SUCCESS: no congestion
3667 * NET_RX_DROP: packet was dropped
3668 */
3669 int netif_receive_skb(struct sk_buff *skb)
3670 {
3671 net_timestamp_check(netdev_tstamp_prequeue, skb);
3672
3673 if (skb_defer_rx_timestamp(skb))
3674 return NET_RX_SUCCESS;
3675
3676 #ifdef CONFIG_RPS
3677 if (static_key_false(&rps_needed)) {
3678 struct rps_dev_flow voidflow, *rflow = &voidflow;
3679 int cpu, ret;
3680
3681 rcu_read_lock();
3682
3683 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3684
3685 if (cpu >= 0) {
3686 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3687 rcu_read_unlock();
3688 return ret;
3689 }
3690 rcu_read_unlock();
3691 }
3692 #endif
3693 return __netif_receive_skb(skb);
3694 }
3695 EXPORT_SYMBOL(netif_receive_skb);
3696
3697 /* Network device is going away, flush any packets still pending
3698 * Called with irqs disabled.
3699 */
3700 static void flush_backlog(void *arg)
3701 {
3702 struct net_device *dev = arg;
3703 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3704 struct sk_buff *skb, *tmp;
3705
3706 rps_lock(sd);
3707 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3708 if (skb->dev == dev) {
3709 __skb_unlink(skb, &sd->input_pkt_queue);
3710 kfree_skb(skb);
3711 input_queue_head_incr(sd);
3712 }
3713 }
3714 rps_unlock(sd);
3715
3716 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3717 if (skb->dev == dev) {
3718 __skb_unlink(skb, &sd->process_queue);
3719 kfree_skb(skb);
3720 input_queue_head_incr(sd);
3721 }
3722 }
3723 }
3724
3725 static int napi_gro_complete(struct sk_buff *skb)
3726 {
3727 struct packet_offload *ptype;
3728 __be16 type = skb->protocol;
3729 struct list_head *head = &offload_base;
3730 int err = -ENOENT;
3731
3732 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3733
3734 if (NAPI_GRO_CB(skb)->count == 1) {
3735 skb_shinfo(skb)->gso_size = 0;
3736 goto out;
3737 }
3738
3739 rcu_read_lock();
3740 list_for_each_entry_rcu(ptype, head, list) {
3741 if (ptype->type != type || !ptype->callbacks.gro_complete)
3742 continue;
3743
3744 err = ptype->callbacks.gro_complete(skb);
3745 break;
3746 }
3747 rcu_read_unlock();
3748
3749 if (err) {
3750 WARN_ON(&ptype->list == head);
3751 kfree_skb(skb);
3752 return NET_RX_SUCCESS;
3753 }
3754
3755 out:
3756 return netif_receive_skb(skb);
3757 }
3758
3759 /* napi->gro_list contains packets ordered by age.
3760 * youngest packets at the head of it.
3761 * Complete skbs in reverse order to reduce latencies.
3762 */
3763 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3764 {
3765 struct sk_buff *skb, *prev = NULL;
3766
3767 /* scan list and build reverse chain */
3768 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3769 skb->prev = prev;
3770 prev = skb;
3771 }
3772
3773 for (skb = prev; skb; skb = prev) {
3774 skb->next = NULL;
3775
3776 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3777 return;
3778
3779 prev = skb->prev;
3780 napi_gro_complete(skb);
3781 napi->gro_count--;
3782 }
3783
3784 napi->gro_list = NULL;
3785 }
3786 EXPORT_SYMBOL(napi_gro_flush);
3787
3788 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3789 {
3790 struct sk_buff *p;
3791 unsigned int maclen = skb->dev->hard_header_len;
3792
3793 for (p = napi->gro_list; p; p = p->next) {
3794 unsigned long diffs;
3795
3796 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3797 diffs |= p->vlan_tci ^ skb->vlan_tci;
3798 if (maclen == ETH_HLEN)
3799 diffs |= compare_ether_header(skb_mac_header(p),
3800 skb_gro_mac_header(skb));
3801 else if (!diffs)
3802 diffs = memcmp(skb_mac_header(p),
3803 skb_gro_mac_header(skb),
3804 maclen);
3805 NAPI_GRO_CB(p)->same_flow = !diffs;
3806 NAPI_GRO_CB(p)->flush = 0;
3807 }
3808 }
3809
3810 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3811 {
3812 struct sk_buff **pp = NULL;
3813 struct packet_offload *ptype;
3814 __be16 type = skb->protocol;
3815 struct list_head *head = &offload_base;
3816 int same_flow;
3817 enum gro_result ret;
3818
3819 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3820 goto normal;
3821
3822 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3823 goto normal;
3824
3825 gro_list_prepare(napi, skb);
3826
3827 rcu_read_lock();
3828 list_for_each_entry_rcu(ptype, head, list) {
3829 if (ptype->type != type || !ptype->callbacks.gro_receive)
3830 continue;
3831
3832 skb_set_network_header(skb, skb_gro_offset(skb));
3833 skb_reset_mac_len(skb);
3834 NAPI_GRO_CB(skb)->same_flow = 0;
3835 NAPI_GRO_CB(skb)->flush = 0;
3836 NAPI_GRO_CB(skb)->free = 0;
3837
3838 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3839 break;
3840 }
3841 rcu_read_unlock();
3842
3843 if (&ptype->list == head)
3844 goto normal;
3845
3846 same_flow = NAPI_GRO_CB(skb)->same_flow;
3847 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3848
3849 if (pp) {
3850 struct sk_buff *nskb = *pp;
3851
3852 *pp = nskb->next;
3853 nskb->next = NULL;
3854 napi_gro_complete(nskb);
3855 napi->gro_count--;
3856 }
3857
3858 if (same_flow)
3859 goto ok;
3860
3861 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3862 goto normal;
3863
3864 napi->gro_count++;
3865 NAPI_GRO_CB(skb)->count = 1;
3866 NAPI_GRO_CB(skb)->age = jiffies;
3867 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3868 skb->next = napi->gro_list;
3869 napi->gro_list = skb;
3870 ret = GRO_HELD;
3871
3872 pull:
3873 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3874 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3875
3876 BUG_ON(skb->end - skb->tail < grow);
3877
3878 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3879
3880 skb->tail += grow;
3881 skb->data_len -= grow;
3882
3883 skb_shinfo(skb)->frags[0].page_offset += grow;
3884 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3885
3886 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3887 skb_frag_unref(skb, 0);
3888 memmove(skb_shinfo(skb)->frags,
3889 skb_shinfo(skb)->frags + 1,
3890 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3891 }
3892 }
3893
3894 ok:
3895 return ret;
3896
3897 normal:
3898 ret = GRO_NORMAL;
3899 goto pull;
3900 }
3901
3902
3903 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3904 {
3905 switch (ret) {
3906 case GRO_NORMAL:
3907 if (netif_receive_skb(skb))
3908 ret = GRO_DROP;
3909 break;
3910
3911 case GRO_DROP:
3912 kfree_skb(skb);
3913 break;
3914
3915 case GRO_MERGED_FREE:
3916 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3917 kmem_cache_free(skbuff_head_cache, skb);
3918 else
3919 __kfree_skb(skb);
3920 break;
3921
3922 case GRO_HELD:
3923 case GRO_MERGED:
3924 break;
3925 }
3926
3927 return ret;
3928 }
3929
3930 static void skb_gro_reset_offset(struct sk_buff *skb)
3931 {
3932 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3933 const skb_frag_t *frag0 = &pinfo->frags[0];
3934
3935 NAPI_GRO_CB(skb)->data_offset = 0;
3936 NAPI_GRO_CB(skb)->frag0 = NULL;
3937 NAPI_GRO_CB(skb)->frag0_len = 0;
3938
3939 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3940 pinfo->nr_frags &&
3941 !PageHighMem(skb_frag_page(frag0))) {
3942 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3943 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3944 }
3945 }
3946
3947 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3948 {
3949 skb_gro_reset_offset(skb);
3950
3951 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3952 }
3953 EXPORT_SYMBOL(napi_gro_receive);
3954
3955 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3956 {
3957 __skb_pull(skb, skb_headlen(skb));
3958 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3959 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3960 skb->vlan_tci = 0;
3961 skb->dev = napi->dev;
3962 skb->skb_iif = 0;
3963
3964 napi->skb = skb;
3965 }
3966
3967 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3968 {
3969 struct sk_buff *skb = napi->skb;
3970
3971 if (!skb) {
3972 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3973 if (skb)
3974 napi->skb = skb;
3975 }
3976 return skb;
3977 }
3978 EXPORT_SYMBOL(napi_get_frags);
3979
3980 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3981 gro_result_t ret)
3982 {
3983 switch (ret) {
3984 case GRO_NORMAL:
3985 case GRO_HELD:
3986 skb->protocol = eth_type_trans(skb, skb->dev);
3987
3988 if (ret == GRO_HELD)
3989 skb_gro_pull(skb, -ETH_HLEN);
3990 else if (netif_receive_skb(skb))
3991 ret = GRO_DROP;
3992 break;
3993
3994 case GRO_DROP:
3995 case GRO_MERGED_FREE:
3996 napi_reuse_skb(napi, skb);
3997 break;
3998
3999 case GRO_MERGED:
4000 break;
4001 }
4002
4003 return ret;
4004 }
4005
4006 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4007 {
4008 struct sk_buff *skb = napi->skb;
4009 struct ethhdr *eth;
4010 unsigned int hlen;
4011 unsigned int off;
4012
4013 napi->skb = NULL;
4014
4015 skb_reset_mac_header(skb);
4016 skb_gro_reset_offset(skb);
4017
4018 off = skb_gro_offset(skb);
4019 hlen = off + sizeof(*eth);
4020 eth = skb_gro_header_fast(skb, off);
4021 if (skb_gro_header_hard(skb, hlen)) {
4022 eth = skb_gro_header_slow(skb, hlen, off);
4023 if (unlikely(!eth)) {
4024 napi_reuse_skb(napi, skb);
4025 skb = NULL;
4026 goto out;
4027 }
4028 }
4029
4030 skb_gro_pull(skb, sizeof(*eth));
4031
4032 /*
4033 * This works because the only protocols we care about don't require
4034 * special handling. We'll fix it up properly at the end.
4035 */
4036 skb->protocol = eth->h_proto;
4037
4038 out:
4039 return skb;
4040 }
4041
4042 gro_result_t napi_gro_frags(struct napi_struct *napi)
4043 {
4044 struct sk_buff *skb = napi_frags_skb(napi);
4045
4046 if (!skb)
4047 return GRO_DROP;
4048
4049 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4050 }
4051 EXPORT_SYMBOL(napi_gro_frags);
4052
4053 /*
4054 * net_rps_action sends any pending IPI's for rps.
4055 * Note: called with local irq disabled, but exits with local irq enabled.
4056 */
4057 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4058 {
4059 #ifdef CONFIG_RPS
4060 struct softnet_data *remsd = sd->rps_ipi_list;
4061
4062 if (remsd) {
4063 sd->rps_ipi_list = NULL;
4064
4065 local_irq_enable();
4066
4067 /* Send pending IPI's to kick RPS processing on remote cpus. */
4068 while (remsd) {
4069 struct softnet_data *next = remsd->rps_ipi_next;
4070
4071 if (cpu_online(remsd->cpu))
4072 __smp_call_function_single(remsd->cpu,
4073 &remsd->csd, 0);
4074 remsd = next;
4075 }
4076 } else
4077 #endif
4078 local_irq_enable();
4079 }
4080
4081 static int process_backlog(struct napi_struct *napi, int quota)
4082 {
4083 int work = 0;
4084 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4085
4086 #ifdef CONFIG_RPS
4087 /* Check if we have pending ipi, its better to send them now,
4088 * not waiting net_rx_action() end.
4089 */
4090 if (sd->rps_ipi_list) {
4091 local_irq_disable();
4092 net_rps_action_and_irq_enable(sd);
4093 }
4094 #endif
4095 napi->weight = weight_p;
4096 local_irq_disable();
4097 while (work < quota) {
4098 struct sk_buff *skb;
4099 unsigned int qlen;
4100
4101 while ((skb = __skb_dequeue(&sd->process_queue))) {
4102 local_irq_enable();
4103 __netif_receive_skb(skb);
4104 local_irq_disable();
4105 input_queue_head_incr(sd);
4106 if (++work >= quota) {
4107 local_irq_enable();
4108 return work;
4109 }
4110 }
4111
4112 rps_lock(sd);
4113 qlen = skb_queue_len(&sd->input_pkt_queue);
4114 if (qlen)
4115 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4116 &sd->process_queue);
4117
4118 if (qlen < quota - work) {
4119 /*
4120 * Inline a custom version of __napi_complete().
4121 * only current cpu owns and manipulates this napi,
4122 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4123 * we can use a plain write instead of clear_bit(),
4124 * and we dont need an smp_mb() memory barrier.
4125 */
4126 list_del(&napi->poll_list);
4127 napi->state = 0;
4128
4129 quota = work + qlen;
4130 }
4131 rps_unlock(sd);
4132 }
4133 local_irq_enable();
4134
4135 return work;
4136 }
4137
4138 /**
4139 * __napi_schedule - schedule for receive
4140 * @n: entry to schedule
4141 *
4142 * The entry's receive function will be scheduled to run
4143 */
4144 void __napi_schedule(struct napi_struct *n)
4145 {
4146 unsigned long flags;
4147
4148 local_irq_save(flags);
4149 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4150 local_irq_restore(flags);
4151 }
4152 EXPORT_SYMBOL(__napi_schedule);
4153
4154 void __napi_complete(struct napi_struct *n)
4155 {
4156 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4157 BUG_ON(n->gro_list);
4158
4159 list_del(&n->poll_list);
4160 smp_mb__before_clear_bit();
4161 clear_bit(NAPI_STATE_SCHED, &n->state);
4162 }
4163 EXPORT_SYMBOL(__napi_complete);
4164
4165 void napi_complete(struct napi_struct *n)
4166 {
4167 unsigned long flags;
4168
4169 /*
4170 * don't let napi dequeue from the cpu poll list
4171 * just in case its running on a different cpu
4172 */
4173 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4174 return;
4175
4176 napi_gro_flush(n, false);
4177 local_irq_save(flags);
4178 __napi_complete(n);
4179 local_irq_restore(flags);
4180 }
4181 EXPORT_SYMBOL(napi_complete);
4182
4183 /* must be called under rcu_read_lock(), as we dont take a reference */
4184 struct napi_struct *napi_by_id(unsigned int napi_id)
4185 {
4186 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4187 struct napi_struct *napi;
4188
4189 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4190 if (napi->napi_id == napi_id)
4191 return napi;
4192
4193 return NULL;
4194 }
4195 EXPORT_SYMBOL_GPL(napi_by_id);
4196
4197 void napi_hash_add(struct napi_struct *napi)
4198 {
4199 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4200
4201 spin_lock(&napi_hash_lock);
4202
4203 /* 0 is not a valid id, we also skip an id that is taken
4204 * we expect both events to be extremely rare
4205 */
4206 napi->napi_id = 0;
4207 while (!napi->napi_id) {
4208 napi->napi_id = ++napi_gen_id;
4209 if (napi_by_id(napi->napi_id))
4210 napi->napi_id = 0;
4211 }
4212
4213 hlist_add_head_rcu(&napi->napi_hash_node,
4214 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4215
4216 spin_unlock(&napi_hash_lock);
4217 }
4218 }
4219 EXPORT_SYMBOL_GPL(napi_hash_add);
4220
4221 /* Warning : caller is responsible to make sure rcu grace period
4222 * is respected before freeing memory containing @napi
4223 */
4224 void napi_hash_del(struct napi_struct *napi)
4225 {
4226 spin_lock(&napi_hash_lock);
4227
4228 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4229 hlist_del_rcu(&napi->napi_hash_node);
4230
4231 spin_unlock(&napi_hash_lock);
4232 }
4233 EXPORT_SYMBOL_GPL(napi_hash_del);
4234
4235 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4236 int (*poll)(struct napi_struct *, int), int weight)
4237 {
4238 INIT_LIST_HEAD(&napi->poll_list);
4239 napi->gro_count = 0;
4240 napi->gro_list = NULL;
4241 napi->skb = NULL;
4242 napi->poll = poll;
4243 if (weight > NAPI_POLL_WEIGHT)
4244 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4245 weight, dev->name);
4246 napi->weight = weight;
4247 list_add(&napi->dev_list, &dev->napi_list);
4248 napi->dev = dev;
4249 #ifdef CONFIG_NETPOLL
4250 spin_lock_init(&napi->poll_lock);
4251 napi->poll_owner = -1;
4252 #endif
4253 set_bit(NAPI_STATE_SCHED, &napi->state);
4254 }
4255 EXPORT_SYMBOL(netif_napi_add);
4256
4257 void netif_napi_del(struct napi_struct *napi)
4258 {
4259 struct sk_buff *skb, *next;
4260
4261 list_del_init(&napi->dev_list);
4262 napi_free_frags(napi);
4263
4264 for (skb = napi->gro_list; skb; skb = next) {
4265 next = skb->next;
4266 skb->next = NULL;
4267 kfree_skb(skb);
4268 }
4269
4270 napi->gro_list = NULL;
4271 napi->gro_count = 0;
4272 }
4273 EXPORT_SYMBOL(netif_napi_del);
4274
4275 static void net_rx_action(struct softirq_action *h)
4276 {
4277 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4278 unsigned long time_limit = jiffies + 2;
4279 int budget = netdev_budget;
4280 void *have;
4281
4282 local_irq_disable();
4283
4284 while (!list_empty(&sd->poll_list)) {
4285 struct napi_struct *n;
4286 int work, weight;
4287
4288 /* If softirq window is exhuasted then punt.
4289 * Allow this to run for 2 jiffies since which will allow
4290 * an average latency of 1.5/HZ.
4291 */
4292 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4293 goto softnet_break;
4294
4295 local_irq_enable();
4296
4297 /* Even though interrupts have been re-enabled, this
4298 * access is safe because interrupts can only add new
4299 * entries to the tail of this list, and only ->poll()
4300 * calls can remove this head entry from the list.
4301 */
4302 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4303
4304 have = netpoll_poll_lock(n);
4305
4306 weight = n->weight;
4307
4308 /* This NAPI_STATE_SCHED test is for avoiding a race
4309 * with netpoll's poll_napi(). Only the entity which
4310 * obtains the lock and sees NAPI_STATE_SCHED set will
4311 * actually make the ->poll() call. Therefore we avoid
4312 * accidentally calling ->poll() when NAPI is not scheduled.
4313 */
4314 work = 0;
4315 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4316 work = n->poll(n, weight);
4317 trace_napi_poll(n);
4318 }
4319
4320 WARN_ON_ONCE(work > weight);
4321
4322 budget -= work;
4323
4324 local_irq_disable();
4325
4326 /* Drivers must not modify the NAPI state if they
4327 * consume the entire weight. In such cases this code
4328 * still "owns" the NAPI instance and therefore can
4329 * move the instance around on the list at-will.
4330 */
4331 if (unlikely(work == weight)) {
4332 if (unlikely(napi_disable_pending(n))) {
4333 local_irq_enable();
4334 napi_complete(n);
4335 local_irq_disable();
4336 } else {
4337 if (n->gro_list) {
4338 /* flush too old packets
4339 * If HZ < 1000, flush all packets.
4340 */
4341 local_irq_enable();
4342 napi_gro_flush(n, HZ >= 1000);
4343 local_irq_disable();
4344 }
4345 list_move_tail(&n->poll_list, &sd->poll_list);
4346 }
4347 }
4348
4349 netpoll_poll_unlock(have);
4350 }
4351 out:
4352 net_rps_action_and_irq_enable(sd);
4353
4354 #ifdef CONFIG_NET_DMA
4355 /*
4356 * There may not be any more sk_buffs coming right now, so push
4357 * any pending DMA copies to hardware
4358 */
4359 dma_issue_pending_all();
4360 #endif
4361
4362 return;
4363
4364 softnet_break:
4365 sd->time_squeeze++;
4366 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4367 goto out;
4368 }
4369
4370 struct netdev_upper {
4371 struct net_device *dev;
4372 bool master;
4373 struct list_head list;
4374 struct rcu_head rcu;
4375 struct list_head search_list;
4376 };
4377
4378 static void __append_search_uppers(struct list_head *search_list,
4379 struct net_device *dev)
4380 {
4381 struct netdev_upper *upper;
4382
4383 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4384 /* check if this upper is not already in search list */
4385 if (list_empty(&upper->search_list))
4386 list_add_tail(&upper->search_list, search_list);
4387 }
4388 }
4389
4390 static bool __netdev_search_upper_dev(struct net_device *dev,
4391 struct net_device *upper_dev)
4392 {
4393 LIST_HEAD(search_list);
4394 struct netdev_upper *upper;
4395 struct netdev_upper *tmp;
4396 bool ret = false;
4397
4398 __append_search_uppers(&search_list, dev);
4399 list_for_each_entry(upper, &search_list, search_list) {
4400 if (upper->dev == upper_dev) {
4401 ret = true;
4402 break;
4403 }
4404 __append_search_uppers(&search_list, upper->dev);
4405 }
4406 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4407 INIT_LIST_HEAD(&upper->search_list);
4408 return ret;
4409 }
4410
4411 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4412 struct net_device *upper_dev)
4413 {
4414 struct netdev_upper *upper;
4415
4416 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4417 if (upper->dev == upper_dev)
4418 return upper;
4419 }
4420 return NULL;
4421 }
4422
4423 /**
4424 * netdev_has_upper_dev - Check if device is linked to an upper device
4425 * @dev: device
4426 * @upper_dev: upper device to check
4427 *
4428 * Find out if a device is linked to specified upper device and return true
4429 * in case it is. Note that this checks only immediate upper device,
4430 * not through a complete stack of devices. The caller must hold the RTNL lock.
4431 */
4432 bool netdev_has_upper_dev(struct net_device *dev,
4433 struct net_device *upper_dev)
4434 {
4435 ASSERT_RTNL();
4436
4437 return __netdev_find_upper(dev, upper_dev);
4438 }
4439 EXPORT_SYMBOL(netdev_has_upper_dev);
4440
4441 /**
4442 * netdev_has_any_upper_dev - Check if device is linked to some device
4443 * @dev: device
4444 *
4445 * Find out if a device is linked to an upper device and return true in case
4446 * it is. The caller must hold the RTNL lock.
4447 */
4448 bool netdev_has_any_upper_dev(struct net_device *dev)
4449 {
4450 ASSERT_RTNL();
4451
4452 return !list_empty(&dev->upper_dev_list);
4453 }
4454 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4455
4456 /**
4457 * netdev_master_upper_dev_get - Get master upper device
4458 * @dev: device
4459 *
4460 * Find a master upper device and return pointer to it or NULL in case
4461 * it's not there. The caller must hold the RTNL lock.
4462 */
4463 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4464 {
4465 struct netdev_upper *upper;
4466
4467 ASSERT_RTNL();
4468
4469 if (list_empty(&dev->upper_dev_list))
4470 return NULL;
4471
4472 upper = list_first_entry(&dev->upper_dev_list,
4473 struct netdev_upper, list);
4474 if (likely(upper->master))
4475 return upper->dev;
4476 return NULL;
4477 }
4478 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4479
4480 /**
4481 * netdev_master_upper_dev_get_rcu - Get master upper device
4482 * @dev: device
4483 *
4484 * Find a master upper device and return pointer to it or NULL in case
4485 * it's not there. The caller must hold the RCU read lock.
4486 */
4487 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4488 {
4489 struct netdev_upper *upper;
4490
4491 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4492 struct netdev_upper, list);
4493 if (upper && likely(upper->master))
4494 return upper->dev;
4495 return NULL;
4496 }
4497 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4498
4499 static int __netdev_upper_dev_link(struct net_device *dev,
4500 struct net_device *upper_dev, bool master)
4501 {
4502 struct netdev_upper *upper;
4503
4504 ASSERT_RTNL();
4505
4506 if (dev == upper_dev)
4507 return -EBUSY;
4508
4509 /* To prevent loops, check if dev is not upper device to upper_dev. */
4510 if (__netdev_search_upper_dev(upper_dev, dev))
4511 return -EBUSY;
4512
4513 if (__netdev_find_upper(dev, upper_dev))
4514 return -EEXIST;
4515
4516 if (master && netdev_master_upper_dev_get(dev))
4517 return -EBUSY;
4518
4519 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4520 if (!upper)
4521 return -ENOMEM;
4522
4523 upper->dev = upper_dev;
4524 upper->master = master;
4525 INIT_LIST_HEAD(&upper->search_list);
4526
4527 /* Ensure that master upper link is always the first item in list. */
4528 if (master)
4529 list_add_rcu(&upper->list, &dev->upper_dev_list);
4530 else
4531 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4532 dev_hold(upper_dev);
4533 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4534 return 0;
4535 }
4536
4537 /**
4538 * netdev_upper_dev_link - Add a link to the upper device
4539 * @dev: device
4540 * @upper_dev: new upper device
4541 *
4542 * Adds a link to device which is upper to this one. The caller must hold
4543 * the RTNL lock. On a failure a negative errno code is returned.
4544 * On success the reference counts are adjusted and the function
4545 * returns zero.
4546 */
4547 int netdev_upper_dev_link(struct net_device *dev,
4548 struct net_device *upper_dev)
4549 {
4550 return __netdev_upper_dev_link(dev, upper_dev, false);
4551 }
4552 EXPORT_SYMBOL(netdev_upper_dev_link);
4553
4554 /**
4555 * netdev_master_upper_dev_link - Add a master link to the upper device
4556 * @dev: device
4557 * @upper_dev: new upper device
4558 *
4559 * Adds a link to device which is upper to this one. In this case, only
4560 * one master upper device can be linked, although other non-master devices
4561 * might be linked as well. The caller must hold the RTNL lock.
4562 * On a failure a negative errno code is returned. On success the reference
4563 * counts are adjusted and the function returns zero.
4564 */
4565 int netdev_master_upper_dev_link(struct net_device *dev,
4566 struct net_device *upper_dev)
4567 {
4568 return __netdev_upper_dev_link(dev, upper_dev, true);
4569 }
4570 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4571
4572 /**
4573 * netdev_upper_dev_unlink - Removes a link to upper device
4574 * @dev: device
4575 * @upper_dev: new upper device
4576 *
4577 * Removes a link to device which is upper to this one. The caller must hold
4578 * the RTNL lock.
4579 */
4580 void netdev_upper_dev_unlink(struct net_device *dev,
4581 struct net_device *upper_dev)
4582 {
4583 struct netdev_upper *upper;
4584
4585 ASSERT_RTNL();
4586
4587 upper = __netdev_find_upper(dev, upper_dev);
4588 if (!upper)
4589 return;
4590 list_del_rcu(&upper->list);
4591 dev_put(upper_dev);
4592 kfree_rcu(upper, rcu);
4593 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4594 }
4595 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4596
4597 static void dev_change_rx_flags(struct net_device *dev, int flags)
4598 {
4599 const struct net_device_ops *ops = dev->netdev_ops;
4600
4601 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4602 ops->ndo_change_rx_flags(dev, flags);
4603 }
4604
4605 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4606 {
4607 unsigned int old_flags = dev->flags;
4608 kuid_t uid;
4609 kgid_t gid;
4610
4611 ASSERT_RTNL();
4612
4613 dev->flags |= IFF_PROMISC;
4614 dev->promiscuity += inc;
4615 if (dev->promiscuity == 0) {
4616 /*
4617 * Avoid overflow.
4618 * If inc causes overflow, untouch promisc and return error.
4619 */
4620 if (inc < 0)
4621 dev->flags &= ~IFF_PROMISC;
4622 else {
4623 dev->promiscuity -= inc;
4624 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4625 dev->name);
4626 return -EOVERFLOW;
4627 }
4628 }
4629 if (dev->flags != old_flags) {
4630 pr_info("device %s %s promiscuous mode\n",
4631 dev->name,
4632 dev->flags & IFF_PROMISC ? "entered" : "left");
4633 if (audit_enabled) {
4634 current_uid_gid(&uid, &gid);
4635 audit_log(current->audit_context, GFP_ATOMIC,
4636 AUDIT_ANOM_PROMISCUOUS,
4637 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4638 dev->name, (dev->flags & IFF_PROMISC),
4639 (old_flags & IFF_PROMISC),
4640 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4641 from_kuid(&init_user_ns, uid),
4642 from_kgid(&init_user_ns, gid),
4643 audit_get_sessionid(current));
4644 }
4645
4646 dev_change_rx_flags(dev, IFF_PROMISC);
4647 }
4648 return 0;
4649 }
4650
4651 /**
4652 * dev_set_promiscuity - update promiscuity count on a device
4653 * @dev: device
4654 * @inc: modifier
4655 *
4656 * Add or remove promiscuity from a device. While the count in the device
4657 * remains above zero the interface remains promiscuous. Once it hits zero
4658 * the device reverts back to normal filtering operation. A negative inc
4659 * value is used to drop promiscuity on the device.
4660 * Return 0 if successful or a negative errno code on error.
4661 */
4662 int dev_set_promiscuity(struct net_device *dev, int inc)
4663 {
4664 unsigned int old_flags = dev->flags;
4665 int err;
4666
4667 err = __dev_set_promiscuity(dev, inc);
4668 if (err < 0)
4669 return err;
4670 if (dev->flags != old_flags)
4671 dev_set_rx_mode(dev);
4672 return err;
4673 }
4674 EXPORT_SYMBOL(dev_set_promiscuity);
4675
4676 /**
4677 * dev_set_allmulti - update allmulti count on a device
4678 * @dev: device
4679 * @inc: modifier
4680 *
4681 * Add or remove reception of all multicast frames to a device. While the
4682 * count in the device remains above zero the interface remains listening
4683 * to all interfaces. Once it hits zero the device reverts back to normal
4684 * filtering operation. A negative @inc value is used to drop the counter
4685 * when releasing a resource needing all multicasts.
4686 * Return 0 if successful or a negative errno code on error.
4687 */
4688
4689 int dev_set_allmulti(struct net_device *dev, int inc)
4690 {
4691 unsigned int old_flags = dev->flags;
4692
4693 ASSERT_RTNL();
4694
4695 dev->flags |= IFF_ALLMULTI;
4696 dev->allmulti += inc;
4697 if (dev->allmulti == 0) {
4698 /*
4699 * Avoid overflow.
4700 * If inc causes overflow, untouch allmulti and return error.
4701 */
4702 if (inc < 0)
4703 dev->flags &= ~IFF_ALLMULTI;
4704 else {
4705 dev->allmulti -= inc;
4706 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4707 dev->name);
4708 return -EOVERFLOW;
4709 }
4710 }
4711 if (dev->flags ^ old_flags) {
4712 dev_change_rx_flags(dev, IFF_ALLMULTI);
4713 dev_set_rx_mode(dev);
4714 }
4715 return 0;
4716 }
4717 EXPORT_SYMBOL(dev_set_allmulti);
4718
4719 /*
4720 * Upload unicast and multicast address lists to device and
4721 * configure RX filtering. When the device doesn't support unicast
4722 * filtering it is put in promiscuous mode while unicast addresses
4723 * are present.
4724 */
4725 void __dev_set_rx_mode(struct net_device *dev)
4726 {
4727 const struct net_device_ops *ops = dev->netdev_ops;
4728
4729 /* dev_open will call this function so the list will stay sane. */
4730 if (!(dev->flags&IFF_UP))
4731 return;
4732
4733 if (!netif_device_present(dev))
4734 return;
4735
4736 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4737 /* Unicast addresses changes may only happen under the rtnl,
4738 * therefore calling __dev_set_promiscuity here is safe.
4739 */
4740 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4741 __dev_set_promiscuity(dev, 1);
4742 dev->uc_promisc = true;
4743 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4744 __dev_set_promiscuity(dev, -1);
4745 dev->uc_promisc = false;
4746 }
4747 }
4748
4749 if (ops->ndo_set_rx_mode)
4750 ops->ndo_set_rx_mode(dev);
4751 }
4752
4753 void dev_set_rx_mode(struct net_device *dev)
4754 {
4755 netif_addr_lock_bh(dev);
4756 __dev_set_rx_mode(dev);
4757 netif_addr_unlock_bh(dev);
4758 }
4759
4760 /**
4761 * dev_get_flags - get flags reported to userspace
4762 * @dev: device
4763 *
4764 * Get the combination of flag bits exported through APIs to userspace.
4765 */
4766 unsigned int dev_get_flags(const struct net_device *dev)
4767 {
4768 unsigned int flags;
4769
4770 flags = (dev->flags & ~(IFF_PROMISC |
4771 IFF_ALLMULTI |
4772 IFF_RUNNING |
4773 IFF_LOWER_UP |
4774 IFF_DORMANT)) |
4775 (dev->gflags & (IFF_PROMISC |
4776 IFF_ALLMULTI));
4777
4778 if (netif_running(dev)) {
4779 if (netif_oper_up(dev))
4780 flags |= IFF_RUNNING;
4781 if (netif_carrier_ok(dev))
4782 flags |= IFF_LOWER_UP;
4783 if (netif_dormant(dev))
4784 flags |= IFF_DORMANT;
4785 }
4786
4787 return flags;
4788 }
4789 EXPORT_SYMBOL(dev_get_flags);
4790
4791 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4792 {
4793 unsigned int old_flags = dev->flags;
4794 int ret;
4795
4796 ASSERT_RTNL();
4797
4798 /*
4799 * Set the flags on our device.
4800 */
4801
4802 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4803 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4804 IFF_AUTOMEDIA)) |
4805 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4806 IFF_ALLMULTI));
4807
4808 /*
4809 * Load in the correct multicast list now the flags have changed.
4810 */
4811
4812 if ((old_flags ^ flags) & IFF_MULTICAST)
4813 dev_change_rx_flags(dev, IFF_MULTICAST);
4814
4815 dev_set_rx_mode(dev);
4816
4817 /*
4818 * Have we downed the interface. We handle IFF_UP ourselves
4819 * according to user attempts to set it, rather than blindly
4820 * setting it.
4821 */
4822
4823 ret = 0;
4824 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4825 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4826
4827 if (!ret)
4828 dev_set_rx_mode(dev);
4829 }
4830
4831 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4832 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4833
4834 dev->gflags ^= IFF_PROMISC;
4835 dev_set_promiscuity(dev, inc);
4836 }
4837
4838 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4839 is important. Some (broken) drivers set IFF_PROMISC, when
4840 IFF_ALLMULTI is requested not asking us and not reporting.
4841 */
4842 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4843 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4844
4845 dev->gflags ^= IFF_ALLMULTI;
4846 dev_set_allmulti(dev, inc);
4847 }
4848
4849 return ret;
4850 }
4851
4852 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4853 {
4854 unsigned int changes = dev->flags ^ old_flags;
4855
4856 if (changes & IFF_UP) {
4857 if (dev->flags & IFF_UP)
4858 call_netdevice_notifiers(NETDEV_UP, dev);
4859 else
4860 call_netdevice_notifiers(NETDEV_DOWN, dev);
4861 }
4862
4863 if (dev->flags & IFF_UP &&
4864 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
4865 struct netdev_notifier_change_info change_info;
4866
4867 change_info.flags_changed = changes;
4868 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
4869 &change_info.info);
4870 }
4871 }
4872
4873 /**
4874 * dev_change_flags - change device settings
4875 * @dev: device
4876 * @flags: device state flags
4877 *
4878 * Change settings on device based state flags. The flags are
4879 * in the userspace exported format.
4880 */
4881 int dev_change_flags(struct net_device *dev, unsigned int flags)
4882 {
4883 int ret;
4884 unsigned int changes, old_flags = dev->flags;
4885
4886 ret = __dev_change_flags(dev, flags);
4887 if (ret < 0)
4888 return ret;
4889
4890 changes = old_flags ^ dev->flags;
4891 if (changes)
4892 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4893
4894 __dev_notify_flags(dev, old_flags);
4895 return ret;
4896 }
4897 EXPORT_SYMBOL(dev_change_flags);
4898
4899 /**
4900 * dev_set_mtu - Change maximum transfer unit
4901 * @dev: device
4902 * @new_mtu: new transfer unit
4903 *
4904 * Change the maximum transfer size of the network device.
4905 */
4906 int dev_set_mtu(struct net_device *dev, int new_mtu)
4907 {
4908 const struct net_device_ops *ops = dev->netdev_ops;
4909 int err;
4910
4911 if (new_mtu == dev->mtu)
4912 return 0;
4913
4914 /* MTU must be positive. */
4915 if (new_mtu < 0)
4916 return -EINVAL;
4917
4918 if (!netif_device_present(dev))
4919 return -ENODEV;
4920
4921 err = 0;
4922 if (ops->ndo_change_mtu)
4923 err = ops->ndo_change_mtu(dev, new_mtu);
4924 else
4925 dev->mtu = new_mtu;
4926
4927 if (!err)
4928 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4929 return err;
4930 }
4931 EXPORT_SYMBOL(dev_set_mtu);
4932
4933 /**
4934 * dev_set_group - Change group this device belongs to
4935 * @dev: device
4936 * @new_group: group this device should belong to
4937 */
4938 void dev_set_group(struct net_device *dev, int new_group)
4939 {
4940 dev->group = new_group;
4941 }
4942 EXPORT_SYMBOL(dev_set_group);
4943
4944 /**
4945 * dev_set_mac_address - Change Media Access Control Address
4946 * @dev: device
4947 * @sa: new address
4948 *
4949 * Change the hardware (MAC) address of the device
4950 */
4951 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4952 {
4953 const struct net_device_ops *ops = dev->netdev_ops;
4954 int err;
4955
4956 if (!ops->ndo_set_mac_address)
4957 return -EOPNOTSUPP;
4958 if (sa->sa_family != dev->type)
4959 return -EINVAL;
4960 if (!netif_device_present(dev))
4961 return -ENODEV;
4962 err = ops->ndo_set_mac_address(dev, sa);
4963 if (err)
4964 return err;
4965 dev->addr_assign_type = NET_ADDR_SET;
4966 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4967 add_device_randomness(dev->dev_addr, dev->addr_len);
4968 return 0;
4969 }
4970 EXPORT_SYMBOL(dev_set_mac_address);
4971
4972 /**
4973 * dev_change_carrier - Change device carrier
4974 * @dev: device
4975 * @new_carrier: new value
4976 *
4977 * Change device carrier
4978 */
4979 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4980 {
4981 const struct net_device_ops *ops = dev->netdev_ops;
4982
4983 if (!ops->ndo_change_carrier)
4984 return -EOPNOTSUPP;
4985 if (!netif_device_present(dev))
4986 return -ENODEV;
4987 return ops->ndo_change_carrier(dev, new_carrier);
4988 }
4989 EXPORT_SYMBOL(dev_change_carrier);
4990
4991 /**
4992 * dev_new_index - allocate an ifindex
4993 * @net: the applicable net namespace
4994 *
4995 * Returns a suitable unique value for a new device interface
4996 * number. The caller must hold the rtnl semaphore or the
4997 * dev_base_lock to be sure it remains unique.
4998 */
4999 static int dev_new_index(struct net *net)
5000 {
5001 int ifindex = net->ifindex;
5002 for (;;) {
5003 if (++ifindex <= 0)
5004 ifindex = 1;
5005 if (!__dev_get_by_index(net, ifindex))
5006 return net->ifindex = ifindex;
5007 }
5008 }
5009
5010 /* Delayed registration/unregisteration */
5011 static LIST_HEAD(net_todo_list);
5012
5013 static void net_set_todo(struct net_device *dev)
5014 {
5015 list_add_tail(&dev->todo_list, &net_todo_list);
5016 }
5017
5018 static void rollback_registered_many(struct list_head *head)
5019 {
5020 struct net_device *dev, *tmp;
5021
5022 BUG_ON(dev_boot_phase);
5023 ASSERT_RTNL();
5024
5025 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5026 /* Some devices call without registering
5027 * for initialization unwind. Remove those
5028 * devices and proceed with the remaining.
5029 */
5030 if (dev->reg_state == NETREG_UNINITIALIZED) {
5031 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5032 dev->name, dev);
5033
5034 WARN_ON(1);
5035 list_del(&dev->unreg_list);
5036 continue;
5037 }
5038 dev->dismantle = true;
5039 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5040 }
5041
5042 /* If device is running, close it first. */
5043 dev_close_many(head);
5044
5045 list_for_each_entry(dev, head, unreg_list) {
5046 /* And unlink it from device chain. */
5047 unlist_netdevice(dev);
5048
5049 dev->reg_state = NETREG_UNREGISTERING;
5050 }
5051
5052 synchronize_net();
5053
5054 list_for_each_entry(dev, head, unreg_list) {
5055 /* Shutdown queueing discipline. */
5056 dev_shutdown(dev);
5057
5058
5059 /* Notify protocols, that we are about to destroy
5060 this device. They should clean all the things.
5061 */
5062 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5063
5064 if (!dev->rtnl_link_ops ||
5065 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5066 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5067
5068 /*
5069 * Flush the unicast and multicast chains
5070 */
5071 dev_uc_flush(dev);
5072 dev_mc_flush(dev);
5073
5074 if (dev->netdev_ops->ndo_uninit)
5075 dev->netdev_ops->ndo_uninit(dev);
5076
5077 /* Notifier chain MUST detach us all upper devices. */
5078 WARN_ON(netdev_has_any_upper_dev(dev));
5079
5080 /* Remove entries from kobject tree */
5081 netdev_unregister_kobject(dev);
5082 #ifdef CONFIG_XPS
5083 /* Remove XPS queueing entries */
5084 netif_reset_xps_queues_gt(dev, 0);
5085 #endif
5086 }
5087
5088 synchronize_net();
5089
5090 list_for_each_entry(dev, head, unreg_list)
5091 dev_put(dev);
5092 }
5093
5094 static void rollback_registered(struct net_device *dev)
5095 {
5096 LIST_HEAD(single);
5097
5098 list_add(&dev->unreg_list, &single);
5099 rollback_registered_many(&single);
5100 list_del(&single);
5101 }
5102
5103 static netdev_features_t netdev_fix_features(struct net_device *dev,
5104 netdev_features_t features)
5105 {
5106 /* Fix illegal checksum combinations */
5107 if ((features & NETIF_F_HW_CSUM) &&
5108 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5109 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5110 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5111 }
5112
5113 /* TSO requires that SG is present as well. */
5114 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5115 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5116 features &= ~NETIF_F_ALL_TSO;
5117 }
5118
5119 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5120 !(features & NETIF_F_IP_CSUM)) {
5121 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5122 features &= ~NETIF_F_TSO;
5123 features &= ~NETIF_F_TSO_ECN;
5124 }
5125
5126 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5127 !(features & NETIF_F_IPV6_CSUM)) {
5128 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5129 features &= ~NETIF_F_TSO6;
5130 }
5131
5132 /* TSO ECN requires that TSO is present as well. */
5133 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5134 features &= ~NETIF_F_TSO_ECN;
5135
5136 /* Software GSO depends on SG. */
5137 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5138 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5139 features &= ~NETIF_F_GSO;
5140 }
5141
5142 /* UFO needs SG and checksumming */
5143 if (features & NETIF_F_UFO) {
5144 /* maybe split UFO into V4 and V6? */
5145 if (!((features & NETIF_F_GEN_CSUM) ||
5146 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5147 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5148 netdev_dbg(dev,
5149 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5150 features &= ~NETIF_F_UFO;
5151 }
5152
5153 if (!(features & NETIF_F_SG)) {
5154 netdev_dbg(dev,
5155 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5156 features &= ~NETIF_F_UFO;
5157 }
5158 }
5159
5160 return features;
5161 }
5162
5163 int __netdev_update_features(struct net_device *dev)
5164 {
5165 netdev_features_t features;
5166 int err = 0;
5167
5168 ASSERT_RTNL();
5169
5170 features = netdev_get_wanted_features(dev);
5171
5172 if (dev->netdev_ops->ndo_fix_features)
5173 features = dev->netdev_ops->ndo_fix_features(dev, features);
5174
5175 /* driver might be less strict about feature dependencies */
5176 features = netdev_fix_features(dev, features);
5177
5178 if (dev->features == features)
5179 return 0;
5180
5181 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5182 &dev->features, &features);
5183
5184 if (dev->netdev_ops->ndo_set_features)
5185 err = dev->netdev_ops->ndo_set_features(dev, features);
5186
5187 if (unlikely(err < 0)) {
5188 netdev_err(dev,
5189 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5190 err, &features, &dev->features);
5191 return -1;
5192 }
5193
5194 if (!err)
5195 dev->features = features;
5196
5197 return 1;
5198 }
5199
5200 /**
5201 * netdev_update_features - recalculate device features
5202 * @dev: the device to check
5203 *
5204 * Recalculate dev->features set and send notifications if it
5205 * has changed. Should be called after driver or hardware dependent
5206 * conditions might have changed that influence the features.
5207 */
5208 void netdev_update_features(struct net_device *dev)
5209 {
5210 if (__netdev_update_features(dev))
5211 netdev_features_change(dev);
5212 }
5213 EXPORT_SYMBOL(netdev_update_features);
5214
5215 /**
5216 * netdev_change_features - recalculate device features
5217 * @dev: the device to check
5218 *
5219 * Recalculate dev->features set and send notifications even
5220 * if they have not changed. Should be called instead of
5221 * netdev_update_features() if also dev->vlan_features might
5222 * have changed to allow the changes to be propagated to stacked
5223 * VLAN devices.
5224 */
5225 void netdev_change_features(struct net_device *dev)
5226 {
5227 __netdev_update_features(dev);
5228 netdev_features_change(dev);
5229 }
5230 EXPORT_SYMBOL(netdev_change_features);
5231
5232 /**
5233 * netif_stacked_transfer_operstate - transfer operstate
5234 * @rootdev: the root or lower level device to transfer state from
5235 * @dev: the device to transfer operstate to
5236 *
5237 * Transfer operational state from root to device. This is normally
5238 * called when a stacking relationship exists between the root
5239 * device and the device(a leaf device).
5240 */
5241 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5242 struct net_device *dev)
5243 {
5244 if (rootdev->operstate == IF_OPER_DORMANT)
5245 netif_dormant_on(dev);
5246 else
5247 netif_dormant_off(dev);
5248
5249 if (netif_carrier_ok(rootdev)) {
5250 if (!netif_carrier_ok(dev))
5251 netif_carrier_on(dev);
5252 } else {
5253 if (netif_carrier_ok(dev))
5254 netif_carrier_off(dev);
5255 }
5256 }
5257 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5258
5259 #ifdef CONFIG_RPS
5260 static int netif_alloc_rx_queues(struct net_device *dev)
5261 {
5262 unsigned int i, count = dev->num_rx_queues;
5263 struct netdev_rx_queue *rx;
5264
5265 BUG_ON(count < 1);
5266
5267 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5268 if (!rx)
5269 return -ENOMEM;
5270
5271 dev->_rx = rx;
5272
5273 for (i = 0; i < count; i++)
5274 rx[i].dev = dev;
5275 return 0;
5276 }
5277 #endif
5278
5279 static void netdev_init_one_queue(struct net_device *dev,
5280 struct netdev_queue *queue, void *_unused)
5281 {
5282 /* Initialize queue lock */
5283 spin_lock_init(&queue->_xmit_lock);
5284 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5285 queue->xmit_lock_owner = -1;
5286 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5287 queue->dev = dev;
5288 #ifdef CONFIG_BQL
5289 dql_init(&queue->dql, HZ);
5290 #endif
5291 }
5292
5293 static void netif_free_tx_queues(struct net_device *dev)
5294 {
5295 if (is_vmalloc_addr(dev->_tx))
5296 vfree(dev->_tx);
5297 else
5298 kfree(dev->_tx);
5299 }
5300
5301 static int netif_alloc_netdev_queues(struct net_device *dev)
5302 {
5303 unsigned int count = dev->num_tx_queues;
5304 struct netdev_queue *tx;
5305 size_t sz = count * sizeof(*tx);
5306
5307 BUG_ON(count < 1 || count > 0xffff);
5308
5309 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5310 if (!tx) {
5311 tx = vzalloc(sz);
5312 if (!tx)
5313 return -ENOMEM;
5314 }
5315 dev->_tx = tx;
5316
5317 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5318 spin_lock_init(&dev->tx_global_lock);
5319
5320 return 0;
5321 }
5322
5323 /**
5324 * register_netdevice - register a network device
5325 * @dev: device to register
5326 *
5327 * Take a completed network device structure and add it to the kernel
5328 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5329 * chain. 0 is returned on success. A negative errno code is returned
5330 * on a failure to set up the device, or if the name is a duplicate.
5331 *
5332 * Callers must hold the rtnl semaphore. You may want
5333 * register_netdev() instead of this.
5334 *
5335 * BUGS:
5336 * The locking appears insufficient to guarantee two parallel registers
5337 * will not get the same name.
5338 */
5339
5340 int register_netdevice(struct net_device *dev)
5341 {
5342 int ret;
5343 struct net *net = dev_net(dev);
5344
5345 BUG_ON(dev_boot_phase);
5346 ASSERT_RTNL();
5347
5348 might_sleep();
5349
5350 /* When net_device's are persistent, this will be fatal. */
5351 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5352 BUG_ON(!net);
5353
5354 spin_lock_init(&dev->addr_list_lock);
5355 netdev_set_addr_lockdep_class(dev);
5356
5357 dev->iflink = -1;
5358
5359 ret = dev_get_valid_name(net, dev, dev->name);
5360 if (ret < 0)
5361 goto out;
5362
5363 /* Init, if this function is available */
5364 if (dev->netdev_ops->ndo_init) {
5365 ret = dev->netdev_ops->ndo_init(dev);
5366 if (ret) {
5367 if (ret > 0)
5368 ret = -EIO;
5369 goto out;
5370 }
5371 }
5372
5373 if (((dev->hw_features | dev->features) &
5374 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5375 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5376 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5377 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5378 ret = -EINVAL;
5379 goto err_uninit;
5380 }
5381
5382 ret = -EBUSY;
5383 if (!dev->ifindex)
5384 dev->ifindex = dev_new_index(net);
5385 else if (__dev_get_by_index(net, dev->ifindex))
5386 goto err_uninit;
5387
5388 if (dev->iflink == -1)
5389 dev->iflink = dev->ifindex;
5390
5391 /* Transfer changeable features to wanted_features and enable
5392 * software offloads (GSO and GRO).
5393 */
5394 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5395 dev->features |= NETIF_F_SOFT_FEATURES;
5396 dev->wanted_features = dev->features & dev->hw_features;
5397
5398 /* Turn on no cache copy if HW is doing checksum */
5399 if (!(dev->flags & IFF_LOOPBACK)) {
5400 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5401 if (dev->features & NETIF_F_ALL_CSUM) {
5402 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5403 dev->features |= NETIF_F_NOCACHE_COPY;
5404 }
5405 }
5406
5407 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5408 */
5409 dev->vlan_features |= NETIF_F_HIGHDMA;
5410
5411 /* Make NETIF_F_SG inheritable to tunnel devices.
5412 */
5413 dev->hw_enc_features |= NETIF_F_SG;
5414
5415 /* Make NETIF_F_SG inheritable to MPLS.
5416 */
5417 dev->mpls_features |= NETIF_F_SG;
5418
5419 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5420 ret = notifier_to_errno(ret);
5421 if (ret)
5422 goto err_uninit;
5423
5424 ret = netdev_register_kobject(dev);
5425 if (ret)
5426 goto err_uninit;
5427 dev->reg_state = NETREG_REGISTERED;
5428
5429 __netdev_update_features(dev);
5430
5431 /*
5432 * Default initial state at registry is that the
5433 * device is present.
5434 */
5435
5436 set_bit(__LINK_STATE_PRESENT, &dev->state);
5437
5438 linkwatch_init_dev(dev);
5439
5440 dev_init_scheduler(dev);
5441 dev_hold(dev);
5442 list_netdevice(dev);
5443 add_device_randomness(dev->dev_addr, dev->addr_len);
5444
5445 /* If the device has permanent device address, driver should
5446 * set dev_addr and also addr_assign_type should be set to
5447 * NET_ADDR_PERM (default value).
5448 */
5449 if (dev->addr_assign_type == NET_ADDR_PERM)
5450 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5451
5452 /* Notify protocols, that a new device appeared. */
5453 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5454 ret = notifier_to_errno(ret);
5455 if (ret) {
5456 rollback_registered(dev);
5457 dev->reg_state = NETREG_UNREGISTERED;
5458 }
5459 /*
5460 * Prevent userspace races by waiting until the network
5461 * device is fully setup before sending notifications.
5462 */
5463 if (!dev->rtnl_link_ops ||
5464 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5465 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5466
5467 out:
5468 return ret;
5469
5470 err_uninit:
5471 if (dev->netdev_ops->ndo_uninit)
5472 dev->netdev_ops->ndo_uninit(dev);
5473 goto out;
5474 }
5475 EXPORT_SYMBOL(register_netdevice);
5476
5477 /**
5478 * init_dummy_netdev - init a dummy network device for NAPI
5479 * @dev: device to init
5480 *
5481 * This takes a network device structure and initialize the minimum
5482 * amount of fields so it can be used to schedule NAPI polls without
5483 * registering a full blown interface. This is to be used by drivers
5484 * that need to tie several hardware interfaces to a single NAPI
5485 * poll scheduler due to HW limitations.
5486 */
5487 int init_dummy_netdev(struct net_device *dev)
5488 {
5489 /* Clear everything. Note we don't initialize spinlocks
5490 * are they aren't supposed to be taken by any of the
5491 * NAPI code and this dummy netdev is supposed to be
5492 * only ever used for NAPI polls
5493 */
5494 memset(dev, 0, sizeof(struct net_device));
5495
5496 /* make sure we BUG if trying to hit standard
5497 * register/unregister code path
5498 */
5499 dev->reg_state = NETREG_DUMMY;
5500
5501 /* NAPI wants this */
5502 INIT_LIST_HEAD(&dev->napi_list);
5503
5504 /* a dummy interface is started by default */
5505 set_bit(__LINK_STATE_PRESENT, &dev->state);
5506 set_bit(__LINK_STATE_START, &dev->state);
5507
5508 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5509 * because users of this 'device' dont need to change
5510 * its refcount.
5511 */
5512
5513 return 0;
5514 }
5515 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5516
5517
5518 /**
5519 * register_netdev - register a network device
5520 * @dev: device to register
5521 *
5522 * Take a completed network device structure and add it to the kernel
5523 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5524 * chain. 0 is returned on success. A negative errno code is returned
5525 * on a failure to set up the device, or if the name is a duplicate.
5526 *
5527 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5528 * and expands the device name if you passed a format string to
5529 * alloc_netdev.
5530 */
5531 int register_netdev(struct net_device *dev)
5532 {
5533 int err;
5534
5535 rtnl_lock();
5536 err = register_netdevice(dev);
5537 rtnl_unlock();
5538 return err;
5539 }
5540 EXPORT_SYMBOL(register_netdev);
5541
5542 int netdev_refcnt_read(const struct net_device *dev)
5543 {
5544 int i, refcnt = 0;
5545
5546 for_each_possible_cpu(i)
5547 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5548 return refcnt;
5549 }
5550 EXPORT_SYMBOL(netdev_refcnt_read);
5551
5552 /**
5553 * netdev_wait_allrefs - wait until all references are gone.
5554 * @dev: target net_device
5555 *
5556 * This is called when unregistering network devices.
5557 *
5558 * Any protocol or device that holds a reference should register
5559 * for netdevice notification, and cleanup and put back the
5560 * reference if they receive an UNREGISTER event.
5561 * We can get stuck here if buggy protocols don't correctly
5562 * call dev_put.
5563 */
5564 static void netdev_wait_allrefs(struct net_device *dev)
5565 {
5566 unsigned long rebroadcast_time, warning_time;
5567 int refcnt;
5568
5569 linkwatch_forget_dev(dev);
5570
5571 rebroadcast_time = warning_time = jiffies;
5572 refcnt = netdev_refcnt_read(dev);
5573
5574 while (refcnt != 0) {
5575 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5576 rtnl_lock();
5577
5578 /* Rebroadcast unregister notification */
5579 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5580
5581 __rtnl_unlock();
5582 rcu_barrier();
5583 rtnl_lock();
5584
5585 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5586 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5587 &dev->state)) {
5588 /* We must not have linkwatch events
5589 * pending on unregister. If this
5590 * happens, we simply run the queue
5591 * unscheduled, resulting in a noop
5592 * for this device.
5593 */
5594 linkwatch_run_queue();
5595 }
5596
5597 __rtnl_unlock();
5598
5599 rebroadcast_time = jiffies;
5600 }
5601
5602 msleep(250);
5603
5604 refcnt = netdev_refcnt_read(dev);
5605
5606 if (time_after(jiffies, warning_time + 10 * HZ)) {
5607 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5608 dev->name, refcnt);
5609 warning_time = jiffies;
5610 }
5611 }
5612 }
5613
5614 /* The sequence is:
5615 *
5616 * rtnl_lock();
5617 * ...
5618 * register_netdevice(x1);
5619 * register_netdevice(x2);
5620 * ...
5621 * unregister_netdevice(y1);
5622 * unregister_netdevice(y2);
5623 * ...
5624 * rtnl_unlock();
5625 * free_netdev(y1);
5626 * free_netdev(y2);
5627 *
5628 * We are invoked by rtnl_unlock().
5629 * This allows us to deal with problems:
5630 * 1) We can delete sysfs objects which invoke hotplug
5631 * without deadlocking with linkwatch via keventd.
5632 * 2) Since we run with the RTNL semaphore not held, we can sleep
5633 * safely in order to wait for the netdev refcnt to drop to zero.
5634 *
5635 * We must not return until all unregister events added during
5636 * the interval the lock was held have been completed.
5637 */
5638 void netdev_run_todo(void)
5639 {
5640 struct list_head list;
5641
5642 /* Snapshot list, allow later requests */
5643 list_replace_init(&net_todo_list, &list);
5644
5645 __rtnl_unlock();
5646
5647
5648 /* Wait for rcu callbacks to finish before next phase */
5649 if (!list_empty(&list))
5650 rcu_barrier();
5651
5652 while (!list_empty(&list)) {
5653 struct net_device *dev
5654 = list_first_entry(&list, struct net_device, todo_list);
5655 list_del(&dev->todo_list);
5656
5657 rtnl_lock();
5658 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5659 __rtnl_unlock();
5660
5661 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5662 pr_err("network todo '%s' but state %d\n",
5663 dev->name, dev->reg_state);
5664 dump_stack();
5665 continue;
5666 }
5667
5668 dev->reg_state = NETREG_UNREGISTERED;
5669
5670 on_each_cpu(flush_backlog, dev, 1);
5671
5672 netdev_wait_allrefs(dev);
5673
5674 /* paranoia */
5675 BUG_ON(netdev_refcnt_read(dev));
5676 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5677 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5678 WARN_ON(dev->dn_ptr);
5679
5680 if (dev->destructor)
5681 dev->destructor(dev);
5682
5683 /* Free network device */
5684 kobject_put(&dev->dev.kobj);
5685 }
5686 }
5687
5688 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5689 * fields in the same order, with only the type differing.
5690 */
5691 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5692 const struct net_device_stats *netdev_stats)
5693 {
5694 #if BITS_PER_LONG == 64
5695 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5696 memcpy(stats64, netdev_stats, sizeof(*stats64));
5697 #else
5698 size_t i, n = sizeof(*stats64) / sizeof(u64);
5699 const unsigned long *src = (const unsigned long *)netdev_stats;
5700 u64 *dst = (u64 *)stats64;
5701
5702 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5703 sizeof(*stats64) / sizeof(u64));
5704 for (i = 0; i < n; i++)
5705 dst[i] = src[i];
5706 #endif
5707 }
5708 EXPORT_SYMBOL(netdev_stats_to_stats64);
5709
5710 /**
5711 * dev_get_stats - get network device statistics
5712 * @dev: device to get statistics from
5713 * @storage: place to store stats
5714 *
5715 * Get network statistics from device. Return @storage.
5716 * The device driver may provide its own method by setting
5717 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5718 * otherwise the internal statistics structure is used.
5719 */
5720 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5721 struct rtnl_link_stats64 *storage)
5722 {
5723 const struct net_device_ops *ops = dev->netdev_ops;
5724
5725 if (ops->ndo_get_stats64) {
5726 memset(storage, 0, sizeof(*storage));
5727 ops->ndo_get_stats64(dev, storage);
5728 } else if (ops->ndo_get_stats) {
5729 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5730 } else {
5731 netdev_stats_to_stats64(storage, &dev->stats);
5732 }
5733 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5734 return storage;
5735 }
5736 EXPORT_SYMBOL(dev_get_stats);
5737
5738 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5739 {
5740 struct netdev_queue *queue = dev_ingress_queue(dev);
5741
5742 #ifdef CONFIG_NET_CLS_ACT
5743 if (queue)
5744 return queue;
5745 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5746 if (!queue)
5747 return NULL;
5748 netdev_init_one_queue(dev, queue, NULL);
5749 queue->qdisc = &noop_qdisc;
5750 queue->qdisc_sleeping = &noop_qdisc;
5751 rcu_assign_pointer(dev->ingress_queue, queue);
5752 #endif
5753 return queue;
5754 }
5755
5756 static const struct ethtool_ops default_ethtool_ops;
5757
5758 void netdev_set_default_ethtool_ops(struct net_device *dev,
5759 const struct ethtool_ops *ops)
5760 {
5761 if (dev->ethtool_ops == &default_ethtool_ops)
5762 dev->ethtool_ops = ops;
5763 }
5764 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5765
5766 /**
5767 * alloc_netdev_mqs - allocate network device
5768 * @sizeof_priv: size of private data to allocate space for
5769 * @name: device name format string
5770 * @setup: callback to initialize device
5771 * @txqs: the number of TX subqueues to allocate
5772 * @rxqs: the number of RX subqueues to allocate
5773 *
5774 * Allocates a struct net_device with private data area for driver use
5775 * and performs basic initialization. Also allocates subquue structs
5776 * for each queue on the device.
5777 */
5778 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5779 void (*setup)(struct net_device *),
5780 unsigned int txqs, unsigned int rxqs)
5781 {
5782 struct net_device *dev;
5783 size_t alloc_size;
5784 struct net_device *p;
5785
5786 BUG_ON(strlen(name) >= sizeof(dev->name));
5787
5788 if (txqs < 1) {
5789 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5790 return NULL;
5791 }
5792
5793 #ifdef CONFIG_RPS
5794 if (rxqs < 1) {
5795 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5796 return NULL;
5797 }
5798 #endif
5799
5800 alloc_size = sizeof(struct net_device);
5801 if (sizeof_priv) {
5802 /* ensure 32-byte alignment of private area */
5803 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5804 alloc_size += sizeof_priv;
5805 }
5806 /* ensure 32-byte alignment of whole construct */
5807 alloc_size += NETDEV_ALIGN - 1;
5808
5809 p = kzalloc(alloc_size, GFP_KERNEL);
5810 if (!p)
5811 return NULL;
5812
5813 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5814 dev->padded = (char *)dev - (char *)p;
5815
5816 dev->pcpu_refcnt = alloc_percpu(int);
5817 if (!dev->pcpu_refcnt)
5818 goto free_p;
5819
5820 if (dev_addr_init(dev))
5821 goto free_pcpu;
5822
5823 dev_mc_init(dev);
5824 dev_uc_init(dev);
5825
5826 dev_net_set(dev, &init_net);
5827
5828 dev->gso_max_size = GSO_MAX_SIZE;
5829 dev->gso_max_segs = GSO_MAX_SEGS;
5830
5831 INIT_LIST_HEAD(&dev->napi_list);
5832 INIT_LIST_HEAD(&dev->unreg_list);
5833 INIT_LIST_HEAD(&dev->link_watch_list);
5834 INIT_LIST_HEAD(&dev->upper_dev_list);
5835 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5836 setup(dev);
5837
5838 dev->num_tx_queues = txqs;
5839 dev->real_num_tx_queues = txqs;
5840 if (netif_alloc_netdev_queues(dev))
5841 goto free_all;
5842
5843 #ifdef CONFIG_RPS
5844 dev->num_rx_queues = rxqs;
5845 dev->real_num_rx_queues = rxqs;
5846 if (netif_alloc_rx_queues(dev))
5847 goto free_all;
5848 #endif
5849
5850 strcpy(dev->name, name);
5851 dev->group = INIT_NETDEV_GROUP;
5852 if (!dev->ethtool_ops)
5853 dev->ethtool_ops = &default_ethtool_ops;
5854 return dev;
5855
5856 free_all:
5857 free_netdev(dev);
5858 return NULL;
5859
5860 free_pcpu:
5861 free_percpu(dev->pcpu_refcnt);
5862 netif_free_tx_queues(dev);
5863 #ifdef CONFIG_RPS
5864 kfree(dev->_rx);
5865 #endif
5866
5867 free_p:
5868 kfree(p);
5869 return NULL;
5870 }
5871 EXPORT_SYMBOL(alloc_netdev_mqs);
5872
5873 /**
5874 * free_netdev - free network device
5875 * @dev: device
5876 *
5877 * This function does the last stage of destroying an allocated device
5878 * interface. The reference to the device object is released.
5879 * If this is the last reference then it will be freed.
5880 */
5881 void free_netdev(struct net_device *dev)
5882 {
5883 struct napi_struct *p, *n;
5884
5885 release_net(dev_net(dev));
5886
5887 netif_free_tx_queues(dev);
5888 #ifdef CONFIG_RPS
5889 kfree(dev->_rx);
5890 #endif
5891
5892 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5893
5894 /* Flush device addresses */
5895 dev_addr_flush(dev);
5896
5897 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5898 netif_napi_del(p);
5899
5900 free_percpu(dev->pcpu_refcnt);
5901 dev->pcpu_refcnt = NULL;
5902
5903 /* Compatibility with error handling in drivers */
5904 if (dev->reg_state == NETREG_UNINITIALIZED) {
5905 kfree((char *)dev - dev->padded);
5906 return;
5907 }
5908
5909 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5910 dev->reg_state = NETREG_RELEASED;
5911
5912 /* will free via device release */
5913 put_device(&dev->dev);
5914 }
5915 EXPORT_SYMBOL(free_netdev);
5916
5917 /**
5918 * synchronize_net - Synchronize with packet receive processing
5919 *
5920 * Wait for packets currently being received to be done.
5921 * Does not block later packets from starting.
5922 */
5923 void synchronize_net(void)
5924 {
5925 might_sleep();
5926 if (rtnl_is_locked())
5927 synchronize_rcu_expedited();
5928 else
5929 synchronize_rcu();
5930 }
5931 EXPORT_SYMBOL(synchronize_net);
5932
5933 /**
5934 * unregister_netdevice_queue - remove device from the kernel
5935 * @dev: device
5936 * @head: list
5937 *
5938 * This function shuts down a device interface and removes it
5939 * from the kernel tables.
5940 * If head not NULL, device is queued to be unregistered later.
5941 *
5942 * Callers must hold the rtnl semaphore. You may want
5943 * unregister_netdev() instead of this.
5944 */
5945
5946 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5947 {
5948 ASSERT_RTNL();
5949
5950 if (head) {
5951 list_move_tail(&dev->unreg_list, head);
5952 } else {
5953 rollback_registered(dev);
5954 /* Finish processing unregister after unlock */
5955 net_set_todo(dev);
5956 }
5957 }
5958 EXPORT_SYMBOL(unregister_netdevice_queue);
5959
5960 /**
5961 * unregister_netdevice_many - unregister many devices
5962 * @head: list of devices
5963 */
5964 void unregister_netdevice_many(struct list_head *head)
5965 {
5966 struct net_device *dev;
5967
5968 if (!list_empty(head)) {
5969 rollback_registered_many(head);
5970 list_for_each_entry(dev, head, unreg_list)
5971 net_set_todo(dev);
5972 }
5973 }
5974 EXPORT_SYMBOL(unregister_netdevice_many);
5975
5976 /**
5977 * unregister_netdev - remove device from the kernel
5978 * @dev: device
5979 *
5980 * This function shuts down a device interface and removes it
5981 * from the kernel tables.
5982 *
5983 * This is just a wrapper for unregister_netdevice that takes
5984 * the rtnl semaphore. In general you want to use this and not
5985 * unregister_netdevice.
5986 */
5987 void unregister_netdev(struct net_device *dev)
5988 {
5989 rtnl_lock();
5990 unregister_netdevice(dev);
5991 rtnl_unlock();
5992 }
5993 EXPORT_SYMBOL(unregister_netdev);
5994
5995 /**
5996 * dev_change_net_namespace - move device to different nethost namespace
5997 * @dev: device
5998 * @net: network namespace
5999 * @pat: If not NULL name pattern to try if the current device name
6000 * is already taken in the destination network namespace.
6001 *
6002 * This function shuts down a device interface and moves it
6003 * to a new network namespace. On success 0 is returned, on
6004 * a failure a netagive errno code is returned.
6005 *
6006 * Callers must hold the rtnl semaphore.
6007 */
6008
6009 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6010 {
6011 int err;
6012
6013 ASSERT_RTNL();
6014
6015 /* Don't allow namespace local devices to be moved. */
6016 err = -EINVAL;
6017 if (dev->features & NETIF_F_NETNS_LOCAL)
6018 goto out;
6019
6020 /* Ensure the device has been registrered */
6021 if (dev->reg_state != NETREG_REGISTERED)
6022 goto out;
6023
6024 /* Get out if there is nothing todo */
6025 err = 0;
6026 if (net_eq(dev_net(dev), net))
6027 goto out;
6028
6029 /* Pick the destination device name, and ensure
6030 * we can use it in the destination network namespace.
6031 */
6032 err = -EEXIST;
6033 if (__dev_get_by_name(net, dev->name)) {
6034 /* We get here if we can't use the current device name */
6035 if (!pat)
6036 goto out;
6037 if (dev_get_valid_name(net, dev, pat) < 0)
6038 goto out;
6039 }
6040
6041 /*
6042 * And now a mini version of register_netdevice unregister_netdevice.
6043 */
6044
6045 /* If device is running close it first. */
6046 dev_close(dev);
6047
6048 /* And unlink it from device chain */
6049 err = -ENODEV;
6050 unlist_netdevice(dev);
6051
6052 synchronize_net();
6053
6054 /* Shutdown queueing discipline. */
6055 dev_shutdown(dev);
6056
6057 /* Notify protocols, that we are about to destroy
6058 this device. They should clean all the things.
6059
6060 Note that dev->reg_state stays at NETREG_REGISTERED.
6061 This is wanted because this way 8021q and macvlan know
6062 the device is just moving and can keep their slaves up.
6063 */
6064 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6065 rcu_barrier();
6066 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6067 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6068
6069 /*
6070 * Flush the unicast and multicast chains
6071 */
6072 dev_uc_flush(dev);
6073 dev_mc_flush(dev);
6074
6075 /* Send a netdev-removed uevent to the old namespace */
6076 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6077
6078 /* Actually switch the network namespace */
6079 dev_net_set(dev, net);
6080
6081 /* If there is an ifindex conflict assign a new one */
6082 if (__dev_get_by_index(net, dev->ifindex)) {
6083 int iflink = (dev->iflink == dev->ifindex);
6084 dev->ifindex = dev_new_index(net);
6085 if (iflink)
6086 dev->iflink = dev->ifindex;
6087 }
6088
6089 /* Send a netdev-add uevent to the new namespace */
6090 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6091
6092 /* Fixup kobjects */
6093 err = device_rename(&dev->dev, dev->name);
6094 WARN_ON(err);
6095
6096 /* Add the device back in the hashes */
6097 list_netdevice(dev);
6098
6099 /* Notify protocols, that a new device appeared. */
6100 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6101
6102 /*
6103 * Prevent userspace races by waiting until the network
6104 * device is fully setup before sending notifications.
6105 */
6106 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6107
6108 synchronize_net();
6109 err = 0;
6110 out:
6111 return err;
6112 }
6113 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6114
6115 static int dev_cpu_callback(struct notifier_block *nfb,
6116 unsigned long action,
6117 void *ocpu)
6118 {
6119 struct sk_buff **list_skb;
6120 struct sk_buff *skb;
6121 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6122 struct softnet_data *sd, *oldsd;
6123
6124 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6125 return NOTIFY_OK;
6126
6127 local_irq_disable();
6128 cpu = smp_processor_id();
6129 sd = &per_cpu(softnet_data, cpu);
6130 oldsd = &per_cpu(softnet_data, oldcpu);
6131
6132 /* Find end of our completion_queue. */
6133 list_skb = &sd->completion_queue;
6134 while (*list_skb)
6135 list_skb = &(*list_skb)->next;
6136 /* Append completion queue from offline CPU. */
6137 *list_skb = oldsd->completion_queue;
6138 oldsd->completion_queue = NULL;
6139
6140 /* Append output queue from offline CPU. */
6141 if (oldsd->output_queue) {
6142 *sd->output_queue_tailp = oldsd->output_queue;
6143 sd->output_queue_tailp = oldsd->output_queue_tailp;
6144 oldsd->output_queue = NULL;
6145 oldsd->output_queue_tailp = &oldsd->output_queue;
6146 }
6147 /* Append NAPI poll list from offline CPU. */
6148 if (!list_empty(&oldsd->poll_list)) {
6149 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6150 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6151 }
6152
6153 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6154 local_irq_enable();
6155
6156 /* Process offline CPU's input_pkt_queue */
6157 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6158 netif_rx(skb);
6159 input_queue_head_incr(oldsd);
6160 }
6161 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6162 netif_rx(skb);
6163 input_queue_head_incr(oldsd);
6164 }
6165
6166 return NOTIFY_OK;
6167 }
6168
6169
6170 /**
6171 * netdev_increment_features - increment feature set by one
6172 * @all: current feature set
6173 * @one: new feature set
6174 * @mask: mask feature set
6175 *
6176 * Computes a new feature set after adding a device with feature set
6177 * @one to the master device with current feature set @all. Will not
6178 * enable anything that is off in @mask. Returns the new feature set.
6179 */
6180 netdev_features_t netdev_increment_features(netdev_features_t all,
6181 netdev_features_t one, netdev_features_t mask)
6182 {
6183 if (mask & NETIF_F_GEN_CSUM)
6184 mask |= NETIF_F_ALL_CSUM;
6185 mask |= NETIF_F_VLAN_CHALLENGED;
6186
6187 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6188 all &= one | ~NETIF_F_ALL_FOR_ALL;
6189
6190 /* If one device supports hw checksumming, set for all. */
6191 if (all & NETIF_F_GEN_CSUM)
6192 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6193
6194 return all;
6195 }
6196 EXPORT_SYMBOL(netdev_increment_features);
6197
6198 static struct hlist_head * __net_init netdev_create_hash(void)
6199 {
6200 int i;
6201 struct hlist_head *hash;
6202
6203 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6204 if (hash != NULL)
6205 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6206 INIT_HLIST_HEAD(&hash[i]);
6207
6208 return hash;
6209 }
6210
6211 /* Initialize per network namespace state */
6212 static int __net_init netdev_init(struct net *net)
6213 {
6214 if (net != &init_net)
6215 INIT_LIST_HEAD(&net->dev_base_head);
6216
6217 net->dev_name_head = netdev_create_hash();
6218 if (net->dev_name_head == NULL)
6219 goto err_name;
6220
6221 net->dev_index_head = netdev_create_hash();
6222 if (net->dev_index_head == NULL)
6223 goto err_idx;
6224
6225 return 0;
6226
6227 err_idx:
6228 kfree(net->dev_name_head);
6229 err_name:
6230 return -ENOMEM;
6231 }
6232
6233 /**
6234 * netdev_drivername - network driver for the device
6235 * @dev: network device
6236 *
6237 * Determine network driver for device.
6238 */
6239 const char *netdev_drivername(const struct net_device *dev)
6240 {
6241 const struct device_driver *driver;
6242 const struct device *parent;
6243 const char *empty = "";
6244
6245 parent = dev->dev.parent;
6246 if (!parent)
6247 return empty;
6248
6249 driver = parent->driver;
6250 if (driver && driver->name)
6251 return driver->name;
6252 return empty;
6253 }
6254
6255 static int __netdev_printk(const char *level, const struct net_device *dev,
6256 struct va_format *vaf)
6257 {
6258 int r;
6259
6260 if (dev && dev->dev.parent) {
6261 r = dev_printk_emit(level[1] - '0',
6262 dev->dev.parent,
6263 "%s %s %s: %pV",
6264 dev_driver_string(dev->dev.parent),
6265 dev_name(dev->dev.parent),
6266 netdev_name(dev), vaf);
6267 } else if (dev) {
6268 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6269 } else {
6270 r = printk("%s(NULL net_device): %pV", level, vaf);
6271 }
6272
6273 return r;
6274 }
6275
6276 int netdev_printk(const char *level, const struct net_device *dev,
6277 const char *format, ...)
6278 {
6279 struct va_format vaf;
6280 va_list args;
6281 int r;
6282
6283 va_start(args, format);
6284
6285 vaf.fmt = format;
6286 vaf.va = &args;
6287
6288 r = __netdev_printk(level, dev, &vaf);
6289
6290 va_end(args);
6291
6292 return r;
6293 }
6294 EXPORT_SYMBOL(netdev_printk);
6295
6296 #define define_netdev_printk_level(func, level) \
6297 int func(const struct net_device *dev, const char *fmt, ...) \
6298 { \
6299 int r; \
6300 struct va_format vaf; \
6301 va_list args; \
6302 \
6303 va_start(args, fmt); \
6304 \
6305 vaf.fmt = fmt; \
6306 vaf.va = &args; \
6307 \
6308 r = __netdev_printk(level, dev, &vaf); \
6309 \
6310 va_end(args); \
6311 \
6312 return r; \
6313 } \
6314 EXPORT_SYMBOL(func);
6315
6316 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6317 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6318 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6319 define_netdev_printk_level(netdev_err, KERN_ERR);
6320 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6321 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6322 define_netdev_printk_level(netdev_info, KERN_INFO);
6323
6324 static void __net_exit netdev_exit(struct net *net)
6325 {
6326 kfree(net->dev_name_head);
6327 kfree(net->dev_index_head);
6328 }
6329
6330 static struct pernet_operations __net_initdata netdev_net_ops = {
6331 .init = netdev_init,
6332 .exit = netdev_exit,
6333 };
6334
6335 static void __net_exit default_device_exit(struct net *net)
6336 {
6337 struct net_device *dev, *aux;
6338 /*
6339 * Push all migratable network devices back to the
6340 * initial network namespace
6341 */
6342 rtnl_lock();
6343 for_each_netdev_safe(net, dev, aux) {
6344 int err;
6345 char fb_name[IFNAMSIZ];
6346
6347 /* Ignore unmoveable devices (i.e. loopback) */
6348 if (dev->features & NETIF_F_NETNS_LOCAL)
6349 continue;
6350
6351 /* Leave virtual devices for the generic cleanup */
6352 if (dev->rtnl_link_ops)
6353 continue;
6354
6355 /* Push remaining network devices to init_net */
6356 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6357 err = dev_change_net_namespace(dev, &init_net, fb_name);
6358 if (err) {
6359 pr_emerg("%s: failed to move %s to init_net: %d\n",
6360 __func__, dev->name, err);
6361 BUG();
6362 }
6363 }
6364 rtnl_unlock();
6365 }
6366
6367 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6368 {
6369 /* At exit all network devices most be removed from a network
6370 * namespace. Do this in the reverse order of registration.
6371 * Do this across as many network namespaces as possible to
6372 * improve batching efficiency.
6373 */
6374 struct net_device *dev;
6375 struct net *net;
6376 LIST_HEAD(dev_kill_list);
6377
6378 rtnl_lock();
6379 list_for_each_entry(net, net_list, exit_list) {
6380 for_each_netdev_reverse(net, dev) {
6381 if (dev->rtnl_link_ops)
6382 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6383 else
6384 unregister_netdevice_queue(dev, &dev_kill_list);
6385 }
6386 }
6387 unregister_netdevice_many(&dev_kill_list);
6388 list_del(&dev_kill_list);
6389 rtnl_unlock();
6390 }
6391
6392 static struct pernet_operations __net_initdata default_device_ops = {
6393 .exit = default_device_exit,
6394 .exit_batch = default_device_exit_batch,
6395 };
6396
6397 /*
6398 * Initialize the DEV module. At boot time this walks the device list and
6399 * unhooks any devices that fail to initialise (normally hardware not
6400 * present) and leaves us with a valid list of present and active devices.
6401 *
6402 */
6403
6404 /*
6405 * This is called single threaded during boot, so no need
6406 * to take the rtnl semaphore.
6407 */
6408 static int __init net_dev_init(void)
6409 {
6410 int i, rc = -ENOMEM;
6411
6412 BUG_ON(!dev_boot_phase);
6413
6414 if (dev_proc_init())
6415 goto out;
6416
6417 if (netdev_kobject_init())
6418 goto out;
6419
6420 INIT_LIST_HEAD(&ptype_all);
6421 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6422 INIT_LIST_HEAD(&ptype_base[i]);
6423
6424 INIT_LIST_HEAD(&offload_base);
6425
6426 if (register_pernet_subsys(&netdev_net_ops))
6427 goto out;
6428
6429 /*
6430 * Initialise the packet receive queues.
6431 */
6432
6433 for_each_possible_cpu(i) {
6434 struct softnet_data *sd = &per_cpu(softnet_data, i);
6435
6436 memset(sd, 0, sizeof(*sd));
6437 skb_queue_head_init(&sd->input_pkt_queue);
6438 skb_queue_head_init(&sd->process_queue);
6439 sd->completion_queue = NULL;
6440 INIT_LIST_HEAD(&sd->poll_list);
6441 sd->output_queue = NULL;
6442 sd->output_queue_tailp = &sd->output_queue;
6443 #ifdef CONFIG_RPS
6444 sd->csd.func = rps_trigger_softirq;
6445 sd->csd.info = sd;
6446 sd->csd.flags = 0;
6447 sd->cpu = i;
6448 #endif
6449
6450 sd->backlog.poll = process_backlog;
6451 sd->backlog.weight = weight_p;
6452 sd->backlog.gro_list = NULL;
6453 sd->backlog.gro_count = 0;
6454
6455 #ifdef CONFIG_NET_FLOW_LIMIT
6456 sd->flow_limit = NULL;
6457 #endif
6458 }
6459
6460 dev_boot_phase = 0;
6461
6462 /* The loopback device is special if any other network devices
6463 * is present in a network namespace the loopback device must
6464 * be present. Since we now dynamically allocate and free the
6465 * loopback device ensure this invariant is maintained by
6466 * keeping the loopback device as the first device on the
6467 * list of network devices. Ensuring the loopback devices
6468 * is the first device that appears and the last network device
6469 * that disappears.
6470 */
6471 if (register_pernet_device(&loopback_net_ops))
6472 goto out;
6473
6474 if (register_pernet_device(&default_device_ops))
6475 goto out;
6476
6477 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6478 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6479
6480 hotcpu_notifier(dev_cpu_callback, 0);
6481 dst_init();
6482 rc = 0;
6483 out:
6484 return rc;
6485 }
6486
6487 subsys_initcall(net_dev_init);
This page took 0.187323 seconds and 5 git commands to generate.