3c6a967e583070f35f3b8c173c7314ac5030a0a3
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly; /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
155
156 /*
157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158 * semaphore.
159 *
160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
163 * dev_base_head list, and hold dev_base_lock for writing when they do the
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183
184 static seqcount_t devnet_rename_seq;
185
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 while (++net->dev_base_seq == 0);
189 }
190
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220 struct net *net = dev_net(dev);
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230
231 dev_base_seq_inc(net);
232 }
233
234 /* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
243 list_del_rcu(&dev->dev_list);
244 hlist_del_rcu(&dev->name_hlist);
245 hlist_del_rcu(&dev->index_hlist);
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(dev_net(dev));
249 }
250
251 /*
252 * Our notifier list
253 */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
261
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270 static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287 static const char *const netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326 }
327
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376
377 /**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
385 * This call does not sleep therefore it can not
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390 void dev_add_pack(struct packet_type *pt)
391 {
392 struct list_head *head = ptype_head(pt);
393
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399
400 /**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
407 * returns.
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415 struct list_head *head = ptype_head(pt);
416 struct packet_type *pt1;
417
418 spin_lock(&ptype_lock);
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
427 pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429 spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432
433 /**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447 __dev_remove_pack(pt);
448
449 synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452
453
454 /**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466 void dev_add_offload(struct packet_offload *po)
467 {
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475
476 /**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
494 spin_lock(&offload_lock);
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505 spin_unlock(&offload_lock);
506 }
507
508 /**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522 __dev_remove_offload(po);
523
524 synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527
528 /******************************************************************************
529
530 Device Boot-time Settings Routines
531
532 *******************************************************************************/
533
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537 /**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
555 strlcpy(s[i].name, name, IFNAMSIZ);
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563
564 /**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 !strcmp(dev->name, s[i].name)) {
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593 /**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
615 if (__dev_get_by_name(&init_net, name))
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622 }
623
624 /*
625 * Saves at boot time configured settings for any netdevice.
626 */
627 int __init netdev_boot_setup(char *str)
628 {
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649 }
650
651 __setup("netdev=", netdev_boot_setup);
652
653 /*******************************************************************************
654
655 Device Interface Subroutines
656
657 *******************************************************************************/
658
659 /**
660 * __dev_get_by_name - find a device by its name
661 * @net: the applicable net namespace
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
675
676 hlist_for_each_entry(dev, head, name_hlist)
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
679
680 return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683
684 /**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry_rcu(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709 /**
710 * dev_get_by_name - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723 struct net_device *dev;
724
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
727 if (dev)
728 dev_hold(dev);
729 rcu_read_unlock();
730 return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733
734 /**
735 * __dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
750
751 hlist_for_each_entry(dev, head, index_hlist)
752 if (dev->ifindex == ifindex)
753 return dev;
754
755 return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758
759 /**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
775 hlist_for_each_entry_rcu(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784 /**
785 * dev_get_by_index - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797 struct net_device *dev;
798
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
801 if (dev)
802 dev_hold(dev);
803 rcu_read_unlock();
804 return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807
808 /**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820 struct net_device *dev;
821 unsigned int seq;
822
823 retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840 }
841
842 /**
843 * dev_getbyhwaddr_rcu - find a device by its hardware address
844 * @net: the applicable net namespace
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
851 * The returned device has not had its ref count increased
852 * and the caller must therefore be careful about locking
853 *
854 */
855
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
858 {
859 struct net_device *dev;
860
861 for_each_netdev_rcu(net, dev)
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
864 return dev;
865
866 return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872 struct net_device *dev;
873
874 ASSERT_RTNL();
875 for_each_netdev(net, dev)
876 if (dev->type == type)
877 return dev;
878
879 return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885 struct net_device *dev, *ret = NULL;
886
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899 /**
900 * dev_get_by_flags_rcu - find any device with given flags
901 * @net: the applicable net namespace
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
906 * is not found or a pointer to the device. Must be called inside
907 * rcu_read_lock(), and result refcount is unchanged.
908 */
909
910 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
911 unsigned short mask)
912 {
913 struct net_device *dev, *ret;
914
915 ret = NULL;
916 for_each_netdev_rcu(net, dev) {
917 if (((dev->flags ^ if_flags) & mask) == 0) {
918 ret = dev;
919 break;
920 }
921 }
922 return ret;
923 }
924 EXPORT_SYMBOL(dev_get_by_flags_rcu);
925
926 /**
927 * dev_valid_name - check if name is okay for network device
928 * @name: name string
929 *
930 * Network device names need to be valid file names to
931 * to allow sysfs to work. We also disallow any kind of
932 * whitespace.
933 */
934 bool dev_valid_name(const char *name)
935 {
936 if (*name == '\0')
937 return false;
938 if (strlen(name) >= IFNAMSIZ)
939 return false;
940 if (!strcmp(name, ".") || !strcmp(name, ".."))
941 return false;
942
943 while (*name) {
944 if (*name == '/' || isspace(*name))
945 return false;
946 name++;
947 }
948 return true;
949 }
950 EXPORT_SYMBOL(dev_valid_name);
951
952 /**
953 * __dev_alloc_name - allocate a name for a device
954 * @net: network namespace to allocate the device name in
955 * @name: name format string
956 * @buf: scratch buffer and result name string
957 *
958 * Passed a format string - eg "lt%d" it will try and find a suitable
959 * id. It scans list of devices to build up a free map, then chooses
960 * the first empty slot. The caller must hold the dev_base or rtnl lock
961 * while allocating the name and adding the device in order to avoid
962 * duplicates.
963 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
964 * Returns the number of the unit assigned or a negative errno code.
965 */
966
967 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
968 {
969 int i = 0;
970 const char *p;
971 const int max_netdevices = 8*PAGE_SIZE;
972 unsigned long *inuse;
973 struct net_device *d;
974
975 p = strnchr(name, IFNAMSIZ-1, '%');
976 if (p) {
977 /*
978 * Verify the string as this thing may have come from
979 * the user. There must be either one "%d" and no other "%"
980 * characters.
981 */
982 if (p[1] != 'd' || strchr(p + 2, '%'))
983 return -EINVAL;
984
985 /* Use one page as a bit array of possible slots */
986 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
987 if (!inuse)
988 return -ENOMEM;
989
990 for_each_netdev(net, d) {
991 if (!sscanf(d->name, name, &i))
992 continue;
993 if (i < 0 || i >= max_netdevices)
994 continue;
995
996 /* avoid cases where sscanf is not exact inverse of printf */
997 snprintf(buf, IFNAMSIZ, name, i);
998 if (!strncmp(buf, d->name, IFNAMSIZ))
999 set_bit(i, inuse);
1000 }
1001
1002 i = find_first_zero_bit(inuse, max_netdevices);
1003 free_page((unsigned long) inuse);
1004 }
1005
1006 if (buf != name)
1007 snprintf(buf, IFNAMSIZ, name, i);
1008 if (!__dev_get_by_name(net, buf))
1009 return i;
1010
1011 /* It is possible to run out of possible slots
1012 * when the name is long and there isn't enough space left
1013 * for the digits, or if all bits are used.
1014 */
1015 return -ENFILE;
1016 }
1017
1018 /**
1019 * dev_alloc_name - allocate a name for a device
1020 * @dev: device
1021 * @name: name format string
1022 *
1023 * Passed a format string - eg "lt%d" it will try and find a suitable
1024 * id. It scans list of devices to build up a free map, then chooses
1025 * the first empty slot. The caller must hold the dev_base or rtnl lock
1026 * while allocating the name and adding the device in order to avoid
1027 * duplicates.
1028 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1029 * Returns the number of the unit assigned or a negative errno code.
1030 */
1031
1032 int dev_alloc_name(struct net_device *dev, const char *name)
1033 {
1034 char buf[IFNAMSIZ];
1035 struct net *net;
1036 int ret;
1037
1038 BUG_ON(!dev_net(dev));
1039 net = dev_net(dev);
1040 ret = __dev_alloc_name(net, name, buf);
1041 if (ret >= 0)
1042 strlcpy(dev->name, buf, IFNAMSIZ);
1043 return ret;
1044 }
1045 EXPORT_SYMBOL(dev_alloc_name);
1046
1047 static int dev_alloc_name_ns(struct net *net,
1048 struct net_device *dev,
1049 const char *name)
1050 {
1051 char buf[IFNAMSIZ];
1052 int ret;
1053
1054 ret = __dev_alloc_name(net, name, buf);
1055 if (ret >= 0)
1056 strlcpy(dev->name, buf, IFNAMSIZ);
1057 return ret;
1058 }
1059
1060 static int dev_get_valid_name(struct net *net,
1061 struct net_device *dev,
1062 const char *name)
1063 {
1064 BUG_ON(!net);
1065
1066 if (!dev_valid_name(name))
1067 return -EINVAL;
1068
1069 if (strchr(name, '%'))
1070 return dev_alloc_name_ns(net, dev, name);
1071 else if (__dev_get_by_name(net, name))
1072 return -EEXIST;
1073 else if (dev->name != name)
1074 strlcpy(dev->name, name, IFNAMSIZ);
1075
1076 return 0;
1077 }
1078
1079 /**
1080 * dev_change_name - change name of a device
1081 * @dev: device
1082 * @newname: name (or format string) must be at least IFNAMSIZ
1083 *
1084 * Change name of a device, can pass format strings "eth%d".
1085 * for wildcarding.
1086 */
1087 int dev_change_name(struct net_device *dev, const char *newname)
1088 {
1089 unsigned char old_assign_type;
1090 char oldname[IFNAMSIZ];
1091 int err = 0;
1092 int ret;
1093 struct net *net;
1094
1095 ASSERT_RTNL();
1096 BUG_ON(!dev_net(dev));
1097
1098 net = dev_net(dev);
1099 if (dev->flags & IFF_UP)
1100 return -EBUSY;
1101
1102 write_seqcount_begin(&devnet_rename_seq);
1103
1104 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1105 write_seqcount_end(&devnet_rename_seq);
1106 return 0;
1107 }
1108
1109 memcpy(oldname, dev->name, IFNAMSIZ);
1110
1111 err = dev_get_valid_name(net, dev, newname);
1112 if (err < 0) {
1113 write_seqcount_end(&devnet_rename_seq);
1114 return err;
1115 }
1116
1117 if (oldname[0] && !strchr(oldname, '%'))
1118 netdev_info(dev, "renamed from %s\n", oldname);
1119
1120 old_assign_type = dev->name_assign_type;
1121 dev->name_assign_type = NET_NAME_RENAMED;
1122
1123 rollback:
1124 ret = device_rename(&dev->dev, dev->name);
1125 if (ret) {
1126 memcpy(dev->name, oldname, IFNAMSIZ);
1127 dev->name_assign_type = old_assign_type;
1128 write_seqcount_end(&devnet_rename_seq);
1129 return ret;
1130 }
1131
1132 write_seqcount_end(&devnet_rename_seq);
1133
1134 netdev_adjacent_rename_links(dev, oldname);
1135
1136 write_lock_bh(&dev_base_lock);
1137 hlist_del_rcu(&dev->name_hlist);
1138 write_unlock_bh(&dev_base_lock);
1139
1140 synchronize_rcu();
1141
1142 write_lock_bh(&dev_base_lock);
1143 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1144 write_unlock_bh(&dev_base_lock);
1145
1146 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1147 ret = notifier_to_errno(ret);
1148
1149 if (ret) {
1150 /* err >= 0 after dev_alloc_name() or stores the first errno */
1151 if (err >= 0) {
1152 err = ret;
1153 write_seqcount_begin(&devnet_rename_seq);
1154 memcpy(dev->name, oldname, IFNAMSIZ);
1155 memcpy(oldname, newname, IFNAMSIZ);
1156 dev->name_assign_type = old_assign_type;
1157 old_assign_type = NET_NAME_RENAMED;
1158 goto rollback;
1159 } else {
1160 pr_err("%s: name change rollback failed: %d\n",
1161 dev->name, ret);
1162 }
1163 }
1164
1165 return err;
1166 }
1167
1168 /**
1169 * dev_set_alias - change ifalias of a device
1170 * @dev: device
1171 * @alias: name up to IFALIASZ
1172 * @len: limit of bytes to copy from info
1173 *
1174 * Set ifalias for a device,
1175 */
1176 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1177 {
1178 char *new_ifalias;
1179
1180 ASSERT_RTNL();
1181
1182 if (len >= IFALIASZ)
1183 return -EINVAL;
1184
1185 if (!len) {
1186 kfree(dev->ifalias);
1187 dev->ifalias = NULL;
1188 return 0;
1189 }
1190
1191 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1192 if (!new_ifalias)
1193 return -ENOMEM;
1194 dev->ifalias = new_ifalias;
1195
1196 strlcpy(dev->ifalias, alias, len+1);
1197 return len;
1198 }
1199
1200
1201 /**
1202 * netdev_features_change - device changes features
1203 * @dev: device to cause notification
1204 *
1205 * Called to indicate a device has changed features.
1206 */
1207 void netdev_features_change(struct net_device *dev)
1208 {
1209 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1210 }
1211 EXPORT_SYMBOL(netdev_features_change);
1212
1213 /**
1214 * netdev_state_change - device changes state
1215 * @dev: device to cause notification
1216 *
1217 * Called to indicate a device has changed state. This function calls
1218 * the notifier chains for netdev_chain and sends a NEWLINK message
1219 * to the routing socket.
1220 */
1221 void netdev_state_change(struct net_device *dev)
1222 {
1223 if (dev->flags & IFF_UP) {
1224 struct netdev_notifier_change_info change_info;
1225
1226 change_info.flags_changed = 0;
1227 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1228 &change_info.info);
1229 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1230 }
1231 }
1232 EXPORT_SYMBOL(netdev_state_change);
1233
1234 /**
1235 * netdev_notify_peers - notify network peers about existence of @dev
1236 * @dev: network device
1237 *
1238 * Generate traffic such that interested network peers are aware of
1239 * @dev, such as by generating a gratuitous ARP. This may be used when
1240 * a device wants to inform the rest of the network about some sort of
1241 * reconfiguration such as a failover event or virtual machine
1242 * migration.
1243 */
1244 void netdev_notify_peers(struct net_device *dev)
1245 {
1246 rtnl_lock();
1247 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1248 rtnl_unlock();
1249 }
1250 EXPORT_SYMBOL(netdev_notify_peers);
1251
1252 static int __dev_open(struct net_device *dev)
1253 {
1254 const struct net_device_ops *ops = dev->netdev_ops;
1255 int ret;
1256
1257 ASSERT_RTNL();
1258
1259 if (!netif_device_present(dev))
1260 return -ENODEV;
1261
1262 /* Block netpoll from trying to do any rx path servicing.
1263 * If we don't do this there is a chance ndo_poll_controller
1264 * or ndo_poll may be running while we open the device
1265 */
1266 netpoll_poll_disable(dev);
1267
1268 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1269 ret = notifier_to_errno(ret);
1270 if (ret)
1271 return ret;
1272
1273 set_bit(__LINK_STATE_START, &dev->state);
1274
1275 if (ops->ndo_validate_addr)
1276 ret = ops->ndo_validate_addr(dev);
1277
1278 if (!ret && ops->ndo_open)
1279 ret = ops->ndo_open(dev);
1280
1281 netpoll_poll_enable(dev);
1282
1283 if (ret)
1284 clear_bit(__LINK_STATE_START, &dev->state);
1285 else {
1286 dev->flags |= IFF_UP;
1287 net_dmaengine_get();
1288 dev_set_rx_mode(dev);
1289 dev_activate(dev);
1290 add_device_randomness(dev->dev_addr, dev->addr_len);
1291 }
1292
1293 return ret;
1294 }
1295
1296 /**
1297 * dev_open - prepare an interface for use.
1298 * @dev: device to open
1299 *
1300 * Takes a device from down to up state. The device's private open
1301 * function is invoked and then the multicast lists are loaded. Finally
1302 * the device is moved into the up state and a %NETDEV_UP message is
1303 * sent to the netdev notifier chain.
1304 *
1305 * Calling this function on an active interface is a nop. On a failure
1306 * a negative errno code is returned.
1307 */
1308 int dev_open(struct net_device *dev)
1309 {
1310 int ret;
1311
1312 if (dev->flags & IFF_UP)
1313 return 0;
1314
1315 ret = __dev_open(dev);
1316 if (ret < 0)
1317 return ret;
1318
1319 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1320 call_netdevice_notifiers(NETDEV_UP, dev);
1321
1322 return ret;
1323 }
1324 EXPORT_SYMBOL(dev_open);
1325
1326 static int __dev_close_many(struct list_head *head)
1327 {
1328 struct net_device *dev;
1329
1330 ASSERT_RTNL();
1331 might_sleep();
1332
1333 list_for_each_entry(dev, head, close_list) {
1334 /* Temporarily disable netpoll until the interface is down */
1335 netpoll_poll_disable(dev);
1336
1337 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1338
1339 clear_bit(__LINK_STATE_START, &dev->state);
1340
1341 /* Synchronize to scheduled poll. We cannot touch poll list, it
1342 * can be even on different cpu. So just clear netif_running().
1343 *
1344 * dev->stop() will invoke napi_disable() on all of it's
1345 * napi_struct instances on this device.
1346 */
1347 smp_mb__after_atomic(); /* Commit netif_running(). */
1348 }
1349
1350 dev_deactivate_many(head);
1351
1352 list_for_each_entry(dev, head, close_list) {
1353 const struct net_device_ops *ops = dev->netdev_ops;
1354
1355 /*
1356 * Call the device specific close. This cannot fail.
1357 * Only if device is UP
1358 *
1359 * We allow it to be called even after a DETACH hot-plug
1360 * event.
1361 */
1362 if (ops->ndo_stop)
1363 ops->ndo_stop(dev);
1364
1365 dev->flags &= ~IFF_UP;
1366 net_dmaengine_put();
1367 netpoll_poll_enable(dev);
1368 }
1369
1370 return 0;
1371 }
1372
1373 static int __dev_close(struct net_device *dev)
1374 {
1375 int retval;
1376 LIST_HEAD(single);
1377
1378 list_add(&dev->close_list, &single);
1379 retval = __dev_close_many(&single);
1380 list_del(&single);
1381
1382 return retval;
1383 }
1384
1385 static int dev_close_many(struct list_head *head)
1386 {
1387 struct net_device *dev, *tmp;
1388
1389 /* Remove the devices that don't need to be closed */
1390 list_for_each_entry_safe(dev, tmp, head, close_list)
1391 if (!(dev->flags & IFF_UP))
1392 list_del_init(&dev->close_list);
1393
1394 __dev_close_many(head);
1395
1396 list_for_each_entry_safe(dev, tmp, head, close_list) {
1397 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1398 call_netdevice_notifiers(NETDEV_DOWN, dev);
1399 list_del_init(&dev->close_list);
1400 }
1401
1402 return 0;
1403 }
1404
1405 /**
1406 * dev_close - shutdown an interface.
1407 * @dev: device to shutdown
1408 *
1409 * This function moves an active device into down state. A
1410 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412 * chain.
1413 */
1414 int dev_close(struct net_device *dev)
1415 {
1416 if (dev->flags & IFF_UP) {
1417 LIST_HEAD(single);
1418
1419 list_add(&dev->close_list, &single);
1420 dev_close_many(&single);
1421 list_del(&single);
1422 }
1423 return 0;
1424 }
1425 EXPORT_SYMBOL(dev_close);
1426
1427
1428 /**
1429 * dev_disable_lro - disable Large Receive Offload on a device
1430 * @dev: device
1431 *
1432 * Disable Large Receive Offload (LRO) on a net device. Must be
1433 * called under RTNL. This is needed if received packets may be
1434 * forwarded to another interface.
1435 */
1436 void dev_disable_lro(struct net_device *dev)
1437 {
1438 /*
1439 * If we're trying to disable lro on a vlan device
1440 * use the underlying physical device instead
1441 */
1442 if (is_vlan_dev(dev))
1443 dev = vlan_dev_real_dev(dev);
1444
1445 /* the same for macvlan devices */
1446 if (netif_is_macvlan(dev))
1447 dev = macvlan_dev_real_dev(dev);
1448
1449 dev->wanted_features &= ~NETIF_F_LRO;
1450 netdev_update_features(dev);
1451
1452 if (unlikely(dev->features & NETIF_F_LRO))
1453 netdev_WARN(dev, "failed to disable LRO!\n");
1454 }
1455 EXPORT_SYMBOL(dev_disable_lro);
1456
1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 struct net_device *dev)
1459 {
1460 struct netdev_notifier_info info;
1461
1462 netdev_notifier_info_init(&info, dev);
1463 return nb->notifier_call(nb, val, &info);
1464 }
1465
1466 static int dev_boot_phase = 1;
1467
1468 /**
1469 * register_netdevice_notifier - register a network notifier block
1470 * @nb: notifier
1471 *
1472 * Register a notifier to be called when network device events occur.
1473 * The notifier passed is linked into the kernel structures and must
1474 * not be reused until it has been unregistered. A negative errno code
1475 * is returned on a failure.
1476 *
1477 * When registered all registration and up events are replayed
1478 * to the new notifier to allow device to have a race free
1479 * view of the network device list.
1480 */
1481
1482 int register_netdevice_notifier(struct notifier_block *nb)
1483 {
1484 struct net_device *dev;
1485 struct net_device *last;
1486 struct net *net;
1487 int err;
1488
1489 rtnl_lock();
1490 err = raw_notifier_chain_register(&netdev_chain, nb);
1491 if (err)
1492 goto unlock;
1493 if (dev_boot_phase)
1494 goto unlock;
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1498 err = notifier_to_errno(err);
1499 if (err)
1500 goto rollback;
1501
1502 if (!(dev->flags & IFF_UP))
1503 continue;
1504
1505 call_netdevice_notifier(nb, NETDEV_UP, dev);
1506 }
1507 }
1508
1509 unlock:
1510 rtnl_unlock();
1511 return err;
1512
1513 rollback:
1514 last = dev;
1515 for_each_net(net) {
1516 for_each_netdev(net, dev) {
1517 if (dev == last)
1518 goto outroll;
1519
1520 if (dev->flags & IFF_UP) {
1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 dev);
1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1524 }
1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1526 }
1527 }
1528
1529 outroll:
1530 raw_notifier_chain_unregister(&netdev_chain, nb);
1531 goto unlock;
1532 }
1533 EXPORT_SYMBOL(register_netdevice_notifier);
1534
1535 /**
1536 * unregister_netdevice_notifier - unregister a network notifier block
1537 * @nb: notifier
1538 *
1539 * Unregister a notifier previously registered by
1540 * register_netdevice_notifier(). The notifier is unlinked into the
1541 * kernel structures and may then be reused. A negative errno code
1542 * is returned on a failure.
1543 *
1544 * After unregistering unregister and down device events are synthesized
1545 * for all devices on the device list to the removed notifier to remove
1546 * the need for special case cleanup code.
1547 */
1548
1549 int unregister_netdevice_notifier(struct notifier_block *nb)
1550 {
1551 struct net_device *dev;
1552 struct net *net;
1553 int err;
1554
1555 rtnl_lock();
1556 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1557 if (err)
1558 goto unlock;
1559
1560 for_each_net(net) {
1561 for_each_netdev(net, dev) {
1562 if (dev->flags & IFF_UP) {
1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 dev);
1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1566 }
1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1568 }
1569 }
1570 unlock:
1571 rtnl_unlock();
1572 return err;
1573 }
1574 EXPORT_SYMBOL(unregister_netdevice_notifier);
1575
1576 /**
1577 * call_netdevice_notifiers_info - call all network notifier blocks
1578 * @val: value passed unmodified to notifier function
1579 * @dev: net_device pointer passed unmodified to notifier function
1580 * @info: notifier information data
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586 static int call_netdevice_notifiers_info(unsigned long val,
1587 struct net_device *dev,
1588 struct netdev_notifier_info *info)
1589 {
1590 ASSERT_RTNL();
1591 netdev_notifier_info_init(info, dev);
1592 return raw_notifier_call_chain(&netdev_chain, val, info);
1593 }
1594
1595 /**
1596 * call_netdevice_notifiers - call all network notifier blocks
1597 * @val: value passed unmodified to notifier function
1598 * @dev: net_device pointer passed unmodified to notifier function
1599 *
1600 * Call all network notifier blocks. Parameters and return value
1601 * are as for raw_notifier_call_chain().
1602 */
1603
1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1605 {
1606 struct netdev_notifier_info info;
1607
1608 return call_netdevice_notifiers_info(val, dev, &info);
1609 }
1610 EXPORT_SYMBOL(call_netdevice_notifiers);
1611
1612 static struct static_key netstamp_needed __read_mostly;
1613 #ifdef HAVE_JUMP_LABEL
1614 /* We are not allowed to call static_key_slow_dec() from irq context
1615 * If net_disable_timestamp() is called from irq context, defer the
1616 * static_key_slow_dec() calls.
1617 */
1618 static atomic_t netstamp_needed_deferred;
1619 #endif
1620
1621 void net_enable_timestamp(void)
1622 {
1623 #ifdef HAVE_JUMP_LABEL
1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626 if (deferred) {
1627 while (--deferred)
1628 static_key_slow_dec(&netstamp_needed);
1629 return;
1630 }
1631 #endif
1632 static_key_slow_inc(&netstamp_needed);
1633 }
1634 EXPORT_SYMBOL(net_enable_timestamp);
1635
1636 void net_disable_timestamp(void)
1637 {
1638 #ifdef HAVE_JUMP_LABEL
1639 if (in_interrupt()) {
1640 atomic_inc(&netstamp_needed_deferred);
1641 return;
1642 }
1643 #endif
1644 static_key_slow_dec(&netstamp_needed);
1645 }
1646 EXPORT_SYMBOL(net_disable_timestamp);
1647
1648 static inline void net_timestamp_set(struct sk_buff *skb)
1649 {
1650 skb->tstamp.tv64 = 0;
1651 if (static_key_false(&netstamp_needed))
1652 __net_timestamp(skb);
1653 }
1654
1655 #define net_timestamp_check(COND, SKB) \
1656 if (static_key_false(&netstamp_needed)) { \
1657 if ((COND) && !(SKB)->tstamp.tv64) \
1658 __net_timestamp(SKB); \
1659 } \
1660
1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662 {
1663 unsigned int len;
1664
1665 if (!(dev->flags & IFF_UP))
1666 return false;
1667
1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 if (skb->len <= len)
1670 return true;
1671
1672 /* if TSO is enabled, we don't care about the length as the packet
1673 * could be forwarded without being segmented before
1674 */
1675 if (skb_is_gso(skb))
1676 return true;
1677
1678 return false;
1679 }
1680 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1681
1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704
1705 /**
1706 * dev_forward_skb - loopback an skb to another netif
1707 *
1708 * @dev: destination network device
1709 * @skb: buffer to forward
1710 *
1711 * return values:
1712 * NET_RX_SUCCESS (no congestion)
1713 * NET_RX_DROP (packet was dropped, but freed)
1714 *
1715 * dev_forward_skb can be used for injecting an skb from the
1716 * start_xmit function of one device into the receive queue
1717 * of another device.
1718 *
1719 * The receiving device may be in another namespace, so
1720 * we have to clear all information in the skb that could
1721 * impact namespace isolation.
1722 */
1723 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724 {
1725 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1726 }
1727 EXPORT_SYMBOL_GPL(dev_forward_skb);
1728
1729 static inline int deliver_skb(struct sk_buff *skb,
1730 struct packet_type *pt_prev,
1731 struct net_device *orig_dev)
1732 {
1733 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734 return -ENOMEM;
1735 atomic_inc(&skb->users);
1736 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737 }
1738
1739 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740 {
1741 if (!ptype->af_packet_priv || !skb->sk)
1742 return false;
1743
1744 if (ptype->id_match)
1745 return ptype->id_match(ptype, skb->sk);
1746 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747 return true;
1748
1749 return false;
1750 }
1751
1752 /*
1753 * Support routine. Sends outgoing frames to any network
1754 * taps currently in use.
1755 */
1756
1757 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1758 {
1759 struct packet_type *ptype;
1760 struct sk_buff *skb2 = NULL;
1761 struct packet_type *pt_prev = NULL;
1762
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765 /* Never send packets back to the socket
1766 * they originated from - MvS (miquels@drinkel.ow.org)
1767 */
1768 if ((ptype->dev == dev || !ptype->dev) &&
1769 (!skb_loop_sk(ptype, skb))) {
1770 if (pt_prev) {
1771 deliver_skb(skb2, pt_prev, skb->dev);
1772 pt_prev = ptype;
1773 continue;
1774 }
1775
1776 skb2 = skb_clone(skb, GFP_ATOMIC);
1777 if (!skb2)
1778 break;
1779
1780 net_timestamp_set(skb2);
1781
1782 /* skb->nh should be correctly
1783 set by sender, so that the second statement is
1784 just protection against buggy protocols.
1785 */
1786 skb_reset_mac_header(skb2);
1787
1788 if (skb_network_header(skb2) < skb2->data ||
1789 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1790 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791 ntohs(skb2->protocol),
1792 dev->name);
1793 skb_reset_network_header(skb2);
1794 }
1795
1796 skb2->transport_header = skb2->network_header;
1797 skb2->pkt_type = PACKET_OUTGOING;
1798 pt_prev = ptype;
1799 }
1800 }
1801 if (pt_prev)
1802 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1803 rcu_read_unlock();
1804 }
1805
1806 /**
1807 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1808 * @dev: Network device
1809 * @txq: number of queues available
1810 *
1811 * If real_num_tx_queues is changed the tc mappings may no longer be
1812 * valid. To resolve this verify the tc mapping remains valid and if
1813 * not NULL the mapping. With no priorities mapping to this
1814 * offset/count pair it will no longer be used. In the worst case TC0
1815 * is invalid nothing can be done so disable priority mappings. If is
1816 * expected that drivers will fix this mapping if they can before
1817 * calling netif_set_real_num_tx_queues.
1818 */
1819 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1820 {
1821 int i;
1822 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823
1824 /* If TC0 is invalidated disable TC mapping */
1825 if (tc->offset + tc->count > txq) {
1826 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1827 dev->num_tc = 0;
1828 return;
1829 }
1830
1831 /* Invalidated prio to tc mappings set to TC0 */
1832 for (i = 1; i < TC_BITMASK + 1; i++) {
1833 int q = netdev_get_prio_tc_map(dev, i);
1834
1835 tc = &dev->tc_to_txq[q];
1836 if (tc->offset + tc->count > txq) {
1837 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838 i, q);
1839 netdev_set_prio_tc_map(dev, i, 0);
1840 }
1841 }
1842 }
1843
1844 #ifdef CONFIG_XPS
1845 static DEFINE_MUTEX(xps_map_mutex);
1846 #define xmap_dereference(P) \
1847 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848
1849 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 int cpu, u16 index)
1851 {
1852 struct xps_map *map = NULL;
1853 int pos;
1854
1855 if (dev_maps)
1856 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1857
1858 for (pos = 0; map && pos < map->len; pos++) {
1859 if (map->queues[pos] == index) {
1860 if (map->len > 1) {
1861 map->queues[pos] = map->queues[--map->len];
1862 } else {
1863 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1864 kfree_rcu(map, rcu);
1865 map = NULL;
1866 }
1867 break;
1868 }
1869 }
1870
1871 return map;
1872 }
1873
1874 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1875 {
1876 struct xps_dev_maps *dev_maps;
1877 int cpu, i;
1878 bool active = false;
1879
1880 mutex_lock(&xps_map_mutex);
1881 dev_maps = xmap_dereference(dev->xps_maps);
1882
1883 if (!dev_maps)
1884 goto out_no_maps;
1885
1886 for_each_possible_cpu(cpu) {
1887 for (i = index; i < dev->num_tx_queues; i++) {
1888 if (!remove_xps_queue(dev_maps, cpu, i))
1889 break;
1890 }
1891 if (i == dev->num_tx_queues)
1892 active = true;
1893 }
1894
1895 if (!active) {
1896 RCU_INIT_POINTER(dev->xps_maps, NULL);
1897 kfree_rcu(dev_maps, rcu);
1898 }
1899
1900 for (i = index; i < dev->num_tx_queues; i++)
1901 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902 NUMA_NO_NODE);
1903
1904 out_no_maps:
1905 mutex_unlock(&xps_map_mutex);
1906 }
1907
1908 static struct xps_map *expand_xps_map(struct xps_map *map,
1909 int cpu, u16 index)
1910 {
1911 struct xps_map *new_map;
1912 int alloc_len = XPS_MIN_MAP_ALLOC;
1913 int i, pos;
1914
1915 for (pos = 0; map && pos < map->len; pos++) {
1916 if (map->queues[pos] != index)
1917 continue;
1918 return map;
1919 }
1920
1921 /* Need to add queue to this CPU's existing map */
1922 if (map) {
1923 if (pos < map->alloc_len)
1924 return map;
1925
1926 alloc_len = map->alloc_len * 2;
1927 }
1928
1929 /* Need to allocate new map to store queue on this CPU's map */
1930 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931 cpu_to_node(cpu));
1932 if (!new_map)
1933 return NULL;
1934
1935 for (i = 0; i < pos; i++)
1936 new_map->queues[i] = map->queues[i];
1937 new_map->alloc_len = alloc_len;
1938 new_map->len = pos;
1939
1940 return new_map;
1941 }
1942
1943 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 u16 index)
1945 {
1946 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1947 struct xps_map *map, *new_map;
1948 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1949 int cpu, numa_node_id = -2;
1950 bool active = false;
1951
1952 mutex_lock(&xps_map_mutex);
1953
1954 dev_maps = xmap_dereference(dev->xps_maps);
1955
1956 /* allocate memory for queue storage */
1957 for_each_online_cpu(cpu) {
1958 if (!cpumask_test_cpu(cpu, mask))
1959 continue;
1960
1961 if (!new_dev_maps)
1962 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1963 if (!new_dev_maps) {
1964 mutex_unlock(&xps_map_mutex);
1965 return -ENOMEM;
1966 }
1967
1968 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 NULL;
1970
1971 map = expand_xps_map(map, cpu, index);
1972 if (!map)
1973 goto error;
1974
1975 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976 }
1977
1978 if (!new_dev_maps)
1979 goto out_no_new_maps;
1980
1981 for_each_possible_cpu(cpu) {
1982 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983 /* add queue to CPU maps */
1984 int pos = 0;
1985
1986 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987 while ((pos < map->len) && (map->queues[pos] != index))
1988 pos++;
1989
1990 if (pos == map->len)
1991 map->queues[map->len++] = index;
1992 #ifdef CONFIG_NUMA
1993 if (numa_node_id == -2)
1994 numa_node_id = cpu_to_node(cpu);
1995 else if (numa_node_id != cpu_to_node(cpu))
1996 numa_node_id = -1;
1997 #endif
1998 } else if (dev_maps) {
1999 /* fill in the new device map from the old device map */
2000 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2002 }
2003
2004 }
2005
2006 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007
2008 /* Cleanup old maps */
2009 if (dev_maps) {
2010 for_each_possible_cpu(cpu) {
2011 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 if (map && map != new_map)
2014 kfree_rcu(map, rcu);
2015 }
2016
2017 kfree_rcu(dev_maps, rcu);
2018 }
2019
2020 dev_maps = new_dev_maps;
2021 active = true;
2022
2023 out_no_new_maps:
2024 /* update Tx queue numa node */
2025 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026 (numa_node_id >= 0) ? numa_node_id :
2027 NUMA_NO_NODE);
2028
2029 if (!dev_maps)
2030 goto out_no_maps;
2031
2032 /* removes queue from unused CPUs */
2033 for_each_possible_cpu(cpu) {
2034 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 continue;
2036
2037 if (remove_xps_queue(dev_maps, cpu, index))
2038 active = true;
2039 }
2040
2041 /* free map if not active */
2042 if (!active) {
2043 RCU_INIT_POINTER(dev->xps_maps, NULL);
2044 kfree_rcu(dev_maps, rcu);
2045 }
2046
2047 out_no_maps:
2048 mutex_unlock(&xps_map_mutex);
2049
2050 return 0;
2051 error:
2052 /* remove any maps that we added */
2053 for_each_possible_cpu(cpu) {
2054 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057 if (new_map && new_map != map)
2058 kfree(new_map);
2059 }
2060
2061 mutex_unlock(&xps_map_mutex);
2062
2063 kfree(new_dev_maps);
2064 return -ENOMEM;
2065 }
2066 EXPORT_SYMBOL(netif_set_xps_queue);
2067
2068 #endif
2069 /*
2070 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072 */
2073 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2074 {
2075 int rc;
2076
2077 if (txq < 1 || txq > dev->num_tx_queues)
2078 return -EINVAL;
2079
2080 if (dev->reg_state == NETREG_REGISTERED ||
2081 dev->reg_state == NETREG_UNREGISTERING) {
2082 ASSERT_RTNL();
2083
2084 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085 txq);
2086 if (rc)
2087 return rc;
2088
2089 if (dev->num_tc)
2090 netif_setup_tc(dev, txq);
2091
2092 if (txq < dev->real_num_tx_queues) {
2093 qdisc_reset_all_tx_gt(dev, txq);
2094 #ifdef CONFIG_XPS
2095 netif_reset_xps_queues_gt(dev, txq);
2096 #endif
2097 }
2098 }
2099
2100 dev->real_num_tx_queues = txq;
2101 return 0;
2102 }
2103 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2104
2105 #ifdef CONFIG_SYSFS
2106 /**
2107 * netif_set_real_num_rx_queues - set actual number of RX queues used
2108 * @dev: Network device
2109 * @rxq: Actual number of RX queues
2110 *
2111 * This must be called either with the rtnl_lock held or before
2112 * registration of the net device. Returns 0 on success, or a
2113 * negative error code. If called before registration, it always
2114 * succeeds.
2115 */
2116 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117 {
2118 int rc;
2119
2120 if (rxq < 1 || rxq > dev->num_rx_queues)
2121 return -EINVAL;
2122
2123 if (dev->reg_state == NETREG_REGISTERED) {
2124 ASSERT_RTNL();
2125
2126 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127 rxq);
2128 if (rc)
2129 return rc;
2130 }
2131
2132 dev->real_num_rx_queues = rxq;
2133 return 0;
2134 }
2135 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136 #endif
2137
2138 /**
2139 * netif_get_num_default_rss_queues - default number of RSS queues
2140 *
2141 * This routine should set an upper limit on the number of RSS queues
2142 * used by default by multiqueue devices.
2143 */
2144 int netif_get_num_default_rss_queues(void)
2145 {
2146 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147 }
2148 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149
2150 static inline void __netif_reschedule(struct Qdisc *q)
2151 {
2152 struct softnet_data *sd;
2153 unsigned long flags;
2154
2155 local_irq_save(flags);
2156 sd = &__get_cpu_var(softnet_data);
2157 q->next_sched = NULL;
2158 *sd->output_queue_tailp = q;
2159 sd->output_queue_tailp = &q->next_sched;
2160 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161 local_irq_restore(flags);
2162 }
2163
2164 void __netif_schedule(struct Qdisc *q)
2165 {
2166 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167 __netif_reschedule(q);
2168 }
2169 EXPORT_SYMBOL(__netif_schedule);
2170
2171 struct dev_kfree_skb_cb {
2172 enum skb_free_reason reason;
2173 };
2174
2175 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2176 {
2177 return (struct dev_kfree_skb_cb *)skb->cb;
2178 }
2179
2180 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2181 {
2182 unsigned long flags;
2183
2184 if (likely(atomic_read(&skb->users) == 1)) {
2185 smp_rmb();
2186 atomic_set(&skb->users, 0);
2187 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2188 return;
2189 }
2190 get_kfree_skb_cb(skb)->reason = reason;
2191 local_irq_save(flags);
2192 skb->next = __this_cpu_read(softnet_data.completion_queue);
2193 __this_cpu_write(softnet_data.completion_queue, skb);
2194 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2195 local_irq_restore(flags);
2196 }
2197 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2198
2199 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2200 {
2201 if (in_irq() || irqs_disabled())
2202 __dev_kfree_skb_irq(skb, reason);
2203 else
2204 dev_kfree_skb(skb);
2205 }
2206 EXPORT_SYMBOL(__dev_kfree_skb_any);
2207
2208
2209 /**
2210 * netif_device_detach - mark device as removed
2211 * @dev: network device
2212 *
2213 * Mark device as removed from system and therefore no longer available.
2214 */
2215 void netif_device_detach(struct net_device *dev)
2216 {
2217 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2218 netif_running(dev)) {
2219 netif_tx_stop_all_queues(dev);
2220 }
2221 }
2222 EXPORT_SYMBOL(netif_device_detach);
2223
2224 /**
2225 * netif_device_attach - mark device as attached
2226 * @dev: network device
2227 *
2228 * Mark device as attached from system and restart if needed.
2229 */
2230 void netif_device_attach(struct net_device *dev)
2231 {
2232 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2233 netif_running(dev)) {
2234 netif_tx_wake_all_queues(dev);
2235 __netdev_watchdog_up(dev);
2236 }
2237 }
2238 EXPORT_SYMBOL(netif_device_attach);
2239
2240 static void skb_warn_bad_offload(const struct sk_buff *skb)
2241 {
2242 static const netdev_features_t null_features = 0;
2243 struct net_device *dev = skb->dev;
2244 const char *driver = "";
2245
2246 if (!net_ratelimit())
2247 return;
2248
2249 if (dev && dev->dev.parent)
2250 driver = dev_driver_string(dev->dev.parent);
2251
2252 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2253 "gso_type=%d ip_summed=%d\n",
2254 driver, dev ? &dev->features : &null_features,
2255 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2256 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2257 skb_shinfo(skb)->gso_type, skb->ip_summed);
2258 }
2259
2260 /*
2261 * Invalidate hardware checksum when packet is to be mangled, and
2262 * complete checksum manually on outgoing path.
2263 */
2264 int skb_checksum_help(struct sk_buff *skb)
2265 {
2266 __wsum csum;
2267 int ret = 0, offset;
2268
2269 if (skb->ip_summed == CHECKSUM_COMPLETE)
2270 goto out_set_summed;
2271
2272 if (unlikely(skb_shinfo(skb)->gso_size)) {
2273 skb_warn_bad_offload(skb);
2274 return -EINVAL;
2275 }
2276
2277 /* Before computing a checksum, we should make sure no frag could
2278 * be modified by an external entity : checksum could be wrong.
2279 */
2280 if (skb_has_shared_frag(skb)) {
2281 ret = __skb_linearize(skb);
2282 if (ret)
2283 goto out;
2284 }
2285
2286 offset = skb_checksum_start_offset(skb);
2287 BUG_ON(offset >= skb_headlen(skb));
2288 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2289
2290 offset += skb->csum_offset;
2291 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2292
2293 if (skb_cloned(skb) &&
2294 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2295 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2296 if (ret)
2297 goto out;
2298 }
2299
2300 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2301 out_set_summed:
2302 skb->ip_summed = CHECKSUM_NONE;
2303 out:
2304 return ret;
2305 }
2306 EXPORT_SYMBOL(skb_checksum_help);
2307
2308 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2309 {
2310 unsigned int vlan_depth = skb->mac_len;
2311 __be16 type = skb->protocol;
2312
2313 /* Tunnel gso handlers can set protocol to ethernet. */
2314 if (type == htons(ETH_P_TEB)) {
2315 struct ethhdr *eth;
2316
2317 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2318 return 0;
2319
2320 eth = (struct ethhdr *)skb_mac_header(skb);
2321 type = eth->h_proto;
2322 }
2323
2324 /* if skb->protocol is 802.1Q/AD then the header should already be
2325 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2326 * ETH_HLEN otherwise
2327 */
2328 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2329 if (vlan_depth) {
2330 if (WARN_ON(vlan_depth < VLAN_HLEN))
2331 return 0;
2332 vlan_depth -= VLAN_HLEN;
2333 } else {
2334 vlan_depth = ETH_HLEN;
2335 }
2336 do {
2337 struct vlan_hdr *vh;
2338
2339 if (unlikely(!pskb_may_pull(skb,
2340 vlan_depth + VLAN_HLEN)))
2341 return 0;
2342
2343 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2344 type = vh->h_vlan_encapsulated_proto;
2345 vlan_depth += VLAN_HLEN;
2346 } while (type == htons(ETH_P_8021Q) ||
2347 type == htons(ETH_P_8021AD));
2348 }
2349
2350 *depth = vlan_depth;
2351
2352 return type;
2353 }
2354
2355 /**
2356 * skb_mac_gso_segment - mac layer segmentation handler.
2357 * @skb: buffer to segment
2358 * @features: features for the output path (see dev->features)
2359 */
2360 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2361 netdev_features_t features)
2362 {
2363 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2364 struct packet_offload *ptype;
2365 int vlan_depth = skb->mac_len;
2366 __be16 type = skb_network_protocol(skb, &vlan_depth);
2367
2368 if (unlikely(!type))
2369 return ERR_PTR(-EINVAL);
2370
2371 __skb_pull(skb, vlan_depth);
2372
2373 rcu_read_lock();
2374 list_for_each_entry_rcu(ptype, &offload_base, list) {
2375 if (ptype->type == type && ptype->callbacks.gso_segment) {
2376 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2377 int err;
2378
2379 err = ptype->callbacks.gso_send_check(skb);
2380 segs = ERR_PTR(err);
2381 if (err || skb_gso_ok(skb, features))
2382 break;
2383 __skb_push(skb, (skb->data -
2384 skb_network_header(skb)));
2385 }
2386 segs = ptype->callbacks.gso_segment(skb, features);
2387 break;
2388 }
2389 }
2390 rcu_read_unlock();
2391
2392 __skb_push(skb, skb->data - skb_mac_header(skb));
2393
2394 return segs;
2395 }
2396 EXPORT_SYMBOL(skb_mac_gso_segment);
2397
2398
2399 /* openvswitch calls this on rx path, so we need a different check.
2400 */
2401 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2402 {
2403 if (tx_path)
2404 return skb->ip_summed != CHECKSUM_PARTIAL;
2405 else
2406 return skb->ip_summed == CHECKSUM_NONE;
2407 }
2408
2409 /**
2410 * __skb_gso_segment - Perform segmentation on skb.
2411 * @skb: buffer to segment
2412 * @features: features for the output path (see dev->features)
2413 * @tx_path: whether it is called in TX path
2414 *
2415 * This function segments the given skb and returns a list of segments.
2416 *
2417 * It may return NULL if the skb requires no segmentation. This is
2418 * only possible when GSO is used for verifying header integrity.
2419 */
2420 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2421 netdev_features_t features, bool tx_path)
2422 {
2423 if (unlikely(skb_needs_check(skb, tx_path))) {
2424 int err;
2425
2426 skb_warn_bad_offload(skb);
2427
2428 err = skb_cow_head(skb, 0);
2429 if (err < 0)
2430 return ERR_PTR(err);
2431 }
2432
2433 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2434 SKB_GSO_CB(skb)->encap_level = 0;
2435
2436 skb_reset_mac_header(skb);
2437 skb_reset_mac_len(skb);
2438
2439 return skb_mac_gso_segment(skb, features);
2440 }
2441 EXPORT_SYMBOL(__skb_gso_segment);
2442
2443 /* Take action when hardware reception checksum errors are detected. */
2444 #ifdef CONFIG_BUG
2445 void netdev_rx_csum_fault(struct net_device *dev)
2446 {
2447 if (net_ratelimit()) {
2448 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2449 dump_stack();
2450 }
2451 }
2452 EXPORT_SYMBOL(netdev_rx_csum_fault);
2453 #endif
2454
2455 /* Actually, we should eliminate this check as soon as we know, that:
2456 * 1. IOMMU is present and allows to map all the memory.
2457 * 2. No high memory really exists on this machine.
2458 */
2459
2460 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 #ifdef CONFIG_HIGHMEM
2463 int i;
2464 if (!(dev->features & NETIF_F_HIGHDMA)) {
2465 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2466 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2467 if (PageHighMem(skb_frag_page(frag)))
2468 return 1;
2469 }
2470 }
2471
2472 if (PCI_DMA_BUS_IS_PHYS) {
2473 struct device *pdev = dev->dev.parent;
2474
2475 if (!pdev)
2476 return 0;
2477 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2480 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2481 return 1;
2482 }
2483 }
2484 #endif
2485 return 0;
2486 }
2487
2488 /* If MPLS offload request, verify we are testing hardware MPLS features
2489 * instead of standard features for the netdev.
2490 */
2491 #ifdef CONFIG_NET_MPLS_GSO
2492 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2493 netdev_features_t features,
2494 __be16 type)
2495 {
2496 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2497 features &= skb->dev->mpls_features;
2498
2499 return features;
2500 }
2501 #else
2502 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2503 netdev_features_t features,
2504 __be16 type)
2505 {
2506 return features;
2507 }
2508 #endif
2509
2510 static netdev_features_t harmonize_features(struct sk_buff *skb,
2511 netdev_features_t features)
2512 {
2513 int tmp;
2514 __be16 type;
2515
2516 type = skb_network_protocol(skb, &tmp);
2517 features = net_mpls_features(skb, features, type);
2518
2519 if (skb->ip_summed != CHECKSUM_NONE &&
2520 !can_checksum_protocol(features, type)) {
2521 features &= ~NETIF_F_ALL_CSUM;
2522 } else if (illegal_highdma(skb->dev, skb)) {
2523 features &= ~NETIF_F_SG;
2524 }
2525
2526 return features;
2527 }
2528
2529 netdev_features_t netif_skb_features(struct sk_buff *skb)
2530 {
2531 __be16 protocol = skb->protocol;
2532 netdev_features_t features = skb->dev->features;
2533
2534 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2535 features &= ~NETIF_F_GSO_MASK;
2536
2537 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2538 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2539 protocol = veh->h_vlan_encapsulated_proto;
2540 } else if (!vlan_tx_tag_present(skb)) {
2541 return harmonize_features(skb, features);
2542 }
2543
2544 features = netdev_intersect_features(features,
2545 skb->dev->vlan_features |
2546 NETIF_F_HW_VLAN_CTAG_TX |
2547 NETIF_F_HW_VLAN_STAG_TX);
2548
2549 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2550 features = netdev_intersect_features(features,
2551 NETIF_F_SG |
2552 NETIF_F_HIGHDMA |
2553 NETIF_F_FRAGLIST |
2554 NETIF_F_GEN_CSUM |
2555 NETIF_F_HW_VLAN_CTAG_TX |
2556 NETIF_F_HW_VLAN_STAG_TX);
2557
2558 return harmonize_features(skb, features);
2559 }
2560 EXPORT_SYMBOL(netif_skb_features);
2561
2562 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2563 struct netdev_queue *txq, bool more)
2564 {
2565 unsigned int len;
2566 int rc;
2567
2568 if (!list_empty(&ptype_all))
2569 dev_queue_xmit_nit(skb, dev);
2570
2571 len = skb->len;
2572 trace_net_dev_start_xmit(skb, dev);
2573 rc = netdev_start_xmit(skb, dev, txq, more);
2574 trace_net_dev_xmit(skb, rc, dev, len);
2575
2576 return rc;
2577 }
2578
2579 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2580 struct netdev_queue *txq, int *ret)
2581 {
2582 struct sk_buff *skb = first;
2583 int rc = NETDEV_TX_OK;
2584
2585 while (skb) {
2586 struct sk_buff *next = skb->next;
2587
2588 skb->next = NULL;
2589 rc = xmit_one(skb, dev, txq, next != NULL);
2590 if (unlikely(!dev_xmit_complete(rc))) {
2591 skb->next = next;
2592 goto out;
2593 }
2594
2595 skb = next;
2596 if (netif_xmit_stopped(txq) && skb) {
2597 rc = NETDEV_TX_BUSY;
2598 break;
2599 }
2600 }
2601
2602 out:
2603 *ret = rc;
2604 return skb;
2605 }
2606
2607 struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, netdev_features_t features)
2608 {
2609 if (vlan_tx_tag_present(skb) &&
2610 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2611 skb = __vlan_put_tag(skb, skb->vlan_proto,
2612 vlan_tx_tag_get(skb));
2613 if (skb)
2614 skb->vlan_tci = 0;
2615 }
2616 return skb;
2617 }
2618
2619 struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2620 {
2621 netdev_features_t features;
2622
2623 if (skb->next)
2624 return skb;
2625
2626 /* If device doesn't need skb->dst, release it right now while
2627 * its hot in this cpu cache
2628 */
2629 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2630 skb_dst_drop(skb);
2631
2632 features = netif_skb_features(skb);
2633 skb = validate_xmit_vlan(skb, features);
2634 if (unlikely(!skb))
2635 goto out_null;
2636
2637 /* If encapsulation offload request, verify we are testing
2638 * hardware encapsulation features instead of standard
2639 * features for the netdev
2640 */
2641 if (skb->encapsulation)
2642 features &= dev->hw_enc_features;
2643
2644 if (netif_needs_gso(skb, features)) {
2645 struct sk_buff *segs;
2646
2647 segs = skb_gso_segment(skb, features);
2648 kfree_skb(skb);
2649 if (IS_ERR(segs))
2650 segs = NULL;
2651 skb = segs;
2652 } else {
2653 if (skb_needs_linearize(skb, features) &&
2654 __skb_linearize(skb))
2655 goto out_kfree_skb;
2656
2657 /* If packet is not checksummed and device does not
2658 * support checksumming for this protocol, complete
2659 * checksumming here.
2660 */
2661 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2662 if (skb->encapsulation)
2663 skb_set_inner_transport_header(skb,
2664 skb_checksum_start_offset(skb));
2665 else
2666 skb_set_transport_header(skb,
2667 skb_checksum_start_offset(skb));
2668 if (!(features & NETIF_F_ALL_CSUM) &&
2669 skb_checksum_help(skb))
2670 goto out_kfree_skb;
2671 }
2672 }
2673
2674 return skb;
2675
2676 out_kfree_skb:
2677 kfree_skb(skb);
2678 out_null:
2679 return NULL;
2680 }
2681
2682 static void qdisc_pkt_len_init(struct sk_buff *skb)
2683 {
2684 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2685
2686 qdisc_skb_cb(skb)->pkt_len = skb->len;
2687
2688 /* To get more precise estimation of bytes sent on wire,
2689 * we add to pkt_len the headers size of all segments
2690 */
2691 if (shinfo->gso_size) {
2692 unsigned int hdr_len;
2693 u16 gso_segs = shinfo->gso_segs;
2694
2695 /* mac layer + network layer */
2696 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2697
2698 /* + transport layer */
2699 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2700 hdr_len += tcp_hdrlen(skb);
2701 else
2702 hdr_len += sizeof(struct udphdr);
2703
2704 if (shinfo->gso_type & SKB_GSO_DODGY)
2705 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2706 shinfo->gso_size);
2707
2708 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2709 }
2710 }
2711
2712 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2713 struct net_device *dev,
2714 struct netdev_queue *txq)
2715 {
2716 spinlock_t *root_lock = qdisc_lock(q);
2717 bool contended;
2718 int rc;
2719
2720 qdisc_pkt_len_init(skb);
2721 qdisc_calculate_pkt_len(skb, q);
2722 /*
2723 * Heuristic to force contended enqueues to serialize on a
2724 * separate lock before trying to get qdisc main lock.
2725 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2726 * often and dequeue packets faster.
2727 */
2728 contended = qdisc_is_running(q);
2729 if (unlikely(contended))
2730 spin_lock(&q->busylock);
2731
2732 spin_lock(root_lock);
2733 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2734 kfree_skb(skb);
2735 rc = NET_XMIT_DROP;
2736 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2737 qdisc_run_begin(q)) {
2738 /*
2739 * This is a work-conserving queue; there are no old skbs
2740 * waiting to be sent out; and the qdisc is not running -
2741 * xmit the skb directly.
2742 */
2743 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2744 skb_dst_force(skb);
2745
2746 qdisc_bstats_update(q, skb);
2747
2748 skb = validate_xmit_skb(skb, dev);
2749 if (skb && sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2750 if (unlikely(contended)) {
2751 spin_unlock(&q->busylock);
2752 contended = false;
2753 }
2754 __qdisc_run(q);
2755 } else
2756 qdisc_run_end(q);
2757
2758 rc = NET_XMIT_SUCCESS;
2759 } else {
2760 skb_dst_force(skb);
2761 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2762 if (qdisc_run_begin(q)) {
2763 if (unlikely(contended)) {
2764 spin_unlock(&q->busylock);
2765 contended = false;
2766 }
2767 __qdisc_run(q);
2768 }
2769 }
2770 spin_unlock(root_lock);
2771 if (unlikely(contended))
2772 spin_unlock(&q->busylock);
2773 return rc;
2774 }
2775
2776 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2777 static void skb_update_prio(struct sk_buff *skb)
2778 {
2779 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2780
2781 if (!skb->priority && skb->sk && map) {
2782 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2783
2784 if (prioidx < map->priomap_len)
2785 skb->priority = map->priomap[prioidx];
2786 }
2787 }
2788 #else
2789 #define skb_update_prio(skb)
2790 #endif
2791
2792 static DEFINE_PER_CPU(int, xmit_recursion);
2793 #define RECURSION_LIMIT 10
2794
2795 /**
2796 * dev_loopback_xmit - loop back @skb
2797 * @skb: buffer to transmit
2798 */
2799 int dev_loopback_xmit(struct sk_buff *skb)
2800 {
2801 skb_reset_mac_header(skb);
2802 __skb_pull(skb, skb_network_offset(skb));
2803 skb->pkt_type = PACKET_LOOPBACK;
2804 skb->ip_summed = CHECKSUM_UNNECESSARY;
2805 WARN_ON(!skb_dst(skb));
2806 skb_dst_force(skb);
2807 netif_rx_ni(skb);
2808 return 0;
2809 }
2810 EXPORT_SYMBOL(dev_loopback_xmit);
2811
2812 /**
2813 * __dev_queue_xmit - transmit a buffer
2814 * @skb: buffer to transmit
2815 * @accel_priv: private data used for L2 forwarding offload
2816 *
2817 * Queue a buffer for transmission to a network device. The caller must
2818 * have set the device and priority and built the buffer before calling
2819 * this function. The function can be called from an interrupt.
2820 *
2821 * A negative errno code is returned on a failure. A success does not
2822 * guarantee the frame will be transmitted as it may be dropped due
2823 * to congestion or traffic shaping.
2824 *
2825 * -----------------------------------------------------------------------------------
2826 * I notice this method can also return errors from the queue disciplines,
2827 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2828 * be positive.
2829 *
2830 * Regardless of the return value, the skb is consumed, so it is currently
2831 * difficult to retry a send to this method. (You can bump the ref count
2832 * before sending to hold a reference for retry if you are careful.)
2833 *
2834 * When calling this method, interrupts MUST be enabled. This is because
2835 * the BH enable code must have IRQs enabled so that it will not deadlock.
2836 * --BLG
2837 */
2838 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2839 {
2840 struct net_device *dev = skb->dev;
2841 struct netdev_queue *txq;
2842 struct Qdisc *q;
2843 int rc = -ENOMEM;
2844
2845 skb_reset_mac_header(skb);
2846
2847 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2848 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2849
2850 /* Disable soft irqs for various locks below. Also
2851 * stops preemption for RCU.
2852 */
2853 rcu_read_lock_bh();
2854
2855 skb_update_prio(skb);
2856
2857 txq = netdev_pick_tx(dev, skb, accel_priv);
2858 q = rcu_dereference_bh(txq->qdisc);
2859
2860 #ifdef CONFIG_NET_CLS_ACT
2861 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2862 #endif
2863 trace_net_dev_queue(skb);
2864 if (q->enqueue) {
2865 rc = __dev_xmit_skb(skb, q, dev, txq);
2866 goto out;
2867 }
2868
2869 /* The device has no queue. Common case for software devices:
2870 loopback, all the sorts of tunnels...
2871
2872 Really, it is unlikely that netif_tx_lock protection is necessary
2873 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2874 counters.)
2875 However, it is possible, that they rely on protection
2876 made by us here.
2877
2878 Check this and shot the lock. It is not prone from deadlocks.
2879 Either shot noqueue qdisc, it is even simpler 8)
2880 */
2881 if (dev->flags & IFF_UP) {
2882 int cpu = smp_processor_id(); /* ok because BHs are off */
2883
2884 if (txq->xmit_lock_owner != cpu) {
2885
2886 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2887 goto recursion_alert;
2888
2889 skb = validate_xmit_skb(skb, dev);
2890 if (!skb)
2891 goto drop;
2892
2893 HARD_TX_LOCK(dev, txq, cpu);
2894
2895 if (!netif_xmit_stopped(txq)) {
2896 __this_cpu_inc(xmit_recursion);
2897 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2898 __this_cpu_dec(xmit_recursion);
2899 if (dev_xmit_complete(rc)) {
2900 HARD_TX_UNLOCK(dev, txq);
2901 goto out;
2902 }
2903 }
2904 HARD_TX_UNLOCK(dev, txq);
2905 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2906 dev->name);
2907 } else {
2908 /* Recursion is detected! It is possible,
2909 * unfortunately
2910 */
2911 recursion_alert:
2912 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2913 dev->name);
2914 }
2915 }
2916
2917 rc = -ENETDOWN;
2918 drop:
2919 rcu_read_unlock_bh();
2920
2921 atomic_long_inc(&dev->tx_dropped);
2922 kfree_skb_list(skb);
2923 return rc;
2924 out:
2925 rcu_read_unlock_bh();
2926 return rc;
2927 }
2928
2929 int dev_queue_xmit(struct sk_buff *skb)
2930 {
2931 return __dev_queue_xmit(skb, NULL);
2932 }
2933 EXPORT_SYMBOL(dev_queue_xmit);
2934
2935 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2936 {
2937 return __dev_queue_xmit(skb, accel_priv);
2938 }
2939 EXPORT_SYMBOL(dev_queue_xmit_accel);
2940
2941
2942 /*=======================================================================
2943 Receiver routines
2944 =======================================================================*/
2945
2946 int netdev_max_backlog __read_mostly = 1000;
2947 EXPORT_SYMBOL(netdev_max_backlog);
2948
2949 int netdev_tstamp_prequeue __read_mostly = 1;
2950 int netdev_budget __read_mostly = 300;
2951 int weight_p __read_mostly = 64; /* old backlog weight */
2952
2953 /* Called with irq disabled */
2954 static inline void ____napi_schedule(struct softnet_data *sd,
2955 struct napi_struct *napi)
2956 {
2957 list_add_tail(&napi->poll_list, &sd->poll_list);
2958 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2959 }
2960
2961 #ifdef CONFIG_RPS
2962
2963 /* One global table that all flow-based protocols share. */
2964 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2965 EXPORT_SYMBOL(rps_sock_flow_table);
2966
2967 struct static_key rps_needed __read_mostly;
2968
2969 static struct rps_dev_flow *
2970 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2971 struct rps_dev_flow *rflow, u16 next_cpu)
2972 {
2973 if (next_cpu != RPS_NO_CPU) {
2974 #ifdef CONFIG_RFS_ACCEL
2975 struct netdev_rx_queue *rxqueue;
2976 struct rps_dev_flow_table *flow_table;
2977 struct rps_dev_flow *old_rflow;
2978 u32 flow_id;
2979 u16 rxq_index;
2980 int rc;
2981
2982 /* Should we steer this flow to a different hardware queue? */
2983 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2984 !(dev->features & NETIF_F_NTUPLE))
2985 goto out;
2986 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2987 if (rxq_index == skb_get_rx_queue(skb))
2988 goto out;
2989
2990 rxqueue = dev->_rx + rxq_index;
2991 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2992 if (!flow_table)
2993 goto out;
2994 flow_id = skb_get_hash(skb) & flow_table->mask;
2995 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2996 rxq_index, flow_id);
2997 if (rc < 0)
2998 goto out;
2999 old_rflow = rflow;
3000 rflow = &flow_table->flows[flow_id];
3001 rflow->filter = rc;
3002 if (old_rflow->filter == rflow->filter)
3003 old_rflow->filter = RPS_NO_FILTER;
3004 out:
3005 #endif
3006 rflow->last_qtail =
3007 per_cpu(softnet_data, next_cpu).input_queue_head;
3008 }
3009
3010 rflow->cpu = next_cpu;
3011 return rflow;
3012 }
3013
3014 /*
3015 * get_rps_cpu is called from netif_receive_skb and returns the target
3016 * CPU from the RPS map of the receiving queue for a given skb.
3017 * rcu_read_lock must be held on entry.
3018 */
3019 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3020 struct rps_dev_flow **rflowp)
3021 {
3022 struct netdev_rx_queue *rxqueue;
3023 struct rps_map *map;
3024 struct rps_dev_flow_table *flow_table;
3025 struct rps_sock_flow_table *sock_flow_table;
3026 int cpu = -1;
3027 u16 tcpu;
3028 u32 hash;
3029
3030 if (skb_rx_queue_recorded(skb)) {
3031 u16 index = skb_get_rx_queue(skb);
3032 if (unlikely(index >= dev->real_num_rx_queues)) {
3033 WARN_ONCE(dev->real_num_rx_queues > 1,
3034 "%s received packet on queue %u, but number "
3035 "of RX queues is %u\n",
3036 dev->name, index, dev->real_num_rx_queues);
3037 goto done;
3038 }
3039 rxqueue = dev->_rx + index;
3040 } else
3041 rxqueue = dev->_rx;
3042
3043 map = rcu_dereference(rxqueue->rps_map);
3044 if (map) {
3045 if (map->len == 1 &&
3046 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3047 tcpu = map->cpus[0];
3048 if (cpu_online(tcpu))
3049 cpu = tcpu;
3050 goto done;
3051 }
3052 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3053 goto done;
3054 }
3055
3056 skb_reset_network_header(skb);
3057 hash = skb_get_hash(skb);
3058 if (!hash)
3059 goto done;
3060
3061 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3062 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3063 if (flow_table && sock_flow_table) {
3064 u16 next_cpu;
3065 struct rps_dev_flow *rflow;
3066
3067 rflow = &flow_table->flows[hash & flow_table->mask];
3068 tcpu = rflow->cpu;
3069
3070 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3071
3072 /*
3073 * If the desired CPU (where last recvmsg was done) is
3074 * different from current CPU (one in the rx-queue flow
3075 * table entry), switch if one of the following holds:
3076 * - Current CPU is unset (equal to RPS_NO_CPU).
3077 * - Current CPU is offline.
3078 * - The current CPU's queue tail has advanced beyond the
3079 * last packet that was enqueued using this table entry.
3080 * This guarantees that all previous packets for the flow
3081 * have been dequeued, thus preserving in order delivery.
3082 */
3083 if (unlikely(tcpu != next_cpu) &&
3084 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3085 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3086 rflow->last_qtail)) >= 0)) {
3087 tcpu = next_cpu;
3088 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3089 }
3090
3091 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3092 *rflowp = rflow;
3093 cpu = tcpu;
3094 goto done;
3095 }
3096 }
3097
3098 if (map) {
3099 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3100 if (cpu_online(tcpu)) {
3101 cpu = tcpu;
3102 goto done;
3103 }
3104 }
3105
3106 done:
3107 return cpu;
3108 }
3109
3110 #ifdef CONFIG_RFS_ACCEL
3111
3112 /**
3113 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3114 * @dev: Device on which the filter was set
3115 * @rxq_index: RX queue index
3116 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3117 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3118 *
3119 * Drivers that implement ndo_rx_flow_steer() should periodically call
3120 * this function for each installed filter and remove the filters for
3121 * which it returns %true.
3122 */
3123 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3124 u32 flow_id, u16 filter_id)
3125 {
3126 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3127 struct rps_dev_flow_table *flow_table;
3128 struct rps_dev_flow *rflow;
3129 bool expire = true;
3130 int cpu;
3131
3132 rcu_read_lock();
3133 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3134 if (flow_table && flow_id <= flow_table->mask) {
3135 rflow = &flow_table->flows[flow_id];
3136 cpu = ACCESS_ONCE(rflow->cpu);
3137 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3138 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3139 rflow->last_qtail) <
3140 (int)(10 * flow_table->mask)))
3141 expire = false;
3142 }
3143 rcu_read_unlock();
3144 return expire;
3145 }
3146 EXPORT_SYMBOL(rps_may_expire_flow);
3147
3148 #endif /* CONFIG_RFS_ACCEL */
3149
3150 /* Called from hardirq (IPI) context */
3151 static void rps_trigger_softirq(void *data)
3152 {
3153 struct softnet_data *sd = data;
3154
3155 ____napi_schedule(sd, &sd->backlog);
3156 sd->received_rps++;
3157 }
3158
3159 #endif /* CONFIG_RPS */
3160
3161 /*
3162 * Check if this softnet_data structure is another cpu one
3163 * If yes, queue it to our IPI list and return 1
3164 * If no, return 0
3165 */
3166 static int rps_ipi_queued(struct softnet_data *sd)
3167 {
3168 #ifdef CONFIG_RPS
3169 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3170
3171 if (sd != mysd) {
3172 sd->rps_ipi_next = mysd->rps_ipi_list;
3173 mysd->rps_ipi_list = sd;
3174
3175 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3176 return 1;
3177 }
3178 #endif /* CONFIG_RPS */
3179 return 0;
3180 }
3181
3182 #ifdef CONFIG_NET_FLOW_LIMIT
3183 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3184 #endif
3185
3186 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3187 {
3188 #ifdef CONFIG_NET_FLOW_LIMIT
3189 struct sd_flow_limit *fl;
3190 struct softnet_data *sd;
3191 unsigned int old_flow, new_flow;
3192
3193 if (qlen < (netdev_max_backlog >> 1))
3194 return false;
3195
3196 sd = &__get_cpu_var(softnet_data);
3197
3198 rcu_read_lock();
3199 fl = rcu_dereference(sd->flow_limit);
3200 if (fl) {
3201 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3202 old_flow = fl->history[fl->history_head];
3203 fl->history[fl->history_head] = new_flow;
3204
3205 fl->history_head++;
3206 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3207
3208 if (likely(fl->buckets[old_flow]))
3209 fl->buckets[old_flow]--;
3210
3211 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3212 fl->count++;
3213 rcu_read_unlock();
3214 return true;
3215 }
3216 }
3217 rcu_read_unlock();
3218 #endif
3219 return false;
3220 }
3221
3222 /*
3223 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3224 * queue (may be a remote CPU queue).
3225 */
3226 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3227 unsigned int *qtail)
3228 {
3229 struct softnet_data *sd;
3230 unsigned long flags;
3231 unsigned int qlen;
3232
3233 sd = &per_cpu(softnet_data, cpu);
3234
3235 local_irq_save(flags);
3236
3237 rps_lock(sd);
3238 qlen = skb_queue_len(&sd->input_pkt_queue);
3239 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3240 if (skb_queue_len(&sd->input_pkt_queue)) {
3241 enqueue:
3242 __skb_queue_tail(&sd->input_pkt_queue, skb);
3243 input_queue_tail_incr_save(sd, qtail);
3244 rps_unlock(sd);
3245 local_irq_restore(flags);
3246 return NET_RX_SUCCESS;
3247 }
3248
3249 /* Schedule NAPI for backlog device
3250 * We can use non atomic operation since we own the queue lock
3251 */
3252 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3253 if (!rps_ipi_queued(sd))
3254 ____napi_schedule(sd, &sd->backlog);
3255 }
3256 goto enqueue;
3257 }
3258
3259 sd->dropped++;
3260 rps_unlock(sd);
3261
3262 local_irq_restore(flags);
3263
3264 atomic_long_inc(&skb->dev->rx_dropped);
3265 kfree_skb(skb);
3266 return NET_RX_DROP;
3267 }
3268
3269 static int netif_rx_internal(struct sk_buff *skb)
3270 {
3271 int ret;
3272
3273 net_timestamp_check(netdev_tstamp_prequeue, skb);
3274
3275 trace_netif_rx(skb);
3276 #ifdef CONFIG_RPS
3277 if (static_key_false(&rps_needed)) {
3278 struct rps_dev_flow voidflow, *rflow = &voidflow;
3279 int cpu;
3280
3281 preempt_disable();
3282 rcu_read_lock();
3283
3284 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3285 if (cpu < 0)
3286 cpu = smp_processor_id();
3287
3288 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3289
3290 rcu_read_unlock();
3291 preempt_enable();
3292 } else
3293 #endif
3294 {
3295 unsigned int qtail;
3296 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3297 put_cpu();
3298 }
3299 return ret;
3300 }
3301
3302 /**
3303 * netif_rx - post buffer to the network code
3304 * @skb: buffer to post
3305 *
3306 * This function receives a packet from a device driver and queues it for
3307 * the upper (protocol) levels to process. It always succeeds. The buffer
3308 * may be dropped during processing for congestion control or by the
3309 * protocol layers.
3310 *
3311 * return values:
3312 * NET_RX_SUCCESS (no congestion)
3313 * NET_RX_DROP (packet was dropped)
3314 *
3315 */
3316
3317 int netif_rx(struct sk_buff *skb)
3318 {
3319 trace_netif_rx_entry(skb);
3320
3321 return netif_rx_internal(skb);
3322 }
3323 EXPORT_SYMBOL(netif_rx);
3324
3325 int netif_rx_ni(struct sk_buff *skb)
3326 {
3327 int err;
3328
3329 trace_netif_rx_ni_entry(skb);
3330
3331 preempt_disable();
3332 err = netif_rx_internal(skb);
3333 if (local_softirq_pending())
3334 do_softirq();
3335 preempt_enable();
3336
3337 return err;
3338 }
3339 EXPORT_SYMBOL(netif_rx_ni);
3340
3341 static void net_tx_action(struct softirq_action *h)
3342 {
3343 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3344
3345 if (sd->completion_queue) {
3346 struct sk_buff *clist;
3347
3348 local_irq_disable();
3349 clist = sd->completion_queue;
3350 sd->completion_queue = NULL;
3351 local_irq_enable();
3352
3353 while (clist) {
3354 struct sk_buff *skb = clist;
3355 clist = clist->next;
3356
3357 WARN_ON(atomic_read(&skb->users));
3358 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3359 trace_consume_skb(skb);
3360 else
3361 trace_kfree_skb(skb, net_tx_action);
3362 __kfree_skb(skb);
3363 }
3364 }
3365
3366 if (sd->output_queue) {
3367 struct Qdisc *head;
3368
3369 local_irq_disable();
3370 head = sd->output_queue;
3371 sd->output_queue = NULL;
3372 sd->output_queue_tailp = &sd->output_queue;
3373 local_irq_enable();
3374
3375 while (head) {
3376 struct Qdisc *q = head;
3377 spinlock_t *root_lock;
3378
3379 head = head->next_sched;
3380
3381 root_lock = qdisc_lock(q);
3382 if (spin_trylock(root_lock)) {
3383 smp_mb__before_atomic();
3384 clear_bit(__QDISC_STATE_SCHED,
3385 &q->state);
3386 qdisc_run(q);
3387 spin_unlock(root_lock);
3388 } else {
3389 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3390 &q->state)) {
3391 __netif_reschedule(q);
3392 } else {
3393 smp_mb__before_atomic();
3394 clear_bit(__QDISC_STATE_SCHED,
3395 &q->state);
3396 }
3397 }
3398 }
3399 }
3400 }
3401
3402 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3403 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3404 /* This hook is defined here for ATM LANE */
3405 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3406 unsigned char *addr) __read_mostly;
3407 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3408 #endif
3409
3410 #ifdef CONFIG_NET_CLS_ACT
3411 /* TODO: Maybe we should just force sch_ingress to be compiled in
3412 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3413 * a compare and 2 stores extra right now if we dont have it on
3414 * but have CONFIG_NET_CLS_ACT
3415 * NOTE: This doesn't stop any functionality; if you dont have
3416 * the ingress scheduler, you just can't add policies on ingress.
3417 *
3418 */
3419 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3420 {
3421 struct net_device *dev = skb->dev;
3422 u32 ttl = G_TC_RTTL(skb->tc_verd);
3423 int result = TC_ACT_OK;
3424 struct Qdisc *q;
3425
3426 if (unlikely(MAX_RED_LOOP < ttl++)) {
3427 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3428 skb->skb_iif, dev->ifindex);
3429 return TC_ACT_SHOT;
3430 }
3431
3432 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3433 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3434
3435 q = rxq->qdisc;
3436 if (q != &noop_qdisc) {
3437 spin_lock(qdisc_lock(q));
3438 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3439 result = qdisc_enqueue_root(skb, q);
3440 spin_unlock(qdisc_lock(q));
3441 }
3442
3443 return result;
3444 }
3445
3446 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3447 struct packet_type **pt_prev,
3448 int *ret, struct net_device *orig_dev)
3449 {
3450 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3451
3452 if (!rxq || rxq->qdisc == &noop_qdisc)
3453 goto out;
3454
3455 if (*pt_prev) {
3456 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3457 *pt_prev = NULL;
3458 }
3459
3460 switch (ing_filter(skb, rxq)) {
3461 case TC_ACT_SHOT:
3462 case TC_ACT_STOLEN:
3463 kfree_skb(skb);
3464 return NULL;
3465 }
3466
3467 out:
3468 skb->tc_verd = 0;
3469 return skb;
3470 }
3471 #endif
3472
3473 /**
3474 * netdev_rx_handler_register - register receive handler
3475 * @dev: device to register a handler for
3476 * @rx_handler: receive handler to register
3477 * @rx_handler_data: data pointer that is used by rx handler
3478 *
3479 * Register a receive handler for a device. This handler will then be
3480 * called from __netif_receive_skb. A negative errno code is returned
3481 * on a failure.
3482 *
3483 * The caller must hold the rtnl_mutex.
3484 *
3485 * For a general description of rx_handler, see enum rx_handler_result.
3486 */
3487 int netdev_rx_handler_register(struct net_device *dev,
3488 rx_handler_func_t *rx_handler,
3489 void *rx_handler_data)
3490 {
3491 ASSERT_RTNL();
3492
3493 if (dev->rx_handler)
3494 return -EBUSY;
3495
3496 /* Note: rx_handler_data must be set before rx_handler */
3497 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3498 rcu_assign_pointer(dev->rx_handler, rx_handler);
3499
3500 return 0;
3501 }
3502 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3503
3504 /**
3505 * netdev_rx_handler_unregister - unregister receive handler
3506 * @dev: device to unregister a handler from
3507 *
3508 * Unregister a receive handler from a device.
3509 *
3510 * The caller must hold the rtnl_mutex.
3511 */
3512 void netdev_rx_handler_unregister(struct net_device *dev)
3513 {
3514
3515 ASSERT_RTNL();
3516 RCU_INIT_POINTER(dev->rx_handler, NULL);
3517 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3518 * section has a guarantee to see a non NULL rx_handler_data
3519 * as well.
3520 */
3521 synchronize_net();
3522 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3523 }
3524 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3525
3526 /*
3527 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3528 * the special handling of PFMEMALLOC skbs.
3529 */
3530 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3531 {
3532 switch (skb->protocol) {
3533 case htons(ETH_P_ARP):
3534 case htons(ETH_P_IP):
3535 case htons(ETH_P_IPV6):
3536 case htons(ETH_P_8021Q):
3537 case htons(ETH_P_8021AD):
3538 return true;
3539 default:
3540 return false;
3541 }
3542 }
3543
3544 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3545 {
3546 struct packet_type *ptype, *pt_prev;
3547 rx_handler_func_t *rx_handler;
3548 struct net_device *orig_dev;
3549 struct net_device *null_or_dev;
3550 bool deliver_exact = false;
3551 int ret = NET_RX_DROP;
3552 __be16 type;
3553
3554 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3555
3556 trace_netif_receive_skb(skb);
3557
3558 orig_dev = skb->dev;
3559
3560 skb_reset_network_header(skb);
3561 if (!skb_transport_header_was_set(skb))
3562 skb_reset_transport_header(skb);
3563 skb_reset_mac_len(skb);
3564
3565 pt_prev = NULL;
3566
3567 rcu_read_lock();
3568
3569 another_round:
3570 skb->skb_iif = skb->dev->ifindex;
3571
3572 __this_cpu_inc(softnet_data.processed);
3573
3574 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3575 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3576 skb = skb_vlan_untag(skb);
3577 if (unlikely(!skb))
3578 goto unlock;
3579 }
3580
3581 #ifdef CONFIG_NET_CLS_ACT
3582 if (skb->tc_verd & TC_NCLS) {
3583 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3584 goto ncls;
3585 }
3586 #endif
3587
3588 if (pfmemalloc)
3589 goto skip_taps;
3590
3591 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3592 if (!ptype->dev || ptype->dev == skb->dev) {
3593 if (pt_prev)
3594 ret = deliver_skb(skb, pt_prev, orig_dev);
3595 pt_prev = ptype;
3596 }
3597 }
3598
3599 skip_taps:
3600 #ifdef CONFIG_NET_CLS_ACT
3601 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3602 if (!skb)
3603 goto unlock;
3604 ncls:
3605 #endif
3606
3607 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3608 goto drop;
3609
3610 if (vlan_tx_tag_present(skb)) {
3611 if (pt_prev) {
3612 ret = deliver_skb(skb, pt_prev, orig_dev);
3613 pt_prev = NULL;
3614 }
3615 if (vlan_do_receive(&skb))
3616 goto another_round;
3617 else if (unlikely(!skb))
3618 goto unlock;
3619 }
3620
3621 rx_handler = rcu_dereference(skb->dev->rx_handler);
3622 if (rx_handler) {
3623 if (pt_prev) {
3624 ret = deliver_skb(skb, pt_prev, orig_dev);
3625 pt_prev = NULL;
3626 }
3627 switch (rx_handler(&skb)) {
3628 case RX_HANDLER_CONSUMED:
3629 ret = NET_RX_SUCCESS;
3630 goto unlock;
3631 case RX_HANDLER_ANOTHER:
3632 goto another_round;
3633 case RX_HANDLER_EXACT:
3634 deliver_exact = true;
3635 case RX_HANDLER_PASS:
3636 break;
3637 default:
3638 BUG();
3639 }
3640 }
3641
3642 if (unlikely(vlan_tx_tag_present(skb))) {
3643 if (vlan_tx_tag_get_id(skb))
3644 skb->pkt_type = PACKET_OTHERHOST;
3645 /* Note: we might in the future use prio bits
3646 * and set skb->priority like in vlan_do_receive()
3647 * For the time being, just ignore Priority Code Point
3648 */
3649 skb->vlan_tci = 0;
3650 }
3651
3652 /* deliver only exact match when indicated */
3653 null_or_dev = deliver_exact ? skb->dev : NULL;
3654
3655 type = skb->protocol;
3656 list_for_each_entry_rcu(ptype,
3657 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3658 if (ptype->type == type &&
3659 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3660 ptype->dev == orig_dev)) {
3661 if (pt_prev)
3662 ret = deliver_skb(skb, pt_prev, orig_dev);
3663 pt_prev = ptype;
3664 }
3665 }
3666
3667 if (pt_prev) {
3668 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3669 goto drop;
3670 else
3671 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3672 } else {
3673 drop:
3674 atomic_long_inc(&skb->dev->rx_dropped);
3675 kfree_skb(skb);
3676 /* Jamal, now you will not able to escape explaining
3677 * me how you were going to use this. :-)
3678 */
3679 ret = NET_RX_DROP;
3680 }
3681
3682 unlock:
3683 rcu_read_unlock();
3684 return ret;
3685 }
3686
3687 static int __netif_receive_skb(struct sk_buff *skb)
3688 {
3689 int ret;
3690
3691 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3692 unsigned long pflags = current->flags;
3693
3694 /*
3695 * PFMEMALLOC skbs are special, they should
3696 * - be delivered to SOCK_MEMALLOC sockets only
3697 * - stay away from userspace
3698 * - have bounded memory usage
3699 *
3700 * Use PF_MEMALLOC as this saves us from propagating the allocation
3701 * context down to all allocation sites.
3702 */
3703 current->flags |= PF_MEMALLOC;
3704 ret = __netif_receive_skb_core(skb, true);
3705 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3706 } else
3707 ret = __netif_receive_skb_core(skb, false);
3708
3709 return ret;
3710 }
3711
3712 static int netif_receive_skb_internal(struct sk_buff *skb)
3713 {
3714 net_timestamp_check(netdev_tstamp_prequeue, skb);
3715
3716 if (skb_defer_rx_timestamp(skb))
3717 return NET_RX_SUCCESS;
3718
3719 #ifdef CONFIG_RPS
3720 if (static_key_false(&rps_needed)) {
3721 struct rps_dev_flow voidflow, *rflow = &voidflow;
3722 int cpu, ret;
3723
3724 rcu_read_lock();
3725
3726 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3727
3728 if (cpu >= 0) {
3729 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3730 rcu_read_unlock();
3731 return ret;
3732 }
3733 rcu_read_unlock();
3734 }
3735 #endif
3736 return __netif_receive_skb(skb);
3737 }
3738
3739 /**
3740 * netif_receive_skb - process receive buffer from network
3741 * @skb: buffer to process
3742 *
3743 * netif_receive_skb() is the main receive data processing function.
3744 * It always succeeds. The buffer may be dropped during processing
3745 * for congestion control or by the protocol layers.
3746 *
3747 * This function may only be called from softirq context and interrupts
3748 * should be enabled.
3749 *
3750 * Return values (usually ignored):
3751 * NET_RX_SUCCESS: no congestion
3752 * NET_RX_DROP: packet was dropped
3753 */
3754 int netif_receive_skb(struct sk_buff *skb)
3755 {
3756 trace_netif_receive_skb_entry(skb);
3757
3758 return netif_receive_skb_internal(skb);
3759 }
3760 EXPORT_SYMBOL(netif_receive_skb);
3761
3762 /* Network device is going away, flush any packets still pending
3763 * Called with irqs disabled.
3764 */
3765 static void flush_backlog(void *arg)
3766 {
3767 struct net_device *dev = arg;
3768 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3769 struct sk_buff *skb, *tmp;
3770
3771 rps_lock(sd);
3772 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3773 if (skb->dev == dev) {
3774 __skb_unlink(skb, &sd->input_pkt_queue);
3775 kfree_skb(skb);
3776 input_queue_head_incr(sd);
3777 }
3778 }
3779 rps_unlock(sd);
3780
3781 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3782 if (skb->dev == dev) {
3783 __skb_unlink(skb, &sd->process_queue);
3784 kfree_skb(skb);
3785 input_queue_head_incr(sd);
3786 }
3787 }
3788 }
3789
3790 static int napi_gro_complete(struct sk_buff *skb)
3791 {
3792 struct packet_offload *ptype;
3793 __be16 type = skb->protocol;
3794 struct list_head *head = &offload_base;
3795 int err = -ENOENT;
3796
3797 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3798
3799 if (NAPI_GRO_CB(skb)->count == 1) {
3800 skb_shinfo(skb)->gso_size = 0;
3801 goto out;
3802 }
3803
3804 rcu_read_lock();
3805 list_for_each_entry_rcu(ptype, head, list) {
3806 if (ptype->type != type || !ptype->callbacks.gro_complete)
3807 continue;
3808
3809 err = ptype->callbacks.gro_complete(skb, 0);
3810 break;
3811 }
3812 rcu_read_unlock();
3813
3814 if (err) {
3815 WARN_ON(&ptype->list == head);
3816 kfree_skb(skb);
3817 return NET_RX_SUCCESS;
3818 }
3819
3820 out:
3821 return netif_receive_skb_internal(skb);
3822 }
3823
3824 /* napi->gro_list contains packets ordered by age.
3825 * youngest packets at the head of it.
3826 * Complete skbs in reverse order to reduce latencies.
3827 */
3828 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3829 {
3830 struct sk_buff *skb, *prev = NULL;
3831
3832 /* scan list and build reverse chain */
3833 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3834 skb->prev = prev;
3835 prev = skb;
3836 }
3837
3838 for (skb = prev; skb; skb = prev) {
3839 skb->next = NULL;
3840
3841 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3842 return;
3843
3844 prev = skb->prev;
3845 napi_gro_complete(skb);
3846 napi->gro_count--;
3847 }
3848
3849 napi->gro_list = NULL;
3850 }
3851 EXPORT_SYMBOL(napi_gro_flush);
3852
3853 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3854 {
3855 struct sk_buff *p;
3856 unsigned int maclen = skb->dev->hard_header_len;
3857 u32 hash = skb_get_hash_raw(skb);
3858
3859 for (p = napi->gro_list; p; p = p->next) {
3860 unsigned long diffs;
3861
3862 NAPI_GRO_CB(p)->flush = 0;
3863
3864 if (hash != skb_get_hash_raw(p)) {
3865 NAPI_GRO_CB(p)->same_flow = 0;
3866 continue;
3867 }
3868
3869 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3870 diffs |= p->vlan_tci ^ skb->vlan_tci;
3871 if (maclen == ETH_HLEN)
3872 diffs |= compare_ether_header(skb_mac_header(p),
3873 skb_mac_header(skb));
3874 else if (!diffs)
3875 diffs = memcmp(skb_mac_header(p),
3876 skb_mac_header(skb),
3877 maclen);
3878 NAPI_GRO_CB(p)->same_flow = !diffs;
3879 }
3880 }
3881
3882 static void skb_gro_reset_offset(struct sk_buff *skb)
3883 {
3884 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3885 const skb_frag_t *frag0 = &pinfo->frags[0];
3886
3887 NAPI_GRO_CB(skb)->data_offset = 0;
3888 NAPI_GRO_CB(skb)->frag0 = NULL;
3889 NAPI_GRO_CB(skb)->frag0_len = 0;
3890
3891 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3892 pinfo->nr_frags &&
3893 !PageHighMem(skb_frag_page(frag0))) {
3894 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3895 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3896 }
3897 }
3898
3899 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3900 {
3901 struct skb_shared_info *pinfo = skb_shinfo(skb);
3902
3903 BUG_ON(skb->end - skb->tail < grow);
3904
3905 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3906
3907 skb->data_len -= grow;
3908 skb->tail += grow;
3909
3910 pinfo->frags[0].page_offset += grow;
3911 skb_frag_size_sub(&pinfo->frags[0], grow);
3912
3913 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3914 skb_frag_unref(skb, 0);
3915 memmove(pinfo->frags, pinfo->frags + 1,
3916 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3917 }
3918 }
3919
3920 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3921 {
3922 struct sk_buff **pp = NULL;
3923 struct packet_offload *ptype;
3924 __be16 type = skb->protocol;
3925 struct list_head *head = &offload_base;
3926 int same_flow;
3927 enum gro_result ret;
3928 int grow;
3929
3930 if (!(skb->dev->features & NETIF_F_GRO))
3931 goto normal;
3932
3933 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
3934 goto normal;
3935
3936 gro_list_prepare(napi, skb);
3937
3938 rcu_read_lock();
3939 list_for_each_entry_rcu(ptype, head, list) {
3940 if (ptype->type != type || !ptype->callbacks.gro_receive)
3941 continue;
3942
3943 skb_set_network_header(skb, skb_gro_offset(skb));
3944 skb_reset_mac_len(skb);
3945 NAPI_GRO_CB(skb)->same_flow = 0;
3946 NAPI_GRO_CB(skb)->flush = 0;
3947 NAPI_GRO_CB(skb)->free = 0;
3948 NAPI_GRO_CB(skb)->udp_mark = 0;
3949
3950 /* Setup for GRO checksum validation */
3951 switch (skb->ip_summed) {
3952 case CHECKSUM_COMPLETE:
3953 NAPI_GRO_CB(skb)->csum = skb->csum;
3954 NAPI_GRO_CB(skb)->csum_valid = 1;
3955 NAPI_GRO_CB(skb)->csum_cnt = 0;
3956 break;
3957 case CHECKSUM_UNNECESSARY:
3958 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
3959 NAPI_GRO_CB(skb)->csum_valid = 0;
3960 break;
3961 default:
3962 NAPI_GRO_CB(skb)->csum_cnt = 0;
3963 NAPI_GRO_CB(skb)->csum_valid = 0;
3964 }
3965
3966 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3967 break;
3968 }
3969 rcu_read_unlock();
3970
3971 if (&ptype->list == head)
3972 goto normal;
3973
3974 same_flow = NAPI_GRO_CB(skb)->same_flow;
3975 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3976
3977 if (pp) {
3978 struct sk_buff *nskb = *pp;
3979
3980 *pp = nskb->next;
3981 nskb->next = NULL;
3982 napi_gro_complete(nskb);
3983 napi->gro_count--;
3984 }
3985
3986 if (same_flow)
3987 goto ok;
3988
3989 if (NAPI_GRO_CB(skb)->flush)
3990 goto normal;
3991
3992 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3993 struct sk_buff *nskb = napi->gro_list;
3994
3995 /* locate the end of the list to select the 'oldest' flow */
3996 while (nskb->next) {
3997 pp = &nskb->next;
3998 nskb = *pp;
3999 }
4000 *pp = NULL;
4001 nskb->next = NULL;
4002 napi_gro_complete(nskb);
4003 } else {
4004 napi->gro_count++;
4005 }
4006 NAPI_GRO_CB(skb)->count = 1;
4007 NAPI_GRO_CB(skb)->age = jiffies;
4008 NAPI_GRO_CB(skb)->last = skb;
4009 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4010 skb->next = napi->gro_list;
4011 napi->gro_list = skb;
4012 ret = GRO_HELD;
4013
4014 pull:
4015 grow = skb_gro_offset(skb) - skb_headlen(skb);
4016 if (grow > 0)
4017 gro_pull_from_frag0(skb, grow);
4018 ok:
4019 return ret;
4020
4021 normal:
4022 ret = GRO_NORMAL;
4023 goto pull;
4024 }
4025
4026 struct packet_offload *gro_find_receive_by_type(__be16 type)
4027 {
4028 struct list_head *offload_head = &offload_base;
4029 struct packet_offload *ptype;
4030
4031 list_for_each_entry_rcu(ptype, offload_head, list) {
4032 if (ptype->type != type || !ptype->callbacks.gro_receive)
4033 continue;
4034 return ptype;
4035 }
4036 return NULL;
4037 }
4038 EXPORT_SYMBOL(gro_find_receive_by_type);
4039
4040 struct packet_offload *gro_find_complete_by_type(__be16 type)
4041 {
4042 struct list_head *offload_head = &offload_base;
4043 struct packet_offload *ptype;
4044
4045 list_for_each_entry_rcu(ptype, offload_head, list) {
4046 if (ptype->type != type || !ptype->callbacks.gro_complete)
4047 continue;
4048 return ptype;
4049 }
4050 return NULL;
4051 }
4052 EXPORT_SYMBOL(gro_find_complete_by_type);
4053
4054 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4055 {
4056 switch (ret) {
4057 case GRO_NORMAL:
4058 if (netif_receive_skb_internal(skb))
4059 ret = GRO_DROP;
4060 break;
4061
4062 case GRO_DROP:
4063 kfree_skb(skb);
4064 break;
4065
4066 case GRO_MERGED_FREE:
4067 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4068 kmem_cache_free(skbuff_head_cache, skb);
4069 else
4070 __kfree_skb(skb);
4071 break;
4072
4073 case GRO_HELD:
4074 case GRO_MERGED:
4075 break;
4076 }
4077
4078 return ret;
4079 }
4080
4081 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4082 {
4083 trace_napi_gro_receive_entry(skb);
4084
4085 skb_gro_reset_offset(skb);
4086
4087 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4088 }
4089 EXPORT_SYMBOL(napi_gro_receive);
4090
4091 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4092 {
4093 __skb_pull(skb, skb_headlen(skb));
4094 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4095 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4096 skb->vlan_tci = 0;
4097 skb->dev = napi->dev;
4098 skb->skb_iif = 0;
4099 skb->encapsulation = 0;
4100 skb_shinfo(skb)->gso_type = 0;
4101 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4102
4103 napi->skb = skb;
4104 }
4105
4106 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4107 {
4108 struct sk_buff *skb = napi->skb;
4109
4110 if (!skb) {
4111 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4112 napi->skb = skb;
4113 }
4114 return skb;
4115 }
4116 EXPORT_SYMBOL(napi_get_frags);
4117
4118 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4119 struct sk_buff *skb,
4120 gro_result_t ret)
4121 {
4122 switch (ret) {
4123 case GRO_NORMAL:
4124 case GRO_HELD:
4125 __skb_push(skb, ETH_HLEN);
4126 skb->protocol = eth_type_trans(skb, skb->dev);
4127 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4128 ret = GRO_DROP;
4129 break;
4130
4131 case GRO_DROP:
4132 case GRO_MERGED_FREE:
4133 napi_reuse_skb(napi, skb);
4134 break;
4135
4136 case GRO_MERGED:
4137 break;
4138 }
4139
4140 return ret;
4141 }
4142
4143 /* Upper GRO stack assumes network header starts at gro_offset=0
4144 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4145 * We copy ethernet header into skb->data to have a common layout.
4146 */
4147 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4148 {
4149 struct sk_buff *skb = napi->skb;
4150 const struct ethhdr *eth;
4151 unsigned int hlen = sizeof(*eth);
4152
4153 napi->skb = NULL;
4154
4155 skb_reset_mac_header(skb);
4156 skb_gro_reset_offset(skb);
4157
4158 eth = skb_gro_header_fast(skb, 0);
4159 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4160 eth = skb_gro_header_slow(skb, hlen, 0);
4161 if (unlikely(!eth)) {
4162 napi_reuse_skb(napi, skb);
4163 return NULL;
4164 }
4165 } else {
4166 gro_pull_from_frag0(skb, hlen);
4167 NAPI_GRO_CB(skb)->frag0 += hlen;
4168 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4169 }
4170 __skb_pull(skb, hlen);
4171
4172 /*
4173 * This works because the only protocols we care about don't require
4174 * special handling.
4175 * We'll fix it up properly in napi_frags_finish()
4176 */
4177 skb->protocol = eth->h_proto;
4178
4179 return skb;
4180 }
4181
4182 gro_result_t napi_gro_frags(struct napi_struct *napi)
4183 {
4184 struct sk_buff *skb = napi_frags_skb(napi);
4185
4186 if (!skb)
4187 return GRO_DROP;
4188
4189 trace_napi_gro_frags_entry(skb);
4190
4191 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4192 }
4193 EXPORT_SYMBOL(napi_gro_frags);
4194
4195 /* Compute the checksum from gro_offset and return the folded value
4196 * after adding in any pseudo checksum.
4197 */
4198 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4199 {
4200 __wsum wsum;
4201 __sum16 sum;
4202
4203 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4204
4205 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4206 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4207 if (likely(!sum)) {
4208 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4209 !skb->csum_complete_sw)
4210 netdev_rx_csum_fault(skb->dev);
4211 }
4212
4213 NAPI_GRO_CB(skb)->csum = wsum;
4214 NAPI_GRO_CB(skb)->csum_valid = 1;
4215
4216 return sum;
4217 }
4218 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4219
4220 /*
4221 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4222 * Note: called with local irq disabled, but exits with local irq enabled.
4223 */
4224 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4225 {
4226 #ifdef CONFIG_RPS
4227 struct softnet_data *remsd = sd->rps_ipi_list;
4228
4229 if (remsd) {
4230 sd->rps_ipi_list = NULL;
4231
4232 local_irq_enable();
4233
4234 /* Send pending IPI's to kick RPS processing on remote cpus. */
4235 while (remsd) {
4236 struct softnet_data *next = remsd->rps_ipi_next;
4237
4238 if (cpu_online(remsd->cpu))
4239 smp_call_function_single_async(remsd->cpu,
4240 &remsd->csd);
4241 remsd = next;
4242 }
4243 } else
4244 #endif
4245 local_irq_enable();
4246 }
4247
4248 static int process_backlog(struct napi_struct *napi, int quota)
4249 {
4250 int work = 0;
4251 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4252
4253 #ifdef CONFIG_RPS
4254 /* Check if we have pending ipi, its better to send them now,
4255 * not waiting net_rx_action() end.
4256 */
4257 if (sd->rps_ipi_list) {
4258 local_irq_disable();
4259 net_rps_action_and_irq_enable(sd);
4260 }
4261 #endif
4262 napi->weight = weight_p;
4263 local_irq_disable();
4264 while (1) {
4265 struct sk_buff *skb;
4266
4267 while ((skb = __skb_dequeue(&sd->process_queue))) {
4268 local_irq_enable();
4269 __netif_receive_skb(skb);
4270 local_irq_disable();
4271 input_queue_head_incr(sd);
4272 if (++work >= quota) {
4273 local_irq_enable();
4274 return work;
4275 }
4276 }
4277
4278 rps_lock(sd);
4279 if (skb_queue_empty(&sd->input_pkt_queue)) {
4280 /*
4281 * Inline a custom version of __napi_complete().
4282 * only current cpu owns and manipulates this napi,
4283 * and NAPI_STATE_SCHED is the only possible flag set
4284 * on backlog.
4285 * We can use a plain write instead of clear_bit(),
4286 * and we dont need an smp_mb() memory barrier.
4287 */
4288 list_del(&napi->poll_list);
4289 napi->state = 0;
4290 rps_unlock(sd);
4291
4292 break;
4293 }
4294
4295 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4296 &sd->process_queue);
4297 rps_unlock(sd);
4298 }
4299 local_irq_enable();
4300
4301 return work;
4302 }
4303
4304 /**
4305 * __napi_schedule - schedule for receive
4306 * @n: entry to schedule
4307 *
4308 * The entry's receive function will be scheduled to run
4309 */
4310 void __napi_schedule(struct napi_struct *n)
4311 {
4312 unsigned long flags;
4313
4314 local_irq_save(flags);
4315 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4316 local_irq_restore(flags);
4317 }
4318 EXPORT_SYMBOL(__napi_schedule);
4319
4320 void __napi_complete(struct napi_struct *n)
4321 {
4322 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4323 BUG_ON(n->gro_list);
4324
4325 list_del(&n->poll_list);
4326 smp_mb__before_atomic();
4327 clear_bit(NAPI_STATE_SCHED, &n->state);
4328 }
4329 EXPORT_SYMBOL(__napi_complete);
4330
4331 void napi_complete(struct napi_struct *n)
4332 {
4333 unsigned long flags;
4334
4335 /*
4336 * don't let napi dequeue from the cpu poll list
4337 * just in case its running on a different cpu
4338 */
4339 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4340 return;
4341
4342 napi_gro_flush(n, false);
4343 local_irq_save(flags);
4344 __napi_complete(n);
4345 local_irq_restore(flags);
4346 }
4347 EXPORT_SYMBOL(napi_complete);
4348
4349 /* must be called under rcu_read_lock(), as we dont take a reference */
4350 struct napi_struct *napi_by_id(unsigned int napi_id)
4351 {
4352 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4353 struct napi_struct *napi;
4354
4355 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4356 if (napi->napi_id == napi_id)
4357 return napi;
4358
4359 return NULL;
4360 }
4361 EXPORT_SYMBOL_GPL(napi_by_id);
4362
4363 void napi_hash_add(struct napi_struct *napi)
4364 {
4365 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4366
4367 spin_lock(&napi_hash_lock);
4368
4369 /* 0 is not a valid id, we also skip an id that is taken
4370 * we expect both events to be extremely rare
4371 */
4372 napi->napi_id = 0;
4373 while (!napi->napi_id) {
4374 napi->napi_id = ++napi_gen_id;
4375 if (napi_by_id(napi->napi_id))
4376 napi->napi_id = 0;
4377 }
4378
4379 hlist_add_head_rcu(&napi->napi_hash_node,
4380 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4381
4382 spin_unlock(&napi_hash_lock);
4383 }
4384 }
4385 EXPORT_SYMBOL_GPL(napi_hash_add);
4386
4387 /* Warning : caller is responsible to make sure rcu grace period
4388 * is respected before freeing memory containing @napi
4389 */
4390 void napi_hash_del(struct napi_struct *napi)
4391 {
4392 spin_lock(&napi_hash_lock);
4393
4394 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4395 hlist_del_rcu(&napi->napi_hash_node);
4396
4397 spin_unlock(&napi_hash_lock);
4398 }
4399 EXPORT_SYMBOL_GPL(napi_hash_del);
4400
4401 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4402 int (*poll)(struct napi_struct *, int), int weight)
4403 {
4404 INIT_LIST_HEAD(&napi->poll_list);
4405 napi->gro_count = 0;
4406 napi->gro_list = NULL;
4407 napi->skb = NULL;
4408 napi->poll = poll;
4409 if (weight > NAPI_POLL_WEIGHT)
4410 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4411 weight, dev->name);
4412 napi->weight = weight;
4413 list_add(&napi->dev_list, &dev->napi_list);
4414 napi->dev = dev;
4415 #ifdef CONFIG_NETPOLL
4416 spin_lock_init(&napi->poll_lock);
4417 napi->poll_owner = -1;
4418 #endif
4419 set_bit(NAPI_STATE_SCHED, &napi->state);
4420 }
4421 EXPORT_SYMBOL(netif_napi_add);
4422
4423 void netif_napi_del(struct napi_struct *napi)
4424 {
4425 list_del_init(&napi->dev_list);
4426 napi_free_frags(napi);
4427
4428 kfree_skb_list(napi->gro_list);
4429 napi->gro_list = NULL;
4430 napi->gro_count = 0;
4431 }
4432 EXPORT_SYMBOL(netif_napi_del);
4433
4434 static void net_rx_action(struct softirq_action *h)
4435 {
4436 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4437 unsigned long time_limit = jiffies + 2;
4438 int budget = netdev_budget;
4439 void *have;
4440
4441 local_irq_disable();
4442
4443 while (!list_empty(&sd->poll_list)) {
4444 struct napi_struct *n;
4445 int work, weight;
4446
4447 /* If softirq window is exhuasted then punt.
4448 * Allow this to run for 2 jiffies since which will allow
4449 * an average latency of 1.5/HZ.
4450 */
4451 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4452 goto softnet_break;
4453
4454 local_irq_enable();
4455
4456 /* Even though interrupts have been re-enabled, this
4457 * access is safe because interrupts can only add new
4458 * entries to the tail of this list, and only ->poll()
4459 * calls can remove this head entry from the list.
4460 */
4461 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4462
4463 have = netpoll_poll_lock(n);
4464
4465 weight = n->weight;
4466
4467 /* This NAPI_STATE_SCHED test is for avoiding a race
4468 * with netpoll's poll_napi(). Only the entity which
4469 * obtains the lock and sees NAPI_STATE_SCHED set will
4470 * actually make the ->poll() call. Therefore we avoid
4471 * accidentally calling ->poll() when NAPI is not scheduled.
4472 */
4473 work = 0;
4474 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4475 work = n->poll(n, weight);
4476 trace_napi_poll(n);
4477 }
4478
4479 WARN_ON_ONCE(work > weight);
4480
4481 budget -= work;
4482
4483 local_irq_disable();
4484
4485 /* Drivers must not modify the NAPI state if they
4486 * consume the entire weight. In such cases this code
4487 * still "owns" the NAPI instance and therefore can
4488 * move the instance around on the list at-will.
4489 */
4490 if (unlikely(work == weight)) {
4491 if (unlikely(napi_disable_pending(n))) {
4492 local_irq_enable();
4493 napi_complete(n);
4494 local_irq_disable();
4495 } else {
4496 if (n->gro_list) {
4497 /* flush too old packets
4498 * If HZ < 1000, flush all packets.
4499 */
4500 local_irq_enable();
4501 napi_gro_flush(n, HZ >= 1000);
4502 local_irq_disable();
4503 }
4504 list_move_tail(&n->poll_list, &sd->poll_list);
4505 }
4506 }
4507
4508 netpoll_poll_unlock(have);
4509 }
4510 out:
4511 net_rps_action_and_irq_enable(sd);
4512
4513 #ifdef CONFIG_NET_DMA
4514 /*
4515 * There may not be any more sk_buffs coming right now, so push
4516 * any pending DMA copies to hardware
4517 */
4518 dma_issue_pending_all();
4519 #endif
4520
4521 return;
4522
4523 softnet_break:
4524 sd->time_squeeze++;
4525 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4526 goto out;
4527 }
4528
4529 struct netdev_adjacent {
4530 struct net_device *dev;
4531
4532 /* upper master flag, there can only be one master device per list */
4533 bool master;
4534
4535 /* counter for the number of times this device was added to us */
4536 u16 ref_nr;
4537
4538 /* private field for the users */
4539 void *private;
4540
4541 struct list_head list;
4542 struct rcu_head rcu;
4543 };
4544
4545 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4546 struct net_device *adj_dev,
4547 struct list_head *adj_list)
4548 {
4549 struct netdev_adjacent *adj;
4550
4551 list_for_each_entry(adj, adj_list, list) {
4552 if (adj->dev == adj_dev)
4553 return adj;
4554 }
4555 return NULL;
4556 }
4557
4558 /**
4559 * netdev_has_upper_dev - Check if device is linked to an upper device
4560 * @dev: device
4561 * @upper_dev: upper device to check
4562 *
4563 * Find out if a device is linked to specified upper device and return true
4564 * in case it is. Note that this checks only immediate upper device,
4565 * not through a complete stack of devices. The caller must hold the RTNL lock.
4566 */
4567 bool netdev_has_upper_dev(struct net_device *dev,
4568 struct net_device *upper_dev)
4569 {
4570 ASSERT_RTNL();
4571
4572 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4573 }
4574 EXPORT_SYMBOL(netdev_has_upper_dev);
4575
4576 /**
4577 * netdev_has_any_upper_dev - Check if device is linked to some device
4578 * @dev: device
4579 *
4580 * Find out if a device is linked to an upper device and return true in case
4581 * it is. The caller must hold the RTNL lock.
4582 */
4583 static bool netdev_has_any_upper_dev(struct net_device *dev)
4584 {
4585 ASSERT_RTNL();
4586
4587 return !list_empty(&dev->all_adj_list.upper);
4588 }
4589
4590 /**
4591 * netdev_master_upper_dev_get - Get master upper device
4592 * @dev: device
4593 *
4594 * Find a master upper device and return pointer to it or NULL in case
4595 * it's not there. The caller must hold the RTNL lock.
4596 */
4597 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4598 {
4599 struct netdev_adjacent *upper;
4600
4601 ASSERT_RTNL();
4602
4603 if (list_empty(&dev->adj_list.upper))
4604 return NULL;
4605
4606 upper = list_first_entry(&dev->adj_list.upper,
4607 struct netdev_adjacent, list);
4608 if (likely(upper->master))
4609 return upper->dev;
4610 return NULL;
4611 }
4612 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4613
4614 void *netdev_adjacent_get_private(struct list_head *adj_list)
4615 {
4616 struct netdev_adjacent *adj;
4617
4618 adj = list_entry(adj_list, struct netdev_adjacent, list);
4619
4620 return adj->private;
4621 }
4622 EXPORT_SYMBOL(netdev_adjacent_get_private);
4623
4624 /**
4625 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4626 * @dev: device
4627 * @iter: list_head ** of the current position
4628 *
4629 * Gets the next device from the dev's upper list, starting from iter
4630 * position. The caller must hold RCU read lock.
4631 */
4632 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4633 struct list_head **iter)
4634 {
4635 struct netdev_adjacent *upper;
4636
4637 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4638
4639 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4640
4641 if (&upper->list == &dev->adj_list.upper)
4642 return NULL;
4643
4644 *iter = &upper->list;
4645
4646 return upper->dev;
4647 }
4648 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4649
4650 /**
4651 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4652 * @dev: device
4653 * @iter: list_head ** of the current position
4654 *
4655 * Gets the next device from the dev's upper list, starting from iter
4656 * position. The caller must hold RCU read lock.
4657 */
4658 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4659 struct list_head **iter)
4660 {
4661 struct netdev_adjacent *upper;
4662
4663 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4664
4665 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4666
4667 if (&upper->list == &dev->all_adj_list.upper)
4668 return NULL;
4669
4670 *iter = &upper->list;
4671
4672 return upper->dev;
4673 }
4674 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4675
4676 /**
4677 * netdev_lower_get_next_private - Get the next ->private from the
4678 * lower neighbour list
4679 * @dev: device
4680 * @iter: list_head ** of the current position
4681 *
4682 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4683 * list, starting from iter position. The caller must hold either hold the
4684 * RTNL lock or its own locking that guarantees that the neighbour lower
4685 * list will remain unchainged.
4686 */
4687 void *netdev_lower_get_next_private(struct net_device *dev,
4688 struct list_head **iter)
4689 {
4690 struct netdev_adjacent *lower;
4691
4692 lower = list_entry(*iter, struct netdev_adjacent, list);
4693
4694 if (&lower->list == &dev->adj_list.lower)
4695 return NULL;
4696
4697 *iter = lower->list.next;
4698
4699 return lower->private;
4700 }
4701 EXPORT_SYMBOL(netdev_lower_get_next_private);
4702
4703 /**
4704 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4705 * lower neighbour list, RCU
4706 * variant
4707 * @dev: device
4708 * @iter: list_head ** of the current position
4709 *
4710 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4711 * list, starting from iter position. The caller must hold RCU read lock.
4712 */
4713 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4714 struct list_head **iter)
4715 {
4716 struct netdev_adjacent *lower;
4717
4718 WARN_ON_ONCE(!rcu_read_lock_held());
4719
4720 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4721
4722 if (&lower->list == &dev->adj_list.lower)
4723 return NULL;
4724
4725 *iter = &lower->list;
4726
4727 return lower->private;
4728 }
4729 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4730
4731 /**
4732 * netdev_lower_get_next - Get the next device from the lower neighbour
4733 * list
4734 * @dev: device
4735 * @iter: list_head ** of the current position
4736 *
4737 * Gets the next netdev_adjacent from the dev's lower neighbour
4738 * list, starting from iter position. The caller must hold RTNL lock or
4739 * its own locking that guarantees that the neighbour lower
4740 * list will remain unchainged.
4741 */
4742 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4743 {
4744 struct netdev_adjacent *lower;
4745
4746 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4747
4748 if (&lower->list == &dev->adj_list.lower)
4749 return NULL;
4750
4751 *iter = &lower->list;
4752
4753 return lower->dev;
4754 }
4755 EXPORT_SYMBOL(netdev_lower_get_next);
4756
4757 /**
4758 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4759 * lower neighbour list, RCU
4760 * variant
4761 * @dev: device
4762 *
4763 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4764 * list. The caller must hold RCU read lock.
4765 */
4766 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4767 {
4768 struct netdev_adjacent *lower;
4769
4770 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4771 struct netdev_adjacent, list);
4772 if (lower)
4773 return lower->private;
4774 return NULL;
4775 }
4776 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4777
4778 /**
4779 * netdev_master_upper_dev_get_rcu - Get master upper device
4780 * @dev: device
4781 *
4782 * Find a master upper device and return pointer to it or NULL in case
4783 * it's not there. The caller must hold the RCU read lock.
4784 */
4785 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4786 {
4787 struct netdev_adjacent *upper;
4788
4789 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4790 struct netdev_adjacent, list);
4791 if (upper && likely(upper->master))
4792 return upper->dev;
4793 return NULL;
4794 }
4795 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4796
4797 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4798 struct net_device *adj_dev,
4799 struct list_head *dev_list)
4800 {
4801 char linkname[IFNAMSIZ+7];
4802 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4803 "upper_%s" : "lower_%s", adj_dev->name);
4804 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4805 linkname);
4806 }
4807 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4808 char *name,
4809 struct list_head *dev_list)
4810 {
4811 char linkname[IFNAMSIZ+7];
4812 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4813 "upper_%s" : "lower_%s", name);
4814 sysfs_remove_link(&(dev->dev.kobj), linkname);
4815 }
4816
4817 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4818 (dev_list == &dev->adj_list.upper || \
4819 dev_list == &dev->adj_list.lower)
4820
4821 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4822 struct net_device *adj_dev,
4823 struct list_head *dev_list,
4824 void *private, bool master)
4825 {
4826 struct netdev_adjacent *adj;
4827 int ret;
4828
4829 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4830
4831 if (adj) {
4832 adj->ref_nr++;
4833 return 0;
4834 }
4835
4836 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4837 if (!adj)
4838 return -ENOMEM;
4839
4840 adj->dev = adj_dev;
4841 adj->master = master;
4842 adj->ref_nr = 1;
4843 adj->private = private;
4844 dev_hold(adj_dev);
4845
4846 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4847 adj_dev->name, dev->name, adj_dev->name);
4848
4849 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4850 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4851 if (ret)
4852 goto free_adj;
4853 }
4854
4855 /* Ensure that master link is always the first item in list. */
4856 if (master) {
4857 ret = sysfs_create_link(&(dev->dev.kobj),
4858 &(adj_dev->dev.kobj), "master");
4859 if (ret)
4860 goto remove_symlinks;
4861
4862 list_add_rcu(&adj->list, dev_list);
4863 } else {
4864 list_add_tail_rcu(&adj->list, dev_list);
4865 }
4866
4867 return 0;
4868
4869 remove_symlinks:
4870 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4871 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4872 free_adj:
4873 kfree(adj);
4874 dev_put(adj_dev);
4875
4876 return ret;
4877 }
4878
4879 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4880 struct net_device *adj_dev,
4881 struct list_head *dev_list)
4882 {
4883 struct netdev_adjacent *adj;
4884
4885 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4886
4887 if (!adj) {
4888 pr_err("tried to remove device %s from %s\n",
4889 dev->name, adj_dev->name);
4890 BUG();
4891 }
4892
4893 if (adj->ref_nr > 1) {
4894 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4895 adj->ref_nr-1);
4896 adj->ref_nr--;
4897 return;
4898 }
4899
4900 if (adj->master)
4901 sysfs_remove_link(&(dev->dev.kobj), "master");
4902
4903 if (netdev_adjacent_is_neigh_list(dev, dev_list) &&
4904 net_eq(dev_net(dev),dev_net(adj_dev)))
4905 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4906
4907 list_del_rcu(&adj->list);
4908 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4909 adj_dev->name, dev->name, adj_dev->name);
4910 dev_put(adj_dev);
4911 kfree_rcu(adj, rcu);
4912 }
4913
4914 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4915 struct net_device *upper_dev,
4916 struct list_head *up_list,
4917 struct list_head *down_list,
4918 void *private, bool master)
4919 {
4920 int ret;
4921
4922 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4923 master);
4924 if (ret)
4925 return ret;
4926
4927 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4928 false);
4929 if (ret) {
4930 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4931 return ret;
4932 }
4933
4934 return 0;
4935 }
4936
4937 static int __netdev_adjacent_dev_link(struct net_device *dev,
4938 struct net_device *upper_dev)
4939 {
4940 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4941 &dev->all_adj_list.upper,
4942 &upper_dev->all_adj_list.lower,
4943 NULL, false);
4944 }
4945
4946 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4947 struct net_device *upper_dev,
4948 struct list_head *up_list,
4949 struct list_head *down_list)
4950 {
4951 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4952 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4953 }
4954
4955 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4956 struct net_device *upper_dev)
4957 {
4958 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4959 &dev->all_adj_list.upper,
4960 &upper_dev->all_adj_list.lower);
4961 }
4962
4963 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4964 struct net_device *upper_dev,
4965 void *private, bool master)
4966 {
4967 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4968
4969 if (ret)
4970 return ret;
4971
4972 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4973 &dev->adj_list.upper,
4974 &upper_dev->adj_list.lower,
4975 private, master);
4976 if (ret) {
4977 __netdev_adjacent_dev_unlink(dev, upper_dev);
4978 return ret;
4979 }
4980
4981 return 0;
4982 }
4983
4984 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4985 struct net_device *upper_dev)
4986 {
4987 __netdev_adjacent_dev_unlink(dev, upper_dev);
4988 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4989 &dev->adj_list.upper,
4990 &upper_dev->adj_list.lower);
4991 }
4992
4993 static int __netdev_upper_dev_link(struct net_device *dev,
4994 struct net_device *upper_dev, bool master,
4995 void *private)
4996 {
4997 struct netdev_adjacent *i, *j, *to_i, *to_j;
4998 int ret = 0;
4999
5000 ASSERT_RTNL();
5001
5002 if (dev == upper_dev)
5003 return -EBUSY;
5004
5005 /* To prevent loops, check if dev is not upper device to upper_dev. */
5006 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5007 return -EBUSY;
5008
5009 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5010 return -EEXIST;
5011
5012 if (master && netdev_master_upper_dev_get(dev))
5013 return -EBUSY;
5014
5015 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5016 master);
5017 if (ret)
5018 return ret;
5019
5020 /* Now that we linked these devs, make all the upper_dev's
5021 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5022 * versa, and don't forget the devices itself. All of these
5023 * links are non-neighbours.
5024 */
5025 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5026 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5027 pr_debug("Interlinking %s with %s, non-neighbour\n",
5028 i->dev->name, j->dev->name);
5029 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5030 if (ret)
5031 goto rollback_mesh;
5032 }
5033 }
5034
5035 /* add dev to every upper_dev's upper device */
5036 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5037 pr_debug("linking %s's upper device %s with %s\n",
5038 upper_dev->name, i->dev->name, dev->name);
5039 ret = __netdev_adjacent_dev_link(dev, i->dev);
5040 if (ret)
5041 goto rollback_upper_mesh;
5042 }
5043
5044 /* add upper_dev to every dev's lower device */
5045 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5046 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5047 i->dev->name, upper_dev->name);
5048 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5049 if (ret)
5050 goto rollback_lower_mesh;
5051 }
5052
5053 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5054 return 0;
5055
5056 rollback_lower_mesh:
5057 to_i = i;
5058 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5059 if (i == to_i)
5060 break;
5061 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5062 }
5063
5064 i = NULL;
5065
5066 rollback_upper_mesh:
5067 to_i = i;
5068 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5069 if (i == to_i)
5070 break;
5071 __netdev_adjacent_dev_unlink(dev, i->dev);
5072 }
5073
5074 i = j = NULL;
5075
5076 rollback_mesh:
5077 to_i = i;
5078 to_j = j;
5079 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5080 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5081 if (i == to_i && j == to_j)
5082 break;
5083 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5084 }
5085 if (i == to_i)
5086 break;
5087 }
5088
5089 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5090
5091 return ret;
5092 }
5093
5094 /**
5095 * netdev_upper_dev_link - Add a link to the upper device
5096 * @dev: device
5097 * @upper_dev: new upper device
5098 *
5099 * Adds a link to device which is upper to this one. The caller must hold
5100 * the RTNL lock. On a failure a negative errno code is returned.
5101 * On success the reference counts are adjusted and the function
5102 * returns zero.
5103 */
5104 int netdev_upper_dev_link(struct net_device *dev,
5105 struct net_device *upper_dev)
5106 {
5107 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5108 }
5109 EXPORT_SYMBOL(netdev_upper_dev_link);
5110
5111 /**
5112 * netdev_master_upper_dev_link - Add a master link to the upper device
5113 * @dev: device
5114 * @upper_dev: new upper device
5115 *
5116 * Adds a link to device which is upper to this one. In this case, only
5117 * one master upper device can be linked, although other non-master devices
5118 * might be linked as well. The caller must hold the RTNL lock.
5119 * On a failure a negative errno code is returned. On success the reference
5120 * counts are adjusted and the function returns zero.
5121 */
5122 int netdev_master_upper_dev_link(struct net_device *dev,
5123 struct net_device *upper_dev)
5124 {
5125 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5126 }
5127 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5128
5129 int netdev_master_upper_dev_link_private(struct net_device *dev,
5130 struct net_device *upper_dev,
5131 void *private)
5132 {
5133 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5134 }
5135 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5136
5137 /**
5138 * netdev_upper_dev_unlink - Removes a link to upper device
5139 * @dev: device
5140 * @upper_dev: new upper device
5141 *
5142 * Removes a link to device which is upper to this one. The caller must hold
5143 * the RTNL lock.
5144 */
5145 void netdev_upper_dev_unlink(struct net_device *dev,
5146 struct net_device *upper_dev)
5147 {
5148 struct netdev_adjacent *i, *j;
5149 ASSERT_RTNL();
5150
5151 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5152
5153 /* Here is the tricky part. We must remove all dev's lower
5154 * devices from all upper_dev's upper devices and vice
5155 * versa, to maintain the graph relationship.
5156 */
5157 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5158 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5159 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5160
5161 /* remove also the devices itself from lower/upper device
5162 * list
5163 */
5164 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5165 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5166
5167 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5168 __netdev_adjacent_dev_unlink(dev, i->dev);
5169
5170 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5171 }
5172 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5173
5174 void netdev_adjacent_add_links(struct net_device *dev)
5175 {
5176 struct netdev_adjacent *iter;
5177
5178 struct net *net = dev_net(dev);
5179
5180 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5181 if (!net_eq(net,dev_net(iter->dev)))
5182 continue;
5183 netdev_adjacent_sysfs_add(iter->dev, dev,
5184 &iter->dev->adj_list.lower);
5185 netdev_adjacent_sysfs_add(dev, iter->dev,
5186 &dev->adj_list.upper);
5187 }
5188
5189 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5190 if (!net_eq(net,dev_net(iter->dev)))
5191 continue;
5192 netdev_adjacent_sysfs_add(iter->dev, dev,
5193 &iter->dev->adj_list.upper);
5194 netdev_adjacent_sysfs_add(dev, iter->dev,
5195 &dev->adj_list.lower);
5196 }
5197 }
5198
5199 void netdev_adjacent_del_links(struct net_device *dev)
5200 {
5201 struct netdev_adjacent *iter;
5202
5203 struct net *net = dev_net(dev);
5204
5205 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5206 if (!net_eq(net,dev_net(iter->dev)))
5207 continue;
5208 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5209 &iter->dev->adj_list.lower);
5210 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5211 &dev->adj_list.upper);
5212 }
5213
5214 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5215 if (!net_eq(net,dev_net(iter->dev)))
5216 continue;
5217 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5218 &iter->dev->adj_list.upper);
5219 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5220 &dev->adj_list.lower);
5221 }
5222 }
5223
5224 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5225 {
5226 struct netdev_adjacent *iter;
5227
5228 struct net *net = dev_net(dev);
5229
5230 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5231 if (!net_eq(net,dev_net(iter->dev)))
5232 continue;
5233 netdev_adjacent_sysfs_del(iter->dev, oldname,
5234 &iter->dev->adj_list.lower);
5235 netdev_adjacent_sysfs_add(iter->dev, dev,
5236 &iter->dev->adj_list.lower);
5237 }
5238
5239 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5240 if (!net_eq(net,dev_net(iter->dev)))
5241 continue;
5242 netdev_adjacent_sysfs_del(iter->dev, oldname,
5243 &iter->dev->adj_list.upper);
5244 netdev_adjacent_sysfs_add(iter->dev, dev,
5245 &iter->dev->adj_list.upper);
5246 }
5247 }
5248
5249 void *netdev_lower_dev_get_private(struct net_device *dev,
5250 struct net_device *lower_dev)
5251 {
5252 struct netdev_adjacent *lower;
5253
5254 if (!lower_dev)
5255 return NULL;
5256 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5257 if (!lower)
5258 return NULL;
5259
5260 return lower->private;
5261 }
5262 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5263
5264
5265 int dev_get_nest_level(struct net_device *dev,
5266 bool (*type_check)(struct net_device *dev))
5267 {
5268 struct net_device *lower = NULL;
5269 struct list_head *iter;
5270 int max_nest = -1;
5271 int nest;
5272
5273 ASSERT_RTNL();
5274
5275 netdev_for_each_lower_dev(dev, lower, iter) {
5276 nest = dev_get_nest_level(lower, type_check);
5277 if (max_nest < nest)
5278 max_nest = nest;
5279 }
5280
5281 if (type_check(dev))
5282 max_nest++;
5283
5284 return max_nest;
5285 }
5286 EXPORT_SYMBOL(dev_get_nest_level);
5287
5288 static void dev_change_rx_flags(struct net_device *dev, int flags)
5289 {
5290 const struct net_device_ops *ops = dev->netdev_ops;
5291
5292 if (ops->ndo_change_rx_flags)
5293 ops->ndo_change_rx_flags(dev, flags);
5294 }
5295
5296 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5297 {
5298 unsigned int old_flags = dev->flags;
5299 kuid_t uid;
5300 kgid_t gid;
5301
5302 ASSERT_RTNL();
5303
5304 dev->flags |= IFF_PROMISC;
5305 dev->promiscuity += inc;
5306 if (dev->promiscuity == 0) {
5307 /*
5308 * Avoid overflow.
5309 * If inc causes overflow, untouch promisc and return error.
5310 */
5311 if (inc < 0)
5312 dev->flags &= ~IFF_PROMISC;
5313 else {
5314 dev->promiscuity -= inc;
5315 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5316 dev->name);
5317 return -EOVERFLOW;
5318 }
5319 }
5320 if (dev->flags != old_flags) {
5321 pr_info("device %s %s promiscuous mode\n",
5322 dev->name,
5323 dev->flags & IFF_PROMISC ? "entered" : "left");
5324 if (audit_enabled) {
5325 current_uid_gid(&uid, &gid);
5326 audit_log(current->audit_context, GFP_ATOMIC,
5327 AUDIT_ANOM_PROMISCUOUS,
5328 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5329 dev->name, (dev->flags & IFF_PROMISC),
5330 (old_flags & IFF_PROMISC),
5331 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5332 from_kuid(&init_user_ns, uid),
5333 from_kgid(&init_user_ns, gid),
5334 audit_get_sessionid(current));
5335 }
5336
5337 dev_change_rx_flags(dev, IFF_PROMISC);
5338 }
5339 if (notify)
5340 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5341 return 0;
5342 }
5343
5344 /**
5345 * dev_set_promiscuity - update promiscuity count on a device
5346 * @dev: device
5347 * @inc: modifier
5348 *
5349 * Add or remove promiscuity from a device. While the count in the device
5350 * remains above zero the interface remains promiscuous. Once it hits zero
5351 * the device reverts back to normal filtering operation. A negative inc
5352 * value is used to drop promiscuity on the device.
5353 * Return 0 if successful or a negative errno code on error.
5354 */
5355 int dev_set_promiscuity(struct net_device *dev, int inc)
5356 {
5357 unsigned int old_flags = dev->flags;
5358 int err;
5359
5360 err = __dev_set_promiscuity(dev, inc, true);
5361 if (err < 0)
5362 return err;
5363 if (dev->flags != old_flags)
5364 dev_set_rx_mode(dev);
5365 return err;
5366 }
5367 EXPORT_SYMBOL(dev_set_promiscuity);
5368
5369 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5370 {
5371 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5372
5373 ASSERT_RTNL();
5374
5375 dev->flags |= IFF_ALLMULTI;
5376 dev->allmulti += inc;
5377 if (dev->allmulti == 0) {
5378 /*
5379 * Avoid overflow.
5380 * If inc causes overflow, untouch allmulti and return error.
5381 */
5382 if (inc < 0)
5383 dev->flags &= ~IFF_ALLMULTI;
5384 else {
5385 dev->allmulti -= inc;
5386 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5387 dev->name);
5388 return -EOVERFLOW;
5389 }
5390 }
5391 if (dev->flags ^ old_flags) {
5392 dev_change_rx_flags(dev, IFF_ALLMULTI);
5393 dev_set_rx_mode(dev);
5394 if (notify)
5395 __dev_notify_flags(dev, old_flags,
5396 dev->gflags ^ old_gflags);
5397 }
5398 return 0;
5399 }
5400
5401 /**
5402 * dev_set_allmulti - update allmulti count on a device
5403 * @dev: device
5404 * @inc: modifier
5405 *
5406 * Add or remove reception of all multicast frames to a device. While the
5407 * count in the device remains above zero the interface remains listening
5408 * to all interfaces. Once it hits zero the device reverts back to normal
5409 * filtering operation. A negative @inc value is used to drop the counter
5410 * when releasing a resource needing all multicasts.
5411 * Return 0 if successful or a negative errno code on error.
5412 */
5413
5414 int dev_set_allmulti(struct net_device *dev, int inc)
5415 {
5416 return __dev_set_allmulti(dev, inc, true);
5417 }
5418 EXPORT_SYMBOL(dev_set_allmulti);
5419
5420 /*
5421 * Upload unicast and multicast address lists to device and
5422 * configure RX filtering. When the device doesn't support unicast
5423 * filtering it is put in promiscuous mode while unicast addresses
5424 * are present.
5425 */
5426 void __dev_set_rx_mode(struct net_device *dev)
5427 {
5428 const struct net_device_ops *ops = dev->netdev_ops;
5429
5430 /* dev_open will call this function so the list will stay sane. */
5431 if (!(dev->flags&IFF_UP))
5432 return;
5433
5434 if (!netif_device_present(dev))
5435 return;
5436
5437 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5438 /* Unicast addresses changes may only happen under the rtnl,
5439 * therefore calling __dev_set_promiscuity here is safe.
5440 */
5441 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5442 __dev_set_promiscuity(dev, 1, false);
5443 dev->uc_promisc = true;
5444 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5445 __dev_set_promiscuity(dev, -1, false);
5446 dev->uc_promisc = false;
5447 }
5448 }
5449
5450 if (ops->ndo_set_rx_mode)
5451 ops->ndo_set_rx_mode(dev);
5452 }
5453
5454 void dev_set_rx_mode(struct net_device *dev)
5455 {
5456 netif_addr_lock_bh(dev);
5457 __dev_set_rx_mode(dev);
5458 netif_addr_unlock_bh(dev);
5459 }
5460
5461 /**
5462 * dev_get_flags - get flags reported to userspace
5463 * @dev: device
5464 *
5465 * Get the combination of flag bits exported through APIs to userspace.
5466 */
5467 unsigned int dev_get_flags(const struct net_device *dev)
5468 {
5469 unsigned int flags;
5470
5471 flags = (dev->flags & ~(IFF_PROMISC |
5472 IFF_ALLMULTI |
5473 IFF_RUNNING |
5474 IFF_LOWER_UP |
5475 IFF_DORMANT)) |
5476 (dev->gflags & (IFF_PROMISC |
5477 IFF_ALLMULTI));
5478
5479 if (netif_running(dev)) {
5480 if (netif_oper_up(dev))
5481 flags |= IFF_RUNNING;
5482 if (netif_carrier_ok(dev))
5483 flags |= IFF_LOWER_UP;
5484 if (netif_dormant(dev))
5485 flags |= IFF_DORMANT;
5486 }
5487
5488 return flags;
5489 }
5490 EXPORT_SYMBOL(dev_get_flags);
5491
5492 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5493 {
5494 unsigned int old_flags = dev->flags;
5495 int ret;
5496
5497 ASSERT_RTNL();
5498
5499 /*
5500 * Set the flags on our device.
5501 */
5502
5503 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5504 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5505 IFF_AUTOMEDIA)) |
5506 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5507 IFF_ALLMULTI));
5508
5509 /*
5510 * Load in the correct multicast list now the flags have changed.
5511 */
5512
5513 if ((old_flags ^ flags) & IFF_MULTICAST)
5514 dev_change_rx_flags(dev, IFF_MULTICAST);
5515
5516 dev_set_rx_mode(dev);
5517
5518 /*
5519 * Have we downed the interface. We handle IFF_UP ourselves
5520 * according to user attempts to set it, rather than blindly
5521 * setting it.
5522 */
5523
5524 ret = 0;
5525 if ((old_flags ^ flags) & IFF_UP)
5526 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5527
5528 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5529 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5530 unsigned int old_flags = dev->flags;
5531
5532 dev->gflags ^= IFF_PROMISC;
5533
5534 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5535 if (dev->flags != old_flags)
5536 dev_set_rx_mode(dev);
5537 }
5538
5539 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5540 is important. Some (broken) drivers set IFF_PROMISC, when
5541 IFF_ALLMULTI is requested not asking us and not reporting.
5542 */
5543 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5544 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5545
5546 dev->gflags ^= IFF_ALLMULTI;
5547 __dev_set_allmulti(dev, inc, false);
5548 }
5549
5550 return ret;
5551 }
5552
5553 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5554 unsigned int gchanges)
5555 {
5556 unsigned int changes = dev->flags ^ old_flags;
5557
5558 if (gchanges)
5559 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5560
5561 if (changes & IFF_UP) {
5562 if (dev->flags & IFF_UP)
5563 call_netdevice_notifiers(NETDEV_UP, dev);
5564 else
5565 call_netdevice_notifiers(NETDEV_DOWN, dev);
5566 }
5567
5568 if (dev->flags & IFF_UP &&
5569 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5570 struct netdev_notifier_change_info change_info;
5571
5572 change_info.flags_changed = changes;
5573 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5574 &change_info.info);
5575 }
5576 }
5577
5578 /**
5579 * dev_change_flags - change device settings
5580 * @dev: device
5581 * @flags: device state flags
5582 *
5583 * Change settings on device based state flags. The flags are
5584 * in the userspace exported format.
5585 */
5586 int dev_change_flags(struct net_device *dev, unsigned int flags)
5587 {
5588 int ret;
5589 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5590
5591 ret = __dev_change_flags(dev, flags);
5592 if (ret < 0)
5593 return ret;
5594
5595 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5596 __dev_notify_flags(dev, old_flags, changes);
5597 return ret;
5598 }
5599 EXPORT_SYMBOL(dev_change_flags);
5600
5601 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5602 {
5603 const struct net_device_ops *ops = dev->netdev_ops;
5604
5605 if (ops->ndo_change_mtu)
5606 return ops->ndo_change_mtu(dev, new_mtu);
5607
5608 dev->mtu = new_mtu;
5609 return 0;
5610 }
5611
5612 /**
5613 * dev_set_mtu - Change maximum transfer unit
5614 * @dev: device
5615 * @new_mtu: new transfer unit
5616 *
5617 * Change the maximum transfer size of the network device.
5618 */
5619 int dev_set_mtu(struct net_device *dev, int new_mtu)
5620 {
5621 int err, orig_mtu;
5622
5623 if (new_mtu == dev->mtu)
5624 return 0;
5625
5626 /* MTU must be positive. */
5627 if (new_mtu < 0)
5628 return -EINVAL;
5629
5630 if (!netif_device_present(dev))
5631 return -ENODEV;
5632
5633 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5634 err = notifier_to_errno(err);
5635 if (err)
5636 return err;
5637
5638 orig_mtu = dev->mtu;
5639 err = __dev_set_mtu(dev, new_mtu);
5640
5641 if (!err) {
5642 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5643 err = notifier_to_errno(err);
5644 if (err) {
5645 /* setting mtu back and notifying everyone again,
5646 * so that they have a chance to revert changes.
5647 */
5648 __dev_set_mtu(dev, orig_mtu);
5649 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5650 }
5651 }
5652 return err;
5653 }
5654 EXPORT_SYMBOL(dev_set_mtu);
5655
5656 /**
5657 * dev_set_group - Change group this device belongs to
5658 * @dev: device
5659 * @new_group: group this device should belong to
5660 */
5661 void dev_set_group(struct net_device *dev, int new_group)
5662 {
5663 dev->group = new_group;
5664 }
5665 EXPORT_SYMBOL(dev_set_group);
5666
5667 /**
5668 * dev_set_mac_address - Change Media Access Control Address
5669 * @dev: device
5670 * @sa: new address
5671 *
5672 * Change the hardware (MAC) address of the device
5673 */
5674 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5675 {
5676 const struct net_device_ops *ops = dev->netdev_ops;
5677 int err;
5678
5679 if (!ops->ndo_set_mac_address)
5680 return -EOPNOTSUPP;
5681 if (sa->sa_family != dev->type)
5682 return -EINVAL;
5683 if (!netif_device_present(dev))
5684 return -ENODEV;
5685 err = ops->ndo_set_mac_address(dev, sa);
5686 if (err)
5687 return err;
5688 dev->addr_assign_type = NET_ADDR_SET;
5689 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5690 add_device_randomness(dev->dev_addr, dev->addr_len);
5691 return 0;
5692 }
5693 EXPORT_SYMBOL(dev_set_mac_address);
5694
5695 /**
5696 * dev_change_carrier - Change device carrier
5697 * @dev: device
5698 * @new_carrier: new value
5699 *
5700 * Change device carrier
5701 */
5702 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5703 {
5704 const struct net_device_ops *ops = dev->netdev_ops;
5705
5706 if (!ops->ndo_change_carrier)
5707 return -EOPNOTSUPP;
5708 if (!netif_device_present(dev))
5709 return -ENODEV;
5710 return ops->ndo_change_carrier(dev, new_carrier);
5711 }
5712 EXPORT_SYMBOL(dev_change_carrier);
5713
5714 /**
5715 * dev_get_phys_port_id - Get device physical port ID
5716 * @dev: device
5717 * @ppid: port ID
5718 *
5719 * Get device physical port ID
5720 */
5721 int dev_get_phys_port_id(struct net_device *dev,
5722 struct netdev_phys_port_id *ppid)
5723 {
5724 const struct net_device_ops *ops = dev->netdev_ops;
5725
5726 if (!ops->ndo_get_phys_port_id)
5727 return -EOPNOTSUPP;
5728 return ops->ndo_get_phys_port_id(dev, ppid);
5729 }
5730 EXPORT_SYMBOL(dev_get_phys_port_id);
5731
5732 /**
5733 * dev_new_index - allocate an ifindex
5734 * @net: the applicable net namespace
5735 *
5736 * Returns a suitable unique value for a new device interface
5737 * number. The caller must hold the rtnl semaphore or the
5738 * dev_base_lock to be sure it remains unique.
5739 */
5740 static int dev_new_index(struct net *net)
5741 {
5742 int ifindex = net->ifindex;
5743 for (;;) {
5744 if (++ifindex <= 0)
5745 ifindex = 1;
5746 if (!__dev_get_by_index(net, ifindex))
5747 return net->ifindex = ifindex;
5748 }
5749 }
5750
5751 /* Delayed registration/unregisteration */
5752 static LIST_HEAD(net_todo_list);
5753 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5754
5755 static void net_set_todo(struct net_device *dev)
5756 {
5757 list_add_tail(&dev->todo_list, &net_todo_list);
5758 dev_net(dev)->dev_unreg_count++;
5759 }
5760
5761 static void rollback_registered_many(struct list_head *head)
5762 {
5763 struct net_device *dev, *tmp;
5764 LIST_HEAD(close_head);
5765
5766 BUG_ON(dev_boot_phase);
5767 ASSERT_RTNL();
5768
5769 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5770 /* Some devices call without registering
5771 * for initialization unwind. Remove those
5772 * devices and proceed with the remaining.
5773 */
5774 if (dev->reg_state == NETREG_UNINITIALIZED) {
5775 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5776 dev->name, dev);
5777
5778 WARN_ON(1);
5779 list_del(&dev->unreg_list);
5780 continue;
5781 }
5782 dev->dismantle = true;
5783 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5784 }
5785
5786 /* If device is running, close it first. */
5787 list_for_each_entry(dev, head, unreg_list)
5788 list_add_tail(&dev->close_list, &close_head);
5789 dev_close_many(&close_head);
5790
5791 list_for_each_entry(dev, head, unreg_list) {
5792 /* And unlink it from device chain. */
5793 unlist_netdevice(dev);
5794
5795 dev->reg_state = NETREG_UNREGISTERING;
5796 }
5797
5798 synchronize_net();
5799
5800 list_for_each_entry(dev, head, unreg_list) {
5801 /* Shutdown queueing discipline. */
5802 dev_shutdown(dev);
5803
5804
5805 /* Notify protocols, that we are about to destroy
5806 this device. They should clean all the things.
5807 */
5808 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5809
5810 /*
5811 * Flush the unicast and multicast chains
5812 */
5813 dev_uc_flush(dev);
5814 dev_mc_flush(dev);
5815
5816 if (dev->netdev_ops->ndo_uninit)
5817 dev->netdev_ops->ndo_uninit(dev);
5818
5819 if (!dev->rtnl_link_ops ||
5820 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5821 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5822
5823 /* Notifier chain MUST detach us all upper devices. */
5824 WARN_ON(netdev_has_any_upper_dev(dev));
5825
5826 /* Remove entries from kobject tree */
5827 netdev_unregister_kobject(dev);
5828 #ifdef CONFIG_XPS
5829 /* Remove XPS queueing entries */
5830 netif_reset_xps_queues_gt(dev, 0);
5831 #endif
5832 }
5833
5834 synchronize_net();
5835
5836 list_for_each_entry(dev, head, unreg_list)
5837 dev_put(dev);
5838 }
5839
5840 static void rollback_registered(struct net_device *dev)
5841 {
5842 LIST_HEAD(single);
5843
5844 list_add(&dev->unreg_list, &single);
5845 rollback_registered_many(&single);
5846 list_del(&single);
5847 }
5848
5849 static netdev_features_t netdev_fix_features(struct net_device *dev,
5850 netdev_features_t features)
5851 {
5852 /* Fix illegal checksum combinations */
5853 if ((features & NETIF_F_HW_CSUM) &&
5854 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5855 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5856 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5857 }
5858
5859 /* TSO requires that SG is present as well. */
5860 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5861 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5862 features &= ~NETIF_F_ALL_TSO;
5863 }
5864
5865 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5866 !(features & NETIF_F_IP_CSUM)) {
5867 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5868 features &= ~NETIF_F_TSO;
5869 features &= ~NETIF_F_TSO_ECN;
5870 }
5871
5872 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5873 !(features & NETIF_F_IPV6_CSUM)) {
5874 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5875 features &= ~NETIF_F_TSO6;
5876 }
5877
5878 /* TSO ECN requires that TSO is present as well. */
5879 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5880 features &= ~NETIF_F_TSO_ECN;
5881
5882 /* Software GSO depends on SG. */
5883 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5884 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5885 features &= ~NETIF_F_GSO;
5886 }
5887
5888 /* UFO needs SG and checksumming */
5889 if (features & NETIF_F_UFO) {
5890 /* maybe split UFO into V4 and V6? */
5891 if (!((features & NETIF_F_GEN_CSUM) ||
5892 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5893 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5894 netdev_dbg(dev,
5895 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5896 features &= ~NETIF_F_UFO;
5897 }
5898
5899 if (!(features & NETIF_F_SG)) {
5900 netdev_dbg(dev,
5901 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5902 features &= ~NETIF_F_UFO;
5903 }
5904 }
5905
5906 #ifdef CONFIG_NET_RX_BUSY_POLL
5907 if (dev->netdev_ops->ndo_busy_poll)
5908 features |= NETIF_F_BUSY_POLL;
5909 else
5910 #endif
5911 features &= ~NETIF_F_BUSY_POLL;
5912
5913 return features;
5914 }
5915
5916 int __netdev_update_features(struct net_device *dev)
5917 {
5918 netdev_features_t features;
5919 int err = 0;
5920
5921 ASSERT_RTNL();
5922
5923 features = netdev_get_wanted_features(dev);
5924
5925 if (dev->netdev_ops->ndo_fix_features)
5926 features = dev->netdev_ops->ndo_fix_features(dev, features);
5927
5928 /* driver might be less strict about feature dependencies */
5929 features = netdev_fix_features(dev, features);
5930
5931 if (dev->features == features)
5932 return 0;
5933
5934 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5935 &dev->features, &features);
5936
5937 if (dev->netdev_ops->ndo_set_features)
5938 err = dev->netdev_ops->ndo_set_features(dev, features);
5939
5940 if (unlikely(err < 0)) {
5941 netdev_err(dev,
5942 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5943 err, &features, &dev->features);
5944 return -1;
5945 }
5946
5947 if (!err)
5948 dev->features = features;
5949
5950 return 1;
5951 }
5952
5953 /**
5954 * netdev_update_features - recalculate device features
5955 * @dev: the device to check
5956 *
5957 * Recalculate dev->features set and send notifications if it
5958 * has changed. Should be called after driver or hardware dependent
5959 * conditions might have changed that influence the features.
5960 */
5961 void netdev_update_features(struct net_device *dev)
5962 {
5963 if (__netdev_update_features(dev))
5964 netdev_features_change(dev);
5965 }
5966 EXPORT_SYMBOL(netdev_update_features);
5967
5968 /**
5969 * netdev_change_features - recalculate device features
5970 * @dev: the device to check
5971 *
5972 * Recalculate dev->features set and send notifications even
5973 * if they have not changed. Should be called instead of
5974 * netdev_update_features() if also dev->vlan_features might
5975 * have changed to allow the changes to be propagated to stacked
5976 * VLAN devices.
5977 */
5978 void netdev_change_features(struct net_device *dev)
5979 {
5980 __netdev_update_features(dev);
5981 netdev_features_change(dev);
5982 }
5983 EXPORT_SYMBOL(netdev_change_features);
5984
5985 /**
5986 * netif_stacked_transfer_operstate - transfer operstate
5987 * @rootdev: the root or lower level device to transfer state from
5988 * @dev: the device to transfer operstate to
5989 *
5990 * Transfer operational state from root to device. This is normally
5991 * called when a stacking relationship exists between the root
5992 * device and the device(a leaf device).
5993 */
5994 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5995 struct net_device *dev)
5996 {
5997 if (rootdev->operstate == IF_OPER_DORMANT)
5998 netif_dormant_on(dev);
5999 else
6000 netif_dormant_off(dev);
6001
6002 if (netif_carrier_ok(rootdev)) {
6003 if (!netif_carrier_ok(dev))
6004 netif_carrier_on(dev);
6005 } else {
6006 if (netif_carrier_ok(dev))
6007 netif_carrier_off(dev);
6008 }
6009 }
6010 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6011
6012 #ifdef CONFIG_SYSFS
6013 static int netif_alloc_rx_queues(struct net_device *dev)
6014 {
6015 unsigned int i, count = dev->num_rx_queues;
6016 struct netdev_rx_queue *rx;
6017
6018 BUG_ON(count < 1);
6019
6020 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6021 if (!rx)
6022 return -ENOMEM;
6023
6024 dev->_rx = rx;
6025
6026 for (i = 0; i < count; i++)
6027 rx[i].dev = dev;
6028 return 0;
6029 }
6030 #endif
6031
6032 static void netdev_init_one_queue(struct net_device *dev,
6033 struct netdev_queue *queue, void *_unused)
6034 {
6035 /* Initialize queue lock */
6036 spin_lock_init(&queue->_xmit_lock);
6037 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6038 queue->xmit_lock_owner = -1;
6039 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6040 queue->dev = dev;
6041 #ifdef CONFIG_BQL
6042 dql_init(&queue->dql, HZ);
6043 #endif
6044 }
6045
6046 static void netif_free_tx_queues(struct net_device *dev)
6047 {
6048 kvfree(dev->_tx);
6049 }
6050
6051 static int netif_alloc_netdev_queues(struct net_device *dev)
6052 {
6053 unsigned int count = dev->num_tx_queues;
6054 struct netdev_queue *tx;
6055 size_t sz = count * sizeof(*tx);
6056
6057 BUG_ON(count < 1 || count > 0xffff);
6058
6059 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6060 if (!tx) {
6061 tx = vzalloc(sz);
6062 if (!tx)
6063 return -ENOMEM;
6064 }
6065 dev->_tx = tx;
6066
6067 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6068 spin_lock_init(&dev->tx_global_lock);
6069
6070 return 0;
6071 }
6072
6073 /**
6074 * register_netdevice - register a network device
6075 * @dev: device to register
6076 *
6077 * Take a completed network device structure and add it to the kernel
6078 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6079 * chain. 0 is returned on success. A negative errno code is returned
6080 * on a failure to set up the device, or if the name is a duplicate.
6081 *
6082 * Callers must hold the rtnl semaphore. You may want
6083 * register_netdev() instead of this.
6084 *
6085 * BUGS:
6086 * The locking appears insufficient to guarantee two parallel registers
6087 * will not get the same name.
6088 */
6089
6090 int register_netdevice(struct net_device *dev)
6091 {
6092 int ret;
6093 struct net *net = dev_net(dev);
6094
6095 BUG_ON(dev_boot_phase);
6096 ASSERT_RTNL();
6097
6098 might_sleep();
6099
6100 /* When net_device's are persistent, this will be fatal. */
6101 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6102 BUG_ON(!net);
6103
6104 spin_lock_init(&dev->addr_list_lock);
6105 netdev_set_addr_lockdep_class(dev);
6106
6107 dev->iflink = -1;
6108
6109 ret = dev_get_valid_name(net, dev, dev->name);
6110 if (ret < 0)
6111 goto out;
6112
6113 /* Init, if this function is available */
6114 if (dev->netdev_ops->ndo_init) {
6115 ret = dev->netdev_ops->ndo_init(dev);
6116 if (ret) {
6117 if (ret > 0)
6118 ret = -EIO;
6119 goto out;
6120 }
6121 }
6122
6123 if (((dev->hw_features | dev->features) &
6124 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6125 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6126 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6127 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6128 ret = -EINVAL;
6129 goto err_uninit;
6130 }
6131
6132 ret = -EBUSY;
6133 if (!dev->ifindex)
6134 dev->ifindex = dev_new_index(net);
6135 else if (__dev_get_by_index(net, dev->ifindex))
6136 goto err_uninit;
6137
6138 if (dev->iflink == -1)
6139 dev->iflink = dev->ifindex;
6140
6141 /* Transfer changeable features to wanted_features and enable
6142 * software offloads (GSO and GRO).
6143 */
6144 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6145 dev->features |= NETIF_F_SOFT_FEATURES;
6146 dev->wanted_features = dev->features & dev->hw_features;
6147
6148 if (!(dev->flags & IFF_LOOPBACK)) {
6149 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6150 }
6151
6152 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6153 */
6154 dev->vlan_features |= NETIF_F_HIGHDMA;
6155
6156 /* Make NETIF_F_SG inheritable to tunnel devices.
6157 */
6158 dev->hw_enc_features |= NETIF_F_SG;
6159
6160 /* Make NETIF_F_SG inheritable to MPLS.
6161 */
6162 dev->mpls_features |= NETIF_F_SG;
6163
6164 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6165 ret = notifier_to_errno(ret);
6166 if (ret)
6167 goto err_uninit;
6168
6169 ret = netdev_register_kobject(dev);
6170 if (ret)
6171 goto err_uninit;
6172 dev->reg_state = NETREG_REGISTERED;
6173
6174 __netdev_update_features(dev);
6175
6176 /*
6177 * Default initial state at registry is that the
6178 * device is present.
6179 */
6180
6181 set_bit(__LINK_STATE_PRESENT, &dev->state);
6182
6183 linkwatch_init_dev(dev);
6184
6185 dev_init_scheduler(dev);
6186 dev_hold(dev);
6187 list_netdevice(dev);
6188 add_device_randomness(dev->dev_addr, dev->addr_len);
6189
6190 /* If the device has permanent device address, driver should
6191 * set dev_addr and also addr_assign_type should be set to
6192 * NET_ADDR_PERM (default value).
6193 */
6194 if (dev->addr_assign_type == NET_ADDR_PERM)
6195 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6196
6197 /* Notify protocols, that a new device appeared. */
6198 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6199 ret = notifier_to_errno(ret);
6200 if (ret) {
6201 rollback_registered(dev);
6202 dev->reg_state = NETREG_UNREGISTERED;
6203 }
6204 /*
6205 * Prevent userspace races by waiting until the network
6206 * device is fully setup before sending notifications.
6207 */
6208 if (!dev->rtnl_link_ops ||
6209 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6210 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6211
6212 out:
6213 return ret;
6214
6215 err_uninit:
6216 if (dev->netdev_ops->ndo_uninit)
6217 dev->netdev_ops->ndo_uninit(dev);
6218 goto out;
6219 }
6220 EXPORT_SYMBOL(register_netdevice);
6221
6222 /**
6223 * init_dummy_netdev - init a dummy network device for NAPI
6224 * @dev: device to init
6225 *
6226 * This takes a network device structure and initialize the minimum
6227 * amount of fields so it can be used to schedule NAPI polls without
6228 * registering a full blown interface. This is to be used by drivers
6229 * that need to tie several hardware interfaces to a single NAPI
6230 * poll scheduler due to HW limitations.
6231 */
6232 int init_dummy_netdev(struct net_device *dev)
6233 {
6234 /* Clear everything. Note we don't initialize spinlocks
6235 * are they aren't supposed to be taken by any of the
6236 * NAPI code and this dummy netdev is supposed to be
6237 * only ever used for NAPI polls
6238 */
6239 memset(dev, 0, sizeof(struct net_device));
6240
6241 /* make sure we BUG if trying to hit standard
6242 * register/unregister code path
6243 */
6244 dev->reg_state = NETREG_DUMMY;
6245
6246 /* NAPI wants this */
6247 INIT_LIST_HEAD(&dev->napi_list);
6248
6249 /* a dummy interface is started by default */
6250 set_bit(__LINK_STATE_PRESENT, &dev->state);
6251 set_bit(__LINK_STATE_START, &dev->state);
6252
6253 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6254 * because users of this 'device' dont need to change
6255 * its refcount.
6256 */
6257
6258 return 0;
6259 }
6260 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6261
6262
6263 /**
6264 * register_netdev - register a network device
6265 * @dev: device to register
6266 *
6267 * Take a completed network device structure and add it to the kernel
6268 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6269 * chain. 0 is returned on success. A negative errno code is returned
6270 * on a failure to set up the device, or if the name is a duplicate.
6271 *
6272 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6273 * and expands the device name if you passed a format string to
6274 * alloc_netdev.
6275 */
6276 int register_netdev(struct net_device *dev)
6277 {
6278 int err;
6279
6280 rtnl_lock();
6281 err = register_netdevice(dev);
6282 rtnl_unlock();
6283 return err;
6284 }
6285 EXPORT_SYMBOL(register_netdev);
6286
6287 int netdev_refcnt_read(const struct net_device *dev)
6288 {
6289 int i, refcnt = 0;
6290
6291 for_each_possible_cpu(i)
6292 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6293 return refcnt;
6294 }
6295 EXPORT_SYMBOL(netdev_refcnt_read);
6296
6297 /**
6298 * netdev_wait_allrefs - wait until all references are gone.
6299 * @dev: target net_device
6300 *
6301 * This is called when unregistering network devices.
6302 *
6303 * Any protocol or device that holds a reference should register
6304 * for netdevice notification, and cleanup and put back the
6305 * reference if they receive an UNREGISTER event.
6306 * We can get stuck here if buggy protocols don't correctly
6307 * call dev_put.
6308 */
6309 static void netdev_wait_allrefs(struct net_device *dev)
6310 {
6311 unsigned long rebroadcast_time, warning_time;
6312 int refcnt;
6313
6314 linkwatch_forget_dev(dev);
6315
6316 rebroadcast_time = warning_time = jiffies;
6317 refcnt = netdev_refcnt_read(dev);
6318
6319 while (refcnt != 0) {
6320 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6321 rtnl_lock();
6322
6323 /* Rebroadcast unregister notification */
6324 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6325
6326 __rtnl_unlock();
6327 rcu_barrier();
6328 rtnl_lock();
6329
6330 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6331 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6332 &dev->state)) {
6333 /* We must not have linkwatch events
6334 * pending on unregister. If this
6335 * happens, we simply run the queue
6336 * unscheduled, resulting in a noop
6337 * for this device.
6338 */
6339 linkwatch_run_queue();
6340 }
6341
6342 __rtnl_unlock();
6343
6344 rebroadcast_time = jiffies;
6345 }
6346
6347 msleep(250);
6348
6349 refcnt = netdev_refcnt_read(dev);
6350
6351 if (time_after(jiffies, warning_time + 10 * HZ)) {
6352 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6353 dev->name, refcnt);
6354 warning_time = jiffies;
6355 }
6356 }
6357 }
6358
6359 /* The sequence is:
6360 *
6361 * rtnl_lock();
6362 * ...
6363 * register_netdevice(x1);
6364 * register_netdevice(x2);
6365 * ...
6366 * unregister_netdevice(y1);
6367 * unregister_netdevice(y2);
6368 * ...
6369 * rtnl_unlock();
6370 * free_netdev(y1);
6371 * free_netdev(y2);
6372 *
6373 * We are invoked by rtnl_unlock().
6374 * This allows us to deal with problems:
6375 * 1) We can delete sysfs objects which invoke hotplug
6376 * without deadlocking with linkwatch via keventd.
6377 * 2) Since we run with the RTNL semaphore not held, we can sleep
6378 * safely in order to wait for the netdev refcnt to drop to zero.
6379 *
6380 * We must not return until all unregister events added during
6381 * the interval the lock was held have been completed.
6382 */
6383 void netdev_run_todo(void)
6384 {
6385 struct list_head list;
6386
6387 /* Snapshot list, allow later requests */
6388 list_replace_init(&net_todo_list, &list);
6389
6390 __rtnl_unlock();
6391
6392
6393 /* Wait for rcu callbacks to finish before next phase */
6394 if (!list_empty(&list))
6395 rcu_barrier();
6396
6397 while (!list_empty(&list)) {
6398 struct net_device *dev
6399 = list_first_entry(&list, struct net_device, todo_list);
6400 list_del(&dev->todo_list);
6401
6402 rtnl_lock();
6403 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6404 __rtnl_unlock();
6405
6406 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6407 pr_err("network todo '%s' but state %d\n",
6408 dev->name, dev->reg_state);
6409 dump_stack();
6410 continue;
6411 }
6412
6413 dev->reg_state = NETREG_UNREGISTERED;
6414
6415 on_each_cpu(flush_backlog, dev, 1);
6416
6417 netdev_wait_allrefs(dev);
6418
6419 /* paranoia */
6420 BUG_ON(netdev_refcnt_read(dev));
6421 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6422 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6423 WARN_ON(dev->dn_ptr);
6424
6425 if (dev->destructor)
6426 dev->destructor(dev);
6427
6428 /* Report a network device has been unregistered */
6429 rtnl_lock();
6430 dev_net(dev)->dev_unreg_count--;
6431 __rtnl_unlock();
6432 wake_up(&netdev_unregistering_wq);
6433
6434 /* Free network device */
6435 kobject_put(&dev->dev.kobj);
6436 }
6437 }
6438
6439 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6440 * fields in the same order, with only the type differing.
6441 */
6442 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6443 const struct net_device_stats *netdev_stats)
6444 {
6445 #if BITS_PER_LONG == 64
6446 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6447 memcpy(stats64, netdev_stats, sizeof(*stats64));
6448 #else
6449 size_t i, n = sizeof(*stats64) / sizeof(u64);
6450 const unsigned long *src = (const unsigned long *)netdev_stats;
6451 u64 *dst = (u64 *)stats64;
6452
6453 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6454 sizeof(*stats64) / sizeof(u64));
6455 for (i = 0; i < n; i++)
6456 dst[i] = src[i];
6457 #endif
6458 }
6459 EXPORT_SYMBOL(netdev_stats_to_stats64);
6460
6461 /**
6462 * dev_get_stats - get network device statistics
6463 * @dev: device to get statistics from
6464 * @storage: place to store stats
6465 *
6466 * Get network statistics from device. Return @storage.
6467 * The device driver may provide its own method by setting
6468 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6469 * otherwise the internal statistics structure is used.
6470 */
6471 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6472 struct rtnl_link_stats64 *storage)
6473 {
6474 const struct net_device_ops *ops = dev->netdev_ops;
6475
6476 if (ops->ndo_get_stats64) {
6477 memset(storage, 0, sizeof(*storage));
6478 ops->ndo_get_stats64(dev, storage);
6479 } else if (ops->ndo_get_stats) {
6480 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6481 } else {
6482 netdev_stats_to_stats64(storage, &dev->stats);
6483 }
6484 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6485 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6486 return storage;
6487 }
6488 EXPORT_SYMBOL(dev_get_stats);
6489
6490 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6491 {
6492 struct netdev_queue *queue = dev_ingress_queue(dev);
6493
6494 #ifdef CONFIG_NET_CLS_ACT
6495 if (queue)
6496 return queue;
6497 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6498 if (!queue)
6499 return NULL;
6500 netdev_init_one_queue(dev, queue, NULL);
6501 queue->qdisc = &noop_qdisc;
6502 queue->qdisc_sleeping = &noop_qdisc;
6503 rcu_assign_pointer(dev->ingress_queue, queue);
6504 #endif
6505 return queue;
6506 }
6507
6508 static const struct ethtool_ops default_ethtool_ops;
6509
6510 void netdev_set_default_ethtool_ops(struct net_device *dev,
6511 const struct ethtool_ops *ops)
6512 {
6513 if (dev->ethtool_ops == &default_ethtool_ops)
6514 dev->ethtool_ops = ops;
6515 }
6516 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6517
6518 void netdev_freemem(struct net_device *dev)
6519 {
6520 char *addr = (char *)dev - dev->padded;
6521
6522 kvfree(addr);
6523 }
6524
6525 /**
6526 * alloc_netdev_mqs - allocate network device
6527 * @sizeof_priv: size of private data to allocate space for
6528 * @name: device name format string
6529 * @name_assign_type: origin of device name
6530 * @setup: callback to initialize device
6531 * @txqs: the number of TX subqueues to allocate
6532 * @rxqs: the number of RX subqueues to allocate
6533 *
6534 * Allocates a struct net_device with private data area for driver use
6535 * and performs basic initialization. Also allocates subqueue structs
6536 * for each queue on the device.
6537 */
6538 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6539 unsigned char name_assign_type,
6540 void (*setup)(struct net_device *),
6541 unsigned int txqs, unsigned int rxqs)
6542 {
6543 struct net_device *dev;
6544 size_t alloc_size;
6545 struct net_device *p;
6546
6547 BUG_ON(strlen(name) >= sizeof(dev->name));
6548
6549 if (txqs < 1) {
6550 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6551 return NULL;
6552 }
6553
6554 #ifdef CONFIG_SYSFS
6555 if (rxqs < 1) {
6556 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6557 return NULL;
6558 }
6559 #endif
6560
6561 alloc_size = sizeof(struct net_device);
6562 if (sizeof_priv) {
6563 /* ensure 32-byte alignment of private area */
6564 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6565 alloc_size += sizeof_priv;
6566 }
6567 /* ensure 32-byte alignment of whole construct */
6568 alloc_size += NETDEV_ALIGN - 1;
6569
6570 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6571 if (!p)
6572 p = vzalloc(alloc_size);
6573 if (!p)
6574 return NULL;
6575
6576 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6577 dev->padded = (char *)dev - (char *)p;
6578
6579 dev->pcpu_refcnt = alloc_percpu(int);
6580 if (!dev->pcpu_refcnt)
6581 goto free_dev;
6582
6583 if (dev_addr_init(dev))
6584 goto free_pcpu;
6585
6586 dev_mc_init(dev);
6587 dev_uc_init(dev);
6588
6589 dev_net_set(dev, &init_net);
6590
6591 dev->gso_max_size = GSO_MAX_SIZE;
6592 dev->gso_max_segs = GSO_MAX_SEGS;
6593
6594 INIT_LIST_HEAD(&dev->napi_list);
6595 INIT_LIST_HEAD(&dev->unreg_list);
6596 INIT_LIST_HEAD(&dev->close_list);
6597 INIT_LIST_HEAD(&dev->link_watch_list);
6598 INIT_LIST_HEAD(&dev->adj_list.upper);
6599 INIT_LIST_HEAD(&dev->adj_list.lower);
6600 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6601 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6602 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6603 setup(dev);
6604
6605 dev->num_tx_queues = txqs;
6606 dev->real_num_tx_queues = txqs;
6607 if (netif_alloc_netdev_queues(dev))
6608 goto free_all;
6609
6610 #ifdef CONFIG_SYSFS
6611 dev->num_rx_queues = rxqs;
6612 dev->real_num_rx_queues = rxqs;
6613 if (netif_alloc_rx_queues(dev))
6614 goto free_all;
6615 #endif
6616
6617 strcpy(dev->name, name);
6618 dev->name_assign_type = name_assign_type;
6619 dev->group = INIT_NETDEV_GROUP;
6620 if (!dev->ethtool_ops)
6621 dev->ethtool_ops = &default_ethtool_ops;
6622 return dev;
6623
6624 free_all:
6625 free_netdev(dev);
6626 return NULL;
6627
6628 free_pcpu:
6629 free_percpu(dev->pcpu_refcnt);
6630 free_dev:
6631 netdev_freemem(dev);
6632 return NULL;
6633 }
6634 EXPORT_SYMBOL(alloc_netdev_mqs);
6635
6636 /**
6637 * free_netdev - free network device
6638 * @dev: device
6639 *
6640 * This function does the last stage of destroying an allocated device
6641 * interface. The reference to the device object is released.
6642 * If this is the last reference then it will be freed.
6643 */
6644 void free_netdev(struct net_device *dev)
6645 {
6646 struct napi_struct *p, *n;
6647
6648 release_net(dev_net(dev));
6649
6650 netif_free_tx_queues(dev);
6651 #ifdef CONFIG_SYSFS
6652 kfree(dev->_rx);
6653 #endif
6654
6655 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6656
6657 /* Flush device addresses */
6658 dev_addr_flush(dev);
6659
6660 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6661 netif_napi_del(p);
6662
6663 free_percpu(dev->pcpu_refcnt);
6664 dev->pcpu_refcnt = NULL;
6665
6666 /* Compatibility with error handling in drivers */
6667 if (dev->reg_state == NETREG_UNINITIALIZED) {
6668 netdev_freemem(dev);
6669 return;
6670 }
6671
6672 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6673 dev->reg_state = NETREG_RELEASED;
6674
6675 /* will free via device release */
6676 put_device(&dev->dev);
6677 }
6678 EXPORT_SYMBOL(free_netdev);
6679
6680 /**
6681 * synchronize_net - Synchronize with packet receive processing
6682 *
6683 * Wait for packets currently being received to be done.
6684 * Does not block later packets from starting.
6685 */
6686 void synchronize_net(void)
6687 {
6688 might_sleep();
6689 if (rtnl_is_locked())
6690 synchronize_rcu_expedited();
6691 else
6692 synchronize_rcu();
6693 }
6694 EXPORT_SYMBOL(synchronize_net);
6695
6696 /**
6697 * unregister_netdevice_queue - remove device from the kernel
6698 * @dev: device
6699 * @head: list
6700 *
6701 * This function shuts down a device interface and removes it
6702 * from the kernel tables.
6703 * If head not NULL, device is queued to be unregistered later.
6704 *
6705 * Callers must hold the rtnl semaphore. You may want
6706 * unregister_netdev() instead of this.
6707 */
6708
6709 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6710 {
6711 ASSERT_RTNL();
6712
6713 if (head) {
6714 list_move_tail(&dev->unreg_list, head);
6715 } else {
6716 rollback_registered(dev);
6717 /* Finish processing unregister after unlock */
6718 net_set_todo(dev);
6719 }
6720 }
6721 EXPORT_SYMBOL(unregister_netdevice_queue);
6722
6723 /**
6724 * unregister_netdevice_many - unregister many devices
6725 * @head: list of devices
6726 *
6727 * Note: As most callers use a stack allocated list_head,
6728 * we force a list_del() to make sure stack wont be corrupted later.
6729 */
6730 void unregister_netdevice_many(struct list_head *head)
6731 {
6732 struct net_device *dev;
6733
6734 if (!list_empty(head)) {
6735 rollback_registered_many(head);
6736 list_for_each_entry(dev, head, unreg_list)
6737 net_set_todo(dev);
6738 list_del(head);
6739 }
6740 }
6741 EXPORT_SYMBOL(unregister_netdevice_many);
6742
6743 /**
6744 * unregister_netdev - remove device from the kernel
6745 * @dev: device
6746 *
6747 * This function shuts down a device interface and removes it
6748 * from the kernel tables.
6749 *
6750 * This is just a wrapper for unregister_netdevice that takes
6751 * the rtnl semaphore. In general you want to use this and not
6752 * unregister_netdevice.
6753 */
6754 void unregister_netdev(struct net_device *dev)
6755 {
6756 rtnl_lock();
6757 unregister_netdevice(dev);
6758 rtnl_unlock();
6759 }
6760 EXPORT_SYMBOL(unregister_netdev);
6761
6762 /**
6763 * dev_change_net_namespace - move device to different nethost namespace
6764 * @dev: device
6765 * @net: network namespace
6766 * @pat: If not NULL name pattern to try if the current device name
6767 * is already taken in the destination network namespace.
6768 *
6769 * This function shuts down a device interface and moves it
6770 * to a new network namespace. On success 0 is returned, on
6771 * a failure a netagive errno code is returned.
6772 *
6773 * Callers must hold the rtnl semaphore.
6774 */
6775
6776 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6777 {
6778 int err;
6779
6780 ASSERT_RTNL();
6781
6782 /* Don't allow namespace local devices to be moved. */
6783 err = -EINVAL;
6784 if (dev->features & NETIF_F_NETNS_LOCAL)
6785 goto out;
6786
6787 /* Ensure the device has been registrered */
6788 if (dev->reg_state != NETREG_REGISTERED)
6789 goto out;
6790
6791 /* Get out if there is nothing todo */
6792 err = 0;
6793 if (net_eq(dev_net(dev), net))
6794 goto out;
6795
6796 /* Pick the destination device name, and ensure
6797 * we can use it in the destination network namespace.
6798 */
6799 err = -EEXIST;
6800 if (__dev_get_by_name(net, dev->name)) {
6801 /* We get here if we can't use the current device name */
6802 if (!pat)
6803 goto out;
6804 if (dev_get_valid_name(net, dev, pat) < 0)
6805 goto out;
6806 }
6807
6808 /*
6809 * And now a mini version of register_netdevice unregister_netdevice.
6810 */
6811
6812 /* If device is running close it first. */
6813 dev_close(dev);
6814
6815 /* And unlink it from device chain */
6816 err = -ENODEV;
6817 unlist_netdevice(dev);
6818
6819 synchronize_net();
6820
6821 /* Shutdown queueing discipline. */
6822 dev_shutdown(dev);
6823
6824 /* Notify protocols, that we are about to destroy
6825 this device. They should clean all the things.
6826
6827 Note that dev->reg_state stays at NETREG_REGISTERED.
6828 This is wanted because this way 8021q and macvlan know
6829 the device is just moving and can keep their slaves up.
6830 */
6831 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6832 rcu_barrier();
6833 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6834 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6835
6836 /*
6837 * Flush the unicast and multicast chains
6838 */
6839 dev_uc_flush(dev);
6840 dev_mc_flush(dev);
6841
6842 /* Send a netdev-removed uevent to the old namespace */
6843 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6844 netdev_adjacent_del_links(dev);
6845
6846 /* Actually switch the network namespace */
6847 dev_net_set(dev, net);
6848
6849 /* If there is an ifindex conflict assign a new one */
6850 if (__dev_get_by_index(net, dev->ifindex)) {
6851 int iflink = (dev->iflink == dev->ifindex);
6852 dev->ifindex = dev_new_index(net);
6853 if (iflink)
6854 dev->iflink = dev->ifindex;
6855 }
6856
6857 /* Send a netdev-add uevent to the new namespace */
6858 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6859 netdev_adjacent_add_links(dev);
6860
6861 /* Fixup kobjects */
6862 err = device_rename(&dev->dev, dev->name);
6863 WARN_ON(err);
6864
6865 /* Add the device back in the hashes */
6866 list_netdevice(dev);
6867
6868 /* Notify protocols, that a new device appeared. */
6869 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6870
6871 /*
6872 * Prevent userspace races by waiting until the network
6873 * device is fully setup before sending notifications.
6874 */
6875 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6876
6877 synchronize_net();
6878 err = 0;
6879 out:
6880 return err;
6881 }
6882 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6883
6884 static int dev_cpu_callback(struct notifier_block *nfb,
6885 unsigned long action,
6886 void *ocpu)
6887 {
6888 struct sk_buff **list_skb;
6889 struct sk_buff *skb;
6890 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6891 struct softnet_data *sd, *oldsd;
6892
6893 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6894 return NOTIFY_OK;
6895
6896 local_irq_disable();
6897 cpu = smp_processor_id();
6898 sd = &per_cpu(softnet_data, cpu);
6899 oldsd = &per_cpu(softnet_data, oldcpu);
6900
6901 /* Find end of our completion_queue. */
6902 list_skb = &sd->completion_queue;
6903 while (*list_skb)
6904 list_skb = &(*list_skb)->next;
6905 /* Append completion queue from offline CPU. */
6906 *list_skb = oldsd->completion_queue;
6907 oldsd->completion_queue = NULL;
6908
6909 /* Append output queue from offline CPU. */
6910 if (oldsd->output_queue) {
6911 *sd->output_queue_tailp = oldsd->output_queue;
6912 sd->output_queue_tailp = oldsd->output_queue_tailp;
6913 oldsd->output_queue = NULL;
6914 oldsd->output_queue_tailp = &oldsd->output_queue;
6915 }
6916 /* Append NAPI poll list from offline CPU. */
6917 if (!list_empty(&oldsd->poll_list)) {
6918 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6919 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6920 }
6921
6922 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6923 local_irq_enable();
6924
6925 /* Process offline CPU's input_pkt_queue */
6926 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6927 netif_rx_internal(skb);
6928 input_queue_head_incr(oldsd);
6929 }
6930 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6931 netif_rx_internal(skb);
6932 input_queue_head_incr(oldsd);
6933 }
6934
6935 return NOTIFY_OK;
6936 }
6937
6938
6939 /**
6940 * netdev_increment_features - increment feature set by one
6941 * @all: current feature set
6942 * @one: new feature set
6943 * @mask: mask feature set
6944 *
6945 * Computes a new feature set after adding a device with feature set
6946 * @one to the master device with current feature set @all. Will not
6947 * enable anything that is off in @mask. Returns the new feature set.
6948 */
6949 netdev_features_t netdev_increment_features(netdev_features_t all,
6950 netdev_features_t one, netdev_features_t mask)
6951 {
6952 if (mask & NETIF_F_GEN_CSUM)
6953 mask |= NETIF_F_ALL_CSUM;
6954 mask |= NETIF_F_VLAN_CHALLENGED;
6955
6956 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6957 all &= one | ~NETIF_F_ALL_FOR_ALL;
6958
6959 /* If one device supports hw checksumming, set for all. */
6960 if (all & NETIF_F_GEN_CSUM)
6961 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6962
6963 return all;
6964 }
6965 EXPORT_SYMBOL(netdev_increment_features);
6966
6967 static struct hlist_head * __net_init netdev_create_hash(void)
6968 {
6969 int i;
6970 struct hlist_head *hash;
6971
6972 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6973 if (hash != NULL)
6974 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6975 INIT_HLIST_HEAD(&hash[i]);
6976
6977 return hash;
6978 }
6979
6980 /* Initialize per network namespace state */
6981 static int __net_init netdev_init(struct net *net)
6982 {
6983 if (net != &init_net)
6984 INIT_LIST_HEAD(&net->dev_base_head);
6985
6986 net->dev_name_head = netdev_create_hash();
6987 if (net->dev_name_head == NULL)
6988 goto err_name;
6989
6990 net->dev_index_head = netdev_create_hash();
6991 if (net->dev_index_head == NULL)
6992 goto err_idx;
6993
6994 return 0;
6995
6996 err_idx:
6997 kfree(net->dev_name_head);
6998 err_name:
6999 return -ENOMEM;
7000 }
7001
7002 /**
7003 * netdev_drivername - network driver for the device
7004 * @dev: network device
7005 *
7006 * Determine network driver for device.
7007 */
7008 const char *netdev_drivername(const struct net_device *dev)
7009 {
7010 const struct device_driver *driver;
7011 const struct device *parent;
7012 const char *empty = "";
7013
7014 parent = dev->dev.parent;
7015 if (!parent)
7016 return empty;
7017
7018 driver = parent->driver;
7019 if (driver && driver->name)
7020 return driver->name;
7021 return empty;
7022 }
7023
7024 static int __netdev_printk(const char *level, const struct net_device *dev,
7025 struct va_format *vaf)
7026 {
7027 int r;
7028
7029 if (dev && dev->dev.parent) {
7030 r = dev_printk_emit(level[1] - '0',
7031 dev->dev.parent,
7032 "%s %s %s%s: %pV",
7033 dev_driver_string(dev->dev.parent),
7034 dev_name(dev->dev.parent),
7035 netdev_name(dev), netdev_reg_state(dev),
7036 vaf);
7037 } else if (dev) {
7038 r = printk("%s%s%s: %pV", level, netdev_name(dev),
7039 netdev_reg_state(dev), vaf);
7040 } else {
7041 r = printk("%s(NULL net_device): %pV", level, vaf);
7042 }
7043
7044 return r;
7045 }
7046
7047 int netdev_printk(const char *level, const struct net_device *dev,
7048 const char *format, ...)
7049 {
7050 struct va_format vaf;
7051 va_list args;
7052 int r;
7053
7054 va_start(args, format);
7055
7056 vaf.fmt = format;
7057 vaf.va = &args;
7058
7059 r = __netdev_printk(level, dev, &vaf);
7060
7061 va_end(args);
7062
7063 return r;
7064 }
7065 EXPORT_SYMBOL(netdev_printk);
7066
7067 #define define_netdev_printk_level(func, level) \
7068 int func(const struct net_device *dev, const char *fmt, ...) \
7069 { \
7070 int r; \
7071 struct va_format vaf; \
7072 va_list args; \
7073 \
7074 va_start(args, fmt); \
7075 \
7076 vaf.fmt = fmt; \
7077 vaf.va = &args; \
7078 \
7079 r = __netdev_printk(level, dev, &vaf); \
7080 \
7081 va_end(args); \
7082 \
7083 return r; \
7084 } \
7085 EXPORT_SYMBOL(func);
7086
7087 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7088 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7089 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7090 define_netdev_printk_level(netdev_err, KERN_ERR);
7091 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7092 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7093 define_netdev_printk_level(netdev_info, KERN_INFO);
7094
7095 static void __net_exit netdev_exit(struct net *net)
7096 {
7097 kfree(net->dev_name_head);
7098 kfree(net->dev_index_head);
7099 }
7100
7101 static struct pernet_operations __net_initdata netdev_net_ops = {
7102 .init = netdev_init,
7103 .exit = netdev_exit,
7104 };
7105
7106 static void __net_exit default_device_exit(struct net *net)
7107 {
7108 struct net_device *dev, *aux;
7109 /*
7110 * Push all migratable network devices back to the
7111 * initial network namespace
7112 */
7113 rtnl_lock();
7114 for_each_netdev_safe(net, dev, aux) {
7115 int err;
7116 char fb_name[IFNAMSIZ];
7117
7118 /* Ignore unmoveable devices (i.e. loopback) */
7119 if (dev->features & NETIF_F_NETNS_LOCAL)
7120 continue;
7121
7122 /* Leave virtual devices for the generic cleanup */
7123 if (dev->rtnl_link_ops)
7124 continue;
7125
7126 /* Push remaining network devices to init_net */
7127 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7128 err = dev_change_net_namespace(dev, &init_net, fb_name);
7129 if (err) {
7130 pr_emerg("%s: failed to move %s to init_net: %d\n",
7131 __func__, dev->name, err);
7132 BUG();
7133 }
7134 }
7135 rtnl_unlock();
7136 }
7137
7138 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7139 {
7140 /* Return with the rtnl_lock held when there are no network
7141 * devices unregistering in any network namespace in net_list.
7142 */
7143 struct net *net;
7144 bool unregistering;
7145 DEFINE_WAIT(wait);
7146
7147 for (;;) {
7148 prepare_to_wait(&netdev_unregistering_wq, &wait,
7149 TASK_UNINTERRUPTIBLE);
7150 unregistering = false;
7151 rtnl_lock();
7152 list_for_each_entry(net, net_list, exit_list) {
7153 if (net->dev_unreg_count > 0) {
7154 unregistering = true;
7155 break;
7156 }
7157 }
7158 if (!unregistering)
7159 break;
7160 __rtnl_unlock();
7161 schedule();
7162 }
7163 finish_wait(&netdev_unregistering_wq, &wait);
7164 }
7165
7166 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7167 {
7168 /* At exit all network devices most be removed from a network
7169 * namespace. Do this in the reverse order of registration.
7170 * Do this across as many network namespaces as possible to
7171 * improve batching efficiency.
7172 */
7173 struct net_device *dev;
7174 struct net *net;
7175 LIST_HEAD(dev_kill_list);
7176
7177 /* To prevent network device cleanup code from dereferencing
7178 * loopback devices or network devices that have been freed
7179 * wait here for all pending unregistrations to complete,
7180 * before unregistring the loopback device and allowing the
7181 * network namespace be freed.
7182 *
7183 * The netdev todo list containing all network devices
7184 * unregistrations that happen in default_device_exit_batch
7185 * will run in the rtnl_unlock() at the end of
7186 * default_device_exit_batch.
7187 */
7188 rtnl_lock_unregistering(net_list);
7189 list_for_each_entry(net, net_list, exit_list) {
7190 for_each_netdev_reverse(net, dev) {
7191 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7192 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7193 else
7194 unregister_netdevice_queue(dev, &dev_kill_list);
7195 }
7196 }
7197 unregister_netdevice_many(&dev_kill_list);
7198 rtnl_unlock();
7199 }
7200
7201 static struct pernet_operations __net_initdata default_device_ops = {
7202 .exit = default_device_exit,
7203 .exit_batch = default_device_exit_batch,
7204 };
7205
7206 /*
7207 * Initialize the DEV module. At boot time this walks the device list and
7208 * unhooks any devices that fail to initialise (normally hardware not
7209 * present) and leaves us with a valid list of present and active devices.
7210 *
7211 */
7212
7213 /*
7214 * This is called single threaded during boot, so no need
7215 * to take the rtnl semaphore.
7216 */
7217 static int __init net_dev_init(void)
7218 {
7219 int i, rc = -ENOMEM;
7220
7221 BUG_ON(!dev_boot_phase);
7222
7223 if (dev_proc_init())
7224 goto out;
7225
7226 if (netdev_kobject_init())
7227 goto out;
7228
7229 INIT_LIST_HEAD(&ptype_all);
7230 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7231 INIT_LIST_HEAD(&ptype_base[i]);
7232
7233 INIT_LIST_HEAD(&offload_base);
7234
7235 if (register_pernet_subsys(&netdev_net_ops))
7236 goto out;
7237
7238 /*
7239 * Initialise the packet receive queues.
7240 */
7241
7242 for_each_possible_cpu(i) {
7243 struct softnet_data *sd = &per_cpu(softnet_data, i);
7244
7245 skb_queue_head_init(&sd->input_pkt_queue);
7246 skb_queue_head_init(&sd->process_queue);
7247 INIT_LIST_HEAD(&sd->poll_list);
7248 sd->output_queue_tailp = &sd->output_queue;
7249 #ifdef CONFIG_RPS
7250 sd->csd.func = rps_trigger_softirq;
7251 sd->csd.info = sd;
7252 sd->cpu = i;
7253 #endif
7254
7255 sd->backlog.poll = process_backlog;
7256 sd->backlog.weight = weight_p;
7257 }
7258
7259 dev_boot_phase = 0;
7260
7261 /* The loopback device is special if any other network devices
7262 * is present in a network namespace the loopback device must
7263 * be present. Since we now dynamically allocate and free the
7264 * loopback device ensure this invariant is maintained by
7265 * keeping the loopback device as the first device on the
7266 * list of network devices. Ensuring the loopback devices
7267 * is the first device that appears and the last network device
7268 * that disappears.
7269 */
7270 if (register_pernet_device(&loopback_net_ops))
7271 goto out;
7272
7273 if (register_pernet_device(&default_device_ops))
7274 goto out;
7275
7276 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7277 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7278
7279 hotcpu_notifier(dev_cpu_callback, 0);
7280 dst_init();
7281 rc = 0;
7282 out:
7283 return rc;
7284 }
7285
7286 subsys_initcall(net_dev_init);
This page took 0.177318 seconds and 4 git commands to generate.