net: Allow changing number of RX queues after device allocation
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133
134 #include "net-sysfs.h"
135
136 /* Instead of increasing this, you should create a hash table. */
137 #define MAX_GRO_SKBS 8
138
139 /* This should be increased if a protocol with a bigger head is added. */
140 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141
142 /*
143 * The list of packet types we will receive (as opposed to discard)
144 * and the routines to invoke.
145 *
146 * Why 16. Because with 16 the only overlap we get on a hash of the
147 * low nibble of the protocol value is RARP/SNAP/X.25.
148 *
149 * NOTE: That is no longer true with the addition of VLAN tags. Not
150 * sure which should go first, but I bet it won't make much
151 * difference if we are running VLANs. The good news is that
152 * this protocol won't be in the list unless compiled in, so
153 * the average user (w/out VLANs) will not be adversely affected.
154 * --BLG
155 *
156 * 0800 IP
157 * 8100 802.1Q VLAN
158 * 0001 802.3
159 * 0002 AX.25
160 * 0004 802.2
161 * 8035 RARP
162 * 0005 SNAP
163 * 0805 X.25
164 * 0806 ARP
165 * 8137 IPX
166 * 0009 Localtalk
167 * 86DD IPv6
168 */
169
170 #define PTYPE_HASH_SIZE (16)
171 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172
173 static DEFINE_SPINLOCK(ptype_lock);
174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
175 static struct list_head ptype_all __read_mostly; /* Taps */
176
177 /*
178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
179 * semaphore.
180 *
181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182 *
183 * Writers must hold the rtnl semaphore while they loop through the
184 * dev_base_head list, and hold dev_base_lock for writing when they do the
185 * actual updates. This allows pure readers to access the list even
186 * while a writer is preparing to update it.
187 *
188 * To put it another way, dev_base_lock is held for writing only to
189 * protect against pure readers; the rtnl semaphore provides the
190 * protection against other writers.
191 *
192 * See, for example usages, register_netdevice() and
193 * unregister_netdevice(), which must be called with the rtnl
194 * semaphore held.
195 */
196 DEFINE_RWLOCK(dev_base_lock);
197 EXPORT_SYMBOL(dev_base_lock);
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static int list_netdevice(struct net_device *dev)
226 {
227 struct net *net = dev_net(dev);
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
237 return 0;
238 }
239
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
253 }
254
255 /*
256 * Our notifier list
257 */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler.
264 */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272 * according to dev->type
273 */
274 static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
288 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
289 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
290 ARPHRD_VOID, ARPHRD_NONE};
291
292 static const char *const netdev_lock_name[] =
293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
306 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
307 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
308 "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 if (pt->type == htons(ETH_P_ALL))
378 return &ptype_all;
379 else
380 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 }
382
383 /**
384 * dev_add_pack - add packet handler
385 * @pt: packet type declaration
386 *
387 * Add a protocol handler to the networking stack. The passed &packet_type
388 * is linked into kernel lists and may not be freed until it has been
389 * removed from the kernel lists.
390 *
391 * This call does not sleep therefore it can not
392 * guarantee all CPU's that are in middle of receiving packets
393 * will see the new packet type (until the next received packet).
394 */
395
396 void dev_add_pack(struct packet_type *pt)
397 {
398 struct list_head *head = ptype_head(pt);
399
400 spin_lock(&ptype_lock);
401 list_add_rcu(&pt->list, head);
402 spin_unlock(&ptype_lock);
403 }
404 EXPORT_SYMBOL(dev_add_pack);
405
406 /**
407 * __dev_remove_pack - remove packet handler
408 * @pt: packet type declaration
409 *
410 * Remove a protocol handler that was previously added to the kernel
411 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
412 * from the kernel lists and can be freed or reused once this function
413 * returns.
414 *
415 * The packet type might still be in use by receivers
416 * and must not be freed until after all the CPU's have gone
417 * through a quiescent state.
418 */
419 void __dev_remove_pack(struct packet_type *pt)
420 {
421 struct list_head *head = ptype_head(pt);
422 struct packet_type *pt1;
423
424 spin_lock(&ptype_lock);
425
426 list_for_each_entry(pt1, head, list) {
427 if (pt == pt1) {
428 list_del_rcu(&pt->list);
429 goto out;
430 }
431 }
432
433 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
434 out:
435 spin_unlock(&ptype_lock);
436 }
437 EXPORT_SYMBOL(__dev_remove_pack);
438
439 /**
440 * dev_remove_pack - remove packet handler
441 * @pt: packet type declaration
442 *
443 * Remove a protocol handler that was previously added to the kernel
444 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
445 * from the kernel lists and can be freed or reused once this function
446 * returns.
447 *
448 * This call sleeps to guarantee that no CPU is looking at the packet
449 * type after return.
450 */
451 void dev_remove_pack(struct packet_type *pt)
452 {
453 __dev_remove_pack(pt);
454
455 synchronize_net();
456 }
457 EXPORT_SYMBOL(dev_remove_pack);
458
459 /******************************************************************************
460
461 Device Boot-time Settings Routines
462
463 *******************************************************************************/
464
465 /* Boot time configuration table */
466 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
467
468 /**
469 * netdev_boot_setup_add - add new setup entry
470 * @name: name of the device
471 * @map: configured settings for the device
472 *
473 * Adds new setup entry to the dev_boot_setup list. The function
474 * returns 0 on error and 1 on success. This is a generic routine to
475 * all netdevices.
476 */
477 static int netdev_boot_setup_add(char *name, struct ifmap *map)
478 {
479 struct netdev_boot_setup *s;
480 int i;
481
482 s = dev_boot_setup;
483 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
484 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
485 memset(s[i].name, 0, sizeof(s[i].name));
486 strlcpy(s[i].name, name, IFNAMSIZ);
487 memcpy(&s[i].map, map, sizeof(s[i].map));
488 break;
489 }
490 }
491
492 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
493 }
494
495 /**
496 * netdev_boot_setup_check - check boot time settings
497 * @dev: the netdevice
498 *
499 * Check boot time settings for the device.
500 * The found settings are set for the device to be used
501 * later in the device probing.
502 * Returns 0 if no settings found, 1 if they are.
503 */
504 int netdev_boot_setup_check(struct net_device *dev)
505 {
506 struct netdev_boot_setup *s = dev_boot_setup;
507 int i;
508
509 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
510 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
511 !strcmp(dev->name, s[i].name)) {
512 dev->irq = s[i].map.irq;
513 dev->base_addr = s[i].map.base_addr;
514 dev->mem_start = s[i].map.mem_start;
515 dev->mem_end = s[i].map.mem_end;
516 return 1;
517 }
518 }
519 return 0;
520 }
521 EXPORT_SYMBOL(netdev_boot_setup_check);
522
523
524 /**
525 * netdev_boot_base - get address from boot time settings
526 * @prefix: prefix for network device
527 * @unit: id for network device
528 *
529 * Check boot time settings for the base address of device.
530 * The found settings are set for the device to be used
531 * later in the device probing.
532 * Returns 0 if no settings found.
533 */
534 unsigned long netdev_boot_base(const char *prefix, int unit)
535 {
536 const struct netdev_boot_setup *s = dev_boot_setup;
537 char name[IFNAMSIZ];
538 int i;
539
540 sprintf(name, "%s%d", prefix, unit);
541
542 /*
543 * If device already registered then return base of 1
544 * to indicate not to probe for this interface
545 */
546 if (__dev_get_by_name(&init_net, name))
547 return 1;
548
549 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
550 if (!strcmp(name, s[i].name))
551 return s[i].map.base_addr;
552 return 0;
553 }
554
555 /*
556 * Saves at boot time configured settings for any netdevice.
557 */
558 int __init netdev_boot_setup(char *str)
559 {
560 int ints[5];
561 struct ifmap map;
562
563 str = get_options(str, ARRAY_SIZE(ints), ints);
564 if (!str || !*str)
565 return 0;
566
567 /* Save settings */
568 memset(&map, 0, sizeof(map));
569 if (ints[0] > 0)
570 map.irq = ints[1];
571 if (ints[0] > 1)
572 map.base_addr = ints[2];
573 if (ints[0] > 2)
574 map.mem_start = ints[3];
575 if (ints[0] > 3)
576 map.mem_end = ints[4];
577
578 /* Add new entry to the list */
579 return netdev_boot_setup_add(str, &map);
580 }
581
582 __setup("netdev=", netdev_boot_setup);
583
584 /*******************************************************************************
585
586 Device Interface Subroutines
587
588 *******************************************************************************/
589
590 /**
591 * __dev_get_by_name - find a device by its name
592 * @net: the applicable net namespace
593 * @name: name to find
594 *
595 * Find an interface by name. Must be called under RTNL semaphore
596 * or @dev_base_lock. If the name is found a pointer to the device
597 * is returned. If the name is not found then %NULL is returned. The
598 * reference counters are not incremented so the caller must be
599 * careful with locks.
600 */
601
602 struct net_device *__dev_get_by_name(struct net *net, const char *name)
603 {
604 struct hlist_node *p;
605 struct net_device *dev;
606 struct hlist_head *head = dev_name_hash(net, name);
607
608 hlist_for_each_entry(dev, p, head, name_hlist)
609 if (!strncmp(dev->name, name, IFNAMSIZ))
610 return dev;
611
612 return NULL;
613 }
614 EXPORT_SYMBOL(__dev_get_by_name);
615
616 /**
617 * dev_get_by_name_rcu - find a device by its name
618 * @net: the applicable net namespace
619 * @name: name to find
620 *
621 * Find an interface by name.
622 * If the name is found a pointer to the device is returned.
623 * If the name is not found then %NULL is returned.
624 * The reference counters are not incremented so the caller must be
625 * careful with locks. The caller must hold RCU lock.
626 */
627
628 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
629 {
630 struct hlist_node *p;
631 struct net_device *dev;
632 struct hlist_head *head = dev_name_hash(net, name);
633
634 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
635 if (!strncmp(dev->name, name, IFNAMSIZ))
636 return dev;
637
638 return NULL;
639 }
640 EXPORT_SYMBOL(dev_get_by_name_rcu);
641
642 /**
643 * dev_get_by_name - find a device by its name
644 * @net: the applicable net namespace
645 * @name: name to find
646 *
647 * Find an interface by name. This can be called from any
648 * context and does its own locking. The returned handle has
649 * the usage count incremented and the caller must use dev_put() to
650 * release it when it is no longer needed. %NULL is returned if no
651 * matching device is found.
652 */
653
654 struct net_device *dev_get_by_name(struct net *net, const char *name)
655 {
656 struct net_device *dev;
657
658 rcu_read_lock();
659 dev = dev_get_by_name_rcu(net, name);
660 if (dev)
661 dev_hold(dev);
662 rcu_read_unlock();
663 return dev;
664 }
665 EXPORT_SYMBOL(dev_get_by_name);
666
667 /**
668 * __dev_get_by_index - find a device by its ifindex
669 * @net: the applicable net namespace
670 * @ifindex: index of device
671 *
672 * Search for an interface by index. Returns %NULL if the device
673 * is not found or a pointer to the device. The device has not
674 * had its reference counter increased so the caller must be careful
675 * about locking. The caller must hold either the RTNL semaphore
676 * or @dev_base_lock.
677 */
678
679 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
680 {
681 struct hlist_node *p;
682 struct net_device *dev;
683 struct hlist_head *head = dev_index_hash(net, ifindex);
684
685 hlist_for_each_entry(dev, p, head, index_hlist)
686 if (dev->ifindex == ifindex)
687 return dev;
688
689 return NULL;
690 }
691 EXPORT_SYMBOL(__dev_get_by_index);
692
693 /**
694 * dev_get_by_index_rcu - find a device by its ifindex
695 * @net: the applicable net namespace
696 * @ifindex: index of device
697 *
698 * Search for an interface by index. Returns %NULL if the device
699 * is not found or a pointer to the device. The device has not
700 * had its reference counter increased so the caller must be careful
701 * about locking. The caller must hold RCU lock.
702 */
703
704 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
705 {
706 struct hlist_node *p;
707 struct net_device *dev;
708 struct hlist_head *head = dev_index_hash(net, ifindex);
709
710 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
711 if (dev->ifindex == ifindex)
712 return dev;
713
714 return NULL;
715 }
716 EXPORT_SYMBOL(dev_get_by_index_rcu);
717
718
719 /**
720 * dev_get_by_index - find a device by its ifindex
721 * @net: the applicable net namespace
722 * @ifindex: index of device
723 *
724 * Search for an interface by index. Returns NULL if the device
725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
728 */
729
730 struct net_device *dev_get_by_index(struct net *net, int ifindex)
731 {
732 struct net_device *dev;
733
734 rcu_read_lock();
735 dev = dev_get_by_index_rcu(net, ifindex);
736 if (dev)
737 dev_hold(dev);
738 rcu_read_unlock();
739 return dev;
740 }
741 EXPORT_SYMBOL(dev_get_by_index);
742
743 /**
744 * dev_getbyhwaddr - find a device by its hardware address
745 * @net: the applicable net namespace
746 * @type: media type of device
747 * @ha: hardware address
748 *
749 * Search for an interface by MAC address. Returns NULL if the device
750 * is not found or a pointer to the device. The caller must hold the
751 * rtnl semaphore. The returned device has not had its ref count increased
752 * and the caller must therefore be careful about locking
753 *
754 * BUGS:
755 * If the API was consistent this would be __dev_get_by_hwaddr
756 */
757
758 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
759 {
760 struct net_device *dev;
761
762 ASSERT_RTNL();
763
764 for_each_netdev(net, dev)
765 if (dev->type == type &&
766 !memcmp(dev->dev_addr, ha, dev->addr_len))
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(dev_getbyhwaddr);
772
773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev;
776
777 ASSERT_RTNL();
778 for_each_netdev(net, dev)
779 if (dev->type == type)
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
785
786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 struct net_device *dev, *ret = NULL;
789
790 rcu_read_lock();
791 for_each_netdev_rcu(net, dev)
792 if (dev->type == type) {
793 dev_hold(dev);
794 ret = dev;
795 break;
796 }
797 rcu_read_unlock();
798 return ret;
799 }
800 EXPORT_SYMBOL(dev_getfirstbyhwtype);
801
802 /**
803 * dev_get_by_flags_rcu - find any device with given flags
804 * @net: the applicable net namespace
805 * @if_flags: IFF_* values
806 * @mask: bitmask of bits in if_flags to check
807 *
808 * Search for any interface with the given flags. Returns NULL if a device
809 * is not found or a pointer to the device. Must be called inside
810 * rcu_read_lock(), and result refcount is unchanged.
811 */
812
813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
814 unsigned short mask)
815 {
816 struct net_device *dev, *ret;
817
818 ret = NULL;
819 for_each_netdev_rcu(net, dev) {
820 if (((dev->flags ^ if_flags) & mask) == 0) {
821 ret = dev;
822 break;
823 }
824 }
825 return ret;
826 }
827 EXPORT_SYMBOL(dev_get_by_flags_rcu);
828
829 /**
830 * dev_valid_name - check if name is okay for network device
831 * @name: name string
832 *
833 * Network device names need to be valid file names to
834 * to allow sysfs to work. We also disallow any kind of
835 * whitespace.
836 */
837 int dev_valid_name(const char *name)
838 {
839 if (*name == '\0')
840 return 0;
841 if (strlen(name) >= IFNAMSIZ)
842 return 0;
843 if (!strcmp(name, ".") || !strcmp(name, ".."))
844 return 0;
845
846 while (*name) {
847 if (*name == '/' || isspace(*name))
848 return 0;
849 name++;
850 }
851 return 1;
852 }
853 EXPORT_SYMBOL(dev_valid_name);
854
855 /**
856 * __dev_alloc_name - allocate a name for a device
857 * @net: network namespace to allocate the device name in
858 * @name: name format string
859 * @buf: scratch buffer and result name string
860 *
861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid
865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code.
868 */
869
870 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
871 {
872 int i = 0;
873 const char *p;
874 const int max_netdevices = 8*PAGE_SIZE;
875 unsigned long *inuse;
876 struct net_device *d;
877
878 p = strnchr(name, IFNAMSIZ-1, '%');
879 if (p) {
880 /*
881 * Verify the string as this thing may have come from
882 * the user. There must be either one "%d" and no other "%"
883 * characters.
884 */
885 if (p[1] != 'd' || strchr(p + 2, '%'))
886 return -EINVAL;
887
888 /* Use one page as a bit array of possible slots */
889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
890 if (!inuse)
891 return -ENOMEM;
892
893 for_each_netdev(net, d) {
894 if (!sscanf(d->name, name, &i))
895 continue;
896 if (i < 0 || i >= max_netdevices)
897 continue;
898
899 /* avoid cases where sscanf is not exact inverse of printf */
900 snprintf(buf, IFNAMSIZ, name, i);
901 if (!strncmp(buf, d->name, IFNAMSIZ))
902 set_bit(i, inuse);
903 }
904
905 i = find_first_zero_bit(inuse, max_netdevices);
906 free_page((unsigned long) inuse);
907 }
908
909 if (buf != name)
910 snprintf(buf, IFNAMSIZ, name, i);
911 if (!__dev_get_by_name(net, buf))
912 return i;
913
914 /* It is possible to run out of possible slots
915 * when the name is long and there isn't enough space left
916 * for the digits, or if all bits are used.
917 */
918 return -ENFILE;
919 }
920
921 /**
922 * dev_alloc_name - allocate a name for a device
923 * @dev: device
924 * @name: name format string
925 *
926 * Passed a format string - eg "lt%d" it will try and find a suitable
927 * id. It scans list of devices to build up a free map, then chooses
928 * the first empty slot. The caller must hold the dev_base or rtnl lock
929 * while allocating the name and adding the device in order to avoid
930 * duplicates.
931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
932 * Returns the number of the unit assigned or a negative errno code.
933 */
934
935 int dev_alloc_name(struct net_device *dev, const char *name)
936 {
937 char buf[IFNAMSIZ];
938 struct net *net;
939 int ret;
940
941 BUG_ON(!dev_net(dev));
942 net = dev_net(dev);
943 ret = __dev_alloc_name(net, name, buf);
944 if (ret >= 0)
945 strlcpy(dev->name, buf, IFNAMSIZ);
946 return ret;
947 }
948 EXPORT_SYMBOL(dev_alloc_name);
949
950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
951 {
952 struct net *net;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956
957 if (!dev_valid_name(name))
958 return -EINVAL;
959
960 if (fmt && strchr(name, '%'))
961 return dev_alloc_name(dev, name);
962 else if (__dev_get_by_name(net, name))
963 return -EEXIST;
964 else if (dev->name != name)
965 strlcpy(dev->name, name, IFNAMSIZ);
966
967 return 0;
968 }
969
970 /**
971 * dev_change_name - change name of a device
972 * @dev: device
973 * @newname: name (or format string) must be at least IFNAMSIZ
974 *
975 * Change name of a device, can pass format strings "eth%d".
976 * for wildcarding.
977 */
978 int dev_change_name(struct net_device *dev, const char *newname)
979 {
980 char oldname[IFNAMSIZ];
981 int err = 0;
982 int ret;
983 struct net *net;
984
985 ASSERT_RTNL();
986 BUG_ON(!dev_net(dev));
987
988 net = dev_net(dev);
989 if (dev->flags & IFF_UP)
990 return -EBUSY;
991
992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
993 return 0;
994
995 memcpy(oldname, dev->name, IFNAMSIZ);
996
997 err = dev_get_valid_name(dev, newname, 1);
998 if (err < 0)
999 return err;
1000
1001 rollback:
1002 ret = device_rename(&dev->dev, dev->name);
1003 if (ret) {
1004 memcpy(dev->name, oldname, IFNAMSIZ);
1005 return ret;
1006 }
1007
1008 write_lock_bh(&dev_base_lock);
1009 hlist_del(&dev->name_hlist);
1010 write_unlock_bh(&dev_base_lock);
1011
1012 synchronize_rcu();
1013
1014 write_lock_bh(&dev_base_lock);
1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1016 write_unlock_bh(&dev_base_lock);
1017
1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1019 ret = notifier_to_errno(ret);
1020
1021 if (ret) {
1022 /* err >= 0 after dev_alloc_name() or stores the first errno */
1023 if (err >= 0) {
1024 err = ret;
1025 memcpy(dev->name, oldname, IFNAMSIZ);
1026 goto rollback;
1027 } else {
1028 printk(KERN_ERR
1029 "%s: name change rollback failed: %d.\n",
1030 dev->name, ret);
1031 }
1032 }
1033
1034 return err;
1035 }
1036
1037 /**
1038 * dev_set_alias - change ifalias of a device
1039 * @dev: device
1040 * @alias: name up to IFALIASZ
1041 * @len: limit of bytes to copy from info
1042 *
1043 * Set ifalias for a device,
1044 */
1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1046 {
1047 ASSERT_RTNL();
1048
1049 if (len >= IFALIASZ)
1050 return -EINVAL;
1051
1052 if (!len) {
1053 if (dev->ifalias) {
1054 kfree(dev->ifalias);
1055 dev->ifalias = NULL;
1056 }
1057 return 0;
1058 }
1059
1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1061 if (!dev->ifalias)
1062 return -ENOMEM;
1063
1064 strlcpy(dev->ifalias, alias, len+1);
1065 return len;
1066 }
1067
1068
1069 /**
1070 * netdev_features_change - device changes features
1071 * @dev: device to cause notification
1072 *
1073 * Called to indicate a device has changed features.
1074 */
1075 void netdev_features_change(struct net_device *dev)
1076 {
1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1078 }
1079 EXPORT_SYMBOL(netdev_features_change);
1080
1081 /**
1082 * netdev_state_change - device changes state
1083 * @dev: device to cause notification
1084 *
1085 * Called to indicate a device has changed state. This function calls
1086 * the notifier chains for netdev_chain and sends a NEWLINK message
1087 * to the routing socket.
1088 */
1089 void netdev_state_change(struct net_device *dev)
1090 {
1091 if (dev->flags & IFF_UP) {
1092 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1094 }
1095 }
1096 EXPORT_SYMBOL(netdev_state_change);
1097
1098 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1099 {
1100 return call_netdevice_notifiers(event, dev);
1101 }
1102 EXPORT_SYMBOL(netdev_bonding_change);
1103
1104 /**
1105 * dev_load - load a network module
1106 * @net: the applicable net namespace
1107 * @name: name of interface
1108 *
1109 * If a network interface is not present and the process has suitable
1110 * privileges this function loads the module. If module loading is not
1111 * available in this kernel then it becomes a nop.
1112 */
1113
1114 void dev_load(struct net *net, const char *name)
1115 {
1116 struct net_device *dev;
1117
1118 rcu_read_lock();
1119 dev = dev_get_by_name_rcu(net, name);
1120 rcu_read_unlock();
1121
1122 if (!dev && capable(CAP_NET_ADMIN))
1123 request_module("%s", name);
1124 }
1125 EXPORT_SYMBOL(dev_load);
1126
1127 static int __dev_open(struct net_device *dev)
1128 {
1129 const struct net_device_ops *ops = dev->netdev_ops;
1130 int ret;
1131
1132 ASSERT_RTNL();
1133
1134 /*
1135 * Is it even present?
1136 */
1137 if (!netif_device_present(dev))
1138 return -ENODEV;
1139
1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1141 ret = notifier_to_errno(ret);
1142 if (ret)
1143 return ret;
1144
1145 /*
1146 * Call device private open method
1147 */
1148 set_bit(__LINK_STATE_START, &dev->state);
1149
1150 if (ops->ndo_validate_addr)
1151 ret = ops->ndo_validate_addr(dev);
1152
1153 if (!ret && ops->ndo_open)
1154 ret = ops->ndo_open(dev);
1155
1156 /*
1157 * If it went open OK then:
1158 */
1159
1160 if (ret)
1161 clear_bit(__LINK_STATE_START, &dev->state);
1162 else {
1163 /*
1164 * Set the flags.
1165 */
1166 dev->flags |= IFF_UP;
1167
1168 /*
1169 * Enable NET_DMA
1170 */
1171 net_dmaengine_get();
1172
1173 /*
1174 * Initialize multicasting status
1175 */
1176 dev_set_rx_mode(dev);
1177
1178 /*
1179 * Wakeup transmit queue engine
1180 */
1181 dev_activate(dev);
1182 }
1183
1184 return ret;
1185 }
1186
1187 /**
1188 * dev_open - prepare an interface for use.
1189 * @dev: device to open
1190 *
1191 * Takes a device from down to up state. The device's private open
1192 * function is invoked and then the multicast lists are loaded. Finally
1193 * the device is moved into the up state and a %NETDEV_UP message is
1194 * sent to the netdev notifier chain.
1195 *
1196 * Calling this function on an active interface is a nop. On a failure
1197 * a negative errno code is returned.
1198 */
1199 int dev_open(struct net_device *dev)
1200 {
1201 int ret;
1202
1203 /*
1204 * Is it already up?
1205 */
1206 if (dev->flags & IFF_UP)
1207 return 0;
1208
1209 /*
1210 * Open device
1211 */
1212 ret = __dev_open(dev);
1213 if (ret < 0)
1214 return ret;
1215
1216 /*
1217 * ... and announce new interface.
1218 */
1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1220 call_netdevice_notifiers(NETDEV_UP, dev);
1221
1222 return ret;
1223 }
1224 EXPORT_SYMBOL(dev_open);
1225
1226 static int __dev_close(struct net_device *dev)
1227 {
1228 const struct net_device_ops *ops = dev->netdev_ops;
1229
1230 ASSERT_RTNL();
1231 might_sleep();
1232
1233 /*
1234 * Tell people we are going down, so that they can
1235 * prepare to death, when device is still operating.
1236 */
1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1238
1239 clear_bit(__LINK_STATE_START, &dev->state);
1240
1241 /* Synchronize to scheduled poll. We cannot touch poll list,
1242 * it can be even on different cpu. So just clear netif_running().
1243 *
1244 * dev->stop() will invoke napi_disable() on all of it's
1245 * napi_struct instances on this device.
1246 */
1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1248
1249 dev_deactivate(dev);
1250
1251 /*
1252 * Call the device specific close. This cannot fail.
1253 * Only if device is UP
1254 *
1255 * We allow it to be called even after a DETACH hot-plug
1256 * event.
1257 */
1258 if (ops->ndo_stop)
1259 ops->ndo_stop(dev);
1260
1261 /*
1262 * Device is now down.
1263 */
1264
1265 dev->flags &= ~IFF_UP;
1266
1267 /*
1268 * Shutdown NET_DMA
1269 */
1270 net_dmaengine_put();
1271
1272 return 0;
1273 }
1274
1275 /**
1276 * dev_close - shutdown an interface.
1277 * @dev: device to shutdown
1278 *
1279 * This function moves an active device into down state. A
1280 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1281 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1282 * chain.
1283 */
1284 int dev_close(struct net_device *dev)
1285 {
1286 if (!(dev->flags & IFF_UP))
1287 return 0;
1288
1289 __dev_close(dev);
1290
1291 /*
1292 * Tell people we are down
1293 */
1294 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1295 call_netdevice_notifiers(NETDEV_DOWN, dev);
1296
1297 return 0;
1298 }
1299 EXPORT_SYMBOL(dev_close);
1300
1301
1302 /**
1303 * dev_disable_lro - disable Large Receive Offload on a device
1304 * @dev: device
1305 *
1306 * Disable Large Receive Offload (LRO) on a net device. Must be
1307 * called under RTNL. This is needed if received packets may be
1308 * forwarded to another interface.
1309 */
1310 void dev_disable_lro(struct net_device *dev)
1311 {
1312 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1313 dev->ethtool_ops->set_flags) {
1314 u32 flags = dev->ethtool_ops->get_flags(dev);
1315 if (flags & ETH_FLAG_LRO) {
1316 flags &= ~ETH_FLAG_LRO;
1317 dev->ethtool_ops->set_flags(dev, flags);
1318 }
1319 }
1320 WARN_ON(dev->features & NETIF_F_LRO);
1321 }
1322 EXPORT_SYMBOL(dev_disable_lro);
1323
1324
1325 static int dev_boot_phase = 1;
1326
1327 /*
1328 * Device change register/unregister. These are not inline or static
1329 * as we export them to the world.
1330 */
1331
1332 /**
1333 * register_netdevice_notifier - register a network notifier block
1334 * @nb: notifier
1335 *
1336 * Register a notifier to be called when network device events occur.
1337 * The notifier passed is linked into the kernel structures and must
1338 * not be reused until it has been unregistered. A negative errno code
1339 * is returned on a failure.
1340 *
1341 * When registered all registration and up events are replayed
1342 * to the new notifier to allow device to have a race free
1343 * view of the network device list.
1344 */
1345
1346 int register_netdevice_notifier(struct notifier_block *nb)
1347 {
1348 struct net_device *dev;
1349 struct net_device *last;
1350 struct net *net;
1351 int err;
1352
1353 rtnl_lock();
1354 err = raw_notifier_chain_register(&netdev_chain, nb);
1355 if (err)
1356 goto unlock;
1357 if (dev_boot_phase)
1358 goto unlock;
1359 for_each_net(net) {
1360 for_each_netdev(net, dev) {
1361 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1362 err = notifier_to_errno(err);
1363 if (err)
1364 goto rollback;
1365
1366 if (!(dev->flags & IFF_UP))
1367 continue;
1368
1369 nb->notifier_call(nb, NETDEV_UP, dev);
1370 }
1371 }
1372
1373 unlock:
1374 rtnl_unlock();
1375 return err;
1376
1377 rollback:
1378 last = dev;
1379 for_each_net(net) {
1380 for_each_netdev(net, dev) {
1381 if (dev == last)
1382 break;
1383
1384 if (dev->flags & IFF_UP) {
1385 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1386 nb->notifier_call(nb, NETDEV_DOWN, dev);
1387 }
1388 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1389 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1390 }
1391 }
1392
1393 raw_notifier_chain_unregister(&netdev_chain, nb);
1394 goto unlock;
1395 }
1396 EXPORT_SYMBOL(register_netdevice_notifier);
1397
1398 /**
1399 * unregister_netdevice_notifier - unregister a network notifier block
1400 * @nb: notifier
1401 *
1402 * Unregister a notifier previously registered by
1403 * register_netdevice_notifier(). The notifier is unlinked into the
1404 * kernel structures and may then be reused. A negative errno code
1405 * is returned on a failure.
1406 */
1407
1408 int unregister_netdevice_notifier(struct notifier_block *nb)
1409 {
1410 int err;
1411
1412 rtnl_lock();
1413 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1414 rtnl_unlock();
1415 return err;
1416 }
1417 EXPORT_SYMBOL(unregister_netdevice_notifier);
1418
1419 /**
1420 * call_netdevice_notifiers - call all network notifier blocks
1421 * @val: value passed unmodified to notifier function
1422 * @dev: net_device pointer passed unmodified to notifier function
1423 *
1424 * Call all network notifier blocks. Parameters and return value
1425 * are as for raw_notifier_call_chain().
1426 */
1427
1428 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1429 {
1430 ASSERT_RTNL();
1431 return raw_notifier_call_chain(&netdev_chain, val, dev);
1432 }
1433
1434 /* When > 0 there are consumers of rx skb time stamps */
1435 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1436
1437 void net_enable_timestamp(void)
1438 {
1439 atomic_inc(&netstamp_needed);
1440 }
1441 EXPORT_SYMBOL(net_enable_timestamp);
1442
1443 void net_disable_timestamp(void)
1444 {
1445 atomic_dec(&netstamp_needed);
1446 }
1447 EXPORT_SYMBOL(net_disable_timestamp);
1448
1449 static inline void net_timestamp_set(struct sk_buff *skb)
1450 {
1451 if (atomic_read(&netstamp_needed))
1452 __net_timestamp(skb);
1453 else
1454 skb->tstamp.tv64 = 0;
1455 }
1456
1457 static inline void net_timestamp_check(struct sk_buff *skb)
1458 {
1459 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1460 __net_timestamp(skb);
1461 }
1462
1463 /**
1464 * dev_forward_skb - loopback an skb to another netif
1465 *
1466 * @dev: destination network device
1467 * @skb: buffer to forward
1468 *
1469 * return values:
1470 * NET_RX_SUCCESS (no congestion)
1471 * NET_RX_DROP (packet was dropped, but freed)
1472 *
1473 * dev_forward_skb can be used for injecting an skb from the
1474 * start_xmit function of one device into the receive queue
1475 * of another device.
1476 *
1477 * The receiving device may be in another namespace, so
1478 * we have to clear all information in the skb that could
1479 * impact namespace isolation.
1480 */
1481 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1482 {
1483 skb_orphan(skb);
1484 nf_reset(skb);
1485
1486 if (!(dev->flags & IFF_UP) ||
1487 (skb->len > (dev->mtu + dev->hard_header_len))) {
1488 kfree_skb(skb);
1489 return NET_RX_DROP;
1490 }
1491 skb_set_dev(skb, dev);
1492 skb->tstamp.tv64 = 0;
1493 skb->pkt_type = PACKET_HOST;
1494 skb->protocol = eth_type_trans(skb, dev);
1495 return netif_rx(skb);
1496 }
1497 EXPORT_SYMBOL_GPL(dev_forward_skb);
1498
1499 /*
1500 * Support routine. Sends outgoing frames to any network
1501 * taps currently in use.
1502 */
1503
1504 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1505 {
1506 struct packet_type *ptype;
1507
1508 #ifdef CONFIG_NET_CLS_ACT
1509 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1510 net_timestamp_set(skb);
1511 #else
1512 net_timestamp_set(skb);
1513 #endif
1514
1515 rcu_read_lock();
1516 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1517 /* Never send packets back to the socket
1518 * they originated from - MvS (miquels@drinkel.ow.org)
1519 */
1520 if ((ptype->dev == dev || !ptype->dev) &&
1521 (ptype->af_packet_priv == NULL ||
1522 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1523 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1524 if (!skb2)
1525 break;
1526
1527 /* skb->nh should be correctly
1528 set by sender, so that the second statement is
1529 just protection against buggy protocols.
1530 */
1531 skb_reset_mac_header(skb2);
1532
1533 if (skb_network_header(skb2) < skb2->data ||
1534 skb2->network_header > skb2->tail) {
1535 if (net_ratelimit())
1536 printk(KERN_CRIT "protocol %04x is "
1537 "buggy, dev %s\n",
1538 ntohs(skb2->protocol),
1539 dev->name);
1540 skb_reset_network_header(skb2);
1541 }
1542
1543 skb2->transport_header = skb2->network_header;
1544 skb2->pkt_type = PACKET_OUTGOING;
1545 ptype->func(skb2, skb->dev, ptype, skb->dev);
1546 }
1547 }
1548 rcu_read_unlock();
1549 }
1550
1551 /*
1552 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1553 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1554 */
1555 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1556 {
1557 unsigned int real_num = dev->real_num_tx_queues;
1558
1559 if (unlikely(txq > dev->num_tx_queues))
1560 ;
1561 else if (txq > real_num)
1562 dev->real_num_tx_queues = txq;
1563 else if (txq < real_num) {
1564 dev->real_num_tx_queues = txq;
1565 qdisc_reset_all_tx_gt(dev, txq);
1566 }
1567 }
1568 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1569
1570 #ifdef CONFIG_RPS
1571 /**
1572 * netif_set_real_num_rx_queues - set actual number of RX queues used
1573 * @dev: Network device
1574 * @rxq: Actual number of RX queues
1575 *
1576 * This must be called either with the rtnl_lock held or before
1577 * registration of the net device. Returns 0 on success, or a
1578 * negative error code. If called before registration, it also
1579 * sets the maximum number of queues, and always succeeds.
1580 */
1581 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1582 {
1583 int rc;
1584
1585 if (dev->reg_state == NETREG_REGISTERED) {
1586 ASSERT_RTNL();
1587
1588 if (rxq > dev->num_rx_queues)
1589 return -EINVAL;
1590
1591 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1592 rxq);
1593 if (rc)
1594 return rc;
1595 } else {
1596 dev->num_rx_queues = rxq;
1597 }
1598
1599 dev->real_num_rx_queues = rxq;
1600 return 0;
1601 }
1602 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1603 #endif
1604
1605 static inline void __netif_reschedule(struct Qdisc *q)
1606 {
1607 struct softnet_data *sd;
1608 unsigned long flags;
1609
1610 local_irq_save(flags);
1611 sd = &__get_cpu_var(softnet_data);
1612 q->next_sched = NULL;
1613 *sd->output_queue_tailp = q;
1614 sd->output_queue_tailp = &q->next_sched;
1615 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1616 local_irq_restore(flags);
1617 }
1618
1619 void __netif_schedule(struct Qdisc *q)
1620 {
1621 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1622 __netif_reschedule(q);
1623 }
1624 EXPORT_SYMBOL(__netif_schedule);
1625
1626 void dev_kfree_skb_irq(struct sk_buff *skb)
1627 {
1628 if (atomic_dec_and_test(&skb->users)) {
1629 struct softnet_data *sd;
1630 unsigned long flags;
1631
1632 local_irq_save(flags);
1633 sd = &__get_cpu_var(softnet_data);
1634 skb->next = sd->completion_queue;
1635 sd->completion_queue = skb;
1636 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1637 local_irq_restore(flags);
1638 }
1639 }
1640 EXPORT_SYMBOL(dev_kfree_skb_irq);
1641
1642 void dev_kfree_skb_any(struct sk_buff *skb)
1643 {
1644 if (in_irq() || irqs_disabled())
1645 dev_kfree_skb_irq(skb);
1646 else
1647 dev_kfree_skb(skb);
1648 }
1649 EXPORT_SYMBOL(dev_kfree_skb_any);
1650
1651
1652 /**
1653 * netif_device_detach - mark device as removed
1654 * @dev: network device
1655 *
1656 * Mark device as removed from system and therefore no longer available.
1657 */
1658 void netif_device_detach(struct net_device *dev)
1659 {
1660 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1661 netif_running(dev)) {
1662 netif_tx_stop_all_queues(dev);
1663 }
1664 }
1665 EXPORT_SYMBOL(netif_device_detach);
1666
1667 /**
1668 * netif_device_attach - mark device as attached
1669 * @dev: network device
1670 *
1671 * Mark device as attached from system and restart if needed.
1672 */
1673 void netif_device_attach(struct net_device *dev)
1674 {
1675 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1676 netif_running(dev)) {
1677 netif_tx_wake_all_queues(dev);
1678 __netdev_watchdog_up(dev);
1679 }
1680 }
1681 EXPORT_SYMBOL(netif_device_attach);
1682
1683 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1684 {
1685 return ((features & NETIF_F_GEN_CSUM) ||
1686 ((features & NETIF_F_IP_CSUM) &&
1687 protocol == htons(ETH_P_IP)) ||
1688 ((features & NETIF_F_IPV6_CSUM) &&
1689 protocol == htons(ETH_P_IPV6)) ||
1690 ((features & NETIF_F_FCOE_CRC) &&
1691 protocol == htons(ETH_P_FCOE)));
1692 }
1693
1694 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1695 {
1696 if (can_checksum_protocol(dev->features, skb->protocol))
1697 return true;
1698
1699 if (skb->protocol == htons(ETH_P_8021Q)) {
1700 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1701 if (can_checksum_protocol(dev->features & dev->vlan_features,
1702 veh->h_vlan_encapsulated_proto))
1703 return true;
1704 }
1705
1706 return false;
1707 }
1708
1709 /**
1710 * skb_dev_set -- assign a new device to a buffer
1711 * @skb: buffer for the new device
1712 * @dev: network device
1713 *
1714 * If an skb is owned by a device already, we have to reset
1715 * all data private to the namespace a device belongs to
1716 * before assigning it a new device.
1717 */
1718 #ifdef CONFIG_NET_NS
1719 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1720 {
1721 skb_dst_drop(skb);
1722 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1723 secpath_reset(skb);
1724 nf_reset(skb);
1725 skb_init_secmark(skb);
1726 skb->mark = 0;
1727 skb->priority = 0;
1728 skb->nf_trace = 0;
1729 skb->ipvs_property = 0;
1730 #ifdef CONFIG_NET_SCHED
1731 skb->tc_index = 0;
1732 #endif
1733 }
1734 skb->dev = dev;
1735 }
1736 EXPORT_SYMBOL(skb_set_dev);
1737 #endif /* CONFIG_NET_NS */
1738
1739 /*
1740 * Invalidate hardware checksum when packet is to be mangled, and
1741 * complete checksum manually on outgoing path.
1742 */
1743 int skb_checksum_help(struct sk_buff *skb)
1744 {
1745 __wsum csum;
1746 int ret = 0, offset;
1747
1748 if (skb->ip_summed == CHECKSUM_COMPLETE)
1749 goto out_set_summed;
1750
1751 if (unlikely(skb_shinfo(skb)->gso_size)) {
1752 /* Let GSO fix up the checksum. */
1753 goto out_set_summed;
1754 }
1755
1756 offset = skb->csum_start - skb_headroom(skb);
1757 BUG_ON(offset >= skb_headlen(skb));
1758 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1759
1760 offset += skb->csum_offset;
1761 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1762
1763 if (skb_cloned(skb) &&
1764 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1765 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1766 if (ret)
1767 goto out;
1768 }
1769
1770 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1771 out_set_summed:
1772 skb->ip_summed = CHECKSUM_NONE;
1773 out:
1774 return ret;
1775 }
1776 EXPORT_SYMBOL(skb_checksum_help);
1777
1778 /**
1779 * skb_gso_segment - Perform segmentation on skb.
1780 * @skb: buffer to segment
1781 * @features: features for the output path (see dev->features)
1782 *
1783 * This function segments the given skb and returns a list of segments.
1784 *
1785 * It may return NULL if the skb requires no segmentation. This is
1786 * only possible when GSO is used for verifying header integrity.
1787 */
1788 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1789 {
1790 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1791 struct packet_type *ptype;
1792 __be16 type = skb->protocol;
1793 int err;
1794
1795 skb_reset_mac_header(skb);
1796 skb->mac_len = skb->network_header - skb->mac_header;
1797 __skb_pull(skb, skb->mac_len);
1798
1799 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1800 struct net_device *dev = skb->dev;
1801 struct ethtool_drvinfo info = {};
1802
1803 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1804 dev->ethtool_ops->get_drvinfo(dev, &info);
1805
1806 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1807 "ip_summed=%d",
1808 info.driver, dev ? dev->features : 0L,
1809 skb->sk ? skb->sk->sk_route_caps : 0L,
1810 skb->len, skb->data_len, skb->ip_summed);
1811
1812 if (skb_header_cloned(skb) &&
1813 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1814 return ERR_PTR(err);
1815 }
1816
1817 rcu_read_lock();
1818 list_for_each_entry_rcu(ptype,
1819 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1820 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1821 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1822 err = ptype->gso_send_check(skb);
1823 segs = ERR_PTR(err);
1824 if (err || skb_gso_ok(skb, features))
1825 break;
1826 __skb_push(skb, (skb->data -
1827 skb_network_header(skb)));
1828 }
1829 segs = ptype->gso_segment(skb, features);
1830 break;
1831 }
1832 }
1833 rcu_read_unlock();
1834
1835 __skb_push(skb, skb->data - skb_mac_header(skb));
1836
1837 return segs;
1838 }
1839 EXPORT_SYMBOL(skb_gso_segment);
1840
1841 /* Take action when hardware reception checksum errors are detected. */
1842 #ifdef CONFIG_BUG
1843 void netdev_rx_csum_fault(struct net_device *dev)
1844 {
1845 if (net_ratelimit()) {
1846 printk(KERN_ERR "%s: hw csum failure.\n",
1847 dev ? dev->name : "<unknown>");
1848 dump_stack();
1849 }
1850 }
1851 EXPORT_SYMBOL(netdev_rx_csum_fault);
1852 #endif
1853
1854 /* Actually, we should eliminate this check as soon as we know, that:
1855 * 1. IOMMU is present and allows to map all the memory.
1856 * 2. No high memory really exists on this machine.
1857 */
1858
1859 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1860 {
1861 #ifdef CONFIG_HIGHMEM
1862 int i;
1863 if (!(dev->features & NETIF_F_HIGHDMA)) {
1864 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1865 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1866 return 1;
1867 }
1868
1869 if (PCI_DMA_BUS_IS_PHYS) {
1870 struct device *pdev = dev->dev.parent;
1871
1872 if (!pdev)
1873 return 0;
1874 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1875 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1876 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1877 return 1;
1878 }
1879 }
1880 #endif
1881 return 0;
1882 }
1883
1884 struct dev_gso_cb {
1885 void (*destructor)(struct sk_buff *skb);
1886 };
1887
1888 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1889
1890 static void dev_gso_skb_destructor(struct sk_buff *skb)
1891 {
1892 struct dev_gso_cb *cb;
1893
1894 do {
1895 struct sk_buff *nskb = skb->next;
1896
1897 skb->next = nskb->next;
1898 nskb->next = NULL;
1899 kfree_skb(nskb);
1900 } while (skb->next);
1901
1902 cb = DEV_GSO_CB(skb);
1903 if (cb->destructor)
1904 cb->destructor(skb);
1905 }
1906
1907 /**
1908 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1909 * @skb: buffer to segment
1910 *
1911 * This function segments the given skb and stores the list of segments
1912 * in skb->next.
1913 */
1914 static int dev_gso_segment(struct sk_buff *skb)
1915 {
1916 struct net_device *dev = skb->dev;
1917 struct sk_buff *segs;
1918 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1919 NETIF_F_SG : 0);
1920
1921 segs = skb_gso_segment(skb, features);
1922
1923 /* Verifying header integrity only. */
1924 if (!segs)
1925 return 0;
1926
1927 if (IS_ERR(segs))
1928 return PTR_ERR(segs);
1929
1930 skb->next = segs;
1931 DEV_GSO_CB(skb)->destructor = skb->destructor;
1932 skb->destructor = dev_gso_skb_destructor;
1933
1934 return 0;
1935 }
1936
1937 /*
1938 * Try to orphan skb early, right before transmission by the device.
1939 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1940 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1941 */
1942 static inline void skb_orphan_try(struct sk_buff *skb)
1943 {
1944 struct sock *sk = skb->sk;
1945
1946 if (sk && !skb_shinfo(skb)->tx_flags) {
1947 /* skb_tx_hash() wont be able to get sk.
1948 * We copy sk_hash into skb->rxhash
1949 */
1950 if (!skb->rxhash)
1951 skb->rxhash = sk->sk_hash;
1952 skb_orphan(skb);
1953 }
1954 }
1955
1956 /*
1957 * Returns true if either:
1958 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1959 * 2. skb is fragmented and the device does not support SG, or if
1960 * at least one of fragments is in highmem and device does not
1961 * support DMA from it.
1962 */
1963 static inline int skb_needs_linearize(struct sk_buff *skb,
1964 struct net_device *dev)
1965 {
1966 return skb_is_nonlinear(skb) &&
1967 ((skb_has_frag_list(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1968 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1969 illegal_highdma(dev, skb))));
1970 }
1971
1972 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1973 struct netdev_queue *txq)
1974 {
1975 const struct net_device_ops *ops = dev->netdev_ops;
1976 int rc = NETDEV_TX_OK;
1977
1978 if (likely(!skb->next)) {
1979 if (!list_empty(&ptype_all))
1980 dev_queue_xmit_nit(skb, dev);
1981
1982 /*
1983 * If device doesnt need skb->dst, release it right now while
1984 * its hot in this cpu cache
1985 */
1986 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1987 skb_dst_drop(skb);
1988
1989 skb_orphan_try(skb);
1990
1991 if (netif_needs_gso(dev, skb)) {
1992 if (unlikely(dev_gso_segment(skb)))
1993 goto out_kfree_skb;
1994 if (skb->next)
1995 goto gso;
1996 } else {
1997 if (skb_needs_linearize(skb, dev) &&
1998 __skb_linearize(skb))
1999 goto out_kfree_skb;
2000
2001 /* If packet is not checksummed and device does not
2002 * support checksumming for this protocol, complete
2003 * checksumming here.
2004 */
2005 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2006 skb_set_transport_header(skb, skb->csum_start -
2007 skb_headroom(skb));
2008 if (!dev_can_checksum(dev, skb) &&
2009 skb_checksum_help(skb))
2010 goto out_kfree_skb;
2011 }
2012 }
2013
2014 rc = ops->ndo_start_xmit(skb, dev);
2015 if (rc == NETDEV_TX_OK)
2016 txq_trans_update(txq);
2017 return rc;
2018 }
2019
2020 gso:
2021 do {
2022 struct sk_buff *nskb = skb->next;
2023
2024 skb->next = nskb->next;
2025 nskb->next = NULL;
2026
2027 /*
2028 * If device doesnt need nskb->dst, release it right now while
2029 * its hot in this cpu cache
2030 */
2031 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2032 skb_dst_drop(nskb);
2033
2034 rc = ops->ndo_start_xmit(nskb, dev);
2035 if (unlikely(rc != NETDEV_TX_OK)) {
2036 if (rc & ~NETDEV_TX_MASK)
2037 goto out_kfree_gso_skb;
2038 nskb->next = skb->next;
2039 skb->next = nskb;
2040 return rc;
2041 }
2042 txq_trans_update(txq);
2043 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2044 return NETDEV_TX_BUSY;
2045 } while (skb->next);
2046
2047 out_kfree_gso_skb:
2048 if (likely(skb->next == NULL))
2049 skb->destructor = DEV_GSO_CB(skb)->destructor;
2050 out_kfree_skb:
2051 kfree_skb(skb);
2052 return rc;
2053 }
2054
2055 static u32 hashrnd __read_mostly;
2056
2057 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2058 {
2059 u32 hash;
2060
2061 if (skb_rx_queue_recorded(skb)) {
2062 hash = skb_get_rx_queue(skb);
2063 while (unlikely(hash >= dev->real_num_tx_queues))
2064 hash -= dev->real_num_tx_queues;
2065 return hash;
2066 }
2067
2068 if (skb->sk && skb->sk->sk_hash)
2069 hash = skb->sk->sk_hash;
2070 else
2071 hash = (__force u16) skb->protocol ^ skb->rxhash;
2072 hash = jhash_1word(hash, hashrnd);
2073
2074 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2075 }
2076 EXPORT_SYMBOL(skb_tx_hash);
2077
2078 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2079 {
2080 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2081 if (net_ratelimit()) {
2082 pr_warning("%s selects TX queue %d, but "
2083 "real number of TX queues is %d\n",
2084 dev->name, queue_index, dev->real_num_tx_queues);
2085 }
2086 return 0;
2087 }
2088 return queue_index;
2089 }
2090
2091 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2092 struct sk_buff *skb)
2093 {
2094 int queue_index;
2095 const struct net_device_ops *ops = dev->netdev_ops;
2096
2097 if (ops->ndo_select_queue) {
2098 queue_index = ops->ndo_select_queue(dev, skb);
2099 queue_index = dev_cap_txqueue(dev, queue_index);
2100 } else {
2101 struct sock *sk = skb->sk;
2102 queue_index = sk_tx_queue_get(sk);
2103 if (queue_index < 0) {
2104
2105 queue_index = 0;
2106 if (dev->real_num_tx_queues > 1)
2107 queue_index = skb_tx_hash(dev, skb);
2108
2109 if (sk) {
2110 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2111
2112 if (dst && skb_dst(skb) == dst)
2113 sk_tx_queue_set(sk, queue_index);
2114 }
2115 }
2116 }
2117
2118 skb_set_queue_mapping(skb, queue_index);
2119 return netdev_get_tx_queue(dev, queue_index);
2120 }
2121
2122 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2123 struct net_device *dev,
2124 struct netdev_queue *txq)
2125 {
2126 spinlock_t *root_lock = qdisc_lock(q);
2127 bool contended = qdisc_is_running(q);
2128 int rc;
2129
2130 /*
2131 * Heuristic to force contended enqueues to serialize on a
2132 * separate lock before trying to get qdisc main lock.
2133 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2134 * and dequeue packets faster.
2135 */
2136 if (unlikely(contended))
2137 spin_lock(&q->busylock);
2138
2139 spin_lock(root_lock);
2140 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2141 kfree_skb(skb);
2142 rc = NET_XMIT_DROP;
2143 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2144 qdisc_run_begin(q)) {
2145 /*
2146 * This is a work-conserving queue; there are no old skbs
2147 * waiting to be sent out; and the qdisc is not running -
2148 * xmit the skb directly.
2149 */
2150 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2151 skb_dst_force(skb);
2152 __qdisc_update_bstats(q, skb->len);
2153 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2154 if (unlikely(contended)) {
2155 spin_unlock(&q->busylock);
2156 contended = false;
2157 }
2158 __qdisc_run(q);
2159 } else
2160 qdisc_run_end(q);
2161
2162 rc = NET_XMIT_SUCCESS;
2163 } else {
2164 skb_dst_force(skb);
2165 rc = qdisc_enqueue_root(skb, q);
2166 if (qdisc_run_begin(q)) {
2167 if (unlikely(contended)) {
2168 spin_unlock(&q->busylock);
2169 contended = false;
2170 }
2171 __qdisc_run(q);
2172 }
2173 }
2174 spin_unlock(root_lock);
2175 if (unlikely(contended))
2176 spin_unlock(&q->busylock);
2177 return rc;
2178 }
2179
2180 /**
2181 * dev_queue_xmit - transmit a buffer
2182 * @skb: buffer to transmit
2183 *
2184 * Queue a buffer for transmission to a network device. The caller must
2185 * have set the device and priority and built the buffer before calling
2186 * this function. The function can be called from an interrupt.
2187 *
2188 * A negative errno code is returned on a failure. A success does not
2189 * guarantee the frame will be transmitted as it may be dropped due
2190 * to congestion or traffic shaping.
2191 *
2192 * -----------------------------------------------------------------------------------
2193 * I notice this method can also return errors from the queue disciplines,
2194 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2195 * be positive.
2196 *
2197 * Regardless of the return value, the skb is consumed, so it is currently
2198 * difficult to retry a send to this method. (You can bump the ref count
2199 * before sending to hold a reference for retry if you are careful.)
2200 *
2201 * When calling this method, interrupts MUST be enabled. This is because
2202 * the BH enable code must have IRQs enabled so that it will not deadlock.
2203 * --BLG
2204 */
2205 int dev_queue_xmit(struct sk_buff *skb)
2206 {
2207 struct net_device *dev = skb->dev;
2208 struct netdev_queue *txq;
2209 struct Qdisc *q;
2210 int rc = -ENOMEM;
2211
2212 /* Disable soft irqs for various locks below. Also
2213 * stops preemption for RCU.
2214 */
2215 rcu_read_lock_bh();
2216
2217 txq = dev_pick_tx(dev, skb);
2218 q = rcu_dereference_bh(txq->qdisc);
2219
2220 #ifdef CONFIG_NET_CLS_ACT
2221 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2222 #endif
2223 if (q->enqueue) {
2224 rc = __dev_xmit_skb(skb, q, dev, txq);
2225 goto out;
2226 }
2227
2228 /* The device has no queue. Common case for software devices:
2229 loopback, all the sorts of tunnels...
2230
2231 Really, it is unlikely that netif_tx_lock protection is necessary
2232 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2233 counters.)
2234 However, it is possible, that they rely on protection
2235 made by us here.
2236
2237 Check this and shot the lock. It is not prone from deadlocks.
2238 Either shot noqueue qdisc, it is even simpler 8)
2239 */
2240 if (dev->flags & IFF_UP) {
2241 int cpu = smp_processor_id(); /* ok because BHs are off */
2242
2243 if (txq->xmit_lock_owner != cpu) {
2244
2245 HARD_TX_LOCK(dev, txq, cpu);
2246
2247 if (!netif_tx_queue_stopped(txq)) {
2248 rc = dev_hard_start_xmit(skb, dev, txq);
2249 if (dev_xmit_complete(rc)) {
2250 HARD_TX_UNLOCK(dev, txq);
2251 goto out;
2252 }
2253 }
2254 HARD_TX_UNLOCK(dev, txq);
2255 if (net_ratelimit())
2256 printk(KERN_CRIT "Virtual device %s asks to "
2257 "queue packet!\n", dev->name);
2258 } else {
2259 /* Recursion is detected! It is possible,
2260 * unfortunately */
2261 if (net_ratelimit())
2262 printk(KERN_CRIT "Dead loop on virtual device "
2263 "%s, fix it urgently!\n", dev->name);
2264 }
2265 }
2266
2267 rc = -ENETDOWN;
2268 rcu_read_unlock_bh();
2269
2270 kfree_skb(skb);
2271 return rc;
2272 out:
2273 rcu_read_unlock_bh();
2274 return rc;
2275 }
2276 EXPORT_SYMBOL(dev_queue_xmit);
2277
2278
2279 /*=======================================================================
2280 Receiver routines
2281 =======================================================================*/
2282
2283 int netdev_max_backlog __read_mostly = 1000;
2284 int netdev_tstamp_prequeue __read_mostly = 1;
2285 int netdev_budget __read_mostly = 300;
2286 int weight_p __read_mostly = 64; /* old backlog weight */
2287
2288 /* Called with irq disabled */
2289 static inline void ____napi_schedule(struct softnet_data *sd,
2290 struct napi_struct *napi)
2291 {
2292 list_add_tail(&napi->poll_list, &sd->poll_list);
2293 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2294 }
2295
2296 /*
2297 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2298 * and src/dst port numbers. Returns a non-zero hash number on success
2299 * and 0 on failure.
2300 */
2301 __u32 __skb_get_rxhash(struct sk_buff *skb)
2302 {
2303 int nhoff, hash = 0, poff;
2304 struct ipv6hdr *ip6;
2305 struct iphdr *ip;
2306 u8 ip_proto;
2307 u32 addr1, addr2, ihl;
2308 union {
2309 u32 v32;
2310 u16 v16[2];
2311 } ports;
2312
2313 nhoff = skb_network_offset(skb);
2314
2315 switch (skb->protocol) {
2316 case __constant_htons(ETH_P_IP):
2317 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2318 goto done;
2319
2320 ip = (struct iphdr *) (skb->data + nhoff);
2321 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2322 ip_proto = 0;
2323 else
2324 ip_proto = ip->protocol;
2325 addr1 = (__force u32) ip->saddr;
2326 addr2 = (__force u32) ip->daddr;
2327 ihl = ip->ihl;
2328 break;
2329 case __constant_htons(ETH_P_IPV6):
2330 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2331 goto done;
2332
2333 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2334 ip_proto = ip6->nexthdr;
2335 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2336 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2337 ihl = (40 >> 2);
2338 break;
2339 default:
2340 goto done;
2341 }
2342
2343 ports.v32 = 0;
2344 poff = proto_ports_offset(ip_proto);
2345 if (poff >= 0) {
2346 nhoff += ihl * 4 + poff;
2347 if (pskb_may_pull(skb, nhoff + 4)) {
2348 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2349 if (ports.v16[1] < ports.v16[0])
2350 swap(ports.v16[0], ports.v16[1]);
2351 }
2352 }
2353
2354 /* get a consistent hash (same value on both flow directions) */
2355 if (addr2 < addr1)
2356 swap(addr1, addr2);
2357
2358 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2359 if (!hash)
2360 hash = 1;
2361
2362 done:
2363 return hash;
2364 }
2365 EXPORT_SYMBOL(__skb_get_rxhash);
2366
2367 #ifdef CONFIG_RPS
2368
2369 /* One global table that all flow-based protocols share. */
2370 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2371 EXPORT_SYMBOL(rps_sock_flow_table);
2372
2373 /*
2374 * get_rps_cpu is called from netif_receive_skb and returns the target
2375 * CPU from the RPS map of the receiving queue for a given skb.
2376 * rcu_read_lock must be held on entry.
2377 */
2378 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2379 struct rps_dev_flow **rflowp)
2380 {
2381 struct netdev_rx_queue *rxqueue;
2382 struct rps_map *map = NULL;
2383 struct rps_dev_flow_table *flow_table;
2384 struct rps_sock_flow_table *sock_flow_table;
2385 int cpu = -1;
2386 u16 tcpu;
2387
2388 if (skb_rx_queue_recorded(skb)) {
2389 u16 index = skb_get_rx_queue(skb);
2390 if (unlikely(index >= dev->real_num_rx_queues)) {
2391 WARN_ONCE(dev->real_num_rx_queues > 1,
2392 "%s received packet on queue %u, but number "
2393 "of RX queues is %u\n",
2394 dev->name, index, dev->real_num_rx_queues);
2395 goto done;
2396 }
2397 rxqueue = dev->_rx + index;
2398 } else
2399 rxqueue = dev->_rx;
2400
2401 if (rxqueue->rps_map) {
2402 map = rcu_dereference(rxqueue->rps_map);
2403 if (map && map->len == 1) {
2404 tcpu = map->cpus[0];
2405 if (cpu_online(tcpu))
2406 cpu = tcpu;
2407 goto done;
2408 }
2409 } else if (!rxqueue->rps_flow_table) {
2410 goto done;
2411 }
2412
2413 skb_reset_network_header(skb);
2414 if (!skb_get_rxhash(skb))
2415 goto done;
2416
2417 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2418 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2419 if (flow_table && sock_flow_table) {
2420 u16 next_cpu;
2421 struct rps_dev_flow *rflow;
2422
2423 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2424 tcpu = rflow->cpu;
2425
2426 next_cpu = sock_flow_table->ents[skb->rxhash &
2427 sock_flow_table->mask];
2428
2429 /*
2430 * If the desired CPU (where last recvmsg was done) is
2431 * different from current CPU (one in the rx-queue flow
2432 * table entry), switch if one of the following holds:
2433 * - Current CPU is unset (equal to RPS_NO_CPU).
2434 * - Current CPU is offline.
2435 * - The current CPU's queue tail has advanced beyond the
2436 * last packet that was enqueued using this table entry.
2437 * This guarantees that all previous packets for the flow
2438 * have been dequeued, thus preserving in order delivery.
2439 */
2440 if (unlikely(tcpu != next_cpu) &&
2441 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2442 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2443 rflow->last_qtail)) >= 0)) {
2444 tcpu = rflow->cpu = next_cpu;
2445 if (tcpu != RPS_NO_CPU)
2446 rflow->last_qtail = per_cpu(softnet_data,
2447 tcpu).input_queue_head;
2448 }
2449 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2450 *rflowp = rflow;
2451 cpu = tcpu;
2452 goto done;
2453 }
2454 }
2455
2456 if (map) {
2457 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2458
2459 if (cpu_online(tcpu)) {
2460 cpu = tcpu;
2461 goto done;
2462 }
2463 }
2464
2465 done:
2466 return cpu;
2467 }
2468
2469 /* Called from hardirq (IPI) context */
2470 static void rps_trigger_softirq(void *data)
2471 {
2472 struct softnet_data *sd = data;
2473
2474 ____napi_schedule(sd, &sd->backlog);
2475 sd->received_rps++;
2476 }
2477
2478 #endif /* CONFIG_RPS */
2479
2480 /*
2481 * Check if this softnet_data structure is another cpu one
2482 * If yes, queue it to our IPI list and return 1
2483 * If no, return 0
2484 */
2485 static int rps_ipi_queued(struct softnet_data *sd)
2486 {
2487 #ifdef CONFIG_RPS
2488 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2489
2490 if (sd != mysd) {
2491 sd->rps_ipi_next = mysd->rps_ipi_list;
2492 mysd->rps_ipi_list = sd;
2493
2494 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2495 return 1;
2496 }
2497 #endif /* CONFIG_RPS */
2498 return 0;
2499 }
2500
2501 /*
2502 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2503 * queue (may be a remote CPU queue).
2504 */
2505 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2506 unsigned int *qtail)
2507 {
2508 struct softnet_data *sd;
2509 unsigned long flags;
2510
2511 sd = &per_cpu(softnet_data, cpu);
2512
2513 local_irq_save(flags);
2514
2515 rps_lock(sd);
2516 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2517 if (skb_queue_len(&sd->input_pkt_queue)) {
2518 enqueue:
2519 __skb_queue_tail(&sd->input_pkt_queue, skb);
2520 input_queue_tail_incr_save(sd, qtail);
2521 rps_unlock(sd);
2522 local_irq_restore(flags);
2523 return NET_RX_SUCCESS;
2524 }
2525
2526 /* Schedule NAPI for backlog device
2527 * We can use non atomic operation since we own the queue lock
2528 */
2529 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2530 if (!rps_ipi_queued(sd))
2531 ____napi_schedule(sd, &sd->backlog);
2532 }
2533 goto enqueue;
2534 }
2535
2536 sd->dropped++;
2537 rps_unlock(sd);
2538
2539 local_irq_restore(flags);
2540
2541 kfree_skb(skb);
2542 return NET_RX_DROP;
2543 }
2544
2545 /**
2546 * netif_rx - post buffer to the network code
2547 * @skb: buffer to post
2548 *
2549 * This function receives a packet from a device driver and queues it for
2550 * the upper (protocol) levels to process. It always succeeds. The buffer
2551 * may be dropped during processing for congestion control or by the
2552 * protocol layers.
2553 *
2554 * return values:
2555 * NET_RX_SUCCESS (no congestion)
2556 * NET_RX_DROP (packet was dropped)
2557 *
2558 */
2559
2560 int netif_rx(struct sk_buff *skb)
2561 {
2562 int ret;
2563
2564 /* if netpoll wants it, pretend we never saw it */
2565 if (netpoll_rx(skb))
2566 return NET_RX_DROP;
2567
2568 if (netdev_tstamp_prequeue)
2569 net_timestamp_check(skb);
2570
2571 #ifdef CONFIG_RPS
2572 {
2573 struct rps_dev_flow voidflow, *rflow = &voidflow;
2574 int cpu;
2575
2576 preempt_disable();
2577 rcu_read_lock();
2578
2579 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2580 if (cpu < 0)
2581 cpu = smp_processor_id();
2582
2583 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2584
2585 rcu_read_unlock();
2586 preempt_enable();
2587 }
2588 #else
2589 {
2590 unsigned int qtail;
2591 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2592 put_cpu();
2593 }
2594 #endif
2595 return ret;
2596 }
2597 EXPORT_SYMBOL(netif_rx);
2598
2599 int netif_rx_ni(struct sk_buff *skb)
2600 {
2601 int err;
2602
2603 preempt_disable();
2604 err = netif_rx(skb);
2605 if (local_softirq_pending())
2606 do_softirq();
2607 preempt_enable();
2608
2609 return err;
2610 }
2611 EXPORT_SYMBOL(netif_rx_ni);
2612
2613 static void net_tx_action(struct softirq_action *h)
2614 {
2615 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2616
2617 if (sd->completion_queue) {
2618 struct sk_buff *clist;
2619
2620 local_irq_disable();
2621 clist = sd->completion_queue;
2622 sd->completion_queue = NULL;
2623 local_irq_enable();
2624
2625 while (clist) {
2626 struct sk_buff *skb = clist;
2627 clist = clist->next;
2628
2629 WARN_ON(atomic_read(&skb->users));
2630 __kfree_skb(skb);
2631 }
2632 }
2633
2634 if (sd->output_queue) {
2635 struct Qdisc *head;
2636
2637 local_irq_disable();
2638 head = sd->output_queue;
2639 sd->output_queue = NULL;
2640 sd->output_queue_tailp = &sd->output_queue;
2641 local_irq_enable();
2642
2643 while (head) {
2644 struct Qdisc *q = head;
2645 spinlock_t *root_lock;
2646
2647 head = head->next_sched;
2648
2649 root_lock = qdisc_lock(q);
2650 if (spin_trylock(root_lock)) {
2651 smp_mb__before_clear_bit();
2652 clear_bit(__QDISC_STATE_SCHED,
2653 &q->state);
2654 qdisc_run(q);
2655 spin_unlock(root_lock);
2656 } else {
2657 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2658 &q->state)) {
2659 __netif_reschedule(q);
2660 } else {
2661 smp_mb__before_clear_bit();
2662 clear_bit(__QDISC_STATE_SCHED,
2663 &q->state);
2664 }
2665 }
2666 }
2667 }
2668 }
2669
2670 static inline int deliver_skb(struct sk_buff *skb,
2671 struct packet_type *pt_prev,
2672 struct net_device *orig_dev)
2673 {
2674 atomic_inc(&skb->users);
2675 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2676 }
2677
2678 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2679 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2680 /* This hook is defined here for ATM LANE */
2681 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2682 unsigned char *addr) __read_mostly;
2683 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2684 #endif
2685
2686 #ifdef CONFIG_NET_CLS_ACT
2687 /* TODO: Maybe we should just force sch_ingress to be compiled in
2688 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2689 * a compare and 2 stores extra right now if we dont have it on
2690 * but have CONFIG_NET_CLS_ACT
2691 * NOTE: This doesnt stop any functionality; if you dont have
2692 * the ingress scheduler, you just cant add policies on ingress.
2693 *
2694 */
2695 static int ing_filter(struct sk_buff *skb)
2696 {
2697 struct net_device *dev = skb->dev;
2698 u32 ttl = G_TC_RTTL(skb->tc_verd);
2699 struct netdev_queue *rxq;
2700 int result = TC_ACT_OK;
2701 struct Qdisc *q;
2702
2703 if (unlikely(MAX_RED_LOOP < ttl++)) {
2704 if (net_ratelimit())
2705 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2706 skb->skb_iif, dev->ifindex);
2707 return TC_ACT_SHOT;
2708 }
2709
2710 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2711 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2712
2713 rxq = &dev->rx_queue;
2714
2715 q = rxq->qdisc;
2716 if (q != &noop_qdisc) {
2717 spin_lock(qdisc_lock(q));
2718 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2719 result = qdisc_enqueue_root(skb, q);
2720 spin_unlock(qdisc_lock(q));
2721 }
2722
2723 return result;
2724 }
2725
2726 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2727 struct packet_type **pt_prev,
2728 int *ret, struct net_device *orig_dev)
2729 {
2730 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2731 goto out;
2732
2733 if (*pt_prev) {
2734 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2735 *pt_prev = NULL;
2736 }
2737
2738 switch (ing_filter(skb)) {
2739 case TC_ACT_SHOT:
2740 case TC_ACT_STOLEN:
2741 kfree_skb(skb);
2742 return NULL;
2743 }
2744
2745 out:
2746 skb->tc_verd = 0;
2747 return skb;
2748 }
2749 #endif
2750
2751 /*
2752 * netif_nit_deliver - deliver received packets to network taps
2753 * @skb: buffer
2754 *
2755 * This function is used to deliver incoming packets to network
2756 * taps. It should be used when the normal netif_receive_skb path
2757 * is bypassed, for example because of VLAN acceleration.
2758 */
2759 void netif_nit_deliver(struct sk_buff *skb)
2760 {
2761 struct packet_type *ptype;
2762
2763 if (list_empty(&ptype_all))
2764 return;
2765
2766 skb_reset_network_header(skb);
2767 skb_reset_transport_header(skb);
2768 skb->mac_len = skb->network_header - skb->mac_header;
2769
2770 rcu_read_lock();
2771 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2772 if (!ptype->dev || ptype->dev == skb->dev)
2773 deliver_skb(skb, ptype, skb->dev);
2774 }
2775 rcu_read_unlock();
2776 }
2777
2778 /**
2779 * netdev_rx_handler_register - register receive handler
2780 * @dev: device to register a handler for
2781 * @rx_handler: receive handler to register
2782 * @rx_handler_data: data pointer that is used by rx handler
2783 *
2784 * Register a receive hander for a device. This handler will then be
2785 * called from __netif_receive_skb. A negative errno code is returned
2786 * on a failure.
2787 *
2788 * The caller must hold the rtnl_mutex.
2789 */
2790 int netdev_rx_handler_register(struct net_device *dev,
2791 rx_handler_func_t *rx_handler,
2792 void *rx_handler_data)
2793 {
2794 ASSERT_RTNL();
2795
2796 if (dev->rx_handler)
2797 return -EBUSY;
2798
2799 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2800 rcu_assign_pointer(dev->rx_handler, rx_handler);
2801
2802 return 0;
2803 }
2804 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2805
2806 /**
2807 * netdev_rx_handler_unregister - unregister receive handler
2808 * @dev: device to unregister a handler from
2809 *
2810 * Unregister a receive hander from a device.
2811 *
2812 * The caller must hold the rtnl_mutex.
2813 */
2814 void netdev_rx_handler_unregister(struct net_device *dev)
2815 {
2816
2817 ASSERT_RTNL();
2818 rcu_assign_pointer(dev->rx_handler, NULL);
2819 rcu_assign_pointer(dev->rx_handler_data, NULL);
2820 }
2821 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2822
2823 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2824 struct net_device *master)
2825 {
2826 if (skb->pkt_type == PACKET_HOST) {
2827 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2828
2829 memcpy(dest, master->dev_addr, ETH_ALEN);
2830 }
2831 }
2832
2833 /* On bonding slaves other than the currently active slave, suppress
2834 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2835 * ARP on active-backup slaves with arp_validate enabled.
2836 */
2837 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2838 {
2839 struct net_device *dev = skb->dev;
2840
2841 if (master->priv_flags & IFF_MASTER_ARPMON)
2842 dev->last_rx = jiffies;
2843
2844 if ((master->priv_flags & IFF_MASTER_ALB) &&
2845 (master->priv_flags & IFF_BRIDGE_PORT)) {
2846 /* Do address unmangle. The local destination address
2847 * will be always the one master has. Provides the right
2848 * functionality in a bridge.
2849 */
2850 skb_bond_set_mac_by_master(skb, master);
2851 }
2852
2853 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2854 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2855 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2856 return 0;
2857
2858 if (master->priv_flags & IFF_MASTER_ALB) {
2859 if (skb->pkt_type != PACKET_BROADCAST &&
2860 skb->pkt_type != PACKET_MULTICAST)
2861 return 0;
2862 }
2863 if (master->priv_flags & IFF_MASTER_8023AD &&
2864 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2865 return 0;
2866
2867 return 1;
2868 }
2869 return 0;
2870 }
2871 EXPORT_SYMBOL(__skb_bond_should_drop);
2872
2873 static int __netif_receive_skb(struct sk_buff *skb)
2874 {
2875 struct packet_type *ptype, *pt_prev;
2876 rx_handler_func_t *rx_handler;
2877 struct net_device *orig_dev;
2878 struct net_device *master;
2879 struct net_device *null_or_orig;
2880 struct net_device *orig_or_bond;
2881 int ret = NET_RX_DROP;
2882 __be16 type;
2883
2884 if (!netdev_tstamp_prequeue)
2885 net_timestamp_check(skb);
2886
2887 if (vlan_tx_tag_present(skb))
2888 vlan_hwaccel_do_receive(skb);
2889
2890 /* if we've gotten here through NAPI, check netpoll */
2891 if (netpoll_receive_skb(skb))
2892 return NET_RX_DROP;
2893
2894 if (!skb->skb_iif)
2895 skb->skb_iif = skb->dev->ifindex;
2896
2897 /*
2898 * bonding note: skbs received on inactive slaves should only
2899 * be delivered to pkt handlers that are exact matches. Also
2900 * the deliver_no_wcard flag will be set. If packet handlers
2901 * are sensitive to duplicate packets these skbs will need to
2902 * be dropped at the handler. The vlan accel path may have
2903 * already set the deliver_no_wcard flag.
2904 */
2905 null_or_orig = NULL;
2906 orig_dev = skb->dev;
2907 master = ACCESS_ONCE(orig_dev->master);
2908 if (skb->deliver_no_wcard)
2909 null_or_orig = orig_dev;
2910 else if (master) {
2911 if (skb_bond_should_drop(skb, master)) {
2912 skb->deliver_no_wcard = 1;
2913 null_or_orig = orig_dev; /* deliver only exact match */
2914 } else
2915 skb->dev = master;
2916 }
2917
2918 __this_cpu_inc(softnet_data.processed);
2919 skb_reset_network_header(skb);
2920 skb_reset_transport_header(skb);
2921 skb->mac_len = skb->network_header - skb->mac_header;
2922
2923 pt_prev = NULL;
2924
2925 rcu_read_lock();
2926
2927 #ifdef CONFIG_NET_CLS_ACT
2928 if (skb->tc_verd & TC_NCLS) {
2929 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2930 goto ncls;
2931 }
2932 #endif
2933
2934 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2935 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2936 ptype->dev == orig_dev) {
2937 if (pt_prev)
2938 ret = deliver_skb(skb, pt_prev, orig_dev);
2939 pt_prev = ptype;
2940 }
2941 }
2942
2943 #ifdef CONFIG_NET_CLS_ACT
2944 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2945 if (!skb)
2946 goto out;
2947 ncls:
2948 #endif
2949
2950 /* Handle special case of bridge or macvlan */
2951 rx_handler = rcu_dereference(skb->dev->rx_handler);
2952 if (rx_handler) {
2953 if (pt_prev) {
2954 ret = deliver_skb(skb, pt_prev, orig_dev);
2955 pt_prev = NULL;
2956 }
2957 skb = rx_handler(skb);
2958 if (!skb)
2959 goto out;
2960 }
2961
2962 /*
2963 * Make sure frames received on VLAN interfaces stacked on
2964 * bonding interfaces still make their way to any base bonding
2965 * device that may have registered for a specific ptype. The
2966 * handler may have to adjust skb->dev and orig_dev.
2967 */
2968 orig_or_bond = orig_dev;
2969 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2970 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2971 orig_or_bond = vlan_dev_real_dev(skb->dev);
2972 }
2973
2974 type = skb->protocol;
2975 list_for_each_entry_rcu(ptype,
2976 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2977 if (ptype->type == type && (ptype->dev == null_or_orig ||
2978 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2979 ptype->dev == orig_or_bond)) {
2980 if (pt_prev)
2981 ret = deliver_skb(skb, pt_prev, orig_dev);
2982 pt_prev = ptype;
2983 }
2984 }
2985
2986 if (pt_prev) {
2987 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2988 } else {
2989 kfree_skb(skb);
2990 /* Jamal, now you will not able to escape explaining
2991 * me how you were going to use this. :-)
2992 */
2993 ret = NET_RX_DROP;
2994 }
2995
2996 out:
2997 rcu_read_unlock();
2998 return ret;
2999 }
3000
3001 /**
3002 * netif_receive_skb - process receive buffer from network
3003 * @skb: buffer to process
3004 *
3005 * netif_receive_skb() is the main receive data processing function.
3006 * It always succeeds. The buffer may be dropped during processing
3007 * for congestion control or by the protocol layers.
3008 *
3009 * This function may only be called from softirq context and interrupts
3010 * should be enabled.
3011 *
3012 * Return values (usually ignored):
3013 * NET_RX_SUCCESS: no congestion
3014 * NET_RX_DROP: packet was dropped
3015 */
3016 int netif_receive_skb(struct sk_buff *skb)
3017 {
3018 if (netdev_tstamp_prequeue)
3019 net_timestamp_check(skb);
3020
3021 if (skb_defer_rx_timestamp(skb))
3022 return NET_RX_SUCCESS;
3023
3024 #ifdef CONFIG_RPS
3025 {
3026 struct rps_dev_flow voidflow, *rflow = &voidflow;
3027 int cpu, ret;
3028
3029 rcu_read_lock();
3030
3031 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3032
3033 if (cpu >= 0) {
3034 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3035 rcu_read_unlock();
3036 } else {
3037 rcu_read_unlock();
3038 ret = __netif_receive_skb(skb);
3039 }
3040
3041 return ret;
3042 }
3043 #else
3044 return __netif_receive_skb(skb);
3045 #endif
3046 }
3047 EXPORT_SYMBOL(netif_receive_skb);
3048
3049 /* Network device is going away, flush any packets still pending
3050 * Called with irqs disabled.
3051 */
3052 static void flush_backlog(void *arg)
3053 {
3054 struct net_device *dev = arg;
3055 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3056 struct sk_buff *skb, *tmp;
3057
3058 rps_lock(sd);
3059 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3060 if (skb->dev == dev) {
3061 __skb_unlink(skb, &sd->input_pkt_queue);
3062 kfree_skb(skb);
3063 input_queue_head_incr(sd);
3064 }
3065 }
3066 rps_unlock(sd);
3067
3068 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3069 if (skb->dev == dev) {
3070 __skb_unlink(skb, &sd->process_queue);
3071 kfree_skb(skb);
3072 input_queue_head_incr(sd);
3073 }
3074 }
3075 }
3076
3077 static int napi_gro_complete(struct sk_buff *skb)
3078 {
3079 struct packet_type *ptype;
3080 __be16 type = skb->protocol;
3081 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3082 int err = -ENOENT;
3083
3084 if (NAPI_GRO_CB(skb)->count == 1) {
3085 skb_shinfo(skb)->gso_size = 0;
3086 goto out;
3087 }
3088
3089 rcu_read_lock();
3090 list_for_each_entry_rcu(ptype, head, list) {
3091 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3092 continue;
3093
3094 err = ptype->gro_complete(skb);
3095 break;
3096 }
3097 rcu_read_unlock();
3098
3099 if (err) {
3100 WARN_ON(&ptype->list == head);
3101 kfree_skb(skb);
3102 return NET_RX_SUCCESS;
3103 }
3104
3105 out:
3106 return netif_receive_skb(skb);
3107 }
3108
3109 inline void napi_gro_flush(struct napi_struct *napi)
3110 {
3111 struct sk_buff *skb, *next;
3112
3113 for (skb = napi->gro_list; skb; skb = next) {
3114 next = skb->next;
3115 skb->next = NULL;
3116 napi_gro_complete(skb);
3117 }
3118
3119 napi->gro_count = 0;
3120 napi->gro_list = NULL;
3121 }
3122 EXPORT_SYMBOL(napi_gro_flush);
3123
3124 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3125 {
3126 struct sk_buff **pp = NULL;
3127 struct packet_type *ptype;
3128 __be16 type = skb->protocol;
3129 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3130 int same_flow;
3131 int mac_len;
3132 enum gro_result ret;
3133
3134 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3135 goto normal;
3136
3137 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3138 goto normal;
3139
3140 rcu_read_lock();
3141 list_for_each_entry_rcu(ptype, head, list) {
3142 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3143 continue;
3144
3145 skb_set_network_header(skb, skb_gro_offset(skb));
3146 mac_len = skb->network_header - skb->mac_header;
3147 skb->mac_len = mac_len;
3148 NAPI_GRO_CB(skb)->same_flow = 0;
3149 NAPI_GRO_CB(skb)->flush = 0;
3150 NAPI_GRO_CB(skb)->free = 0;
3151
3152 pp = ptype->gro_receive(&napi->gro_list, skb);
3153 break;
3154 }
3155 rcu_read_unlock();
3156
3157 if (&ptype->list == head)
3158 goto normal;
3159
3160 same_flow = NAPI_GRO_CB(skb)->same_flow;
3161 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3162
3163 if (pp) {
3164 struct sk_buff *nskb = *pp;
3165
3166 *pp = nskb->next;
3167 nskb->next = NULL;
3168 napi_gro_complete(nskb);
3169 napi->gro_count--;
3170 }
3171
3172 if (same_flow)
3173 goto ok;
3174
3175 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3176 goto normal;
3177
3178 napi->gro_count++;
3179 NAPI_GRO_CB(skb)->count = 1;
3180 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3181 skb->next = napi->gro_list;
3182 napi->gro_list = skb;
3183 ret = GRO_HELD;
3184
3185 pull:
3186 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3187 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3188
3189 BUG_ON(skb->end - skb->tail < grow);
3190
3191 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3192
3193 skb->tail += grow;
3194 skb->data_len -= grow;
3195
3196 skb_shinfo(skb)->frags[0].page_offset += grow;
3197 skb_shinfo(skb)->frags[0].size -= grow;
3198
3199 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3200 put_page(skb_shinfo(skb)->frags[0].page);
3201 memmove(skb_shinfo(skb)->frags,
3202 skb_shinfo(skb)->frags + 1,
3203 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3204 }
3205 }
3206
3207 ok:
3208 return ret;
3209
3210 normal:
3211 ret = GRO_NORMAL;
3212 goto pull;
3213 }
3214 EXPORT_SYMBOL(dev_gro_receive);
3215
3216 static inline gro_result_t
3217 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3218 {
3219 struct sk_buff *p;
3220
3221 for (p = napi->gro_list; p; p = p->next) {
3222 unsigned long diffs;
3223
3224 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3225 diffs |= compare_ether_header(skb_mac_header(p),
3226 skb_gro_mac_header(skb));
3227 NAPI_GRO_CB(p)->same_flow = !diffs;
3228 NAPI_GRO_CB(p)->flush = 0;
3229 }
3230
3231 return dev_gro_receive(napi, skb);
3232 }
3233
3234 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3235 {
3236 switch (ret) {
3237 case GRO_NORMAL:
3238 if (netif_receive_skb(skb))
3239 ret = GRO_DROP;
3240 break;
3241
3242 case GRO_DROP:
3243 case GRO_MERGED_FREE:
3244 kfree_skb(skb);
3245 break;
3246
3247 case GRO_HELD:
3248 case GRO_MERGED:
3249 break;
3250 }
3251
3252 return ret;
3253 }
3254 EXPORT_SYMBOL(napi_skb_finish);
3255
3256 void skb_gro_reset_offset(struct sk_buff *skb)
3257 {
3258 NAPI_GRO_CB(skb)->data_offset = 0;
3259 NAPI_GRO_CB(skb)->frag0 = NULL;
3260 NAPI_GRO_CB(skb)->frag0_len = 0;
3261
3262 if (skb->mac_header == skb->tail &&
3263 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3264 NAPI_GRO_CB(skb)->frag0 =
3265 page_address(skb_shinfo(skb)->frags[0].page) +
3266 skb_shinfo(skb)->frags[0].page_offset;
3267 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3268 }
3269 }
3270 EXPORT_SYMBOL(skb_gro_reset_offset);
3271
3272 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3273 {
3274 skb_gro_reset_offset(skb);
3275
3276 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3277 }
3278 EXPORT_SYMBOL(napi_gro_receive);
3279
3280 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3281 {
3282 __skb_pull(skb, skb_headlen(skb));
3283 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3284
3285 napi->skb = skb;
3286 }
3287 EXPORT_SYMBOL(napi_reuse_skb);
3288
3289 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3290 {
3291 struct sk_buff *skb = napi->skb;
3292
3293 if (!skb) {
3294 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3295 if (skb)
3296 napi->skb = skb;
3297 }
3298 return skb;
3299 }
3300 EXPORT_SYMBOL(napi_get_frags);
3301
3302 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3303 gro_result_t ret)
3304 {
3305 switch (ret) {
3306 case GRO_NORMAL:
3307 case GRO_HELD:
3308 skb->protocol = eth_type_trans(skb, skb->dev);
3309
3310 if (ret == GRO_HELD)
3311 skb_gro_pull(skb, -ETH_HLEN);
3312 else if (netif_receive_skb(skb))
3313 ret = GRO_DROP;
3314 break;
3315
3316 case GRO_DROP:
3317 case GRO_MERGED_FREE:
3318 napi_reuse_skb(napi, skb);
3319 break;
3320
3321 case GRO_MERGED:
3322 break;
3323 }
3324
3325 return ret;
3326 }
3327 EXPORT_SYMBOL(napi_frags_finish);
3328
3329 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3330 {
3331 struct sk_buff *skb = napi->skb;
3332 struct ethhdr *eth;
3333 unsigned int hlen;
3334 unsigned int off;
3335
3336 napi->skb = NULL;
3337
3338 skb_reset_mac_header(skb);
3339 skb_gro_reset_offset(skb);
3340
3341 off = skb_gro_offset(skb);
3342 hlen = off + sizeof(*eth);
3343 eth = skb_gro_header_fast(skb, off);
3344 if (skb_gro_header_hard(skb, hlen)) {
3345 eth = skb_gro_header_slow(skb, hlen, off);
3346 if (unlikely(!eth)) {
3347 napi_reuse_skb(napi, skb);
3348 skb = NULL;
3349 goto out;
3350 }
3351 }
3352
3353 skb_gro_pull(skb, sizeof(*eth));
3354
3355 /*
3356 * This works because the only protocols we care about don't require
3357 * special handling. We'll fix it up properly at the end.
3358 */
3359 skb->protocol = eth->h_proto;
3360
3361 out:
3362 return skb;
3363 }
3364 EXPORT_SYMBOL(napi_frags_skb);
3365
3366 gro_result_t napi_gro_frags(struct napi_struct *napi)
3367 {
3368 struct sk_buff *skb = napi_frags_skb(napi);
3369
3370 if (!skb)
3371 return GRO_DROP;
3372
3373 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3374 }
3375 EXPORT_SYMBOL(napi_gro_frags);
3376
3377 /*
3378 * net_rps_action sends any pending IPI's for rps.
3379 * Note: called with local irq disabled, but exits with local irq enabled.
3380 */
3381 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3382 {
3383 #ifdef CONFIG_RPS
3384 struct softnet_data *remsd = sd->rps_ipi_list;
3385
3386 if (remsd) {
3387 sd->rps_ipi_list = NULL;
3388
3389 local_irq_enable();
3390
3391 /* Send pending IPI's to kick RPS processing on remote cpus. */
3392 while (remsd) {
3393 struct softnet_data *next = remsd->rps_ipi_next;
3394
3395 if (cpu_online(remsd->cpu))
3396 __smp_call_function_single(remsd->cpu,
3397 &remsd->csd, 0);
3398 remsd = next;
3399 }
3400 } else
3401 #endif
3402 local_irq_enable();
3403 }
3404
3405 static int process_backlog(struct napi_struct *napi, int quota)
3406 {
3407 int work = 0;
3408 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3409
3410 #ifdef CONFIG_RPS
3411 /* Check if we have pending ipi, its better to send them now,
3412 * not waiting net_rx_action() end.
3413 */
3414 if (sd->rps_ipi_list) {
3415 local_irq_disable();
3416 net_rps_action_and_irq_enable(sd);
3417 }
3418 #endif
3419 napi->weight = weight_p;
3420 local_irq_disable();
3421 while (work < quota) {
3422 struct sk_buff *skb;
3423 unsigned int qlen;
3424
3425 while ((skb = __skb_dequeue(&sd->process_queue))) {
3426 local_irq_enable();
3427 __netif_receive_skb(skb);
3428 local_irq_disable();
3429 input_queue_head_incr(sd);
3430 if (++work >= quota) {
3431 local_irq_enable();
3432 return work;
3433 }
3434 }
3435
3436 rps_lock(sd);
3437 qlen = skb_queue_len(&sd->input_pkt_queue);
3438 if (qlen)
3439 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3440 &sd->process_queue);
3441
3442 if (qlen < quota - work) {
3443 /*
3444 * Inline a custom version of __napi_complete().
3445 * only current cpu owns and manipulates this napi,
3446 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3447 * we can use a plain write instead of clear_bit(),
3448 * and we dont need an smp_mb() memory barrier.
3449 */
3450 list_del(&napi->poll_list);
3451 napi->state = 0;
3452
3453 quota = work + qlen;
3454 }
3455 rps_unlock(sd);
3456 }
3457 local_irq_enable();
3458
3459 return work;
3460 }
3461
3462 /**
3463 * __napi_schedule - schedule for receive
3464 * @n: entry to schedule
3465 *
3466 * The entry's receive function will be scheduled to run
3467 */
3468 void __napi_schedule(struct napi_struct *n)
3469 {
3470 unsigned long flags;
3471
3472 local_irq_save(flags);
3473 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3474 local_irq_restore(flags);
3475 }
3476 EXPORT_SYMBOL(__napi_schedule);
3477
3478 void __napi_complete(struct napi_struct *n)
3479 {
3480 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3481 BUG_ON(n->gro_list);
3482
3483 list_del(&n->poll_list);
3484 smp_mb__before_clear_bit();
3485 clear_bit(NAPI_STATE_SCHED, &n->state);
3486 }
3487 EXPORT_SYMBOL(__napi_complete);
3488
3489 void napi_complete(struct napi_struct *n)
3490 {
3491 unsigned long flags;
3492
3493 /*
3494 * don't let napi dequeue from the cpu poll list
3495 * just in case its running on a different cpu
3496 */
3497 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3498 return;
3499
3500 napi_gro_flush(n);
3501 local_irq_save(flags);
3502 __napi_complete(n);
3503 local_irq_restore(flags);
3504 }
3505 EXPORT_SYMBOL(napi_complete);
3506
3507 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3508 int (*poll)(struct napi_struct *, int), int weight)
3509 {
3510 INIT_LIST_HEAD(&napi->poll_list);
3511 napi->gro_count = 0;
3512 napi->gro_list = NULL;
3513 napi->skb = NULL;
3514 napi->poll = poll;
3515 napi->weight = weight;
3516 list_add(&napi->dev_list, &dev->napi_list);
3517 napi->dev = dev;
3518 #ifdef CONFIG_NETPOLL
3519 spin_lock_init(&napi->poll_lock);
3520 napi->poll_owner = -1;
3521 #endif
3522 set_bit(NAPI_STATE_SCHED, &napi->state);
3523 }
3524 EXPORT_SYMBOL(netif_napi_add);
3525
3526 void netif_napi_del(struct napi_struct *napi)
3527 {
3528 struct sk_buff *skb, *next;
3529
3530 list_del_init(&napi->dev_list);
3531 napi_free_frags(napi);
3532
3533 for (skb = napi->gro_list; skb; skb = next) {
3534 next = skb->next;
3535 skb->next = NULL;
3536 kfree_skb(skb);
3537 }
3538
3539 napi->gro_list = NULL;
3540 napi->gro_count = 0;
3541 }
3542 EXPORT_SYMBOL(netif_napi_del);
3543
3544 static void net_rx_action(struct softirq_action *h)
3545 {
3546 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3547 unsigned long time_limit = jiffies + 2;
3548 int budget = netdev_budget;
3549 void *have;
3550
3551 local_irq_disable();
3552
3553 while (!list_empty(&sd->poll_list)) {
3554 struct napi_struct *n;
3555 int work, weight;
3556
3557 /* If softirq window is exhuasted then punt.
3558 * Allow this to run for 2 jiffies since which will allow
3559 * an average latency of 1.5/HZ.
3560 */
3561 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3562 goto softnet_break;
3563
3564 local_irq_enable();
3565
3566 /* Even though interrupts have been re-enabled, this
3567 * access is safe because interrupts can only add new
3568 * entries to the tail of this list, and only ->poll()
3569 * calls can remove this head entry from the list.
3570 */
3571 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3572
3573 have = netpoll_poll_lock(n);
3574
3575 weight = n->weight;
3576
3577 /* This NAPI_STATE_SCHED test is for avoiding a race
3578 * with netpoll's poll_napi(). Only the entity which
3579 * obtains the lock and sees NAPI_STATE_SCHED set will
3580 * actually make the ->poll() call. Therefore we avoid
3581 * accidently calling ->poll() when NAPI is not scheduled.
3582 */
3583 work = 0;
3584 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3585 work = n->poll(n, weight);
3586 trace_napi_poll(n);
3587 }
3588
3589 WARN_ON_ONCE(work > weight);
3590
3591 budget -= work;
3592
3593 local_irq_disable();
3594
3595 /* Drivers must not modify the NAPI state if they
3596 * consume the entire weight. In such cases this code
3597 * still "owns" the NAPI instance and therefore can
3598 * move the instance around on the list at-will.
3599 */
3600 if (unlikely(work == weight)) {
3601 if (unlikely(napi_disable_pending(n))) {
3602 local_irq_enable();
3603 napi_complete(n);
3604 local_irq_disable();
3605 } else
3606 list_move_tail(&n->poll_list, &sd->poll_list);
3607 }
3608
3609 netpoll_poll_unlock(have);
3610 }
3611 out:
3612 net_rps_action_and_irq_enable(sd);
3613
3614 #ifdef CONFIG_NET_DMA
3615 /*
3616 * There may not be any more sk_buffs coming right now, so push
3617 * any pending DMA copies to hardware
3618 */
3619 dma_issue_pending_all();
3620 #endif
3621
3622 return;
3623
3624 softnet_break:
3625 sd->time_squeeze++;
3626 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3627 goto out;
3628 }
3629
3630 static gifconf_func_t *gifconf_list[NPROTO];
3631
3632 /**
3633 * register_gifconf - register a SIOCGIF handler
3634 * @family: Address family
3635 * @gifconf: Function handler
3636 *
3637 * Register protocol dependent address dumping routines. The handler
3638 * that is passed must not be freed or reused until it has been replaced
3639 * by another handler.
3640 */
3641 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3642 {
3643 if (family >= NPROTO)
3644 return -EINVAL;
3645 gifconf_list[family] = gifconf;
3646 return 0;
3647 }
3648 EXPORT_SYMBOL(register_gifconf);
3649
3650
3651 /*
3652 * Map an interface index to its name (SIOCGIFNAME)
3653 */
3654
3655 /*
3656 * We need this ioctl for efficient implementation of the
3657 * if_indextoname() function required by the IPv6 API. Without
3658 * it, we would have to search all the interfaces to find a
3659 * match. --pb
3660 */
3661
3662 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3663 {
3664 struct net_device *dev;
3665 struct ifreq ifr;
3666
3667 /*
3668 * Fetch the caller's info block.
3669 */
3670
3671 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3672 return -EFAULT;
3673
3674 rcu_read_lock();
3675 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3676 if (!dev) {
3677 rcu_read_unlock();
3678 return -ENODEV;
3679 }
3680
3681 strcpy(ifr.ifr_name, dev->name);
3682 rcu_read_unlock();
3683
3684 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3685 return -EFAULT;
3686 return 0;
3687 }
3688
3689 /*
3690 * Perform a SIOCGIFCONF call. This structure will change
3691 * size eventually, and there is nothing I can do about it.
3692 * Thus we will need a 'compatibility mode'.
3693 */
3694
3695 static int dev_ifconf(struct net *net, char __user *arg)
3696 {
3697 struct ifconf ifc;
3698 struct net_device *dev;
3699 char __user *pos;
3700 int len;
3701 int total;
3702 int i;
3703
3704 /*
3705 * Fetch the caller's info block.
3706 */
3707
3708 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3709 return -EFAULT;
3710
3711 pos = ifc.ifc_buf;
3712 len = ifc.ifc_len;
3713
3714 /*
3715 * Loop over the interfaces, and write an info block for each.
3716 */
3717
3718 total = 0;
3719 for_each_netdev(net, dev) {
3720 for (i = 0; i < NPROTO; i++) {
3721 if (gifconf_list[i]) {
3722 int done;
3723 if (!pos)
3724 done = gifconf_list[i](dev, NULL, 0);
3725 else
3726 done = gifconf_list[i](dev, pos + total,
3727 len - total);
3728 if (done < 0)
3729 return -EFAULT;
3730 total += done;
3731 }
3732 }
3733 }
3734
3735 /*
3736 * All done. Write the updated control block back to the caller.
3737 */
3738 ifc.ifc_len = total;
3739
3740 /*
3741 * Both BSD and Solaris return 0 here, so we do too.
3742 */
3743 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3744 }
3745
3746 #ifdef CONFIG_PROC_FS
3747 /*
3748 * This is invoked by the /proc filesystem handler to display a device
3749 * in detail.
3750 */
3751 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3752 __acquires(RCU)
3753 {
3754 struct net *net = seq_file_net(seq);
3755 loff_t off;
3756 struct net_device *dev;
3757
3758 rcu_read_lock();
3759 if (!*pos)
3760 return SEQ_START_TOKEN;
3761
3762 off = 1;
3763 for_each_netdev_rcu(net, dev)
3764 if (off++ == *pos)
3765 return dev;
3766
3767 return NULL;
3768 }
3769
3770 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3771 {
3772 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3773 first_net_device(seq_file_net(seq)) :
3774 next_net_device((struct net_device *)v);
3775
3776 ++*pos;
3777 return rcu_dereference(dev);
3778 }
3779
3780 void dev_seq_stop(struct seq_file *seq, void *v)
3781 __releases(RCU)
3782 {
3783 rcu_read_unlock();
3784 }
3785
3786 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3787 {
3788 struct rtnl_link_stats64 temp;
3789 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3790
3791 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3792 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3793 dev->name, stats->rx_bytes, stats->rx_packets,
3794 stats->rx_errors,
3795 stats->rx_dropped + stats->rx_missed_errors,
3796 stats->rx_fifo_errors,
3797 stats->rx_length_errors + stats->rx_over_errors +
3798 stats->rx_crc_errors + stats->rx_frame_errors,
3799 stats->rx_compressed, stats->multicast,
3800 stats->tx_bytes, stats->tx_packets,
3801 stats->tx_errors, stats->tx_dropped,
3802 stats->tx_fifo_errors, stats->collisions,
3803 stats->tx_carrier_errors +
3804 stats->tx_aborted_errors +
3805 stats->tx_window_errors +
3806 stats->tx_heartbeat_errors,
3807 stats->tx_compressed);
3808 }
3809
3810 /*
3811 * Called from the PROCfs module. This now uses the new arbitrary sized
3812 * /proc/net interface to create /proc/net/dev
3813 */
3814 static int dev_seq_show(struct seq_file *seq, void *v)
3815 {
3816 if (v == SEQ_START_TOKEN)
3817 seq_puts(seq, "Inter-| Receive "
3818 " | Transmit\n"
3819 " face |bytes packets errs drop fifo frame "
3820 "compressed multicast|bytes packets errs "
3821 "drop fifo colls carrier compressed\n");
3822 else
3823 dev_seq_printf_stats(seq, v);
3824 return 0;
3825 }
3826
3827 static struct softnet_data *softnet_get_online(loff_t *pos)
3828 {
3829 struct softnet_data *sd = NULL;
3830
3831 while (*pos < nr_cpu_ids)
3832 if (cpu_online(*pos)) {
3833 sd = &per_cpu(softnet_data, *pos);
3834 break;
3835 } else
3836 ++*pos;
3837 return sd;
3838 }
3839
3840 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3841 {
3842 return softnet_get_online(pos);
3843 }
3844
3845 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3846 {
3847 ++*pos;
3848 return softnet_get_online(pos);
3849 }
3850
3851 static void softnet_seq_stop(struct seq_file *seq, void *v)
3852 {
3853 }
3854
3855 static int softnet_seq_show(struct seq_file *seq, void *v)
3856 {
3857 struct softnet_data *sd = v;
3858
3859 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3860 sd->processed, sd->dropped, sd->time_squeeze, 0,
3861 0, 0, 0, 0, /* was fastroute */
3862 sd->cpu_collision, sd->received_rps);
3863 return 0;
3864 }
3865
3866 static const struct seq_operations dev_seq_ops = {
3867 .start = dev_seq_start,
3868 .next = dev_seq_next,
3869 .stop = dev_seq_stop,
3870 .show = dev_seq_show,
3871 };
3872
3873 static int dev_seq_open(struct inode *inode, struct file *file)
3874 {
3875 return seq_open_net(inode, file, &dev_seq_ops,
3876 sizeof(struct seq_net_private));
3877 }
3878
3879 static const struct file_operations dev_seq_fops = {
3880 .owner = THIS_MODULE,
3881 .open = dev_seq_open,
3882 .read = seq_read,
3883 .llseek = seq_lseek,
3884 .release = seq_release_net,
3885 };
3886
3887 static const struct seq_operations softnet_seq_ops = {
3888 .start = softnet_seq_start,
3889 .next = softnet_seq_next,
3890 .stop = softnet_seq_stop,
3891 .show = softnet_seq_show,
3892 };
3893
3894 static int softnet_seq_open(struct inode *inode, struct file *file)
3895 {
3896 return seq_open(file, &softnet_seq_ops);
3897 }
3898
3899 static const struct file_operations softnet_seq_fops = {
3900 .owner = THIS_MODULE,
3901 .open = softnet_seq_open,
3902 .read = seq_read,
3903 .llseek = seq_lseek,
3904 .release = seq_release,
3905 };
3906
3907 static void *ptype_get_idx(loff_t pos)
3908 {
3909 struct packet_type *pt = NULL;
3910 loff_t i = 0;
3911 int t;
3912
3913 list_for_each_entry_rcu(pt, &ptype_all, list) {
3914 if (i == pos)
3915 return pt;
3916 ++i;
3917 }
3918
3919 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3920 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3921 if (i == pos)
3922 return pt;
3923 ++i;
3924 }
3925 }
3926 return NULL;
3927 }
3928
3929 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3930 __acquires(RCU)
3931 {
3932 rcu_read_lock();
3933 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3934 }
3935
3936 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3937 {
3938 struct packet_type *pt;
3939 struct list_head *nxt;
3940 int hash;
3941
3942 ++*pos;
3943 if (v == SEQ_START_TOKEN)
3944 return ptype_get_idx(0);
3945
3946 pt = v;
3947 nxt = pt->list.next;
3948 if (pt->type == htons(ETH_P_ALL)) {
3949 if (nxt != &ptype_all)
3950 goto found;
3951 hash = 0;
3952 nxt = ptype_base[0].next;
3953 } else
3954 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3955
3956 while (nxt == &ptype_base[hash]) {
3957 if (++hash >= PTYPE_HASH_SIZE)
3958 return NULL;
3959 nxt = ptype_base[hash].next;
3960 }
3961 found:
3962 return list_entry(nxt, struct packet_type, list);
3963 }
3964
3965 static void ptype_seq_stop(struct seq_file *seq, void *v)
3966 __releases(RCU)
3967 {
3968 rcu_read_unlock();
3969 }
3970
3971 static int ptype_seq_show(struct seq_file *seq, void *v)
3972 {
3973 struct packet_type *pt = v;
3974
3975 if (v == SEQ_START_TOKEN)
3976 seq_puts(seq, "Type Device Function\n");
3977 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3978 if (pt->type == htons(ETH_P_ALL))
3979 seq_puts(seq, "ALL ");
3980 else
3981 seq_printf(seq, "%04x", ntohs(pt->type));
3982
3983 seq_printf(seq, " %-8s %pF\n",
3984 pt->dev ? pt->dev->name : "", pt->func);
3985 }
3986
3987 return 0;
3988 }
3989
3990 static const struct seq_operations ptype_seq_ops = {
3991 .start = ptype_seq_start,
3992 .next = ptype_seq_next,
3993 .stop = ptype_seq_stop,
3994 .show = ptype_seq_show,
3995 };
3996
3997 static int ptype_seq_open(struct inode *inode, struct file *file)
3998 {
3999 return seq_open_net(inode, file, &ptype_seq_ops,
4000 sizeof(struct seq_net_private));
4001 }
4002
4003 static const struct file_operations ptype_seq_fops = {
4004 .owner = THIS_MODULE,
4005 .open = ptype_seq_open,
4006 .read = seq_read,
4007 .llseek = seq_lseek,
4008 .release = seq_release_net,
4009 };
4010
4011
4012 static int __net_init dev_proc_net_init(struct net *net)
4013 {
4014 int rc = -ENOMEM;
4015
4016 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4017 goto out;
4018 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4019 goto out_dev;
4020 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4021 goto out_softnet;
4022
4023 if (wext_proc_init(net))
4024 goto out_ptype;
4025 rc = 0;
4026 out:
4027 return rc;
4028 out_ptype:
4029 proc_net_remove(net, "ptype");
4030 out_softnet:
4031 proc_net_remove(net, "softnet_stat");
4032 out_dev:
4033 proc_net_remove(net, "dev");
4034 goto out;
4035 }
4036
4037 static void __net_exit dev_proc_net_exit(struct net *net)
4038 {
4039 wext_proc_exit(net);
4040
4041 proc_net_remove(net, "ptype");
4042 proc_net_remove(net, "softnet_stat");
4043 proc_net_remove(net, "dev");
4044 }
4045
4046 static struct pernet_operations __net_initdata dev_proc_ops = {
4047 .init = dev_proc_net_init,
4048 .exit = dev_proc_net_exit,
4049 };
4050
4051 static int __init dev_proc_init(void)
4052 {
4053 return register_pernet_subsys(&dev_proc_ops);
4054 }
4055 #else
4056 #define dev_proc_init() 0
4057 #endif /* CONFIG_PROC_FS */
4058
4059
4060 /**
4061 * netdev_set_master - set up master/slave pair
4062 * @slave: slave device
4063 * @master: new master device
4064 *
4065 * Changes the master device of the slave. Pass %NULL to break the
4066 * bonding. The caller must hold the RTNL semaphore. On a failure
4067 * a negative errno code is returned. On success the reference counts
4068 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4069 * function returns zero.
4070 */
4071 int netdev_set_master(struct net_device *slave, struct net_device *master)
4072 {
4073 struct net_device *old = slave->master;
4074
4075 ASSERT_RTNL();
4076
4077 if (master) {
4078 if (old)
4079 return -EBUSY;
4080 dev_hold(master);
4081 }
4082
4083 slave->master = master;
4084
4085 if (old) {
4086 synchronize_net();
4087 dev_put(old);
4088 }
4089 if (master)
4090 slave->flags |= IFF_SLAVE;
4091 else
4092 slave->flags &= ~IFF_SLAVE;
4093
4094 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4095 return 0;
4096 }
4097 EXPORT_SYMBOL(netdev_set_master);
4098
4099 static void dev_change_rx_flags(struct net_device *dev, int flags)
4100 {
4101 const struct net_device_ops *ops = dev->netdev_ops;
4102
4103 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4104 ops->ndo_change_rx_flags(dev, flags);
4105 }
4106
4107 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4108 {
4109 unsigned short old_flags = dev->flags;
4110 uid_t uid;
4111 gid_t gid;
4112
4113 ASSERT_RTNL();
4114
4115 dev->flags |= IFF_PROMISC;
4116 dev->promiscuity += inc;
4117 if (dev->promiscuity == 0) {
4118 /*
4119 * Avoid overflow.
4120 * If inc causes overflow, untouch promisc and return error.
4121 */
4122 if (inc < 0)
4123 dev->flags &= ~IFF_PROMISC;
4124 else {
4125 dev->promiscuity -= inc;
4126 printk(KERN_WARNING "%s: promiscuity touches roof, "
4127 "set promiscuity failed, promiscuity feature "
4128 "of device might be broken.\n", dev->name);
4129 return -EOVERFLOW;
4130 }
4131 }
4132 if (dev->flags != old_flags) {
4133 printk(KERN_INFO "device %s %s promiscuous mode\n",
4134 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4135 "left");
4136 if (audit_enabled) {
4137 current_uid_gid(&uid, &gid);
4138 audit_log(current->audit_context, GFP_ATOMIC,
4139 AUDIT_ANOM_PROMISCUOUS,
4140 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4141 dev->name, (dev->flags & IFF_PROMISC),
4142 (old_flags & IFF_PROMISC),
4143 audit_get_loginuid(current),
4144 uid, gid,
4145 audit_get_sessionid(current));
4146 }
4147
4148 dev_change_rx_flags(dev, IFF_PROMISC);
4149 }
4150 return 0;
4151 }
4152
4153 /**
4154 * dev_set_promiscuity - update promiscuity count on a device
4155 * @dev: device
4156 * @inc: modifier
4157 *
4158 * Add or remove promiscuity from a device. While the count in the device
4159 * remains above zero the interface remains promiscuous. Once it hits zero
4160 * the device reverts back to normal filtering operation. A negative inc
4161 * value is used to drop promiscuity on the device.
4162 * Return 0 if successful or a negative errno code on error.
4163 */
4164 int dev_set_promiscuity(struct net_device *dev, int inc)
4165 {
4166 unsigned short old_flags = dev->flags;
4167 int err;
4168
4169 err = __dev_set_promiscuity(dev, inc);
4170 if (err < 0)
4171 return err;
4172 if (dev->flags != old_flags)
4173 dev_set_rx_mode(dev);
4174 return err;
4175 }
4176 EXPORT_SYMBOL(dev_set_promiscuity);
4177
4178 /**
4179 * dev_set_allmulti - update allmulti count on a device
4180 * @dev: device
4181 * @inc: modifier
4182 *
4183 * Add or remove reception of all multicast frames to a device. While the
4184 * count in the device remains above zero the interface remains listening
4185 * to all interfaces. Once it hits zero the device reverts back to normal
4186 * filtering operation. A negative @inc value is used to drop the counter
4187 * when releasing a resource needing all multicasts.
4188 * Return 0 if successful or a negative errno code on error.
4189 */
4190
4191 int dev_set_allmulti(struct net_device *dev, int inc)
4192 {
4193 unsigned short old_flags = dev->flags;
4194
4195 ASSERT_RTNL();
4196
4197 dev->flags |= IFF_ALLMULTI;
4198 dev->allmulti += inc;
4199 if (dev->allmulti == 0) {
4200 /*
4201 * Avoid overflow.
4202 * If inc causes overflow, untouch allmulti and return error.
4203 */
4204 if (inc < 0)
4205 dev->flags &= ~IFF_ALLMULTI;
4206 else {
4207 dev->allmulti -= inc;
4208 printk(KERN_WARNING "%s: allmulti touches roof, "
4209 "set allmulti failed, allmulti feature of "
4210 "device might be broken.\n", dev->name);
4211 return -EOVERFLOW;
4212 }
4213 }
4214 if (dev->flags ^ old_flags) {
4215 dev_change_rx_flags(dev, IFF_ALLMULTI);
4216 dev_set_rx_mode(dev);
4217 }
4218 return 0;
4219 }
4220 EXPORT_SYMBOL(dev_set_allmulti);
4221
4222 /*
4223 * Upload unicast and multicast address lists to device and
4224 * configure RX filtering. When the device doesn't support unicast
4225 * filtering it is put in promiscuous mode while unicast addresses
4226 * are present.
4227 */
4228 void __dev_set_rx_mode(struct net_device *dev)
4229 {
4230 const struct net_device_ops *ops = dev->netdev_ops;
4231
4232 /* dev_open will call this function so the list will stay sane. */
4233 if (!(dev->flags&IFF_UP))
4234 return;
4235
4236 if (!netif_device_present(dev))
4237 return;
4238
4239 if (ops->ndo_set_rx_mode)
4240 ops->ndo_set_rx_mode(dev);
4241 else {
4242 /* Unicast addresses changes may only happen under the rtnl,
4243 * therefore calling __dev_set_promiscuity here is safe.
4244 */
4245 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4246 __dev_set_promiscuity(dev, 1);
4247 dev->uc_promisc = 1;
4248 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4249 __dev_set_promiscuity(dev, -1);
4250 dev->uc_promisc = 0;
4251 }
4252
4253 if (ops->ndo_set_multicast_list)
4254 ops->ndo_set_multicast_list(dev);
4255 }
4256 }
4257
4258 void dev_set_rx_mode(struct net_device *dev)
4259 {
4260 netif_addr_lock_bh(dev);
4261 __dev_set_rx_mode(dev);
4262 netif_addr_unlock_bh(dev);
4263 }
4264
4265 /**
4266 * dev_get_flags - get flags reported to userspace
4267 * @dev: device
4268 *
4269 * Get the combination of flag bits exported through APIs to userspace.
4270 */
4271 unsigned dev_get_flags(const struct net_device *dev)
4272 {
4273 unsigned flags;
4274
4275 flags = (dev->flags & ~(IFF_PROMISC |
4276 IFF_ALLMULTI |
4277 IFF_RUNNING |
4278 IFF_LOWER_UP |
4279 IFF_DORMANT)) |
4280 (dev->gflags & (IFF_PROMISC |
4281 IFF_ALLMULTI));
4282
4283 if (netif_running(dev)) {
4284 if (netif_oper_up(dev))
4285 flags |= IFF_RUNNING;
4286 if (netif_carrier_ok(dev))
4287 flags |= IFF_LOWER_UP;
4288 if (netif_dormant(dev))
4289 flags |= IFF_DORMANT;
4290 }
4291
4292 return flags;
4293 }
4294 EXPORT_SYMBOL(dev_get_flags);
4295
4296 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4297 {
4298 int old_flags = dev->flags;
4299 int ret;
4300
4301 ASSERT_RTNL();
4302
4303 /*
4304 * Set the flags on our device.
4305 */
4306
4307 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4308 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4309 IFF_AUTOMEDIA)) |
4310 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4311 IFF_ALLMULTI));
4312
4313 /*
4314 * Load in the correct multicast list now the flags have changed.
4315 */
4316
4317 if ((old_flags ^ flags) & IFF_MULTICAST)
4318 dev_change_rx_flags(dev, IFF_MULTICAST);
4319
4320 dev_set_rx_mode(dev);
4321
4322 /*
4323 * Have we downed the interface. We handle IFF_UP ourselves
4324 * according to user attempts to set it, rather than blindly
4325 * setting it.
4326 */
4327
4328 ret = 0;
4329 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4330 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4331
4332 if (!ret)
4333 dev_set_rx_mode(dev);
4334 }
4335
4336 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4337 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4338
4339 dev->gflags ^= IFF_PROMISC;
4340 dev_set_promiscuity(dev, inc);
4341 }
4342
4343 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4344 is important. Some (broken) drivers set IFF_PROMISC, when
4345 IFF_ALLMULTI is requested not asking us and not reporting.
4346 */
4347 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4348 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4349
4350 dev->gflags ^= IFF_ALLMULTI;
4351 dev_set_allmulti(dev, inc);
4352 }
4353
4354 return ret;
4355 }
4356
4357 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4358 {
4359 unsigned int changes = dev->flags ^ old_flags;
4360
4361 if (changes & IFF_UP) {
4362 if (dev->flags & IFF_UP)
4363 call_netdevice_notifiers(NETDEV_UP, dev);
4364 else
4365 call_netdevice_notifiers(NETDEV_DOWN, dev);
4366 }
4367
4368 if (dev->flags & IFF_UP &&
4369 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4370 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4371 }
4372
4373 /**
4374 * dev_change_flags - change device settings
4375 * @dev: device
4376 * @flags: device state flags
4377 *
4378 * Change settings on device based state flags. The flags are
4379 * in the userspace exported format.
4380 */
4381 int dev_change_flags(struct net_device *dev, unsigned flags)
4382 {
4383 int ret, changes;
4384 int old_flags = dev->flags;
4385
4386 ret = __dev_change_flags(dev, flags);
4387 if (ret < 0)
4388 return ret;
4389
4390 changes = old_flags ^ dev->flags;
4391 if (changes)
4392 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4393
4394 __dev_notify_flags(dev, old_flags);
4395 return ret;
4396 }
4397 EXPORT_SYMBOL(dev_change_flags);
4398
4399 /**
4400 * dev_set_mtu - Change maximum transfer unit
4401 * @dev: device
4402 * @new_mtu: new transfer unit
4403 *
4404 * Change the maximum transfer size of the network device.
4405 */
4406 int dev_set_mtu(struct net_device *dev, int new_mtu)
4407 {
4408 const struct net_device_ops *ops = dev->netdev_ops;
4409 int err;
4410
4411 if (new_mtu == dev->mtu)
4412 return 0;
4413
4414 /* MTU must be positive. */
4415 if (new_mtu < 0)
4416 return -EINVAL;
4417
4418 if (!netif_device_present(dev))
4419 return -ENODEV;
4420
4421 err = 0;
4422 if (ops->ndo_change_mtu)
4423 err = ops->ndo_change_mtu(dev, new_mtu);
4424 else
4425 dev->mtu = new_mtu;
4426
4427 if (!err && dev->flags & IFF_UP)
4428 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4429 return err;
4430 }
4431 EXPORT_SYMBOL(dev_set_mtu);
4432
4433 /**
4434 * dev_set_mac_address - Change Media Access Control Address
4435 * @dev: device
4436 * @sa: new address
4437 *
4438 * Change the hardware (MAC) address of the device
4439 */
4440 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4441 {
4442 const struct net_device_ops *ops = dev->netdev_ops;
4443 int err;
4444
4445 if (!ops->ndo_set_mac_address)
4446 return -EOPNOTSUPP;
4447 if (sa->sa_family != dev->type)
4448 return -EINVAL;
4449 if (!netif_device_present(dev))
4450 return -ENODEV;
4451 err = ops->ndo_set_mac_address(dev, sa);
4452 if (!err)
4453 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4454 return err;
4455 }
4456 EXPORT_SYMBOL(dev_set_mac_address);
4457
4458 /*
4459 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4460 */
4461 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4462 {
4463 int err;
4464 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4465
4466 if (!dev)
4467 return -ENODEV;
4468
4469 switch (cmd) {
4470 case SIOCGIFFLAGS: /* Get interface flags */
4471 ifr->ifr_flags = (short) dev_get_flags(dev);
4472 return 0;
4473
4474 case SIOCGIFMETRIC: /* Get the metric on the interface
4475 (currently unused) */
4476 ifr->ifr_metric = 0;
4477 return 0;
4478
4479 case SIOCGIFMTU: /* Get the MTU of a device */
4480 ifr->ifr_mtu = dev->mtu;
4481 return 0;
4482
4483 case SIOCGIFHWADDR:
4484 if (!dev->addr_len)
4485 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4486 else
4487 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4488 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4489 ifr->ifr_hwaddr.sa_family = dev->type;
4490 return 0;
4491
4492 case SIOCGIFSLAVE:
4493 err = -EINVAL;
4494 break;
4495
4496 case SIOCGIFMAP:
4497 ifr->ifr_map.mem_start = dev->mem_start;
4498 ifr->ifr_map.mem_end = dev->mem_end;
4499 ifr->ifr_map.base_addr = dev->base_addr;
4500 ifr->ifr_map.irq = dev->irq;
4501 ifr->ifr_map.dma = dev->dma;
4502 ifr->ifr_map.port = dev->if_port;
4503 return 0;
4504
4505 case SIOCGIFINDEX:
4506 ifr->ifr_ifindex = dev->ifindex;
4507 return 0;
4508
4509 case SIOCGIFTXQLEN:
4510 ifr->ifr_qlen = dev->tx_queue_len;
4511 return 0;
4512
4513 default:
4514 /* dev_ioctl() should ensure this case
4515 * is never reached
4516 */
4517 WARN_ON(1);
4518 err = -EINVAL;
4519 break;
4520
4521 }
4522 return err;
4523 }
4524
4525 /*
4526 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4527 */
4528 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4529 {
4530 int err;
4531 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4532 const struct net_device_ops *ops;
4533
4534 if (!dev)
4535 return -ENODEV;
4536
4537 ops = dev->netdev_ops;
4538
4539 switch (cmd) {
4540 case SIOCSIFFLAGS: /* Set interface flags */
4541 return dev_change_flags(dev, ifr->ifr_flags);
4542
4543 case SIOCSIFMETRIC: /* Set the metric on the interface
4544 (currently unused) */
4545 return -EOPNOTSUPP;
4546
4547 case SIOCSIFMTU: /* Set the MTU of a device */
4548 return dev_set_mtu(dev, ifr->ifr_mtu);
4549
4550 case SIOCSIFHWADDR:
4551 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4552
4553 case SIOCSIFHWBROADCAST:
4554 if (ifr->ifr_hwaddr.sa_family != dev->type)
4555 return -EINVAL;
4556 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4557 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4558 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4559 return 0;
4560
4561 case SIOCSIFMAP:
4562 if (ops->ndo_set_config) {
4563 if (!netif_device_present(dev))
4564 return -ENODEV;
4565 return ops->ndo_set_config(dev, &ifr->ifr_map);
4566 }
4567 return -EOPNOTSUPP;
4568
4569 case SIOCADDMULTI:
4570 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4571 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4572 return -EINVAL;
4573 if (!netif_device_present(dev))
4574 return -ENODEV;
4575 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4576
4577 case SIOCDELMULTI:
4578 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4579 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4580 return -EINVAL;
4581 if (!netif_device_present(dev))
4582 return -ENODEV;
4583 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4584
4585 case SIOCSIFTXQLEN:
4586 if (ifr->ifr_qlen < 0)
4587 return -EINVAL;
4588 dev->tx_queue_len = ifr->ifr_qlen;
4589 return 0;
4590
4591 case SIOCSIFNAME:
4592 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4593 return dev_change_name(dev, ifr->ifr_newname);
4594
4595 /*
4596 * Unknown or private ioctl
4597 */
4598 default:
4599 if ((cmd >= SIOCDEVPRIVATE &&
4600 cmd <= SIOCDEVPRIVATE + 15) ||
4601 cmd == SIOCBONDENSLAVE ||
4602 cmd == SIOCBONDRELEASE ||
4603 cmd == SIOCBONDSETHWADDR ||
4604 cmd == SIOCBONDSLAVEINFOQUERY ||
4605 cmd == SIOCBONDINFOQUERY ||
4606 cmd == SIOCBONDCHANGEACTIVE ||
4607 cmd == SIOCGMIIPHY ||
4608 cmd == SIOCGMIIREG ||
4609 cmd == SIOCSMIIREG ||
4610 cmd == SIOCBRADDIF ||
4611 cmd == SIOCBRDELIF ||
4612 cmd == SIOCSHWTSTAMP ||
4613 cmd == SIOCWANDEV) {
4614 err = -EOPNOTSUPP;
4615 if (ops->ndo_do_ioctl) {
4616 if (netif_device_present(dev))
4617 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4618 else
4619 err = -ENODEV;
4620 }
4621 } else
4622 err = -EINVAL;
4623
4624 }
4625 return err;
4626 }
4627
4628 /*
4629 * This function handles all "interface"-type I/O control requests. The actual
4630 * 'doing' part of this is dev_ifsioc above.
4631 */
4632
4633 /**
4634 * dev_ioctl - network device ioctl
4635 * @net: the applicable net namespace
4636 * @cmd: command to issue
4637 * @arg: pointer to a struct ifreq in user space
4638 *
4639 * Issue ioctl functions to devices. This is normally called by the
4640 * user space syscall interfaces but can sometimes be useful for
4641 * other purposes. The return value is the return from the syscall if
4642 * positive or a negative errno code on error.
4643 */
4644
4645 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4646 {
4647 struct ifreq ifr;
4648 int ret;
4649 char *colon;
4650
4651 /* One special case: SIOCGIFCONF takes ifconf argument
4652 and requires shared lock, because it sleeps writing
4653 to user space.
4654 */
4655
4656 if (cmd == SIOCGIFCONF) {
4657 rtnl_lock();
4658 ret = dev_ifconf(net, (char __user *) arg);
4659 rtnl_unlock();
4660 return ret;
4661 }
4662 if (cmd == SIOCGIFNAME)
4663 return dev_ifname(net, (struct ifreq __user *)arg);
4664
4665 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4666 return -EFAULT;
4667
4668 ifr.ifr_name[IFNAMSIZ-1] = 0;
4669
4670 colon = strchr(ifr.ifr_name, ':');
4671 if (colon)
4672 *colon = 0;
4673
4674 /*
4675 * See which interface the caller is talking about.
4676 */
4677
4678 switch (cmd) {
4679 /*
4680 * These ioctl calls:
4681 * - can be done by all.
4682 * - atomic and do not require locking.
4683 * - return a value
4684 */
4685 case SIOCGIFFLAGS:
4686 case SIOCGIFMETRIC:
4687 case SIOCGIFMTU:
4688 case SIOCGIFHWADDR:
4689 case SIOCGIFSLAVE:
4690 case SIOCGIFMAP:
4691 case SIOCGIFINDEX:
4692 case SIOCGIFTXQLEN:
4693 dev_load(net, ifr.ifr_name);
4694 rcu_read_lock();
4695 ret = dev_ifsioc_locked(net, &ifr, cmd);
4696 rcu_read_unlock();
4697 if (!ret) {
4698 if (colon)
4699 *colon = ':';
4700 if (copy_to_user(arg, &ifr,
4701 sizeof(struct ifreq)))
4702 ret = -EFAULT;
4703 }
4704 return ret;
4705
4706 case SIOCETHTOOL:
4707 dev_load(net, ifr.ifr_name);
4708 rtnl_lock();
4709 ret = dev_ethtool(net, &ifr);
4710 rtnl_unlock();
4711 if (!ret) {
4712 if (colon)
4713 *colon = ':';
4714 if (copy_to_user(arg, &ifr,
4715 sizeof(struct ifreq)))
4716 ret = -EFAULT;
4717 }
4718 return ret;
4719
4720 /*
4721 * These ioctl calls:
4722 * - require superuser power.
4723 * - require strict serialization.
4724 * - return a value
4725 */
4726 case SIOCGMIIPHY:
4727 case SIOCGMIIREG:
4728 case SIOCSIFNAME:
4729 if (!capable(CAP_NET_ADMIN))
4730 return -EPERM;
4731 dev_load(net, ifr.ifr_name);
4732 rtnl_lock();
4733 ret = dev_ifsioc(net, &ifr, cmd);
4734 rtnl_unlock();
4735 if (!ret) {
4736 if (colon)
4737 *colon = ':';
4738 if (copy_to_user(arg, &ifr,
4739 sizeof(struct ifreq)))
4740 ret = -EFAULT;
4741 }
4742 return ret;
4743
4744 /*
4745 * These ioctl calls:
4746 * - require superuser power.
4747 * - require strict serialization.
4748 * - do not return a value
4749 */
4750 case SIOCSIFFLAGS:
4751 case SIOCSIFMETRIC:
4752 case SIOCSIFMTU:
4753 case SIOCSIFMAP:
4754 case SIOCSIFHWADDR:
4755 case SIOCSIFSLAVE:
4756 case SIOCADDMULTI:
4757 case SIOCDELMULTI:
4758 case SIOCSIFHWBROADCAST:
4759 case SIOCSIFTXQLEN:
4760 case SIOCSMIIREG:
4761 case SIOCBONDENSLAVE:
4762 case SIOCBONDRELEASE:
4763 case SIOCBONDSETHWADDR:
4764 case SIOCBONDCHANGEACTIVE:
4765 case SIOCBRADDIF:
4766 case SIOCBRDELIF:
4767 case SIOCSHWTSTAMP:
4768 if (!capable(CAP_NET_ADMIN))
4769 return -EPERM;
4770 /* fall through */
4771 case SIOCBONDSLAVEINFOQUERY:
4772 case SIOCBONDINFOQUERY:
4773 dev_load(net, ifr.ifr_name);
4774 rtnl_lock();
4775 ret = dev_ifsioc(net, &ifr, cmd);
4776 rtnl_unlock();
4777 return ret;
4778
4779 case SIOCGIFMEM:
4780 /* Get the per device memory space. We can add this but
4781 * currently do not support it */
4782 case SIOCSIFMEM:
4783 /* Set the per device memory buffer space.
4784 * Not applicable in our case */
4785 case SIOCSIFLINK:
4786 return -EINVAL;
4787
4788 /*
4789 * Unknown or private ioctl.
4790 */
4791 default:
4792 if (cmd == SIOCWANDEV ||
4793 (cmd >= SIOCDEVPRIVATE &&
4794 cmd <= SIOCDEVPRIVATE + 15)) {
4795 dev_load(net, ifr.ifr_name);
4796 rtnl_lock();
4797 ret = dev_ifsioc(net, &ifr, cmd);
4798 rtnl_unlock();
4799 if (!ret && copy_to_user(arg, &ifr,
4800 sizeof(struct ifreq)))
4801 ret = -EFAULT;
4802 return ret;
4803 }
4804 /* Take care of Wireless Extensions */
4805 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4806 return wext_handle_ioctl(net, &ifr, cmd, arg);
4807 return -EINVAL;
4808 }
4809 }
4810
4811
4812 /**
4813 * dev_new_index - allocate an ifindex
4814 * @net: the applicable net namespace
4815 *
4816 * Returns a suitable unique value for a new device interface
4817 * number. The caller must hold the rtnl semaphore or the
4818 * dev_base_lock to be sure it remains unique.
4819 */
4820 static int dev_new_index(struct net *net)
4821 {
4822 static int ifindex;
4823 for (;;) {
4824 if (++ifindex <= 0)
4825 ifindex = 1;
4826 if (!__dev_get_by_index(net, ifindex))
4827 return ifindex;
4828 }
4829 }
4830
4831 /* Delayed registration/unregisteration */
4832 static LIST_HEAD(net_todo_list);
4833
4834 static void net_set_todo(struct net_device *dev)
4835 {
4836 list_add_tail(&dev->todo_list, &net_todo_list);
4837 }
4838
4839 static void rollback_registered_many(struct list_head *head)
4840 {
4841 struct net_device *dev, *tmp;
4842
4843 BUG_ON(dev_boot_phase);
4844 ASSERT_RTNL();
4845
4846 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4847 /* Some devices call without registering
4848 * for initialization unwind. Remove those
4849 * devices and proceed with the remaining.
4850 */
4851 if (dev->reg_state == NETREG_UNINITIALIZED) {
4852 pr_debug("unregister_netdevice: device %s/%p never "
4853 "was registered\n", dev->name, dev);
4854
4855 WARN_ON(1);
4856 list_del(&dev->unreg_list);
4857 continue;
4858 }
4859
4860 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4861
4862 /* If device is running, close it first. */
4863 dev_close(dev);
4864
4865 /* And unlink it from device chain. */
4866 unlist_netdevice(dev);
4867
4868 dev->reg_state = NETREG_UNREGISTERING;
4869 }
4870
4871 synchronize_net();
4872
4873 list_for_each_entry(dev, head, unreg_list) {
4874 /* Shutdown queueing discipline. */
4875 dev_shutdown(dev);
4876
4877
4878 /* Notify protocols, that we are about to destroy
4879 this device. They should clean all the things.
4880 */
4881 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4882
4883 if (!dev->rtnl_link_ops ||
4884 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4885 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4886
4887 /*
4888 * Flush the unicast and multicast chains
4889 */
4890 dev_uc_flush(dev);
4891 dev_mc_flush(dev);
4892
4893 if (dev->netdev_ops->ndo_uninit)
4894 dev->netdev_ops->ndo_uninit(dev);
4895
4896 /* Notifier chain MUST detach us from master device. */
4897 WARN_ON(dev->master);
4898
4899 /* Remove entries from kobject tree */
4900 netdev_unregister_kobject(dev);
4901 }
4902
4903 /* Process any work delayed until the end of the batch */
4904 dev = list_first_entry(head, struct net_device, unreg_list);
4905 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4906
4907 rcu_barrier();
4908
4909 list_for_each_entry(dev, head, unreg_list)
4910 dev_put(dev);
4911 }
4912
4913 static void rollback_registered(struct net_device *dev)
4914 {
4915 LIST_HEAD(single);
4916
4917 list_add(&dev->unreg_list, &single);
4918 rollback_registered_many(&single);
4919 }
4920
4921 static void __netdev_init_queue_locks_one(struct net_device *dev,
4922 struct netdev_queue *dev_queue,
4923 void *_unused)
4924 {
4925 spin_lock_init(&dev_queue->_xmit_lock);
4926 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4927 dev_queue->xmit_lock_owner = -1;
4928 }
4929
4930 static void netdev_init_queue_locks(struct net_device *dev)
4931 {
4932 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4933 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4934 }
4935
4936 unsigned long netdev_fix_features(unsigned long features, const char *name)
4937 {
4938 /* Fix illegal SG+CSUM combinations. */
4939 if ((features & NETIF_F_SG) &&
4940 !(features & NETIF_F_ALL_CSUM)) {
4941 if (name)
4942 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4943 "checksum feature.\n", name);
4944 features &= ~NETIF_F_SG;
4945 }
4946
4947 /* TSO requires that SG is present as well. */
4948 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4949 if (name)
4950 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4951 "SG feature.\n", name);
4952 features &= ~NETIF_F_TSO;
4953 }
4954
4955 if (features & NETIF_F_UFO) {
4956 if (!(features & NETIF_F_GEN_CSUM)) {
4957 if (name)
4958 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4959 "since no NETIF_F_HW_CSUM feature.\n",
4960 name);
4961 features &= ~NETIF_F_UFO;
4962 }
4963
4964 if (!(features & NETIF_F_SG)) {
4965 if (name)
4966 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4967 "since no NETIF_F_SG feature.\n", name);
4968 features &= ~NETIF_F_UFO;
4969 }
4970 }
4971
4972 return features;
4973 }
4974 EXPORT_SYMBOL(netdev_fix_features);
4975
4976 /**
4977 * netif_stacked_transfer_operstate - transfer operstate
4978 * @rootdev: the root or lower level device to transfer state from
4979 * @dev: the device to transfer operstate to
4980 *
4981 * Transfer operational state from root to device. This is normally
4982 * called when a stacking relationship exists between the root
4983 * device and the device(a leaf device).
4984 */
4985 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4986 struct net_device *dev)
4987 {
4988 if (rootdev->operstate == IF_OPER_DORMANT)
4989 netif_dormant_on(dev);
4990 else
4991 netif_dormant_off(dev);
4992
4993 if (netif_carrier_ok(rootdev)) {
4994 if (!netif_carrier_ok(dev))
4995 netif_carrier_on(dev);
4996 } else {
4997 if (netif_carrier_ok(dev))
4998 netif_carrier_off(dev);
4999 }
5000 }
5001 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5002
5003 static int netif_alloc_rx_queues(struct net_device *dev)
5004 {
5005 #ifdef CONFIG_RPS
5006 unsigned int i, count = dev->num_rx_queues;
5007
5008 if (count) {
5009 struct netdev_rx_queue *rx;
5010
5011 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5012 if (!rx) {
5013 pr_err("netdev: Unable to allocate %u rx queues.\n",
5014 count);
5015 return -ENOMEM;
5016 }
5017 dev->_rx = rx;
5018 atomic_set(&rx->count, count);
5019
5020 /*
5021 * Set a pointer to first element in the array which holds the
5022 * reference count.
5023 */
5024 for (i = 0; i < count; i++)
5025 rx[i].first = rx;
5026 }
5027 #endif
5028 return 0;
5029 }
5030
5031 /**
5032 * register_netdevice - register a network device
5033 * @dev: device to register
5034 *
5035 * Take a completed network device structure and add it to the kernel
5036 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5037 * chain. 0 is returned on success. A negative errno code is returned
5038 * on a failure to set up the device, or if the name is a duplicate.
5039 *
5040 * Callers must hold the rtnl semaphore. You may want
5041 * register_netdev() instead of this.
5042 *
5043 * BUGS:
5044 * The locking appears insufficient to guarantee two parallel registers
5045 * will not get the same name.
5046 */
5047
5048 int register_netdevice(struct net_device *dev)
5049 {
5050 int ret;
5051 struct net *net = dev_net(dev);
5052
5053 BUG_ON(dev_boot_phase);
5054 ASSERT_RTNL();
5055
5056 might_sleep();
5057
5058 /* When net_device's are persistent, this will be fatal. */
5059 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5060 BUG_ON(!net);
5061
5062 spin_lock_init(&dev->addr_list_lock);
5063 netdev_set_addr_lockdep_class(dev);
5064 netdev_init_queue_locks(dev);
5065
5066 dev->iflink = -1;
5067
5068 ret = netif_alloc_rx_queues(dev);
5069 if (ret)
5070 goto out;
5071
5072 /* Init, if this function is available */
5073 if (dev->netdev_ops->ndo_init) {
5074 ret = dev->netdev_ops->ndo_init(dev);
5075 if (ret) {
5076 if (ret > 0)
5077 ret = -EIO;
5078 goto out;
5079 }
5080 }
5081
5082 ret = dev_get_valid_name(dev, dev->name, 0);
5083 if (ret)
5084 goto err_uninit;
5085
5086 dev->ifindex = dev_new_index(net);
5087 if (dev->iflink == -1)
5088 dev->iflink = dev->ifindex;
5089
5090 /* Fix illegal checksum combinations */
5091 if ((dev->features & NETIF_F_HW_CSUM) &&
5092 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5093 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5094 dev->name);
5095 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5096 }
5097
5098 if ((dev->features & NETIF_F_NO_CSUM) &&
5099 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5100 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5101 dev->name);
5102 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5103 }
5104
5105 dev->features = netdev_fix_features(dev->features, dev->name);
5106
5107 /* Enable software GSO if SG is supported. */
5108 if (dev->features & NETIF_F_SG)
5109 dev->features |= NETIF_F_GSO;
5110
5111 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5112 * vlan_dev_init() will do the dev->features check, so these features
5113 * are enabled only if supported by underlying device.
5114 */
5115 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5116
5117 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5118 ret = notifier_to_errno(ret);
5119 if (ret)
5120 goto err_uninit;
5121
5122 ret = netdev_register_kobject(dev);
5123 if (ret)
5124 goto err_uninit;
5125 dev->reg_state = NETREG_REGISTERED;
5126
5127 /*
5128 * Default initial state at registry is that the
5129 * device is present.
5130 */
5131
5132 set_bit(__LINK_STATE_PRESENT, &dev->state);
5133
5134 dev_init_scheduler(dev);
5135 dev_hold(dev);
5136 list_netdevice(dev);
5137
5138 /* Notify protocols, that a new device appeared. */
5139 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5140 ret = notifier_to_errno(ret);
5141 if (ret) {
5142 rollback_registered(dev);
5143 dev->reg_state = NETREG_UNREGISTERED;
5144 }
5145 /*
5146 * Prevent userspace races by waiting until the network
5147 * device is fully setup before sending notifications.
5148 */
5149 if (!dev->rtnl_link_ops ||
5150 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5151 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5152
5153 out:
5154 return ret;
5155
5156 err_uninit:
5157 if (dev->netdev_ops->ndo_uninit)
5158 dev->netdev_ops->ndo_uninit(dev);
5159 goto out;
5160 }
5161 EXPORT_SYMBOL(register_netdevice);
5162
5163 /**
5164 * init_dummy_netdev - init a dummy network device for NAPI
5165 * @dev: device to init
5166 *
5167 * This takes a network device structure and initialize the minimum
5168 * amount of fields so it can be used to schedule NAPI polls without
5169 * registering a full blown interface. This is to be used by drivers
5170 * that need to tie several hardware interfaces to a single NAPI
5171 * poll scheduler due to HW limitations.
5172 */
5173 int init_dummy_netdev(struct net_device *dev)
5174 {
5175 /* Clear everything. Note we don't initialize spinlocks
5176 * are they aren't supposed to be taken by any of the
5177 * NAPI code and this dummy netdev is supposed to be
5178 * only ever used for NAPI polls
5179 */
5180 memset(dev, 0, sizeof(struct net_device));
5181
5182 /* make sure we BUG if trying to hit standard
5183 * register/unregister code path
5184 */
5185 dev->reg_state = NETREG_DUMMY;
5186
5187 /* initialize the ref count */
5188 atomic_set(&dev->refcnt, 1);
5189
5190 /* NAPI wants this */
5191 INIT_LIST_HEAD(&dev->napi_list);
5192
5193 /* a dummy interface is started by default */
5194 set_bit(__LINK_STATE_PRESENT, &dev->state);
5195 set_bit(__LINK_STATE_START, &dev->state);
5196
5197 return 0;
5198 }
5199 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5200
5201
5202 /**
5203 * register_netdev - register a network device
5204 * @dev: device to register
5205 *
5206 * Take a completed network device structure and add it to the kernel
5207 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5208 * chain. 0 is returned on success. A negative errno code is returned
5209 * on a failure to set up the device, or if the name is a duplicate.
5210 *
5211 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5212 * and expands the device name if you passed a format string to
5213 * alloc_netdev.
5214 */
5215 int register_netdev(struct net_device *dev)
5216 {
5217 int err;
5218
5219 rtnl_lock();
5220
5221 /*
5222 * If the name is a format string the caller wants us to do a
5223 * name allocation.
5224 */
5225 if (strchr(dev->name, '%')) {
5226 err = dev_alloc_name(dev, dev->name);
5227 if (err < 0)
5228 goto out;
5229 }
5230
5231 err = register_netdevice(dev);
5232 out:
5233 rtnl_unlock();
5234 return err;
5235 }
5236 EXPORT_SYMBOL(register_netdev);
5237
5238 /*
5239 * netdev_wait_allrefs - wait until all references are gone.
5240 *
5241 * This is called when unregistering network devices.
5242 *
5243 * Any protocol or device that holds a reference should register
5244 * for netdevice notification, and cleanup and put back the
5245 * reference if they receive an UNREGISTER event.
5246 * We can get stuck here if buggy protocols don't correctly
5247 * call dev_put.
5248 */
5249 static void netdev_wait_allrefs(struct net_device *dev)
5250 {
5251 unsigned long rebroadcast_time, warning_time;
5252
5253 linkwatch_forget_dev(dev);
5254
5255 rebroadcast_time = warning_time = jiffies;
5256 while (atomic_read(&dev->refcnt) != 0) {
5257 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5258 rtnl_lock();
5259
5260 /* Rebroadcast unregister notification */
5261 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5262 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5263 * should have already handle it the first time */
5264
5265 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5266 &dev->state)) {
5267 /* We must not have linkwatch events
5268 * pending on unregister. If this
5269 * happens, we simply run the queue
5270 * unscheduled, resulting in a noop
5271 * for this device.
5272 */
5273 linkwatch_run_queue();
5274 }
5275
5276 __rtnl_unlock();
5277
5278 rebroadcast_time = jiffies;
5279 }
5280
5281 msleep(250);
5282
5283 if (time_after(jiffies, warning_time + 10 * HZ)) {
5284 printk(KERN_EMERG "unregister_netdevice: "
5285 "waiting for %s to become free. Usage "
5286 "count = %d\n",
5287 dev->name, atomic_read(&dev->refcnt));
5288 warning_time = jiffies;
5289 }
5290 }
5291 }
5292
5293 /* The sequence is:
5294 *
5295 * rtnl_lock();
5296 * ...
5297 * register_netdevice(x1);
5298 * register_netdevice(x2);
5299 * ...
5300 * unregister_netdevice(y1);
5301 * unregister_netdevice(y2);
5302 * ...
5303 * rtnl_unlock();
5304 * free_netdev(y1);
5305 * free_netdev(y2);
5306 *
5307 * We are invoked by rtnl_unlock().
5308 * This allows us to deal with problems:
5309 * 1) We can delete sysfs objects which invoke hotplug
5310 * without deadlocking with linkwatch via keventd.
5311 * 2) Since we run with the RTNL semaphore not held, we can sleep
5312 * safely in order to wait for the netdev refcnt to drop to zero.
5313 *
5314 * We must not return until all unregister events added during
5315 * the interval the lock was held have been completed.
5316 */
5317 void netdev_run_todo(void)
5318 {
5319 struct list_head list;
5320
5321 /* Snapshot list, allow later requests */
5322 list_replace_init(&net_todo_list, &list);
5323
5324 __rtnl_unlock();
5325
5326 while (!list_empty(&list)) {
5327 struct net_device *dev
5328 = list_first_entry(&list, struct net_device, todo_list);
5329 list_del(&dev->todo_list);
5330
5331 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5332 printk(KERN_ERR "network todo '%s' but state %d\n",
5333 dev->name, dev->reg_state);
5334 dump_stack();
5335 continue;
5336 }
5337
5338 dev->reg_state = NETREG_UNREGISTERED;
5339
5340 on_each_cpu(flush_backlog, dev, 1);
5341
5342 netdev_wait_allrefs(dev);
5343
5344 /* paranoia */
5345 BUG_ON(atomic_read(&dev->refcnt));
5346 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5347 WARN_ON(dev->ip6_ptr);
5348 WARN_ON(dev->dn_ptr);
5349
5350 if (dev->destructor)
5351 dev->destructor(dev);
5352
5353 /* Free network device */
5354 kobject_put(&dev->dev.kobj);
5355 }
5356 }
5357
5358 /**
5359 * dev_txq_stats_fold - fold tx_queues stats
5360 * @dev: device to get statistics from
5361 * @stats: struct rtnl_link_stats64 to hold results
5362 */
5363 void dev_txq_stats_fold(const struct net_device *dev,
5364 struct rtnl_link_stats64 *stats)
5365 {
5366 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5367 unsigned int i;
5368 struct netdev_queue *txq;
5369
5370 for (i = 0; i < dev->num_tx_queues; i++) {
5371 txq = netdev_get_tx_queue(dev, i);
5372 spin_lock_bh(&txq->_xmit_lock);
5373 tx_bytes += txq->tx_bytes;
5374 tx_packets += txq->tx_packets;
5375 tx_dropped += txq->tx_dropped;
5376 spin_unlock_bh(&txq->_xmit_lock);
5377 }
5378 if (tx_bytes || tx_packets || tx_dropped) {
5379 stats->tx_bytes = tx_bytes;
5380 stats->tx_packets = tx_packets;
5381 stats->tx_dropped = tx_dropped;
5382 }
5383 }
5384 EXPORT_SYMBOL(dev_txq_stats_fold);
5385
5386 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5387 * fields in the same order, with only the type differing.
5388 */
5389 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5390 const struct net_device_stats *netdev_stats)
5391 {
5392 #if BITS_PER_LONG == 64
5393 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5394 memcpy(stats64, netdev_stats, sizeof(*stats64));
5395 #else
5396 size_t i, n = sizeof(*stats64) / sizeof(u64);
5397 const unsigned long *src = (const unsigned long *)netdev_stats;
5398 u64 *dst = (u64 *)stats64;
5399
5400 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5401 sizeof(*stats64) / sizeof(u64));
5402 for (i = 0; i < n; i++)
5403 dst[i] = src[i];
5404 #endif
5405 }
5406
5407 /**
5408 * dev_get_stats - get network device statistics
5409 * @dev: device to get statistics from
5410 * @storage: place to store stats
5411 *
5412 * Get network statistics from device. Return @storage.
5413 * The device driver may provide its own method by setting
5414 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5415 * otherwise the internal statistics structure is used.
5416 */
5417 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5418 struct rtnl_link_stats64 *storage)
5419 {
5420 const struct net_device_ops *ops = dev->netdev_ops;
5421
5422 if (ops->ndo_get_stats64) {
5423 memset(storage, 0, sizeof(*storage));
5424 return ops->ndo_get_stats64(dev, storage);
5425 }
5426 if (ops->ndo_get_stats) {
5427 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5428 return storage;
5429 }
5430 netdev_stats_to_stats64(storage, &dev->stats);
5431 dev_txq_stats_fold(dev, storage);
5432 return storage;
5433 }
5434 EXPORT_SYMBOL(dev_get_stats);
5435
5436 static void netdev_init_one_queue(struct net_device *dev,
5437 struct netdev_queue *queue,
5438 void *_unused)
5439 {
5440 queue->dev = dev;
5441 }
5442
5443 static void netdev_init_queues(struct net_device *dev)
5444 {
5445 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5446 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5447 spin_lock_init(&dev->tx_global_lock);
5448 }
5449
5450 /**
5451 * alloc_netdev_mq - allocate network device
5452 * @sizeof_priv: size of private data to allocate space for
5453 * @name: device name format string
5454 * @setup: callback to initialize device
5455 * @queue_count: the number of subqueues to allocate
5456 *
5457 * Allocates a struct net_device with private data area for driver use
5458 * and performs basic initialization. Also allocates subquue structs
5459 * for each queue on the device at the end of the netdevice.
5460 */
5461 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5462 void (*setup)(struct net_device *), unsigned int queue_count)
5463 {
5464 struct netdev_queue *tx;
5465 struct net_device *dev;
5466 size_t alloc_size;
5467 struct net_device *p;
5468
5469 BUG_ON(strlen(name) >= sizeof(dev->name));
5470
5471 alloc_size = sizeof(struct net_device);
5472 if (sizeof_priv) {
5473 /* ensure 32-byte alignment of private area */
5474 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5475 alloc_size += sizeof_priv;
5476 }
5477 /* ensure 32-byte alignment of whole construct */
5478 alloc_size += NETDEV_ALIGN - 1;
5479
5480 p = kzalloc(alloc_size, GFP_KERNEL);
5481 if (!p) {
5482 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5483 return NULL;
5484 }
5485
5486 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5487 if (!tx) {
5488 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5489 "tx qdiscs.\n");
5490 goto free_p;
5491 }
5492
5493
5494 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5495 dev->padded = (char *)dev - (char *)p;
5496
5497 if (dev_addr_init(dev))
5498 goto free_tx;
5499
5500 dev_mc_init(dev);
5501 dev_uc_init(dev);
5502
5503 dev_net_set(dev, &init_net);
5504
5505 dev->_tx = tx;
5506 dev->num_tx_queues = queue_count;
5507 dev->real_num_tx_queues = queue_count;
5508
5509 #ifdef CONFIG_RPS
5510 dev->num_rx_queues = queue_count;
5511 dev->real_num_rx_queues = queue_count;
5512 #endif
5513
5514 dev->gso_max_size = GSO_MAX_SIZE;
5515
5516 netdev_init_queues(dev);
5517
5518 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5519 dev->ethtool_ntuple_list.count = 0;
5520 INIT_LIST_HEAD(&dev->napi_list);
5521 INIT_LIST_HEAD(&dev->unreg_list);
5522 INIT_LIST_HEAD(&dev->link_watch_list);
5523 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5524 setup(dev);
5525 strcpy(dev->name, name);
5526 return dev;
5527
5528 free_tx:
5529 kfree(tx);
5530 free_p:
5531 kfree(p);
5532 return NULL;
5533 }
5534 EXPORT_SYMBOL(alloc_netdev_mq);
5535
5536 /**
5537 * free_netdev - free network device
5538 * @dev: device
5539 *
5540 * This function does the last stage of destroying an allocated device
5541 * interface. The reference to the device object is released.
5542 * If this is the last reference then it will be freed.
5543 */
5544 void free_netdev(struct net_device *dev)
5545 {
5546 struct napi_struct *p, *n;
5547
5548 release_net(dev_net(dev));
5549
5550 kfree(dev->_tx);
5551
5552 /* Flush device addresses */
5553 dev_addr_flush(dev);
5554
5555 /* Clear ethtool n-tuple list */
5556 ethtool_ntuple_flush(dev);
5557
5558 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5559 netif_napi_del(p);
5560
5561 /* Compatibility with error handling in drivers */
5562 if (dev->reg_state == NETREG_UNINITIALIZED) {
5563 kfree((char *)dev - dev->padded);
5564 return;
5565 }
5566
5567 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5568 dev->reg_state = NETREG_RELEASED;
5569
5570 /* will free via device release */
5571 put_device(&dev->dev);
5572 }
5573 EXPORT_SYMBOL(free_netdev);
5574
5575 /**
5576 * synchronize_net - Synchronize with packet receive processing
5577 *
5578 * Wait for packets currently being received to be done.
5579 * Does not block later packets from starting.
5580 */
5581 void synchronize_net(void)
5582 {
5583 might_sleep();
5584 synchronize_rcu();
5585 }
5586 EXPORT_SYMBOL(synchronize_net);
5587
5588 /**
5589 * unregister_netdevice_queue - remove device from the kernel
5590 * @dev: device
5591 * @head: list
5592 *
5593 * This function shuts down a device interface and removes it
5594 * from the kernel tables.
5595 * If head not NULL, device is queued to be unregistered later.
5596 *
5597 * Callers must hold the rtnl semaphore. You may want
5598 * unregister_netdev() instead of this.
5599 */
5600
5601 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5602 {
5603 ASSERT_RTNL();
5604
5605 if (head) {
5606 list_move_tail(&dev->unreg_list, head);
5607 } else {
5608 rollback_registered(dev);
5609 /* Finish processing unregister after unlock */
5610 net_set_todo(dev);
5611 }
5612 }
5613 EXPORT_SYMBOL(unregister_netdevice_queue);
5614
5615 /**
5616 * unregister_netdevice_many - unregister many devices
5617 * @head: list of devices
5618 */
5619 void unregister_netdevice_many(struct list_head *head)
5620 {
5621 struct net_device *dev;
5622
5623 if (!list_empty(head)) {
5624 rollback_registered_many(head);
5625 list_for_each_entry(dev, head, unreg_list)
5626 net_set_todo(dev);
5627 }
5628 }
5629 EXPORT_SYMBOL(unregister_netdevice_many);
5630
5631 /**
5632 * unregister_netdev - remove device from the kernel
5633 * @dev: device
5634 *
5635 * This function shuts down a device interface and removes it
5636 * from the kernel tables.
5637 *
5638 * This is just a wrapper for unregister_netdevice that takes
5639 * the rtnl semaphore. In general you want to use this and not
5640 * unregister_netdevice.
5641 */
5642 void unregister_netdev(struct net_device *dev)
5643 {
5644 rtnl_lock();
5645 unregister_netdevice(dev);
5646 rtnl_unlock();
5647 }
5648 EXPORT_SYMBOL(unregister_netdev);
5649
5650 /**
5651 * dev_change_net_namespace - move device to different nethost namespace
5652 * @dev: device
5653 * @net: network namespace
5654 * @pat: If not NULL name pattern to try if the current device name
5655 * is already taken in the destination network namespace.
5656 *
5657 * This function shuts down a device interface and moves it
5658 * to a new network namespace. On success 0 is returned, on
5659 * a failure a netagive errno code is returned.
5660 *
5661 * Callers must hold the rtnl semaphore.
5662 */
5663
5664 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5665 {
5666 int err;
5667
5668 ASSERT_RTNL();
5669
5670 /* Don't allow namespace local devices to be moved. */
5671 err = -EINVAL;
5672 if (dev->features & NETIF_F_NETNS_LOCAL)
5673 goto out;
5674
5675 /* Ensure the device has been registrered */
5676 err = -EINVAL;
5677 if (dev->reg_state != NETREG_REGISTERED)
5678 goto out;
5679
5680 /* Get out if there is nothing todo */
5681 err = 0;
5682 if (net_eq(dev_net(dev), net))
5683 goto out;
5684
5685 /* Pick the destination device name, and ensure
5686 * we can use it in the destination network namespace.
5687 */
5688 err = -EEXIST;
5689 if (__dev_get_by_name(net, dev->name)) {
5690 /* We get here if we can't use the current device name */
5691 if (!pat)
5692 goto out;
5693 if (dev_get_valid_name(dev, pat, 1))
5694 goto out;
5695 }
5696
5697 /*
5698 * And now a mini version of register_netdevice unregister_netdevice.
5699 */
5700
5701 /* If device is running close it first. */
5702 dev_close(dev);
5703
5704 /* And unlink it from device chain */
5705 err = -ENODEV;
5706 unlist_netdevice(dev);
5707
5708 synchronize_net();
5709
5710 /* Shutdown queueing discipline. */
5711 dev_shutdown(dev);
5712
5713 /* Notify protocols, that we are about to destroy
5714 this device. They should clean all the things.
5715
5716 Note that dev->reg_state stays at NETREG_REGISTERED.
5717 This is wanted because this way 8021q and macvlan know
5718 the device is just moving and can keep their slaves up.
5719 */
5720 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5721 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5722
5723 /*
5724 * Flush the unicast and multicast chains
5725 */
5726 dev_uc_flush(dev);
5727 dev_mc_flush(dev);
5728
5729 /* Actually switch the network namespace */
5730 dev_net_set(dev, net);
5731
5732 /* If there is an ifindex conflict assign a new one */
5733 if (__dev_get_by_index(net, dev->ifindex)) {
5734 int iflink = (dev->iflink == dev->ifindex);
5735 dev->ifindex = dev_new_index(net);
5736 if (iflink)
5737 dev->iflink = dev->ifindex;
5738 }
5739
5740 /* Fixup kobjects */
5741 err = device_rename(&dev->dev, dev->name);
5742 WARN_ON(err);
5743
5744 /* Add the device back in the hashes */
5745 list_netdevice(dev);
5746
5747 /* Notify protocols, that a new device appeared. */
5748 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5749
5750 /*
5751 * Prevent userspace races by waiting until the network
5752 * device is fully setup before sending notifications.
5753 */
5754 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5755
5756 synchronize_net();
5757 err = 0;
5758 out:
5759 return err;
5760 }
5761 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5762
5763 static int dev_cpu_callback(struct notifier_block *nfb,
5764 unsigned long action,
5765 void *ocpu)
5766 {
5767 struct sk_buff **list_skb;
5768 struct sk_buff *skb;
5769 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5770 struct softnet_data *sd, *oldsd;
5771
5772 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5773 return NOTIFY_OK;
5774
5775 local_irq_disable();
5776 cpu = smp_processor_id();
5777 sd = &per_cpu(softnet_data, cpu);
5778 oldsd = &per_cpu(softnet_data, oldcpu);
5779
5780 /* Find end of our completion_queue. */
5781 list_skb = &sd->completion_queue;
5782 while (*list_skb)
5783 list_skb = &(*list_skb)->next;
5784 /* Append completion queue from offline CPU. */
5785 *list_skb = oldsd->completion_queue;
5786 oldsd->completion_queue = NULL;
5787
5788 /* Append output queue from offline CPU. */
5789 if (oldsd->output_queue) {
5790 *sd->output_queue_tailp = oldsd->output_queue;
5791 sd->output_queue_tailp = oldsd->output_queue_tailp;
5792 oldsd->output_queue = NULL;
5793 oldsd->output_queue_tailp = &oldsd->output_queue;
5794 }
5795
5796 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5797 local_irq_enable();
5798
5799 /* Process offline CPU's input_pkt_queue */
5800 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5801 netif_rx(skb);
5802 input_queue_head_incr(oldsd);
5803 }
5804 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5805 netif_rx(skb);
5806 input_queue_head_incr(oldsd);
5807 }
5808
5809 return NOTIFY_OK;
5810 }
5811
5812
5813 /**
5814 * netdev_increment_features - increment feature set by one
5815 * @all: current feature set
5816 * @one: new feature set
5817 * @mask: mask feature set
5818 *
5819 * Computes a new feature set after adding a device with feature set
5820 * @one to the master device with current feature set @all. Will not
5821 * enable anything that is off in @mask. Returns the new feature set.
5822 */
5823 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5824 unsigned long mask)
5825 {
5826 /* If device needs checksumming, downgrade to it. */
5827 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5828 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5829 else if (mask & NETIF_F_ALL_CSUM) {
5830 /* If one device supports v4/v6 checksumming, set for all. */
5831 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5832 !(all & NETIF_F_GEN_CSUM)) {
5833 all &= ~NETIF_F_ALL_CSUM;
5834 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5835 }
5836
5837 /* If one device supports hw checksumming, set for all. */
5838 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5839 all &= ~NETIF_F_ALL_CSUM;
5840 all |= NETIF_F_HW_CSUM;
5841 }
5842 }
5843
5844 one |= NETIF_F_ALL_CSUM;
5845
5846 one |= all & NETIF_F_ONE_FOR_ALL;
5847 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5848 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5849
5850 return all;
5851 }
5852 EXPORT_SYMBOL(netdev_increment_features);
5853
5854 static struct hlist_head *netdev_create_hash(void)
5855 {
5856 int i;
5857 struct hlist_head *hash;
5858
5859 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5860 if (hash != NULL)
5861 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5862 INIT_HLIST_HEAD(&hash[i]);
5863
5864 return hash;
5865 }
5866
5867 /* Initialize per network namespace state */
5868 static int __net_init netdev_init(struct net *net)
5869 {
5870 INIT_LIST_HEAD(&net->dev_base_head);
5871
5872 net->dev_name_head = netdev_create_hash();
5873 if (net->dev_name_head == NULL)
5874 goto err_name;
5875
5876 net->dev_index_head = netdev_create_hash();
5877 if (net->dev_index_head == NULL)
5878 goto err_idx;
5879
5880 return 0;
5881
5882 err_idx:
5883 kfree(net->dev_name_head);
5884 err_name:
5885 return -ENOMEM;
5886 }
5887
5888 /**
5889 * netdev_drivername - network driver for the device
5890 * @dev: network device
5891 * @buffer: buffer for resulting name
5892 * @len: size of buffer
5893 *
5894 * Determine network driver for device.
5895 */
5896 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5897 {
5898 const struct device_driver *driver;
5899 const struct device *parent;
5900
5901 if (len <= 0 || !buffer)
5902 return buffer;
5903 buffer[0] = 0;
5904
5905 parent = dev->dev.parent;
5906
5907 if (!parent)
5908 return buffer;
5909
5910 driver = parent->driver;
5911 if (driver && driver->name)
5912 strlcpy(buffer, driver->name, len);
5913 return buffer;
5914 }
5915
5916 static int __netdev_printk(const char *level, const struct net_device *dev,
5917 struct va_format *vaf)
5918 {
5919 int r;
5920
5921 if (dev && dev->dev.parent)
5922 r = dev_printk(level, dev->dev.parent, "%s: %pV",
5923 netdev_name(dev), vaf);
5924 else if (dev)
5925 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5926 else
5927 r = printk("%s(NULL net_device): %pV", level, vaf);
5928
5929 return r;
5930 }
5931
5932 int netdev_printk(const char *level, const struct net_device *dev,
5933 const char *format, ...)
5934 {
5935 struct va_format vaf;
5936 va_list args;
5937 int r;
5938
5939 va_start(args, format);
5940
5941 vaf.fmt = format;
5942 vaf.va = &args;
5943
5944 r = __netdev_printk(level, dev, &vaf);
5945 va_end(args);
5946
5947 return r;
5948 }
5949 EXPORT_SYMBOL(netdev_printk);
5950
5951 #define define_netdev_printk_level(func, level) \
5952 int func(const struct net_device *dev, const char *fmt, ...) \
5953 { \
5954 int r; \
5955 struct va_format vaf; \
5956 va_list args; \
5957 \
5958 va_start(args, fmt); \
5959 \
5960 vaf.fmt = fmt; \
5961 vaf.va = &args; \
5962 \
5963 r = __netdev_printk(level, dev, &vaf); \
5964 va_end(args); \
5965 \
5966 return r; \
5967 } \
5968 EXPORT_SYMBOL(func);
5969
5970 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
5971 define_netdev_printk_level(netdev_alert, KERN_ALERT);
5972 define_netdev_printk_level(netdev_crit, KERN_CRIT);
5973 define_netdev_printk_level(netdev_err, KERN_ERR);
5974 define_netdev_printk_level(netdev_warn, KERN_WARNING);
5975 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
5976 define_netdev_printk_level(netdev_info, KERN_INFO);
5977
5978 static void __net_exit netdev_exit(struct net *net)
5979 {
5980 kfree(net->dev_name_head);
5981 kfree(net->dev_index_head);
5982 }
5983
5984 static struct pernet_operations __net_initdata netdev_net_ops = {
5985 .init = netdev_init,
5986 .exit = netdev_exit,
5987 };
5988
5989 static void __net_exit default_device_exit(struct net *net)
5990 {
5991 struct net_device *dev, *aux;
5992 /*
5993 * Push all migratable network devices back to the
5994 * initial network namespace
5995 */
5996 rtnl_lock();
5997 for_each_netdev_safe(net, dev, aux) {
5998 int err;
5999 char fb_name[IFNAMSIZ];
6000
6001 /* Ignore unmoveable devices (i.e. loopback) */
6002 if (dev->features & NETIF_F_NETNS_LOCAL)
6003 continue;
6004
6005 /* Leave virtual devices for the generic cleanup */
6006 if (dev->rtnl_link_ops)
6007 continue;
6008
6009 /* Push remaing network devices to init_net */
6010 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6011 err = dev_change_net_namespace(dev, &init_net, fb_name);
6012 if (err) {
6013 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6014 __func__, dev->name, err);
6015 BUG();
6016 }
6017 }
6018 rtnl_unlock();
6019 }
6020
6021 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6022 {
6023 /* At exit all network devices most be removed from a network
6024 * namespace. Do this in the reverse order of registeration.
6025 * Do this across as many network namespaces as possible to
6026 * improve batching efficiency.
6027 */
6028 struct net_device *dev;
6029 struct net *net;
6030 LIST_HEAD(dev_kill_list);
6031
6032 rtnl_lock();
6033 list_for_each_entry(net, net_list, exit_list) {
6034 for_each_netdev_reverse(net, dev) {
6035 if (dev->rtnl_link_ops)
6036 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6037 else
6038 unregister_netdevice_queue(dev, &dev_kill_list);
6039 }
6040 }
6041 unregister_netdevice_many(&dev_kill_list);
6042 rtnl_unlock();
6043 }
6044
6045 static struct pernet_operations __net_initdata default_device_ops = {
6046 .exit = default_device_exit,
6047 .exit_batch = default_device_exit_batch,
6048 };
6049
6050 /*
6051 * Initialize the DEV module. At boot time this walks the device list and
6052 * unhooks any devices that fail to initialise (normally hardware not
6053 * present) and leaves us with a valid list of present and active devices.
6054 *
6055 */
6056
6057 /*
6058 * This is called single threaded during boot, so no need
6059 * to take the rtnl semaphore.
6060 */
6061 static int __init net_dev_init(void)
6062 {
6063 int i, rc = -ENOMEM;
6064
6065 BUG_ON(!dev_boot_phase);
6066
6067 if (dev_proc_init())
6068 goto out;
6069
6070 if (netdev_kobject_init())
6071 goto out;
6072
6073 INIT_LIST_HEAD(&ptype_all);
6074 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6075 INIT_LIST_HEAD(&ptype_base[i]);
6076
6077 if (register_pernet_subsys(&netdev_net_ops))
6078 goto out;
6079
6080 /*
6081 * Initialise the packet receive queues.
6082 */
6083
6084 for_each_possible_cpu(i) {
6085 struct softnet_data *sd = &per_cpu(softnet_data, i);
6086
6087 memset(sd, 0, sizeof(*sd));
6088 skb_queue_head_init(&sd->input_pkt_queue);
6089 skb_queue_head_init(&sd->process_queue);
6090 sd->completion_queue = NULL;
6091 INIT_LIST_HEAD(&sd->poll_list);
6092 sd->output_queue = NULL;
6093 sd->output_queue_tailp = &sd->output_queue;
6094 #ifdef CONFIG_RPS
6095 sd->csd.func = rps_trigger_softirq;
6096 sd->csd.info = sd;
6097 sd->csd.flags = 0;
6098 sd->cpu = i;
6099 #endif
6100
6101 sd->backlog.poll = process_backlog;
6102 sd->backlog.weight = weight_p;
6103 sd->backlog.gro_list = NULL;
6104 sd->backlog.gro_count = 0;
6105 }
6106
6107 dev_boot_phase = 0;
6108
6109 /* The loopback device is special if any other network devices
6110 * is present in a network namespace the loopback device must
6111 * be present. Since we now dynamically allocate and free the
6112 * loopback device ensure this invariant is maintained by
6113 * keeping the loopback device as the first device on the
6114 * list of network devices. Ensuring the loopback devices
6115 * is the first device that appears and the last network device
6116 * that disappears.
6117 */
6118 if (register_pernet_device(&loopback_net_ops))
6119 goto out;
6120
6121 if (register_pernet_device(&default_device_ops))
6122 goto out;
6123
6124 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6125 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6126
6127 hotcpu_notifier(dev_cpu_callback, 0);
6128 dst_init();
6129 dev_mcast_init();
6130 rc = 0;
6131 out:
6132 return rc;
6133 }
6134
6135 subsys_initcall(net_dev_init);
6136
6137 static int __init initialize_hashrnd(void)
6138 {
6139 get_random_bytes(&hashrnd, sizeof(hashrnd));
6140 return 0;
6141 }
6142
6143 late_initcall_sync(initialize_hashrnd);
6144
This page took 0.184516 seconds and 5 git commands to generate.