[NET]: Avoid copying TCP packets unnecessarily
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122
123 /*
124 * The list of packet types we will receive (as opposed to discard)
125 * and the routines to invoke.
126 *
127 * Why 16. Because with 16 the only overlap we get on a hash of the
128 * low nibble of the protocol value is RARP/SNAP/X.25.
129 *
130 * NOTE: That is no longer true with the addition of VLAN tags. Not
131 * sure which should go first, but I bet it won't make much
132 * difference if we are running VLANs. The good news is that
133 * this protocol won't be in the list unless compiled in, so
134 * the average user (w/out VLANs) will not be adversely affected.
135 * --BLG
136 *
137 * 0800 IP
138 * 8100 802.1Q VLAN
139 * 0001 802.3
140 * 0002 AX.25
141 * 0004 802.2
142 * 8035 RARP
143 * 0005 SNAP
144 * 0805 X.25
145 * 0806 ARP
146 * 8137 IPX
147 * 0009 Localtalk
148 * 86DD IPv6
149 */
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
153 static struct list_head ptype_all __read_mostly; /* Taps */
154
155 #ifdef CONFIG_NET_DMA
156 struct net_dma {
157 struct dma_client client;
158 spinlock_t lock;
159 cpumask_t channel_mask;
160 struct dma_chan *channels[NR_CPUS];
161 };
162
163 static enum dma_state_client
164 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
165 enum dma_state state);
166
167 static struct net_dma net_dma = {
168 .client = {
169 .event_callback = netdev_dma_event,
170 },
171 };
172 #endif
173
174 /*
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
193 DEFINE_RWLOCK(dev_base_lock);
194
195 EXPORT_SYMBOL(dev_base_lock);
196
197 #define NETDEV_HASHBITS 8
198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
209 }
210
211 /* Device list insertion */
212 static int list_netdevice(struct net_device *dev)
213 {
214 struct net *net = dev->nd_net;
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
224 }
225
226 /* Device list removal */
227 static void unlist_netdevice(struct net_device *dev)
228 {
229 ASSERT_RTNL();
230
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
237 }
238
239 /*
240 * Our notifier list
241 */
242
243 static RAW_NOTIFIER_HEAD(netdev_chain);
244
245 /*
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
248 */
249
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
251
252 extern int netdev_kobject_init(void);
253 extern int netdev_register_kobject(struct net_device *);
254 extern void netdev_unregister_kobject(struct net_device *);
255
256 #ifdef CONFIG_DEBUG_LOCK_ALLOC
257 /*
258 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
259 * according to dev->type
260 */
261 static const unsigned short netdev_lock_type[] =
262 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
263 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
264 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
265 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
266 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
267 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
268 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
269 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
270 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
271 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
272 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
273 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
274 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
275 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
276 ARPHRD_NONE};
277
278 static const char *netdev_lock_name[] =
279 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
280 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
281 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
282 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
283 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
284 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
285 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
286 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
287 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
288 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
289 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
290 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
291 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
292 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
293 "_xmit_NONE"};
294
295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296
297 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
298 {
299 int i;
300
301 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
302 if (netdev_lock_type[i] == dev_type)
303 return i;
304 /* the last key is used by default */
305 return ARRAY_SIZE(netdev_lock_type) - 1;
306 }
307
308 static inline void netdev_set_lockdep_class(spinlock_t *lock,
309 unsigned short dev_type)
310 {
311 int i;
312
313 i = netdev_lock_pos(dev_type);
314 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
315 netdev_lock_name[i]);
316 }
317 #else
318 static inline void netdev_set_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320 {
321 }
322 #endif
323
324 /*******************************************************************************
325
326 Protocol management and registration routines
327
328 *******************************************************************************/
329
330 /*
331 * Add a protocol ID to the list. Now that the input handler is
332 * smarter we can dispense with all the messy stuff that used to be
333 * here.
334 *
335 * BEWARE!!! Protocol handlers, mangling input packets,
336 * MUST BE last in hash buckets and checking protocol handlers
337 * MUST start from promiscuous ptype_all chain in net_bh.
338 * It is true now, do not change it.
339 * Explanation follows: if protocol handler, mangling packet, will
340 * be the first on list, it is not able to sense, that packet
341 * is cloned and should be copied-on-write, so that it will
342 * change it and subsequent readers will get broken packet.
343 * --ANK (980803)
344 */
345
346 /**
347 * dev_add_pack - add packet handler
348 * @pt: packet type declaration
349 *
350 * Add a protocol handler to the networking stack. The passed &packet_type
351 * is linked into kernel lists and may not be freed until it has been
352 * removed from the kernel lists.
353 *
354 * This call does not sleep therefore it can not
355 * guarantee all CPU's that are in middle of receiving packets
356 * will see the new packet type (until the next received packet).
357 */
358
359 void dev_add_pack(struct packet_type *pt)
360 {
361 int hash;
362
363 spin_lock_bh(&ptype_lock);
364 if (pt->type == htons(ETH_P_ALL))
365 list_add_rcu(&pt->list, &ptype_all);
366 else {
367 hash = ntohs(pt->type) & 15;
368 list_add_rcu(&pt->list, &ptype_base[hash]);
369 }
370 spin_unlock_bh(&ptype_lock);
371 }
372
373 /**
374 * __dev_remove_pack - remove packet handler
375 * @pt: packet type declaration
376 *
377 * Remove a protocol handler that was previously added to the kernel
378 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
379 * from the kernel lists and can be freed or reused once this function
380 * returns.
381 *
382 * The packet type might still be in use by receivers
383 * and must not be freed until after all the CPU's have gone
384 * through a quiescent state.
385 */
386 void __dev_remove_pack(struct packet_type *pt)
387 {
388 struct list_head *head;
389 struct packet_type *pt1;
390
391 spin_lock_bh(&ptype_lock);
392
393 if (pt->type == htons(ETH_P_ALL))
394 head = &ptype_all;
395 else
396 head = &ptype_base[ntohs(pt->type) & 15];
397
398 list_for_each_entry(pt1, head, list) {
399 if (pt == pt1) {
400 list_del_rcu(&pt->list);
401 goto out;
402 }
403 }
404
405 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
406 out:
407 spin_unlock_bh(&ptype_lock);
408 }
409 /**
410 * dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * This call sleeps to guarantee that no CPU is looking at the packet
419 * type after return.
420 */
421 void dev_remove_pack(struct packet_type *pt)
422 {
423 __dev_remove_pack(pt);
424
425 synchronize_net();
426 }
427
428 /******************************************************************************
429
430 Device Boot-time Settings Routines
431
432 *******************************************************************************/
433
434 /* Boot time configuration table */
435 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
436
437 /**
438 * netdev_boot_setup_add - add new setup entry
439 * @name: name of the device
440 * @map: configured settings for the device
441 *
442 * Adds new setup entry to the dev_boot_setup list. The function
443 * returns 0 on error and 1 on success. This is a generic routine to
444 * all netdevices.
445 */
446 static int netdev_boot_setup_add(char *name, struct ifmap *map)
447 {
448 struct netdev_boot_setup *s;
449 int i;
450
451 s = dev_boot_setup;
452 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
453 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
454 memset(s[i].name, 0, sizeof(s[i].name));
455 strcpy(s[i].name, name);
456 memcpy(&s[i].map, map, sizeof(s[i].map));
457 break;
458 }
459 }
460
461 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
462 }
463
464 /**
465 * netdev_boot_setup_check - check boot time settings
466 * @dev: the netdevice
467 *
468 * Check boot time settings for the device.
469 * The found settings are set for the device to be used
470 * later in the device probing.
471 * Returns 0 if no settings found, 1 if they are.
472 */
473 int netdev_boot_setup_check(struct net_device *dev)
474 {
475 struct netdev_boot_setup *s = dev_boot_setup;
476 int i;
477
478 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
479 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
480 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
481 dev->irq = s[i].map.irq;
482 dev->base_addr = s[i].map.base_addr;
483 dev->mem_start = s[i].map.mem_start;
484 dev->mem_end = s[i].map.mem_end;
485 return 1;
486 }
487 }
488 return 0;
489 }
490
491
492 /**
493 * netdev_boot_base - get address from boot time settings
494 * @prefix: prefix for network device
495 * @unit: id for network device
496 *
497 * Check boot time settings for the base address of device.
498 * The found settings are set for the device to be used
499 * later in the device probing.
500 * Returns 0 if no settings found.
501 */
502 unsigned long netdev_boot_base(const char *prefix, int unit)
503 {
504 const struct netdev_boot_setup *s = dev_boot_setup;
505 char name[IFNAMSIZ];
506 int i;
507
508 sprintf(name, "%s%d", prefix, unit);
509
510 /*
511 * If device already registered then return base of 1
512 * to indicate not to probe for this interface
513 */
514 if (__dev_get_by_name(&init_net, name))
515 return 1;
516
517 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
518 if (!strcmp(name, s[i].name))
519 return s[i].map.base_addr;
520 return 0;
521 }
522
523 /*
524 * Saves at boot time configured settings for any netdevice.
525 */
526 int __init netdev_boot_setup(char *str)
527 {
528 int ints[5];
529 struct ifmap map;
530
531 str = get_options(str, ARRAY_SIZE(ints), ints);
532 if (!str || !*str)
533 return 0;
534
535 /* Save settings */
536 memset(&map, 0, sizeof(map));
537 if (ints[0] > 0)
538 map.irq = ints[1];
539 if (ints[0] > 1)
540 map.base_addr = ints[2];
541 if (ints[0] > 2)
542 map.mem_start = ints[3];
543 if (ints[0] > 3)
544 map.mem_end = ints[4];
545
546 /* Add new entry to the list */
547 return netdev_boot_setup_add(str, &map);
548 }
549
550 __setup("netdev=", netdev_boot_setup);
551
552 /*******************************************************************************
553
554 Device Interface Subroutines
555
556 *******************************************************************************/
557
558 /**
559 * __dev_get_by_name - find a device by its name
560 * @net: the applicable net namespace
561 * @name: name to find
562 *
563 * Find an interface by name. Must be called under RTNL semaphore
564 * or @dev_base_lock. If the name is found a pointer to the device
565 * is returned. If the name is not found then %NULL is returned. The
566 * reference counters are not incremented so the caller must be
567 * careful with locks.
568 */
569
570 struct net_device *__dev_get_by_name(struct net *net, const char *name)
571 {
572 struct hlist_node *p;
573
574 hlist_for_each(p, dev_name_hash(net, name)) {
575 struct net_device *dev
576 = hlist_entry(p, struct net_device, name_hlist);
577 if (!strncmp(dev->name, name, IFNAMSIZ))
578 return dev;
579 }
580 return NULL;
581 }
582
583 /**
584 * dev_get_by_name - find a device by its name
585 * @net: the applicable net namespace
586 * @name: name to find
587 *
588 * Find an interface by name. This can be called from any
589 * context and does its own locking. The returned handle has
590 * the usage count incremented and the caller must use dev_put() to
591 * release it when it is no longer needed. %NULL is returned if no
592 * matching device is found.
593 */
594
595 struct net_device *dev_get_by_name(struct net *net, const char *name)
596 {
597 struct net_device *dev;
598
599 read_lock(&dev_base_lock);
600 dev = __dev_get_by_name(net, name);
601 if (dev)
602 dev_hold(dev);
603 read_unlock(&dev_base_lock);
604 return dev;
605 }
606
607 /**
608 * __dev_get_by_index - find a device by its ifindex
609 * @net: the applicable net namespace
610 * @ifindex: index of device
611 *
612 * Search for an interface by index. Returns %NULL if the device
613 * is not found or a pointer to the device. The device has not
614 * had its reference counter increased so the caller must be careful
615 * about locking. The caller must hold either the RTNL semaphore
616 * or @dev_base_lock.
617 */
618
619 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
620 {
621 struct hlist_node *p;
622
623 hlist_for_each(p, dev_index_hash(net, ifindex)) {
624 struct net_device *dev
625 = hlist_entry(p, struct net_device, index_hlist);
626 if (dev->ifindex == ifindex)
627 return dev;
628 }
629 return NULL;
630 }
631
632
633 /**
634 * dev_get_by_index - find a device by its ifindex
635 * @net: the applicable net namespace
636 * @ifindex: index of device
637 *
638 * Search for an interface by index. Returns NULL if the device
639 * is not found or a pointer to the device. The device returned has
640 * had a reference added and the pointer is safe until the user calls
641 * dev_put to indicate they have finished with it.
642 */
643
644 struct net_device *dev_get_by_index(struct net *net, int ifindex)
645 {
646 struct net_device *dev;
647
648 read_lock(&dev_base_lock);
649 dev = __dev_get_by_index(net, ifindex);
650 if (dev)
651 dev_hold(dev);
652 read_unlock(&dev_base_lock);
653 return dev;
654 }
655
656 /**
657 * dev_getbyhwaddr - find a device by its hardware address
658 * @net: the applicable net namespace
659 * @type: media type of device
660 * @ha: hardware address
661 *
662 * Search for an interface by MAC address. Returns NULL if the device
663 * is not found or a pointer to the device. The caller must hold the
664 * rtnl semaphore. The returned device has not had its ref count increased
665 * and the caller must therefore be careful about locking
666 *
667 * BUGS:
668 * If the API was consistent this would be __dev_get_by_hwaddr
669 */
670
671 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
672 {
673 struct net_device *dev;
674
675 ASSERT_RTNL();
676
677 for_each_netdev(&init_net, dev)
678 if (dev->type == type &&
679 !memcmp(dev->dev_addr, ha, dev->addr_len))
680 return dev;
681
682 return NULL;
683 }
684
685 EXPORT_SYMBOL(dev_getbyhwaddr);
686
687 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
688 {
689 struct net_device *dev;
690
691 ASSERT_RTNL();
692 for_each_netdev(net, dev)
693 if (dev->type == type)
694 return dev;
695
696 return NULL;
697 }
698
699 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
700
701 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
702 {
703 struct net_device *dev;
704
705 rtnl_lock();
706 dev = __dev_getfirstbyhwtype(net, type);
707 if (dev)
708 dev_hold(dev);
709 rtnl_unlock();
710 return dev;
711 }
712
713 EXPORT_SYMBOL(dev_getfirstbyhwtype);
714
715 /**
716 * dev_get_by_flags - find any device with given flags
717 * @net: the applicable net namespace
718 * @if_flags: IFF_* values
719 * @mask: bitmask of bits in if_flags to check
720 *
721 * Search for any interface with the given flags. Returns NULL if a device
722 * is not found or a pointer to the device. The device returned has
723 * had a reference added and the pointer is safe until the user calls
724 * dev_put to indicate they have finished with it.
725 */
726
727 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
728 {
729 struct net_device *dev, *ret;
730
731 ret = NULL;
732 read_lock(&dev_base_lock);
733 for_each_netdev(net, dev) {
734 if (((dev->flags ^ if_flags) & mask) == 0) {
735 dev_hold(dev);
736 ret = dev;
737 break;
738 }
739 }
740 read_unlock(&dev_base_lock);
741 return ret;
742 }
743
744 /**
745 * dev_valid_name - check if name is okay for network device
746 * @name: name string
747 *
748 * Network device names need to be valid file names to
749 * to allow sysfs to work. We also disallow any kind of
750 * whitespace.
751 */
752 int dev_valid_name(const char *name)
753 {
754 if (*name == '\0')
755 return 0;
756 if (strlen(name) >= IFNAMSIZ)
757 return 0;
758 if (!strcmp(name, ".") || !strcmp(name, ".."))
759 return 0;
760
761 while (*name) {
762 if (*name == '/' || isspace(*name))
763 return 0;
764 name++;
765 }
766 return 1;
767 }
768
769 /**
770 * __dev_alloc_name - allocate a name for a device
771 * @net: network namespace to allocate the device name in
772 * @name: name format string
773 * @buf: scratch buffer and result name string
774 *
775 * Passed a format string - eg "lt%d" it will try and find a suitable
776 * id. It scans list of devices to build up a free map, then chooses
777 * the first empty slot. The caller must hold the dev_base or rtnl lock
778 * while allocating the name and adding the device in order to avoid
779 * duplicates.
780 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
781 * Returns the number of the unit assigned or a negative errno code.
782 */
783
784 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
785 {
786 int i = 0;
787 const char *p;
788 const int max_netdevices = 8*PAGE_SIZE;
789 unsigned long *inuse;
790 struct net_device *d;
791
792 p = strnchr(name, IFNAMSIZ-1, '%');
793 if (p) {
794 /*
795 * Verify the string as this thing may have come from
796 * the user. There must be either one "%d" and no other "%"
797 * characters.
798 */
799 if (p[1] != 'd' || strchr(p + 2, '%'))
800 return -EINVAL;
801
802 /* Use one page as a bit array of possible slots */
803 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
804 if (!inuse)
805 return -ENOMEM;
806
807 for_each_netdev(net, d) {
808 if (!sscanf(d->name, name, &i))
809 continue;
810 if (i < 0 || i >= max_netdevices)
811 continue;
812
813 /* avoid cases where sscanf is not exact inverse of printf */
814 snprintf(buf, IFNAMSIZ, name, i);
815 if (!strncmp(buf, d->name, IFNAMSIZ))
816 set_bit(i, inuse);
817 }
818
819 i = find_first_zero_bit(inuse, max_netdevices);
820 free_page((unsigned long) inuse);
821 }
822
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!__dev_get_by_name(net, buf))
825 return i;
826
827 /* It is possible to run out of possible slots
828 * when the name is long and there isn't enough space left
829 * for the digits, or if all bits are used.
830 */
831 return -ENFILE;
832 }
833
834 /**
835 * dev_alloc_name - allocate a name for a device
836 * @dev: device
837 * @name: name format string
838 *
839 * Passed a format string - eg "lt%d" it will try and find a suitable
840 * id. It scans list of devices to build up a free map, then chooses
841 * the first empty slot. The caller must hold the dev_base or rtnl lock
842 * while allocating the name and adding the device in order to avoid
843 * duplicates.
844 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
845 * Returns the number of the unit assigned or a negative errno code.
846 */
847
848 int dev_alloc_name(struct net_device *dev, const char *name)
849 {
850 char buf[IFNAMSIZ];
851 struct net *net;
852 int ret;
853
854 BUG_ON(!dev->nd_net);
855 net = dev->nd_net;
856 ret = __dev_alloc_name(net, name, buf);
857 if (ret >= 0)
858 strlcpy(dev->name, buf, IFNAMSIZ);
859 return ret;
860 }
861
862
863 /**
864 * dev_change_name - change name of a device
865 * @dev: device
866 * @newname: name (or format string) must be at least IFNAMSIZ
867 *
868 * Change name of a device, can pass format strings "eth%d".
869 * for wildcarding.
870 */
871 int dev_change_name(struct net_device *dev, char *newname)
872 {
873 char oldname[IFNAMSIZ];
874 int err = 0;
875 int ret;
876 struct net *net;
877
878 ASSERT_RTNL();
879 BUG_ON(!dev->nd_net);
880
881 net = dev->nd_net;
882 if (dev->flags & IFF_UP)
883 return -EBUSY;
884
885 if (!dev_valid_name(newname))
886 return -EINVAL;
887
888 memcpy(oldname, dev->name, IFNAMSIZ);
889
890 if (strchr(newname, '%')) {
891 err = dev_alloc_name(dev, newname);
892 if (err < 0)
893 return err;
894 strcpy(newname, dev->name);
895 }
896 else if (__dev_get_by_name(net, newname))
897 return -EEXIST;
898 else
899 strlcpy(dev->name, newname, IFNAMSIZ);
900
901 rollback:
902 device_rename(&dev->dev, dev->name);
903
904 write_lock_bh(&dev_base_lock);
905 hlist_del(&dev->name_hlist);
906 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
907 write_unlock_bh(&dev_base_lock);
908
909 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
910 ret = notifier_to_errno(ret);
911
912 if (ret) {
913 if (err) {
914 printk(KERN_ERR
915 "%s: name change rollback failed: %d.\n",
916 dev->name, ret);
917 } else {
918 err = ret;
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 goto rollback;
921 }
922 }
923
924 return err;
925 }
926
927 /**
928 * netdev_features_change - device changes features
929 * @dev: device to cause notification
930 *
931 * Called to indicate a device has changed features.
932 */
933 void netdev_features_change(struct net_device *dev)
934 {
935 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
936 }
937 EXPORT_SYMBOL(netdev_features_change);
938
939 /**
940 * netdev_state_change - device changes state
941 * @dev: device to cause notification
942 *
943 * Called to indicate a device has changed state. This function calls
944 * the notifier chains for netdev_chain and sends a NEWLINK message
945 * to the routing socket.
946 */
947 void netdev_state_change(struct net_device *dev)
948 {
949 if (dev->flags & IFF_UP) {
950 call_netdevice_notifiers(NETDEV_CHANGE, dev);
951 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
952 }
953 }
954
955 /**
956 * dev_load - load a network module
957 * @net: the applicable net namespace
958 * @name: name of interface
959 *
960 * If a network interface is not present and the process has suitable
961 * privileges this function loads the module. If module loading is not
962 * available in this kernel then it becomes a nop.
963 */
964
965 void dev_load(struct net *net, const char *name)
966 {
967 struct net_device *dev;
968
969 read_lock(&dev_base_lock);
970 dev = __dev_get_by_name(net, name);
971 read_unlock(&dev_base_lock);
972
973 if (!dev && capable(CAP_SYS_MODULE))
974 request_module("%s", name);
975 }
976
977 /**
978 * dev_open - prepare an interface for use.
979 * @dev: device to open
980 *
981 * Takes a device from down to up state. The device's private open
982 * function is invoked and then the multicast lists are loaded. Finally
983 * the device is moved into the up state and a %NETDEV_UP message is
984 * sent to the netdev notifier chain.
985 *
986 * Calling this function on an active interface is a nop. On a failure
987 * a negative errno code is returned.
988 */
989 int dev_open(struct net_device *dev)
990 {
991 int ret = 0;
992
993 /*
994 * Is it already up?
995 */
996
997 if (dev->flags & IFF_UP)
998 return 0;
999
1000 /*
1001 * Is it even present?
1002 */
1003 if (!netif_device_present(dev))
1004 return -ENODEV;
1005
1006 /*
1007 * Call device private open method
1008 */
1009 set_bit(__LINK_STATE_START, &dev->state);
1010 if (dev->open) {
1011 ret = dev->open(dev);
1012 if (ret)
1013 clear_bit(__LINK_STATE_START, &dev->state);
1014 }
1015
1016 /*
1017 * If it went open OK then:
1018 */
1019
1020 if (!ret) {
1021 /*
1022 * Set the flags.
1023 */
1024 dev->flags |= IFF_UP;
1025
1026 /*
1027 * Initialize multicasting status
1028 */
1029 dev_set_rx_mode(dev);
1030
1031 /*
1032 * Wakeup transmit queue engine
1033 */
1034 dev_activate(dev);
1035
1036 /*
1037 * ... and announce new interface.
1038 */
1039 call_netdevice_notifiers(NETDEV_UP, dev);
1040 }
1041 return ret;
1042 }
1043
1044 /**
1045 * dev_close - shutdown an interface.
1046 * @dev: device to shutdown
1047 *
1048 * This function moves an active device into down state. A
1049 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1050 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1051 * chain.
1052 */
1053 int dev_close(struct net_device *dev)
1054 {
1055 might_sleep();
1056
1057 if (!(dev->flags & IFF_UP))
1058 return 0;
1059
1060 /*
1061 * Tell people we are going down, so that they can
1062 * prepare to death, when device is still operating.
1063 */
1064 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1065
1066 dev_deactivate(dev);
1067
1068 clear_bit(__LINK_STATE_START, &dev->state);
1069
1070 /* Synchronize to scheduled poll. We cannot touch poll list,
1071 * it can be even on different cpu. So just clear netif_running().
1072 *
1073 * dev->stop() will invoke napi_disable() on all of it's
1074 * napi_struct instances on this device.
1075 */
1076 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1077
1078 /*
1079 * Call the device specific close. This cannot fail.
1080 * Only if device is UP
1081 *
1082 * We allow it to be called even after a DETACH hot-plug
1083 * event.
1084 */
1085 if (dev->stop)
1086 dev->stop(dev);
1087
1088 /*
1089 * Device is now down.
1090 */
1091
1092 dev->flags &= ~IFF_UP;
1093
1094 /*
1095 * Tell people we are down
1096 */
1097 call_netdevice_notifiers(NETDEV_DOWN, dev);
1098
1099 return 0;
1100 }
1101
1102
1103 static int dev_boot_phase = 1;
1104
1105 /*
1106 * Device change register/unregister. These are not inline or static
1107 * as we export them to the world.
1108 */
1109
1110 /**
1111 * register_netdevice_notifier - register a network notifier block
1112 * @nb: notifier
1113 *
1114 * Register a notifier to be called when network device events occur.
1115 * The notifier passed is linked into the kernel structures and must
1116 * not be reused until it has been unregistered. A negative errno code
1117 * is returned on a failure.
1118 *
1119 * When registered all registration and up events are replayed
1120 * to the new notifier to allow device to have a race free
1121 * view of the network device list.
1122 */
1123
1124 int register_netdevice_notifier(struct notifier_block *nb)
1125 {
1126 struct net_device *dev;
1127 struct net_device *last;
1128 struct net *net;
1129 int err;
1130
1131 rtnl_lock();
1132 err = raw_notifier_chain_register(&netdev_chain, nb);
1133 if (err)
1134 goto unlock;
1135 if (dev_boot_phase)
1136 goto unlock;
1137 for_each_net(net) {
1138 for_each_netdev(net, dev) {
1139 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1140 err = notifier_to_errno(err);
1141 if (err)
1142 goto rollback;
1143
1144 if (!(dev->flags & IFF_UP))
1145 continue;
1146
1147 nb->notifier_call(nb, NETDEV_UP, dev);
1148 }
1149 }
1150
1151 unlock:
1152 rtnl_unlock();
1153 return err;
1154
1155 rollback:
1156 last = dev;
1157 for_each_net(net) {
1158 for_each_netdev(net, dev) {
1159 if (dev == last)
1160 break;
1161
1162 if (dev->flags & IFF_UP) {
1163 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1164 nb->notifier_call(nb, NETDEV_DOWN, dev);
1165 }
1166 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1167 }
1168 }
1169 goto unlock;
1170 }
1171
1172 /**
1173 * unregister_netdevice_notifier - unregister a network notifier block
1174 * @nb: notifier
1175 *
1176 * Unregister a notifier previously registered by
1177 * register_netdevice_notifier(). The notifier is unlinked into the
1178 * kernel structures and may then be reused. A negative errno code
1179 * is returned on a failure.
1180 */
1181
1182 int unregister_netdevice_notifier(struct notifier_block *nb)
1183 {
1184 int err;
1185
1186 rtnl_lock();
1187 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1188 rtnl_unlock();
1189 return err;
1190 }
1191
1192 /**
1193 * call_netdevice_notifiers - call all network notifier blocks
1194 * @val: value passed unmodified to notifier function
1195 * @dev: net_device pointer passed unmodified to notifier function
1196 *
1197 * Call all network notifier blocks. Parameters and return value
1198 * are as for raw_notifier_call_chain().
1199 */
1200
1201 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1202 {
1203 return raw_notifier_call_chain(&netdev_chain, val, dev);
1204 }
1205
1206 /* When > 0 there are consumers of rx skb time stamps */
1207 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1208
1209 void net_enable_timestamp(void)
1210 {
1211 atomic_inc(&netstamp_needed);
1212 }
1213
1214 void net_disable_timestamp(void)
1215 {
1216 atomic_dec(&netstamp_needed);
1217 }
1218
1219 static inline void net_timestamp(struct sk_buff *skb)
1220 {
1221 if (atomic_read(&netstamp_needed))
1222 __net_timestamp(skb);
1223 else
1224 skb->tstamp.tv64 = 0;
1225 }
1226
1227 /*
1228 * Support routine. Sends outgoing frames to any network
1229 * taps currently in use.
1230 */
1231
1232 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1233 {
1234 struct packet_type *ptype;
1235
1236 net_timestamp(skb);
1237
1238 rcu_read_lock();
1239 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1240 /* Never send packets back to the socket
1241 * they originated from - MvS (miquels@drinkel.ow.org)
1242 */
1243 if ((ptype->dev == dev || !ptype->dev) &&
1244 (ptype->af_packet_priv == NULL ||
1245 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1246 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1247 if (!skb2)
1248 break;
1249
1250 /* skb->nh should be correctly
1251 set by sender, so that the second statement is
1252 just protection against buggy protocols.
1253 */
1254 skb_reset_mac_header(skb2);
1255
1256 if (skb_network_header(skb2) < skb2->data ||
1257 skb2->network_header > skb2->tail) {
1258 if (net_ratelimit())
1259 printk(KERN_CRIT "protocol %04x is "
1260 "buggy, dev %s\n",
1261 skb2->protocol, dev->name);
1262 skb_reset_network_header(skb2);
1263 }
1264
1265 skb2->transport_header = skb2->network_header;
1266 skb2->pkt_type = PACKET_OUTGOING;
1267 ptype->func(skb2, skb->dev, ptype, skb->dev);
1268 }
1269 }
1270 rcu_read_unlock();
1271 }
1272
1273
1274 void __netif_schedule(struct net_device *dev)
1275 {
1276 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1277 unsigned long flags;
1278 struct softnet_data *sd;
1279
1280 local_irq_save(flags);
1281 sd = &__get_cpu_var(softnet_data);
1282 dev->next_sched = sd->output_queue;
1283 sd->output_queue = dev;
1284 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1285 local_irq_restore(flags);
1286 }
1287 }
1288 EXPORT_SYMBOL(__netif_schedule);
1289
1290 void dev_kfree_skb_irq(struct sk_buff *skb)
1291 {
1292 if (atomic_dec_and_test(&skb->users)) {
1293 struct softnet_data *sd;
1294 unsigned long flags;
1295
1296 local_irq_save(flags);
1297 sd = &__get_cpu_var(softnet_data);
1298 skb->next = sd->completion_queue;
1299 sd->completion_queue = skb;
1300 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1301 local_irq_restore(flags);
1302 }
1303 }
1304 EXPORT_SYMBOL(dev_kfree_skb_irq);
1305
1306 void dev_kfree_skb_any(struct sk_buff *skb)
1307 {
1308 if (in_irq() || irqs_disabled())
1309 dev_kfree_skb_irq(skb);
1310 else
1311 dev_kfree_skb(skb);
1312 }
1313 EXPORT_SYMBOL(dev_kfree_skb_any);
1314
1315
1316 /**
1317 * netif_device_detach - mark device as removed
1318 * @dev: network device
1319 *
1320 * Mark device as removed from system and therefore no longer available.
1321 */
1322 void netif_device_detach(struct net_device *dev)
1323 {
1324 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1325 netif_running(dev)) {
1326 netif_stop_queue(dev);
1327 }
1328 }
1329 EXPORT_SYMBOL(netif_device_detach);
1330
1331 /**
1332 * netif_device_attach - mark device as attached
1333 * @dev: network device
1334 *
1335 * Mark device as attached from system and restart if needed.
1336 */
1337 void netif_device_attach(struct net_device *dev)
1338 {
1339 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1340 netif_running(dev)) {
1341 netif_wake_queue(dev);
1342 __netdev_watchdog_up(dev);
1343 }
1344 }
1345 EXPORT_SYMBOL(netif_device_attach);
1346
1347
1348 /*
1349 * Invalidate hardware checksum when packet is to be mangled, and
1350 * complete checksum manually on outgoing path.
1351 */
1352 int skb_checksum_help(struct sk_buff *skb)
1353 {
1354 __wsum csum;
1355 int ret = 0, offset;
1356
1357 if (skb->ip_summed == CHECKSUM_COMPLETE)
1358 goto out_set_summed;
1359
1360 if (unlikely(skb_shinfo(skb)->gso_size)) {
1361 /* Let GSO fix up the checksum. */
1362 goto out_set_summed;
1363 }
1364
1365 offset = skb->csum_start - skb_headroom(skb);
1366 BUG_ON(offset >= skb_headlen(skb));
1367 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1368
1369 offset += skb->csum_offset;
1370 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1371
1372 if (skb_cloned(skb) &&
1373 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1374 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1375 if (ret)
1376 goto out;
1377 }
1378
1379 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1380 out_set_summed:
1381 skb->ip_summed = CHECKSUM_NONE;
1382 out:
1383 return ret;
1384 }
1385
1386 /**
1387 * skb_gso_segment - Perform segmentation on skb.
1388 * @skb: buffer to segment
1389 * @features: features for the output path (see dev->features)
1390 *
1391 * This function segments the given skb and returns a list of segments.
1392 *
1393 * It may return NULL if the skb requires no segmentation. This is
1394 * only possible when GSO is used for verifying header integrity.
1395 */
1396 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1397 {
1398 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1399 struct packet_type *ptype;
1400 __be16 type = skb->protocol;
1401 int err;
1402
1403 BUG_ON(skb_shinfo(skb)->frag_list);
1404
1405 skb_reset_mac_header(skb);
1406 skb->mac_len = skb->network_header - skb->mac_header;
1407 __skb_pull(skb, skb->mac_len);
1408
1409 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1410 if (skb_header_cloned(skb) &&
1411 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1412 return ERR_PTR(err);
1413 }
1414
1415 rcu_read_lock();
1416 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1417 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1418 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1419 err = ptype->gso_send_check(skb);
1420 segs = ERR_PTR(err);
1421 if (err || skb_gso_ok(skb, features))
1422 break;
1423 __skb_push(skb, (skb->data -
1424 skb_network_header(skb)));
1425 }
1426 segs = ptype->gso_segment(skb, features);
1427 break;
1428 }
1429 }
1430 rcu_read_unlock();
1431
1432 __skb_push(skb, skb->data - skb_mac_header(skb));
1433
1434 return segs;
1435 }
1436
1437 EXPORT_SYMBOL(skb_gso_segment);
1438
1439 /* Take action when hardware reception checksum errors are detected. */
1440 #ifdef CONFIG_BUG
1441 void netdev_rx_csum_fault(struct net_device *dev)
1442 {
1443 if (net_ratelimit()) {
1444 printk(KERN_ERR "%s: hw csum failure.\n",
1445 dev ? dev->name : "<unknown>");
1446 dump_stack();
1447 }
1448 }
1449 EXPORT_SYMBOL(netdev_rx_csum_fault);
1450 #endif
1451
1452 /* Actually, we should eliminate this check as soon as we know, that:
1453 * 1. IOMMU is present and allows to map all the memory.
1454 * 2. No high memory really exists on this machine.
1455 */
1456
1457 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1458 {
1459 #ifdef CONFIG_HIGHMEM
1460 int i;
1461
1462 if (dev->features & NETIF_F_HIGHDMA)
1463 return 0;
1464
1465 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1466 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1467 return 1;
1468
1469 #endif
1470 return 0;
1471 }
1472
1473 struct dev_gso_cb {
1474 void (*destructor)(struct sk_buff *skb);
1475 };
1476
1477 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1478
1479 static void dev_gso_skb_destructor(struct sk_buff *skb)
1480 {
1481 struct dev_gso_cb *cb;
1482
1483 do {
1484 struct sk_buff *nskb = skb->next;
1485
1486 skb->next = nskb->next;
1487 nskb->next = NULL;
1488 kfree_skb(nskb);
1489 } while (skb->next);
1490
1491 cb = DEV_GSO_CB(skb);
1492 if (cb->destructor)
1493 cb->destructor(skb);
1494 }
1495
1496 /**
1497 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1498 * @skb: buffer to segment
1499 *
1500 * This function segments the given skb and stores the list of segments
1501 * in skb->next.
1502 */
1503 static int dev_gso_segment(struct sk_buff *skb)
1504 {
1505 struct net_device *dev = skb->dev;
1506 struct sk_buff *segs;
1507 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1508 NETIF_F_SG : 0);
1509
1510 segs = skb_gso_segment(skb, features);
1511
1512 /* Verifying header integrity only. */
1513 if (!segs)
1514 return 0;
1515
1516 if (unlikely(IS_ERR(segs)))
1517 return PTR_ERR(segs);
1518
1519 skb->next = segs;
1520 DEV_GSO_CB(skb)->destructor = skb->destructor;
1521 skb->destructor = dev_gso_skb_destructor;
1522
1523 return 0;
1524 }
1525
1526 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1527 {
1528 if (likely(!skb->next)) {
1529 if (!list_empty(&ptype_all))
1530 dev_queue_xmit_nit(skb, dev);
1531
1532 if (netif_needs_gso(dev, skb)) {
1533 if (unlikely(dev_gso_segment(skb)))
1534 goto out_kfree_skb;
1535 if (skb->next)
1536 goto gso;
1537 }
1538
1539 return dev->hard_start_xmit(skb, dev);
1540 }
1541
1542 gso:
1543 do {
1544 struct sk_buff *nskb = skb->next;
1545 int rc;
1546
1547 skb->next = nskb->next;
1548 nskb->next = NULL;
1549 rc = dev->hard_start_xmit(nskb, dev);
1550 if (unlikely(rc)) {
1551 nskb->next = skb->next;
1552 skb->next = nskb;
1553 return rc;
1554 }
1555 if (unlikely((netif_queue_stopped(dev) ||
1556 netif_subqueue_stopped(dev, skb->queue_mapping)) &&
1557 skb->next))
1558 return NETDEV_TX_BUSY;
1559 } while (skb->next);
1560
1561 skb->destructor = DEV_GSO_CB(skb)->destructor;
1562
1563 out_kfree_skb:
1564 kfree_skb(skb);
1565 return 0;
1566 }
1567
1568 /**
1569 * dev_queue_xmit - transmit a buffer
1570 * @skb: buffer to transmit
1571 *
1572 * Queue a buffer for transmission to a network device. The caller must
1573 * have set the device and priority and built the buffer before calling
1574 * this function. The function can be called from an interrupt.
1575 *
1576 * A negative errno code is returned on a failure. A success does not
1577 * guarantee the frame will be transmitted as it may be dropped due
1578 * to congestion or traffic shaping.
1579 *
1580 * -----------------------------------------------------------------------------------
1581 * I notice this method can also return errors from the queue disciplines,
1582 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1583 * be positive.
1584 *
1585 * Regardless of the return value, the skb is consumed, so it is currently
1586 * difficult to retry a send to this method. (You can bump the ref count
1587 * before sending to hold a reference for retry if you are careful.)
1588 *
1589 * When calling this method, interrupts MUST be enabled. This is because
1590 * the BH enable code must have IRQs enabled so that it will not deadlock.
1591 * --BLG
1592 */
1593
1594 int dev_queue_xmit(struct sk_buff *skb)
1595 {
1596 struct net_device *dev = skb->dev;
1597 struct Qdisc *q;
1598 int rc = -ENOMEM;
1599
1600 /* GSO will handle the following emulations directly. */
1601 if (netif_needs_gso(dev, skb))
1602 goto gso;
1603
1604 if (skb_shinfo(skb)->frag_list &&
1605 !(dev->features & NETIF_F_FRAGLIST) &&
1606 __skb_linearize(skb))
1607 goto out_kfree_skb;
1608
1609 /* Fragmented skb is linearized if device does not support SG,
1610 * or if at least one of fragments is in highmem and device
1611 * does not support DMA from it.
1612 */
1613 if (skb_shinfo(skb)->nr_frags &&
1614 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1615 __skb_linearize(skb))
1616 goto out_kfree_skb;
1617
1618 /* If packet is not checksummed and device does not support
1619 * checksumming for this protocol, complete checksumming here.
1620 */
1621 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1622 skb_set_transport_header(skb, skb->csum_start -
1623 skb_headroom(skb));
1624
1625 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1626 !((dev->features & NETIF_F_IP_CSUM) &&
1627 skb->protocol == htons(ETH_P_IP)) &&
1628 !((dev->features & NETIF_F_IPV6_CSUM) &&
1629 skb->protocol == htons(ETH_P_IPV6)))
1630 if (skb_checksum_help(skb))
1631 goto out_kfree_skb;
1632 }
1633
1634 gso:
1635 spin_lock_prefetch(&dev->queue_lock);
1636
1637 /* Disable soft irqs for various locks below. Also
1638 * stops preemption for RCU.
1639 */
1640 rcu_read_lock_bh();
1641
1642 /* Updates of qdisc are serialized by queue_lock.
1643 * The struct Qdisc which is pointed to by qdisc is now a
1644 * rcu structure - it may be accessed without acquiring
1645 * a lock (but the structure may be stale.) The freeing of the
1646 * qdisc will be deferred until it's known that there are no
1647 * more references to it.
1648 *
1649 * If the qdisc has an enqueue function, we still need to
1650 * hold the queue_lock before calling it, since queue_lock
1651 * also serializes access to the device queue.
1652 */
1653
1654 q = rcu_dereference(dev->qdisc);
1655 #ifdef CONFIG_NET_CLS_ACT
1656 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1657 #endif
1658 if (q->enqueue) {
1659 /* Grab device queue */
1660 spin_lock(&dev->queue_lock);
1661 q = dev->qdisc;
1662 if (q->enqueue) {
1663 /* reset queue_mapping to zero */
1664 skb->queue_mapping = 0;
1665 rc = q->enqueue(skb, q);
1666 qdisc_run(dev);
1667 spin_unlock(&dev->queue_lock);
1668
1669 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1670 goto out;
1671 }
1672 spin_unlock(&dev->queue_lock);
1673 }
1674
1675 /* The device has no queue. Common case for software devices:
1676 loopback, all the sorts of tunnels...
1677
1678 Really, it is unlikely that netif_tx_lock protection is necessary
1679 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1680 counters.)
1681 However, it is possible, that they rely on protection
1682 made by us here.
1683
1684 Check this and shot the lock. It is not prone from deadlocks.
1685 Either shot noqueue qdisc, it is even simpler 8)
1686 */
1687 if (dev->flags & IFF_UP) {
1688 int cpu = smp_processor_id(); /* ok because BHs are off */
1689
1690 if (dev->xmit_lock_owner != cpu) {
1691
1692 HARD_TX_LOCK(dev, cpu);
1693
1694 if (!netif_queue_stopped(dev) &&
1695 !netif_subqueue_stopped(dev, skb->queue_mapping)) {
1696 rc = 0;
1697 if (!dev_hard_start_xmit(skb, dev)) {
1698 HARD_TX_UNLOCK(dev);
1699 goto out;
1700 }
1701 }
1702 HARD_TX_UNLOCK(dev);
1703 if (net_ratelimit())
1704 printk(KERN_CRIT "Virtual device %s asks to "
1705 "queue packet!\n", dev->name);
1706 } else {
1707 /* Recursion is detected! It is possible,
1708 * unfortunately */
1709 if (net_ratelimit())
1710 printk(KERN_CRIT "Dead loop on virtual device "
1711 "%s, fix it urgently!\n", dev->name);
1712 }
1713 }
1714
1715 rc = -ENETDOWN;
1716 rcu_read_unlock_bh();
1717
1718 out_kfree_skb:
1719 kfree_skb(skb);
1720 return rc;
1721 out:
1722 rcu_read_unlock_bh();
1723 return rc;
1724 }
1725
1726
1727 /*=======================================================================
1728 Receiver routines
1729 =======================================================================*/
1730
1731 int netdev_max_backlog __read_mostly = 1000;
1732 int netdev_budget __read_mostly = 300;
1733 int weight_p __read_mostly = 64; /* old backlog weight */
1734
1735 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1736
1737
1738 /**
1739 * netif_rx - post buffer to the network code
1740 * @skb: buffer to post
1741 *
1742 * This function receives a packet from a device driver and queues it for
1743 * the upper (protocol) levels to process. It always succeeds. The buffer
1744 * may be dropped during processing for congestion control or by the
1745 * protocol layers.
1746 *
1747 * return values:
1748 * NET_RX_SUCCESS (no congestion)
1749 * NET_RX_CN_LOW (low congestion)
1750 * NET_RX_CN_MOD (moderate congestion)
1751 * NET_RX_CN_HIGH (high congestion)
1752 * NET_RX_DROP (packet was dropped)
1753 *
1754 */
1755
1756 int netif_rx(struct sk_buff *skb)
1757 {
1758 struct softnet_data *queue;
1759 unsigned long flags;
1760
1761 /* if netpoll wants it, pretend we never saw it */
1762 if (netpoll_rx(skb))
1763 return NET_RX_DROP;
1764
1765 if (!skb->tstamp.tv64)
1766 net_timestamp(skb);
1767
1768 /*
1769 * The code is rearranged so that the path is the most
1770 * short when CPU is congested, but is still operating.
1771 */
1772 local_irq_save(flags);
1773 queue = &__get_cpu_var(softnet_data);
1774
1775 __get_cpu_var(netdev_rx_stat).total++;
1776 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1777 if (queue->input_pkt_queue.qlen) {
1778 enqueue:
1779 dev_hold(skb->dev);
1780 __skb_queue_tail(&queue->input_pkt_queue, skb);
1781 local_irq_restore(flags);
1782 return NET_RX_SUCCESS;
1783 }
1784
1785 napi_schedule(&queue->backlog);
1786 goto enqueue;
1787 }
1788
1789 __get_cpu_var(netdev_rx_stat).dropped++;
1790 local_irq_restore(flags);
1791
1792 kfree_skb(skb);
1793 return NET_RX_DROP;
1794 }
1795
1796 int netif_rx_ni(struct sk_buff *skb)
1797 {
1798 int err;
1799
1800 preempt_disable();
1801 err = netif_rx(skb);
1802 if (local_softirq_pending())
1803 do_softirq();
1804 preempt_enable();
1805
1806 return err;
1807 }
1808
1809 EXPORT_SYMBOL(netif_rx_ni);
1810
1811 static inline struct net_device *skb_bond(struct sk_buff *skb)
1812 {
1813 struct net_device *dev = skb->dev;
1814
1815 if (dev->master) {
1816 if (skb_bond_should_drop(skb)) {
1817 kfree_skb(skb);
1818 return NULL;
1819 }
1820 skb->dev = dev->master;
1821 }
1822
1823 return dev;
1824 }
1825
1826
1827 static void net_tx_action(struct softirq_action *h)
1828 {
1829 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1830
1831 if (sd->completion_queue) {
1832 struct sk_buff *clist;
1833
1834 local_irq_disable();
1835 clist = sd->completion_queue;
1836 sd->completion_queue = NULL;
1837 local_irq_enable();
1838
1839 while (clist) {
1840 struct sk_buff *skb = clist;
1841 clist = clist->next;
1842
1843 BUG_TRAP(!atomic_read(&skb->users));
1844 __kfree_skb(skb);
1845 }
1846 }
1847
1848 if (sd->output_queue) {
1849 struct net_device *head;
1850
1851 local_irq_disable();
1852 head = sd->output_queue;
1853 sd->output_queue = NULL;
1854 local_irq_enable();
1855
1856 while (head) {
1857 struct net_device *dev = head;
1858 head = head->next_sched;
1859
1860 smp_mb__before_clear_bit();
1861 clear_bit(__LINK_STATE_SCHED, &dev->state);
1862
1863 if (spin_trylock(&dev->queue_lock)) {
1864 qdisc_run(dev);
1865 spin_unlock(&dev->queue_lock);
1866 } else {
1867 netif_schedule(dev);
1868 }
1869 }
1870 }
1871 }
1872
1873 static inline int deliver_skb(struct sk_buff *skb,
1874 struct packet_type *pt_prev,
1875 struct net_device *orig_dev)
1876 {
1877 atomic_inc(&skb->users);
1878 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1879 }
1880
1881 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1882 /* These hooks defined here for ATM */
1883 struct net_bridge;
1884 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1885 unsigned char *addr);
1886 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1887
1888 /*
1889 * If bridge module is loaded call bridging hook.
1890 * returns NULL if packet was consumed.
1891 */
1892 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1893 struct sk_buff *skb) __read_mostly;
1894 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1895 struct packet_type **pt_prev, int *ret,
1896 struct net_device *orig_dev)
1897 {
1898 struct net_bridge_port *port;
1899
1900 if (skb->pkt_type == PACKET_LOOPBACK ||
1901 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1902 return skb;
1903
1904 if (*pt_prev) {
1905 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1906 *pt_prev = NULL;
1907 }
1908
1909 return br_handle_frame_hook(port, skb);
1910 }
1911 #else
1912 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1913 #endif
1914
1915 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1916 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1917 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1918
1919 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1920 struct packet_type **pt_prev,
1921 int *ret,
1922 struct net_device *orig_dev)
1923 {
1924 if (skb->dev->macvlan_port == NULL)
1925 return skb;
1926
1927 if (*pt_prev) {
1928 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1929 *pt_prev = NULL;
1930 }
1931 return macvlan_handle_frame_hook(skb);
1932 }
1933 #else
1934 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1935 #endif
1936
1937 #ifdef CONFIG_NET_CLS_ACT
1938 /* TODO: Maybe we should just force sch_ingress to be compiled in
1939 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1940 * a compare and 2 stores extra right now if we dont have it on
1941 * but have CONFIG_NET_CLS_ACT
1942 * NOTE: This doesnt stop any functionality; if you dont have
1943 * the ingress scheduler, you just cant add policies on ingress.
1944 *
1945 */
1946 static int ing_filter(struct sk_buff *skb)
1947 {
1948 struct Qdisc *q;
1949 struct net_device *dev = skb->dev;
1950 int result = TC_ACT_OK;
1951 u32 ttl = G_TC_RTTL(skb->tc_verd);
1952
1953 if (MAX_RED_LOOP < ttl++) {
1954 printk(KERN_WARNING
1955 "Redir loop detected Dropping packet (%d->%d)\n",
1956 skb->iif, dev->ifindex);
1957 return TC_ACT_SHOT;
1958 }
1959
1960 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1961 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1962
1963 spin_lock(&dev->ingress_lock);
1964 if ((q = dev->qdisc_ingress) != NULL)
1965 result = q->enqueue(skb, q);
1966 spin_unlock(&dev->ingress_lock);
1967
1968 return result;
1969 }
1970
1971 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1972 struct packet_type **pt_prev,
1973 int *ret, struct net_device *orig_dev)
1974 {
1975 if (!skb->dev->qdisc_ingress)
1976 goto out;
1977
1978 if (*pt_prev) {
1979 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1980 *pt_prev = NULL;
1981 } else {
1982 /* Huh? Why does turning on AF_PACKET affect this? */
1983 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1984 }
1985
1986 switch (ing_filter(skb)) {
1987 case TC_ACT_SHOT:
1988 case TC_ACT_STOLEN:
1989 kfree_skb(skb);
1990 return NULL;
1991 }
1992
1993 out:
1994 skb->tc_verd = 0;
1995 return skb;
1996 }
1997 #endif
1998
1999 int netif_receive_skb(struct sk_buff *skb)
2000 {
2001 struct packet_type *ptype, *pt_prev;
2002 struct net_device *orig_dev;
2003 int ret = NET_RX_DROP;
2004 __be16 type;
2005
2006 /* if we've gotten here through NAPI, check netpoll */
2007 if (netpoll_receive_skb(skb))
2008 return NET_RX_DROP;
2009
2010 if (!skb->tstamp.tv64)
2011 net_timestamp(skb);
2012
2013 if (!skb->iif)
2014 skb->iif = skb->dev->ifindex;
2015
2016 orig_dev = skb_bond(skb);
2017
2018 if (!orig_dev)
2019 return NET_RX_DROP;
2020
2021 __get_cpu_var(netdev_rx_stat).total++;
2022
2023 skb_reset_network_header(skb);
2024 skb_reset_transport_header(skb);
2025 skb->mac_len = skb->network_header - skb->mac_header;
2026
2027 pt_prev = NULL;
2028
2029 rcu_read_lock();
2030
2031 #ifdef CONFIG_NET_CLS_ACT
2032 if (skb->tc_verd & TC_NCLS) {
2033 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2034 goto ncls;
2035 }
2036 #endif
2037
2038 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2039 if (!ptype->dev || ptype->dev == skb->dev) {
2040 if (pt_prev)
2041 ret = deliver_skb(skb, pt_prev, orig_dev);
2042 pt_prev = ptype;
2043 }
2044 }
2045
2046 #ifdef CONFIG_NET_CLS_ACT
2047 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2048 if (!skb)
2049 goto out;
2050 ncls:
2051 #endif
2052
2053 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2054 if (!skb)
2055 goto out;
2056 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2057 if (!skb)
2058 goto out;
2059
2060 type = skb->protocol;
2061 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2062 if (ptype->type == type &&
2063 (!ptype->dev || ptype->dev == skb->dev)) {
2064 if (pt_prev)
2065 ret = deliver_skb(skb, pt_prev, orig_dev);
2066 pt_prev = ptype;
2067 }
2068 }
2069
2070 if (pt_prev) {
2071 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2072 } else {
2073 kfree_skb(skb);
2074 /* Jamal, now you will not able to escape explaining
2075 * me how you were going to use this. :-)
2076 */
2077 ret = NET_RX_DROP;
2078 }
2079
2080 out:
2081 rcu_read_unlock();
2082 return ret;
2083 }
2084
2085 static int process_backlog(struct napi_struct *napi, int quota)
2086 {
2087 int work = 0;
2088 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2089 unsigned long start_time = jiffies;
2090
2091 napi->weight = weight_p;
2092 do {
2093 struct sk_buff *skb;
2094 struct net_device *dev;
2095
2096 local_irq_disable();
2097 skb = __skb_dequeue(&queue->input_pkt_queue);
2098 if (!skb) {
2099 __napi_complete(napi);
2100 local_irq_enable();
2101 break;
2102 }
2103
2104 local_irq_enable();
2105
2106 dev = skb->dev;
2107
2108 netif_receive_skb(skb);
2109
2110 dev_put(dev);
2111 } while (++work < quota && jiffies == start_time);
2112
2113 return work;
2114 }
2115
2116 /**
2117 * __napi_schedule - schedule for receive
2118 * @n: entry to schedule
2119 *
2120 * The entry's receive function will be scheduled to run
2121 */
2122 void fastcall __napi_schedule(struct napi_struct *n)
2123 {
2124 unsigned long flags;
2125
2126 local_irq_save(flags);
2127 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2128 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2129 local_irq_restore(flags);
2130 }
2131 EXPORT_SYMBOL(__napi_schedule);
2132
2133
2134 static void net_rx_action(struct softirq_action *h)
2135 {
2136 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2137 unsigned long start_time = jiffies;
2138 int budget = netdev_budget;
2139 void *have;
2140
2141 local_irq_disable();
2142
2143 while (!list_empty(list)) {
2144 struct napi_struct *n;
2145 int work, weight;
2146
2147 /* If softirq window is exhuasted then punt.
2148 *
2149 * Note that this is a slight policy change from the
2150 * previous NAPI code, which would allow up to 2
2151 * jiffies to pass before breaking out. The test
2152 * used to be "jiffies - start_time > 1".
2153 */
2154 if (unlikely(budget <= 0 || jiffies != start_time))
2155 goto softnet_break;
2156
2157 local_irq_enable();
2158
2159 /* Even though interrupts have been re-enabled, this
2160 * access is safe because interrupts can only add new
2161 * entries to the tail of this list, and only ->poll()
2162 * calls can remove this head entry from the list.
2163 */
2164 n = list_entry(list->next, struct napi_struct, poll_list);
2165
2166 have = netpoll_poll_lock(n);
2167
2168 weight = n->weight;
2169
2170 work = n->poll(n, weight);
2171
2172 WARN_ON_ONCE(work > weight);
2173
2174 budget -= work;
2175
2176 local_irq_disable();
2177
2178 /* Drivers must not modify the NAPI state if they
2179 * consume the entire weight. In such cases this code
2180 * still "owns" the NAPI instance and therefore can
2181 * move the instance around on the list at-will.
2182 */
2183 if (unlikely(work == weight))
2184 list_move_tail(&n->poll_list, list);
2185
2186 netpoll_poll_unlock(have);
2187 }
2188 out:
2189 local_irq_enable();
2190
2191 #ifdef CONFIG_NET_DMA
2192 /*
2193 * There may not be any more sk_buffs coming right now, so push
2194 * any pending DMA copies to hardware
2195 */
2196 if (!cpus_empty(net_dma.channel_mask)) {
2197 int chan_idx;
2198 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2199 struct dma_chan *chan = net_dma.channels[chan_idx];
2200 if (chan)
2201 dma_async_memcpy_issue_pending(chan);
2202 }
2203 }
2204 #endif
2205
2206 return;
2207
2208 softnet_break:
2209 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2210 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2211 goto out;
2212 }
2213
2214 static gifconf_func_t * gifconf_list [NPROTO];
2215
2216 /**
2217 * register_gifconf - register a SIOCGIF handler
2218 * @family: Address family
2219 * @gifconf: Function handler
2220 *
2221 * Register protocol dependent address dumping routines. The handler
2222 * that is passed must not be freed or reused until it has been replaced
2223 * by another handler.
2224 */
2225 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2226 {
2227 if (family >= NPROTO)
2228 return -EINVAL;
2229 gifconf_list[family] = gifconf;
2230 return 0;
2231 }
2232
2233
2234 /*
2235 * Map an interface index to its name (SIOCGIFNAME)
2236 */
2237
2238 /*
2239 * We need this ioctl for efficient implementation of the
2240 * if_indextoname() function required by the IPv6 API. Without
2241 * it, we would have to search all the interfaces to find a
2242 * match. --pb
2243 */
2244
2245 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2246 {
2247 struct net_device *dev;
2248 struct ifreq ifr;
2249
2250 /*
2251 * Fetch the caller's info block.
2252 */
2253
2254 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2255 return -EFAULT;
2256
2257 read_lock(&dev_base_lock);
2258 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2259 if (!dev) {
2260 read_unlock(&dev_base_lock);
2261 return -ENODEV;
2262 }
2263
2264 strcpy(ifr.ifr_name, dev->name);
2265 read_unlock(&dev_base_lock);
2266
2267 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2268 return -EFAULT;
2269 return 0;
2270 }
2271
2272 /*
2273 * Perform a SIOCGIFCONF call. This structure will change
2274 * size eventually, and there is nothing I can do about it.
2275 * Thus we will need a 'compatibility mode'.
2276 */
2277
2278 static int dev_ifconf(struct net *net, char __user *arg)
2279 {
2280 struct ifconf ifc;
2281 struct net_device *dev;
2282 char __user *pos;
2283 int len;
2284 int total;
2285 int i;
2286
2287 /*
2288 * Fetch the caller's info block.
2289 */
2290
2291 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2292 return -EFAULT;
2293
2294 pos = ifc.ifc_buf;
2295 len = ifc.ifc_len;
2296
2297 /*
2298 * Loop over the interfaces, and write an info block for each.
2299 */
2300
2301 total = 0;
2302 for_each_netdev(net, dev) {
2303 for (i = 0; i < NPROTO; i++) {
2304 if (gifconf_list[i]) {
2305 int done;
2306 if (!pos)
2307 done = gifconf_list[i](dev, NULL, 0);
2308 else
2309 done = gifconf_list[i](dev, pos + total,
2310 len - total);
2311 if (done < 0)
2312 return -EFAULT;
2313 total += done;
2314 }
2315 }
2316 }
2317
2318 /*
2319 * All done. Write the updated control block back to the caller.
2320 */
2321 ifc.ifc_len = total;
2322
2323 /*
2324 * Both BSD and Solaris return 0 here, so we do too.
2325 */
2326 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2327 }
2328
2329 #ifdef CONFIG_PROC_FS
2330 /*
2331 * This is invoked by the /proc filesystem handler to display a device
2332 * in detail.
2333 */
2334 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2335 {
2336 struct net *net = seq->private;
2337 loff_t off;
2338 struct net_device *dev;
2339
2340 read_lock(&dev_base_lock);
2341 if (!*pos)
2342 return SEQ_START_TOKEN;
2343
2344 off = 1;
2345 for_each_netdev(net, dev)
2346 if (off++ == *pos)
2347 return dev;
2348
2349 return NULL;
2350 }
2351
2352 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2353 {
2354 struct net *net = seq->private;
2355 ++*pos;
2356 return v == SEQ_START_TOKEN ?
2357 first_net_device(net) : next_net_device((struct net_device *)v);
2358 }
2359
2360 void dev_seq_stop(struct seq_file *seq, void *v)
2361 {
2362 read_unlock(&dev_base_lock);
2363 }
2364
2365 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2366 {
2367 struct net_device_stats *stats = dev->get_stats(dev);
2368
2369 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2370 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2371 dev->name, stats->rx_bytes, stats->rx_packets,
2372 stats->rx_errors,
2373 stats->rx_dropped + stats->rx_missed_errors,
2374 stats->rx_fifo_errors,
2375 stats->rx_length_errors + stats->rx_over_errors +
2376 stats->rx_crc_errors + stats->rx_frame_errors,
2377 stats->rx_compressed, stats->multicast,
2378 stats->tx_bytes, stats->tx_packets,
2379 stats->tx_errors, stats->tx_dropped,
2380 stats->tx_fifo_errors, stats->collisions,
2381 stats->tx_carrier_errors +
2382 stats->tx_aborted_errors +
2383 stats->tx_window_errors +
2384 stats->tx_heartbeat_errors,
2385 stats->tx_compressed);
2386 }
2387
2388 /*
2389 * Called from the PROCfs module. This now uses the new arbitrary sized
2390 * /proc/net interface to create /proc/net/dev
2391 */
2392 static int dev_seq_show(struct seq_file *seq, void *v)
2393 {
2394 if (v == SEQ_START_TOKEN)
2395 seq_puts(seq, "Inter-| Receive "
2396 " | Transmit\n"
2397 " face |bytes packets errs drop fifo frame "
2398 "compressed multicast|bytes packets errs "
2399 "drop fifo colls carrier compressed\n");
2400 else
2401 dev_seq_printf_stats(seq, v);
2402 return 0;
2403 }
2404
2405 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2406 {
2407 struct netif_rx_stats *rc = NULL;
2408
2409 while (*pos < NR_CPUS)
2410 if (cpu_online(*pos)) {
2411 rc = &per_cpu(netdev_rx_stat, *pos);
2412 break;
2413 } else
2414 ++*pos;
2415 return rc;
2416 }
2417
2418 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2419 {
2420 return softnet_get_online(pos);
2421 }
2422
2423 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2424 {
2425 ++*pos;
2426 return softnet_get_online(pos);
2427 }
2428
2429 static void softnet_seq_stop(struct seq_file *seq, void *v)
2430 {
2431 }
2432
2433 static int softnet_seq_show(struct seq_file *seq, void *v)
2434 {
2435 struct netif_rx_stats *s = v;
2436
2437 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2438 s->total, s->dropped, s->time_squeeze, 0,
2439 0, 0, 0, 0, /* was fastroute */
2440 s->cpu_collision );
2441 return 0;
2442 }
2443
2444 static const struct seq_operations dev_seq_ops = {
2445 .start = dev_seq_start,
2446 .next = dev_seq_next,
2447 .stop = dev_seq_stop,
2448 .show = dev_seq_show,
2449 };
2450
2451 static int dev_seq_open(struct inode *inode, struct file *file)
2452 {
2453 struct seq_file *seq;
2454 int res;
2455 res = seq_open(file, &dev_seq_ops);
2456 if (!res) {
2457 seq = file->private_data;
2458 seq->private = get_proc_net(inode);
2459 if (!seq->private) {
2460 seq_release(inode, file);
2461 res = -ENXIO;
2462 }
2463 }
2464 return res;
2465 }
2466
2467 static int dev_seq_release(struct inode *inode, struct file *file)
2468 {
2469 struct seq_file *seq = file->private_data;
2470 struct net *net = seq->private;
2471 put_net(net);
2472 return seq_release(inode, file);
2473 }
2474
2475 static const struct file_operations dev_seq_fops = {
2476 .owner = THIS_MODULE,
2477 .open = dev_seq_open,
2478 .read = seq_read,
2479 .llseek = seq_lseek,
2480 .release = dev_seq_release,
2481 };
2482
2483 static const struct seq_operations softnet_seq_ops = {
2484 .start = softnet_seq_start,
2485 .next = softnet_seq_next,
2486 .stop = softnet_seq_stop,
2487 .show = softnet_seq_show,
2488 };
2489
2490 static int softnet_seq_open(struct inode *inode, struct file *file)
2491 {
2492 return seq_open(file, &softnet_seq_ops);
2493 }
2494
2495 static const struct file_operations softnet_seq_fops = {
2496 .owner = THIS_MODULE,
2497 .open = softnet_seq_open,
2498 .read = seq_read,
2499 .llseek = seq_lseek,
2500 .release = seq_release,
2501 };
2502
2503 static void *ptype_get_idx(loff_t pos)
2504 {
2505 struct packet_type *pt = NULL;
2506 loff_t i = 0;
2507 int t;
2508
2509 list_for_each_entry_rcu(pt, &ptype_all, list) {
2510 if (i == pos)
2511 return pt;
2512 ++i;
2513 }
2514
2515 for (t = 0; t < 16; t++) {
2516 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2517 if (i == pos)
2518 return pt;
2519 ++i;
2520 }
2521 }
2522 return NULL;
2523 }
2524
2525 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2526 {
2527 rcu_read_lock();
2528 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2529 }
2530
2531 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2532 {
2533 struct packet_type *pt;
2534 struct list_head *nxt;
2535 int hash;
2536
2537 ++*pos;
2538 if (v == SEQ_START_TOKEN)
2539 return ptype_get_idx(0);
2540
2541 pt = v;
2542 nxt = pt->list.next;
2543 if (pt->type == htons(ETH_P_ALL)) {
2544 if (nxt != &ptype_all)
2545 goto found;
2546 hash = 0;
2547 nxt = ptype_base[0].next;
2548 } else
2549 hash = ntohs(pt->type) & 15;
2550
2551 while (nxt == &ptype_base[hash]) {
2552 if (++hash >= 16)
2553 return NULL;
2554 nxt = ptype_base[hash].next;
2555 }
2556 found:
2557 return list_entry(nxt, struct packet_type, list);
2558 }
2559
2560 static void ptype_seq_stop(struct seq_file *seq, void *v)
2561 {
2562 rcu_read_unlock();
2563 }
2564
2565 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2566 {
2567 #ifdef CONFIG_KALLSYMS
2568 unsigned long offset = 0, symsize;
2569 const char *symname;
2570 char *modname;
2571 char namebuf[128];
2572
2573 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2574 &modname, namebuf);
2575
2576 if (symname) {
2577 char *delim = ":";
2578
2579 if (!modname)
2580 modname = delim = "";
2581 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2582 symname, offset);
2583 return;
2584 }
2585 #endif
2586
2587 seq_printf(seq, "[%p]", sym);
2588 }
2589
2590 static int ptype_seq_show(struct seq_file *seq, void *v)
2591 {
2592 struct packet_type *pt = v;
2593
2594 if (v == SEQ_START_TOKEN)
2595 seq_puts(seq, "Type Device Function\n");
2596 else {
2597 if (pt->type == htons(ETH_P_ALL))
2598 seq_puts(seq, "ALL ");
2599 else
2600 seq_printf(seq, "%04x", ntohs(pt->type));
2601
2602 seq_printf(seq, " %-8s ",
2603 pt->dev ? pt->dev->name : "");
2604 ptype_seq_decode(seq, pt->func);
2605 seq_putc(seq, '\n');
2606 }
2607
2608 return 0;
2609 }
2610
2611 static const struct seq_operations ptype_seq_ops = {
2612 .start = ptype_seq_start,
2613 .next = ptype_seq_next,
2614 .stop = ptype_seq_stop,
2615 .show = ptype_seq_show,
2616 };
2617
2618 static int ptype_seq_open(struct inode *inode, struct file *file)
2619 {
2620 return seq_open(file, &ptype_seq_ops);
2621 }
2622
2623 static const struct file_operations ptype_seq_fops = {
2624 .owner = THIS_MODULE,
2625 .open = ptype_seq_open,
2626 .read = seq_read,
2627 .llseek = seq_lseek,
2628 .release = seq_release,
2629 };
2630
2631
2632 static int __net_init dev_proc_net_init(struct net *net)
2633 {
2634 int rc = -ENOMEM;
2635
2636 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2637 goto out;
2638 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2639 goto out_dev;
2640 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2641 goto out_softnet;
2642
2643 if (wext_proc_init(net))
2644 goto out_ptype;
2645 rc = 0;
2646 out:
2647 return rc;
2648 out_ptype:
2649 proc_net_remove(net, "ptype");
2650 out_softnet:
2651 proc_net_remove(net, "softnet_stat");
2652 out_dev:
2653 proc_net_remove(net, "dev");
2654 goto out;
2655 }
2656
2657 static void __net_exit dev_proc_net_exit(struct net *net)
2658 {
2659 wext_proc_exit(net);
2660
2661 proc_net_remove(net, "ptype");
2662 proc_net_remove(net, "softnet_stat");
2663 proc_net_remove(net, "dev");
2664 }
2665
2666 static struct pernet_operations __net_initdata dev_proc_ops = {
2667 .init = dev_proc_net_init,
2668 .exit = dev_proc_net_exit,
2669 };
2670
2671 static int __init dev_proc_init(void)
2672 {
2673 return register_pernet_subsys(&dev_proc_ops);
2674 }
2675 #else
2676 #define dev_proc_init() 0
2677 #endif /* CONFIG_PROC_FS */
2678
2679
2680 /**
2681 * netdev_set_master - set up master/slave pair
2682 * @slave: slave device
2683 * @master: new master device
2684 *
2685 * Changes the master device of the slave. Pass %NULL to break the
2686 * bonding. The caller must hold the RTNL semaphore. On a failure
2687 * a negative errno code is returned. On success the reference counts
2688 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2689 * function returns zero.
2690 */
2691 int netdev_set_master(struct net_device *slave, struct net_device *master)
2692 {
2693 struct net_device *old = slave->master;
2694
2695 ASSERT_RTNL();
2696
2697 if (master) {
2698 if (old)
2699 return -EBUSY;
2700 dev_hold(master);
2701 }
2702
2703 slave->master = master;
2704
2705 synchronize_net();
2706
2707 if (old)
2708 dev_put(old);
2709
2710 if (master)
2711 slave->flags |= IFF_SLAVE;
2712 else
2713 slave->flags &= ~IFF_SLAVE;
2714
2715 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2716 return 0;
2717 }
2718
2719 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2720 {
2721 unsigned short old_flags = dev->flags;
2722
2723 ASSERT_RTNL();
2724
2725 if ((dev->promiscuity += inc) == 0)
2726 dev->flags &= ~IFF_PROMISC;
2727 else
2728 dev->flags |= IFF_PROMISC;
2729 if (dev->flags != old_flags) {
2730 printk(KERN_INFO "device %s %s promiscuous mode\n",
2731 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2732 "left");
2733 audit_log(current->audit_context, GFP_ATOMIC,
2734 AUDIT_ANOM_PROMISCUOUS,
2735 "dev=%s prom=%d old_prom=%d auid=%u",
2736 dev->name, (dev->flags & IFF_PROMISC),
2737 (old_flags & IFF_PROMISC),
2738 audit_get_loginuid(current->audit_context));
2739
2740 if (dev->change_rx_flags)
2741 dev->change_rx_flags(dev, IFF_PROMISC);
2742 }
2743 }
2744
2745 /**
2746 * dev_set_promiscuity - update promiscuity count on a device
2747 * @dev: device
2748 * @inc: modifier
2749 *
2750 * Add or remove promiscuity from a device. While the count in the device
2751 * remains above zero the interface remains promiscuous. Once it hits zero
2752 * the device reverts back to normal filtering operation. A negative inc
2753 * value is used to drop promiscuity on the device.
2754 */
2755 void dev_set_promiscuity(struct net_device *dev, int inc)
2756 {
2757 unsigned short old_flags = dev->flags;
2758
2759 __dev_set_promiscuity(dev, inc);
2760 if (dev->flags != old_flags)
2761 dev_set_rx_mode(dev);
2762 }
2763
2764 /**
2765 * dev_set_allmulti - update allmulti count on a device
2766 * @dev: device
2767 * @inc: modifier
2768 *
2769 * Add or remove reception of all multicast frames to a device. While the
2770 * count in the device remains above zero the interface remains listening
2771 * to all interfaces. Once it hits zero the device reverts back to normal
2772 * filtering operation. A negative @inc value is used to drop the counter
2773 * when releasing a resource needing all multicasts.
2774 */
2775
2776 void dev_set_allmulti(struct net_device *dev, int inc)
2777 {
2778 unsigned short old_flags = dev->flags;
2779
2780 ASSERT_RTNL();
2781
2782 dev->flags |= IFF_ALLMULTI;
2783 if ((dev->allmulti += inc) == 0)
2784 dev->flags &= ~IFF_ALLMULTI;
2785 if (dev->flags ^ old_flags) {
2786 if (dev->change_rx_flags)
2787 dev->change_rx_flags(dev, IFF_ALLMULTI);
2788 dev_set_rx_mode(dev);
2789 }
2790 }
2791
2792 /*
2793 * Upload unicast and multicast address lists to device and
2794 * configure RX filtering. When the device doesn't support unicast
2795 * filtering it is put in promiscous mode while unicast addresses
2796 * are present.
2797 */
2798 void __dev_set_rx_mode(struct net_device *dev)
2799 {
2800 /* dev_open will call this function so the list will stay sane. */
2801 if (!(dev->flags&IFF_UP))
2802 return;
2803
2804 if (!netif_device_present(dev))
2805 return;
2806
2807 if (dev->set_rx_mode)
2808 dev->set_rx_mode(dev);
2809 else {
2810 /* Unicast addresses changes may only happen under the rtnl,
2811 * therefore calling __dev_set_promiscuity here is safe.
2812 */
2813 if (dev->uc_count > 0 && !dev->uc_promisc) {
2814 __dev_set_promiscuity(dev, 1);
2815 dev->uc_promisc = 1;
2816 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2817 __dev_set_promiscuity(dev, -1);
2818 dev->uc_promisc = 0;
2819 }
2820
2821 if (dev->set_multicast_list)
2822 dev->set_multicast_list(dev);
2823 }
2824 }
2825
2826 void dev_set_rx_mode(struct net_device *dev)
2827 {
2828 netif_tx_lock_bh(dev);
2829 __dev_set_rx_mode(dev);
2830 netif_tx_unlock_bh(dev);
2831 }
2832
2833 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2834 void *addr, int alen, int glbl)
2835 {
2836 struct dev_addr_list *da;
2837
2838 for (; (da = *list) != NULL; list = &da->next) {
2839 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2840 alen == da->da_addrlen) {
2841 if (glbl) {
2842 int old_glbl = da->da_gusers;
2843 da->da_gusers = 0;
2844 if (old_glbl == 0)
2845 break;
2846 }
2847 if (--da->da_users)
2848 return 0;
2849
2850 *list = da->next;
2851 kfree(da);
2852 (*count)--;
2853 return 0;
2854 }
2855 }
2856 return -ENOENT;
2857 }
2858
2859 int __dev_addr_add(struct dev_addr_list **list, int *count,
2860 void *addr, int alen, int glbl)
2861 {
2862 struct dev_addr_list *da;
2863
2864 for (da = *list; da != NULL; da = da->next) {
2865 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2866 da->da_addrlen == alen) {
2867 if (glbl) {
2868 int old_glbl = da->da_gusers;
2869 da->da_gusers = 1;
2870 if (old_glbl)
2871 return 0;
2872 }
2873 da->da_users++;
2874 return 0;
2875 }
2876 }
2877
2878 da = kmalloc(sizeof(*da), GFP_ATOMIC);
2879 if (da == NULL)
2880 return -ENOMEM;
2881 memcpy(da->da_addr, addr, alen);
2882 da->da_addrlen = alen;
2883 da->da_users = 1;
2884 da->da_gusers = glbl ? 1 : 0;
2885 da->next = *list;
2886 *list = da;
2887 (*count)++;
2888 return 0;
2889 }
2890
2891 /**
2892 * dev_unicast_delete - Release secondary unicast address.
2893 * @dev: device
2894 * @addr: address to delete
2895 * @alen: length of @addr
2896 *
2897 * Release reference to a secondary unicast address and remove it
2898 * from the device if the reference count drops to zero.
2899 *
2900 * The caller must hold the rtnl_mutex.
2901 */
2902 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2903 {
2904 int err;
2905
2906 ASSERT_RTNL();
2907
2908 netif_tx_lock_bh(dev);
2909 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2910 if (!err)
2911 __dev_set_rx_mode(dev);
2912 netif_tx_unlock_bh(dev);
2913 return err;
2914 }
2915 EXPORT_SYMBOL(dev_unicast_delete);
2916
2917 /**
2918 * dev_unicast_add - add a secondary unicast address
2919 * @dev: device
2920 * @addr: address to delete
2921 * @alen: length of @addr
2922 *
2923 * Add a secondary unicast address to the device or increase
2924 * the reference count if it already exists.
2925 *
2926 * The caller must hold the rtnl_mutex.
2927 */
2928 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2929 {
2930 int err;
2931
2932 ASSERT_RTNL();
2933
2934 netif_tx_lock_bh(dev);
2935 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2936 if (!err)
2937 __dev_set_rx_mode(dev);
2938 netif_tx_unlock_bh(dev);
2939 return err;
2940 }
2941 EXPORT_SYMBOL(dev_unicast_add);
2942
2943 static void __dev_addr_discard(struct dev_addr_list **list)
2944 {
2945 struct dev_addr_list *tmp;
2946
2947 while (*list != NULL) {
2948 tmp = *list;
2949 *list = tmp->next;
2950 if (tmp->da_users > tmp->da_gusers)
2951 printk("__dev_addr_discard: address leakage! "
2952 "da_users=%d\n", tmp->da_users);
2953 kfree(tmp);
2954 }
2955 }
2956
2957 static void dev_addr_discard(struct net_device *dev)
2958 {
2959 netif_tx_lock_bh(dev);
2960
2961 __dev_addr_discard(&dev->uc_list);
2962 dev->uc_count = 0;
2963
2964 __dev_addr_discard(&dev->mc_list);
2965 dev->mc_count = 0;
2966
2967 netif_tx_unlock_bh(dev);
2968 }
2969
2970 unsigned dev_get_flags(const struct net_device *dev)
2971 {
2972 unsigned flags;
2973
2974 flags = (dev->flags & ~(IFF_PROMISC |
2975 IFF_ALLMULTI |
2976 IFF_RUNNING |
2977 IFF_LOWER_UP |
2978 IFF_DORMANT)) |
2979 (dev->gflags & (IFF_PROMISC |
2980 IFF_ALLMULTI));
2981
2982 if (netif_running(dev)) {
2983 if (netif_oper_up(dev))
2984 flags |= IFF_RUNNING;
2985 if (netif_carrier_ok(dev))
2986 flags |= IFF_LOWER_UP;
2987 if (netif_dormant(dev))
2988 flags |= IFF_DORMANT;
2989 }
2990
2991 return flags;
2992 }
2993
2994 int dev_change_flags(struct net_device *dev, unsigned flags)
2995 {
2996 int ret, changes;
2997 int old_flags = dev->flags;
2998
2999 ASSERT_RTNL();
3000
3001 /*
3002 * Set the flags on our device.
3003 */
3004
3005 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3006 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3007 IFF_AUTOMEDIA)) |
3008 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3009 IFF_ALLMULTI));
3010
3011 /*
3012 * Load in the correct multicast list now the flags have changed.
3013 */
3014
3015 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3016 dev->change_rx_flags(dev, IFF_MULTICAST);
3017
3018 dev_set_rx_mode(dev);
3019
3020 /*
3021 * Have we downed the interface. We handle IFF_UP ourselves
3022 * according to user attempts to set it, rather than blindly
3023 * setting it.
3024 */
3025
3026 ret = 0;
3027 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3028 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3029
3030 if (!ret)
3031 dev_set_rx_mode(dev);
3032 }
3033
3034 if (dev->flags & IFF_UP &&
3035 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3036 IFF_VOLATILE)))
3037 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3038
3039 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3040 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3041 dev->gflags ^= IFF_PROMISC;
3042 dev_set_promiscuity(dev, inc);
3043 }
3044
3045 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3046 is important. Some (broken) drivers set IFF_PROMISC, when
3047 IFF_ALLMULTI is requested not asking us and not reporting.
3048 */
3049 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3050 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3051 dev->gflags ^= IFF_ALLMULTI;
3052 dev_set_allmulti(dev, inc);
3053 }
3054
3055 /* Exclude state transition flags, already notified */
3056 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3057 if (changes)
3058 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3059
3060 return ret;
3061 }
3062
3063 int dev_set_mtu(struct net_device *dev, int new_mtu)
3064 {
3065 int err;
3066
3067 if (new_mtu == dev->mtu)
3068 return 0;
3069
3070 /* MTU must be positive. */
3071 if (new_mtu < 0)
3072 return -EINVAL;
3073
3074 if (!netif_device_present(dev))
3075 return -ENODEV;
3076
3077 err = 0;
3078 if (dev->change_mtu)
3079 err = dev->change_mtu(dev, new_mtu);
3080 else
3081 dev->mtu = new_mtu;
3082 if (!err && dev->flags & IFF_UP)
3083 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3084 return err;
3085 }
3086
3087 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3088 {
3089 int err;
3090
3091 if (!dev->set_mac_address)
3092 return -EOPNOTSUPP;
3093 if (sa->sa_family != dev->type)
3094 return -EINVAL;
3095 if (!netif_device_present(dev))
3096 return -ENODEV;
3097 err = dev->set_mac_address(dev, sa);
3098 if (!err)
3099 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3100 return err;
3101 }
3102
3103 /*
3104 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3105 */
3106 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3107 {
3108 int err;
3109 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3110
3111 if (!dev)
3112 return -ENODEV;
3113
3114 switch (cmd) {
3115 case SIOCGIFFLAGS: /* Get interface flags */
3116 ifr->ifr_flags = dev_get_flags(dev);
3117 return 0;
3118
3119 case SIOCGIFMETRIC: /* Get the metric on the interface
3120 (currently unused) */
3121 ifr->ifr_metric = 0;
3122 return 0;
3123
3124 case SIOCGIFMTU: /* Get the MTU of a device */
3125 ifr->ifr_mtu = dev->mtu;
3126 return 0;
3127
3128 case SIOCGIFHWADDR:
3129 if (!dev->addr_len)
3130 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3131 else
3132 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3133 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3134 ifr->ifr_hwaddr.sa_family = dev->type;
3135 return 0;
3136
3137 case SIOCGIFSLAVE:
3138 err = -EINVAL;
3139 break;
3140
3141 case SIOCGIFMAP:
3142 ifr->ifr_map.mem_start = dev->mem_start;
3143 ifr->ifr_map.mem_end = dev->mem_end;
3144 ifr->ifr_map.base_addr = dev->base_addr;
3145 ifr->ifr_map.irq = dev->irq;
3146 ifr->ifr_map.dma = dev->dma;
3147 ifr->ifr_map.port = dev->if_port;
3148 return 0;
3149
3150 case SIOCGIFINDEX:
3151 ifr->ifr_ifindex = dev->ifindex;
3152 return 0;
3153
3154 case SIOCGIFTXQLEN:
3155 ifr->ifr_qlen = dev->tx_queue_len;
3156 return 0;
3157
3158 default:
3159 /* dev_ioctl() should ensure this case
3160 * is never reached
3161 */
3162 WARN_ON(1);
3163 err = -EINVAL;
3164 break;
3165
3166 }
3167 return err;
3168 }
3169
3170 /*
3171 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3172 */
3173 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3174 {
3175 int err;
3176 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3177
3178 if (!dev)
3179 return -ENODEV;
3180
3181 switch (cmd) {
3182 case SIOCSIFFLAGS: /* Set interface flags */
3183 return dev_change_flags(dev, ifr->ifr_flags);
3184
3185 case SIOCSIFMETRIC: /* Set the metric on the interface
3186 (currently unused) */
3187 return -EOPNOTSUPP;
3188
3189 case SIOCSIFMTU: /* Set the MTU of a device */
3190 return dev_set_mtu(dev, ifr->ifr_mtu);
3191
3192 case SIOCSIFHWADDR:
3193 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3194
3195 case SIOCSIFHWBROADCAST:
3196 if (ifr->ifr_hwaddr.sa_family != dev->type)
3197 return -EINVAL;
3198 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3199 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3200 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3201 return 0;
3202
3203 case SIOCSIFMAP:
3204 if (dev->set_config) {
3205 if (!netif_device_present(dev))
3206 return -ENODEV;
3207 return dev->set_config(dev, &ifr->ifr_map);
3208 }
3209 return -EOPNOTSUPP;
3210
3211 case SIOCADDMULTI:
3212 if (!dev->set_multicast_list ||
3213 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3214 return -EINVAL;
3215 if (!netif_device_present(dev))
3216 return -ENODEV;
3217 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3218 dev->addr_len, 1);
3219
3220 case SIOCDELMULTI:
3221 if (!dev->set_multicast_list ||
3222 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3223 return -EINVAL;
3224 if (!netif_device_present(dev))
3225 return -ENODEV;
3226 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3227 dev->addr_len, 1);
3228
3229 case SIOCSIFTXQLEN:
3230 if (ifr->ifr_qlen < 0)
3231 return -EINVAL;
3232 dev->tx_queue_len = ifr->ifr_qlen;
3233 return 0;
3234
3235 case SIOCSIFNAME:
3236 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3237 return dev_change_name(dev, ifr->ifr_newname);
3238
3239 /*
3240 * Unknown or private ioctl
3241 */
3242
3243 default:
3244 if ((cmd >= SIOCDEVPRIVATE &&
3245 cmd <= SIOCDEVPRIVATE + 15) ||
3246 cmd == SIOCBONDENSLAVE ||
3247 cmd == SIOCBONDRELEASE ||
3248 cmd == SIOCBONDSETHWADDR ||
3249 cmd == SIOCBONDSLAVEINFOQUERY ||
3250 cmd == SIOCBONDINFOQUERY ||
3251 cmd == SIOCBONDCHANGEACTIVE ||
3252 cmd == SIOCGMIIPHY ||
3253 cmd == SIOCGMIIREG ||
3254 cmd == SIOCSMIIREG ||
3255 cmd == SIOCBRADDIF ||
3256 cmd == SIOCBRDELIF ||
3257 cmd == SIOCWANDEV) {
3258 err = -EOPNOTSUPP;
3259 if (dev->do_ioctl) {
3260 if (netif_device_present(dev))
3261 err = dev->do_ioctl(dev, ifr,
3262 cmd);
3263 else
3264 err = -ENODEV;
3265 }
3266 } else
3267 err = -EINVAL;
3268
3269 }
3270 return err;
3271 }
3272
3273 /*
3274 * This function handles all "interface"-type I/O control requests. The actual
3275 * 'doing' part of this is dev_ifsioc above.
3276 */
3277
3278 /**
3279 * dev_ioctl - network device ioctl
3280 * @net: the applicable net namespace
3281 * @cmd: command to issue
3282 * @arg: pointer to a struct ifreq in user space
3283 *
3284 * Issue ioctl functions to devices. This is normally called by the
3285 * user space syscall interfaces but can sometimes be useful for
3286 * other purposes. The return value is the return from the syscall if
3287 * positive or a negative errno code on error.
3288 */
3289
3290 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3291 {
3292 struct ifreq ifr;
3293 int ret;
3294 char *colon;
3295
3296 /* One special case: SIOCGIFCONF takes ifconf argument
3297 and requires shared lock, because it sleeps writing
3298 to user space.
3299 */
3300
3301 if (cmd == SIOCGIFCONF) {
3302 rtnl_lock();
3303 ret = dev_ifconf(net, (char __user *) arg);
3304 rtnl_unlock();
3305 return ret;
3306 }
3307 if (cmd == SIOCGIFNAME)
3308 return dev_ifname(net, (struct ifreq __user *)arg);
3309
3310 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3311 return -EFAULT;
3312
3313 ifr.ifr_name[IFNAMSIZ-1] = 0;
3314
3315 colon = strchr(ifr.ifr_name, ':');
3316 if (colon)
3317 *colon = 0;
3318
3319 /*
3320 * See which interface the caller is talking about.
3321 */
3322
3323 switch (cmd) {
3324 /*
3325 * These ioctl calls:
3326 * - can be done by all.
3327 * - atomic and do not require locking.
3328 * - return a value
3329 */
3330 case SIOCGIFFLAGS:
3331 case SIOCGIFMETRIC:
3332 case SIOCGIFMTU:
3333 case SIOCGIFHWADDR:
3334 case SIOCGIFSLAVE:
3335 case SIOCGIFMAP:
3336 case SIOCGIFINDEX:
3337 case SIOCGIFTXQLEN:
3338 dev_load(net, ifr.ifr_name);
3339 read_lock(&dev_base_lock);
3340 ret = dev_ifsioc_locked(net, &ifr, cmd);
3341 read_unlock(&dev_base_lock);
3342 if (!ret) {
3343 if (colon)
3344 *colon = ':';
3345 if (copy_to_user(arg, &ifr,
3346 sizeof(struct ifreq)))
3347 ret = -EFAULT;
3348 }
3349 return ret;
3350
3351 case SIOCETHTOOL:
3352 dev_load(net, ifr.ifr_name);
3353 rtnl_lock();
3354 ret = dev_ethtool(net, &ifr);
3355 rtnl_unlock();
3356 if (!ret) {
3357 if (colon)
3358 *colon = ':';
3359 if (copy_to_user(arg, &ifr,
3360 sizeof(struct ifreq)))
3361 ret = -EFAULT;
3362 }
3363 return ret;
3364
3365 /*
3366 * These ioctl calls:
3367 * - require superuser power.
3368 * - require strict serialization.
3369 * - return a value
3370 */
3371 case SIOCGMIIPHY:
3372 case SIOCGMIIREG:
3373 case SIOCSIFNAME:
3374 if (!capable(CAP_NET_ADMIN))
3375 return -EPERM;
3376 dev_load(net, ifr.ifr_name);
3377 rtnl_lock();
3378 ret = dev_ifsioc(net, &ifr, cmd);
3379 rtnl_unlock();
3380 if (!ret) {
3381 if (colon)
3382 *colon = ':';
3383 if (copy_to_user(arg, &ifr,
3384 sizeof(struct ifreq)))
3385 ret = -EFAULT;
3386 }
3387 return ret;
3388
3389 /*
3390 * These ioctl calls:
3391 * - require superuser power.
3392 * - require strict serialization.
3393 * - do not return a value
3394 */
3395 case SIOCSIFFLAGS:
3396 case SIOCSIFMETRIC:
3397 case SIOCSIFMTU:
3398 case SIOCSIFMAP:
3399 case SIOCSIFHWADDR:
3400 case SIOCSIFSLAVE:
3401 case SIOCADDMULTI:
3402 case SIOCDELMULTI:
3403 case SIOCSIFHWBROADCAST:
3404 case SIOCSIFTXQLEN:
3405 case SIOCSMIIREG:
3406 case SIOCBONDENSLAVE:
3407 case SIOCBONDRELEASE:
3408 case SIOCBONDSETHWADDR:
3409 case SIOCBONDCHANGEACTIVE:
3410 case SIOCBRADDIF:
3411 case SIOCBRDELIF:
3412 if (!capable(CAP_NET_ADMIN))
3413 return -EPERM;
3414 /* fall through */
3415 case SIOCBONDSLAVEINFOQUERY:
3416 case SIOCBONDINFOQUERY:
3417 dev_load(net, ifr.ifr_name);
3418 rtnl_lock();
3419 ret = dev_ifsioc(net, &ifr, cmd);
3420 rtnl_unlock();
3421 return ret;
3422
3423 case SIOCGIFMEM:
3424 /* Get the per device memory space. We can add this but
3425 * currently do not support it */
3426 case SIOCSIFMEM:
3427 /* Set the per device memory buffer space.
3428 * Not applicable in our case */
3429 case SIOCSIFLINK:
3430 return -EINVAL;
3431
3432 /*
3433 * Unknown or private ioctl.
3434 */
3435 default:
3436 if (cmd == SIOCWANDEV ||
3437 (cmd >= SIOCDEVPRIVATE &&
3438 cmd <= SIOCDEVPRIVATE + 15)) {
3439 dev_load(net, ifr.ifr_name);
3440 rtnl_lock();
3441 ret = dev_ifsioc(net, &ifr, cmd);
3442 rtnl_unlock();
3443 if (!ret && copy_to_user(arg, &ifr,
3444 sizeof(struct ifreq)))
3445 ret = -EFAULT;
3446 return ret;
3447 }
3448 /* Take care of Wireless Extensions */
3449 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3450 return wext_handle_ioctl(net, &ifr, cmd, arg);
3451 return -EINVAL;
3452 }
3453 }
3454
3455
3456 /**
3457 * dev_new_index - allocate an ifindex
3458 * @net: the applicable net namespace
3459 *
3460 * Returns a suitable unique value for a new device interface
3461 * number. The caller must hold the rtnl semaphore or the
3462 * dev_base_lock to be sure it remains unique.
3463 */
3464 static int dev_new_index(struct net *net)
3465 {
3466 static int ifindex;
3467 for (;;) {
3468 if (++ifindex <= 0)
3469 ifindex = 1;
3470 if (!__dev_get_by_index(net, ifindex))
3471 return ifindex;
3472 }
3473 }
3474
3475 /* Delayed registration/unregisteration */
3476 static DEFINE_SPINLOCK(net_todo_list_lock);
3477 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3478
3479 static void net_set_todo(struct net_device *dev)
3480 {
3481 spin_lock(&net_todo_list_lock);
3482 list_add_tail(&dev->todo_list, &net_todo_list);
3483 spin_unlock(&net_todo_list_lock);
3484 }
3485
3486 /**
3487 * register_netdevice - register a network device
3488 * @dev: device to register
3489 *
3490 * Take a completed network device structure and add it to the kernel
3491 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3492 * chain. 0 is returned on success. A negative errno code is returned
3493 * on a failure to set up the device, or if the name is a duplicate.
3494 *
3495 * Callers must hold the rtnl semaphore. You may want
3496 * register_netdev() instead of this.
3497 *
3498 * BUGS:
3499 * The locking appears insufficient to guarantee two parallel registers
3500 * will not get the same name.
3501 */
3502
3503 int register_netdevice(struct net_device *dev)
3504 {
3505 struct hlist_head *head;
3506 struct hlist_node *p;
3507 int ret;
3508 struct net *net;
3509
3510 BUG_ON(dev_boot_phase);
3511 ASSERT_RTNL();
3512
3513 might_sleep();
3514
3515 /* When net_device's are persistent, this will be fatal. */
3516 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3517 BUG_ON(!dev->nd_net);
3518 net = dev->nd_net;
3519
3520 spin_lock_init(&dev->queue_lock);
3521 spin_lock_init(&dev->_xmit_lock);
3522 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3523 dev->xmit_lock_owner = -1;
3524 spin_lock_init(&dev->ingress_lock);
3525
3526 dev->iflink = -1;
3527
3528 /* Init, if this function is available */
3529 if (dev->init) {
3530 ret = dev->init(dev);
3531 if (ret) {
3532 if (ret > 0)
3533 ret = -EIO;
3534 goto out;
3535 }
3536 }
3537
3538 if (!dev_valid_name(dev->name)) {
3539 ret = -EINVAL;
3540 goto err_uninit;
3541 }
3542
3543 dev->ifindex = dev_new_index(net);
3544 if (dev->iflink == -1)
3545 dev->iflink = dev->ifindex;
3546
3547 /* Check for existence of name */
3548 head = dev_name_hash(net, dev->name);
3549 hlist_for_each(p, head) {
3550 struct net_device *d
3551 = hlist_entry(p, struct net_device, name_hlist);
3552 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3553 ret = -EEXIST;
3554 goto err_uninit;
3555 }
3556 }
3557
3558 /* Fix illegal checksum combinations */
3559 if ((dev->features & NETIF_F_HW_CSUM) &&
3560 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3561 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3562 dev->name);
3563 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3564 }
3565
3566 if ((dev->features & NETIF_F_NO_CSUM) &&
3567 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3568 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3569 dev->name);
3570 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3571 }
3572
3573
3574 /* Fix illegal SG+CSUM combinations. */
3575 if ((dev->features & NETIF_F_SG) &&
3576 !(dev->features & NETIF_F_ALL_CSUM)) {
3577 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3578 dev->name);
3579 dev->features &= ~NETIF_F_SG;
3580 }
3581
3582 /* TSO requires that SG is present as well. */
3583 if ((dev->features & NETIF_F_TSO) &&
3584 !(dev->features & NETIF_F_SG)) {
3585 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3586 dev->name);
3587 dev->features &= ~NETIF_F_TSO;
3588 }
3589 if (dev->features & NETIF_F_UFO) {
3590 if (!(dev->features & NETIF_F_HW_CSUM)) {
3591 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3592 "NETIF_F_HW_CSUM feature.\n",
3593 dev->name);
3594 dev->features &= ~NETIF_F_UFO;
3595 }
3596 if (!(dev->features & NETIF_F_SG)) {
3597 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3598 "NETIF_F_SG feature.\n",
3599 dev->name);
3600 dev->features &= ~NETIF_F_UFO;
3601 }
3602 }
3603
3604 ret = netdev_register_kobject(dev);
3605 if (ret)
3606 goto err_uninit;
3607 dev->reg_state = NETREG_REGISTERED;
3608
3609 /*
3610 * Default initial state at registry is that the
3611 * device is present.
3612 */
3613
3614 set_bit(__LINK_STATE_PRESENT, &dev->state);
3615
3616 dev_init_scheduler(dev);
3617 dev_hold(dev);
3618 list_netdevice(dev);
3619
3620 /* Notify protocols, that a new device appeared. */
3621 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3622 ret = notifier_to_errno(ret);
3623 if (ret)
3624 unregister_netdevice(dev);
3625
3626 out:
3627 return ret;
3628
3629 err_uninit:
3630 if (dev->uninit)
3631 dev->uninit(dev);
3632 goto out;
3633 }
3634
3635 /**
3636 * register_netdev - register a network device
3637 * @dev: device to register
3638 *
3639 * Take a completed network device structure and add it to the kernel
3640 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3641 * chain. 0 is returned on success. A negative errno code is returned
3642 * on a failure to set up the device, or if the name is a duplicate.
3643 *
3644 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3645 * and expands the device name if you passed a format string to
3646 * alloc_netdev.
3647 */
3648 int register_netdev(struct net_device *dev)
3649 {
3650 int err;
3651
3652 rtnl_lock();
3653
3654 /*
3655 * If the name is a format string the caller wants us to do a
3656 * name allocation.
3657 */
3658 if (strchr(dev->name, '%')) {
3659 err = dev_alloc_name(dev, dev->name);
3660 if (err < 0)
3661 goto out;
3662 }
3663
3664 err = register_netdevice(dev);
3665 out:
3666 rtnl_unlock();
3667 return err;
3668 }
3669 EXPORT_SYMBOL(register_netdev);
3670
3671 /*
3672 * netdev_wait_allrefs - wait until all references are gone.
3673 *
3674 * This is called when unregistering network devices.
3675 *
3676 * Any protocol or device that holds a reference should register
3677 * for netdevice notification, and cleanup and put back the
3678 * reference if they receive an UNREGISTER event.
3679 * We can get stuck here if buggy protocols don't correctly
3680 * call dev_put.
3681 */
3682 static void netdev_wait_allrefs(struct net_device *dev)
3683 {
3684 unsigned long rebroadcast_time, warning_time;
3685
3686 rebroadcast_time = warning_time = jiffies;
3687 while (atomic_read(&dev->refcnt) != 0) {
3688 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3689 rtnl_lock();
3690
3691 /* Rebroadcast unregister notification */
3692 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3693
3694 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3695 &dev->state)) {
3696 /* We must not have linkwatch events
3697 * pending on unregister. If this
3698 * happens, we simply run the queue
3699 * unscheduled, resulting in a noop
3700 * for this device.
3701 */
3702 linkwatch_run_queue();
3703 }
3704
3705 __rtnl_unlock();
3706
3707 rebroadcast_time = jiffies;
3708 }
3709
3710 msleep(250);
3711
3712 if (time_after(jiffies, warning_time + 10 * HZ)) {
3713 printk(KERN_EMERG "unregister_netdevice: "
3714 "waiting for %s to become free. Usage "
3715 "count = %d\n",
3716 dev->name, atomic_read(&dev->refcnt));
3717 warning_time = jiffies;
3718 }
3719 }
3720 }
3721
3722 /* The sequence is:
3723 *
3724 * rtnl_lock();
3725 * ...
3726 * register_netdevice(x1);
3727 * register_netdevice(x2);
3728 * ...
3729 * unregister_netdevice(y1);
3730 * unregister_netdevice(y2);
3731 * ...
3732 * rtnl_unlock();
3733 * free_netdev(y1);
3734 * free_netdev(y2);
3735 *
3736 * We are invoked by rtnl_unlock() after it drops the semaphore.
3737 * This allows us to deal with problems:
3738 * 1) We can delete sysfs objects which invoke hotplug
3739 * without deadlocking with linkwatch via keventd.
3740 * 2) Since we run with the RTNL semaphore not held, we can sleep
3741 * safely in order to wait for the netdev refcnt to drop to zero.
3742 */
3743 static DEFINE_MUTEX(net_todo_run_mutex);
3744 void netdev_run_todo(void)
3745 {
3746 struct list_head list;
3747
3748 /* Need to guard against multiple cpu's getting out of order. */
3749 mutex_lock(&net_todo_run_mutex);
3750
3751 /* Not safe to do outside the semaphore. We must not return
3752 * until all unregister events invoked by the local processor
3753 * have been completed (either by this todo run, or one on
3754 * another cpu).
3755 */
3756 if (list_empty(&net_todo_list))
3757 goto out;
3758
3759 /* Snapshot list, allow later requests */
3760 spin_lock(&net_todo_list_lock);
3761 list_replace_init(&net_todo_list, &list);
3762 spin_unlock(&net_todo_list_lock);
3763
3764 while (!list_empty(&list)) {
3765 struct net_device *dev
3766 = list_entry(list.next, struct net_device, todo_list);
3767 list_del(&dev->todo_list);
3768
3769 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3770 printk(KERN_ERR "network todo '%s' but state %d\n",
3771 dev->name, dev->reg_state);
3772 dump_stack();
3773 continue;
3774 }
3775
3776 dev->reg_state = NETREG_UNREGISTERED;
3777
3778 netdev_wait_allrefs(dev);
3779
3780 /* paranoia */
3781 BUG_ON(atomic_read(&dev->refcnt));
3782 BUG_TRAP(!dev->ip_ptr);
3783 BUG_TRAP(!dev->ip6_ptr);
3784 BUG_TRAP(!dev->dn_ptr);
3785
3786 if (dev->destructor)
3787 dev->destructor(dev);
3788
3789 /* Free network device */
3790 kobject_put(&dev->dev.kobj);
3791 }
3792
3793 out:
3794 mutex_unlock(&net_todo_run_mutex);
3795 }
3796
3797 static struct net_device_stats *internal_stats(struct net_device *dev)
3798 {
3799 return &dev->stats;
3800 }
3801
3802 /**
3803 * alloc_netdev_mq - allocate network device
3804 * @sizeof_priv: size of private data to allocate space for
3805 * @name: device name format string
3806 * @setup: callback to initialize device
3807 * @queue_count: the number of subqueues to allocate
3808 *
3809 * Allocates a struct net_device with private data area for driver use
3810 * and performs basic initialization. Also allocates subquue structs
3811 * for each queue on the device at the end of the netdevice.
3812 */
3813 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3814 void (*setup)(struct net_device *), unsigned int queue_count)
3815 {
3816 void *p;
3817 struct net_device *dev;
3818 int alloc_size;
3819
3820 BUG_ON(strlen(name) >= sizeof(dev->name));
3821
3822 /* ensure 32-byte alignment of both the device and private area */
3823 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
3824 (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
3825 ~NETDEV_ALIGN_CONST;
3826 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3827
3828 p = kzalloc(alloc_size, GFP_KERNEL);
3829 if (!p) {
3830 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3831 return NULL;
3832 }
3833
3834 dev = (struct net_device *)
3835 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3836 dev->padded = (char *)dev - (char *)p;
3837 dev->nd_net = &init_net;
3838
3839 if (sizeof_priv) {
3840 dev->priv = ((char *)dev +
3841 ((sizeof(struct net_device) +
3842 (sizeof(struct net_device_subqueue) *
3843 (queue_count - 1)) + NETDEV_ALIGN_CONST)
3844 & ~NETDEV_ALIGN_CONST));
3845 }
3846
3847 dev->egress_subqueue_count = queue_count;
3848
3849 dev->get_stats = internal_stats;
3850 netpoll_netdev_init(dev);
3851 setup(dev);
3852 strcpy(dev->name, name);
3853 return dev;
3854 }
3855 EXPORT_SYMBOL(alloc_netdev_mq);
3856
3857 /**
3858 * free_netdev - free network device
3859 * @dev: device
3860 *
3861 * This function does the last stage of destroying an allocated device
3862 * interface. The reference to the device object is released.
3863 * If this is the last reference then it will be freed.
3864 */
3865 void free_netdev(struct net_device *dev)
3866 {
3867 /* Compatibility with error handling in drivers */
3868 if (dev->reg_state == NETREG_UNINITIALIZED) {
3869 kfree((char *)dev - dev->padded);
3870 return;
3871 }
3872
3873 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3874 dev->reg_state = NETREG_RELEASED;
3875
3876 /* will free via device release */
3877 put_device(&dev->dev);
3878 }
3879
3880 /* Synchronize with packet receive processing. */
3881 void synchronize_net(void)
3882 {
3883 might_sleep();
3884 synchronize_rcu();
3885 }
3886
3887 /**
3888 * unregister_netdevice - remove device from the kernel
3889 * @dev: device
3890 *
3891 * This function shuts down a device interface and removes it
3892 * from the kernel tables. On success 0 is returned, on a failure
3893 * a negative errno code is returned.
3894 *
3895 * Callers must hold the rtnl semaphore. You may want
3896 * unregister_netdev() instead of this.
3897 */
3898
3899 void unregister_netdevice(struct net_device *dev)
3900 {
3901 BUG_ON(dev_boot_phase);
3902 ASSERT_RTNL();
3903
3904 /* Some devices call without registering for initialization unwind. */
3905 if (dev->reg_state == NETREG_UNINITIALIZED) {
3906 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3907 "was registered\n", dev->name, dev);
3908
3909 WARN_ON(1);
3910 return;
3911 }
3912
3913 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3914
3915 /* If device is running, close it first. */
3916 dev_close(dev);
3917
3918 /* And unlink it from device chain. */
3919 unlist_netdevice(dev);
3920
3921 dev->reg_state = NETREG_UNREGISTERING;
3922
3923 synchronize_net();
3924
3925 /* Shutdown queueing discipline. */
3926 dev_shutdown(dev);
3927
3928
3929 /* Notify protocols, that we are about to destroy
3930 this device. They should clean all the things.
3931 */
3932 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3933
3934 /*
3935 * Flush the unicast and multicast chains
3936 */
3937 dev_addr_discard(dev);
3938
3939 if (dev->uninit)
3940 dev->uninit(dev);
3941
3942 /* Notifier chain MUST detach us from master device. */
3943 BUG_TRAP(!dev->master);
3944
3945 /* Remove entries from kobject tree */
3946 netdev_unregister_kobject(dev);
3947
3948 /* Finish processing unregister after unlock */
3949 net_set_todo(dev);
3950
3951 synchronize_net();
3952
3953 dev_put(dev);
3954 }
3955
3956 /**
3957 * unregister_netdev - remove device from the kernel
3958 * @dev: device
3959 *
3960 * This function shuts down a device interface and removes it
3961 * from the kernel tables. On success 0 is returned, on a failure
3962 * a negative errno code is returned.
3963 *
3964 * This is just a wrapper for unregister_netdevice that takes
3965 * the rtnl semaphore. In general you want to use this and not
3966 * unregister_netdevice.
3967 */
3968 void unregister_netdev(struct net_device *dev)
3969 {
3970 rtnl_lock();
3971 unregister_netdevice(dev);
3972 rtnl_unlock();
3973 }
3974
3975 EXPORT_SYMBOL(unregister_netdev);
3976
3977 /**
3978 * dev_change_net_namespace - move device to different nethost namespace
3979 * @dev: device
3980 * @net: network namespace
3981 * @pat: If not NULL name pattern to try if the current device name
3982 * is already taken in the destination network namespace.
3983 *
3984 * This function shuts down a device interface and moves it
3985 * to a new network namespace. On success 0 is returned, on
3986 * a failure a netagive errno code is returned.
3987 *
3988 * Callers must hold the rtnl semaphore.
3989 */
3990
3991 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
3992 {
3993 char buf[IFNAMSIZ];
3994 const char *destname;
3995 int err;
3996
3997 ASSERT_RTNL();
3998
3999 /* Don't allow namespace local devices to be moved. */
4000 err = -EINVAL;
4001 if (dev->features & NETIF_F_NETNS_LOCAL)
4002 goto out;
4003
4004 /* Ensure the device has been registrered */
4005 err = -EINVAL;
4006 if (dev->reg_state != NETREG_REGISTERED)
4007 goto out;
4008
4009 /* Get out if there is nothing todo */
4010 err = 0;
4011 if (dev->nd_net == net)
4012 goto out;
4013
4014 /* Pick the destination device name, and ensure
4015 * we can use it in the destination network namespace.
4016 */
4017 err = -EEXIST;
4018 destname = dev->name;
4019 if (__dev_get_by_name(net, destname)) {
4020 /* We get here if we can't use the current device name */
4021 if (!pat)
4022 goto out;
4023 if (!dev_valid_name(pat))
4024 goto out;
4025 if (strchr(pat, '%')) {
4026 if (__dev_alloc_name(net, pat, buf) < 0)
4027 goto out;
4028 destname = buf;
4029 } else
4030 destname = pat;
4031 if (__dev_get_by_name(net, destname))
4032 goto out;
4033 }
4034
4035 /*
4036 * And now a mini version of register_netdevice unregister_netdevice.
4037 */
4038
4039 /* If device is running close it first. */
4040 dev_close(dev);
4041
4042 /* And unlink it from device chain */
4043 err = -ENODEV;
4044 unlist_netdevice(dev);
4045
4046 synchronize_net();
4047
4048 /* Shutdown queueing discipline. */
4049 dev_shutdown(dev);
4050
4051 /* Notify protocols, that we are about to destroy
4052 this device. They should clean all the things.
4053 */
4054 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4055
4056 /*
4057 * Flush the unicast and multicast chains
4058 */
4059 dev_addr_discard(dev);
4060
4061 /* Actually switch the network namespace */
4062 dev->nd_net = net;
4063
4064 /* Assign the new device name */
4065 if (destname != dev->name)
4066 strcpy(dev->name, destname);
4067
4068 /* If there is an ifindex conflict assign a new one */
4069 if (__dev_get_by_index(net, dev->ifindex)) {
4070 int iflink = (dev->iflink == dev->ifindex);
4071 dev->ifindex = dev_new_index(net);
4072 if (iflink)
4073 dev->iflink = dev->ifindex;
4074 }
4075
4076 /* Fixup kobjects */
4077 err = device_rename(&dev->dev, dev->name);
4078 WARN_ON(err);
4079
4080 /* Add the device back in the hashes */
4081 list_netdevice(dev);
4082
4083 /* Notify protocols, that a new device appeared. */
4084 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4085
4086 synchronize_net();
4087 err = 0;
4088 out:
4089 return err;
4090 }
4091
4092 static int dev_cpu_callback(struct notifier_block *nfb,
4093 unsigned long action,
4094 void *ocpu)
4095 {
4096 struct sk_buff **list_skb;
4097 struct net_device **list_net;
4098 struct sk_buff *skb;
4099 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4100 struct softnet_data *sd, *oldsd;
4101
4102 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4103 return NOTIFY_OK;
4104
4105 local_irq_disable();
4106 cpu = smp_processor_id();
4107 sd = &per_cpu(softnet_data, cpu);
4108 oldsd = &per_cpu(softnet_data, oldcpu);
4109
4110 /* Find end of our completion_queue. */
4111 list_skb = &sd->completion_queue;
4112 while (*list_skb)
4113 list_skb = &(*list_skb)->next;
4114 /* Append completion queue from offline CPU. */
4115 *list_skb = oldsd->completion_queue;
4116 oldsd->completion_queue = NULL;
4117
4118 /* Find end of our output_queue. */
4119 list_net = &sd->output_queue;
4120 while (*list_net)
4121 list_net = &(*list_net)->next_sched;
4122 /* Append output queue from offline CPU. */
4123 *list_net = oldsd->output_queue;
4124 oldsd->output_queue = NULL;
4125
4126 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4127 local_irq_enable();
4128
4129 /* Process offline CPU's input_pkt_queue */
4130 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4131 netif_rx(skb);
4132
4133 return NOTIFY_OK;
4134 }
4135
4136 #ifdef CONFIG_NET_DMA
4137 /**
4138 * net_dma_rebalance - try to maintain one DMA channel per CPU
4139 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4140 *
4141 * This is called when the number of channels allocated to the net_dma client
4142 * changes. The net_dma client tries to have one DMA channel per CPU.
4143 */
4144
4145 static void net_dma_rebalance(struct net_dma *net_dma)
4146 {
4147 unsigned int cpu, i, n, chan_idx;
4148 struct dma_chan *chan;
4149
4150 if (cpus_empty(net_dma->channel_mask)) {
4151 for_each_online_cpu(cpu)
4152 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4153 return;
4154 }
4155
4156 i = 0;
4157 cpu = first_cpu(cpu_online_map);
4158
4159 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4160 chan = net_dma->channels[chan_idx];
4161
4162 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4163 + (i < (num_online_cpus() %
4164 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4165
4166 while(n) {
4167 per_cpu(softnet_data, cpu).net_dma = chan;
4168 cpu = next_cpu(cpu, cpu_online_map);
4169 n--;
4170 }
4171 i++;
4172 }
4173 }
4174
4175 /**
4176 * netdev_dma_event - event callback for the net_dma_client
4177 * @client: should always be net_dma_client
4178 * @chan: DMA channel for the event
4179 * @state: DMA state to be handled
4180 */
4181 static enum dma_state_client
4182 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4183 enum dma_state state)
4184 {
4185 int i, found = 0, pos = -1;
4186 struct net_dma *net_dma =
4187 container_of(client, struct net_dma, client);
4188 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4189
4190 spin_lock(&net_dma->lock);
4191 switch (state) {
4192 case DMA_RESOURCE_AVAILABLE:
4193 for (i = 0; i < NR_CPUS; i++)
4194 if (net_dma->channels[i] == chan) {
4195 found = 1;
4196 break;
4197 } else if (net_dma->channels[i] == NULL && pos < 0)
4198 pos = i;
4199
4200 if (!found && pos >= 0) {
4201 ack = DMA_ACK;
4202 net_dma->channels[pos] = chan;
4203 cpu_set(pos, net_dma->channel_mask);
4204 net_dma_rebalance(net_dma);
4205 }
4206 break;
4207 case DMA_RESOURCE_REMOVED:
4208 for (i = 0; i < NR_CPUS; i++)
4209 if (net_dma->channels[i] == chan) {
4210 found = 1;
4211 pos = i;
4212 break;
4213 }
4214
4215 if (found) {
4216 ack = DMA_ACK;
4217 cpu_clear(pos, net_dma->channel_mask);
4218 net_dma->channels[i] = NULL;
4219 net_dma_rebalance(net_dma);
4220 }
4221 break;
4222 default:
4223 break;
4224 }
4225 spin_unlock(&net_dma->lock);
4226
4227 return ack;
4228 }
4229
4230 /**
4231 * netdev_dma_regiser - register the networking subsystem as a DMA client
4232 */
4233 static int __init netdev_dma_register(void)
4234 {
4235 spin_lock_init(&net_dma.lock);
4236 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4237 dma_async_client_register(&net_dma.client);
4238 dma_async_client_chan_request(&net_dma.client);
4239 return 0;
4240 }
4241
4242 #else
4243 static int __init netdev_dma_register(void) { return -ENODEV; }
4244 #endif /* CONFIG_NET_DMA */
4245
4246 /**
4247 * netdev_compute_feature - compute conjunction of two feature sets
4248 * @all: first feature set
4249 * @one: second feature set
4250 *
4251 * Computes a new feature set after adding a device with feature set
4252 * @one to the master device with current feature set @all. Returns
4253 * the new feature set.
4254 */
4255 int netdev_compute_features(unsigned long all, unsigned long one)
4256 {
4257 /* if device needs checksumming, downgrade to hw checksumming */
4258 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4259 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4260
4261 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4262 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4263 all ^= NETIF_F_HW_CSUM
4264 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4265
4266 if (one & NETIF_F_GSO)
4267 one |= NETIF_F_GSO_SOFTWARE;
4268 one |= NETIF_F_GSO;
4269
4270 /* If even one device supports robust GSO, enable it for all. */
4271 if (one & NETIF_F_GSO_ROBUST)
4272 all |= NETIF_F_GSO_ROBUST;
4273
4274 all &= one | NETIF_F_LLTX;
4275
4276 if (!(all & NETIF_F_ALL_CSUM))
4277 all &= ~NETIF_F_SG;
4278 if (!(all & NETIF_F_SG))
4279 all &= ~NETIF_F_GSO_MASK;
4280
4281 return all;
4282 }
4283 EXPORT_SYMBOL(netdev_compute_features);
4284
4285 static struct hlist_head *netdev_create_hash(void)
4286 {
4287 int i;
4288 struct hlist_head *hash;
4289
4290 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4291 if (hash != NULL)
4292 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4293 INIT_HLIST_HEAD(&hash[i]);
4294
4295 return hash;
4296 }
4297
4298 /* Initialize per network namespace state */
4299 static int __net_init netdev_init(struct net *net)
4300 {
4301 INIT_LIST_HEAD(&net->dev_base_head);
4302 rwlock_init(&dev_base_lock);
4303
4304 net->dev_name_head = netdev_create_hash();
4305 if (net->dev_name_head == NULL)
4306 goto err_name;
4307
4308 net->dev_index_head = netdev_create_hash();
4309 if (net->dev_index_head == NULL)
4310 goto err_idx;
4311
4312 return 0;
4313
4314 err_idx:
4315 kfree(net->dev_name_head);
4316 err_name:
4317 return -ENOMEM;
4318 }
4319
4320 static void __net_exit netdev_exit(struct net *net)
4321 {
4322 kfree(net->dev_name_head);
4323 kfree(net->dev_index_head);
4324 }
4325
4326 static struct pernet_operations __net_initdata netdev_net_ops = {
4327 .init = netdev_init,
4328 .exit = netdev_exit,
4329 };
4330
4331 static void __net_exit default_device_exit(struct net *net)
4332 {
4333 struct net_device *dev, *next;
4334 /*
4335 * Push all migratable of the network devices back to the
4336 * initial network namespace
4337 */
4338 rtnl_lock();
4339 for_each_netdev_safe(net, dev, next) {
4340 int err;
4341
4342 /* Ignore unmoveable devices (i.e. loopback) */
4343 if (dev->features & NETIF_F_NETNS_LOCAL)
4344 continue;
4345
4346 /* Push remaing network devices to init_net */
4347 err = dev_change_net_namespace(dev, &init_net, "dev%d");
4348 if (err) {
4349 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4350 __func__, dev->name, err);
4351 unregister_netdevice(dev);
4352 }
4353 }
4354 rtnl_unlock();
4355 }
4356
4357 static struct pernet_operations __net_initdata default_device_ops = {
4358 .exit = default_device_exit,
4359 };
4360
4361 /*
4362 * Initialize the DEV module. At boot time this walks the device list and
4363 * unhooks any devices that fail to initialise (normally hardware not
4364 * present) and leaves us with a valid list of present and active devices.
4365 *
4366 */
4367
4368 /*
4369 * This is called single threaded during boot, so no need
4370 * to take the rtnl semaphore.
4371 */
4372 static int __init net_dev_init(void)
4373 {
4374 int i, rc = -ENOMEM;
4375
4376 BUG_ON(!dev_boot_phase);
4377
4378 if (dev_proc_init())
4379 goto out;
4380
4381 if (netdev_kobject_init())
4382 goto out;
4383
4384 INIT_LIST_HEAD(&ptype_all);
4385 for (i = 0; i < 16; i++)
4386 INIT_LIST_HEAD(&ptype_base[i]);
4387
4388 if (register_pernet_subsys(&netdev_net_ops))
4389 goto out;
4390
4391 if (register_pernet_device(&default_device_ops))
4392 goto out;
4393
4394 /*
4395 * Initialise the packet receive queues.
4396 */
4397
4398 for_each_possible_cpu(i) {
4399 struct softnet_data *queue;
4400
4401 queue = &per_cpu(softnet_data, i);
4402 skb_queue_head_init(&queue->input_pkt_queue);
4403 queue->completion_queue = NULL;
4404 INIT_LIST_HEAD(&queue->poll_list);
4405
4406 queue->backlog.poll = process_backlog;
4407 queue->backlog.weight = weight_p;
4408 }
4409
4410 netdev_dma_register();
4411
4412 dev_boot_phase = 0;
4413
4414 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4415 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4416
4417 hotcpu_notifier(dev_cpu_callback, 0);
4418 dst_init();
4419 dev_mcast_init();
4420 rc = 0;
4421 out:
4422 return rc;
4423 }
4424
4425 subsys_initcall(net_dev_init);
4426
4427 EXPORT_SYMBOL(__dev_get_by_index);
4428 EXPORT_SYMBOL(__dev_get_by_name);
4429 EXPORT_SYMBOL(__dev_remove_pack);
4430 EXPORT_SYMBOL(dev_valid_name);
4431 EXPORT_SYMBOL(dev_add_pack);
4432 EXPORT_SYMBOL(dev_alloc_name);
4433 EXPORT_SYMBOL(dev_close);
4434 EXPORT_SYMBOL(dev_get_by_flags);
4435 EXPORT_SYMBOL(dev_get_by_index);
4436 EXPORT_SYMBOL(dev_get_by_name);
4437 EXPORT_SYMBOL(dev_open);
4438 EXPORT_SYMBOL(dev_queue_xmit);
4439 EXPORT_SYMBOL(dev_remove_pack);
4440 EXPORT_SYMBOL(dev_set_allmulti);
4441 EXPORT_SYMBOL(dev_set_promiscuity);
4442 EXPORT_SYMBOL(dev_change_flags);
4443 EXPORT_SYMBOL(dev_set_mtu);
4444 EXPORT_SYMBOL(dev_set_mac_address);
4445 EXPORT_SYMBOL(free_netdev);
4446 EXPORT_SYMBOL(netdev_boot_setup_check);
4447 EXPORT_SYMBOL(netdev_set_master);
4448 EXPORT_SYMBOL(netdev_state_change);
4449 EXPORT_SYMBOL(netif_receive_skb);
4450 EXPORT_SYMBOL(netif_rx);
4451 EXPORT_SYMBOL(register_gifconf);
4452 EXPORT_SYMBOL(register_netdevice);
4453 EXPORT_SYMBOL(register_netdevice_notifier);
4454 EXPORT_SYMBOL(skb_checksum_help);
4455 EXPORT_SYMBOL(synchronize_net);
4456 EXPORT_SYMBOL(unregister_netdevice);
4457 EXPORT_SYMBOL(unregister_netdevice_notifier);
4458 EXPORT_SYMBOL(net_enable_timestamp);
4459 EXPORT_SYMBOL(net_disable_timestamp);
4460 EXPORT_SYMBOL(dev_get_flags);
4461
4462 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4463 EXPORT_SYMBOL(br_handle_frame_hook);
4464 EXPORT_SYMBOL(br_fdb_get_hook);
4465 EXPORT_SYMBOL(br_fdb_put_hook);
4466 #endif
4467
4468 #ifdef CONFIG_KMOD
4469 EXPORT_SYMBOL(dev_load);
4470 #endif
4471
4472 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.186267 seconds and 5 git commands to generate.