Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_alloc_name_ns(struct net *net,
963 struct net_device *dev,
964 const char *name)
965 {
966 char buf[IFNAMSIZ];
967 int ret;
968
969 ret = __dev_alloc_name(net, name, buf);
970 if (ret >= 0)
971 strlcpy(dev->name, buf, IFNAMSIZ);
972 return ret;
973 }
974
975 static int dev_get_valid_name(struct net *net,
976 struct net_device *dev,
977 const char *name)
978 {
979 BUG_ON(!net);
980
981 if (!dev_valid_name(name))
982 return -EINVAL;
983
984 if (strchr(name, '%'))
985 return dev_alloc_name_ns(net, dev, name);
986 else if (__dev_get_by_name(net, name))
987 return -EEXIST;
988 else if (dev->name != name)
989 strlcpy(dev->name, name, IFNAMSIZ);
990
991 return 0;
992 }
993
994 /**
995 * dev_change_name - change name of a device
996 * @dev: device
997 * @newname: name (or format string) must be at least IFNAMSIZ
998 *
999 * Change name of a device, can pass format strings "eth%d".
1000 * for wildcarding.
1001 */
1002 int dev_change_name(struct net_device *dev, const char *newname)
1003 {
1004 char oldname[IFNAMSIZ];
1005 int err = 0;
1006 int ret;
1007 struct net *net;
1008
1009 ASSERT_RTNL();
1010 BUG_ON(!dev_net(dev));
1011
1012 net = dev_net(dev);
1013 if (dev->flags & IFF_UP)
1014 return -EBUSY;
1015
1016 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1017 return 0;
1018
1019 memcpy(oldname, dev->name, IFNAMSIZ);
1020
1021 err = dev_get_valid_name(net, dev, newname);
1022 if (err < 0)
1023 return err;
1024
1025 rollback:
1026 ret = device_rename(&dev->dev, dev->name);
1027 if (ret) {
1028 memcpy(dev->name, oldname, IFNAMSIZ);
1029 return ret;
1030 }
1031
1032 write_lock_bh(&dev_base_lock);
1033 hlist_del_rcu(&dev->name_hlist);
1034 write_unlock_bh(&dev_base_lock);
1035
1036 synchronize_rcu();
1037
1038 write_lock_bh(&dev_base_lock);
1039 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1040 write_unlock_bh(&dev_base_lock);
1041
1042 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1043 ret = notifier_to_errno(ret);
1044
1045 if (ret) {
1046 /* err >= 0 after dev_alloc_name() or stores the first errno */
1047 if (err >= 0) {
1048 err = ret;
1049 memcpy(dev->name, oldname, IFNAMSIZ);
1050 goto rollback;
1051 } else {
1052 pr_err("%s: name change rollback failed: %d\n",
1053 dev->name, ret);
1054 }
1055 }
1056
1057 return err;
1058 }
1059
1060 /**
1061 * dev_set_alias - change ifalias of a device
1062 * @dev: device
1063 * @alias: name up to IFALIASZ
1064 * @len: limit of bytes to copy from info
1065 *
1066 * Set ifalias for a device,
1067 */
1068 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1069 {
1070 char *new_ifalias;
1071
1072 ASSERT_RTNL();
1073
1074 if (len >= IFALIASZ)
1075 return -EINVAL;
1076
1077 if (!len) {
1078 if (dev->ifalias) {
1079 kfree(dev->ifalias);
1080 dev->ifalias = NULL;
1081 }
1082 return 0;
1083 }
1084
1085 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1086 if (!new_ifalias)
1087 return -ENOMEM;
1088 dev->ifalias = new_ifalias;
1089
1090 strlcpy(dev->ifalias, alias, len+1);
1091 return len;
1092 }
1093
1094
1095 /**
1096 * netdev_features_change - device changes features
1097 * @dev: device to cause notification
1098 *
1099 * Called to indicate a device has changed features.
1100 */
1101 void netdev_features_change(struct net_device *dev)
1102 {
1103 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1104 }
1105 EXPORT_SYMBOL(netdev_features_change);
1106
1107 /**
1108 * netdev_state_change - device changes state
1109 * @dev: device to cause notification
1110 *
1111 * Called to indicate a device has changed state. This function calls
1112 * the notifier chains for netdev_chain and sends a NEWLINK message
1113 * to the routing socket.
1114 */
1115 void netdev_state_change(struct net_device *dev)
1116 {
1117 if (dev->flags & IFF_UP) {
1118 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1119 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1120 }
1121 }
1122 EXPORT_SYMBOL(netdev_state_change);
1123
1124 /**
1125 * netdev_notify_peers - notify network peers about existence of @dev
1126 * @dev: network device
1127 *
1128 * Generate traffic such that interested network peers are aware of
1129 * @dev, such as by generating a gratuitous ARP. This may be used when
1130 * a device wants to inform the rest of the network about some sort of
1131 * reconfiguration such as a failover event or virtual machine
1132 * migration.
1133 */
1134 void netdev_notify_peers(struct net_device *dev)
1135 {
1136 rtnl_lock();
1137 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1138 rtnl_unlock();
1139 }
1140 EXPORT_SYMBOL(netdev_notify_peers);
1141
1142 /**
1143 * dev_load - load a network module
1144 * @net: the applicable net namespace
1145 * @name: name of interface
1146 *
1147 * If a network interface is not present and the process has suitable
1148 * privileges this function loads the module. If module loading is not
1149 * available in this kernel then it becomes a nop.
1150 */
1151
1152 void dev_load(struct net *net, const char *name)
1153 {
1154 struct net_device *dev;
1155 int no_module;
1156
1157 rcu_read_lock();
1158 dev = dev_get_by_name_rcu(net, name);
1159 rcu_read_unlock();
1160
1161 no_module = !dev;
1162 if (no_module && capable(CAP_NET_ADMIN))
1163 no_module = request_module("netdev-%s", name);
1164 if (no_module && capable(CAP_SYS_MODULE)) {
1165 if (!request_module("%s", name))
1166 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1167 name);
1168 }
1169 }
1170 EXPORT_SYMBOL(dev_load);
1171
1172 static int __dev_open(struct net_device *dev)
1173 {
1174 const struct net_device_ops *ops = dev->netdev_ops;
1175 int ret;
1176
1177 ASSERT_RTNL();
1178
1179 if (!netif_device_present(dev))
1180 return -ENODEV;
1181
1182 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1183 ret = notifier_to_errno(ret);
1184 if (ret)
1185 return ret;
1186
1187 set_bit(__LINK_STATE_START, &dev->state);
1188
1189 if (ops->ndo_validate_addr)
1190 ret = ops->ndo_validate_addr(dev);
1191
1192 if (!ret && ops->ndo_open)
1193 ret = ops->ndo_open(dev);
1194
1195 if (ret)
1196 clear_bit(__LINK_STATE_START, &dev->state);
1197 else {
1198 dev->flags |= IFF_UP;
1199 net_dmaengine_get();
1200 dev_set_rx_mode(dev);
1201 dev_activate(dev);
1202 add_device_randomness(dev->dev_addr, dev->addr_len);
1203 }
1204
1205 return ret;
1206 }
1207
1208 /**
1209 * dev_open - prepare an interface for use.
1210 * @dev: device to open
1211 *
1212 * Takes a device from down to up state. The device's private open
1213 * function is invoked and then the multicast lists are loaded. Finally
1214 * the device is moved into the up state and a %NETDEV_UP message is
1215 * sent to the netdev notifier chain.
1216 *
1217 * Calling this function on an active interface is a nop. On a failure
1218 * a negative errno code is returned.
1219 */
1220 int dev_open(struct net_device *dev)
1221 {
1222 int ret;
1223
1224 if (dev->flags & IFF_UP)
1225 return 0;
1226
1227 ret = __dev_open(dev);
1228 if (ret < 0)
1229 return ret;
1230
1231 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1232 call_netdevice_notifiers(NETDEV_UP, dev);
1233
1234 return ret;
1235 }
1236 EXPORT_SYMBOL(dev_open);
1237
1238 static int __dev_close_many(struct list_head *head)
1239 {
1240 struct net_device *dev;
1241
1242 ASSERT_RTNL();
1243 might_sleep();
1244
1245 list_for_each_entry(dev, head, unreg_list) {
1246 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1247
1248 clear_bit(__LINK_STATE_START, &dev->state);
1249
1250 /* Synchronize to scheduled poll. We cannot touch poll list, it
1251 * can be even on different cpu. So just clear netif_running().
1252 *
1253 * dev->stop() will invoke napi_disable() on all of it's
1254 * napi_struct instances on this device.
1255 */
1256 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1257 }
1258
1259 dev_deactivate_many(head);
1260
1261 list_for_each_entry(dev, head, unreg_list) {
1262 const struct net_device_ops *ops = dev->netdev_ops;
1263
1264 /*
1265 * Call the device specific close. This cannot fail.
1266 * Only if device is UP
1267 *
1268 * We allow it to be called even after a DETACH hot-plug
1269 * event.
1270 */
1271 if (ops->ndo_stop)
1272 ops->ndo_stop(dev);
1273
1274 dev->flags &= ~IFF_UP;
1275 net_dmaengine_put();
1276 }
1277
1278 return 0;
1279 }
1280
1281 static int __dev_close(struct net_device *dev)
1282 {
1283 int retval;
1284 LIST_HEAD(single);
1285
1286 list_add(&dev->unreg_list, &single);
1287 retval = __dev_close_many(&single);
1288 list_del(&single);
1289 return retval;
1290 }
1291
1292 static int dev_close_many(struct list_head *head)
1293 {
1294 struct net_device *dev, *tmp;
1295 LIST_HEAD(tmp_list);
1296
1297 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1298 if (!(dev->flags & IFF_UP))
1299 list_move(&dev->unreg_list, &tmp_list);
1300
1301 __dev_close_many(head);
1302
1303 list_for_each_entry(dev, head, unreg_list) {
1304 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1305 call_netdevice_notifiers(NETDEV_DOWN, dev);
1306 }
1307
1308 /* rollback_registered_many needs the complete original list */
1309 list_splice(&tmp_list, head);
1310 return 0;
1311 }
1312
1313 /**
1314 * dev_close - shutdown an interface.
1315 * @dev: device to shutdown
1316 *
1317 * This function moves an active device into down state. A
1318 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1319 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1320 * chain.
1321 */
1322 int dev_close(struct net_device *dev)
1323 {
1324 if (dev->flags & IFF_UP) {
1325 LIST_HEAD(single);
1326
1327 list_add(&dev->unreg_list, &single);
1328 dev_close_many(&single);
1329 list_del(&single);
1330 }
1331 return 0;
1332 }
1333 EXPORT_SYMBOL(dev_close);
1334
1335
1336 /**
1337 * dev_disable_lro - disable Large Receive Offload on a device
1338 * @dev: device
1339 *
1340 * Disable Large Receive Offload (LRO) on a net device. Must be
1341 * called under RTNL. This is needed if received packets may be
1342 * forwarded to another interface.
1343 */
1344 void dev_disable_lro(struct net_device *dev)
1345 {
1346 /*
1347 * If we're trying to disable lro on a vlan device
1348 * use the underlying physical device instead
1349 */
1350 if (is_vlan_dev(dev))
1351 dev = vlan_dev_real_dev(dev);
1352
1353 dev->wanted_features &= ~NETIF_F_LRO;
1354 netdev_update_features(dev);
1355
1356 if (unlikely(dev->features & NETIF_F_LRO))
1357 netdev_WARN(dev, "failed to disable LRO!\n");
1358 }
1359 EXPORT_SYMBOL(dev_disable_lro);
1360
1361
1362 static int dev_boot_phase = 1;
1363
1364 /**
1365 * register_netdevice_notifier - register a network notifier block
1366 * @nb: notifier
1367 *
1368 * Register a notifier to be called when network device events occur.
1369 * The notifier passed is linked into the kernel structures and must
1370 * not be reused until it has been unregistered. A negative errno code
1371 * is returned on a failure.
1372 *
1373 * When registered all registration and up events are replayed
1374 * to the new notifier to allow device to have a race free
1375 * view of the network device list.
1376 */
1377
1378 int register_netdevice_notifier(struct notifier_block *nb)
1379 {
1380 struct net_device *dev;
1381 struct net_device *last;
1382 struct net *net;
1383 int err;
1384
1385 rtnl_lock();
1386 err = raw_notifier_chain_register(&netdev_chain, nb);
1387 if (err)
1388 goto unlock;
1389 if (dev_boot_phase)
1390 goto unlock;
1391 for_each_net(net) {
1392 for_each_netdev(net, dev) {
1393 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1394 err = notifier_to_errno(err);
1395 if (err)
1396 goto rollback;
1397
1398 if (!(dev->flags & IFF_UP))
1399 continue;
1400
1401 nb->notifier_call(nb, NETDEV_UP, dev);
1402 }
1403 }
1404
1405 unlock:
1406 rtnl_unlock();
1407 return err;
1408
1409 rollback:
1410 last = dev;
1411 for_each_net(net) {
1412 for_each_netdev(net, dev) {
1413 if (dev == last)
1414 goto outroll;
1415
1416 if (dev->flags & IFF_UP) {
1417 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1418 nb->notifier_call(nb, NETDEV_DOWN, dev);
1419 }
1420 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1421 }
1422 }
1423
1424 outroll:
1425 raw_notifier_chain_unregister(&netdev_chain, nb);
1426 goto unlock;
1427 }
1428 EXPORT_SYMBOL(register_netdevice_notifier);
1429
1430 /**
1431 * unregister_netdevice_notifier - unregister a network notifier block
1432 * @nb: notifier
1433 *
1434 * Unregister a notifier previously registered by
1435 * register_netdevice_notifier(). The notifier is unlinked into the
1436 * kernel structures and may then be reused. A negative errno code
1437 * is returned on a failure.
1438 *
1439 * After unregistering unregister and down device events are synthesized
1440 * for all devices on the device list to the removed notifier to remove
1441 * the need for special case cleanup code.
1442 */
1443
1444 int unregister_netdevice_notifier(struct notifier_block *nb)
1445 {
1446 struct net_device *dev;
1447 struct net *net;
1448 int err;
1449
1450 rtnl_lock();
1451 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1452 if (err)
1453 goto unlock;
1454
1455 for_each_net(net) {
1456 for_each_netdev(net, dev) {
1457 if (dev->flags & IFF_UP) {
1458 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1459 nb->notifier_call(nb, NETDEV_DOWN, dev);
1460 }
1461 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1462 }
1463 }
1464 unlock:
1465 rtnl_unlock();
1466 return err;
1467 }
1468 EXPORT_SYMBOL(unregister_netdevice_notifier);
1469
1470 /**
1471 * call_netdevice_notifiers - call all network notifier blocks
1472 * @val: value passed unmodified to notifier function
1473 * @dev: net_device pointer passed unmodified to notifier function
1474 *
1475 * Call all network notifier blocks. Parameters and return value
1476 * are as for raw_notifier_call_chain().
1477 */
1478
1479 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1480 {
1481 ASSERT_RTNL();
1482 return raw_notifier_call_chain(&netdev_chain, val, dev);
1483 }
1484 EXPORT_SYMBOL(call_netdevice_notifiers);
1485
1486 static struct static_key netstamp_needed __read_mostly;
1487 #ifdef HAVE_JUMP_LABEL
1488 /* We are not allowed to call static_key_slow_dec() from irq context
1489 * If net_disable_timestamp() is called from irq context, defer the
1490 * static_key_slow_dec() calls.
1491 */
1492 static atomic_t netstamp_needed_deferred;
1493 #endif
1494
1495 void net_enable_timestamp(void)
1496 {
1497 #ifdef HAVE_JUMP_LABEL
1498 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1499
1500 if (deferred) {
1501 while (--deferred)
1502 static_key_slow_dec(&netstamp_needed);
1503 return;
1504 }
1505 #endif
1506 WARN_ON(in_interrupt());
1507 static_key_slow_inc(&netstamp_needed);
1508 }
1509 EXPORT_SYMBOL(net_enable_timestamp);
1510
1511 void net_disable_timestamp(void)
1512 {
1513 #ifdef HAVE_JUMP_LABEL
1514 if (in_interrupt()) {
1515 atomic_inc(&netstamp_needed_deferred);
1516 return;
1517 }
1518 #endif
1519 static_key_slow_dec(&netstamp_needed);
1520 }
1521 EXPORT_SYMBOL(net_disable_timestamp);
1522
1523 static inline void net_timestamp_set(struct sk_buff *skb)
1524 {
1525 skb->tstamp.tv64 = 0;
1526 if (static_key_false(&netstamp_needed))
1527 __net_timestamp(skb);
1528 }
1529
1530 #define net_timestamp_check(COND, SKB) \
1531 if (static_key_false(&netstamp_needed)) { \
1532 if ((COND) && !(SKB)->tstamp.tv64) \
1533 __net_timestamp(SKB); \
1534 } \
1535
1536 static int net_hwtstamp_validate(struct ifreq *ifr)
1537 {
1538 struct hwtstamp_config cfg;
1539 enum hwtstamp_tx_types tx_type;
1540 enum hwtstamp_rx_filters rx_filter;
1541 int tx_type_valid = 0;
1542 int rx_filter_valid = 0;
1543
1544 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1545 return -EFAULT;
1546
1547 if (cfg.flags) /* reserved for future extensions */
1548 return -EINVAL;
1549
1550 tx_type = cfg.tx_type;
1551 rx_filter = cfg.rx_filter;
1552
1553 switch (tx_type) {
1554 case HWTSTAMP_TX_OFF:
1555 case HWTSTAMP_TX_ON:
1556 case HWTSTAMP_TX_ONESTEP_SYNC:
1557 tx_type_valid = 1;
1558 break;
1559 }
1560
1561 switch (rx_filter) {
1562 case HWTSTAMP_FILTER_NONE:
1563 case HWTSTAMP_FILTER_ALL:
1564 case HWTSTAMP_FILTER_SOME:
1565 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1566 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1567 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1568 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1569 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1570 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1571 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1572 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1573 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1574 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1575 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1576 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1577 rx_filter_valid = 1;
1578 break;
1579 }
1580
1581 if (!tx_type_valid || !rx_filter_valid)
1582 return -ERANGE;
1583
1584 return 0;
1585 }
1586
1587 static inline bool is_skb_forwardable(struct net_device *dev,
1588 struct sk_buff *skb)
1589 {
1590 unsigned int len;
1591
1592 if (!(dev->flags & IFF_UP))
1593 return false;
1594
1595 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1596 if (skb->len <= len)
1597 return true;
1598
1599 /* if TSO is enabled, we don't care about the length as the packet
1600 * could be forwarded without being segmented before
1601 */
1602 if (skb_is_gso(skb))
1603 return true;
1604
1605 return false;
1606 }
1607
1608 /**
1609 * dev_forward_skb - loopback an skb to another netif
1610 *
1611 * @dev: destination network device
1612 * @skb: buffer to forward
1613 *
1614 * return values:
1615 * NET_RX_SUCCESS (no congestion)
1616 * NET_RX_DROP (packet was dropped, but freed)
1617 *
1618 * dev_forward_skb can be used for injecting an skb from the
1619 * start_xmit function of one device into the receive queue
1620 * of another device.
1621 *
1622 * The receiving device may be in another namespace, so
1623 * we have to clear all information in the skb that could
1624 * impact namespace isolation.
1625 */
1626 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1627 {
1628 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1629 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1630 atomic_long_inc(&dev->rx_dropped);
1631 kfree_skb(skb);
1632 return NET_RX_DROP;
1633 }
1634 }
1635
1636 skb_orphan(skb);
1637 nf_reset(skb);
1638
1639 if (unlikely(!is_skb_forwardable(dev, skb))) {
1640 atomic_long_inc(&dev->rx_dropped);
1641 kfree_skb(skb);
1642 return NET_RX_DROP;
1643 }
1644 skb->skb_iif = 0;
1645 skb->dev = dev;
1646 skb_dst_drop(skb);
1647 skb->tstamp.tv64 = 0;
1648 skb->pkt_type = PACKET_HOST;
1649 skb->protocol = eth_type_trans(skb, dev);
1650 skb->mark = 0;
1651 secpath_reset(skb);
1652 nf_reset(skb);
1653 return netif_rx(skb);
1654 }
1655 EXPORT_SYMBOL_GPL(dev_forward_skb);
1656
1657 static inline int deliver_skb(struct sk_buff *skb,
1658 struct packet_type *pt_prev,
1659 struct net_device *orig_dev)
1660 {
1661 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1662 return -ENOMEM;
1663 atomic_inc(&skb->users);
1664 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1665 }
1666
1667 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1668 {
1669 if (ptype->af_packet_priv == NULL)
1670 return false;
1671
1672 if (ptype->id_match)
1673 return ptype->id_match(ptype, skb->sk);
1674 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1675 return true;
1676
1677 return false;
1678 }
1679
1680 /*
1681 * Support routine. Sends outgoing frames to any network
1682 * taps currently in use.
1683 */
1684
1685 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1686 {
1687 struct packet_type *ptype;
1688 struct sk_buff *skb2 = NULL;
1689 struct packet_type *pt_prev = NULL;
1690
1691 rcu_read_lock();
1692 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1693 /* Never send packets back to the socket
1694 * they originated from - MvS (miquels@drinkel.ow.org)
1695 */
1696 if ((ptype->dev == dev || !ptype->dev) &&
1697 (!skb_loop_sk(ptype, skb))) {
1698 if (pt_prev) {
1699 deliver_skb(skb2, pt_prev, skb->dev);
1700 pt_prev = ptype;
1701 continue;
1702 }
1703
1704 skb2 = skb_clone(skb, GFP_ATOMIC);
1705 if (!skb2)
1706 break;
1707
1708 net_timestamp_set(skb2);
1709
1710 /* skb->nh should be correctly
1711 set by sender, so that the second statement is
1712 just protection against buggy protocols.
1713 */
1714 skb_reset_mac_header(skb2);
1715
1716 if (skb_network_header(skb2) < skb2->data ||
1717 skb2->network_header > skb2->tail) {
1718 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1719 ntohs(skb2->protocol),
1720 dev->name);
1721 skb_reset_network_header(skb2);
1722 }
1723
1724 skb2->transport_header = skb2->network_header;
1725 skb2->pkt_type = PACKET_OUTGOING;
1726 pt_prev = ptype;
1727 }
1728 }
1729 if (pt_prev)
1730 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1731 rcu_read_unlock();
1732 }
1733
1734 /**
1735 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1736 * @dev: Network device
1737 * @txq: number of queues available
1738 *
1739 * If real_num_tx_queues is changed the tc mappings may no longer be
1740 * valid. To resolve this verify the tc mapping remains valid and if
1741 * not NULL the mapping. With no priorities mapping to this
1742 * offset/count pair it will no longer be used. In the worst case TC0
1743 * is invalid nothing can be done so disable priority mappings. If is
1744 * expected that drivers will fix this mapping if they can before
1745 * calling netif_set_real_num_tx_queues.
1746 */
1747 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1748 {
1749 int i;
1750 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1751
1752 /* If TC0 is invalidated disable TC mapping */
1753 if (tc->offset + tc->count > txq) {
1754 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1755 dev->num_tc = 0;
1756 return;
1757 }
1758
1759 /* Invalidated prio to tc mappings set to TC0 */
1760 for (i = 1; i < TC_BITMASK + 1; i++) {
1761 int q = netdev_get_prio_tc_map(dev, i);
1762
1763 tc = &dev->tc_to_txq[q];
1764 if (tc->offset + tc->count > txq) {
1765 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1766 i, q);
1767 netdev_set_prio_tc_map(dev, i, 0);
1768 }
1769 }
1770 }
1771
1772 /*
1773 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1774 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1775 */
1776 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1777 {
1778 int rc;
1779
1780 if (txq < 1 || txq > dev->num_tx_queues)
1781 return -EINVAL;
1782
1783 if (dev->reg_state == NETREG_REGISTERED ||
1784 dev->reg_state == NETREG_UNREGISTERING) {
1785 ASSERT_RTNL();
1786
1787 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1788 txq);
1789 if (rc)
1790 return rc;
1791
1792 if (dev->num_tc)
1793 netif_setup_tc(dev, txq);
1794
1795 if (txq < dev->real_num_tx_queues)
1796 qdisc_reset_all_tx_gt(dev, txq);
1797 }
1798
1799 dev->real_num_tx_queues = txq;
1800 return 0;
1801 }
1802 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1803
1804 #ifdef CONFIG_RPS
1805 /**
1806 * netif_set_real_num_rx_queues - set actual number of RX queues used
1807 * @dev: Network device
1808 * @rxq: Actual number of RX queues
1809 *
1810 * This must be called either with the rtnl_lock held or before
1811 * registration of the net device. Returns 0 on success, or a
1812 * negative error code. If called before registration, it always
1813 * succeeds.
1814 */
1815 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1816 {
1817 int rc;
1818
1819 if (rxq < 1 || rxq > dev->num_rx_queues)
1820 return -EINVAL;
1821
1822 if (dev->reg_state == NETREG_REGISTERED) {
1823 ASSERT_RTNL();
1824
1825 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1826 rxq);
1827 if (rc)
1828 return rc;
1829 }
1830
1831 dev->real_num_rx_queues = rxq;
1832 return 0;
1833 }
1834 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1835 #endif
1836
1837 /**
1838 * netif_get_num_default_rss_queues - default number of RSS queues
1839 *
1840 * This routine should set an upper limit on the number of RSS queues
1841 * used by default by multiqueue devices.
1842 */
1843 int netif_get_num_default_rss_queues(void)
1844 {
1845 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1846 }
1847 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1848
1849 static inline void __netif_reschedule(struct Qdisc *q)
1850 {
1851 struct softnet_data *sd;
1852 unsigned long flags;
1853
1854 local_irq_save(flags);
1855 sd = &__get_cpu_var(softnet_data);
1856 q->next_sched = NULL;
1857 *sd->output_queue_tailp = q;
1858 sd->output_queue_tailp = &q->next_sched;
1859 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1860 local_irq_restore(flags);
1861 }
1862
1863 void __netif_schedule(struct Qdisc *q)
1864 {
1865 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1866 __netif_reschedule(q);
1867 }
1868 EXPORT_SYMBOL(__netif_schedule);
1869
1870 void dev_kfree_skb_irq(struct sk_buff *skb)
1871 {
1872 if (atomic_dec_and_test(&skb->users)) {
1873 struct softnet_data *sd;
1874 unsigned long flags;
1875
1876 local_irq_save(flags);
1877 sd = &__get_cpu_var(softnet_data);
1878 skb->next = sd->completion_queue;
1879 sd->completion_queue = skb;
1880 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1881 local_irq_restore(flags);
1882 }
1883 }
1884 EXPORT_SYMBOL(dev_kfree_skb_irq);
1885
1886 void dev_kfree_skb_any(struct sk_buff *skb)
1887 {
1888 if (in_irq() || irqs_disabled())
1889 dev_kfree_skb_irq(skb);
1890 else
1891 dev_kfree_skb(skb);
1892 }
1893 EXPORT_SYMBOL(dev_kfree_skb_any);
1894
1895
1896 /**
1897 * netif_device_detach - mark device as removed
1898 * @dev: network device
1899 *
1900 * Mark device as removed from system and therefore no longer available.
1901 */
1902 void netif_device_detach(struct net_device *dev)
1903 {
1904 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1905 netif_running(dev)) {
1906 netif_tx_stop_all_queues(dev);
1907 }
1908 }
1909 EXPORT_SYMBOL(netif_device_detach);
1910
1911 /**
1912 * netif_device_attach - mark device as attached
1913 * @dev: network device
1914 *
1915 * Mark device as attached from system and restart if needed.
1916 */
1917 void netif_device_attach(struct net_device *dev)
1918 {
1919 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1920 netif_running(dev)) {
1921 netif_tx_wake_all_queues(dev);
1922 __netdev_watchdog_up(dev);
1923 }
1924 }
1925 EXPORT_SYMBOL(netif_device_attach);
1926
1927 static void skb_warn_bad_offload(const struct sk_buff *skb)
1928 {
1929 static const netdev_features_t null_features = 0;
1930 struct net_device *dev = skb->dev;
1931 const char *driver = "";
1932
1933 if (dev && dev->dev.parent)
1934 driver = dev_driver_string(dev->dev.parent);
1935
1936 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1937 "gso_type=%d ip_summed=%d\n",
1938 driver, dev ? &dev->features : &null_features,
1939 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1940 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1941 skb_shinfo(skb)->gso_type, skb->ip_summed);
1942 }
1943
1944 /*
1945 * Invalidate hardware checksum when packet is to be mangled, and
1946 * complete checksum manually on outgoing path.
1947 */
1948 int skb_checksum_help(struct sk_buff *skb)
1949 {
1950 __wsum csum;
1951 int ret = 0, offset;
1952
1953 if (skb->ip_summed == CHECKSUM_COMPLETE)
1954 goto out_set_summed;
1955
1956 if (unlikely(skb_shinfo(skb)->gso_size)) {
1957 skb_warn_bad_offload(skb);
1958 return -EINVAL;
1959 }
1960
1961 offset = skb_checksum_start_offset(skb);
1962 BUG_ON(offset >= skb_headlen(skb));
1963 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1964
1965 offset += skb->csum_offset;
1966 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1967
1968 if (skb_cloned(skb) &&
1969 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1970 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1971 if (ret)
1972 goto out;
1973 }
1974
1975 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1976 out_set_summed:
1977 skb->ip_summed = CHECKSUM_NONE;
1978 out:
1979 return ret;
1980 }
1981 EXPORT_SYMBOL(skb_checksum_help);
1982
1983 /**
1984 * skb_gso_segment - Perform segmentation on skb.
1985 * @skb: buffer to segment
1986 * @features: features for the output path (see dev->features)
1987 *
1988 * This function segments the given skb and returns a list of segments.
1989 *
1990 * It may return NULL if the skb requires no segmentation. This is
1991 * only possible when GSO is used for verifying header integrity.
1992 */
1993 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1994 netdev_features_t features)
1995 {
1996 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1997 struct packet_type *ptype;
1998 __be16 type = skb->protocol;
1999 int vlan_depth = ETH_HLEN;
2000 int err;
2001
2002 while (type == htons(ETH_P_8021Q)) {
2003 struct vlan_hdr *vh;
2004
2005 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2006 return ERR_PTR(-EINVAL);
2007
2008 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2009 type = vh->h_vlan_encapsulated_proto;
2010 vlan_depth += VLAN_HLEN;
2011 }
2012
2013 skb_reset_mac_header(skb);
2014 skb->mac_len = skb->network_header - skb->mac_header;
2015 __skb_pull(skb, skb->mac_len);
2016
2017 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2018 skb_warn_bad_offload(skb);
2019
2020 if (skb_header_cloned(skb) &&
2021 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2022 return ERR_PTR(err);
2023 }
2024
2025 rcu_read_lock();
2026 list_for_each_entry_rcu(ptype,
2027 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2028 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2029 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2030 err = ptype->gso_send_check(skb);
2031 segs = ERR_PTR(err);
2032 if (err || skb_gso_ok(skb, features))
2033 break;
2034 __skb_push(skb, (skb->data -
2035 skb_network_header(skb)));
2036 }
2037 segs = ptype->gso_segment(skb, features);
2038 break;
2039 }
2040 }
2041 rcu_read_unlock();
2042
2043 __skb_push(skb, skb->data - skb_mac_header(skb));
2044
2045 return segs;
2046 }
2047 EXPORT_SYMBOL(skb_gso_segment);
2048
2049 /* Take action when hardware reception checksum errors are detected. */
2050 #ifdef CONFIG_BUG
2051 void netdev_rx_csum_fault(struct net_device *dev)
2052 {
2053 if (net_ratelimit()) {
2054 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2055 dump_stack();
2056 }
2057 }
2058 EXPORT_SYMBOL(netdev_rx_csum_fault);
2059 #endif
2060
2061 /* Actually, we should eliminate this check as soon as we know, that:
2062 * 1. IOMMU is present and allows to map all the memory.
2063 * 2. No high memory really exists on this machine.
2064 */
2065
2066 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2067 {
2068 #ifdef CONFIG_HIGHMEM
2069 int i;
2070 if (!(dev->features & NETIF_F_HIGHDMA)) {
2071 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2072 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2073 if (PageHighMem(skb_frag_page(frag)))
2074 return 1;
2075 }
2076 }
2077
2078 if (PCI_DMA_BUS_IS_PHYS) {
2079 struct device *pdev = dev->dev.parent;
2080
2081 if (!pdev)
2082 return 0;
2083 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2084 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2085 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2086 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2087 return 1;
2088 }
2089 }
2090 #endif
2091 return 0;
2092 }
2093
2094 struct dev_gso_cb {
2095 void (*destructor)(struct sk_buff *skb);
2096 };
2097
2098 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2099
2100 static void dev_gso_skb_destructor(struct sk_buff *skb)
2101 {
2102 struct dev_gso_cb *cb;
2103
2104 do {
2105 struct sk_buff *nskb = skb->next;
2106
2107 skb->next = nskb->next;
2108 nskb->next = NULL;
2109 kfree_skb(nskb);
2110 } while (skb->next);
2111
2112 cb = DEV_GSO_CB(skb);
2113 if (cb->destructor)
2114 cb->destructor(skb);
2115 }
2116
2117 /**
2118 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2119 * @skb: buffer to segment
2120 * @features: device features as applicable to this skb
2121 *
2122 * This function segments the given skb and stores the list of segments
2123 * in skb->next.
2124 */
2125 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2126 {
2127 struct sk_buff *segs;
2128
2129 segs = skb_gso_segment(skb, features);
2130
2131 /* Verifying header integrity only. */
2132 if (!segs)
2133 return 0;
2134
2135 if (IS_ERR(segs))
2136 return PTR_ERR(segs);
2137
2138 skb->next = segs;
2139 DEV_GSO_CB(skb)->destructor = skb->destructor;
2140 skb->destructor = dev_gso_skb_destructor;
2141
2142 return 0;
2143 }
2144
2145 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2146 {
2147 return ((features & NETIF_F_GEN_CSUM) ||
2148 ((features & NETIF_F_V4_CSUM) &&
2149 protocol == htons(ETH_P_IP)) ||
2150 ((features & NETIF_F_V6_CSUM) &&
2151 protocol == htons(ETH_P_IPV6)) ||
2152 ((features & NETIF_F_FCOE_CRC) &&
2153 protocol == htons(ETH_P_FCOE)));
2154 }
2155
2156 static netdev_features_t harmonize_features(struct sk_buff *skb,
2157 __be16 protocol, netdev_features_t features)
2158 {
2159 if (skb->ip_summed != CHECKSUM_NONE &&
2160 !can_checksum_protocol(features, protocol)) {
2161 features &= ~NETIF_F_ALL_CSUM;
2162 features &= ~NETIF_F_SG;
2163 } else if (illegal_highdma(skb->dev, skb)) {
2164 features &= ~NETIF_F_SG;
2165 }
2166
2167 return features;
2168 }
2169
2170 netdev_features_t netif_skb_features(struct sk_buff *skb)
2171 {
2172 __be16 protocol = skb->protocol;
2173 netdev_features_t features = skb->dev->features;
2174
2175 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2176 features &= ~NETIF_F_GSO_MASK;
2177
2178 if (protocol == htons(ETH_P_8021Q)) {
2179 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2180 protocol = veh->h_vlan_encapsulated_proto;
2181 } else if (!vlan_tx_tag_present(skb)) {
2182 return harmonize_features(skb, protocol, features);
2183 }
2184
2185 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2186
2187 if (protocol != htons(ETH_P_8021Q)) {
2188 return harmonize_features(skb, protocol, features);
2189 } else {
2190 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2191 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2192 return harmonize_features(skb, protocol, features);
2193 }
2194 }
2195 EXPORT_SYMBOL(netif_skb_features);
2196
2197 /*
2198 * Returns true if either:
2199 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2200 * 2. skb is fragmented and the device does not support SG.
2201 */
2202 static inline int skb_needs_linearize(struct sk_buff *skb,
2203 int features)
2204 {
2205 return skb_is_nonlinear(skb) &&
2206 ((skb_has_frag_list(skb) &&
2207 !(features & NETIF_F_FRAGLIST)) ||
2208 (skb_shinfo(skb)->nr_frags &&
2209 !(features & NETIF_F_SG)));
2210 }
2211
2212 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2213 struct netdev_queue *txq)
2214 {
2215 const struct net_device_ops *ops = dev->netdev_ops;
2216 int rc = NETDEV_TX_OK;
2217 unsigned int skb_len;
2218
2219 if (likely(!skb->next)) {
2220 netdev_features_t features;
2221
2222 /*
2223 * If device doesn't need skb->dst, release it right now while
2224 * its hot in this cpu cache
2225 */
2226 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2227 skb_dst_drop(skb);
2228
2229 features = netif_skb_features(skb);
2230
2231 if (vlan_tx_tag_present(skb) &&
2232 !(features & NETIF_F_HW_VLAN_TX)) {
2233 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2234 if (unlikely(!skb))
2235 goto out;
2236
2237 skb->vlan_tci = 0;
2238 }
2239
2240 if (netif_needs_gso(skb, features)) {
2241 if (unlikely(dev_gso_segment(skb, features)))
2242 goto out_kfree_skb;
2243 if (skb->next)
2244 goto gso;
2245 } else {
2246 if (skb_needs_linearize(skb, features) &&
2247 __skb_linearize(skb))
2248 goto out_kfree_skb;
2249
2250 /* If packet is not checksummed and device does not
2251 * support checksumming for this protocol, complete
2252 * checksumming here.
2253 */
2254 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2255 skb_set_transport_header(skb,
2256 skb_checksum_start_offset(skb));
2257 if (!(features & NETIF_F_ALL_CSUM) &&
2258 skb_checksum_help(skb))
2259 goto out_kfree_skb;
2260 }
2261 }
2262
2263 if (!list_empty(&ptype_all))
2264 dev_queue_xmit_nit(skb, dev);
2265
2266 skb_len = skb->len;
2267 rc = ops->ndo_start_xmit(skb, dev);
2268 trace_net_dev_xmit(skb, rc, dev, skb_len);
2269 if (rc == NETDEV_TX_OK)
2270 txq_trans_update(txq);
2271 return rc;
2272 }
2273
2274 gso:
2275 do {
2276 struct sk_buff *nskb = skb->next;
2277
2278 skb->next = nskb->next;
2279 nskb->next = NULL;
2280
2281 /*
2282 * If device doesn't need nskb->dst, release it right now while
2283 * its hot in this cpu cache
2284 */
2285 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2286 skb_dst_drop(nskb);
2287
2288 if (!list_empty(&ptype_all))
2289 dev_queue_xmit_nit(nskb, dev);
2290
2291 skb_len = nskb->len;
2292 rc = ops->ndo_start_xmit(nskb, dev);
2293 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2294 if (unlikely(rc != NETDEV_TX_OK)) {
2295 if (rc & ~NETDEV_TX_MASK)
2296 goto out_kfree_gso_skb;
2297 nskb->next = skb->next;
2298 skb->next = nskb;
2299 return rc;
2300 }
2301 txq_trans_update(txq);
2302 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2303 return NETDEV_TX_BUSY;
2304 } while (skb->next);
2305
2306 out_kfree_gso_skb:
2307 if (likely(skb->next == NULL))
2308 skb->destructor = DEV_GSO_CB(skb)->destructor;
2309 out_kfree_skb:
2310 kfree_skb(skb);
2311 out:
2312 return rc;
2313 }
2314
2315 static u32 hashrnd __read_mostly;
2316
2317 /*
2318 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2319 * to be used as a distribution range.
2320 */
2321 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2322 unsigned int num_tx_queues)
2323 {
2324 u32 hash;
2325 u16 qoffset = 0;
2326 u16 qcount = num_tx_queues;
2327
2328 if (skb_rx_queue_recorded(skb)) {
2329 hash = skb_get_rx_queue(skb);
2330 while (unlikely(hash >= num_tx_queues))
2331 hash -= num_tx_queues;
2332 return hash;
2333 }
2334
2335 if (dev->num_tc) {
2336 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2337 qoffset = dev->tc_to_txq[tc].offset;
2338 qcount = dev->tc_to_txq[tc].count;
2339 }
2340
2341 if (skb->sk && skb->sk->sk_hash)
2342 hash = skb->sk->sk_hash;
2343 else
2344 hash = (__force u16) skb->protocol;
2345 hash = jhash_1word(hash, hashrnd);
2346
2347 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2348 }
2349 EXPORT_SYMBOL(__skb_tx_hash);
2350
2351 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2352 {
2353 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2354 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2355 dev->name, queue_index,
2356 dev->real_num_tx_queues);
2357 return 0;
2358 }
2359 return queue_index;
2360 }
2361
2362 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2363 {
2364 #ifdef CONFIG_XPS
2365 struct xps_dev_maps *dev_maps;
2366 struct xps_map *map;
2367 int queue_index = -1;
2368
2369 rcu_read_lock();
2370 dev_maps = rcu_dereference(dev->xps_maps);
2371 if (dev_maps) {
2372 map = rcu_dereference(
2373 dev_maps->cpu_map[raw_smp_processor_id()]);
2374 if (map) {
2375 if (map->len == 1)
2376 queue_index = map->queues[0];
2377 else {
2378 u32 hash;
2379 if (skb->sk && skb->sk->sk_hash)
2380 hash = skb->sk->sk_hash;
2381 else
2382 hash = (__force u16) skb->protocol ^
2383 skb->rxhash;
2384 hash = jhash_1word(hash, hashrnd);
2385 queue_index = map->queues[
2386 ((u64)hash * map->len) >> 32];
2387 }
2388 if (unlikely(queue_index >= dev->real_num_tx_queues))
2389 queue_index = -1;
2390 }
2391 }
2392 rcu_read_unlock();
2393
2394 return queue_index;
2395 #else
2396 return -1;
2397 #endif
2398 }
2399
2400 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2401 struct sk_buff *skb)
2402 {
2403 int queue_index;
2404 const struct net_device_ops *ops = dev->netdev_ops;
2405
2406 if (dev->real_num_tx_queues == 1)
2407 queue_index = 0;
2408 else if (ops->ndo_select_queue) {
2409 queue_index = ops->ndo_select_queue(dev, skb);
2410 queue_index = dev_cap_txqueue(dev, queue_index);
2411 } else {
2412 struct sock *sk = skb->sk;
2413 queue_index = sk_tx_queue_get(sk);
2414
2415 if (queue_index < 0 || skb->ooo_okay ||
2416 queue_index >= dev->real_num_tx_queues) {
2417 int old_index = queue_index;
2418
2419 queue_index = get_xps_queue(dev, skb);
2420 if (queue_index < 0)
2421 queue_index = skb_tx_hash(dev, skb);
2422
2423 if (queue_index != old_index && sk) {
2424 struct dst_entry *dst =
2425 rcu_dereference_check(sk->sk_dst_cache, 1);
2426
2427 if (dst && skb_dst(skb) == dst)
2428 sk_tx_queue_set(sk, queue_index);
2429 }
2430 }
2431 }
2432
2433 skb_set_queue_mapping(skb, queue_index);
2434 return netdev_get_tx_queue(dev, queue_index);
2435 }
2436
2437 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2438 struct net_device *dev,
2439 struct netdev_queue *txq)
2440 {
2441 spinlock_t *root_lock = qdisc_lock(q);
2442 bool contended;
2443 int rc;
2444
2445 qdisc_skb_cb(skb)->pkt_len = skb->len;
2446 qdisc_calculate_pkt_len(skb, q);
2447 /*
2448 * Heuristic to force contended enqueues to serialize on a
2449 * separate lock before trying to get qdisc main lock.
2450 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2451 * and dequeue packets faster.
2452 */
2453 contended = qdisc_is_running(q);
2454 if (unlikely(contended))
2455 spin_lock(&q->busylock);
2456
2457 spin_lock(root_lock);
2458 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2459 kfree_skb(skb);
2460 rc = NET_XMIT_DROP;
2461 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2462 qdisc_run_begin(q)) {
2463 /*
2464 * This is a work-conserving queue; there are no old skbs
2465 * waiting to be sent out; and the qdisc is not running -
2466 * xmit the skb directly.
2467 */
2468 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2469 skb_dst_force(skb);
2470
2471 qdisc_bstats_update(q, skb);
2472
2473 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2474 if (unlikely(contended)) {
2475 spin_unlock(&q->busylock);
2476 contended = false;
2477 }
2478 __qdisc_run(q);
2479 } else
2480 qdisc_run_end(q);
2481
2482 rc = NET_XMIT_SUCCESS;
2483 } else {
2484 skb_dst_force(skb);
2485 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2486 if (qdisc_run_begin(q)) {
2487 if (unlikely(contended)) {
2488 spin_unlock(&q->busylock);
2489 contended = false;
2490 }
2491 __qdisc_run(q);
2492 }
2493 }
2494 spin_unlock(root_lock);
2495 if (unlikely(contended))
2496 spin_unlock(&q->busylock);
2497 return rc;
2498 }
2499
2500 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2501 static void skb_update_prio(struct sk_buff *skb)
2502 {
2503 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2504
2505 if (!skb->priority && skb->sk && map) {
2506 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2507
2508 if (prioidx < map->priomap_len)
2509 skb->priority = map->priomap[prioidx];
2510 }
2511 }
2512 #else
2513 #define skb_update_prio(skb)
2514 #endif
2515
2516 static DEFINE_PER_CPU(int, xmit_recursion);
2517 #define RECURSION_LIMIT 10
2518
2519 /**
2520 * dev_loopback_xmit - loop back @skb
2521 * @skb: buffer to transmit
2522 */
2523 int dev_loopback_xmit(struct sk_buff *skb)
2524 {
2525 skb_reset_mac_header(skb);
2526 __skb_pull(skb, skb_network_offset(skb));
2527 skb->pkt_type = PACKET_LOOPBACK;
2528 skb->ip_summed = CHECKSUM_UNNECESSARY;
2529 WARN_ON(!skb_dst(skb));
2530 skb_dst_force(skb);
2531 netif_rx_ni(skb);
2532 return 0;
2533 }
2534 EXPORT_SYMBOL(dev_loopback_xmit);
2535
2536 /**
2537 * dev_queue_xmit - transmit a buffer
2538 * @skb: buffer to transmit
2539 *
2540 * Queue a buffer for transmission to a network device. The caller must
2541 * have set the device and priority and built the buffer before calling
2542 * this function. The function can be called from an interrupt.
2543 *
2544 * A negative errno code is returned on a failure. A success does not
2545 * guarantee the frame will be transmitted as it may be dropped due
2546 * to congestion or traffic shaping.
2547 *
2548 * -----------------------------------------------------------------------------------
2549 * I notice this method can also return errors from the queue disciplines,
2550 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2551 * be positive.
2552 *
2553 * Regardless of the return value, the skb is consumed, so it is currently
2554 * difficult to retry a send to this method. (You can bump the ref count
2555 * before sending to hold a reference for retry if you are careful.)
2556 *
2557 * When calling this method, interrupts MUST be enabled. This is because
2558 * the BH enable code must have IRQs enabled so that it will not deadlock.
2559 * --BLG
2560 */
2561 int dev_queue_xmit(struct sk_buff *skb)
2562 {
2563 struct net_device *dev = skb->dev;
2564 struct netdev_queue *txq;
2565 struct Qdisc *q;
2566 int rc = -ENOMEM;
2567
2568 /* Disable soft irqs for various locks below. Also
2569 * stops preemption for RCU.
2570 */
2571 rcu_read_lock_bh();
2572
2573 skb_update_prio(skb);
2574
2575 txq = netdev_pick_tx(dev, skb);
2576 q = rcu_dereference_bh(txq->qdisc);
2577
2578 #ifdef CONFIG_NET_CLS_ACT
2579 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2580 #endif
2581 trace_net_dev_queue(skb);
2582 if (q->enqueue) {
2583 rc = __dev_xmit_skb(skb, q, dev, txq);
2584 goto out;
2585 }
2586
2587 /* The device has no queue. Common case for software devices:
2588 loopback, all the sorts of tunnels...
2589
2590 Really, it is unlikely that netif_tx_lock protection is necessary
2591 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2592 counters.)
2593 However, it is possible, that they rely on protection
2594 made by us here.
2595
2596 Check this and shot the lock. It is not prone from deadlocks.
2597 Either shot noqueue qdisc, it is even simpler 8)
2598 */
2599 if (dev->flags & IFF_UP) {
2600 int cpu = smp_processor_id(); /* ok because BHs are off */
2601
2602 if (txq->xmit_lock_owner != cpu) {
2603
2604 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2605 goto recursion_alert;
2606
2607 HARD_TX_LOCK(dev, txq, cpu);
2608
2609 if (!netif_xmit_stopped(txq)) {
2610 __this_cpu_inc(xmit_recursion);
2611 rc = dev_hard_start_xmit(skb, dev, txq);
2612 __this_cpu_dec(xmit_recursion);
2613 if (dev_xmit_complete(rc)) {
2614 HARD_TX_UNLOCK(dev, txq);
2615 goto out;
2616 }
2617 }
2618 HARD_TX_UNLOCK(dev, txq);
2619 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2620 dev->name);
2621 } else {
2622 /* Recursion is detected! It is possible,
2623 * unfortunately
2624 */
2625 recursion_alert:
2626 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2627 dev->name);
2628 }
2629 }
2630
2631 rc = -ENETDOWN;
2632 rcu_read_unlock_bh();
2633
2634 kfree_skb(skb);
2635 return rc;
2636 out:
2637 rcu_read_unlock_bh();
2638 return rc;
2639 }
2640 EXPORT_SYMBOL(dev_queue_xmit);
2641
2642
2643 /*=======================================================================
2644 Receiver routines
2645 =======================================================================*/
2646
2647 int netdev_max_backlog __read_mostly = 1000;
2648 int netdev_tstamp_prequeue __read_mostly = 1;
2649 int netdev_budget __read_mostly = 300;
2650 int weight_p __read_mostly = 64; /* old backlog weight */
2651
2652 /* Called with irq disabled */
2653 static inline void ____napi_schedule(struct softnet_data *sd,
2654 struct napi_struct *napi)
2655 {
2656 list_add_tail(&napi->poll_list, &sd->poll_list);
2657 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2658 }
2659
2660 /*
2661 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2662 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2663 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2664 * if hash is a canonical 4-tuple hash over transport ports.
2665 */
2666 void __skb_get_rxhash(struct sk_buff *skb)
2667 {
2668 struct flow_keys keys;
2669 u32 hash;
2670
2671 if (!skb_flow_dissect(skb, &keys))
2672 return;
2673
2674 if (keys.ports)
2675 skb->l4_rxhash = 1;
2676
2677 /* get a consistent hash (same value on both flow directions) */
2678 if (((__force u32)keys.dst < (__force u32)keys.src) ||
2679 (((__force u32)keys.dst == (__force u32)keys.src) &&
2680 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2681 swap(keys.dst, keys.src);
2682 swap(keys.port16[0], keys.port16[1]);
2683 }
2684
2685 hash = jhash_3words((__force u32)keys.dst,
2686 (__force u32)keys.src,
2687 (__force u32)keys.ports, hashrnd);
2688 if (!hash)
2689 hash = 1;
2690
2691 skb->rxhash = hash;
2692 }
2693 EXPORT_SYMBOL(__skb_get_rxhash);
2694
2695 #ifdef CONFIG_RPS
2696
2697 /* One global table that all flow-based protocols share. */
2698 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2699 EXPORT_SYMBOL(rps_sock_flow_table);
2700
2701 struct static_key rps_needed __read_mostly;
2702
2703 static struct rps_dev_flow *
2704 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2705 struct rps_dev_flow *rflow, u16 next_cpu)
2706 {
2707 if (next_cpu != RPS_NO_CPU) {
2708 #ifdef CONFIG_RFS_ACCEL
2709 struct netdev_rx_queue *rxqueue;
2710 struct rps_dev_flow_table *flow_table;
2711 struct rps_dev_flow *old_rflow;
2712 u32 flow_id;
2713 u16 rxq_index;
2714 int rc;
2715
2716 /* Should we steer this flow to a different hardware queue? */
2717 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2718 !(dev->features & NETIF_F_NTUPLE))
2719 goto out;
2720 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2721 if (rxq_index == skb_get_rx_queue(skb))
2722 goto out;
2723
2724 rxqueue = dev->_rx + rxq_index;
2725 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2726 if (!flow_table)
2727 goto out;
2728 flow_id = skb->rxhash & flow_table->mask;
2729 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2730 rxq_index, flow_id);
2731 if (rc < 0)
2732 goto out;
2733 old_rflow = rflow;
2734 rflow = &flow_table->flows[flow_id];
2735 rflow->filter = rc;
2736 if (old_rflow->filter == rflow->filter)
2737 old_rflow->filter = RPS_NO_FILTER;
2738 out:
2739 #endif
2740 rflow->last_qtail =
2741 per_cpu(softnet_data, next_cpu).input_queue_head;
2742 }
2743
2744 rflow->cpu = next_cpu;
2745 return rflow;
2746 }
2747
2748 /*
2749 * get_rps_cpu is called from netif_receive_skb and returns the target
2750 * CPU from the RPS map of the receiving queue for a given skb.
2751 * rcu_read_lock must be held on entry.
2752 */
2753 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2754 struct rps_dev_flow **rflowp)
2755 {
2756 struct netdev_rx_queue *rxqueue;
2757 struct rps_map *map;
2758 struct rps_dev_flow_table *flow_table;
2759 struct rps_sock_flow_table *sock_flow_table;
2760 int cpu = -1;
2761 u16 tcpu;
2762
2763 if (skb_rx_queue_recorded(skb)) {
2764 u16 index = skb_get_rx_queue(skb);
2765 if (unlikely(index >= dev->real_num_rx_queues)) {
2766 WARN_ONCE(dev->real_num_rx_queues > 1,
2767 "%s received packet on queue %u, but number "
2768 "of RX queues is %u\n",
2769 dev->name, index, dev->real_num_rx_queues);
2770 goto done;
2771 }
2772 rxqueue = dev->_rx + index;
2773 } else
2774 rxqueue = dev->_rx;
2775
2776 map = rcu_dereference(rxqueue->rps_map);
2777 if (map) {
2778 if (map->len == 1 &&
2779 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2780 tcpu = map->cpus[0];
2781 if (cpu_online(tcpu))
2782 cpu = tcpu;
2783 goto done;
2784 }
2785 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2786 goto done;
2787 }
2788
2789 skb_reset_network_header(skb);
2790 if (!skb_get_rxhash(skb))
2791 goto done;
2792
2793 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2794 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2795 if (flow_table && sock_flow_table) {
2796 u16 next_cpu;
2797 struct rps_dev_flow *rflow;
2798
2799 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2800 tcpu = rflow->cpu;
2801
2802 next_cpu = sock_flow_table->ents[skb->rxhash &
2803 sock_flow_table->mask];
2804
2805 /*
2806 * If the desired CPU (where last recvmsg was done) is
2807 * different from current CPU (one in the rx-queue flow
2808 * table entry), switch if one of the following holds:
2809 * - Current CPU is unset (equal to RPS_NO_CPU).
2810 * - Current CPU is offline.
2811 * - The current CPU's queue tail has advanced beyond the
2812 * last packet that was enqueued using this table entry.
2813 * This guarantees that all previous packets for the flow
2814 * have been dequeued, thus preserving in order delivery.
2815 */
2816 if (unlikely(tcpu != next_cpu) &&
2817 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2818 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2819 rflow->last_qtail)) >= 0))
2820 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2821
2822 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2823 *rflowp = rflow;
2824 cpu = tcpu;
2825 goto done;
2826 }
2827 }
2828
2829 if (map) {
2830 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2831
2832 if (cpu_online(tcpu)) {
2833 cpu = tcpu;
2834 goto done;
2835 }
2836 }
2837
2838 done:
2839 return cpu;
2840 }
2841
2842 #ifdef CONFIG_RFS_ACCEL
2843
2844 /**
2845 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2846 * @dev: Device on which the filter was set
2847 * @rxq_index: RX queue index
2848 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2849 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2850 *
2851 * Drivers that implement ndo_rx_flow_steer() should periodically call
2852 * this function for each installed filter and remove the filters for
2853 * which it returns %true.
2854 */
2855 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2856 u32 flow_id, u16 filter_id)
2857 {
2858 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2859 struct rps_dev_flow_table *flow_table;
2860 struct rps_dev_flow *rflow;
2861 bool expire = true;
2862 int cpu;
2863
2864 rcu_read_lock();
2865 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2866 if (flow_table && flow_id <= flow_table->mask) {
2867 rflow = &flow_table->flows[flow_id];
2868 cpu = ACCESS_ONCE(rflow->cpu);
2869 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2870 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2871 rflow->last_qtail) <
2872 (int)(10 * flow_table->mask)))
2873 expire = false;
2874 }
2875 rcu_read_unlock();
2876 return expire;
2877 }
2878 EXPORT_SYMBOL(rps_may_expire_flow);
2879
2880 #endif /* CONFIG_RFS_ACCEL */
2881
2882 /* Called from hardirq (IPI) context */
2883 static void rps_trigger_softirq(void *data)
2884 {
2885 struct softnet_data *sd = data;
2886
2887 ____napi_schedule(sd, &sd->backlog);
2888 sd->received_rps++;
2889 }
2890
2891 #endif /* CONFIG_RPS */
2892
2893 /*
2894 * Check if this softnet_data structure is another cpu one
2895 * If yes, queue it to our IPI list and return 1
2896 * If no, return 0
2897 */
2898 static int rps_ipi_queued(struct softnet_data *sd)
2899 {
2900 #ifdef CONFIG_RPS
2901 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2902
2903 if (sd != mysd) {
2904 sd->rps_ipi_next = mysd->rps_ipi_list;
2905 mysd->rps_ipi_list = sd;
2906
2907 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2908 return 1;
2909 }
2910 #endif /* CONFIG_RPS */
2911 return 0;
2912 }
2913
2914 /*
2915 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2916 * queue (may be a remote CPU queue).
2917 */
2918 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2919 unsigned int *qtail)
2920 {
2921 struct softnet_data *sd;
2922 unsigned long flags;
2923
2924 sd = &per_cpu(softnet_data, cpu);
2925
2926 local_irq_save(flags);
2927
2928 rps_lock(sd);
2929 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2930 if (skb_queue_len(&sd->input_pkt_queue)) {
2931 enqueue:
2932 __skb_queue_tail(&sd->input_pkt_queue, skb);
2933 input_queue_tail_incr_save(sd, qtail);
2934 rps_unlock(sd);
2935 local_irq_restore(flags);
2936 return NET_RX_SUCCESS;
2937 }
2938
2939 /* Schedule NAPI for backlog device
2940 * We can use non atomic operation since we own the queue lock
2941 */
2942 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2943 if (!rps_ipi_queued(sd))
2944 ____napi_schedule(sd, &sd->backlog);
2945 }
2946 goto enqueue;
2947 }
2948
2949 sd->dropped++;
2950 rps_unlock(sd);
2951
2952 local_irq_restore(flags);
2953
2954 atomic_long_inc(&skb->dev->rx_dropped);
2955 kfree_skb(skb);
2956 return NET_RX_DROP;
2957 }
2958
2959 /**
2960 * netif_rx - post buffer to the network code
2961 * @skb: buffer to post
2962 *
2963 * This function receives a packet from a device driver and queues it for
2964 * the upper (protocol) levels to process. It always succeeds. The buffer
2965 * may be dropped during processing for congestion control or by the
2966 * protocol layers.
2967 *
2968 * return values:
2969 * NET_RX_SUCCESS (no congestion)
2970 * NET_RX_DROP (packet was dropped)
2971 *
2972 */
2973
2974 int netif_rx(struct sk_buff *skb)
2975 {
2976 int ret;
2977
2978 /* if netpoll wants it, pretend we never saw it */
2979 if (netpoll_rx(skb))
2980 return NET_RX_DROP;
2981
2982 net_timestamp_check(netdev_tstamp_prequeue, skb);
2983
2984 trace_netif_rx(skb);
2985 #ifdef CONFIG_RPS
2986 if (static_key_false(&rps_needed)) {
2987 struct rps_dev_flow voidflow, *rflow = &voidflow;
2988 int cpu;
2989
2990 preempt_disable();
2991 rcu_read_lock();
2992
2993 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2994 if (cpu < 0)
2995 cpu = smp_processor_id();
2996
2997 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2998
2999 rcu_read_unlock();
3000 preempt_enable();
3001 } else
3002 #endif
3003 {
3004 unsigned int qtail;
3005 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3006 put_cpu();
3007 }
3008 return ret;
3009 }
3010 EXPORT_SYMBOL(netif_rx);
3011
3012 int netif_rx_ni(struct sk_buff *skb)
3013 {
3014 int err;
3015
3016 preempt_disable();
3017 err = netif_rx(skb);
3018 if (local_softirq_pending())
3019 do_softirq();
3020 preempt_enable();
3021
3022 return err;
3023 }
3024 EXPORT_SYMBOL(netif_rx_ni);
3025
3026 static void net_tx_action(struct softirq_action *h)
3027 {
3028 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3029
3030 if (sd->completion_queue) {
3031 struct sk_buff *clist;
3032
3033 local_irq_disable();
3034 clist = sd->completion_queue;
3035 sd->completion_queue = NULL;
3036 local_irq_enable();
3037
3038 while (clist) {
3039 struct sk_buff *skb = clist;
3040 clist = clist->next;
3041
3042 WARN_ON(atomic_read(&skb->users));
3043 trace_kfree_skb(skb, net_tx_action);
3044 __kfree_skb(skb);
3045 }
3046 }
3047
3048 if (sd->output_queue) {
3049 struct Qdisc *head;
3050
3051 local_irq_disable();
3052 head = sd->output_queue;
3053 sd->output_queue = NULL;
3054 sd->output_queue_tailp = &sd->output_queue;
3055 local_irq_enable();
3056
3057 while (head) {
3058 struct Qdisc *q = head;
3059 spinlock_t *root_lock;
3060
3061 head = head->next_sched;
3062
3063 root_lock = qdisc_lock(q);
3064 if (spin_trylock(root_lock)) {
3065 smp_mb__before_clear_bit();
3066 clear_bit(__QDISC_STATE_SCHED,
3067 &q->state);
3068 qdisc_run(q);
3069 spin_unlock(root_lock);
3070 } else {
3071 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3072 &q->state)) {
3073 __netif_reschedule(q);
3074 } else {
3075 smp_mb__before_clear_bit();
3076 clear_bit(__QDISC_STATE_SCHED,
3077 &q->state);
3078 }
3079 }
3080 }
3081 }
3082 }
3083
3084 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3085 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3086 /* This hook is defined here for ATM LANE */
3087 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3088 unsigned char *addr) __read_mostly;
3089 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3090 #endif
3091
3092 #ifdef CONFIG_NET_CLS_ACT
3093 /* TODO: Maybe we should just force sch_ingress to be compiled in
3094 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3095 * a compare and 2 stores extra right now if we dont have it on
3096 * but have CONFIG_NET_CLS_ACT
3097 * NOTE: This doesn't stop any functionality; if you dont have
3098 * the ingress scheduler, you just can't add policies on ingress.
3099 *
3100 */
3101 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3102 {
3103 struct net_device *dev = skb->dev;
3104 u32 ttl = G_TC_RTTL(skb->tc_verd);
3105 int result = TC_ACT_OK;
3106 struct Qdisc *q;
3107
3108 if (unlikely(MAX_RED_LOOP < ttl++)) {
3109 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3110 skb->skb_iif, dev->ifindex);
3111 return TC_ACT_SHOT;
3112 }
3113
3114 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3115 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3116
3117 q = rxq->qdisc;
3118 if (q != &noop_qdisc) {
3119 spin_lock(qdisc_lock(q));
3120 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3121 result = qdisc_enqueue_root(skb, q);
3122 spin_unlock(qdisc_lock(q));
3123 }
3124
3125 return result;
3126 }
3127
3128 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3129 struct packet_type **pt_prev,
3130 int *ret, struct net_device *orig_dev)
3131 {
3132 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3133
3134 if (!rxq || rxq->qdisc == &noop_qdisc)
3135 goto out;
3136
3137 if (*pt_prev) {
3138 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3139 *pt_prev = NULL;
3140 }
3141
3142 switch (ing_filter(skb, rxq)) {
3143 case TC_ACT_SHOT:
3144 case TC_ACT_STOLEN:
3145 kfree_skb(skb);
3146 return NULL;
3147 }
3148
3149 out:
3150 skb->tc_verd = 0;
3151 return skb;
3152 }
3153 #endif
3154
3155 /**
3156 * netdev_rx_handler_register - register receive handler
3157 * @dev: device to register a handler for
3158 * @rx_handler: receive handler to register
3159 * @rx_handler_data: data pointer that is used by rx handler
3160 *
3161 * Register a receive hander for a device. This handler will then be
3162 * called from __netif_receive_skb. A negative errno code is returned
3163 * on a failure.
3164 *
3165 * The caller must hold the rtnl_mutex.
3166 *
3167 * For a general description of rx_handler, see enum rx_handler_result.
3168 */
3169 int netdev_rx_handler_register(struct net_device *dev,
3170 rx_handler_func_t *rx_handler,
3171 void *rx_handler_data)
3172 {
3173 ASSERT_RTNL();
3174
3175 if (dev->rx_handler)
3176 return -EBUSY;
3177
3178 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3179 rcu_assign_pointer(dev->rx_handler, rx_handler);
3180
3181 return 0;
3182 }
3183 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3184
3185 /**
3186 * netdev_rx_handler_unregister - unregister receive handler
3187 * @dev: device to unregister a handler from
3188 *
3189 * Unregister a receive hander from a device.
3190 *
3191 * The caller must hold the rtnl_mutex.
3192 */
3193 void netdev_rx_handler_unregister(struct net_device *dev)
3194 {
3195
3196 ASSERT_RTNL();
3197 RCU_INIT_POINTER(dev->rx_handler, NULL);
3198 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3199 }
3200 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3201
3202 /*
3203 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3204 * the special handling of PFMEMALLOC skbs.
3205 */
3206 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3207 {
3208 switch (skb->protocol) {
3209 case __constant_htons(ETH_P_ARP):
3210 case __constant_htons(ETH_P_IP):
3211 case __constant_htons(ETH_P_IPV6):
3212 case __constant_htons(ETH_P_8021Q):
3213 return true;
3214 default:
3215 return false;
3216 }
3217 }
3218
3219 static int __netif_receive_skb(struct sk_buff *skb)
3220 {
3221 struct packet_type *ptype, *pt_prev;
3222 rx_handler_func_t *rx_handler;
3223 struct net_device *orig_dev;
3224 struct net_device *null_or_dev;
3225 bool deliver_exact = false;
3226 int ret = NET_RX_DROP;
3227 __be16 type;
3228 unsigned long pflags = current->flags;
3229
3230 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3231
3232 trace_netif_receive_skb(skb);
3233
3234 /*
3235 * PFMEMALLOC skbs are special, they should
3236 * - be delivered to SOCK_MEMALLOC sockets only
3237 * - stay away from userspace
3238 * - have bounded memory usage
3239 *
3240 * Use PF_MEMALLOC as this saves us from propagating the allocation
3241 * context down to all allocation sites.
3242 */
3243 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3244 current->flags |= PF_MEMALLOC;
3245
3246 /* if we've gotten here through NAPI, check netpoll */
3247 if (netpoll_receive_skb(skb))
3248 goto out;
3249
3250 orig_dev = skb->dev;
3251
3252 skb_reset_network_header(skb);
3253 skb_reset_transport_header(skb);
3254 skb_reset_mac_len(skb);
3255
3256 pt_prev = NULL;
3257
3258 rcu_read_lock();
3259
3260 another_round:
3261 skb->skb_iif = skb->dev->ifindex;
3262
3263 __this_cpu_inc(softnet_data.processed);
3264
3265 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3266 skb = vlan_untag(skb);
3267 if (unlikely(!skb))
3268 goto unlock;
3269 }
3270
3271 #ifdef CONFIG_NET_CLS_ACT
3272 if (skb->tc_verd & TC_NCLS) {
3273 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3274 goto ncls;
3275 }
3276 #endif
3277
3278 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3279 goto skip_taps;
3280
3281 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3282 if (!ptype->dev || ptype->dev == skb->dev) {
3283 if (pt_prev)
3284 ret = deliver_skb(skb, pt_prev, orig_dev);
3285 pt_prev = ptype;
3286 }
3287 }
3288
3289 skip_taps:
3290 #ifdef CONFIG_NET_CLS_ACT
3291 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3292 if (!skb)
3293 goto unlock;
3294 ncls:
3295 #endif
3296
3297 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3298 && !skb_pfmemalloc_protocol(skb))
3299 goto drop;
3300
3301 rx_handler = rcu_dereference(skb->dev->rx_handler);
3302 if (vlan_tx_tag_present(skb)) {
3303 if (pt_prev) {
3304 ret = deliver_skb(skb, pt_prev, orig_dev);
3305 pt_prev = NULL;
3306 }
3307 if (vlan_do_receive(&skb, !rx_handler))
3308 goto another_round;
3309 else if (unlikely(!skb))
3310 goto unlock;
3311 }
3312
3313 if (rx_handler) {
3314 if (pt_prev) {
3315 ret = deliver_skb(skb, pt_prev, orig_dev);
3316 pt_prev = NULL;
3317 }
3318 switch (rx_handler(&skb)) {
3319 case RX_HANDLER_CONSUMED:
3320 goto unlock;
3321 case RX_HANDLER_ANOTHER:
3322 goto another_round;
3323 case RX_HANDLER_EXACT:
3324 deliver_exact = true;
3325 case RX_HANDLER_PASS:
3326 break;
3327 default:
3328 BUG();
3329 }
3330 }
3331
3332 /* deliver only exact match when indicated */
3333 null_or_dev = deliver_exact ? skb->dev : NULL;
3334
3335 type = skb->protocol;
3336 list_for_each_entry_rcu(ptype,
3337 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3338 if (ptype->type == type &&
3339 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3340 ptype->dev == orig_dev)) {
3341 if (pt_prev)
3342 ret = deliver_skb(skb, pt_prev, orig_dev);
3343 pt_prev = ptype;
3344 }
3345 }
3346
3347 if (pt_prev) {
3348 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3349 goto drop;
3350 else
3351 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3352 } else {
3353 drop:
3354 atomic_long_inc(&skb->dev->rx_dropped);
3355 kfree_skb(skb);
3356 /* Jamal, now you will not able to escape explaining
3357 * me how you were going to use this. :-)
3358 */
3359 ret = NET_RX_DROP;
3360 }
3361
3362 unlock:
3363 rcu_read_unlock();
3364 out:
3365 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3366 return ret;
3367 }
3368
3369 /**
3370 * netif_receive_skb - process receive buffer from network
3371 * @skb: buffer to process
3372 *
3373 * netif_receive_skb() is the main receive data processing function.
3374 * It always succeeds. The buffer may be dropped during processing
3375 * for congestion control or by the protocol layers.
3376 *
3377 * This function may only be called from softirq context and interrupts
3378 * should be enabled.
3379 *
3380 * Return values (usually ignored):
3381 * NET_RX_SUCCESS: no congestion
3382 * NET_RX_DROP: packet was dropped
3383 */
3384 int netif_receive_skb(struct sk_buff *skb)
3385 {
3386 net_timestamp_check(netdev_tstamp_prequeue, skb);
3387
3388 if (skb_defer_rx_timestamp(skb))
3389 return NET_RX_SUCCESS;
3390
3391 #ifdef CONFIG_RPS
3392 if (static_key_false(&rps_needed)) {
3393 struct rps_dev_flow voidflow, *rflow = &voidflow;
3394 int cpu, ret;
3395
3396 rcu_read_lock();
3397
3398 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3399
3400 if (cpu >= 0) {
3401 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3402 rcu_read_unlock();
3403 return ret;
3404 }
3405 rcu_read_unlock();
3406 }
3407 #endif
3408 return __netif_receive_skb(skb);
3409 }
3410 EXPORT_SYMBOL(netif_receive_skb);
3411
3412 /* Network device is going away, flush any packets still pending
3413 * Called with irqs disabled.
3414 */
3415 static void flush_backlog(void *arg)
3416 {
3417 struct net_device *dev = arg;
3418 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3419 struct sk_buff *skb, *tmp;
3420
3421 rps_lock(sd);
3422 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3423 if (skb->dev == dev) {
3424 __skb_unlink(skb, &sd->input_pkt_queue);
3425 kfree_skb(skb);
3426 input_queue_head_incr(sd);
3427 }
3428 }
3429 rps_unlock(sd);
3430
3431 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3432 if (skb->dev == dev) {
3433 __skb_unlink(skb, &sd->process_queue);
3434 kfree_skb(skb);
3435 input_queue_head_incr(sd);
3436 }
3437 }
3438 }
3439
3440 static int napi_gro_complete(struct sk_buff *skb)
3441 {
3442 struct packet_type *ptype;
3443 __be16 type = skb->protocol;
3444 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3445 int err = -ENOENT;
3446
3447 if (NAPI_GRO_CB(skb)->count == 1) {
3448 skb_shinfo(skb)->gso_size = 0;
3449 goto out;
3450 }
3451
3452 rcu_read_lock();
3453 list_for_each_entry_rcu(ptype, head, list) {
3454 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3455 continue;
3456
3457 err = ptype->gro_complete(skb);
3458 break;
3459 }
3460 rcu_read_unlock();
3461
3462 if (err) {
3463 WARN_ON(&ptype->list == head);
3464 kfree_skb(skb);
3465 return NET_RX_SUCCESS;
3466 }
3467
3468 out:
3469 return netif_receive_skb(skb);
3470 }
3471
3472 inline void napi_gro_flush(struct napi_struct *napi)
3473 {
3474 struct sk_buff *skb, *next;
3475
3476 for (skb = napi->gro_list; skb; skb = next) {
3477 next = skb->next;
3478 skb->next = NULL;
3479 napi_gro_complete(skb);
3480 }
3481
3482 napi->gro_count = 0;
3483 napi->gro_list = NULL;
3484 }
3485 EXPORT_SYMBOL(napi_gro_flush);
3486
3487 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3488 {
3489 struct sk_buff **pp = NULL;
3490 struct packet_type *ptype;
3491 __be16 type = skb->protocol;
3492 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3493 int same_flow;
3494 int mac_len;
3495 enum gro_result ret;
3496
3497 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3498 goto normal;
3499
3500 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3501 goto normal;
3502
3503 rcu_read_lock();
3504 list_for_each_entry_rcu(ptype, head, list) {
3505 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3506 continue;
3507
3508 skb_set_network_header(skb, skb_gro_offset(skb));
3509 mac_len = skb->network_header - skb->mac_header;
3510 skb->mac_len = mac_len;
3511 NAPI_GRO_CB(skb)->same_flow = 0;
3512 NAPI_GRO_CB(skb)->flush = 0;
3513 NAPI_GRO_CB(skb)->free = 0;
3514
3515 pp = ptype->gro_receive(&napi->gro_list, skb);
3516 break;
3517 }
3518 rcu_read_unlock();
3519
3520 if (&ptype->list == head)
3521 goto normal;
3522
3523 same_flow = NAPI_GRO_CB(skb)->same_flow;
3524 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3525
3526 if (pp) {
3527 struct sk_buff *nskb = *pp;
3528
3529 *pp = nskb->next;
3530 nskb->next = NULL;
3531 napi_gro_complete(nskb);
3532 napi->gro_count--;
3533 }
3534
3535 if (same_flow)
3536 goto ok;
3537
3538 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3539 goto normal;
3540
3541 napi->gro_count++;
3542 NAPI_GRO_CB(skb)->count = 1;
3543 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3544 skb->next = napi->gro_list;
3545 napi->gro_list = skb;
3546 ret = GRO_HELD;
3547
3548 pull:
3549 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3550 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3551
3552 BUG_ON(skb->end - skb->tail < grow);
3553
3554 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3555
3556 skb->tail += grow;
3557 skb->data_len -= grow;
3558
3559 skb_shinfo(skb)->frags[0].page_offset += grow;
3560 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3561
3562 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3563 skb_frag_unref(skb, 0);
3564 memmove(skb_shinfo(skb)->frags,
3565 skb_shinfo(skb)->frags + 1,
3566 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3567 }
3568 }
3569
3570 ok:
3571 return ret;
3572
3573 normal:
3574 ret = GRO_NORMAL;
3575 goto pull;
3576 }
3577 EXPORT_SYMBOL(dev_gro_receive);
3578
3579 static inline gro_result_t
3580 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3581 {
3582 struct sk_buff *p;
3583 unsigned int maclen = skb->dev->hard_header_len;
3584
3585 for (p = napi->gro_list; p; p = p->next) {
3586 unsigned long diffs;
3587
3588 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3589 diffs |= p->vlan_tci ^ skb->vlan_tci;
3590 if (maclen == ETH_HLEN)
3591 diffs |= compare_ether_header(skb_mac_header(p),
3592 skb_gro_mac_header(skb));
3593 else if (!diffs)
3594 diffs = memcmp(skb_mac_header(p),
3595 skb_gro_mac_header(skb),
3596 maclen);
3597 NAPI_GRO_CB(p)->same_flow = !diffs;
3598 NAPI_GRO_CB(p)->flush = 0;
3599 }
3600
3601 return dev_gro_receive(napi, skb);
3602 }
3603
3604 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3605 {
3606 switch (ret) {
3607 case GRO_NORMAL:
3608 if (netif_receive_skb(skb))
3609 ret = GRO_DROP;
3610 break;
3611
3612 case GRO_DROP:
3613 kfree_skb(skb);
3614 break;
3615
3616 case GRO_MERGED_FREE:
3617 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3618 kmem_cache_free(skbuff_head_cache, skb);
3619 else
3620 __kfree_skb(skb);
3621 break;
3622
3623 case GRO_HELD:
3624 case GRO_MERGED:
3625 break;
3626 }
3627
3628 return ret;
3629 }
3630 EXPORT_SYMBOL(napi_skb_finish);
3631
3632 void skb_gro_reset_offset(struct sk_buff *skb)
3633 {
3634 NAPI_GRO_CB(skb)->data_offset = 0;
3635 NAPI_GRO_CB(skb)->frag0 = NULL;
3636 NAPI_GRO_CB(skb)->frag0_len = 0;
3637
3638 if (skb->mac_header == skb->tail &&
3639 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3640 NAPI_GRO_CB(skb)->frag0 =
3641 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3642 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3643 }
3644 }
3645 EXPORT_SYMBOL(skb_gro_reset_offset);
3646
3647 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3648 {
3649 skb_gro_reset_offset(skb);
3650
3651 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3652 }
3653 EXPORT_SYMBOL(napi_gro_receive);
3654
3655 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3656 {
3657 __skb_pull(skb, skb_headlen(skb));
3658 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3659 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3660 skb->vlan_tci = 0;
3661 skb->dev = napi->dev;
3662 skb->skb_iif = 0;
3663
3664 napi->skb = skb;
3665 }
3666
3667 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3668 {
3669 struct sk_buff *skb = napi->skb;
3670
3671 if (!skb) {
3672 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3673 if (skb)
3674 napi->skb = skb;
3675 }
3676 return skb;
3677 }
3678 EXPORT_SYMBOL(napi_get_frags);
3679
3680 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3681 gro_result_t ret)
3682 {
3683 switch (ret) {
3684 case GRO_NORMAL:
3685 case GRO_HELD:
3686 skb->protocol = eth_type_trans(skb, skb->dev);
3687
3688 if (ret == GRO_HELD)
3689 skb_gro_pull(skb, -ETH_HLEN);
3690 else if (netif_receive_skb(skb))
3691 ret = GRO_DROP;
3692 break;
3693
3694 case GRO_DROP:
3695 case GRO_MERGED_FREE:
3696 napi_reuse_skb(napi, skb);
3697 break;
3698
3699 case GRO_MERGED:
3700 break;
3701 }
3702
3703 return ret;
3704 }
3705 EXPORT_SYMBOL(napi_frags_finish);
3706
3707 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3708 {
3709 struct sk_buff *skb = napi->skb;
3710 struct ethhdr *eth;
3711 unsigned int hlen;
3712 unsigned int off;
3713
3714 napi->skb = NULL;
3715
3716 skb_reset_mac_header(skb);
3717 skb_gro_reset_offset(skb);
3718
3719 off = skb_gro_offset(skb);
3720 hlen = off + sizeof(*eth);
3721 eth = skb_gro_header_fast(skb, off);
3722 if (skb_gro_header_hard(skb, hlen)) {
3723 eth = skb_gro_header_slow(skb, hlen, off);
3724 if (unlikely(!eth)) {
3725 napi_reuse_skb(napi, skb);
3726 skb = NULL;
3727 goto out;
3728 }
3729 }
3730
3731 skb_gro_pull(skb, sizeof(*eth));
3732
3733 /*
3734 * This works because the only protocols we care about don't require
3735 * special handling. We'll fix it up properly at the end.
3736 */
3737 skb->protocol = eth->h_proto;
3738
3739 out:
3740 return skb;
3741 }
3742
3743 gro_result_t napi_gro_frags(struct napi_struct *napi)
3744 {
3745 struct sk_buff *skb = napi_frags_skb(napi);
3746
3747 if (!skb)
3748 return GRO_DROP;
3749
3750 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3751 }
3752 EXPORT_SYMBOL(napi_gro_frags);
3753
3754 /*
3755 * net_rps_action sends any pending IPI's for rps.
3756 * Note: called with local irq disabled, but exits with local irq enabled.
3757 */
3758 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3759 {
3760 #ifdef CONFIG_RPS
3761 struct softnet_data *remsd = sd->rps_ipi_list;
3762
3763 if (remsd) {
3764 sd->rps_ipi_list = NULL;
3765
3766 local_irq_enable();
3767
3768 /* Send pending IPI's to kick RPS processing on remote cpus. */
3769 while (remsd) {
3770 struct softnet_data *next = remsd->rps_ipi_next;
3771
3772 if (cpu_online(remsd->cpu))
3773 __smp_call_function_single(remsd->cpu,
3774 &remsd->csd, 0);
3775 remsd = next;
3776 }
3777 } else
3778 #endif
3779 local_irq_enable();
3780 }
3781
3782 static int process_backlog(struct napi_struct *napi, int quota)
3783 {
3784 int work = 0;
3785 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3786
3787 #ifdef CONFIG_RPS
3788 /* Check if we have pending ipi, its better to send them now,
3789 * not waiting net_rx_action() end.
3790 */
3791 if (sd->rps_ipi_list) {
3792 local_irq_disable();
3793 net_rps_action_and_irq_enable(sd);
3794 }
3795 #endif
3796 napi->weight = weight_p;
3797 local_irq_disable();
3798 while (work < quota) {
3799 struct sk_buff *skb;
3800 unsigned int qlen;
3801
3802 while ((skb = __skb_dequeue(&sd->process_queue))) {
3803 local_irq_enable();
3804 __netif_receive_skb(skb);
3805 local_irq_disable();
3806 input_queue_head_incr(sd);
3807 if (++work >= quota) {
3808 local_irq_enable();
3809 return work;
3810 }
3811 }
3812
3813 rps_lock(sd);
3814 qlen = skb_queue_len(&sd->input_pkt_queue);
3815 if (qlen)
3816 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3817 &sd->process_queue);
3818
3819 if (qlen < quota - work) {
3820 /*
3821 * Inline a custom version of __napi_complete().
3822 * only current cpu owns and manipulates this napi,
3823 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3824 * we can use a plain write instead of clear_bit(),
3825 * and we dont need an smp_mb() memory barrier.
3826 */
3827 list_del(&napi->poll_list);
3828 napi->state = 0;
3829
3830 quota = work + qlen;
3831 }
3832 rps_unlock(sd);
3833 }
3834 local_irq_enable();
3835
3836 return work;
3837 }
3838
3839 /**
3840 * __napi_schedule - schedule for receive
3841 * @n: entry to schedule
3842 *
3843 * The entry's receive function will be scheduled to run
3844 */
3845 void __napi_schedule(struct napi_struct *n)
3846 {
3847 unsigned long flags;
3848
3849 local_irq_save(flags);
3850 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3851 local_irq_restore(flags);
3852 }
3853 EXPORT_SYMBOL(__napi_schedule);
3854
3855 void __napi_complete(struct napi_struct *n)
3856 {
3857 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3858 BUG_ON(n->gro_list);
3859
3860 list_del(&n->poll_list);
3861 smp_mb__before_clear_bit();
3862 clear_bit(NAPI_STATE_SCHED, &n->state);
3863 }
3864 EXPORT_SYMBOL(__napi_complete);
3865
3866 void napi_complete(struct napi_struct *n)
3867 {
3868 unsigned long flags;
3869
3870 /*
3871 * don't let napi dequeue from the cpu poll list
3872 * just in case its running on a different cpu
3873 */
3874 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3875 return;
3876
3877 napi_gro_flush(n);
3878 local_irq_save(flags);
3879 __napi_complete(n);
3880 local_irq_restore(flags);
3881 }
3882 EXPORT_SYMBOL(napi_complete);
3883
3884 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3885 int (*poll)(struct napi_struct *, int), int weight)
3886 {
3887 INIT_LIST_HEAD(&napi->poll_list);
3888 napi->gro_count = 0;
3889 napi->gro_list = NULL;
3890 napi->skb = NULL;
3891 napi->poll = poll;
3892 napi->weight = weight;
3893 list_add(&napi->dev_list, &dev->napi_list);
3894 napi->dev = dev;
3895 #ifdef CONFIG_NETPOLL
3896 spin_lock_init(&napi->poll_lock);
3897 napi->poll_owner = -1;
3898 #endif
3899 set_bit(NAPI_STATE_SCHED, &napi->state);
3900 }
3901 EXPORT_SYMBOL(netif_napi_add);
3902
3903 void netif_napi_del(struct napi_struct *napi)
3904 {
3905 struct sk_buff *skb, *next;
3906
3907 list_del_init(&napi->dev_list);
3908 napi_free_frags(napi);
3909
3910 for (skb = napi->gro_list; skb; skb = next) {
3911 next = skb->next;
3912 skb->next = NULL;
3913 kfree_skb(skb);
3914 }
3915
3916 napi->gro_list = NULL;
3917 napi->gro_count = 0;
3918 }
3919 EXPORT_SYMBOL(netif_napi_del);
3920
3921 static void net_rx_action(struct softirq_action *h)
3922 {
3923 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3924 unsigned long time_limit = jiffies + 2;
3925 int budget = netdev_budget;
3926 void *have;
3927
3928 local_irq_disable();
3929
3930 while (!list_empty(&sd->poll_list)) {
3931 struct napi_struct *n;
3932 int work, weight;
3933
3934 /* If softirq window is exhuasted then punt.
3935 * Allow this to run for 2 jiffies since which will allow
3936 * an average latency of 1.5/HZ.
3937 */
3938 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3939 goto softnet_break;
3940
3941 local_irq_enable();
3942
3943 /* Even though interrupts have been re-enabled, this
3944 * access is safe because interrupts can only add new
3945 * entries to the tail of this list, and only ->poll()
3946 * calls can remove this head entry from the list.
3947 */
3948 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3949
3950 have = netpoll_poll_lock(n);
3951
3952 weight = n->weight;
3953
3954 /* This NAPI_STATE_SCHED test is for avoiding a race
3955 * with netpoll's poll_napi(). Only the entity which
3956 * obtains the lock and sees NAPI_STATE_SCHED set will
3957 * actually make the ->poll() call. Therefore we avoid
3958 * accidentally calling ->poll() when NAPI is not scheduled.
3959 */
3960 work = 0;
3961 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3962 work = n->poll(n, weight);
3963 trace_napi_poll(n);
3964 }
3965
3966 WARN_ON_ONCE(work > weight);
3967
3968 budget -= work;
3969
3970 local_irq_disable();
3971
3972 /* Drivers must not modify the NAPI state if they
3973 * consume the entire weight. In such cases this code
3974 * still "owns" the NAPI instance and therefore can
3975 * move the instance around on the list at-will.
3976 */
3977 if (unlikely(work == weight)) {
3978 if (unlikely(napi_disable_pending(n))) {
3979 local_irq_enable();
3980 napi_complete(n);
3981 local_irq_disable();
3982 } else
3983 list_move_tail(&n->poll_list, &sd->poll_list);
3984 }
3985
3986 netpoll_poll_unlock(have);
3987 }
3988 out:
3989 net_rps_action_and_irq_enable(sd);
3990
3991 #ifdef CONFIG_NET_DMA
3992 /*
3993 * There may not be any more sk_buffs coming right now, so push
3994 * any pending DMA copies to hardware
3995 */
3996 dma_issue_pending_all();
3997 #endif
3998
3999 return;
4000
4001 softnet_break:
4002 sd->time_squeeze++;
4003 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4004 goto out;
4005 }
4006
4007 static gifconf_func_t *gifconf_list[NPROTO];
4008
4009 /**
4010 * register_gifconf - register a SIOCGIF handler
4011 * @family: Address family
4012 * @gifconf: Function handler
4013 *
4014 * Register protocol dependent address dumping routines. The handler
4015 * that is passed must not be freed or reused until it has been replaced
4016 * by another handler.
4017 */
4018 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4019 {
4020 if (family >= NPROTO)
4021 return -EINVAL;
4022 gifconf_list[family] = gifconf;
4023 return 0;
4024 }
4025 EXPORT_SYMBOL(register_gifconf);
4026
4027
4028 /*
4029 * Map an interface index to its name (SIOCGIFNAME)
4030 */
4031
4032 /*
4033 * We need this ioctl for efficient implementation of the
4034 * if_indextoname() function required by the IPv6 API. Without
4035 * it, we would have to search all the interfaces to find a
4036 * match. --pb
4037 */
4038
4039 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4040 {
4041 struct net_device *dev;
4042 struct ifreq ifr;
4043
4044 /*
4045 * Fetch the caller's info block.
4046 */
4047
4048 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4049 return -EFAULT;
4050
4051 rcu_read_lock();
4052 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4053 if (!dev) {
4054 rcu_read_unlock();
4055 return -ENODEV;
4056 }
4057
4058 strcpy(ifr.ifr_name, dev->name);
4059 rcu_read_unlock();
4060
4061 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4062 return -EFAULT;
4063 return 0;
4064 }
4065
4066 /*
4067 * Perform a SIOCGIFCONF call. This structure will change
4068 * size eventually, and there is nothing I can do about it.
4069 * Thus we will need a 'compatibility mode'.
4070 */
4071
4072 static int dev_ifconf(struct net *net, char __user *arg)
4073 {
4074 struct ifconf ifc;
4075 struct net_device *dev;
4076 char __user *pos;
4077 int len;
4078 int total;
4079 int i;
4080
4081 /*
4082 * Fetch the caller's info block.
4083 */
4084
4085 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4086 return -EFAULT;
4087
4088 pos = ifc.ifc_buf;
4089 len = ifc.ifc_len;
4090
4091 /*
4092 * Loop over the interfaces, and write an info block for each.
4093 */
4094
4095 total = 0;
4096 for_each_netdev(net, dev) {
4097 for (i = 0; i < NPROTO; i++) {
4098 if (gifconf_list[i]) {
4099 int done;
4100 if (!pos)
4101 done = gifconf_list[i](dev, NULL, 0);
4102 else
4103 done = gifconf_list[i](dev, pos + total,
4104 len - total);
4105 if (done < 0)
4106 return -EFAULT;
4107 total += done;
4108 }
4109 }
4110 }
4111
4112 /*
4113 * All done. Write the updated control block back to the caller.
4114 */
4115 ifc.ifc_len = total;
4116
4117 /*
4118 * Both BSD and Solaris return 0 here, so we do too.
4119 */
4120 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4121 }
4122
4123 #ifdef CONFIG_PROC_FS
4124
4125 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4126
4127 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4128 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4129 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4130
4131 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4132 {
4133 struct net *net = seq_file_net(seq);
4134 struct net_device *dev;
4135 struct hlist_node *p;
4136 struct hlist_head *h;
4137 unsigned int count = 0, offset = get_offset(*pos);
4138
4139 h = &net->dev_name_head[get_bucket(*pos)];
4140 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4141 if (++count == offset)
4142 return dev;
4143 }
4144
4145 return NULL;
4146 }
4147
4148 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4149 {
4150 struct net_device *dev;
4151 unsigned int bucket;
4152
4153 do {
4154 dev = dev_from_same_bucket(seq, pos);
4155 if (dev)
4156 return dev;
4157
4158 bucket = get_bucket(*pos) + 1;
4159 *pos = set_bucket_offset(bucket, 1);
4160 } while (bucket < NETDEV_HASHENTRIES);
4161
4162 return NULL;
4163 }
4164
4165 /*
4166 * This is invoked by the /proc filesystem handler to display a device
4167 * in detail.
4168 */
4169 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4170 __acquires(RCU)
4171 {
4172 rcu_read_lock();
4173 if (!*pos)
4174 return SEQ_START_TOKEN;
4175
4176 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4177 return NULL;
4178
4179 return dev_from_bucket(seq, pos);
4180 }
4181
4182 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4183 {
4184 ++*pos;
4185 return dev_from_bucket(seq, pos);
4186 }
4187
4188 void dev_seq_stop(struct seq_file *seq, void *v)
4189 __releases(RCU)
4190 {
4191 rcu_read_unlock();
4192 }
4193
4194 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4195 {
4196 struct rtnl_link_stats64 temp;
4197 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4198
4199 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4200 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4201 dev->name, stats->rx_bytes, stats->rx_packets,
4202 stats->rx_errors,
4203 stats->rx_dropped + stats->rx_missed_errors,
4204 stats->rx_fifo_errors,
4205 stats->rx_length_errors + stats->rx_over_errors +
4206 stats->rx_crc_errors + stats->rx_frame_errors,
4207 stats->rx_compressed, stats->multicast,
4208 stats->tx_bytes, stats->tx_packets,
4209 stats->tx_errors, stats->tx_dropped,
4210 stats->tx_fifo_errors, stats->collisions,
4211 stats->tx_carrier_errors +
4212 stats->tx_aborted_errors +
4213 stats->tx_window_errors +
4214 stats->tx_heartbeat_errors,
4215 stats->tx_compressed);
4216 }
4217
4218 /*
4219 * Called from the PROCfs module. This now uses the new arbitrary sized
4220 * /proc/net interface to create /proc/net/dev
4221 */
4222 static int dev_seq_show(struct seq_file *seq, void *v)
4223 {
4224 if (v == SEQ_START_TOKEN)
4225 seq_puts(seq, "Inter-| Receive "
4226 " | Transmit\n"
4227 " face |bytes packets errs drop fifo frame "
4228 "compressed multicast|bytes packets errs "
4229 "drop fifo colls carrier compressed\n");
4230 else
4231 dev_seq_printf_stats(seq, v);
4232 return 0;
4233 }
4234
4235 static struct softnet_data *softnet_get_online(loff_t *pos)
4236 {
4237 struct softnet_data *sd = NULL;
4238
4239 while (*pos < nr_cpu_ids)
4240 if (cpu_online(*pos)) {
4241 sd = &per_cpu(softnet_data, *pos);
4242 break;
4243 } else
4244 ++*pos;
4245 return sd;
4246 }
4247
4248 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4249 {
4250 return softnet_get_online(pos);
4251 }
4252
4253 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4254 {
4255 ++*pos;
4256 return softnet_get_online(pos);
4257 }
4258
4259 static void softnet_seq_stop(struct seq_file *seq, void *v)
4260 {
4261 }
4262
4263 static int softnet_seq_show(struct seq_file *seq, void *v)
4264 {
4265 struct softnet_data *sd = v;
4266
4267 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4268 sd->processed, sd->dropped, sd->time_squeeze, 0,
4269 0, 0, 0, 0, /* was fastroute */
4270 sd->cpu_collision, sd->received_rps);
4271 return 0;
4272 }
4273
4274 static const struct seq_operations dev_seq_ops = {
4275 .start = dev_seq_start,
4276 .next = dev_seq_next,
4277 .stop = dev_seq_stop,
4278 .show = dev_seq_show,
4279 };
4280
4281 static int dev_seq_open(struct inode *inode, struct file *file)
4282 {
4283 return seq_open_net(inode, file, &dev_seq_ops,
4284 sizeof(struct seq_net_private));
4285 }
4286
4287 static const struct file_operations dev_seq_fops = {
4288 .owner = THIS_MODULE,
4289 .open = dev_seq_open,
4290 .read = seq_read,
4291 .llseek = seq_lseek,
4292 .release = seq_release_net,
4293 };
4294
4295 static const struct seq_operations softnet_seq_ops = {
4296 .start = softnet_seq_start,
4297 .next = softnet_seq_next,
4298 .stop = softnet_seq_stop,
4299 .show = softnet_seq_show,
4300 };
4301
4302 static int softnet_seq_open(struct inode *inode, struct file *file)
4303 {
4304 return seq_open(file, &softnet_seq_ops);
4305 }
4306
4307 static const struct file_operations softnet_seq_fops = {
4308 .owner = THIS_MODULE,
4309 .open = softnet_seq_open,
4310 .read = seq_read,
4311 .llseek = seq_lseek,
4312 .release = seq_release,
4313 };
4314
4315 static void *ptype_get_idx(loff_t pos)
4316 {
4317 struct packet_type *pt = NULL;
4318 loff_t i = 0;
4319 int t;
4320
4321 list_for_each_entry_rcu(pt, &ptype_all, list) {
4322 if (i == pos)
4323 return pt;
4324 ++i;
4325 }
4326
4327 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4328 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4329 if (i == pos)
4330 return pt;
4331 ++i;
4332 }
4333 }
4334 return NULL;
4335 }
4336
4337 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4338 __acquires(RCU)
4339 {
4340 rcu_read_lock();
4341 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4342 }
4343
4344 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4345 {
4346 struct packet_type *pt;
4347 struct list_head *nxt;
4348 int hash;
4349
4350 ++*pos;
4351 if (v == SEQ_START_TOKEN)
4352 return ptype_get_idx(0);
4353
4354 pt = v;
4355 nxt = pt->list.next;
4356 if (pt->type == htons(ETH_P_ALL)) {
4357 if (nxt != &ptype_all)
4358 goto found;
4359 hash = 0;
4360 nxt = ptype_base[0].next;
4361 } else
4362 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4363
4364 while (nxt == &ptype_base[hash]) {
4365 if (++hash >= PTYPE_HASH_SIZE)
4366 return NULL;
4367 nxt = ptype_base[hash].next;
4368 }
4369 found:
4370 return list_entry(nxt, struct packet_type, list);
4371 }
4372
4373 static void ptype_seq_stop(struct seq_file *seq, void *v)
4374 __releases(RCU)
4375 {
4376 rcu_read_unlock();
4377 }
4378
4379 static int ptype_seq_show(struct seq_file *seq, void *v)
4380 {
4381 struct packet_type *pt = v;
4382
4383 if (v == SEQ_START_TOKEN)
4384 seq_puts(seq, "Type Device Function\n");
4385 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4386 if (pt->type == htons(ETH_P_ALL))
4387 seq_puts(seq, "ALL ");
4388 else
4389 seq_printf(seq, "%04x", ntohs(pt->type));
4390
4391 seq_printf(seq, " %-8s %pF\n",
4392 pt->dev ? pt->dev->name : "", pt->func);
4393 }
4394
4395 return 0;
4396 }
4397
4398 static const struct seq_operations ptype_seq_ops = {
4399 .start = ptype_seq_start,
4400 .next = ptype_seq_next,
4401 .stop = ptype_seq_stop,
4402 .show = ptype_seq_show,
4403 };
4404
4405 static int ptype_seq_open(struct inode *inode, struct file *file)
4406 {
4407 return seq_open_net(inode, file, &ptype_seq_ops,
4408 sizeof(struct seq_net_private));
4409 }
4410
4411 static const struct file_operations ptype_seq_fops = {
4412 .owner = THIS_MODULE,
4413 .open = ptype_seq_open,
4414 .read = seq_read,
4415 .llseek = seq_lseek,
4416 .release = seq_release_net,
4417 };
4418
4419
4420 static int __net_init dev_proc_net_init(struct net *net)
4421 {
4422 int rc = -ENOMEM;
4423
4424 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4425 goto out;
4426 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4427 goto out_dev;
4428 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4429 goto out_softnet;
4430
4431 if (wext_proc_init(net))
4432 goto out_ptype;
4433 rc = 0;
4434 out:
4435 return rc;
4436 out_ptype:
4437 proc_net_remove(net, "ptype");
4438 out_softnet:
4439 proc_net_remove(net, "softnet_stat");
4440 out_dev:
4441 proc_net_remove(net, "dev");
4442 goto out;
4443 }
4444
4445 static void __net_exit dev_proc_net_exit(struct net *net)
4446 {
4447 wext_proc_exit(net);
4448
4449 proc_net_remove(net, "ptype");
4450 proc_net_remove(net, "softnet_stat");
4451 proc_net_remove(net, "dev");
4452 }
4453
4454 static struct pernet_operations __net_initdata dev_proc_ops = {
4455 .init = dev_proc_net_init,
4456 .exit = dev_proc_net_exit,
4457 };
4458
4459 static int __init dev_proc_init(void)
4460 {
4461 return register_pernet_subsys(&dev_proc_ops);
4462 }
4463 #else
4464 #define dev_proc_init() 0
4465 #endif /* CONFIG_PROC_FS */
4466
4467
4468 /**
4469 * netdev_set_master - set up master pointer
4470 * @slave: slave device
4471 * @master: new master device
4472 *
4473 * Changes the master device of the slave. Pass %NULL to break the
4474 * bonding. The caller must hold the RTNL semaphore. On a failure
4475 * a negative errno code is returned. On success the reference counts
4476 * are adjusted and the function returns zero.
4477 */
4478 int netdev_set_master(struct net_device *slave, struct net_device *master)
4479 {
4480 struct net_device *old = slave->master;
4481
4482 ASSERT_RTNL();
4483
4484 if (master) {
4485 if (old)
4486 return -EBUSY;
4487 dev_hold(master);
4488 }
4489
4490 slave->master = master;
4491
4492 if (old)
4493 dev_put(old);
4494 return 0;
4495 }
4496 EXPORT_SYMBOL(netdev_set_master);
4497
4498 /**
4499 * netdev_set_bond_master - set up bonding master/slave pair
4500 * @slave: slave device
4501 * @master: new master device
4502 *
4503 * Changes the master device of the slave. Pass %NULL to break the
4504 * bonding. The caller must hold the RTNL semaphore. On a failure
4505 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4506 * to the routing socket and the function returns zero.
4507 */
4508 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4509 {
4510 int err;
4511
4512 ASSERT_RTNL();
4513
4514 err = netdev_set_master(slave, master);
4515 if (err)
4516 return err;
4517 if (master)
4518 slave->flags |= IFF_SLAVE;
4519 else
4520 slave->flags &= ~IFF_SLAVE;
4521
4522 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4523 return 0;
4524 }
4525 EXPORT_SYMBOL(netdev_set_bond_master);
4526
4527 static void dev_change_rx_flags(struct net_device *dev, int flags)
4528 {
4529 const struct net_device_ops *ops = dev->netdev_ops;
4530
4531 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4532 ops->ndo_change_rx_flags(dev, flags);
4533 }
4534
4535 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4536 {
4537 unsigned int old_flags = dev->flags;
4538 kuid_t uid;
4539 kgid_t gid;
4540
4541 ASSERT_RTNL();
4542
4543 dev->flags |= IFF_PROMISC;
4544 dev->promiscuity += inc;
4545 if (dev->promiscuity == 0) {
4546 /*
4547 * Avoid overflow.
4548 * If inc causes overflow, untouch promisc and return error.
4549 */
4550 if (inc < 0)
4551 dev->flags &= ~IFF_PROMISC;
4552 else {
4553 dev->promiscuity -= inc;
4554 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4555 dev->name);
4556 return -EOVERFLOW;
4557 }
4558 }
4559 if (dev->flags != old_flags) {
4560 pr_info("device %s %s promiscuous mode\n",
4561 dev->name,
4562 dev->flags & IFF_PROMISC ? "entered" : "left");
4563 if (audit_enabled) {
4564 current_uid_gid(&uid, &gid);
4565 audit_log(current->audit_context, GFP_ATOMIC,
4566 AUDIT_ANOM_PROMISCUOUS,
4567 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4568 dev->name, (dev->flags & IFF_PROMISC),
4569 (old_flags & IFF_PROMISC),
4570 audit_get_loginuid(current),
4571 from_kuid(&init_user_ns, uid),
4572 from_kgid(&init_user_ns, gid),
4573 audit_get_sessionid(current));
4574 }
4575
4576 dev_change_rx_flags(dev, IFF_PROMISC);
4577 }
4578 return 0;
4579 }
4580
4581 /**
4582 * dev_set_promiscuity - update promiscuity count on a device
4583 * @dev: device
4584 * @inc: modifier
4585 *
4586 * Add or remove promiscuity from a device. While the count in the device
4587 * remains above zero the interface remains promiscuous. Once it hits zero
4588 * the device reverts back to normal filtering operation. A negative inc
4589 * value is used to drop promiscuity on the device.
4590 * Return 0 if successful or a negative errno code on error.
4591 */
4592 int dev_set_promiscuity(struct net_device *dev, int inc)
4593 {
4594 unsigned int old_flags = dev->flags;
4595 int err;
4596
4597 err = __dev_set_promiscuity(dev, inc);
4598 if (err < 0)
4599 return err;
4600 if (dev->flags != old_flags)
4601 dev_set_rx_mode(dev);
4602 return err;
4603 }
4604 EXPORT_SYMBOL(dev_set_promiscuity);
4605
4606 /**
4607 * dev_set_allmulti - update allmulti count on a device
4608 * @dev: device
4609 * @inc: modifier
4610 *
4611 * Add or remove reception of all multicast frames to a device. While the
4612 * count in the device remains above zero the interface remains listening
4613 * to all interfaces. Once it hits zero the device reverts back to normal
4614 * filtering operation. A negative @inc value is used to drop the counter
4615 * when releasing a resource needing all multicasts.
4616 * Return 0 if successful or a negative errno code on error.
4617 */
4618
4619 int dev_set_allmulti(struct net_device *dev, int inc)
4620 {
4621 unsigned int old_flags = dev->flags;
4622
4623 ASSERT_RTNL();
4624
4625 dev->flags |= IFF_ALLMULTI;
4626 dev->allmulti += inc;
4627 if (dev->allmulti == 0) {
4628 /*
4629 * Avoid overflow.
4630 * If inc causes overflow, untouch allmulti and return error.
4631 */
4632 if (inc < 0)
4633 dev->flags &= ~IFF_ALLMULTI;
4634 else {
4635 dev->allmulti -= inc;
4636 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4637 dev->name);
4638 return -EOVERFLOW;
4639 }
4640 }
4641 if (dev->flags ^ old_flags) {
4642 dev_change_rx_flags(dev, IFF_ALLMULTI);
4643 dev_set_rx_mode(dev);
4644 }
4645 return 0;
4646 }
4647 EXPORT_SYMBOL(dev_set_allmulti);
4648
4649 /*
4650 * Upload unicast and multicast address lists to device and
4651 * configure RX filtering. When the device doesn't support unicast
4652 * filtering it is put in promiscuous mode while unicast addresses
4653 * are present.
4654 */
4655 void __dev_set_rx_mode(struct net_device *dev)
4656 {
4657 const struct net_device_ops *ops = dev->netdev_ops;
4658
4659 /* dev_open will call this function so the list will stay sane. */
4660 if (!(dev->flags&IFF_UP))
4661 return;
4662
4663 if (!netif_device_present(dev))
4664 return;
4665
4666 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4667 /* Unicast addresses changes may only happen under the rtnl,
4668 * therefore calling __dev_set_promiscuity here is safe.
4669 */
4670 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4671 __dev_set_promiscuity(dev, 1);
4672 dev->uc_promisc = true;
4673 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4674 __dev_set_promiscuity(dev, -1);
4675 dev->uc_promisc = false;
4676 }
4677 }
4678
4679 if (ops->ndo_set_rx_mode)
4680 ops->ndo_set_rx_mode(dev);
4681 }
4682
4683 void dev_set_rx_mode(struct net_device *dev)
4684 {
4685 netif_addr_lock_bh(dev);
4686 __dev_set_rx_mode(dev);
4687 netif_addr_unlock_bh(dev);
4688 }
4689
4690 /**
4691 * dev_get_flags - get flags reported to userspace
4692 * @dev: device
4693 *
4694 * Get the combination of flag bits exported through APIs to userspace.
4695 */
4696 unsigned int dev_get_flags(const struct net_device *dev)
4697 {
4698 unsigned int flags;
4699
4700 flags = (dev->flags & ~(IFF_PROMISC |
4701 IFF_ALLMULTI |
4702 IFF_RUNNING |
4703 IFF_LOWER_UP |
4704 IFF_DORMANT)) |
4705 (dev->gflags & (IFF_PROMISC |
4706 IFF_ALLMULTI));
4707
4708 if (netif_running(dev)) {
4709 if (netif_oper_up(dev))
4710 flags |= IFF_RUNNING;
4711 if (netif_carrier_ok(dev))
4712 flags |= IFF_LOWER_UP;
4713 if (netif_dormant(dev))
4714 flags |= IFF_DORMANT;
4715 }
4716
4717 return flags;
4718 }
4719 EXPORT_SYMBOL(dev_get_flags);
4720
4721 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4722 {
4723 unsigned int old_flags = dev->flags;
4724 int ret;
4725
4726 ASSERT_RTNL();
4727
4728 /*
4729 * Set the flags on our device.
4730 */
4731
4732 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4733 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4734 IFF_AUTOMEDIA)) |
4735 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4736 IFF_ALLMULTI));
4737
4738 /*
4739 * Load in the correct multicast list now the flags have changed.
4740 */
4741
4742 if ((old_flags ^ flags) & IFF_MULTICAST)
4743 dev_change_rx_flags(dev, IFF_MULTICAST);
4744
4745 dev_set_rx_mode(dev);
4746
4747 /*
4748 * Have we downed the interface. We handle IFF_UP ourselves
4749 * according to user attempts to set it, rather than blindly
4750 * setting it.
4751 */
4752
4753 ret = 0;
4754 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4755 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4756
4757 if (!ret)
4758 dev_set_rx_mode(dev);
4759 }
4760
4761 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4762 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4763
4764 dev->gflags ^= IFF_PROMISC;
4765 dev_set_promiscuity(dev, inc);
4766 }
4767
4768 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4769 is important. Some (broken) drivers set IFF_PROMISC, when
4770 IFF_ALLMULTI is requested not asking us and not reporting.
4771 */
4772 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4773 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4774
4775 dev->gflags ^= IFF_ALLMULTI;
4776 dev_set_allmulti(dev, inc);
4777 }
4778
4779 return ret;
4780 }
4781
4782 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4783 {
4784 unsigned int changes = dev->flags ^ old_flags;
4785
4786 if (changes & IFF_UP) {
4787 if (dev->flags & IFF_UP)
4788 call_netdevice_notifiers(NETDEV_UP, dev);
4789 else
4790 call_netdevice_notifiers(NETDEV_DOWN, dev);
4791 }
4792
4793 if (dev->flags & IFF_UP &&
4794 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4795 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4796 }
4797
4798 /**
4799 * dev_change_flags - change device settings
4800 * @dev: device
4801 * @flags: device state flags
4802 *
4803 * Change settings on device based state flags. The flags are
4804 * in the userspace exported format.
4805 */
4806 int dev_change_flags(struct net_device *dev, unsigned int flags)
4807 {
4808 int ret;
4809 unsigned int changes, old_flags = dev->flags;
4810
4811 ret = __dev_change_flags(dev, flags);
4812 if (ret < 0)
4813 return ret;
4814
4815 changes = old_flags ^ dev->flags;
4816 if (changes)
4817 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4818
4819 __dev_notify_flags(dev, old_flags);
4820 return ret;
4821 }
4822 EXPORT_SYMBOL(dev_change_flags);
4823
4824 /**
4825 * dev_set_mtu - Change maximum transfer unit
4826 * @dev: device
4827 * @new_mtu: new transfer unit
4828 *
4829 * Change the maximum transfer size of the network device.
4830 */
4831 int dev_set_mtu(struct net_device *dev, int new_mtu)
4832 {
4833 const struct net_device_ops *ops = dev->netdev_ops;
4834 int err;
4835
4836 if (new_mtu == dev->mtu)
4837 return 0;
4838
4839 /* MTU must be positive. */
4840 if (new_mtu < 0)
4841 return -EINVAL;
4842
4843 if (!netif_device_present(dev))
4844 return -ENODEV;
4845
4846 err = 0;
4847 if (ops->ndo_change_mtu)
4848 err = ops->ndo_change_mtu(dev, new_mtu);
4849 else
4850 dev->mtu = new_mtu;
4851
4852 if (!err && dev->flags & IFF_UP)
4853 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4854 return err;
4855 }
4856 EXPORT_SYMBOL(dev_set_mtu);
4857
4858 /**
4859 * dev_set_group - Change group this device belongs to
4860 * @dev: device
4861 * @new_group: group this device should belong to
4862 */
4863 void dev_set_group(struct net_device *dev, int new_group)
4864 {
4865 dev->group = new_group;
4866 }
4867 EXPORT_SYMBOL(dev_set_group);
4868
4869 /**
4870 * dev_set_mac_address - Change Media Access Control Address
4871 * @dev: device
4872 * @sa: new address
4873 *
4874 * Change the hardware (MAC) address of the device
4875 */
4876 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4877 {
4878 const struct net_device_ops *ops = dev->netdev_ops;
4879 int err;
4880
4881 if (!ops->ndo_set_mac_address)
4882 return -EOPNOTSUPP;
4883 if (sa->sa_family != dev->type)
4884 return -EINVAL;
4885 if (!netif_device_present(dev))
4886 return -ENODEV;
4887 err = ops->ndo_set_mac_address(dev, sa);
4888 if (!err)
4889 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4890 add_device_randomness(dev->dev_addr, dev->addr_len);
4891 return err;
4892 }
4893 EXPORT_SYMBOL(dev_set_mac_address);
4894
4895 /*
4896 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4897 */
4898 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4899 {
4900 int err;
4901 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4902
4903 if (!dev)
4904 return -ENODEV;
4905
4906 switch (cmd) {
4907 case SIOCGIFFLAGS: /* Get interface flags */
4908 ifr->ifr_flags = (short) dev_get_flags(dev);
4909 return 0;
4910
4911 case SIOCGIFMETRIC: /* Get the metric on the interface
4912 (currently unused) */
4913 ifr->ifr_metric = 0;
4914 return 0;
4915
4916 case SIOCGIFMTU: /* Get the MTU of a device */
4917 ifr->ifr_mtu = dev->mtu;
4918 return 0;
4919
4920 case SIOCGIFHWADDR:
4921 if (!dev->addr_len)
4922 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4923 else
4924 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4925 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4926 ifr->ifr_hwaddr.sa_family = dev->type;
4927 return 0;
4928
4929 case SIOCGIFSLAVE:
4930 err = -EINVAL;
4931 break;
4932
4933 case SIOCGIFMAP:
4934 ifr->ifr_map.mem_start = dev->mem_start;
4935 ifr->ifr_map.mem_end = dev->mem_end;
4936 ifr->ifr_map.base_addr = dev->base_addr;
4937 ifr->ifr_map.irq = dev->irq;
4938 ifr->ifr_map.dma = dev->dma;
4939 ifr->ifr_map.port = dev->if_port;
4940 return 0;
4941
4942 case SIOCGIFINDEX:
4943 ifr->ifr_ifindex = dev->ifindex;
4944 return 0;
4945
4946 case SIOCGIFTXQLEN:
4947 ifr->ifr_qlen = dev->tx_queue_len;
4948 return 0;
4949
4950 default:
4951 /* dev_ioctl() should ensure this case
4952 * is never reached
4953 */
4954 WARN_ON(1);
4955 err = -ENOTTY;
4956 break;
4957
4958 }
4959 return err;
4960 }
4961
4962 /*
4963 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4964 */
4965 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4966 {
4967 int err;
4968 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4969 const struct net_device_ops *ops;
4970
4971 if (!dev)
4972 return -ENODEV;
4973
4974 ops = dev->netdev_ops;
4975
4976 switch (cmd) {
4977 case SIOCSIFFLAGS: /* Set interface flags */
4978 return dev_change_flags(dev, ifr->ifr_flags);
4979
4980 case SIOCSIFMETRIC: /* Set the metric on the interface
4981 (currently unused) */
4982 return -EOPNOTSUPP;
4983
4984 case SIOCSIFMTU: /* Set the MTU of a device */
4985 return dev_set_mtu(dev, ifr->ifr_mtu);
4986
4987 case SIOCSIFHWADDR:
4988 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4989
4990 case SIOCSIFHWBROADCAST:
4991 if (ifr->ifr_hwaddr.sa_family != dev->type)
4992 return -EINVAL;
4993 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4994 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4995 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4996 return 0;
4997
4998 case SIOCSIFMAP:
4999 if (ops->ndo_set_config) {
5000 if (!netif_device_present(dev))
5001 return -ENODEV;
5002 return ops->ndo_set_config(dev, &ifr->ifr_map);
5003 }
5004 return -EOPNOTSUPP;
5005
5006 case SIOCADDMULTI:
5007 if (!ops->ndo_set_rx_mode ||
5008 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5009 return -EINVAL;
5010 if (!netif_device_present(dev))
5011 return -ENODEV;
5012 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5013
5014 case SIOCDELMULTI:
5015 if (!ops->ndo_set_rx_mode ||
5016 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5017 return -EINVAL;
5018 if (!netif_device_present(dev))
5019 return -ENODEV;
5020 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5021
5022 case SIOCSIFTXQLEN:
5023 if (ifr->ifr_qlen < 0)
5024 return -EINVAL;
5025 dev->tx_queue_len = ifr->ifr_qlen;
5026 return 0;
5027
5028 case SIOCSIFNAME:
5029 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5030 return dev_change_name(dev, ifr->ifr_newname);
5031
5032 case SIOCSHWTSTAMP:
5033 err = net_hwtstamp_validate(ifr);
5034 if (err)
5035 return err;
5036 /* fall through */
5037
5038 /*
5039 * Unknown or private ioctl
5040 */
5041 default:
5042 if ((cmd >= SIOCDEVPRIVATE &&
5043 cmd <= SIOCDEVPRIVATE + 15) ||
5044 cmd == SIOCBONDENSLAVE ||
5045 cmd == SIOCBONDRELEASE ||
5046 cmd == SIOCBONDSETHWADDR ||
5047 cmd == SIOCBONDSLAVEINFOQUERY ||
5048 cmd == SIOCBONDINFOQUERY ||
5049 cmd == SIOCBONDCHANGEACTIVE ||
5050 cmd == SIOCGMIIPHY ||
5051 cmd == SIOCGMIIREG ||
5052 cmd == SIOCSMIIREG ||
5053 cmd == SIOCBRADDIF ||
5054 cmd == SIOCBRDELIF ||
5055 cmd == SIOCSHWTSTAMP ||
5056 cmd == SIOCWANDEV) {
5057 err = -EOPNOTSUPP;
5058 if (ops->ndo_do_ioctl) {
5059 if (netif_device_present(dev))
5060 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5061 else
5062 err = -ENODEV;
5063 }
5064 } else
5065 err = -EINVAL;
5066
5067 }
5068 return err;
5069 }
5070
5071 /*
5072 * This function handles all "interface"-type I/O control requests. The actual
5073 * 'doing' part of this is dev_ifsioc above.
5074 */
5075
5076 /**
5077 * dev_ioctl - network device ioctl
5078 * @net: the applicable net namespace
5079 * @cmd: command to issue
5080 * @arg: pointer to a struct ifreq in user space
5081 *
5082 * Issue ioctl functions to devices. This is normally called by the
5083 * user space syscall interfaces but can sometimes be useful for
5084 * other purposes. The return value is the return from the syscall if
5085 * positive or a negative errno code on error.
5086 */
5087
5088 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5089 {
5090 struct ifreq ifr;
5091 int ret;
5092 char *colon;
5093
5094 /* One special case: SIOCGIFCONF takes ifconf argument
5095 and requires shared lock, because it sleeps writing
5096 to user space.
5097 */
5098
5099 if (cmd == SIOCGIFCONF) {
5100 rtnl_lock();
5101 ret = dev_ifconf(net, (char __user *) arg);
5102 rtnl_unlock();
5103 return ret;
5104 }
5105 if (cmd == SIOCGIFNAME)
5106 return dev_ifname(net, (struct ifreq __user *)arg);
5107
5108 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5109 return -EFAULT;
5110
5111 ifr.ifr_name[IFNAMSIZ-1] = 0;
5112
5113 colon = strchr(ifr.ifr_name, ':');
5114 if (colon)
5115 *colon = 0;
5116
5117 /*
5118 * See which interface the caller is talking about.
5119 */
5120
5121 switch (cmd) {
5122 /*
5123 * These ioctl calls:
5124 * - can be done by all.
5125 * - atomic and do not require locking.
5126 * - return a value
5127 */
5128 case SIOCGIFFLAGS:
5129 case SIOCGIFMETRIC:
5130 case SIOCGIFMTU:
5131 case SIOCGIFHWADDR:
5132 case SIOCGIFSLAVE:
5133 case SIOCGIFMAP:
5134 case SIOCGIFINDEX:
5135 case SIOCGIFTXQLEN:
5136 dev_load(net, ifr.ifr_name);
5137 rcu_read_lock();
5138 ret = dev_ifsioc_locked(net, &ifr, cmd);
5139 rcu_read_unlock();
5140 if (!ret) {
5141 if (colon)
5142 *colon = ':';
5143 if (copy_to_user(arg, &ifr,
5144 sizeof(struct ifreq)))
5145 ret = -EFAULT;
5146 }
5147 return ret;
5148
5149 case SIOCETHTOOL:
5150 dev_load(net, ifr.ifr_name);
5151 rtnl_lock();
5152 ret = dev_ethtool(net, &ifr);
5153 rtnl_unlock();
5154 if (!ret) {
5155 if (colon)
5156 *colon = ':';
5157 if (copy_to_user(arg, &ifr,
5158 sizeof(struct ifreq)))
5159 ret = -EFAULT;
5160 }
5161 return ret;
5162
5163 /*
5164 * These ioctl calls:
5165 * - require superuser power.
5166 * - require strict serialization.
5167 * - return a value
5168 */
5169 case SIOCGMIIPHY:
5170 case SIOCGMIIREG:
5171 case SIOCSIFNAME:
5172 if (!capable(CAP_NET_ADMIN))
5173 return -EPERM;
5174 dev_load(net, ifr.ifr_name);
5175 rtnl_lock();
5176 ret = dev_ifsioc(net, &ifr, cmd);
5177 rtnl_unlock();
5178 if (!ret) {
5179 if (colon)
5180 *colon = ':';
5181 if (copy_to_user(arg, &ifr,
5182 sizeof(struct ifreq)))
5183 ret = -EFAULT;
5184 }
5185 return ret;
5186
5187 /*
5188 * These ioctl calls:
5189 * - require superuser power.
5190 * - require strict serialization.
5191 * - do not return a value
5192 */
5193 case SIOCSIFFLAGS:
5194 case SIOCSIFMETRIC:
5195 case SIOCSIFMTU:
5196 case SIOCSIFMAP:
5197 case SIOCSIFHWADDR:
5198 case SIOCSIFSLAVE:
5199 case SIOCADDMULTI:
5200 case SIOCDELMULTI:
5201 case SIOCSIFHWBROADCAST:
5202 case SIOCSIFTXQLEN:
5203 case SIOCSMIIREG:
5204 case SIOCBONDENSLAVE:
5205 case SIOCBONDRELEASE:
5206 case SIOCBONDSETHWADDR:
5207 case SIOCBONDCHANGEACTIVE:
5208 case SIOCBRADDIF:
5209 case SIOCBRDELIF:
5210 case SIOCSHWTSTAMP:
5211 if (!capable(CAP_NET_ADMIN))
5212 return -EPERM;
5213 /* fall through */
5214 case SIOCBONDSLAVEINFOQUERY:
5215 case SIOCBONDINFOQUERY:
5216 dev_load(net, ifr.ifr_name);
5217 rtnl_lock();
5218 ret = dev_ifsioc(net, &ifr, cmd);
5219 rtnl_unlock();
5220 return ret;
5221
5222 case SIOCGIFMEM:
5223 /* Get the per device memory space. We can add this but
5224 * currently do not support it */
5225 case SIOCSIFMEM:
5226 /* Set the per device memory buffer space.
5227 * Not applicable in our case */
5228 case SIOCSIFLINK:
5229 return -ENOTTY;
5230
5231 /*
5232 * Unknown or private ioctl.
5233 */
5234 default:
5235 if (cmd == SIOCWANDEV ||
5236 (cmd >= SIOCDEVPRIVATE &&
5237 cmd <= SIOCDEVPRIVATE + 15)) {
5238 dev_load(net, ifr.ifr_name);
5239 rtnl_lock();
5240 ret = dev_ifsioc(net, &ifr, cmd);
5241 rtnl_unlock();
5242 if (!ret && copy_to_user(arg, &ifr,
5243 sizeof(struct ifreq)))
5244 ret = -EFAULT;
5245 return ret;
5246 }
5247 /* Take care of Wireless Extensions */
5248 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5249 return wext_handle_ioctl(net, &ifr, cmd, arg);
5250 return -ENOTTY;
5251 }
5252 }
5253
5254
5255 /**
5256 * dev_new_index - allocate an ifindex
5257 * @net: the applicable net namespace
5258 *
5259 * Returns a suitable unique value for a new device interface
5260 * number. The caller must hold the rtnl semaphore or the
5261 * dev_base_lock to be sure it remains unique.
5262 */
5263 static int dev_new_index(struct net *net)
5264 {
5265 int ifindex = net->ifindex;
5266 for (;;) {
5267 if (++ifindex <= 0)
5268 ifindex = 1;
5269 if (!__dev_get_by_index(net, ifindex))
5270 return net->ifindex = ifindex;
5271 }
5272 }
5273
5274 /* Delayed registration/unregisteration */
5275 static LIST_HEAD(net_todo_list);
5276
5277 static void net_set_todo(struct net_device *dev)
5278 {
5279 list_add_tail(&dev->todo_list, &net_todo_list);
5280 }
5281
5282 static void rollback_registered_many(struct list_head *head)
5283 {
5284 struct net_device *dev, *tmp;
5285
5286 BUG_ON(dev_boot_phase);
5287 ASSERT_RTNL();
5288
5289 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5290 /* Some devices call without registering
5291 * for initialization unwind. Remove those
5292 * devices and proceed with the remaining.
5293 */
5294 if (dev->reg_state == NETREG_UNINITIALIZED) {
5295 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5296 dev->name, dev);
5297
5298 WARN_ON(1);
5299 list_del(&dev->unreg_list);
5300 continue;
5301 }
5302 dev->dismantle = true;
5303 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5304 }
5305
5306 /* If device is running, close it first. */
5307 dev_close_many(head);
5308
5309 list_for_each_entry(dev, head, unreg_list) {
5310 /* And unlink it from device chain. */
5311 unlist_netdevice(dev);
5312
5313 dev->reg_state = NETREG_UNREGISTERING;
5314 }
5315
5316 synchronize_net();
5317
5318 list_for_each_entry(dev, head, unreg_list) {
5319 /* Shutdown queueing discipline. */
5320 dev_shutdown(dev);
5321
5322
5323 /* Notify protocols, that we are about to destroy
5324 this device. They should clean all the things.
5325 */
5326 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5327
5328 if (!dev->rtnl_link_ops ||
5329 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5330 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5331
5332 /*
5333 * Flush the unicast and multicast chains
5334 */
5335 dev_uc_flush(dev);
5336 dev_mc_flush(dev);
5337
5338 if (dev->netdev_ops->ndo_uninit)
5339 dev->netdev_ops->ndo_uninit(dev);
5340
5341 /* Notifier chain MUST detach us from master device. */
5342 WARN_ON(dev->master);
5343
5344 /* Remove entries from kobject tree */
5345 netdev_unregister_kobject(dev);
5346 }
5347
5348 synchronize_net();
5349
5350 list_for_each_entry(dev, head, unreg_list)
5351 dev_put(dev);
5352 }
5353
5354 static void rollback_registered(struct net_device *dev)
5355 {
5356 LIST_HEAD(single);
5357
5358 list_add(&dev->unreg_list, &single);
5359 rollback_registered_many(&single);
5360 list_del(&single);
5361 }
5362
5363 static netdev_features_t netdev_fix_features(struct net_device *dev,
5364 netdev_features_t features)
5365 {
5366 /* Fix illegal checksum combinations */
5367 if ((features & NETIF_F_HW_CSUM) &&
5368 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5369 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5370 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5371 }
5372
5373 /* Fix illegal SG+CSUM combinations. */
5374 if ((features & NETIF_F_SG) &&
5375 !(features & NETIF_F_ALL_CSUM)) {
5376 netdev_dbg(dev,
5377 "Dropping NETIF_F_SG since no checksum feature.\n");
5378 features &= ~NETIF_F_SG;
5379 }
5380
5381 /* TSO requires that SG is present as well. */
5382 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5383 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5384 features &= ~NETIF_F_ALL_TSO;
5385 }
5386
5387 /* TSO ECN requires that TSO is present as well. */
5388 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5389 features &= ~NETIF_F_TSO_ECN;
5390
5391 /* Software GSO depends on SG. */
5392 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5393 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5394 features &= ~NETIF_F_GSO;
5395 }
5396
5397 /* UFO needs SG and checksumming */
5398 if (features & NETIF_F_UFO) {
5399 /* maybe split UFO into V4 and V6? */
5400 if (!((features & NETIF_F_GEN_CSUM) ||
5401 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5402 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5403 netdev_dbg(dev,
5404 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5405 features &= ~NETIF_F_UFO;
5406 }
5407
5408 if (!(features & NETIF_F_SG)) {
5409 netdev_dbg(dev,
5410 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5411 features &= ~NETIF_F_UFO;
5412 }
5413 }
5414
5415 return features;
5416 }
5417
5418 int __netdev_update_features(struct net_device *dev)
5419 {
5420 netdev_features_t features;
5421 int err = 0;
5422
5423 ASSERT_RTNL();
5424
5425 features = netdev_get_wanted_features(dev);
5426
5427 if (dev->netdev_ops->ndo_fix_features)
5428 features = dev->netdev_ops->ndo_fix_features(dev, features);
5429
5430 /* driver might be less strict about feature dependencies */
5431 features = netdev_fix_features(dev, features);
5432
5433 if (dev->features == features)
5434 return 0;
5435
5436 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5437 &dev->features, &features);
5438
5439 if (dev->netdev_ops->ndo_set_features)
5440 err = dev->netdev_ops->ndo_set_features(dev, features);
5441
5442 if (unlikely(err < 0)) {
5443 netdev_err(dev,
5444 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5445 err, &features, &dev->features);
5446 return -1;
5447 }
5448
5449 if (!err)
5450 dev->features = features;
5451
5452 return 1;
5453 }
5454
5455 /**
5456 * netdev_update_features - recalculate device features
5457 * @dev: the device to check
5458 *
5459 * Recalculate dev->features set and send notifications if it
5460 * has changed. Should be called after driver or hardware dependent
5461 * conditions might have changed that influence the features.
5462 */
5463 void netdev_update_features(struct net_device *dev)
5464 {
5465 if (__netdev_update_features(dev))
5466 netdev_features_change(dev);
5467 }
5468 EXPORT_SYMBOL(netdev_update_features);
5469
5470 /**
5471 * netdev_change_features - recalculate device features
5472 * @dev: the device to check
5473 *
5474 * Recalculate dev->features set and send notifications even
5475 * if they have not changed. Should be called instead of
5476 * netdev_update_features() if also dev->vlan_features might
5477 * have changed to allow the changes to be propagated to stacked
5478 * VLAN devices.
5479 */
5480 void netdev_change_features(struct net_device *dev)
5481 {
5482 __netdev_update_features(dev);
5483 netdev_features_change(dev);
5484 }
5485 EXPORT_SYMBOL(netdev_change_features);
5486
5487 /**
5488 * netif_stacked_transfer_operstate - transfer operstate
5489 * @rootdev: the root or lower level device to transfer state from
5490 * @dev: the device to transfer operstate to
5491 *
5492 * Transfer operational state from root to device. This is normally
5493 * called when a stacking relationship exists between the root
5494 * device and the device(a leaf device).
5495 */
5496 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5497 struct net_device *dev)
5498 {
5499 if (rootdev->operstate == IF_OPER_DORMANT)
5500 netif_dormant_on(dev);
5501 else
5502 netif_dormant_off(dev);
5503
5504 if (netif_carrier_ok(rootdev)) {
5505 if (!netif_carrier_ok(dev))
5506 netif_carrier_on(dev);
5507 } else {
5508 if (netif_carrier_ok(dev))
5509 netif_carrier_off(dev);
5510 }
5511 }
5512 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5513
5514 #ifdef CONFIG_RPS
5515 static int netif_alloc_rx_queues(struct net_device *dev)
5516 {
5517 unsigned int i, count = dev->num_rx_queues;
5518 struct netdev_rx_queue *rx;
5519
5520 BUG_ON(count < 1);
5521
5522 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5523 if (!rx) {
5524 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5525 return -ENOMEM;
5526 }
5527 dev->_rx = rx;
5528
5529 for (i = 0; i < count; i++)
5530 rx[i].dev = dev;
5531 return 0;
5532 }
5533 #endif
5534
5535 static void netdev_init_one_queue(struct net_device *dev,
5536 struct netdev_queue *queue, void *_unused)
5537 {
5538 /* Initialize queue lock */
5539 spin_lock_init(&queue->_xmit_lock);
5540 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5541 queue->xmit_lock_owner = -1;
5542 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5543 queue->dev = dev;
5544 #ifdef CONFIG_BQL
5545 dql_init(&queue->dql, HZ);
5546 #endif
5547 }
5548
5549 static int netif_alloc_netdev_queues(struct net_device *dev)
5550 {
5551 unsigned int count = dev->num_tx_queues;
5552 struct netdev_queue *tx;
5553
5554 BUG_ON(count < 1);
5555
5556 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5557 if (!tx) {
5558 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5559 return -ENOMEM;
5560 }
5561 dev->_tx = tx;
5562
5563 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5564 spin_lock_init(&dev->tx_global_lock);
5565
5566 return 0;
5567 }
5568
5569 /**
5570 * register_netdevice - register a network device
5571 * @dev: device to register
5572 *
5573 * Take a completed network device structure and add it to the kernel
5574 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5575 * chain. 0 is returned on success. A negative errno code is returned
5576 * on a failure to set up the device, or if the name is a duplicate.
5577 *
5578 * Callers must hold the rtnl semaphore. You may want
5579 * register_netdev() instead of this.
5580 *
5581 * BUGS:
5582 * The locking appears insufficient to guarantee two parallel registers
5583 * will not get the same name.
5584 */
5585
5586 int register_netdevice(struct net_device *dev)
5587 {
5588 int ret;
5589 struct net *net = dev_net(dev);
5590
5591 BUG_ON(dev_boot_phase);
5592 ASSERT_RTNL();
5593
5594 might_sleep();
5595
5596 /* When net_device's are persistent, this will be fatal. */
5597 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5598 BUG_ON(!net);
5599
5600 spin_lock_init(&dev->addr_list_lock);
5601 netdev_set_addr_lockdep_class(dev);
5602
5603 dev->iflink = -1;
5604
5605 ret = dev_get_valid_name(net, dev, dev->name);
5606 if (ret < 0)
5607 goto out;
5608
5609 /* Init, if this function is available */
5610 if (dev->netdev_ops->ndo_init) {
5611 ret = dev->netdev_ops->ndo_init(dev);
5612 if (ret) {
5613 if (ret > 0)
5614 ret = -EIO;
5615 goto out;
5616 }
5617 }
5618
5619 ret = -EBUSY;
5620 if (!dev->ifindex)
5621 dev->ifindex = dev_new_index(net);
5622 else if (__dev_get_by_index(net, dev->ifindex))
5623 goto err_uninit;
5624
5625 if (dev->iflink == -1)
5626 dev->iflink = dev->ifindex;
5627
5628 /* Transfer changeable features to wanted_features and enable
5629 * software offloads (GSO and GRO).
5630 */
5631 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5632 dev->features |= NETIF_F_SOFT_FEATURES;
5633 dev->wanted_features = dev->features & dev->hw_features;
5634
5635 /* Turn on no cache copy if HW is doing checksum */
5636 if (!(dev->flags & IFF_LOOPBACK)) {
5637 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5638 if (dev->features & NETIF_F_ALL_CSUM) {
5639 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5640 dev->features |= NETIF_F_NOCACHE_COPY;
5641 }
5642 }
5643
5644 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5645 */
5646 dev->vlan_features |= NETIF_F_HIGHDMA;
5647
5648 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5649 ret = notifier_to_errno(ret);
5650 if (ret)
5651 goto err_uninit;
5652
5653 ret = netdev_register_kobject(dev);
5654 if (ret)
5655 goto err_uninit;
5656 dev->reg_state = NETREG_REGISTERED;
5657
5658 __netdev_update_features(dev);
5659
5660 /*
5661 * Default initial state at registry is that the
5662 * device is present.
5663 */
5664
5665 set_bit(__LINK_STATE_PRESENT, &dev->state);
5666
5667 linkwatch_init_dev(dev);
5668
5669 dev_init_scheduler(dev);
5670 dev_hold(dev);
5671 list_netdevice(dev);
5672 add_device_randomness(dev->dev_addr, dev->addr_len);
5673
5674 /* Notify protocols, that a new device appeared. */
5675 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5676 ret = notifier_to_errno(ret);
5677 if (ret) {
5678 rollback_registered(dev);
5679 dev->reg_state = NETREG_UNREGISTERED;
5680 }
5681 /*
5682 * Prevent userspace races by waiting until the network
5683 * device is fully setup before sending notifications.
5684 */
5685 if (!dev->rtnl_link_ops ||
5686 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5687 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5688
5689 out:
5690 return ret;
5691
5692 err_uninit:
5693 if (dev->netdev_ops->ndo_uninit)
5694 dev->netdev_ops->ndo_uninit(dev);
5695 goto out;
5696 }
5697 EXPORT_SYMBOL(register_netdevice);
5698
5699 /**
5700 * init_dummy_netdev - init a dummy network device for NAPI
5701 * @dev: device to init
5702 *
5703 * This takes a network device structure and initialize the minimum
5704 * amount of fields so it can be used to schedule NAPI polls without
5705 * registering a full blown interface. This is to be used by drivers
5706 * that need to tie several hardware interfaces to a single NAPI
5707 * poll scheduler due to HW limitations.
5708 */
5709 int init_dummy_netdev(struct net_device *dev)
5710 {
5711 /* Clear everything. Note we don't initialize spinlocks
5712 * are they aren't supposed to be taken by any of the
5713 * NAPI code and this dummy netdev is supposed to be
5714 * only ever used for NAPI polls
5715 */
5716 memset(dev, 0, sizeof(struct net_device));
5717
5718 /* make sure we BUG if trying to hit standard
5719 * register/unregister code path
5720 */
5721 dev->reg_state = NETREG_DUMMY;
5722
5723 /* NAPI wants this */
5724 INIT_LIST_HEAD(&dev->napi_list);
5725
5726 /* a dummy interface is started by default */
5727 set_bit(__LINK_STATE_PRESENT, &dev->state);
5728 set_bit(__LINK_STATE_START, &dev->state);
5729
5730 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5731 * because users of this 'device' dont need to change
5732 * its refcount.
5733 */
5734
5735 return 0;
5736 }
5737 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5738
5739
5740 /**
5741 * register_netdev - register a network device
5742 * @dev: device to register
5743 *
5744 * Take a completed network device structure and add it to the kernel
5745 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5746 * chain. 0 is returned on success. A negative errno code is returned
5747 * on a failure to set up the device, or if the name is a duplicate.
5748 *
5749 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5750 * and expands the device name if you passed a format string to
5751 * alloc_netdev.
5752 */
5753 int register_netdev(struct net_device *dev)
5754 {
5755 int err;
5756
5757 rtnl_lock();
5758 err = register_netdevice(dev);
5759 rtnl_unlock();
5760 return err;
5761 }
5762 EXPORT_SYMBOL(register_netdev);
5763
5764 int netdev_refcnt_read(const struct net_device *dev)
5765 {
5766 int i, refcnt = 0;
5767
5768 for_each_possible_cpu(i)
5769 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5770 return refcnt;
5771 }
5772 EXPORT_SYMBOL(netdev_refcnt_read);
5773
5774 /**
5775 * netdev_wait_allrefs - wait until all references are gone.
5776 * @dev: target net_device
5777 *
5778 * This is called when unregistering network devices.
5779 *
5780 * Any protocol or device that holds a reference should register
5781 * for netdevice notification, and cleanup and put back the
5782 * reference if they receive an UNREGISTER event.
5783 * We can get stuck here if buggy protocols don't correctly
5784 * call dev_put.
5785 */
5786 static void netdev_wait_allrefs(struct net_device *dev)
5787 {
5788 unsigned long rebroadcast_time, warning_time;
5789 int refcnt;
5790
5791 linkwatch_forget_dev(dev);
5792
5793 rebroadcast_time = warning_time = jiffies;
5794 refcnt = netdev_refcnt_read(dev);
5795
5796 while (refcnt != 0) {
5797 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5798 rtnl_lock();
5799
5800 /* Rebroadcast unregister notification */
5801 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5802
5803 __rtnl_unlock();
5804 rcu_barrier();
5805 rtnl_lock();
5806
5807 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5808 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5809 &dev->state)) {
5810 /* We must not have linkwatch events
5811 * pending on unregister. If this
5812 * happens, we simply run the queue
5813 * unscheduled, resulting in a noop
5814 * for this device.
5815 */
5816 linkwatch_run_queue();
5817 }
5818
5819 __rtnl_unlock();
5820
5821 rebroadcast_time = jiffies;
5822 }
5823
5824 msleep(250);
5825
5826 refcnt = netdev_refcnt_read(dev);
5827
5828 if (time_after(jiffies, warning_time + 10 * HZ)) {
5829 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5830 dev->name, refcnt);
5831 warning_time = jiffies;
5832 }
5833 }
5834 }
5835
5836 /* The sequence is:
5837 *
5838 * rtnl_lock();
5839 * ...
5840 * register_netdevice(x1);
5841 * register_netdevice(x2);
5842 * ...
5843 * unregister_netdevice(y1);
5844 * unregister_netdevice(y2);
5845 * ...
5846 * rtnl_unlock();
5847 * free_netdev(y1);
5848 * free_netdev(y2);
5849 *
5850 * We are invoked by rtnl_unlock().
5851 * This allows us to deal with problems:
5852 * 1) We can delete sysfs objects which invoke hotplug
5853 * without deadlocking with linkwatch via keventd.
5854 * 2) Since we run with the RTNL semaphore not held, we can sleep
5855 * safely in order to wait for the netdev refcnt to drop to zero.
5856 *
5857 * We must not return until all unregister events added during
5858 * the interval the lock was held have been completed.
5859 */
5860 void netdev_run_todo(void)
5861 {
5862 struct list_head list;
5863
5864 /* Snapshot list, allow later requests */
5865 list_replace_init(&net_todo_list, &list);
5866
5867 __rtnl_unlock();
5868
5869
5870 /* Wait for rcu callbacks to finish before next phase */
5871 if (!list_empty(&list))
5872 rcu_barrier();
5873
5874 while (!list_empty(&list)) {
5875 struct net_device *dev
5876 = list_first_entry(&list, struct net_device, todo_list);
5877 list_del(&dev->todo_list);
5878
5879 rtnl_lock();
5880 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5881 __rtnl_unlock();
5882
5883 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5884 pr_err("network todo '%s' but state %d\n",
5885 dev->name, dev->reg_state);
5886 dump_stack();
5887 continue;
5888 }
5889
5890 dev->reg_state = NETREG_UNREGISTERED;
5891
5892 on_each_cpu(flush_backlog, dev, 1);
5893
5894 netdev_wait_allrefs(dev);
5895
5896 /* paranoia */
5897 BUG_ON(netdev_refcnt_read(dev));
5898 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5899 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5900 WARN_ON(dev->dn_ptr);
5901
5902 if (dev->destructor)
5903 dev->destructor(dev);
5904
5905 /* Free network device */
5906 kobject_put(&dev->dev.kobj);
5907 }
5908 }
5909
5910 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5911 * fields in the same order, with only the type differing.
5912 */
5913 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5914 const struct net_device_stats *netdev_stats)
5915 {
5916 #if BITS_PER_LONG == 64
5917 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5918 memcpy(stats64, netdev_stats, sizeof(*stats64));
5919 #else
5920 size_t i, n = sizeof(*stats64) / sizeof(u64);
5921 const unsigned long *src = (const unsigned long *)netdev_stats;
5922 u64 *dst = (u64 *)stats64;
5923
5924 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5925 sizeof(*stats64) / sizeof(u64));
5926 for (i = 0; i < n; i++)
5927 dst[i] = src[i];
5928 #endif
5929 }
5930 EXPORT_SYMBOL(netdev_stats_to_stats64);
5931
5932 /**
5933 * dev_get_stats - get network device statistics
5934 * @dev: device to get statistics from
5935 * @storage: place to store stats
5936 *
5937 * Get network statistics from device. Return @storage.
5938 * The device driver may provide its own method by setting
5939 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5940 * otherwise the internal statistics structure is used.
5941 */
5942 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5943 struct rtnl_link_stats64 *storage)
5944 {
5945 const struct net_device_ops *ops = dev->netdev_ops;
5946
5947 if (ops->ndo_get_stats64) {
5948 memset(storage, 0, sizeof(*storage));
5949 ops->ndo_get_stats64(dev, storage);
5950 } else if (ops->ndo_get_stats) {
5951 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5952 } else {
5953 netdev_stats_to_stats64(storage, &dev->stats);
5954 }
5955 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5956 return storage;
5957 }
5958 EXPORT_SYMBOL(dev_get_stats);
5959
5960 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5961 {
5962 struct netdev_queue *queue = dev_ingress_queue(dev);
5963
5964 #ifdef CONFIG_NET_CLS_ACT
5965 if (queue)
5966 return queue;
5967 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5968 if (!queue)
5969 return NULL;
5970 netdev_init_one_queue(dev, queue, NULL);
5971 queue->qdisc = &noop_qdisc;
5972 queue->qdisc_sleeping = &noop_qdisc;
5973 rcu_assign_pointer(dev->ingress_queue, queue);
5974 #endif
5975 return queue;
5976 }
5977
5978 static const struct ethtool_ops default_ethtool_ops;
5979
5980 /**
5981 * alloc_netdev_mqs - allocate network device
5982 * @sizeof_priv: size of private data to allocate space for
5983 * @name: device name format string
5984 * @setup: callback to initialize device
5985 * @txqs: the number of TX subqueues to allocate
5986 * @rxqs: the number of RX subqueues to allocate
5987 *
5988 * Allocates a struct net_device with private data area for driver use
5989 * and performs basic initialization. Also allocates subquue structs
5990 * for each queue on the device.
5991 */
5992 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5993 void (*setup)(struct net_device *),
5994 unsigned int txqs, unsigned int rxqs)
5995 {
5996 struct net_device *dev;
5997 size_t alloc_size;
5998 struct net_device *p;
5999
6000 BUG_ON(strlen(name) >= sizeof(dev->name));
6001
6002 if (txqs < 1) {
6003 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6004 return NULL;
6005 }
6006
6007 #ifdef CONFIG_RPS
6008 if (rxqs < 1) {
6009 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6010 return NULL;
6011 }
6012 #endif
6013
6014 alloc_size = sizeof(struct net_device);
6015 if (sizeof_priv) {
6016 /* ensure 32-byte alignment of private area */
6017 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6018 alloc_size += sizeof_priv;
6019 }
6020 /* ensure 32-byte alignment of whole construct */
6021 alloc_size += NETDEV_ALIGN - 1;
6022
6023 p = kzalloc(alloc_size, GFP_KERNEL);
6024 if (!p) {
6025 pr_err("alloc_netdev: Unable to allocate device\n");
6026 return NULL;
6027 }
6028
6029 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6030 dev->padded = (char *)dev - (char *)p;
6031
6032 dev->pcpu_refcnt = alloc_percpu(int);
6033 if (!dev->pcpu_refcnt)
6034 goto free_p;
6035
6036 if (dev_addr_init(dev))
6037 goto free_pcpu;
6038
6039 dev_mc_init(dev);
6040 dev_uc_init(dev);
6041
6042 dev_net_set(dev, &init_net);
6043
6044 dev->gso_max_size = GSO_MAX_SIZE;
6045 dev->gso_max_segs = GSO_MAX_SEGS;
6046
6047 INIT_LIST_HEAD(&dev->napi_list);
6048 INIT_LIST_HEAD(&dev->unreg_list);
6049 INIT_LIST_HEAD(&dev->link_watch_list);
6050 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6051 setup(dev);
6052
6053 dev->num_tx_queues = txqs;
6054 dev->real_num_tx_queues = txqs;
6055 if (netif_alloc_netdev_queues(dev))
6056 goto free_all;
6057
6058 #ifdef CONFIG_RPS
6059 dev->num_rx_queues = rxqs;
6060 dev->real_num_rx_queues = rxqs;
6061 if (netif_alloc_rx_queues(dev))
6062 goto free_all;
6063 #endif
6064
6065 strcpy(dev->name, name);
6066 dev->group = INIT_NETDEV_GROUP;
6067 if (!dev->ethtool_ops)
6068 dev->ethtool_ops = &default_ethtool_ops;
6069 return dev;
6070
6071 free_all:
6072 free_netdev(dev);
6073 return NULL;
6074
6075 free_pcpu:
6076 free_percpu(dev->pcpu_refcnt);
6077 kfree(dev->_tx);
6078 #ifdef CONFIG_RPS
6079 kfree(dev->_rx);
6080 #endif
6081
6082 free_p:
6083 kfree(p);
6084 return NULL;
6085 }
6086 EXPORT_SYMBOL(alloc_netdev_mqs);
6087
6088 /**
6089 * free_netdev - free network device
6090 * @dev: device
6091 *
6092 * This function does the last stage of destroying an allocated device
6093 * interface. The reference to the device object is released.
6094 * If this is the last reference then it will be freed.
6095 */
6096 void free_netdev(struct net_device *dev)
6097 {
6098 struct napi_struct *p, *n;
6099
6100 release_net(dev_net(dev));
6101
6102 kfree(dev->_tx);
6103 #ifdef CONFIG_RPS
6104 kfree(dev->_rx);
6105 #endif
6106
6107 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6108
6109 /* Flush device addresses */
6110 dev_addr_flush(dev);
6111
6112 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6113 netif_napi_del(p);
6114
6115 free_percpu(dev->pcpu_refcnt);
6116 dev->pcpu_refcnt = NULL;
6117
6118 /* Compatibility with error handling in drivers */
6119 if (dev->reg_state == NETREG_UNINITIALIZED) {
6120 kfree((char *)dev - dev->padded);
6121 return;
6122 }
6123
6124 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6125 dev->reg_state = NETREG_RELEASED;
6126
6127 /* will free via device release */
6128 put_device(&dev->dev);
6129 }
6130 EXPORT_SYMBOL(free_netdev);
6131
6132 /**
6133 * synchronize_net - Synchronize with packet receive processing
6134 *
6135 * Wait for packets currently being received to be done.
6136 * Does not block later packets from starting.
6137 */
6138 void synchronize_net(void)
6139 {
6140 might_sleep();
6141 if (rtnl_is_locked())
6142 synchronize_rcu_expedited();
6143 else
6144 synchronize_rcu();
6145 }
6146 EXPORT_SYMBOL(synchronize_net);
6147
6148 /**
6149 * unregister_netdevice_queue - remove device from the kernel
6150 * @dev: device
6151 * @head: list
6152 *
6153 * This function shuts down a device interface and removes it
6154 * from the kernel tables.
6155 * If head not NULL, device is queued to be unregistered later.
6156 *
6157 * Callers must hold the rtnl semaphore. You may want
6158 * unregister_netdev() instead of this.
6159 */
6160
6161 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6162 {
6163 ASSERT_RTNL();
6164
6165 if (head) {
6166 list_move_tail(&dev->unreg_list, head);
6167 } else {
6168 rollback_registered(dev);
6169 /* Finish processing unregister after unlock */
6170 net_set_todo(dev);
6171 }
6172 }
6173 EXPORT_SYMBOL(unregister_netdevice_queue);
6174
6175 /**
6176 * unregister_netdevice_many - unregister many devices
6177 * @head: list of devices
6178 */
6179 void unregister_netdevice_many(struct list_head *head)
6180 {
6181 struct net_device *dev;
6182
6183 if (!list_empty(head)) {
6184 rollback_registered_many(head);
6185 list_for_each_entry(dev, head, unreg_list)
6186 net_set_todo(dev);
6187 }
6188 }
6189 EXPORT_SYMBOL(unregister_netdevice_many);
6190
6191 /**
6192 * unregister_netdev - remove device from the kernel
6193 * @dev: device
6194 *
6195 * This function shuts down a device interface and removes it
6196 * from the kernel tables.
6197 *
6198 * This is just a wrapper for unregister_netdevice that takes
6199 * the rtnl semaphore. In general you want to use this and not
6200 * unregister_netdevice.
6201 */
6202 void unregister_netdev(struct net_device *dev)
6203 {
6204 rtnl_lock();
6205 unregister_netdevice(dev);
6206 rtnl_unlock();
6207 }
6208 EXPORT_SYMBOL(unregister_netdev);
6209
6210 /**
6211 * dev_change_net_namespace - move device to different nethost namespace
6212 * @dev: device
6213 * @net: network namespace
6214 * @pat: If not NULL name pattern to try if the current device name
6215 * is already taken in the destination network namespace.
6216 *
6217 * This function shuts down a device interface and moves it
6218 * to a new network namespace. On success 0 is returned, on
6219 * a failure a netagive errno code is returned.
6220 *
6221 * Callers must hold the rtnl semaphore.
6222 */
6223
6224 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6225 {
6226 int err;
6227
6228 ASSERT_RTNL();
6229
6230 /* Don't allow namespace local devices to be moved. */
6231 err = -EINVAL;
6232 if (dev->features & NETIF_F_NETNS_LOCAL)
6233 goto out;
6234
6235 /* Ensure the device has been registrered */
6236 err = -EINVAL;
6237 if (dev->reg_state != NETREG_REGISTERED)
6238 goto out;
6239
6240 /* Get out if there is nothing todo */
6241 err = 0;
6242 if (net_eq(dev_net(dev), net))
6243 goto out;
6244
6245 /* Pick the destination device name, and ensure
6246 * we can use it in the destination network namespace.
6247 */
6248 err = -EEXIST;
6249 if (__dev_get_by_name(net, dev->name)) {
6250 /* We get here if we can't use the current device name */
6251 if (!pat)
6252 goto out;
6253 if (dev_get_valid_name(net, dev, pat) < 0)
6254 goto out;
6255 }
6256
6257 /*
6258 * And now a mini version of register_netdevice unregister_netdevice.
6259 */
6260
6261 /* If device is running close it first. */
6262 dev_close(dev);
6263
6264 /* And unlink it from device chain */
6265 err = -ENODEV;
6266 unlist_netdevice(dev);
6267
6268 synchronize_net();
6269
6270 /* Shutdown queueing discipline. */
6271 dev_shutdown(dev);
6272
6273 /* Notify protocols, that we are about to destroy
6274 this device. They should clean all the things.
6275
6276 Note that dev->reg_state stays at NETREG_REGISTERED.
6277 This is wanted because this way 8021q and macvlan know
6278 the device is just moving and can keep their slaves up.
6279 */
6280 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6281 rcu_barrier();
6282 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6283 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6284
6285 /*
6286 * Flush the unicast and multicast chains
6287 */
6288 dev_uc_flush(dev);
6289 dev_mc_flush(dev);
6290
6291 /* Actually switch the network namespace */
6292 dev_net_set(dev, net);
6293
6294 /* If there is an ifindex conflict assign a new one */
6295 if (__dev_get_by_index(net, dev->ifindex)) {
6296 int iflink = (dev->iflink == dev->ifindex);
6297 dev->ifindex = dev_new_index(net);
6298 if (iflink)
6299 dev->iflink = dev->ifindex;
6300 }
6301
6302 /* Fixup kobjects */
6303 err = device_rename(&dev->dev, dev->name);
6304 WARN_ON(err);
6305
6306 /* Add the device back in the hashes */
6307 list_netdevice(dev);
6308
6309 /* Notify protocols, that a new device appeared. */
6310 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6311
6312 /*
6313 * Prevent userspace races by waiting until the network
6314 * device is fully setup before sending notifications.
6315 */
6316 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6317
6318 synchronize_net();
6319 err = 0;
6320 out:
6321 return err;
6322 }
6323 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6324
6325 static int dev_cpu_callback(struct notifier_block *nfb,
6326 unsigned long action,
6327 void *ocpu)
6328 {
6329 struct sk_buff **list_skb;
6330 struct sk_buff *skb;
6331 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6332 struct softnet_data *sd, *oldsd;
6333
6334 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6335 return NOTIFY_OK;
6336
6337 local_irq_disable();
6338 cpu = smp_processor_id();
6339 sd = &per_cpu(softnet_data, cpu);
6340 oldsd = &per_cpu(softnet_data, oldcpu);
6341
6342 /* Find end of our completion_queue. */
6343 list_skb = &sd->completion_queue;
6344 while (*list_skb)
6345 list_skb = &(*list_skb)->next;
6346 /* Append completion queue from offline CPU. */
6347 *list_skb = oldsd->completion_queue;
6348 oldsd->completion_queue = NULL;
6349
6350 /* Append output queue from offline CPU. */
6351 if (oldsd->output_queue) {
6352 *sd->output_queue_tailp = oldsd->output_queue;
6353 sd->output_queue_tailp = oldsd->output_queue_tailp;
6354 oldsd->output_queue = NULL;
6355 oldsd->output_queue_tailp = &oldsd->output_queue;
6356 }
6357 /* Append NAPI poll list from offline CPU. */
6358 if (!list_empty(&oldsd->poll_list)) {
6359 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6360 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6361 }
6362
6363 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6364 local_irq_enable();
6365
6366 /* Process offline CPU's input_pkt_queue */
6367 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6368 netif_rx(skb);
6369 input_queue_head_incr(oldsd);
6370 }
6371 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6372 netif_rx(skb);
6373 input_queue_head_incr(oldsd);
6374 }
6375
6376 return NOTIFY_OK;
6377 }
6378
6379
6380 /**
6381 * netdev_increment_features - increment feature set by one
6382 * @all: current feature set
6383 * @one: new feature set
6384 * @mask: mask feature set
6385 *
6386 * Computes a new feature set after adding a device with feature set
6387 * @one to the master device with current feature set @all. Will not
6388 * enable anything that is off in @mask. Returns the new feature set.
6389 */
6390 netdev_features_t netdev_increment_features(netdev_features_t all,
6391 netdev_features_t one, netdev_features_t mask)
6392 {
6393 if (mask & NETIF_F_GEN_CSUM)
6394 mask |= NETIF_F_ALL_CSUM;
6395 mask |= NETIF_F_VLAN_CHALLENGED;
6396
6397 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6398 all &= one | ~NETIF_F_ALL_FOR_ALL;
6399
6400 /* If one device supports hw checksumming, set for all. */
6401 if (all & NETIF_F_GEN_CSUM)
6402 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6403
6404 return all;
6405 }
6406 EXPORT_SYMBOL(netdev_increment_features);
6407
6408 static struct hlist_head *netdev_create_hash(void)
6409 {
6410 int i;
6411 struct hlist_head *hash;
6412
6413 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6414 if (hash != NULL)
6415 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6416 INIT_HLIST_HEAD(&hash[i]);
6417
6418 return hash;
6419 }
6420
6421 /* Initialize per network namespace state */
6422 static int __net_init netdev_init(struct net *net)
6423 {
6424 if (net != &init_net)
6425 INIT_LIST_HEAD(&net->dev_base_head);
6426
6427 net->dev_name_head = netdev_create_hash();
6428 if (net->dev_name_head == NULL)
6429 goto err_name;
6430
6431 net->dev_index_head = netdev_create_hash();
6432 if (net->dev_index_head == NULL)
6433 goto err_idx;
6434
6435 return 0;
6436
6437 err_idx:
6438 kfree(net->dev_name_head);
6439 err_name:
6440 return -ENOMEM;
6441 }
6442
6443 /**
6444 * netdev_drivername - network driver for the device
6445 * @dev: network device
6446 *
6447 * Determine network driver for device.
6448 */
6449 const char *netdev_drivername(const struct net_device *dev)
6450 {
6451 const struct device_driver *driver;
6452 const struct device *parent;
6453 const char *empty = "";
6454
6455 parent = dev->dev.parent;
6456 if (!parent)
6457 return empty;
6458
6459 driver = parent->driver;
6460 if (driver && driver->name)
6461 return driver->name;
6462 return empty;
6463 }
6464
6465 int __netdev_printk(const char *level, const struct net_device *dev,
6466 struct va_format *vaf)
6467 {
6468 int r;
6469
6470 if (dev && dev->dev.parent)
6471 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6472 netdev_name(dev), vaf);
6473 else if (dev)
6474 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6475 else
6476 r = printk("%s(NULL net_device): %pV", level, vaf);
6477
6478 return r;
6479 }
6480 EXPORT_SYMBOL(__netdev_printk);
6481
6482 int netdev_printk(const char *level, const struct net_device *dev,
6483 const char *format, ...)
6484 {
6485 struct va_format vaf;
6486 va_list args;
6487 int r;
6488
6489 va_start(args, format);
6490
6491 vaf.fmt = format;
6492 vaf.va = &args;
6493
6494 r = __netdev_printk(level, dev, &vaf);
6495 va_end(args);
6496
6497 return r;
6498 }
6499 EXPORT_SYMBOL(netdev_printk);
6500
6501 #define define_netdev_printk_level(func, level) \
6502 int func(const struct net_device *dev, const char *fmt, ...) \
6503 { \
6504 int r; \
6505 struct va_format vaf; \
6506 va_list args; \
6507 \
6508 va_start(args, fmt); \
6509 \
6510 vaf.fmt = fmt; \
6511 vaf.va = &args; \
6512 \
6513 r = __netdev_printk(level, dev, &vaf); \
6514 va_end(args); \
6515 \
6516 return r; \
6517 } \
6518 EXPORT_SYMBOL(func);
6519
6520 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6521 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6522 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6523 define_netdev_printk_level(netdev_err, KERN_ERR);
6524 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6525 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6526 define_netdev_printk_level(netdev_info, KERN_INFO);
6527
6528 static void __net_exit netdev_exit(struct net *net)
6529 {
6530 kfree(net->dev_name_head);
6531 kfree(net->dev_index_head);
6532 }
6533
6534 static struct pernet_operations __net_initdata netdev_net_ops = {
6535 .init = netdev_init,
6536 .exit = netdev_exit,
6537 };
6538
6539 static void __net_exit default_device_exit(struct net *net)
6540 {
6541 struct net_device *dev, *aux;
6542 /*
6543 * Push all migratable network devices back to the
6544 * initial network namespace
6545 */
6546 rtnl_lock();
6547 for_each_netdev_safe(net, dev, aux) {
6548 int err;
6549 char fb_name[IFNAMSIZ];
6550
6551 /* Ignore unmoveable devices (i.e. loopback) */
6552 if (dev->features & NETIF_F_NETNS_LOCAL)
6553 continue;
6554
6555 /* Leave virtual devices for the generic cleanup */
6556 if (dev->rtnl_link_ops)
6557 continue;
6558
6559 /* Push remaining network devices to init_net */
6560 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6561 err = dev_change_net_namespace(dev, &init_net, fb_name);
6562 if (err) {
6563 pr_emerg("%s: failed to move %s to init_net: %d\n",
6564 __func__, dev->name, err);
6565 BUG();
6566 }
6567 }
6568 rtnl_unlock();
6569 }
6570
6571 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6572 {
6573 /* At exit all network devices most be removed from a network
6574 * namespace. Do this in the reverse order of registration.
6575 * Do this across as many network namespaces as possible to
6576 * improve batching efficiency.
6577 */
6578 struct net_device *dev;
6579 struct net *net;
6580 LIST_HEAD(dev_kill_list);
6581
6582 rtnl_lock();
6583 list_for_each_entry(net, net_list, exit_list) {
6584 for_each_netdev_reverse(net, dev) {
6585 if (dev->rtnl_link_ops)
6586 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6587 else
6588 unregister_netdevice_queue(dev, &dev_kill_list);
6589 }
6590 }
6591 unregister_netdevice_many(&dev_kill_list);
6592 list_del(&dev_kill_list);
6593 rtnl_unlock();
6594 }
6595
6596 static struct pernet_operations __net_initdata default_device_ops = {
6597 .exit = default_device_exit,
6598 .exit_batch = default_device_exit_batch,
6599 };
6600
6601 /*
6602 * Initialize the DEV module. At boot time this walks the device list and
6603 * unhooks any devices that fail to initialise (normally hardware not
6604 * present) and leaves us with a valid list of present and active devices.
6605 *
6606 */
6607
6608 /*
6609 * This is called single threaded during boot, so no need
6610 * to take the rtnl semaphore.
6611 */
6612 static int __init net_dev_init(void)
6613 {
6614 int i, rc = -ENOMEM;
6615
6616 BUG_ON(!dev_boot_phase);
6617
6618 if (dev_proc_init())
6619 goto out;
6620
6621 if (netdev_kobject_init())
6622 goto out;
6623
6624 INIT_LIST_HEAD(&ptype_all);
6625 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6626 INIT_LIST_HEAD(&ptype_base[i]);
6627
6628 if (register_pernet_subsys(&netdev_net_ops))
6629 goto out;
6630
6631 /*
6632 * Initialise the packet receive queues.
6633 */
6634
6635 for_each_possible_cpu(i) {
6636 struct softnet_data *sd = &per_cpu(softnet_data, i);
6637
6638 memset(sd, 0, sizeof(*sd));
6639 skb_queue_head_init(&sd->input_pkt_queue);
6640 skb_queue_head_init(&sd->process_queue);
6641 sd->completion_queue = NULL;
6642 INIT_LIST_HEAD(&sd->poll_list);
6643 sd->output_queue = NULL;
6644 sd->output_queue_tailp = &sd->output_queue;
6645 #ifdef CONFIG_RPS
6646 sd->csd.func = rps_trigger_softirq;
6647 sd->csd.info = sd;
6648 sd->csd.flags = 0;
6649 sd->cpu = i;
6650 #endif
6651
6652 sd->backlog.poll = process_backlog;
6653 sd->backlog.weight = weight_p;
6654 sd->backlog.gro_list = NULL;
6655 sd->backlog.gro_count = 0;
6656 }
6657
6658 dev_boot_phase = 0;
6659
6660 /* The loopback device is special if any other network devices
6661 * is present in a network namespace the loopback device must
6662 * be present. Since we now dynamically allocate and free the
6663 * loopback device ensure this invariant is maintained by
6664 * keeping the loopback device as the first device on the
6665 * list of network devices. Ensuring the loopback devices
6666 * is the first device that appears and the last network device
6667 * that disappears.
6668 */
6669 if (register_pernet_device(&loopback_net_ops))
6670 goto out;
6671
6672 if (register_pernet_device(&default_device_ops))
6673 goto out;
6674
6675 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6676 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6677
6678 hotcpu_notifier(dev_cpu_callback, 0);
6679 dst_init();
6680 dev_mcast_init();
6681 rc = 0;
6682 out:
6683 return rc;
6684 }
6685
6686 subsys_initcall(net_dev_init);
6687
6688 static int __init initialize_hashrnd(void)
6689 {
6690 get_random_bytes(&hashrnd, sizeof(hashrnd));
6691 return 0;
6692 }
6693
6694 late_initcall_sync(initialize_hashrnd);
6695
This page took 0.315754 seconds and 5 git commands to generate.