net offloading: Convert dev_gso_segment() to use precomputed features.
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr_rcu - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device. The caller must hold RCU
753 * The returned device has not had its ref count increased
754 * and the caller must therefore be careful about locking
755 *
756 */
757
758 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
759 const char *ha)
760 {
761 struct net_device *dev;
762
763 for_each_netdev_rcu(net, dev)
764 if (dev->type == type &&
765 !memcmp(dev->dev_addr, ha, dev->addr_len))
766 return dev;
767
768 return NULL;
769 }
770 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
771
772 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
773 {
774 struct net_device *dev;
775
776 ASSERT_RTNL();
777 for_each_netdev(net, dev)
778 if (dev->type == type)
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
784
785 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev, *ret = NULL;
788
789 rcu_read_lock();
790 for_each_netdev_rcu(net, dev)
791 if (dev->type == type) {
792 dev_hold(dev);
793 ret = dev;
794 break;
795 }
796 rcu_read_unlock();
797 return ret;
798 }
799 EXPORT_SYMBOL(dev_getfirstbyhwtype);
800
801 /**
802 * dev_get_by_flags_rcu - find any device with given flags
803 * @net: the applicable net namespace
804 * @if_flags: IFF_* values
805 * @mask: bitmask of bits in if_flags to check
806 *
807 * Search for any interface with the given flags. Returns NULL if a device
808 * is not found or a pointer to the device. Must be called inside
809 * rcu_read_lock(), and result refcount is unchanged.
810 */
811
812 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
813 unsigned short mask)
814 {
815 struct net_device *dev, *ret;
816
817 ret = NULL;
818 for_each_netdev_rcu(net, dev) {
819 if (((dev->flags ^ if_flags) & mask) == 0) {
820 ret = dev;
821 break;
822 }
823 }
824 return ret;
825 }
826 EXPORT_SYMBOL(dev_get_by_flags_rcu);
827
828 /**
829 * dev_valid_name - check if name is okay for network device
830 * @name: name string
831 *
832 * Network device names need to be valid file names to
833 * to allow sysfs to work. We also disallow any kind of
834 * whitespace.
835 */
836 int dev_valid_name(const char *name)
837 {
838 if (*name == '\0')
839 return 0;
840 if (strlen(name) >= IFNAMSIZ)
841 return 0;
842 if (!strcmp(name, ".") || !strcmp(name, ".."))
843 return 0;
844
845 while (*name) {
846 if (*name == '/' || isspace(*name))
847 return 0;
848 name++;
849 }
850 return 1;
851 }
852 EXPORT_SYMBOL(dev_valid_name);
853
854 /**
855 * __dev_alloc_name - allocate a name for a device
856 * @net: network namespace to allocate the device name in
857 * @name: name format string
858 * @buf: scratch buffer and result name string
859 *
860 * Passed a format string - eg "lt%d" it will try and find a suitable
861 * id. It scans list of devices to build up a free map, then chooses
862 * the first empty slot. The caller must hold the dev_base or rtnl lock
863 * while allocating the name and adding the device in order to avoid
864 * duplicates.
865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866 * Returns the number of the unit assigned or a negative errno code.
867 */
868
869 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
870 {
871 int i = 0;
872 const char *p;
873 const int max_netdevices = 8*PAGE_SIZE;
874 unsigned long *inuse;
875 struct net_device *d;
876
877 p = strnchr(name, IFNAMSIZ-1, '%');
878 if (p) {
879 /*
880 * Verify the string as this thing may have come from
881 * the user. There must be either one "%d" and no other "%"
882 * characters.
883 */
884 if (p[1] != 'd' || strchr(p + 2, '%'))
885 return -EINVAL;
886
887 /* Use one page as a bit array of possible slots */
888 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
889 if (!inuse)
890 return -ENOMEM;
891
892 for_each_netdev(net, d) {
893 if (!sscanf(d->name, name, &i))
894 continue;
895 if (i < 0 || i >= max_netdevices)
896 continue;
897
898 /* avoid cases where sscanf is not exact inverse of printf */
899 snprintf(buf, IFNAMSIZ, name, i);
900 if (!strncmp(buf, d->name, IFNAMSIZ))
901 set_bit(i, inuse);
902 }
903
904 i = find_first_zero_bit(inuse, max_netdevices);
905 free_page((unsigned long) inuse);
906 }
907
908 if (buf != name)
909 snprintf(buf, IFNAMSIZ, name, i);
910 if (!__dev_get_by_name(net, buf))
911 return i;
912
913 /* It is possible to run out of possible slots
914 * when the name is long and there isn't enough space left
915 * for the digits, or if all bits are used.
916 */
917 return -ENFILE;
918 }
919
920 /**
921 * dev_alloc_name - allocate a name for a device
922 * @dev: device
923 * @name: name format string
924 *
925 * Passed a format string - eg "lt%d" it will try and find a suitable
926 * id. It scans list of devices to build up a free map, then chooses
927 * the first empty slot. The caller must hold the dev_base or rtnl lock
928 * while allocating the name and adding the device in order to avoid
929 * duplicates.
930 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
931 * Returns the number of the unit assigned or a negative errno code.
932 */
933
934 int dev_alloc_name(struct net_device *dev, const char *name)
935 {
936 char buf[IFNAMSIZ];
937 struct net *net;
938 int ret;
939
940 BUG_ON(!dev_net(dev));
941 net = dev_net(dev);
942 ret = __dev_alloc_name(net, name, buf);
943 if (ret >= 0)
944 strlcpy(dev->name, buf, IFNAMSIZ);
945 return ret;
946 }
947 EXPORT_SYMBOL(dev_alloc_name);
948
949 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
950 {
951 struct net *net;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955
956 if (!dev_valid_name(name))
957 return -EINVAL;
958
959 if (fmt && strchr(name, '%'))
960 return dev_alloc_name(dev, name);
961 else if (__dev_get_by_name(net, name))
962 return -EEXIST;
963 else if (dev->name != name)
964 strlcpy(dev->name, name, IFNAMSIZ);
965
966 return 0;
967 }
968
969 /**
970 * dev_change_name - change name of a device
971 * @dev: device
972 * @newname: name (or format string) must be at least IFNAMSIZ
973 *
974 * Change name of a device, can pass format strings "eth%d".
975 * for wildcarding.
976 */
977 int dev_change_name(struct net_device *dev, const char *newname)
978 {
979 char oldname[IFNAMSIZ];
980 int err = 0;
981 int ret;
982 struct net *net;
983
984 ASSERT_RTNL();
985 BUG_ON(!dev_net(dev));
986
987 net = dev_net(dev);
988 if (dev->flags & IFF_UP)
989 return -EBUSY;
990
991 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
992 return 0;
993
994 memcpy(oldname, dev->name, IFNAMSIZ);
995
996 err = dev_get_valid_name(dev, newname, 1);
997 if (err < 0)
998 return err;
999
1000 rollback:
1001 ret = device_rename(&dev->dev, dev->name);
1002 if (ret) {
1003 memcpy(dev->name, oldname, IFNAMSIZ);
1004 return ret;
1005 }
1006
1007 write_lock_bh(&dev_base_lock);
1008 hlist_del(&dev->name_hlist);
1009 write_unlock_bh(&dev_base_lock);
1010
1011 synchronize_rcu();
1012
1013 write_lock_bh(&dev_base_lock);
1014 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1015 write_unlock_bh(&dev_base_lock);
1016
1017 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1018 ret = notifier_to_errno(ret);
1019
1020 if (ret) {
1021 /* err >= 0 after dev_alloc_name() or stores the first errno */
1022 if (err >= 0) {
1023 err = ret;
1024 memcpy(dev->name, oldname, IFNAMSIZ);
1025 goto rollback;
1026 } else {
1027 printk(KERN_ERR
1028 "%s: name change rollback failed: %d.\n",
1029 dev->name, ret);
1030 }
1031 }
1032
1033 return err;
1034 }
1035
1036 /**
1037 * dev_set_alias - change ifalias of a device
1038 * @dev: device
1039 * @alias: name up to IFALIASZ
1040 * @len: limit of bytes to copy from info
1041 *
1042 * Set ifalias for a device,
1043 */
1044 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1045 {
1046 ASSERT_RTNL();
1047
1048 if (len >= IFALIASZ)
1049 return -EINVAL;
1050
1051 if (!len) {
1052 if (dev->ifalias) {
1053 kfree(dev->ifalias);
1054 dev->ifalias = NULL;
1055 }
1056 return 0;
1057 }
1058
1059 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1060 if (!dev->ifalias)
1061 return -ENOMEM;
1062
1063 strlcpy(dev->ifalias, alias, len+1);
1064 return len;
1065 }
1066
1067
1068 /**
1069 * netdev_features_change - device changes features
1070 * @dev: device to cause notification
1071 *
1072 * Called to indicate a device has changed features.
1073 */
1074 void netdev_features_change(struct net_device *dev)
1075 {
1076 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1077 }
1078 EXPORT_SYMBOL(netdev_features_change);
1079
1080 /**
1081 * netdev_state_change - device changes state
1082 * @dev: device to cause notification
1083 *
1084 * Called to indicate a device has changed state. This function calls
1085 * the notifier chains for netdev_chain and sends a NEWLINK message
1086 * to the routing socket.
1087 */
1088 void netdev_state_change(struct net_device *dev)
1089 {
1090 if (dev->flags & IFF_UP) {
1091 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1092 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1093 }
1094 }
1095 EXPORT_SYMBOL(netdev_state_change);
1096
1097 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1098 {
1099 return call_netdevice_notifiers(event, dev);
1100 }
1101 EXPORT_SYMBOL(netdev_bonding_change);
1102
1103 /**
1104 * dev_load - load a network module
1105 * @net: the applicable net namespace
1106 * @name: name of interface
1107 *
1108 * If a network interface is not present and the process has suitable
1109 * privileges this function loads the module. If module loading is not
1110 * available in this kernel then it becomes a nop.
1111 */
1112
1113 void dev_load(struct net *net, const char *name)
1114 {
1115 struct net_device *dev;
1116
1117 rcu_read_lock();
1118 dev = dev_get_by_name_rcu(net, name);
1119 rcu_read_unlock();
1120
1121 if (!dev && capable(CAP_NET_ADMIN))
1122 request_module("%s", name);
1123 }
1124 EXPORT_SYMBOL(dev_load);
1125
1126 static int __dev_open(struct net_device *dev)
1127 {
1128 const struct net_device_ops *ops = dev->netdev_ops;
1129 int ret;
1130
1131 ASSERT_RTNL();
1132
1133 /*
1134 * Is it even present?
1135 */
1136 if (!netif_device_present(dev))
1137 return -ENODEV;
1138
1139 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1140 ret = notifier_to_errno(ret);
1141 if (ret)
1142 return ret;
1143
1144 /*
1145 * Call device private open method
1146 */
1147 set_bit(__LINK_STATE_START, &dev->state);
1148
1149 if (ops->ndo_validate_addr)
1150 ret = ops->ndo_validate_addr(dev);
1151
1152 if (!ret && ops->ndo_open)
1153 ret = ops->ndo_open(dev);
1154
1155 /*
1156 * If it went open OK then:
1157 */
1158
1159 if (ret)
1160 clear_bit(__LINK_STATE_START, &dev->state);
1161 else {
1162 /*
1163 * Set the flags.
1164 */
1165 dev->flags |= IFF_UP;
1166
1167 /*
1168 * Enable NET_DMA
1169 */
1170 net_dmaengine_get();
1171
1172 /*
1173 * Initialize multicasting status
1174 */
1175 dev_set_rx_mode(dev);
1176
1177 /*
1178 * Wakeup transmit queue engine
1179 */
1180 dev_activate(dev);
1181 }
1182
1183 return ret;
1184 }
1185
1186 /**
1187 * dev_open - prepare an interface for use.
1188 * @dev: device to open
1189 *
1190 * Takes a device from down to up state. The device's private open
1191 * function is invoked and then the multicast lists are loaded. Finally
1192 * the device is moved into the up state and a %NETDEV_UP message is
1193 * sent to the netdev notifier chain.
1194 *
1195 * Calling this function on an active interface is a nop. On a failure
1196 * a negative errno code is returned.
1197 */
1198 int dev_open(struct net_device *dev)
1199 {
1200 int ret;
1201
1202 /*
1203 * Is it already up?
1204 */
1205 if (dev->flags & IFF_UP)
1206 return 0;
1207
1208 /*
1209 * Open device
1210 */
1211 ret = __dev_open(dev);
1212 if (ret < 0)
1213 return ret;
1214
1215 /*
1216 * ... and announce new interface.
1217 */
1218 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1219 call_netdevice_notifiers(NETDEV_UP, dev);
1220
1221 return ret;
1222 }
1223 EXPORT_SYMBOL(dev_open);
1224
1225 static int __dev_close_many(struct list_head *head)
1226 {
1227 struct net_device *dev;
1228
1229 ASSERT_RTNL();
1230 might_sleep();
1231
1232 list_for_each_entry(dev, head, unreg_list) {
1233 /*
1234 * Tell people we are going down, so that they can
1235 * prepare to death, when device is still operating.
1236 */
1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1238
1239 clear_bit(__LINK_STATE_START, &dev->state);
1240
1241 /* Synchronize to scheduled poll. We cannot touch poll list, it
1242 * can be even on different cpu. So just clear netif_running().
1243 *
1244 * dev->stop() will invoke napi_disable() on all of it's
1245 * napi_struct instances on this device.
1246 */
1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1248 }
1249
1250 dev_deactivate_many(head);
1251
1252 list_for_each_entry(dev, head, unreg_list) {
1253 const struct net_device_ops *ops = dev->netdev_ops;
1254
1255 /*
1256 * Call the device specific close. This cannot fail.
1257 * Only if device is UP
1258 *
1259 * We allow it to be called even after a DETACH hot-plug
1260 * event.
1261 */
1262 if (ops->ndo_stop)
1263 ops->ndo_stop(dev);
1264
1265 /*
1266 * Device is now down.
1267 */
1268
1269 dev->flags &= ~IFF_UP;
1270
1271 /*
1272 * Shutdown NET_DMA
1273 */
1274 net_dmaengine_put();
1275 }
1276
1277 return 0;
1278 }
1279
1280 static int __dev_close(struct net_device *dev)
1281 {
1282 LIST_HEAD(single);
1283
1284 list_add(&dev->unreg_list, &single);
1285 return __dev_close_many(&single);
1286 }
1287
1288 int dev_close_many(struct list_head *head)
1289 {
1290 struct net_device *dev, *tmp;
1291 LIST_HEAD(tmp_list);
1292
1293 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1294 if (!(dev->flags & IFF_UP))
1295 list_move(&dev->unreg_list, &tmp_list);
1296
1297 __dev_close_many(head);
1298
1299 /*
1300 * Tell people we are down
1301 */
1302 list_for_each_entry(dev, head, unreg_list) {
1303 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1304 call_netdevice_notifiers(NETDEV_DOWN, dev);
1305 }
1306
1307 /* rollback_registered_many needs the complete original list */
1308 list_splice(&tmp_list, head);
1309 return 0;
1310 }
1311
1312 /**
1313 * dev_close - shutdown an interface.
1314 * @dev: device to shutdown
1315 *
1316 * This function moves an active device into down state. A
1317 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1318 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1319 * chain.
1320 */
1321 int dev_close(struct net_device *dev)
1322 {
1323 LIST_HEAD(single);
1324
1325 list_add(&dev->unreg_list, &single);
1326 dev_close_many(&single);
1327
1328 return 0;
1329 }
1330 EXPORT_SYMBOL(dev_close);
1331
1332
1333 /**
1334 * dev_disable_lro - disable Large Receive Offload on a device
1335 * @dev: device
1336 *
1337 * Disable Large Receive Offload (LRO) on a net device. Must be
1338 * called under RTNL. This is needed if received packets may be
1339 * forwarded to another interface.
1340 */
1341 void dev_disable_lro(struct net_device *dev)
1342 {
1343 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1344 dev->ethtool_ops->set_flags) {
1345 u32 flags = dev->ethtool_ops->get_flags(dev);
1346 if (flags & ETH_FLAG_LRO) {
1347 flags &= ~ETH_FLAG_LRO;
1348 dev->ethtool_ops->set_flags(dev, flags);
1349 }
1350 }
1351 WARN_ON(dev->features & NETIF_F_LRO);
1352 }
1353 EXPORT_SYMBOL(dev_disable_lro);
1354
1355
1356 static int dev_boot_phase = 1;
1357
1358 /*
1359 * Device change register/unregister. These are not inline or static
1360 * as we export them to the world.
1361 */
1362
1363 /**
1364 * register_netdevice_notifier - register a network notifier block
1365 * @nb: notifier
1366 *
1367 * Register a notifier to be called when network device events occur.
1368 * The notifier passed is linked into the kernel structures and must
1369 * not be reused until it has been unregistered. A negative errno code
1370 * is returned on a failure.
1371 *
1372 * When registered all registration and up events are replayed
1373 * to the new notifier to allow device to have a race free
1374 * view of the network device list.
1375 */
1376
1377 int register_netdevice_notifier(struct notifier_block *nb)
1378 {
1379 struct net_device *dev;
1380 struct net_device *last;
1381 struct net *net;
1382 int err;
1383
1384 rtnl_lock();
1385 err = raw_notifier_chain_register(&netdev_chain, nb);
1386 if (err)
1387 goto unlock;
1388 if (dev_boot_phase)
1389 goto unlock;
1390 for_each_net(net) {
1391 for_each_netdev(net, dev) {
1392 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1393 err = notifier_to_errno(err);
1394 if (err)
1395 goto rollback;
1396
1397 if (!(dev->flags & IFF_UP))
1398 continue;
1399
1400 nb->notifier_call(nb, NETDEV_UP, dev);
1401 }
1402 }
1403
1404 unlock:
1405 rtnl_unlock();
1406 return err;
1407
1408 rollback:
1409 last = dev;
1410 for_each_net(net) {
1411 for_each_netdev(net, dev) {
1412 if (dev == last)
1413 break;
1414
1415 if (dev->flags & IFF_UP) {
1416 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1417 nb->notifier_call(nb, NETDEV_DOWN, dev);
1418 }
1419 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1420 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1421 }
1422 }
1423
1424 raw_notifier_chain_unregister(&netdev_chain, nb);
1425 goto unlock;
1426 }
1427 EXPORT_SYMBOL(register_netdevice_notifier);
1428
1429 /**
1430 * unregister_netdevice_notifier - unregister a network notifier block
1431 * @nb: notifier
1432 *
1433 * Unregister a notifier previously registered by
1434 * register_netdevice_notifier(). The notifier is unlinked into the
1435 * kernel structures and may then be reused. A negative errno code
1436 * is returned on a failure.
1437 */
1438
1439 int unregister_netdevice_notifier(struct notifier_block *nb)
1440 {
1441 int err;
1442
1443 rtnl_lock();
1444 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1445 rtnl_unlock();
1446 return err;
1447 }
1448 EXPORT_SYMBOL(unregister_netdevice_notifier);
1449
1450 /**
1451 * call_netdevice_notifiers - call all network notifier blocks
1452 * @val: value passed unmodified to notifier function
1453 * @dev: net_device pointer passed unmodified to notifier function
1454 *
1455 * Call all network notifier blocks. Parameters and return value
1456 * are as for raw_notifier_call_chain().
1457 */
1458
1459 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1460 {
1461 ASSERT_RTNL();
1462 return raw_notifier_call_chain(&netdev_chain, val, dev);
1463 }
1464
1465 /* When > 0 there are consumers of rx skb time stamps */
1466 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1467
1468 void net_enable_timestamp(void)
1469 {
1470 atomic_inc(&netstamp_needed);
1471 }
1472 EXPORT_SYMBOL(net_enable_timestamp);
1473
1474 void net_disable_timestamp(void)
1475 {
1476 atomic_dec(&netstamp_needed);
1477 }
1478 EXPORT_SYMBOL(net_disable_timestamp);
1479
1480 static inline void net_timestamp_set(struct sk_buff *skb)
1481 {
1482 if (atomic_read(&netstamp_needed))
1483 __net_timestamp(skb);
1484 else
1485 skb->tstamp.tv64 = 0;
1486 }
1487
1488 static inline void net_timestamp_check(struct sk_buff *skb)
1489 {
1490 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1491 __net_timestamp(skb);
1492 }
1493
1494 /**
1495 * dev_forward_skb - loopback an skb to another netif
1496 *
1497 * @dev: destination network device
1498 * @skb: buffer to forward
1499 *
1500 * return values:
1501 * NET_RX_SUCCESS (no congestion)
1502 * NET_RX_DROP (packet was dropped, but freed)
1503 *
1504 * dev_forward_skb can be used for injecting an skb from the
1505 * start_xmit function of one device into the receive queue
1506 * of another device.
1507 *
1508 * The receiving device may be in another namespace, so
1509 * we have to clear all information in the skb that could
1510 * impact namespace isolation.
1511 */
1512 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1513 {
1514 skb_orphan(skb);
1515 nf_reset(skb);
1516
1517 if (unlikely(!(dev->flags & IFF_UP) ||
1518 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1519 atomic_long_inc(&dev->rx_dropped);
1520 kfree_skb(skb);
1521 return NET_RX_DROP;
1522 }
1523 skb_set_dev(skb, dev);
1524 skb->tstamp.tv64 = 0;
1525 skb->pkt_type = PACKET_HOST;
1526 skb->protocol = eth_type_trans(skb, dev);
1527 return netif_rx(skb);
1528 }
1529 EXPORT_SYMBOL_GPL(dev_forward_skb);
1530
1531 static inline int deliver_skb(struct sk_buff *skb,
1532 struct packet_type *pt_prev,
1533 struct net_device *orig_dev)
1534 {
1535 atomic_inc(&skb->users);
1536 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1537 }
1538
1539 /*
1540 * Support routine. Sends outgoing frames to any network
1541 * taps currently in use.
1542 */
1543
1544 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1545 {
1546 struct packet_type *ptype;
1547 struct sk_buff *skb2 = NULL;
1548 struct packet_type *pt_prev = NULL;
1549
1550 rcu_read_lock();
1551 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1552 /* Never send packets back to the socket
1553 * they originated from - MvS (miquels@drinkel.ow.org)
1554 */
1555 if ((ptype->dev == dev || !ptype->dev) &&
1556 (ptype->af_packet_priv == NULL ||
1557 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1558 if (pt_prev) {
1559 deliver_skb(skb2, pt_prev, skb->dev);
1560 pt_prev = ptype;
1561 continue;
1562 }
1563
1564 skb2 = skb_clone(skb, GFP_ATOMIC);
1565 if (!skb2)
1566 break;
1567
1568 net_timestamp_set(skb2);
1569
1570 /* skb->nh should be correctly
1571 set by sender, so that the second statement is
1572 just protection against buggy protocols.
1573 */
1574 skb_reset_mac_header(skb2);
1575
1576 if (skb_network_header(skb2) < skb2->data ||
1577 skb2->network_header > skb2->tail) {
1578 if (net_ratelimit())
1579 printk(KERN_CRIT "protocol %04x is "
1580 "buggy, dev %s\n",
1581 ntohs(skb2->protocol),
1582 dev->name);
1583 skb_reset_network_header(skb2);
1584 }
1585
1586 skb2->transport_header = skb2->network_header;
1587 skb2->pkt_type = PACKET_OUTGOING;
1588 pt_prev = ptype;
1589 }
1590 }
1591 if (pt_prev)
1592 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1593 rcu_read_unlock();
1594 }
1595
1596 /*
1597 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1598 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1599 */
1600 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1601 {
1602 int rc;
1603
1604 if (txq < 1 || txq > dev->num_tx_queues)
1605 return -EINVAL;
1606
1607 if (dev->reg_state == NETREG_REGISTERED) {
1608 ASSERT_RTNL();
1609
1610 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1611 txq);
1612 if (rc)
1613 return rc;
1614
1615 if (txq < dev->real_num_tx_queues)
1616 qdisc_reset_all_tx_gt(dev, txq);
1617 }
1618
1619 dev->real_num_tx_queues = txq;
1620 return 0;
1621 }
1622 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1623
1624 #ifdef CONFIG_RPS
1625 /**
1626 * netif_set_real_num_rx_queues - set actual number of RX queues used
1627 * @dev: Network device
1628 * @rxq: Actual number of RX queues
1629 *
1630 * This must be called either with the rtnl_lock held or before
1631 * registration of the net device. Returns 0 on success, or a
1632 * negative error code. If called before registration, it always
1633 * succeeds.
1634 */
1635 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1636 {
1637 int rc;
1638
1639 if (rxq < 1 || rxq > dev->num_rx_queues)
1640 return -EINVAL;
1641
1642 if (dev->reg_state == NETREG_REGISTERED) {
1643 ASSERT_RTNL();
1644
1645 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1646 rxq);
1647 if (rc)
1648 return rc;
1649 }
1650
1651 dev->real_num_rx_queues = rxq;
1652 return 0;
1653 }
1654 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1655 #endif
1656
1657 static inline void __netif_reschedule(struct Qdisc *q)
1658 {
1659 struct softnet_data *sd;
1660 unsigned long flags;
1661
1662 local_irq_save(flags);
1663 sd = &__get_cpu_var(softnet_data);
1664 q->next_sched = NULL;
1665 *sd->output_queue_tailp = q;
1666 sd->output_queue_tailp = &q->next_sched;
1667 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1668 local_irq_restore(flags);
1669 }
1670
1671 void __netif_schedule(struct Qdisc *q)
1672 {
1673 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1674 __netif_reschedule(q);
1675 }
1676 EXPORT_SYMBOL(__netif_schedule);
1677
1678 void dev_kfree_skb_irq(struct sk_buff *skb)
1679 {
1680 if (atomic_dec_and_test(&skb->users)) {
1681 struct softnet_data *sd;
1682 unsigned long flags;
1683
1684 local_irq_save(flags);
1685 sd = &__get_cpu_var(softnet_data);
1686 skb->next = sd->completion_queue;
1687 sd->completion_queue = skb;
1688 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1689 local_irq_restore(flags);
1690 }
1691 }
1692 EXPORT_SYMBOL(dev_kfree_skb_irq);
1693
1694 void dev_kfree_skb_any(struct sk_buff *skb)
1695 {
1696 if (in_irq() || irqs_disabled())
1697 dev_kfree_skb_irq(skb);
1698 else
1699 dev_kfree_skb(skb);
1700 }
1701 EXPORT_SYMBOL(dev_kfree_skb_any);
1702
1703
1704 /**
1705 * netif_device_detach - mark device as removed
1706 * @dev: network device
1707 *
1708 * Mark device as removed from system and therefore no longer available.
1709 */
1710 void netif_device_detach(struct net_device *dev)
1711 {
1712 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1713 netif_running(dev)) {
1714 netif_tx_stop_all_queues(dev);
1715 }
1716 }
1717 EXPORT_SYMBOL(netif_device_detach);
1718
1719 /**
1720 * netif_device_attach - mark device as attached
1721 * @dev: network device
1722 *
1723 * Mark device as attached from system and restart if needed.
1724 */
1725 void netif_device_attach(struct net_device *dev)
1726 {
1727 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1728 netif_running(dev)) {
1729 netif_tx_wake_all_queues(dev);
1730 __netdev_watchdog_up(dev);
1731 }
1732 }
1733 EXPORT_SYMBOL(netif_device_attach);
1734
1735 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1736 {
1737 return ((features & NETIF_F_GEN_CSUM) ||
1738 ((features & NETIF_F_V4_CSUM) &&
1739 protocol == htons(ETH_P_IP)) ||
1740 ((features & NETIF_F_V6_CSUM) &&
1741 protocol == htons(ETH_P_IPV6)) ||
1742 ((features & NETIF_F_FCOE_CRC) &&
1743 protocol == htons(ETH_P_FCOE)));
1744 }
1745
1746 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1747 {
1748 __be16 protocol = skb->protocol;
1749 int features = dev->features;
1750
1751 if (vlan_tx_tag_present(skb)) {
1752 features &= dev->vlan_features;
1753 } else if (protocol == htons(ETH_P_8021Q)) {
1754 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1755 protocol = veh->h_vlan_encapsulated_proto;
1756 features &= dev->vlan_features;
1757 }
1758
1759 return can_checksum_protocol(features, protocol);
1760 }
1761
1762 /**
1763 * skb_dev_set -- assign a new device to a buffer
1764 * @skb: buffer for the new device
1765 * @dev: network device
1766 *
1767 * If an skb is owned by a device already, we have to reset
1768 * all data private to the namespace a device belongs to
1769 * before assigning it a new device.
1770 */
1771 #ifdef CONFIG_NET_NS
1772 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1773 {
1774 skb_dst_drop(skb);
1775 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1776 secpath_reset(skb);
1777 nf_reset(skb);
1778 skb_init_secmark(skb);
1779 skb->mark = 0;
1780 skb->priority = 0;
1781 skb->nf_trace = 0;
1782 skb->ipvs_property = 0;
1783 #ifdef CONFIG_NET_SCHED
1784 skb->tc_index = 0;
1785 #endif
1786 }
1787 skb->dev = dev;
1788 }
1789 EXPORT_SYMBOL(skb_set_dev);
1790 #endif /* CONFIG_NET_NS */
1791
1792 /*
1793 * Invalidate hardware checksum when packet is to be mangled, and
1794 * complete checksum manually on outgoing path.
1795 */
1796 int skb_checksum_help(struct sk_buff *skb)
1797 {
1798 __wsum csum;
1799 int ret = 0, offset;
1800
1801 if (skb->ip_summed == CHECKSUM_COMPLETE)
1802 goto out_set_summed;
1803
1804 if (unlikely(skb_shinfo(skb)->gso_size)) {
1805 /* Let GSO fix up the checksum. */
1806 goto out_set_summed;
1807 }
1808
1809 offset = skb_checksum_start_offset(skb);
1810 BUG_ON(offset >= skb_headlen(skb));
1811 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1812
1813 offset += skb->csum_offset;
1814 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1815
1816 if (skb_cloned(skb) &&
1817 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1818 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1819 if (ret)
1820 goto out;
1821 }
1822
1823 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1824 out_set_summed:
1825 skb->ip_summed = CHECKSUM_NONE;
1826 out:
1827 return ret;
1828 }
1829 EXPORT_SYMBOL(skb_checksum_help);
1830
1831 /**
1832 * skb_gso_segment - Perform segmentation on skb.
1833 * @skb: buffer to segment
1834 * @features: features for the output path (see dev->features)
1835 *
1836 * This function segments the given skb and returns a list of segments.
1837 *
1838 * It may return NULL if the skb requires no segmentation. This is
1839 * only possible when GSO is used for verifying header integrity.
1840 */
1841 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1842 {
1843 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1844 struct packet_type *ptype;
1845 __be16 type = skb->protocol;
1846 int vlan_depth = ETH_HLEN;
1847 int err;
1848
1849 while (type == htons(ETH_P_8021Q)) {
1850 struct vlan_hdr *vh;
1851
1852 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1853 return ERR_PTR(-EINVAL);
1854
1855 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1856 type = vh->h_vlan_encapsulated_proto;
1857 vlan_depth += VLAN_HLEN;
1858 }
1859
1860 skb_reset_mac_header(skb);
1861 skb->mac_len = skb->network_header - skb->mac_header;
1862 __skb_pull(skb, skb->mac_len);
1863
1864 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1865 struct net_device *dev = skb->dev;
1866 struct ethtool_drvinfo info = {};
1867
1868 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1869 dev->ethtool_ops->get_drvinfo(dev, &info);
1870
1871 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1872 info.driver, dev ? dev->features : 0L,
1873 skb->sk ? skb->sk->sk_route_caps : 0L,
1874 skb->len, skb->data_len, skb->ip_summed);
1875
1876 if (skb_header_cloned(skb) &&
1877 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1878 return ERR_PTR(err);
1879 }
1880
1881 rcu_read_lock();
1882 list_for_each_entry_rcu(ptype,
1883 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1884 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1885 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1886 err = ptype->gso_send_check(skb);
1887 segs = ERR_PTR(err);
1888 if (err || skb_gso_ok(skb, features))
1889 break;
1890 __skb_push(skb, (skb->data -
1891 skb_network_header(skb)));
1892 }
1893 segs = ptype->gso_segment(skb, features);
1894 break;
1895 }
1896 }
1897 rcu_read_unlock();
1898
1899 __skb_push(skb, skb->data - skb_mac_header(skb));
1900
1901 return segs;
1902 }
1903 EXPORT_SYMBOL(skb_gso_segment);
1904
1905 /* Take action when hardware reception checksum errors are detected. */
1906 #ifdef CONFIG_BUG
1907 void netdev_rx_csum_fault(struct net_device *dev)
1908 {
1909 if (net_ratelimit()) {
1910 printk(KERN_ERR "%s: hw csum failure.\n",
1911 dev ? dev->name : "<unknown>");
1912 dump_stack();
1913 }
1914 }
1915 EXPORT_SYMBOL(netdev_rx_csum_fault);
1916 #endif
1917
1918 /* Actually, we should eliminate this check as soon as we know, that:
1919 * 1. IOMMU is present and allows to map all the memory.
1920 * 2. No high memory really exists on this machine.
1921 */
1922
1923 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1924 {
1925 #ifdef CONFIG_HIGHMEM
1926 int i;
1927 if (!(dev->features & NETIF_F_HIGHDMA)) {
1928 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1929 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1930 return 1;
1931 }
1932
1933 if (PCI_DMA_BUS_IS_PHYS) {
1934 struct device *pdev = dev->dev.parent;
1935
1936 if (!pdev)
1937 return 0;
1938 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1939 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1940 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1941 return 1;
1942 }
1943 }
1944 #endif
1945 return 0;
1946 }
1947
1948 struct dev_gso_cb {
1949 void (*destructor)(struct sk_buff *skb);
1950 };
1951
1952 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1953
1954 static void dev_gso_skb_destructor(struct sk_buff *skb)
1955 {
1956 struct dev_gso_cb *cb;
1957
1958 do {
1959 struct sk_buff *nskb = skb->next;
1960
1961 skb->next = nskb->next;
1962 nskb->next = NULL;
1963 kfree_skb(nskb);
1964 } while (skb->next);
1965
1966 cb = DEV_GSO_CB(skb);
1967 if (cb->destructor)
1968 cb->destructor(skb);
1969 }
1970
1971 /**
1972 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1973 * @skb: buffer to segment
1974 * @features: device features as applicable to this skb
1975 *
1976 * This function segments the given skb and stores the list of segments
1977 * in skb->next.
1978 */
1979 static int dev_gso_segment(struct sk_buff *skb, int features)
1980 {
1981 struct sk_buff *segs;
1982
1983 segs = skb_gso_segment(skb, features);
1984
1985 /* Verifying header integrity only. */
1986 if (!segs)
1987 return 0;
1988
1989 if (IS_ERR(segs))
1990 return PTR_ERR(segs);
1991
1992 skb->next = segs;
1993 DEV_GSO_CB(skb)->destructor = skb->destructor;
1994 skb->destructor = dev_gso_skb_destructor;
1995
1996 return 0;
1997 }
1998
1999 /*
2000 * Try to orphan skb early, right before transmission by the device.
2001 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2002 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2003 */
2004 static inline void skb_orphan_try(struct sk_buff *skb)
2005 {
2006 struct sock *sk = skb->sk;
2007
2008 if (sk && !skb_shinfo(skb)->tx_flags) {
2009 /* skb_tx_hash() wont be able to get sk.
2010 * We copy sk_hash into skb->rxhash
2011 */
2012 if (!skb->rxhash)
2013 skb->rxhash = sk->sk_hash;
2014 skb_orphan(skb);
2015 }
2016 }
2017
2018 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features)
2019 {
2020 if (!can_checksum_protocol(protocol, features)) {
2021 features &= ~NETIF_F_ALL_CSUM;
2022 features &= ~NETIF_F_SG;
2023 } else if (illegal_highdma(skb->dev, skb)) {
2024 features &= ~NETIF_F_SG;
2025 }
2026
2027 return features;
2028 }
2029
2030 int netif_skb_features(struct sk_buff *skb)
2031 {
2032 __be16 protocol = skb->protocol;
2033 int features = skb->dev->features;
2034
2035 if (protocol == htons(ETH_P_8021Q)) {
2036 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2037 protocol = veh->h_vlan_encapsulated_proto;
2038 } else if (!vlan_tx_tag_present(skb)) {
2039 return harmonize_features(skb, protocol, features);
2040 }
2041
2042 features &= skb->dev->vlan_features;
2043
2044 if (protocol != htons(ETH_P_8021Q)) {
2045 return harmonize_features(skb, protocol, features);
2046 } else {
2047 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2048 NETIF_F_GEN_CSUM;
2049 return harmonize_features(skb, protocol, features);
2050 }
2051 }
2052 EXPORT_SYMBOL(netif_skb_features);
2053
2054 /*
2055 * Returns true if either:
2056 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2057 * 2. skb is fragmented and the device does not support SG, or if
2058 * at least one of fragments is in highmem and device does not
2059 * support DMA from it.
2060 */
2061 static inline int skb_needs_linearize(struct sk_buff *skb,
2062 struct net_device *dev)
2063 {
2064 if (skb_is_nonlinear(skb)) {
2065 int features = dev->features;
2066
2067 if (vlan_tx_tag_present(skb))
2068 features &= dev->vlan_features;
2069
2070 return (skb_has_frag_list(skb) &&
2071 !(features & NETIF_F_FRAGLIST)) ||
2072 (skb_shinfo(skb)->nr_frags &&
2073 (!(features & NETIF_F_SG) ||
2074 illegal_highdma(dev, skb)));
2075 }
2076
2077 return 0;
2078 }
2079
2080 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2081 struct netdev_queue *txq)
2082 {
2083 const struct net_device_ops *ops = dev->netdev_ops;
2084 int rc = NETDEV_TX_OK;
2085
2086 if (likely(!skb->next)) {
2087 int features;
2088
2089 /*
2090 * If device doesnt need skb->dst, release it right now while
2091 * its hot in this cpu cache
2092 */
2093 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2094 skb_dst_drop(skb);
2095
2096 if (!list_empty(&ptype_all))
2097 dev_queue_xmit_nit(skb, dev);
2098
2099 skb_orphan_try(skb);
2100
2101 features = netif_skb_features(skb);
2102
2103 if (vlan_tx_tag_present(skb) &&
2104 !(features & NETIF_F_HW_VLAN_TX)) {
2105 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2106 if (unlikely(!skb))
2107 goto out;
2108
2109 skb->vlan_tci = 0;
2110 }
2111
2112 if (netif_needs_gso(skb, features)) {
2113 if (unlikely(dev_gso_segment(skb, features)))
2114 goto out_kfree_skb;
2115 if (skb->next)
2116 goto gso;
2117 } else {
2118 if (skb_needs_linearize(skb, dev) &&
2119 __skb_linearize(skb))
2120 goto out_kfree_skb;
2121
2122 /* If packet is not checksummed and device does not
2123 * support checksumming for this protocol, complete
2124 * checksumming here.
2125 */
2126 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2127 skb_set_transport_header(skb,
2128 skb_checksum_start_offset(skb));
2129 if (!dev_can_checksum(dev, skb) &&
2130 skb_checksum_help(skb))
2131 goto out_kfree_skb;
2132 }
2133 }
2134
2135 rc = ops->ndo_start_xmit(skb, dev);
2136 trace_net_dev_xmit(skb, rc);
2137 if (rc == NETDEV_TX_OK)
2138 txq_trans_update(txq);
2139 return rc;
2140 }
2141
2142 gso:
2143 do {
2144 struct sk_buff *nskb = skb->next;
2145
2146 skb->next = nskb->next;
2147 nskb->next = NULL;
2148
2149 /*
2150 * If device doesnt need nskb->dst, release it right now while
2151 * its hot in this cpu cache
2152 */
2153 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2154 skb_dst_drop(nskb);
2155
2156 rc = ops->ndo_start_xmit(nskb, dev);
2157 trace_net_dev_xmit(nskb, rc);
2158 if (unlikely(rc != NETDEV_TX_OK)) {
2159 if (rc & ~NETDEV_TX_MASK)
2160 goto out_kfree_gso_skb;
2161 nskb->next = skb->next;
2162 skb->next = nskb;
2163 return rc;
2164 }
2165 txq_trans_update(txq);
2166 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2167 return NETDEV_TX_BUSY;
2168 } while (skb->next);
2169
2170 out_kfree_gso_skb:
2171 if (likely(skb->next == NULL))
2172 skb->destructor = DEV_GSO_CB(skb)->destructor;
2173 out_kfree_skb:
2174 kfree_skb(skb);
2175 out:
2176 return rc;
2177 }
2178
2179 static u32 hashrnd __read_mostly;
2180
2181 /*
2182 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2183 * to be used as a distribution range.
2184 */
2185 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2186 unsigned int num_tx_queues)
2187 {
2188 u32 hash;
2189
2190 if (skb_rx_queue_recorded(skb)) {
2191 hash = skb_get_rx_queue(skb);
2192 while (unlikely(hash >= num_tx_queues))
2193 hash -= num_tx_queues;
2194 return hash;
2195 }
2196
2197 if (skb->sk && skb->sk->sk_hash)
2198 hash = skb->sk->sk_hash;
2199 else
2200 hash = (__force u16) skb->protocol ^ skb->rxhash;
2201 hash = jhash_1word(hash, hashrnd);
2202
2203 return (u16) (((u64) hash * num_tx_queues) >> 32);
2204 }
2205 EXPORT_SYMBOL(__skb_tx_hash);
2206
2207 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2208 {
2209 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2210 if (net_ratelimit()) {
2211 pr_warning("%s selects TX queue %d, but "
2212 "real number of TX queues is %d\n",
2213 dev->name, queue_index, dev->real_num_tx_queues);
2214 }
2215 return 0;
2216 }
2217 return queue_index;
2218 }
2219
2220 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2221 {
2222 #ifdef CONFIG_XPS
2223 struct xps_dev_maps *dev_maps;
2224 struct xps_map *map;
2225 int queue_index = -1;
2226
2227 rcu_read_lock();
2228 dev_maps = rcu_dereference(dev->xps_maps);
2229 if (dev_maps) {
2230 map = rcu_dereference(
2231 dev_maps->cpu_map[raw_smp_processor_id()]);
2232 if (map) {
2233 if (map->len == 1)
2234 queue_index = map->queues[0];
2235 else {
2236 u32 hash;
2237 if (skb->sk && skb->sk->sk_hash)
2238 hash = skb->sk->sk_hash;
2239 else
2240 hash = (__force u16) skb->protocol ^
2241 skb->rxhash;
2242 hash = jhash_1word(hash, hashrnd);
2243 queue_index = map->queues[
2244 ((u64)hash * map->len) >> 32];
2245 }
2246 if (unlikely(queue_index >= dev->real_num_tx_queues))
2247 queue_index = -1;
2248 }
2249 }
2250 rcu_read_unlock();
2251
2252 return queue_index;
2253 #else
2254 return -1;
2255 #endif
2256 }
2257
2258 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2259 struct sk_buff *skb)
2260 {
2261 int queue_index;
2262 const struct net_device_ops *ops = dev->netdev_ops;
2263
2264 if (dev->real_num_tx_queues == 1)
2265 queue_index = 0;
2266 else if (ops->ndo_select_queue) {
2267 queue_index = ops->ndo_select_queue(dev, skb);
2268 queue_index = dev_cap_txqueue(dev, queue_index);
2269 } else {
2270 struct sock *sk = skb->sk;
2271 queue_index = sk_tx_queue_get(sk);
2272
2273 if (queue_index < 0 || skb->ooo_okay ||
2274 queue_index >= dev->real_num_tx_queues) {
2275 int old_index = queue_index;
2276
2277 queue_index = get_xps_queue(dev, skb);
2278 if (queue_index < 0)
2279 queue_index = skb_tx_hash(dev, skb);
2280
2281 if (queue_index != old_index && sk) {
2282 struct dst_entry *dst =
2283 rcu_dereference_check(sk->sk_dst_cache, 1);
2284
2285 if (dst && skb_dst(skb) == dst)
2286 sk_tx_queue_set(sk, queue_index);
2287 }
2288 }
2289 }
2290
2291 skb_set_queue_mapping(skb, queue_index);
2292 return netdev_get_tx_queue(dev, queue_index);
2293 }
2294
2295 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2296 struct net_device *dev,
2297 struct netdev_queue *txq)
2298 {
2299 spinlock_t *root_lock = qdisc_lock(q);
2300 bool contended = qdisc_is_running(q);
2301 int rc;
2302
2303 /*
2304 * Heuristic to force contended enqueues to serialize on a
2305 * separate lock before trying to get qdisc main lock.
2306 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2307 * and dequeue packets faster.
2308 */
2309 if (unlikely(contended))
2310 spin_lock(&q->busylock);
2311
2312 spin_lock(root_lock);
2313 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2314 kfree_skb(skb);
2315 rc = NET_XMIT_DROP;
2316 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2317 qdisc_run_begin(q)) {
2318 /*
2319 * This is a work-conserving queue; there are no old skbs
2320 * waiting to be sent out; and the qdisc is not running -
2321 * xmit the skb directly.
2322 */
2323 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2324 skb_dst_force(skb);
2325 __qdisc_update_bstats(q, skb->len);
2326 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2327 if (unlikely(contended)) {
2328 spin_unlock(&q->busylock);
2329 contended = false;
2330 }
2331 __qdisc_run(q);
2332 } else
2333 qdisc_run_end(q);
2334
2335 rc = NET_XMIT_SUCCESS;
2336 } else {
2337 skb_dst_force(skb);
2338 rc = qdisc_enqueue_root(skb, q);
2339 if (qdisc_run_begin(q)) {
2340 if (unlikely(contended)) {
2341 spin_unlock(&q->busylock);
2342 contended = false;
2343 }
2344 __qdisc_run(q);
2345 }
2346 }
2347 spin_unlock(root_lock);
2348 if (unlikely(contended))
2349 spin_unlock(&q->busylock);
2350 return rc;
2351 }
2352
2353 static DEFINE_PER_CPU(int, xmit_recursion);
2354 #define RECURSION_LIMIT 10
2355
2356 /**
2357 * dev_queue_xmit - transmit a buffer
2358 * @skb: buffer to transmit
2359 *
2360 * Queue a buffer for transmission to a network device. The caller must
2361 * have set the device and priority and built the buffer before calling
2362 * this function. The function can be called from an interrupt.
2363 *
2364 * A negative errno code is returned on a failure. A success does not
2365 * guarantee the frame will be transmitted as it may be dropped due
2366 * to congestion or traffic shaping.
2367 *
2368 * -----------------------------------------------------------------------------------
2369 * I notice this method can also return errors from the queue disciplines,
2370 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2371 * be positive.
2372 *
2373 * Regardless of the return value, the skb is consumed, so it is currently
2374 * difficult to retry a send to this method. (You can bump the ref count
2375 * before sending to hold a reference for retry if you are careful.)
2376 *
2377 * When calling this method, interrupts MUST be enabled. This is because
2378 * the BH enable code must have IRQs enabled so that it will not deadlock.
2379 * --BLG
2380 */
2381 int dev_queue_xmit(struct sk_buff *skb)
2382 {
2383 struct net_device *dev = skb->dev;
2384 struct netdev_queue *txq;
2385 struct Qdisc *q;
2386 int rc = -ENOMEM;
2387
2388 /* Disable soft irqs for various locks below. Also
2389 * stops preemption for RCU.
2390 */
2391 rcu_read_lock_bh();
2392
2393 txq = dev_pick_tx(dev, skb);
2394 q = rcu_dereference_bh(txq->qdisc);
2395
2396 #ifdef CONFIG_NET_CLS_ACT
2397 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2398 #endif
2399 trace_net_dev_queue(skb);
2400 if (q->enqueue) {
2401 rc = __dev_xmit_skb(skb, q, dev, txq);
2402 goto out;
2403 }
2404
2405 /* The device has no queue. Common case for software devices:
2406 loopback, all the sorts of tunnels...
2407
2408 Really, it is unlikely that netif_tx_lock protection is necessary
2409 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2410 counters.)
2411 However, it is possible, that they rely on protection
2412 made by us here.
2413
2414 Check this and shot the lock. It is not prone from deadlocks.
2415 Either shot noqueue qdisc, it is even simpler 8)
2416 */
2417 if (dev->flags & IFF_UP) {
2418 int cpu = smp_processor_id(); /* ok because BHs are off */
2419
2420 if (txq->xmit_lock_owner != cpu) {
2421
2422 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2423 goto recursion_alert;
2424
2425 HARD_TX_LOCK(dev, txq, cpu);
2426
2427 if (!netif_tx_queue_stopped(txq)) {
2428 __this_cpu_inc(xmit_recursion);
2429 rc = dev_hard_start_xmit(skb, dev, txq);
2430 __this_cpu_dec(xmit_recursion);
2431 if (dev_xmit_complete(rc)) {
2432 HARD_TX_UNLOCK(dev, txq);
2433 goto out;
2434 }
2435 }
2436 HARD_TX_UNLOCK(dev, txq);
2437 if (net_ratelimit())
2438 printk(KERN_CRIT "Virtual device %s asks to "
2439 "queue packet!\n", dev->name);
2440 } else {
2441 /* Recursion is detected! It is possible,
2442 * unfortunately
2443 */
2444 recursion_alert:
2445 if (net_ratelimit())
2446 printk(KERN_CRIT "Dead loop on virtual device "
2447 "%s, fix it urgently!\n", dev->name);
2448 }
2449 }
2450
2451 rc = -ENETDOWN;
2452 rcu_read_unlock_bh();
2453
2454 kfree_skb(skb);
2455 return rc;
2456 out:
2457 rcu_read_unlock_bh();
2458 return rc;
2459 }
2460 EXPORT_SYMBOL(dev_queue_xmit);
2461
2462
2463 /*=======================================================================
2464 Receiver routines
2465 =======================================================================*/
2466
2467 int netdev_max_backlog __read_mostly = 1000;
2468 int netdev_tstamp_prequeue __read_mostly = 1;
2469 int netdev_budget __read_mostly = 300;
2470 int weight_p __read_mostly = 64; /* old backlog weight */
2471
2472 /* Called with irq disabled */
2473 static inline void ____napi_schedule(struct softnet_data *sd,
2474 struct napi_struct *napi)
2475 {
2476 list_add_tail(&napi->poll_list, &sd->poll_list);
2477 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2478 }
2479
2480 /*
2481 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2482 * and src/dst port numbers. Returns a non-zero hash number on success
2483 * and 0 on failure.
2484 */
2485 __u32 __skb_get_rxhash(struct sk_buff *skb)
2486 {
2487 int nhoff, hash = 0, poff;
2488 struct ipv6hdr *ip6;
2489 struct iphdr *ip;
2490 u8 ip_proto;
2491 u32 addr1, addr2, ihl;
2492 union {
2493 u32 v32;
2494 u16 v16[2];
2495 } ports;
2496
2497 nhoff = skb_network_offset(skb);
2498
2499 switch (skb->protocol) {
2500 case __constant_htons(ETH_P_IP):
2501 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2502 goto done;
2503
2504 ip = (struct iphdr *) (skb->data + nhoff);
2505 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2506 ip_proto = 0;
2507 else
2508 ip_proto = ip->protocol;
2509 addr1 = (__force u32) ip->saddr;
2510 addr2 = (__force u32) ip->daddr;
2511 ihl = ip->ihl;
2512 break;
2513 case __constant_htons(ETH_P_IPV6):
2514 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2515 goto done;
2516
2517 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2518 ip_proto = ip6->nexthdr;
2519 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2520 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2521 ihl = (40 >> 2);
2522 break;
2523 default:
2524 goto done;
2525 }
2526
2527 ports.v32 = 0;
2528 poff = proto_ports_offset(ip_proto);
2529 if (poff >= 0) {
2530 nhoff += ihl * 4 + poff;
2531 if (pskb_may_pull(skb, nhoff + 4)) {
2532 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2533 if (ports.v16[1] < ports.v16[0])
2534 swap(ports.v16[0], ports.v16[1]);
2535 }
2536 }
2537
2538 /* get a consistent hash (same value on both flow directions) */
2539 if (addr2 < addr1)
2540 swap(addr1, addr2);
2541
2542 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2543 if (!hash)
2544 hash = 1;
2545
2546 done:
2547 return hash;
2548 }
2549 EXPORT_SYMBOL(__skb_get_rxhash);
2550
2551 #ifdef CONFIG_RPS
2552
2553 /* One global table that all flow-based protocols share. */
2554 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2555 EXPORT_SYMBOL(rps_sock_flow_table);
2556
2557 /*
2558 * get_rps_cpu is called from netif_receive_skb and returns the target
2559 * CPU from the RPS map of the receiving queue for a given skb.
2560 * rcu_read_lock must be held on entry.
2561 */
2562 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2563 struct rps_dev_flow **rflowp)
2564 {
2565 struct netdev_rx_queue *rxqueue;
2566 struct rps_map *map;
2567 struct rps_dev_flow_table *flow_table;
2568 struct rps_sock_flow_table *sock_flow_table;
2569 int cpu = -1;
2570 u16 tcpu;
2571
2572 if (skb_rx_queue_recorded(skb)) {
2573 u16 index = skb_get_rx_queue(skb);
2574 if (unlikely(index >= dev->real_num_rx_queues)) {
2575 WARN_ONCE(dev->real_num_rx_queues > 1,
2576 "%s received packet on queue %u, but number "
2577 "of RX queues is %u\n",
2578 dev->name, index, dev->real_num_rx_queues);
2579 goto done;
2580 }
2581 rxqueue = dev->_rx + index;
2582 } else
2583 rxqueue = dev->_rx;
2584
2585 map = rcu_dereference(rxqueue->rps_map);
2586 if (map) {
2587 if (map->len == 1) {
2588 tcpu = map->cpus[0];
2589 if (cpu_online(tcpu))
2590 cpu = tcpu;
2591 goto done;
2592 }
2593 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2594 goto done;
2595 }
2596
2597 skb_reset_network_header(skb);
2598 if (!skb_get_rxhash(skb))
2599 goto done;
2600
2601 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2602 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2603 if (flow_table && sock_flow_table) {
2604 u16 next_cpu;
2605 struct rps_dev_flow *rflow;
2606
2607 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2608 tcpu = rflow->cpu;
2609
2610 next_cpu = sock_flow_table->ents[skb->rxhash &
2611 sock_flow_table->mask];
2612
2613 /*
2614 * If the desired CPU (where last recvmsg was done) is
2615 * different from current CPU (one in the rx-queue flow
2616 * table entry), switch if one of the following holds:
2617 * - Current CPU is unset (equal to RPS_NO_CPU).
2618 * - Current CPU is offline.
2619 * - The current CPU's queue tail has advanced beyond the
2620 * last packet that was enqueued using this table entry.
2621 * This guarantees that all previous packets for the flow
2622 * have been dequeued, thus preserving in order delivery.
2623 */
2624 if (unlikely(tcpu != next_cpu) &&
2625 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2626 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2627 rflow->last_qtail)) >= 0)) {
2628 tcpu = rflow->cpu = next_cpu;
2629 if (tcpu != RPS_NO_CPU)
2630 rflow->last_qtail = per_cpu(softnet_data,
2631 tcpu).input_queue_head;
2632 }
2633 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2634 *rflowp = rflow;
2635 cpu = tcpu;
2636 goto done;
2637 }
2638 }
2639
2640 if (map) {
2641 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2642
2643 if (cpu_online(tcpu)) {
2644 cpu = tcpu;
2645 goto done;
2646 }
2647 }
2648
2649 done:
2650 return cpu;
2651 }
2652
2653 /* Called from hardirq (IPI) context */
2654 static void rps_trigger_softirq(void *data)
2655 {
2656 struct softnet_data *sd = data;
2657
2658 ____napi_schedule(sd, &sd->backlog);
2659 sd->received_rps++;
2660 }
2661
2662 #endif /* CONFIG_RPS */
2663
2664 /*
2665 * Check if this softnet_data structure is another cpu one
2666 * If yes, queue it to our IPI list and return 1
2667 * If no, return 0
2668 */
2669 static int rps_ipi_queued(struct softnet_data *sd)
2670 {
2671 #ifdef CONFIG_RPS
2672 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2673
2674 if (sd != mysd) {
2675 sd->rps_ipi_next = mysd->rps_ipi_list;
2676 mysd->rps_ipi_list = sd;
2677
2678 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2679 return 1;
2680 }
2681 #endif /* CONFIG_RPS */
2682 return 0;
2683 }
2684
2685 /*
2686 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2687 * queue (may be a remote CPU queue).
2688 */
2689 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2690 unsigned int *qtail)
2691 {
2692 struct softnet_data *sd;
2693 unsigned long flags;
2694
2695 sd = &per_cpu(softnet_data, cpu);
2696
2697 local_irq_save(flags);
2698
2699 rps_lock(sd);
2700 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2701 if (skb_queue_len(&sd->input_pkt_queue)) {
2702 enqueue:
2703 __skb_queue_tail(&sd->input_pkt_queue, skb);
2704 input_queue_tail_incr_save(sd, qtail);
2705 rps_unlock(sd);
2706 local_irq_restore(flags);
2707 return NET_RX_SUCCESS;
2708 }
2709
2710 /* Schedule NAPI for backlog device
2711 * We can use non atomic operation since we own the queue lock
2712 */
2713 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2714 if (!rps_ipi_queued(sd))
2715 ____napi_schedule(sd, &sd->backlog);
2716 }
2717 goto enqueue;
2718 }
2719
2720 sd->dropped++;
2721 rps_unlock(sd);
2722
2723 local_irq_restore(flags);
2724
2725 atomic_long_inc(&skb->dev->rx_dropped);
2726 kfree_skb(skb);
2727 return NET_RX_DROP;
2728 }
2729
2730 /**
2731 * netif_rx - post buffer to the network code
2732 * @skb: buffer to post
2733 *
2734 * This function receives a packet from a device driver and queues it for
2735 * the upper (protocol) levels to process. It always succeeds. The buffer
2736 * may be dropped during processing for congestion control or by the
2737 * protocol layers.
2738 *
2739 * return values:
2740 * NET_RX_SUCCESS (no congestion)
2741 * NET_RX_DROP (packet was dropped)
2742 *
2743 */
2744
2745 int netif_rx(struct sk_buff *skb)
2746 {
2747 int ret;
2748
2749 /* if netpoll wants it, pretend we never saw it */
2750 if (netpoll_rx(skb))
2751 return NET_RX_DROP;
2752
2753 if (netdev_tstamp_prequeue)
2754 net_timestamp_check(skb);
2755
2756 trace_netif_rx(skb);
2757 #ifdef CONFIG_RPS
2758 {
2759 struct rps_dev_flow voidflow, *rflow = &voidflow;
2760 int cpu;
2761
2762 preempt_disable();
2763 rcu_read_lock();
2764
2765 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2766 if (cpu < 0)
2767 cpu = smp_processor_id();
2768
2769 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2770
2771 rcu_read_unlock();
2772 preempt_enable();
2773 }
2774 #else
2775 {
2776 unsigned int qtail;
2777 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2778 put_cpu();
2779 }
2780 #endif
2781 return ret;
2782 }
2783 EXPORT_SYMBOL(netif_rx);
2784
2785 int netif_rx_ni(struct sk_buff *skb)
2786 {
2787 int err;
2788
2789 preempt_disable();
2790 err = netif_rx(skb);
2791 if (local_softirq_pending())
2792 do_softirq();
2793 preempt_enable();
2794
2795 return err;
2796 }
2797 EXPORT_SYMBOL(netif_rx_ni);
2798
2799 static void net_tx_action(struct softirq_action *h)
2800 {
2801 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2802
2803 if (sd->completion_queue) {
2804 struct sk_buff *clist;
2805
2806 local_irq_disable();
2807 clist = sd->completion_queue;
2808 sd->completion_queue = NULL;
2809 local_irq_enable();
2810
2811 while (clist) {
2812 struct sk_buff *skb = clist;
2813 clist = clist->next;
2814
2815 WARN_ON(atomic_read(&skb->users));
2816 trace_kfree_skb(skb, net_tx_action);
2817 __kfree_skb(skb);
2818 }
2819 }
2820
2821 if (sd->output_queue) {
2822 struct Qdisc *head;
2823
2824 local_irq_disable();
2825 head = sd->output_queue;
2826 sd->output_queue = NULL;
2827 sd->output_queue_tailp = &sd->output_queue;
2828 local_irq_enable();
2829
2830 while (head) {
2831 struct Qdisc *q = head;
2832 spinlock_t *root_lock;
2833
2834 head = head->next_sched;
2835
2836 root_lock = qdisc_lock(q);
2837 if (spin_trylock(root_lock)) {
2838 smp_mb__before_clear_bit();
2839 clear_bit(__QDISC_STATE_SCHED,
2840 &q->state);
2841 qdisc_run(q);
2842 spin_unlock(root_lock);
2843 } else {
2844 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2845 &q->state)) {
2846 __netif_reschedule(q);
2847 } else {
2848 smp_mb__before_clear_bit();
2849 clear_bit(__QDISC_STATE_SCHED,
2850 &q->state);
2851 }
2852 }
2853 }
2854 }
2855 }
2856
2857 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2858 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2859 /* This hook is defined here for ATM LANE */
2860 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2861 unsigned char *addr) __read_mostly;
2862 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2863 #endif
2864
2865 #ifdef CONFIG_NET_CLS_ACT
2866 /* TODO: Maybe we should just force sch_ingress to be compiled in
2867 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2868 * a compare and 2 stores extra right now if we dont have it on
2869 * but have CONFIG_NET_CLS_ACT
2870 * NOTE: This doesnt stop any functionality; if you dont have
2871 * the ingress scheduler, you just cant add policies on ingress.
2872 *
2873 */
2874 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2875 {
2876 struct net_device *dev = skb->dev;
2877 u32 ttl = G_TC_RTTL(skb->tc_verd);
2878 int result = TC_ACT_OK;
2879 struct Qdisc *q;
2880
2881 if (unlikely(MAX_RED_LOOP < ttl++)) {
2882 if (net_ratelimit())
2883 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2884 skb->skb_iif, dev->ifindex);
2885 return TC_ACT_SHOT;
2886 }
2887
2888 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2889 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2890
2891 q = rxq->qdisc;
2892 if (q != &noop_qdisc) {
2893 spin_lock(qdisc_lock(q));
2894 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2895 result = qdisc_enqueue_root(skb, q);
2896 spin_unlock(qdisc_lock(q));
2897 }
2898
2899 return result;
2900 }
2901
2902 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2903 struct packet_type **pt_prev,
2904 int *ret, struct net_device *orig_dev)
2905 {
2906 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2907
2908 if (!rxq || rxq->qdisc == &noop_qdisc)
2909 goto out;
2910
2911 if (*pt_prev) {
2912 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2913 *pt_prev = NULL;
2914 }
2915
2916 switch (ing_filter(skb, rxq)) {
2917 case TC_ACT_SHOT:
2918 case TC_ACT_STOLEN:
2919 kfree_skb(skb);
2920 return NULL;
2921 }
2922
2923 out:
2924 skb->tc_verd = 0;
2925 return skb;
2926 }
2927 #endif
2928
2929 /**
2930 * netdev_rx_handler_register - register receive handler
2931 * @dev: device to register a handler for
2932 * @rx_handler: receive handler to register
2933 * @rx_handler_data: data pointer that is used by rx handler
2934 *
2935 * Register a receive hander for a device. This handler will then be
2936 * called from __netif_receive_skb. A negative errno code is returned
2937 * on a failure.
2938 *
2939 * The caller must hold the rtnl_mutex.
2940 */
2941 int netdev_rx_handler_register(struct net_device *dev,
2942 rx_handler_func_t *rx_handler,
2943 void *rx_handler_data)
2944 {
2945 ASSERT_RTNL();
2946
2947 if (dev->rx_handler)
2948 return -EBUSY;
2949
2950 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2951 rcu_assign_pointer(dev->rx_handler, rx_handler);
2952
2953 return 0;
2954 }
2955 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2956
2957 /**
2958 * netdev_rx_handler_unregister - unregister receive handler
2959 * @dev: device to unregister a handler from
2960 *
2961 * Unregister a receive hander from a device.
2962 *
2963 * The caller must hold the rtnl_mutex.
2964 */
2965 void netdev_rx_handler_unregister(struct net_device *dev)
2966 {
2967
2968 ASSERT_RTNL();
2969 rcu_assign_pointer(dev->rx_handler, NULL);
2970 rcu_assign_pointer(dev->rx_handler_data, NULL);
2971 }
2972 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2973
2974 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2975 struct net_device *master)
2976 {
2977 if (skb->pkt_type == PACKET_HOST) {
2978 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2979
2980 memcpy(dest, master->dev_addr, ETH_ALEN);
2981 }
2982 }
2983
2984 /* On bonding slaves other than the currently active slave, suppress
2985 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2986 * ARP on active-backup slaves with arp_validate enabled.
2987 */
2988 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2989 {
2990 struct net_device *dev = skb->dev;
2991
2992 if (master->priv_flags & IFF_MASTER_ARPMON)
2993 dev->last_rx = jiffies;
2994
2995 if ((master->priv_flags & IFF_MASTER_ALB) &&
2996 (master->priv_flags & IFF_BRIDGE_PORT)) {
2997 /* Do address unmangle. The local destination address
2998 * will be always the one master has. Provides the right
2999 * functionality in a bridge.
3000 */
3001 skb_bond_set_mac_by_master(skb, master);
3002 }
3003
3004 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
3005 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
3006 skb->protocol == __cpu_to_be16(ETH_P_ARP))
3007 return 0;
3008
3009 if (master->priv_flags & IFF_MASTER_ALB) {
3010 if (skb->pkt_type != PACKET_BROADCAST &&
3011 skb->pkt_type != PACKET_MULTICAST)
3012 return 0;
3013 }
3014 if (master->priv_flags & IFF_MASTER_8023AD &&
3015 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
3016 return 0;
3017
3018 return 1;
3019 }
3020 return 0;
3021 }
3022 EXPORT_SYMBOL(__skb_bond_should_drop);
3023
3024 static int __netif_receive_skb(struct sk_buff *skb)
3025 {
3026 struct packet_type *ptype, *pt_prev;
3027 rx_handler_func_t *rx_handler;
3028 struct net_device *orig_dev;
3029 struct net_device *master;
3030 struct net_device *null_or_orig;
3031 struct net_device *orig_or_bond;
3032 int ret = NET_RX_DROP;
3033 __be16 type;
3034
3035 if (!netdev_tstamp_prequeue)
3036 net_timestamp_check(skb);
3037
3038 trace_netif_receive_skb(skb);
3039
3040 /* if we've gotten here through NAPI, check netpoll */
3041 if (netpoll_receive_skb(skb))
3042 return NET_RX_DROP;
3043
3044 if (!skb->skb_iif)
3045 skb->skb_iif = skb->dev->ifindex;
3046
3047 /*
3048 * bonding note: skbs received on inactive slaves should only
3049 * be delivered to pkt handlers that are exact matches. Also
3050 * the deliver_no_wcard flag will be set. If packet handlers
3051 * are sensitive to duplicate packets these skbs will need to
3052 * be dropped at the handler.
3053 */
3054 null_or_orig = NULL;
3055 orig_dev = skb->dev;
3056 master = ACCESS_ONCE(orig_dev->master);
3057 if (skb->deliver_no_wcard)
3058 null_or_orig = orig_dev;
3059 else if (master) {
3060 if (skb_bond_should_drop(skb, master)) {
3061 skb->deliver_no_wcard = 1;
3062 null_or_orig = orig_dev; /* deliver only exact match */
3063 } else
3064 skb->dev = master;
3065 }
3066
3067 __this_cpu_inc(softnet_data.processed);
3068 skb_reset_network_header(skb);
3069 skb_reset_transport_header(skb);
3070 skb->mac_len = skb->network_header - skb->mac_header;
3071
3072 pt_prev = NULL;
3073
3074 rcu_read_lock();
3075
3076 #ifdef CONFIG_NET_CLS_ACT
3077 if (skb->tc_verd & TC_NCLS) {
3078 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3079 goto ncls;
3080 }
3081 #endif
3082
3083 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3084 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3085 ptype->dev == orig_dev) {
3086 if (pt_prev)
3087 ret = deliver_skb(skb, pt_prev, orig_dev);
3088 pt_prev = ptype;
3089 }
3090 }
3091
3092 #ifdef CONFIG_NET_CLS_ACT
3093 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3094 if (!skb)
3095 goto out;
3096 ncls:
3097 #endif
3098
3099 /* Handle special case of bridge or macvlan */
3100 rx_handler = rcu_dereference(skb->dev->rx_handler);
3101 if (rx_handler) {
3102 if (pt_prev) {
3103 ret = deliver_skb(skb, pt_prev, orig_dev);
3104 pt_prev = NULL;
3105 }
3106 skb = rx_handler(skb);
3107 if (!skb)
3108 goto out;
3109 }
3110
3111 if (vlan_tx_tag_present(skb)) {
3112 if (pt_prev) {
3113 ret = deliver_skb(skb, pt_prev, orig_dev);
3114 pt_prev = NULL;
3115 }
3116 if (vlan_hwaccel_do_receive(&skb)) {
3117 ret = __netif_receive_skb(skb);
3118 goto out;
3119 } else if (unlikely(!skb))
3120 goto out;
3121 }
3122
3123 /*
3124 * Make sure frames received on VLAN interfaces stacked on
3125 * bonding interfaces still make their way to any base bonding
3126 * device that may have registered for a specific ptype. The
3127 * handler may have to adjust skb->dev and orig_dev.
3128 */
3129 orig_or_bond = orig_dev;
3130 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3131 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3132 orig_or_bond = vlan_dev_real_dev(skb->dev);
3133 }
3134
3135 type = skb->protocol;
3136 list_for_each_entry_rcu(ptype,
3137 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3138 if (ptype->type == type && (ptype->dev == null_or_orig ||
3139 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3140 ptype->dev == orig_or_bond)) {
3141 if (pt_prev)
3142 ret = deliver_skb(skb, pt_prev, orig_dev);
3143 pt_prev = ptype;
3144 }
3145 }
3146
3147 if (pt_prev) {
3148 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3149 } else {
3150 atomic_long_inc(&skb->dev->rx_dropped);
3151 kfree_skb(skb);
3152 /* Jamal, now you will not able to escape explaining
3153 * me how you were going to use this. :-)
3154 */
3155 ret = NET_RX_DROP;
3156 }
3157
3158 out:
3159 rcu_read_unlock();
3160 return ret;
3161 }
3162
3163 /**
3164 * netif_receive_skb - process receive buffer from network
3165 * @skb: buffer to process
3166 *
3167 * netif_receive_skb() is the main receive data processing function.
3168 * It always succeeds. The buffer may be dropped during processing
3169 * for congestion control or by the protocol layers.
3170 *
3171 * This function may only be called from softirq context and interrupts
3172 * should be enabled.
3173 *
3174 * Return values (usually ignored):
3175 * NET_RX_SUCCESS: no congestion
3176 * NET_RX_DROP: packet was dropped
3177 */
3178 int netif_receive_skb(struct sk_buff *skb)
3179 {
3180 if (netdev_tstamp_prequeue)
3181 net_timestamp_check(skb);
3182
3183 if (skb_defer_rx_timestamp(skb))
3184 return NET_RX_SUCCESS;
3185
3186 #ifdef CONFIG_RPS
3187 {
3188 struct rps_dev_flow voidflow, *rflow = &voidflow;
3189 int cpu, ret;
3190
3191 rcu_read_lock();
3192
3193 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3194
3195 if (cpu >= 0) {
3196 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3197 rcu_read_unlock();
3198 } else {
3199 rcu_read_unlock();
3200 ret = __netif_receive_skb(skb);
3201 }
3202
3203 return ret;
3204 }
3205 #else
3206 return __netif_receive_skb(skb);
3207 #endif
3208 }
3209 EXPORT_SYMBOL(netif_receive_skb);
3210
3211 /* Network device is going away, flush any packets still pending
3212 * Called with irqs disabled.
3213 */
3214 static void flush_backlog(void *arg)
3215 {
3216 struct net_device *dev = arg;
3217 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3218 struct sk_buff *skb, *tmp;
3219
3220 rps_lock(sd);
3221 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3222 if (skb->dev == dev) {
3223 __skb_unlink(skb, &sd->input_pkt_queue);
3224 kfree_skb(skb);
3225 input_queue_head_incr(sd);
3226 }
3227 }
3228 rps_unlock(sd);
3229
3230 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3231 if (skb->dev == dev) {
3232 __skb_unlink(skb, &sd->process_queue);
3233 kfree_skb(skb);
3234 input_queue_head_incr(sd);
3235 }
3236 }
3237 }
3238
3239 static int napi_gro_complete(struct sk_buff *skb)
3240 {
3241 struct packet_type *ptype;
3242 __be16 type = skb->protocol;
3243 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3244 int err = -ENOENT;
3245
3246 if (NAPI_GRO_CB(skb)->count == 1) {
3247 skb_shinfo(skb)->gso_size = 0;
3248 goto out;
3249 }
3250
3251 rcu_read_lock();
3252 list_for_each_entry_rcu(ptype, head, list) {
3253 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3254 continue;
3255
3256 err = ptype->gro_complete(skb);
3257 break;
3258 }
3259 rcu_read_unlock();
3260
3261 if (err) {
3262 WARN_ON(&ptype->list == head);
3263 kfree_skb(skb);
3264 return NET_RX_SUCCESS;
3265 }
3266
3267 out:
3268 return netif_receive_skb(skb);
3269 }
3270
3271 inline void napi_gro_flush(struct napi_struct *napi)
3272 {
3273 struct sk_buff *skb, *next;
3274
3275 for (skb = napi->gro_list; skb; skb = next) {
3276 next = skb->next;
3277 skb->next = NULL;
3278 napi_gro_complete(skb);
3279 }
3280
3281 napi->gro_count = 0;
3282 napi->gro_list = NULL;
3283 }
3284 EXPORT_SYMBOL(napi_gro_flush);
3285
3286 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3287 {
3288 struct sk_buff **pp = NULL;
3289 struct packet_type *ptype;
3290 __be16 type = skb->protocol;
3291 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3292 int same_flow;
3293 int mac_len;
3294 enum gro_result ret;
3295
3296 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3297 goto normal;
3298
3299 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3300 goto normal;
3301
3302 rcu_read_lock();
3303 list_for_each_entry_rcu(ptype, head, list) {
3304 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3305 continue;
3306
3307 skb_set_network_header(skb, skb_gro_offset(skb));
3308 mac_len = skb->network_header - skb->mac_header;
3309 skb->mac_len = mac_len;
3310 NAPI_GRO_CB(skb)->same_flow = 0;
3311 NAPI_GRO_CB(skb)->flush = 0;
3312 NAPI_GRO_CB(skb)->free = 0;
3313
3314 pp = ptype->gro_receive(&napi->gro_list, skb);
3315 break;
3316 }
3317 rcu_read_unlock();
3318
3319 if (&ptype->list == head)
3320 goto normal;
3321
3322 same_flow = NAPI_GRO_CB(skb)->same_flow;
3323 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3324
3325 if (pp) {
3326 struct sk_buff *nskb = *pp;
3327
3328 *pp = nskb->next;
3329 nskb->next = NULL;
3330 napi_gro_complete(nskb);
3331 napi->gro_count--;
3332 }
3333
3334 if (same_flow)
3335 goto ok;
3336
3337 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3338 goto normal;
3339
3340 napi->gro_count++;
3341 NAPI_GRO_CB(skb)->count = 1;
3342 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3343 skb->next = napi->gro_list;
3344 napi->gro_list = skb;
3345 ret = GRO_HELD;
3346
3347 pull:
3348 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3349 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3350
3351 BUG_ON(skb->end - skb->tail < grow);
3352
3353 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3354
3355 skb->tail += grow;
3356 skb->data_len -= grow;
3357
3358 skb_shinfo(skb)->frags[0].page_offset += grow;
3359 skb_shinfo(skb)->frags[0].size -= grow;
3360
3361 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3362 put_page(skb_shinfo(skb)->frags[0].page);
3363 memmove(skb_shinfo(skb)->frags,
3364 skb_shinfo(skb)->frags + 1,
3365 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3366 }
3367 }
3368
3369 ok:
3370 return ret;
3371
3372 normal:
3373 ret = GRO_NORMAL;
3374 goto pull;
3375 }
3376 EXPORT_SYMBOL(dev_gro_receive);
3377
3378 static inline gro_result_t
3379 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3380 {
3381 struct sk_buff *p;
3382
3383 for (p = napi->gro_list; p; p = p->next) {
3384 unsigned long diffs;
3385
3386 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3387 diffs |= p->vlan_tci ^ skb->vlan_tci;
3388 diffs |= compare_ether_header(skb_mac_header(p),
3389 skb_gro_mac_header(skb));
3390 NAPI_GRO_CB(p)->same_flow = !diffs;
3391 NAPI_GRO_CB(p)->flush = 0;
3392 }
3393
3394 return dev_gro_receive(napi, skb);
3395 }
3396
3397 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3398 {
3399 switch (ret) {
3400 case GRO_NORMAL:
3401 if (netif_receive_skb(skb))
3402 ret = GRO_DROP;
3403 break;
3404
3405 case GRO_DROP:
3406 case GRO_MERGED_FREE:
3407 kfree_skb(skb);
3408 break;
3409
3410 case GRO_HELD:
3411 case GRO_MERGED:
3412 break;
3413 }
3414
3415 return ret;
3416 }
3417 EXPORT_SYMBOL(napi_skb_finish);
3418
3419 void skb_gro_reset_offset(struct sk_buff *skb)
3420 {
3421 NAPI_GRO_CB(skb)->data_offset = 0;
3422 NAPI_GRO_CB(skb)->frag0 = NULL;
3423 NAPI_GRO_CB(skb)->frag0_len = 0;
3424
3425 if (skb->mac_header == skb->tail &&
3426 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3427 NAPI_GRO_CB(skb)->frag0 =
3428 page_address(skb_shinfo(skb)->frags[0].page) +
3429 skb_shinfo(skb)->frags[0].page_offset;
3430 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3431 }
3432 }
3433 EXPORT_SYMBOL(skb_gro_reset_offset);
3434
3435 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3436 {
3437 skb_gro_reset_offset(skb);
3438
3439 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3440 }
3441 EXPORT_SYMBOL(napi_gro_receive);
3442
3443 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3444 {
3445 __skb_pull(skb, skb_headlen(skb));
3446 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3447 skb->vlan_tci = 0;
3448
3449 napi->skb = skb;
3450 }
3451
3452 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3453 {
3454 struct sk_buff *skb = napi->skb;
3455
3456 if (!skb) {
3457 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3458 if (skb)
3459 napi->skb = skb;
3460 }
3461 return skb;
3462 }
3463 EXPORT_SYMBOL(napi_get_frags);
3464
3465 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3466 gro_result_t ret)
3467 {
3468 switch (ret) {
3469 case GRO_NORMAL:
3470 case GRO_HELD:
3471 skb->protocol = eth_type_trans(skb, skb->dev);
3472
3473 if (ret == GRO_HELD)
3474 skb_gro_pull(skb, -ETH_HLEN);
3475 else if (netif_receive_skb(skb))
3476 ret = GRO_DROP;
3477 break;
3478
3479 case GRO_DROP:
3480 case GRO_MERGED_FREE:
3481 napi_reuse_skb(napi, skb);
3482 break;
3483
3484 case GRO_MERGED:
3485 break;
3486 }
3487
3488 return ret;
3489 }
3490 EXPORT_SYMBOL(napi_frags_finish);
3491
3492 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3493 {
3494 struct sk_buff *skb = napi->skb;
3495 struct ethhdr *eth;
3496 unsigned int hlen;
3497 unsigned int off;
3498
3499 napi->skb = NULL;
3500
3501 skb_reset_mac_header(skb);
3502 skb_gro_reset_offset(skb);
3503
3504 off = skb_gro_offset(skb);
3505 hlen = off + sizeof(*eth);
3506 eth = skb_gro_header_fast(skb, off);
3507 if (skb_gro_header_hard(skb, hlen)) {
3508 eth = skb_gro_header_slow(skb, hlen, off);
3509 if (unlikely(!eth)) {
3510 napi_reuse_skb(napi, skb);
3511 skb = NULL;
3512 goto out;
3513 }
3514 }
3515
3516 skb_gro_pull(skb, sizeof(*eth));
3517
3518 /*
3519 * This works because the only protocols we care about don't require
3520 * special handling. We'll fix it up properly at the end.
3521 */
3522 skb->protocol = eth->h_proto;
3523
3524 out:
3525 return skb;
3526 }
3527 EXPORT_SYMBOL(napi_frags_skb);
3528
3529 gro_result_t napi_gro_frags(struct napi_struct *napi)
3530 {
3531 struct sk_buff *skb = napi_frags_skb(napi);
3532
3533 if (!skb)
3534 return GRO_DROP;
3535
3536 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3537 }
3538 EXPORT_SYMBOL(napi_gro_frags);
3539
3540 /*
3541 * net_rps_action sends any pending IPI's for rps.
3542 * Note: called with local irq disabled, but exits with local irq enabled.
3543 */
3544 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3545 {
3546 #ifdef CONFIG_RPS
3547 struct softnet_data *remsd = sd->rps_ipi_list;
3548
3549 if (remsd) {
3550 sd->rps_ipi_list = NULL;
3551
3552 local_irq_enable();
3553
3554 /* Send pending IPI's to kick RPS processing on remote cpus. */
3555 while (remsd) {
3556 struct softnet_data *next = remsd->rps_ipi_next;
3557
3558 if (cpu_online(remsd->cpu))
3559 __smp_call_function_single(remsd->cpu,
3560 &remsd->csd, 0);
3561 remsd = next;
3562 }
3563 } else
3564 #endif
3565 local_irq_enable();
3566 }
3567
3568 static int process_backlog(struct napi_struct *napi, int quota)
3569 {
3570 int work = 0;
3571 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3572
3573 #ifdef CONFIG_RPS
3574 /* Check if we have pending ipi, its better to send them now,
3575 * not waiting net_rx_action() end.
3576 */
3577 if (sd->rps_ipi_list) {
3578 local_irq_disable();
3579 net_rps_action_and_irq_enable(sd);
3580 }
3581 #endif
3582 napi->weight = weight_p;
3583 local_irq_disable();
3584 while (work < quota) {
3585 struct sk_buff *skb;
3586 unsigned int qlen;
3587
3588 while ((skb = __skb_dequeue(&sd->process_queue))) {
3589 local_irq_enable();
3590 __netif_receive_skb(skb);
3591 local_irq_disable();
3592 input_queue_head_incr(sd);
3593 if (++work >= quota) {
3594 local_irq_enable();
3595 return work;
3596 }
3597 }
3598
3599 rps_lock(sd);
3600 qlen = skb_queue_len(&sd->input_pkt_queue);
3601 if (qlen)
3602 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3603 &sd->process_queue);
3604
3605 if (qlen < quota - work) {
3606 /*
3607 * Inline a custom version of __napi_complete().
3608 * only current cpu owns and manipulates this napi,
3609 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3610 * we can use a plain write instead of clear_bit(),
3611 * and we dont need an smp_mb() memory barrier.
3612 */
3613 list_del(&napi->poll_list);
3614 napi->state = 0;
3615
3616 quota = work + qlen;
3617 }
3618 rps_unlock(sd);
3619 }
3620 local_irq_enable();
3621
3622 return work;
3623 }
3624
3625 /**
3626 * __napi_schedule - schedule for receive
3627 * @n: entry to schedule
3628 *
3629 * The entry's receive function will be scheduled to run
3630 */
3631 void __napi_schedule(struct napi_struct *n)
3632 {
3633 unsigned long flags;
3634
3635 local_irq_save(flags);
3636 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3637 local_irq_restore(flags);
3638 }
3639 EXPORT_SYMBOL(__napi_schedule);
3640
3641 void __napi_complete(struct napi_struct *n)
3642 {
3643 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3644 BUG_ON(n->gro_list);
3645
3646 list_del(&n->poll_list);
3647 smp_mb__before_clear_bit();
3648 clear_bit(NAPI_STATE_SCHED, &n->state);
3649 }
3650 EXPORT_SYMBOL(__napi_complete);
3651
3652 void napi_complete(struct napi_struct *n)
3653 {
3654 unsigned long flags;
3655
3656 /*
3657 * don't let napi dequeue from the cpu poll list
3658 * just in case its running on a different cpu
3659 */
3660 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3661 return;
3662
3663 napi_gro_flush(n);
3664 local_irq_save(flags);
3665 __napi_complete(n);
3666 local_irq_restore(flags);
3667 }
3668 EXPORT_SYMBOL(napi_complete);
3669
3670 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3671 int (*poll)(struct napi_struct *, int), int weight)
3672 {
3673 INIT_LIST_HEAD(&napi->poll_list);
3674 napi->gro_count = 0;
3675 napi->gro_list = NULL;
3676 napi->skb = NULL;
3677 napi->poll = poll;
3678 napi->weight = weight;
3679 list_add(&napi->dev_list, &dev->napi_list);
3680 napi->dev = dev;
3681 #ifdef CONFIG_NETPOLL
3682 spin_lock_init(&napi->poll_lock);
3683 napi->poll_owner = -1;
3684 #endif
3685 set_bit(NAPI_STATE_SCHED, &napi->state);
3686 }
3687 EXPORT_SYMBOL(netif_napi_add);
3688
3689 void netif_napi_del(struct napi_struct *napi)
3690 {
3691 struct sk_buff *skb, *next;
3692
3693 list_del_init(&napi->dev_list);
3694 napi_free_frags(napi);
3695
3696 for (skb = napi->gro_list; skb; skb = next) {
3697 next = skb->next;
3698 skb->next = NULL;
3699 kfree_skb(skb);
3700 }
3701
3702 napi->gro_list = NULL;
3703 napi->gro_count = 0;
3704 }
3705 EXPORT_SYMBOL(netif_napi_del);
3706
3707 static void net_rx_action(struct softirq_action *h)
3708 {
3709 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3710 unsigned long time_limit = jiffies + 2;
3711 int budget = netdev_budget;
3712 void *have;
3713
3714 local_irq_disable();
3715
3716 while (!list_empty(&sd->poll_list)) {
3717 struct napi_struct *n;
3718 int work, weight;
3719
3720 /* If softirq window is exhuasted then punt.
3721 * Allow this to run for 2 jiffies since which will allow
3722 * an average latency of 1.5/HZ.
3723 */
3724 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3725 goto softnet_break;
3726
3727 local_irq_enable();
3728
3729 /* Even though interrupts have been re-enabled, this
3730 * access is safe because interrupts can only add new
3731 * entries to the tail of this list, and only ->poll()
3732 * calls can remove this head entry from the list.
3733 */
3734 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3735
3736 have = netpoll_poll_lock(n);
3737
3738 weight = n->weight;
3739
3740 /* This NAPI_STATE_SCHED test is for avoiding a race
3741 * with netpoll's poll_napi(). Only the entity which
3742 * obtains the lock and sees NAPI_STATE_SCHED set will
3743 * actually make the ->poll() call. Therefore we avoid
3744 * accidently calling ->poll() when NAPI is not scheduled.
3745 */
3746 work = 0;
3747 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3748 work = n->poll(n, weight);
3749 trace_napi_poll(n);
3750 }
3751
3752 WARN_ON_ONCE(work > weight);
3753
3754 budget -= work;
3755
3756 local_irq_disable();
3757
3758 /* Drivers must not modify the NAPI state if they
3759 * consume the entire weight. In such cases this code
3760 * still "owns" the NAPI instance and therefore can
3761 * move the instance around on the list at-will.
3762 */
3763 if (unlikely(work == weight)) {
3764 if (unlikely(napi_disable_pending(n))) {
3765 local_irq_enable();
3766 napi_complete(n);
3767 local_irq_disable();
3768 } else
3769 list_move_tail(&n->poll_list, &sd->poll_list);
3770 }
3771
3772 netpoll_poll_unlock(have);
3773 }
3774 out:
3775 net_rps_action_and_irq_enable(sd);
3776
3777 #ifdef CONFIG_NET_DMA
3778 /*
3779 * There may not be any more sk_buffs coming right now, so push
3780 * any pending DMA copies to hardware
3781 */
3782 dma_issue_pending_all();
3783 #endif
3784
3785 return;
3786
3787 softnet_break:
3788 sd->time_squeeze++;
3789 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3790 goto out;
3791 }
3792
3793 static gifconf_func_t *gifconf_list[NPROTO];
3794
3795 /**
3796 * register_gifconf - register a SIOCGIF handler
3797 * @family: Address family
3798 * @gifconf: Function handler
3799 *
3800 * Register protocol dependent address dumping routines. The handler
3801 * that is passed must not be freed or reused until it has been replaced
3802 * by another handler.
3803 */
3804 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3805 {
3806 if (family >= NPROTO)
3807 return -EINVAL;
3808 gifconf_list[family] = gifconf;
3809 return 0;
3810 }
3811 EXPORT_SYMBOL(register_gifconf);
3812
3813
3814 /*
3815 * Map an interface index to its name (SIOCGIFNAME)
3816 */
3817
3818 /*
3819 * We need this ioctl for efficient implementation of the
3820 * if_indextoname() function required by the IPv6 API. Without
3821 * it, we would have to search all the interfaces to find a
3822 * match. --pb
3823 */
3824
3825 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3826 {
3827 struct net_device *dev;
3828 struct ifreq ifr;
3829
3830 /*
3831 * Fetch the caller's info block.
3832 */
3833
3834 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3835 return -EFAULT;
3836
3837 rcu_read_lock();
3838 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3839 if (!dev) {
3840 rcu_read_unlock();
3841 return -ENODEV;
3842 }
3843
3844 strcpy(ifr.ifr_name, dev->name);
3845 rcu_read_unlock();
3846
3847 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3848 return -EFAULT;
3849 return 0;
3850 }
3851
3852 /*
3853 * Perform a SIOCGIFCONF call. This structure will change
3854 * size eventually, and there is nothing I can do about it.
3855 * Thus we will need a 'compatibility mode'.
3856 */
3857
3858 static int dev_ifconf(struct net *net, char __user *arg)
3859 {
3860 struct ifconf ifc;
3861 struct net_device *dev;
3862 char __user *pos;
3863 int len;
3864 int total;
3865 int i;
3866
3867 /*
3868 * Fetch the caller's info block.
3869 */
3870
3871 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3872 return -EFAULT;
3873
3874 pos = ifc.ifc_buf;
3875 len = ifc.ifc_len;
3876
3877 /*
3878 * Loop over the interfaces, and write an info block for each.
3879 */
3880
3881 total = 0;
3882 for_each_netdev(net, dev) {
3883 for (i = 0; i < NPROTO; i++) {
3884 if (gifconf_list[i]) {
3885 int done;
3886 if (!pos)
3887 done = gifconf_list[i](dev, NULL, 0);
3888 else
3889 done = gifconf_list[i](dev, pos + total,
3890 len - total);
3891 if (done < 0)
3892 return -EFAULT;
3893 total += done;
3894 }
3895 }
3896 }
3897
3898 /*
3899 * All done. Write the updated control block back to the caller.
3900 */
3901 ifc.ifc_len = total;
3902
3903 /*
3904 * Both BSD and Solaris return 0 here, so we do too.
3905 */
3906 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3907 }
3908
3909 #ifdef CONFIG_PROC_FS
3910 /*
3911 * This is invoked by the /proc filesystem handler to display a device
3912 * in detail.
3913 */
3914 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3915 __acquires(RCU)
3916 {
3917 struct net *net = seq_file_net(seq);
3918 loff_t off;
3919 struct net_device *dev;
3920
3921 rcu_read_lock();
3922 if (!*pos)
3923 return SEQ_START_TOKEN;
3924
3925 off = 1;
3926 for_each_netdev_rcu(net, dev)
3927 if (off++ == *pos)
3928 return dev;
3929
3930 return NULL;
3931 }
3932
3933 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3934 {
3935 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3936 first_net_device(seq_file_net(seq)) :
3937 next_net_device((struct net_device *)v);
3938
3939 ++*pos;
3940 return rcu_dereference(dev);
3941 }
3942
3943 void dev_seq_stop(struct seq_file *seq, void *v)
3944 __releases(RCU)
3945 {
3946 rcu_read_unlock();
3947 }
3948
3949 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3950 {
3951 struct rtnl_link_stats64 temp;
3952 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3953
3954 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3955 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3956 dev->name, stats->rx_bytes, stats->rx_packets,
3957 stats->rx_errors,
3958 stats->rx_dropped + stats->rx_missed_errors,
3959 stats->rx_fifo_errors,
3960 stats->rx_length_errors + stats->rx_over_errors +
3961 stats->rx_crc_errors + stats->rx_frame_errors,
3962 stats->rx_compressed, stats->multicast,
3963 stats->tx_bytes, stats->tx_packets,
3964 stats->tx_errors, stats->tx_dropped,
3965 stats->tx_fifo_errors, stats->collisions,
3966 stats->tx_carrier_errors +
3967 stats->tx_aborted_errors +
3968 stats->tx_window_errors +
3969 stats->tx_heartbeat_errors,
3970 stats->tx_compressed);
3971 }
3972
3973 /*
3974 * Called from the PROCfs module. This now uses the new arbitrary sized
3975 * /proc/net interface to create /proc/net/dev
3976 */
3977 static int dev_seq_show(struct seq_file *seq, void *v)
3978 {
3979 if (v == SEQ_START_TOKEN)
3980 seq_puts(seq, "Inter-| Receive "
3981 " | Transmit\n"
3982 " face |bytes packets errs drop fifo frame "
3983 "compressed multicast|bytes packets errs "
3984 "drop fifo colls carrier compressed\n");
3985 else
3986 dev_seq_printf_stats(seq, v);
3987 return 0;
3988 }
3989
3990 static struct softnet_data *softnet_get_online(loff_t *pos)
3991 {
3992 struct softnet_data *sd = NULL;
3993
3994 while (*pos < nr_cpu_ids)
3995 if (cpu_online(*pos)) {
3996 sd = &per_cpu(softnet_data, *pos);
3997 break;
3998 } else
3999 ++*pos;
4000 return sd;
4001 }
4002
4003 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4004 {
4005 return softnet_get_online(pos);
4006 }
4007
4008 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4009 {
4010 ++*pos;
4011 return softnet_get_online(pos);
4012 }
4013
4014 static void softnet_seq_stop(struct seq_file *seq, void *v)
4015 {
4016 }
4017
4018 static int softnet_seq_show(struct seq_file *seq, void *v)
4019 {
4020 struct softnet_data *sd = v;
4021
4022 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4023 sd->processed, sd->dropped, sd->time_squeeze, 0,
4024 0, 0, 0, 0, /* was fastroute */
4025 sd->cpu_collision, sd->received_rps);
4026 return 0;
4027 }
4028
4029 static const struct seq_operations dev_seq_ops = {
4030 .start = dev_seq_start,
4031 .next = dev_seq_next,
4032 .stop = dev_seq_stop,
4033 .show = dev_seq_show,
4034 };
4035
4036 static int dev_seq_open(struct inode *inode, struct file *file)
4037 {
4038 return seq_open_net(inode, file, &dev_seq_ops,
4039 sizeof(struct seq_net_private));
4040 }
4041
4042 static const struct file_operations dev_seq_fops = {
4043 .owner = THIS_MODULE,
4044 .open = dev_seq_open,
4045 .read = seq_read,
4046 .llseek = seq_lseek,
4047 .release = seq_release_net,
4048 };
4049
4050 static const struct seq_operations softnet_seq_ops = {
4051 .start = softnet_seq_start,
4052 .next = softnet_seq_next,
4053 .stop = softnet_seq_stop,
4054 .show = softnet_seq_show,
4055 };
4056
4057 static int softnet_seq_open(struct inode *inode, struct file *file)
4058 {
4059 return seq_open(file, &softnet_seq_ops);
4060 }
4061
4062 static const struct file_operations softnet_seq_fops = {
4063 .owner = THIS_MODULE,
4064 .open = softnet_seq_open,
4065 .read = seq_read,
4066 .llseek = seq_lseek,
4067 .release = seq_release,
4068 };
4069
4070 static void *ptype_get_idx(loff_t pos)
4071 {
4072 struct packet_type *pt = NULL;
4073 loff_t i = 0;
4074 int t;
4075
4076 list_for_each_entry_rcu(pt, &ptype_all, list) {
4077 if (i == pos)
4078 return pt;
4079 ++i;
4080 }
4081
4082 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4083 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4084 if (i == pos)
4085 return pt;
4086 ++i;
4087 }
4088 }
4089 return NULL;
4090 }
4091
4092 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4093 __acquires(RCU)
4094 {
4095 rcu_read_lock();
4096 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4097 }
4098
4099 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4100 {
4101 struct packet_type *pt;
4102 struct list_head *nxt;
4103 int hash;
4104
4105 ++*pos;
4106 if (v == SEQ_START_TOKEN)
4107 return ptype_get_idx(0);
4108
4109 pt = v;
4110 nxt = pt->list.next;
4111 if (pt->type == htons(ETH_P_ALL)) {
4112 if (nxt != &ptype_all)
4113 goto found;
4114 hash = 0;
4115 nxt = ptype_base[0].next;
4116 } else
4117 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4118
4119 while (nxt == &ptype_base[hash]) {
4120 if (++hash >= PTYPE_HASH_SIZE)
4121 return NULL;
4122 nxt = ptype_base[hash].next;
4123 }
4124 found:
4125 return list_entry(nxt, struct packet_type, list);
4126 }
4127
4128 static void ptype_seq_stop(struct seq_file *seq, void *v)
4129 __releases(RCU)
4130 {
4131 rcu_read_unlock();
4132 }
4133
4134 static int ptype_seq_show(struct seq_file *seq, void *v)
4135 {
4136 struct packet_type *pt = v;
4137
4138 if (v == SEQ_START_TOKEN)
4139 seq_puts(seq, "Type Device Function\n");
4140 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4141 if (pt->type == htons(ETH_P_ALL))
4142 seq_puts(seq, "ALL ");
4143 else
4144 seq_printf(seq, "%04x", ntohs(pt->type));
4145
4146 seq_printf(seq, " %-8s %pF\n",
4147 pt->dev ? pt->dev->name : "", pt->func);
4148 }
4149
4150 return 0;
4151 }
4152
4153 static const struct seq_operations ptype_seq_ops = {
4154 .start = ptype_seq_start,
4155 .next = ptype_seq_next,
4156 .stop = ptype_seq_stop,
4157 .show = ptype_seq_show,
4158 };
4159
4160 static int ptype_seq_open(struct inode *inode, struct file *file)
4161 {
4162 return seq_open_net(inode, file, &ptype_seq_ops,
4163 sizeof(struct seq_net_private));
4164 }
4165
4166 static const struct file_operations ptype_seq_fops = {
4167 .owner = THIS_MODULE,
4168 .open = ptype_seq_open,
4169 .read = seq_read,
4170 .llseek = seq_lseek,
4171 .release = seq_release_net,
4172 };
4173
4174
4175 static int __net_init dev_proc_net_init(struct net *net)
4176 {
4177 int rc = -ENOMEM;
4178
4179 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4180 goto out;
4181 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4182 goto out_dev;
4183 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4184 goto out_softnet;
4185
4186 if (wext_proc_init(net))
4187 goto out_ptype;
4188 rc = 0;
4189 out:
4190 return rc;
4191 out_ptype:
4192 proc_net_remove(net, "ptype");
4193 out_softnet:
4194 proc_net_remove(net, "softnet_stat");
4195 out_dev:
4196 proc_net_remove(net, "dev");
4197 goto out;
4198 }
4199
4200 static void __net_exit dev_proc_net_exit(struct net *net)
4201 {
4202 wext_proc_exit(net);
4203
4204 proc_net_remove(net, "ptype");
4205 proc_net_remove(net, "softnet_stat");
4206 proc_net_remove(net, "dev");
4207 }
4208
4209 static struct pernet_operations __net_initdata dev_proc_ops = {
4210 .init = dev_proc_net_init,
4211 .exit = dev_proc_net_exit,
4212 };
4213
4214 static int __init dev_proc_init(void)
4215 {
4216 return register_pernet_subsys(&dev_proc_ops);
4217 }
4218 #else
4219 #define dev_proc_init() 0
4220 #endif /* CONFIG_PROC_FS */
4221
4222
4223 /**
4224 * netdev_set_master - set up master/slave pair
4225 * @slave: slave device
4226 * @master: new master device
4227 *
4228 * Changes the master device of the slave. Pass %NULL to break the
4229 * bonding. The caller must hold the RTNL semaphore. On a failure
4230 * a negative errno code is returned. On success the reference counts
4231 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4232 * function returns zero.
4233 */
4234 int netdev_set_master(struct net_device *slave, struct net_device *master)
4235 {
4236 struct net_device *old = slave->master;
4237
4238 ASSERT_RTNL();
4239
4240 if (master) {
4241 if (old)
4242 return -EBUSY;
4243 dev_hold(master);
4244 }
4245
4246 slave->master = master;
4247
4248 if (old) {
4249 synchronize_net();
4250 dev_put(old);
4251 }
4252 if (master)
4253 slave->flags |= IFF_SLAVE;
4254 else
4255 slave->flags &= ~IFF_SLAVE;
4256
4257 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4258 return 0;
4259 }
4260 EXPORT_SYMBOL(netdev_set_master);
4261
4262 static void dev_change_rx_flags(struct net_device *dev, int flags)
4263 {
4264 const struct net_device_ops *ops = dev->netdev_ops;
4265
4266 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4267 ops->ndo_change_rx_flags(dev, flags);
4268 }
4269
4270 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4271 {
4272 unsigned short old_flags = dev->flags;
4273 uid_t uid;
4274 gid_t gid;
4275
4276 ASSERT_RTNL();
4277
4278 dev->flags |= IFF_PROMISC;
4279 dev->promiscuity += inc;
4280 if (dev->promiscuity == 0) {
4281 /*
4282 * Avoid overflow.
4283 * If inc causes overflow, untouch promisc and return error.
4284 */
4285 if (inc < 0)
4286 dev->flags &= ~IFF_PROMISC;
4287 else {
4288 dev->promiscuity -= inc;
4289 printk(KERN_WARNING "%s: promiscuity touches roof, "
4290 "set promiscuity failed, promiscuity feature "
4291 "of device might be broken.\n", dev->name);
4292 return -EOVERFLOW;
4293 }
4294 }
4295 if (dev->flags != old_flags) {
4296 printk(KERN_INFO "device %s %s promiscuous mode\n",
4297 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4298 "left");
4299 if (audit_enabled) {
4300 current_uid_gid(&uid, &gid);
4301 audit_log(current->audit_context, GFP_ATOMIC,
4302 AUDIT_ANOM_PROMISCUOUS,
4303 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4304 dev->name, (dev->flags & IFF_PROMISC),
4305 (old_flags & IFF_PROMISC),
4306 audit_get_loginuid(current),
4307 uid, gid,
4308 audit_get_sessionid(current));
4309 }
4310
4311 dev_change_rx_flags(dev, IFF_PROMISC);
4312 }
4313 return 0;
4314 }
4315
4316 /**
4317 * dev_set_promiscuity - update promiscuity count on a device
4318 * @dev: device
4319 * @inc: modifier
4320 *
4321 * Add or remove promiscuity from a device. While the count in the device
4322 * remains above zero the interface remains promiscuous. Once it hits zero
4323 * the device reverts back to normal filtering operation. A negative inc
4324 * value is used to drop promiscuity on the device.
4325 * Return 0 if successful or a negative errno code on error.
4326 */
4327 int dev_set_promiscuity(struct net_device *dev, int inc)
4328 {
4329 unsigned short old_flags = dev->flags;
4330 int err;
4331
4332 err = __dev_set_promiscuity(dev, inc);
4333 if (err < 0)
4334 return err;
4335 if (dev->flags != old_flags)
4336 dev_set_rx_mode(dev);
4337 return err;
4338 }
4339 EXPORT_SYMBOL(dev_set_promiscuity);
4340
4341 /**
4342 * dev_set_allmulti - update allmulti count on a device
4343 * @dev: device
4344 * @inc: modifier
4345 *
4346 * Add or remove reception of all multicast frames to a device. While the
4347 * count in the device remains above zero the interface remains listening
4348 * to all interfaces. Once it hits zero the device reverts back to normal
4349 * filtering operation. A negative @inc value is used to drop the counter
4350 * when releasing a resource needing all multicasts.
4351 * Return 0 if successful or a negative errno code on error.
4352 */
4353
4354 int dev_set_allmulti(struct net_device *dev, int inc)
4355 {
4356 unsigned short old_flags = dev->flags;
4357
4358 ASSERT_RTNL();
4359
4360 dev->flags |= IFF_ALLMULTI;
4361 dev->allmulti += inc;
4362 if (dev->allmulti == 0) {
4363 /*
4364 * Avoid overflow.
4365 * If inc causes overflow, untouch allmulti and return error.
4366 */
4367 if (inc < 0)
4368 dev->flags &= ~IFF_ALLMULTI;
4369 else {
4370 dev->allmulti -= inc;
4371 printk(KERN_WARNING "%s: allmulti touches roof, "
4372 "set allmulti failed, allmulti feature of "
4373 "device might be broken.\n", dev->name);
4374 return -EOVERFLOW;
4375 }
4376 }
4377 if (dev->flags ^ old_flags) {
4378 dev_change_rx_flags(dev, IFF_ALLMULTI);
4379 dev_set_rx_mode(dev);
4380 }
4381 return 0;
4382 }
4383 EXPORT_SYMBOL(dev_set_allmulti);
4384
4385 /*
4386 * Upload unicast and multicast address lists to device and
4387 * configure RX filtering. When the device doesn't support unicast
4388 * filtering it is put in promiscuous mode while unicast addresses
4389 * are present.
4390 */
4391 void __dev_set_rx_mode(struct net_device *dev)
4392 {
4393 const struct net_device_ops *ops = dev->netdev_ops;
4394
4395 /* dev_open will call this function so the list will stay sane. */
4396 if (!(dev->flags&IFF_UP))
4397 return;
4398
4399 if (!netif_device_present(dev))
4400 return;
4401
4402 if (ops->ndo_set_rx_mode)
4403 ops->ndo_set_rx_mode(dev);
4404 else {
4405 /* Unicast addresses changes may only happen under the rtnl,
4406 * therefore calling __dev_set_promiscuity here is safe.
4407 */
4408 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4409 __dev_set_promiscuity(dev, 1);
4410 dev->uc_promisc = 1;
4411 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4412 __dev_set_promiscuity(dev, -1);
4413 dev->uc_promisc = 0;
4414 }
4415
4416 if (ops->ndo_set_multicast_list)
4417 ops->ndo_set_multicast_list(dev);
4418 }
4419 }
4420
4421 void dev_set_rx_mode(struct net_device *dev)
4422 {
4423 netif_addr_lock_bh(dev);
4424 __dev_set_rx_mode(dev);
4425 netif_addr_unlock_bh(dev);
4426 }
4427
4428 /**
4429 * dev_get_flags - get flags reported to userspace
4430 * @dev: device
4431 *
4432 * Get the combination of flag bits exported through APIs to userspace.
4433 */
4434 unsigned dev_get_flags(const struct net_device *dev)
4435 {
4436 unsigned flags;
4437
4438 flags = (dev->flags & ~(IFF_PROMISC |
4439 IFF_ALLMULTI |
4440 IFF_RUNNING |
4441 IFF_LOWER_UP |
4442 IFF_DORMANT)) |
4443 (dev->gflags & (IFF_PROMISC |
4444 IFF_ALLMULTI));
4445
4446 if (netif_running(dev)) {
4447 if (netif_oper_up(dev))
4448 flags |= IFF_RUNNING;
4449 if (netif_carrier_ok(dev))
4450 flags |= IFF_LOWER_UP;
4451 if (netif_dormant(dev))
4452 flags |= IFF_DORMANT;
4453 }
4454
4455 return flags;
4456 }
4457 EXPORT_SYMBOL(dev_get_flags);
4458
4459 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4460 {
4461 int old_flags = dev->flags;
4462 int ret;
4463
4464 ASSERT_RTNL();
4465
4466 /*
4467 * Set the flags on our device.
4468 */
4469
4470 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4471 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4472 IFF_AUTOMEDIA)) |
4473 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4474 IFF_ALLMULTI));
4475
4476 /*
4477 * Load in the correct multicast list now the flags have changed.
4478 */
4479
4480 if ((old_flags ^ flags) & IFF_MULTICAST)
4481 dev_change_rx_flags(dev, IFF_MULTICAST);
4482
4483 dev_set_rx_mode(dev);
4484
4485 /*
4486 * Have we downed the interface. We handle IFF_UP ourselves
4487 * according to user attempts to set it, rather than blindly
4488 * setting it.
4489 */
4490
4491 ret = 0;
4492 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4493 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4494
4495 if (!ret)
4496 dev_set_rx_mode(dev);
4497 }
4498
4499 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4500 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4501
4502 dev->gflags ^= IFF_PROMISC;
4503 dev_set_promiscuity(dev, inc);
4504 }
4505
4506 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4507 is important. Some (broken) drivers set IFF_PROMISC, when
4508 IFF_ALLMULTI is requested not asking us and not reporting.
4509 */
4510 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4511 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4512
4513 dev->gflags ^= IFF_ALLMULTI;
4514 dev_set_allmulti(dev, inc);
4515 }
4516
4517 return ret;
4518 }
4519
4520 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4521 {
4522 unsigned int changes = dev->flags ^ old_flags;
4523
4524 if (changes & IFF_UP) {
4525 if (dev->flags & IFF_UP)
4526 call_netdevice_notifiers(NETDEV_UP, dev);
4527 else
4528 call_netdevice_notifiers(NETDEV_DOWN, dev);
4529 }
4530
4531 if (dev->flags & IFF_UP &&
4532 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4533 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4534 }
4535
4536 /**
4537 * dev_change_flags - change device settings
4538 * @dev: device
4539 * @flags: device state flags
4540 *
4541 * Change settings on device based state flags. The flags are
4542 * in the userspace exported format.
4543 */
4544 int dev_change_flags(struct net_device *dev, unsigned flags)
4545 {
4546 int ret, changes;
4547 int old_flags = dev->flags;
4548
4549 ret = __dev_change_flags(dev, flags);
4550 if (ret < 0)
4551 return ret;
4552
4553 changes = old_flags ^ dev->flags;
4554 if (changes)
4555 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4556
4557 __dev_notify_flags(dev, old_flags);
4558 return ret;
4559 }
4560 EXPORT_SYMBOL(dev_change_flags);
4561
4562 /**
4563 * dev_set_mtu - Change maximum transfer unit
4564 * @dev: device
4565 * @new_mtu: new transfer unit
4566 *
4567 * Change the maximum transfer size of the network device.
4568 */
4569 int dev_set_mtu(struct net_device *dev, int new_mtu)
4570 {
4571 const struct net_device_ops *ops = dev->netdev_ops;
4572 int err;
4573
4574 if (new_mtu == dev->mtu)
4575 return 0;
4576
4577 /* MTU must be positive. */
4578 if (new_mtu < 0)
4579 return -EINVAL;
4580
4581 if (!netif_device_present(dev))
4582 return -ENODEV;
4583
4584 err = 0;
4585 if (ops->ndo_change_mtu)
4586 err = ops->ndo_change_mtu(dev, new_mtu);
4587 else
4588 dev->mtu = new_mtu;
4589
4590 if (!err && dev->flags & IFF_UP)
4591 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4592 return err;
4593 }
4594 EXPORT_SYMBOL(dev_set_mtu);
4595
4596 /**
4597 * dev_set_mac_address - Change Media Access Control Address
4598 * @dev: device
4599 * @sa: new address
4600 *
4601 * Change the hardware (MAC) address of the device
4602 */
4603 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4604 {
4605 const struct net_device_ops *ops = dev->netdev_ops;
4606 int err;
4607
4608 if (!ops->ndo_set_mac_address)
4609 return -EOPNOTSUPP;
4610 if (sa->sa_family != dev->type)
4611 return -EINVAL;
4612 if (!netif_device_present(dev))
4613 return -ENODEV;
4614 err = ops->ndo_set_mac_address(dev, sa);
4615 if (!err)
4616 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4617 return err;
4618 }
4619 EXPORT_SYMBOL(dev_set_mac_address);
4620
4621 /*
4622 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4623 */
4624 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4625 {
4626 int err;
4627 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4628
4629 if (!dev)
4630 return -ENODEV;
4631
4632 switch (cmd) {
4633 case SIOCGIFFLAGS: /* Get interface flags */
4634 ifr->ifr_flags = (short) dev_get_flags(dev);
4635 return 0;
4636
4637 case SIOCGIFMETRIC: /* Get the metric on the interface
4638 (currently unused) */
4639 ifr->ifr_metric = 0;
4640 return 0;
4641
4642 case SIOCGIFMTU: /* Get the MTU of a device */
4643 ifr->ifr_mtu = dev->mtu;
4644 return 0;
4645
4646 case SIOCGIFHWADDR:
4647 if (!dev->addr_len)
4648 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4649 else
4650 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4651 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4652 ifr->ifr_hwaddr.sa_family = dev->type;
4653 return 0;
4654
4655 case SIOCGIFSLAVE:
4656 err = -EINVAL;
4657 break;
4658
4659 case SIOCGIFMAP:
4660 ifr->ifr_map.mem_start = dev->mem_start;
4661 ifr->ifr_map.mem_end = dev->mem_end;
4662 ifr->ifr_map.base_addr = dev->base_addr;
4663 ifr->ifr_map.irq = dev->irq;
4664 ifr->ifr_map.dma = dev->dma;
4665 ifr->ifr_map.port = dev->if_port;
4666 return 0;
4667
4668 case SIOCGIFINDEX:
4669 ifr->ifr_ifindex = dev->ifindex;
4670 return 0;
4671
4672 case SIOCGIFTXQLEN:
4673 ifr->ifr_qlen = dev->tx_queue_len;
4674 return 0;
4675
4676 default:
4677 /* dev_ioctl() should ensure this case
4678 * is never reached
4679 */
4680 WARN_ON(1);
4681 err = -EINVAL;
4682 break;
4683
4684 }
4685 return err;
4686 }
4687
4688 /*
4689 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4690 */
4691 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4692 {
4693 int err;
4694 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4695 const struct net_device_ops *ops;
4696
4697 if (!dev)
4698 return -ENODEV;
4699
4700 ops = dev->netdev_ops;
4701
4702 switch (cmd) {
4703 case SIOCSIFFLAGS: /* Set interface flags */
4704 return dev_change_flags(dev, ifr->ifr_flags);
4705
4706 case SIOCSIFMETRIC: /* Set the metric on the interface
4707 (currently unused) */
4708 return -EOPNOTSUPP;
4709
4710 case SIOCSIFMTU: /* Set the MTU of a device */
4711 return dev_set_mtu(dev, ifr->ifr_mtu);
4712
4713 case SIOCSIFHWADDR:
4714 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4715
4716 case SIOCSIFHWBROADCAST:
4717 if (ifr->ifr_hwaddr.sa_family != dev->type)
4718 return -EINVAL;
4719 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4720 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4721 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4722 return 0;
4723
4724 case SIOCSIFMAP:
4725 if (ops->ndo_set_config) {
4726 if (!netif_device_present(dev))
4727 return -ENODEV;
4728 return ops->ndo_set_config(dev, &ifr->ifr_map);
4729 }
4730 return -EOPNOTSUPP;
4731
4732 case SIOCADDMULTI:
4733 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4734 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4735 return -EINVAL;
4736 if (!netif_device_present(dev))
4737 return -ENODEV;
4738 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4739
4740 case SIOCDELMULTI:
4741 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4742 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4743 return -EINVAL;
4744 if (!netif_device_present(dev))
4745 return -ENODEV;
4746 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4747
4748 case SIOCSIFTXQLEN:
4749 if (ifr->ifr_qlen < 0)
4750 return -EINVAL;
4751 dev->tx_queue_len = ifr->ifr_qlen;
4752 return 0;
4753
4754 case SIOCSIFNAME:
4755 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4756 return dev_change_name(dev, ifr->ifr_newname);
4757
4758 /*
4759 * Unknown or private ioctl
4760 */
4761 default:
4762 if ((cmd >= SIOCDEVPRIVATE &&
4763 cmd <= SIOCDEVPRIVATE + 15) ||
4764 cmd == SIOCBONDENSLAVE ||
4765 cmd == SIOCBONDRELEASE ||
4766 cmd == SIOCBONDSETHWADDR ||
4767 cmd == SIOCBONDSLAVEINFOQUERY ||
4768 cmd == SIOCBONDINFOQUERY ||
4769 cmd == SIOCBONDCHANGEACTIVE ||
4770 cmd == SIOCGMIIPHY ||
4771 cmd == SIOCGMIIREG ||
4772 cmd == SIOCSMIIREG ||
4773 cmd == SIOCBRADDIF ||
4774 cmd == SIOCBRDELIF ||
4775 cmd == SIOCSHWTSTAMP ||
4776 cmd == SIOCWANDEV) {
4777 err = -EOPNOTSUPP;
4778 if (ops->ndo_do_ioctl) {
4779 if (netif_device_present(dev))
4780 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4781 else
4782 err = -ENODEV;
4783 }
4784 } else
4785 err = -EINVAL;
4786
4787 }
4788 return err;
4789 }
4790
4791 /*
4792 * This function handles all "interface"-type I/O control requests. The actual
4793 * 'doing' part of this is dev_ifsioc above.
4794 */
4795
4796 /**
4797 * dev_ioctl - network device ioctl
4798 * @net: the applicable net namespace
4799 * @cmd: command to issue
4800 * @arg: pointer to a struct ifreq in user space
4801 *
4802 * Issue ioctl functions to devices. This is normally called by the
4803 * user space syscall interfaces but can sometimes be useful for
4804 * other purposes. The return value is the return from the syscall if
4805 * positive or a negative errno code on error.
4806 */
4807
4808 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4809 {
4810 struct ifreq ifr;
4811 int ret;
4812 char *colon;
4813
4814 /* One special case: SIOCGIFCONF takes ifconf argument
4815 and requires shared lock, because it sleeps writing
4816 to user space.
4817 */
4818
4819 if (cmd == SIOCGIFCONF) {
4820 rtnl_lock();
4821 ret = dev_ifconf(net, (char __user *) arg);
4822 rtnl_unlock();
4823 return ret;
4824 }
4825 if (cmd == SIOCGIFNAME)
4826 return dev_ifname(net, (struct ifreq __user *)arg);
4827
4828 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4829 return -EFAULT;
4830
4831 ifr.ifr_name[IFNAMSIZ-1] = 0;
4832
4833 colon = strchr(ifr.ifr_name, ':');
4834 if (colon)
4835 *colon = 0;
4836
4837 /*
4838 * See which interface the caller is talking about.
4839 */
4840
4841 switch (cmd) {
4842 /*
4843 * These ioctl calls:
4844 * - can be done by all.
4845 * - atomic and do not require locking.
4846 * - return a value
4847 */
4848 case SIOCGIFFLAGS:
4849 case SIOCGIFMETRIC:
4850 case SIOCGIFMTU:
4851 case SIOCGIFHWADDR:
4852 case SIOCGIFSLAVE:
4853 case SIOCGIFMAP:
4854 case SIOCGIFINDEX:
4855 case SIOCGIFTXQLEN:
4856 dev_load(net, ifr.ifr_name);
4857 rcu_read_lock();
4858 ret = dev_ifsioc_locked(net, &ifr, cmd);
4859 rcu_read_unlock();
4860 if (!ret) {
4861 if (colon)
4862 *colon = ':';
4863 if (copy_to_user(arg, &ifr,
4864 sizeof(struct ifreq)))
4865 ret = -EFAULT;
4866 }
4867 return ret;
4868
4869 case SIOCETHTOOL:
4870 dev_load(net, ifr.ifr_name);
4871 rtnl_lock();
4872 ret = dev_ethtool(net, &ifr);
4873 rtnl_unlock();
4874 if (!ret) {
4875 if (colon)
4876 *colon = ':';
4877 if (copy_to_user(arg, &ifr,
4878 sizeof(struct ifreq)))
4879 ret = -EFAULT;
4880 }
4881 return ret;
4882
4883 /*
4884 * These ioctl calls:
4885 * - require superuser power.
4886 * - require strict serialization.
4887 * - return a value
4888 */
4889 case SIOCGMIIPHY:
4890 case SIOCGMIIREG:
4891 case SIOCSIFNAME:
4892 if (!capable(CAP_NET_ADMIN))
4893 return -EPERM;
4894 dev_load(net, ifr.ifr_name);
4895 rtnl_lock();
4896 ret = dev_ifsioc(net, &ifr, cmd);
4897 rtnl_unlock();
4898 if (!ret) {
4899 if (colon)
4900 *colon = ':';
4901 if (copy_to_user(arg, &ifr,
4902 sizeof(struct ifreq)))
4903 ret = -EFAULT;
4904 }
4905 return ret;
4906
4907 /*
4908 * These ioctl calls:
4909 * - require superuser power.
4910 * - require strict serialization.
4911 * - do not return a value
4912 */
4913 case SIOCSIFFLAGS:
4914 case SIOCSIFMETRIC:
4915 case SIOCSIFMTU:
4916 case SIOCSIFMAP:
4917 case SIOCSIFHWADDR:
4918 case SIOCSIFSLAVE:
4919 case SIOCADDMULTI:
4920 case SIOCDELMULTI:
4921 case SIOCSIFHWBROADCAST:
4922 case SIOCSIFTXQLEN:
4923 case SIOCSMIIREG:
4924 case SIOCBONDENSLAVE:
4925 case SIOCBONDRELEASE:
4926 case SIOCBONDSETHWADDR:
4927 case SIOCBONDCHANGEACTIVE:
4928 case SIOCBRADDIF:
4929 case SIOCBRDELIF:
4930 case SIOCSHWTSTAMP:
4931 if (!capable(CAP_NET_ADMIN))
4932 return -EPERM;
4933 /* fall through */
4934 case SIOCBONDSLAVEINFOQUERY:
4935 case SIOCBONDINFOQUERY:
4936 dev_load(net, ifr.ifr_name);
4937 rtnl_lock();
4938 ret = dev_ifsioc(net, &ifr, cmd);
4939 rtnl_unlock();
4940 return ret;
4941
4942 case SIOCGIFMEM:
4943 /* Get the per device memory space. We can add this but
4944 * currently do not support it */
4945 case SIOCSIFMEM:
4946 /* Set the per device memory buffer space.
4947 * Not applicable in our case */
4948 case SIOCSIFLINK:
4949 return -EINVAL;
4950
4951 /*
4952 * Unknown or private ioctl.
4953 */
4954 default:
4955 if (cmd == SIOCWANDEV ||
4956 (cmd >= SIOCDEVPRIVATE &&
4957 cmd <= SIOCDEVPRIVATE + 15)) {
4958 dev_load(net, ifr.ifr_name);
4959 rtnl_lock();
4960 ret = dev_ifsioc(net, &ifr, cmd);
4961 rtnl_unlock();
4962 if (!ret && copy_to_user(arg, &ifr,
4963 sizeof(struct ifreq)))
4964 ret = -EFAULT;
4965 return ret;
4966 }
4967 /* Take care of Wireless Extensions */
4968 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4969 return wext_handle_ioctl(net, &ifr, cmd, arg);
4970 return -EINVAL;
4971 }
4972 }
4973
4974
4975 /**
4976 * dev_new_index - allocate an ifindex
4977 * @net: the applicable net namespace
4978 *
4979 * Returns a suitable unique value for a new device interface
4980 * number. The caller must hold the rtnl semaphore or the
4981 * dev_base_lock to be sure it remains unique.
4982 */
4983 static int dev_new_index(struct net *net)
4984 {
4985 static int ifindex;
4986 for (;;) {
4987 if (++ifindex <= 0)
4988 ifindex = 1;
4989 if (!__dev_get_by_index(net, ifindex))
4990 return ifindex;
4991 }
4992 }
4993
4994 /* Delayed registration/unregisteration */
4995 static LIST_HEAD(net_todo_list);
4996
4997 static void net_set_todo(struct net_device *dev)
4998 {
4999 list_add_tail(&dev->todo_list, &net_todo_list);
5000 }
5001
5002 static void rollback_registered_many(struct list_head *head)
5003 {
5004 struct net_device *dev, *tmp;
5005
5006 BUG_ON(dev_boot_phase);
5007 ASSERT_RTNL();
5008
5009 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5010 /* Some devices call without registering
5011 * for initialization unwind. Remove those
5012 * devices and proceed with the remaining.
5013 */
5014 if (dev->reg_state == NETREG_UNINITIALIZED) {
5015 pr_debug("unregister_netdevice: device %s/%p never "
5016 "was registered\n", dev->name, dev);
5017
5018 WARN_ON(1);
5019 list_del(&dev->unreg_list);
5020 continue;
5021 }
5022
5023 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5024 }
5025
5026 /* If device is running, close it first. */
5027 dev_close_many(head);
5028
5029 list_for_each_entry(dev, head, unreg_list) {
5030 /* And unlink it from device chain. */
5031 unlist_netdevice(dev);
5032
5033 dev->reg_state = NETREG_UNREGISTERING;
5034 }
5035
5036 synchronize_net();
5037
5038 list_for_each_entry(dev, head, unreg_list) {
5039 /* Shutdown queueing discipline. */
5040 dev_shutdown(dev);
5041
5042
5043 /* Notify protocols, that we are about to destroy
5044 this device. They should clean all the things.
5045 */
5046 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5047
5048 if (!dev->rtnl_link_ops ||
5049 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5050 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5051
5052 /*
5053 * Flush the unicast and multicast chains
5054 */
5055 dev_uc_flush(dev);
5056 dev_mc_flush(dev);
5057
5058 if (dev->netdev_ops->ndo_uninit)
5059 dev->netdev_ops->ndo_uninit(dev);
5060
5061 /* Notifier chain MUST detach us from master device. */
5062 WARN_ON(dev->master);
5063
5064 /* Remove entries from kobject tree */
5065 netdev_unregister_kobject(dev);
5066 }
5067
5068 /* Process any work delayed until the end of the batch */
5069 dev = list_first_entry(head, struct net_device, unreg_list);
5070 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5071
5072 rcu_barrier();
5073
5074 list_for_each_entry(dev, head, unreg_list)
5075 dev_put(dev);
5076 }
5077
5078 static void rollback_registered(struct net_device *dev)
5079 {
5080 LIST_HEAD(single);
5081
5082 list_add(&dev->unreg_list, &single);
5083 rollback_registered_many(&single);
5084 }
5085
5086 unsigned long netdev_fix_features(unsigned long features, const char *name)
5087 {
5088 /* Fix illegal SG+CSUM combinations. */
5089 if ((features & NETIF_F_SG) &&
5090 !(features & NETIF_F_ALL_CSUM)) {
5091 if (name)
5092 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5093 "checksum feature.\n", name);
5094 features &= ~NETIF_F_SG;
5095 }
5096
5097 /* TSO requires that SG is present as well. */
5098 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5099 if (name)
5100 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5101 "SG feature.\n", name);
5102 features &= ~NETIF_F_TSO;
5103 }
5104
5105 if (features & NETIF_F_UFO) {
5106 /* maybe split UFO into V4 and V6? */
5107 if (!((features & NETIF_F_GEN_CSUM) ||
5108 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5109 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5110 if (name)
5111 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5112 "since no checksum offload features.\n",
5113 name);
5114 features &= ~NETIF_F_UFO;
5115 }
5116
5117 if (!(features & NETIF_F_SG)) {
5118 if (name)
5119 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5120 "since no NETIF_F_SG feature.\n", name);
5121 features &= ~NETIF_F_UFO;
5122 }
5123 }
5124
5125 return features;
5126 }
5127 EXPORT_SYMBOL(netdev_fix_features);
5128
5129 /**
5130 * netif_stacked_transfer_operstate - transfer operstate
5131 * @rootdev: the root or lower level device to transfer state from
5132 * @dev: the device to transfer operstate to
5133 *
5134 * Transfer operational state from root to device. This is normally
5135 * called when a stacking relationship exists between the root
5136 * device and the device(a leaf device).
5137 */
5138 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5139 struct net_device *dev)
5140 {
5141 if (rootdev->operstate == IF_OPER_DORMANT)
5142 netif_dormant_on(dev);
5143 else
5144 netif_dormant_off(dev);
5145
5146 if (netif_carrier_ok(rootdev)) {
5147 if (!netif_carrier_ok(dev))
5148 netif_carrier_on(dev);
5149 } else {
5150 if (netif_carrier_ok(dev))
5151 netif_carrier_off(dev);
5152 }
5153 }
5154 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5155
5156 #ifdef CONFIG_RPS
5157 static int netif_alloc_rx_queues(struct net_device *dev)
5158 {
5159 unsigned int i, count = dev->num_rx_queues;
5160 struct netdev_rx_queue *rx;
5161
5162 BUG_ON(count < 1);
5163
5164 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5165 if (!rx) {
5166 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5167 return -ENOMEM;
5168 }
5169 dev->_rx = rx;
5170
5171 for (i = 0; i < count; i++)
5172 rx[i].dev = dev;
5173 return 0;
5174 }
5175 #endif
5176
5177 static void netdev_init_one_queue(struct net_device *dev,
5178 struct netdev_queue *queue, void *_unused)
5179 {
5180 /* Initialize queue lock */
5181 spin_lock_init(&queue->_xmit_lock);
5182 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5183 queue->xmit_lock_owner = -1;
5184 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5185 queue->dev = dev;
5186 }
5187
5188 static int netif_alloc_netdev_queues(struct net_device *dev)
5189 {
5190 unsigned int count = dev->num_tx_queues;
5191 struct netdev_queue *tx;
5192
5193 BUG_ON(count < 1);
5194
5195 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5196 if (!tx) {
5197 pr_err("netdev: Unable to allocate %u tx queues.\n",
5198 count);
5199 return -ENOMEM;
5200 }
5201 dev->_tx = tx;
5202
5203 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5204 spin_lock_init(&dev->tx_global_lock);
5205
5206 return 0;
5207 }
5208
5209 /**
5210 * register_netdevice - register a network device
5211 * @dev: device to register
5212 *
5213 * Take a completed network device structure and add it to the kernel
5214 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5215 * chain. 0 is returned on success. A negative errno code is returned
5216 * on a failure to set up the device, or if the name is a duplicate.
5217 *
5218 * Callers must hold the rtnl semaphore. You may want
5219 * register_netdev() instead of this.
5220 *
5221 * BUGS:
5222 * The locking appears insufficient to guarantee two parallel registers
5223 * will not get the same name.
5224 */
5225
5226 int register_netdevice(struct net_device *dev)
5227 {
5228 int ret;
5229 struct net *net = dev_net(dev);
5230
5231 BUG_ON(dev_boot_phase);
5232 ASSERT_RTNL();
5233
5234 might_sleep();
5235
5236 /* When net_device's are persistent, this will be fatal. */
5237 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5238 BUG_ON(!net);
5239
5240 spin_lock_init(&dev->addr_list_lock);
5241 netdev_set_addr_lockdep_class(dev);
5242
5243 dev->iflink = -1;
5244
5245 /* Init, if this function is available */
5246 if (dev->netdev_ops->ndo_init) {
5247 ret = dev->netdev_ops->ndo_init(dev);
5248 if (ret) {
5249 if (ret > 0)
5250 ret = -EIO;
5251 goto out;
5252 }
5253 }
5254
5255 ret = dev_get_valid_name(dev, dev->name, 0);
5256 if (ret)
5257 goto err_uninit;
5258
5259 dev->ifindex = dev_new_index(net);
5260 if (dev->iflink == -1)
5261 dev->iflink = dev->ifindex;
5262
5263 /* Fix illegal checksum combinations */
5264 if ((dev->features & NETIF_F_HW_CSUM) &&
5265 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5266 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5267 dev->name);
5268 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5269 }
5270
5271 if ((dev->features & NETIF_F_NO_CSUM) &&
5272 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5273 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5274 dev->name);
5275 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5276 }
5277
5278 dev->features = netdev_fix_features(dev->features, dev->name);
5279
5280 /* Enable software GSO if SG is supported. */
5281 if (dev->features & NETIF_F_SG)
5282 dev->features |= NETIF_F_GSO;
5283
5284 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5285 * vlan_dev_init() will do the dev->features check, so these features
5286 * are enabled only if supported by underlying device.
5287 */
5288 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5289
5290 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5291 ret = notifier_to_errno(ret);
5292 if (ret)
5293 goto err_uninit;
5294
5295 ret = netdev_register_kobject(dev);
5296 if (ret)
5297 goto err_uninit;
5298 dev->reg_state = NETREG_REGISTERED;
5299
5300 /*
5301 * Default initial state at registry is that the
5302 * device is present.
5303 */
5304
5305 set_bit(__LINK_STATE_PRESENT, &dev->state);
5306
5307 dev_init_scheduler(dev);
5308 dev_hold(dev);
5309 list_netdevice(dev);
5310
5311 /* Notify protocols, that a new device appeared. */
5312 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5313 ret = notifier_to_errno(ret);
5314 if (ret) {
5315 rollback_registered(dev);
5316 dev->reg_state = NETREG_UNREGISTERED;
5317 }
5318 /*
5319 * Prevent userspace races by waiting until the network
5320 * device is fully setup before sending notifications.
5321 */
5322 if (!dev->rtnl_link_ops ||
5323 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5324 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5325
5326 out:
5327 return ret;
5328
5329 err_uninit:
5330 if (dev->netdev_ops->ndo_uninit)
5331 dev->netdev_ops->ndo_uninit(dev);
5332 goto out;
5333 }
5334 EXPORT_SYMBOL(register_netdevice);
5335
5336 /**
5337 * init_dummy_netdev - init a dummy network device for NAPI
5338 * @dev: device to init
5339 *
5340 * This takes a network device structure and initialize the minimum
5341 * amount of fields so it can be used to schedule NAPI polls without
5342 * registering a full blown interface. This is to be used by drivers
5343 * that need to tie several hardware interfaces to a single NAPI
5344 * poll scheduler due to HW limitations.
5345 */
5346 int init_dummy_netdev(struct net_device *dev)
5347 {
5348 /* Clear everything. Note we don't initialize spinlocks
5349 * are they aren't supposed to be taken by any of the
5350 * NAPI code and this dummy netdev is supposed to be
5351 * only ever used for NAPI polls
5352 */
5353 memset(dev, 0, sizeof(struct net_device));
5354
5355 /* make sure we BUG if trying to hit standard
5356 * register/unregister code path
5357 */
5358 dev->reg_state = NETREG_DUMMY;
5359
5360 /* NAPI wants this */
5361 INIT_LIST_HEAD(&dev->napi_list);
5362
5363 /* a dummy interface is started by default */
5364 set_bit(__LINK_STATE_PRESENT, &dev->state);
5365 set_bit(__LINK_STATE_START, &dev->state);
5366
5367 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5368 * because users of this 'device' dont need to change
5369 * its refcount.
5370 */
5371
5372 return 0;
5373 }
5374 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5375
5376
5377 /**
5378 * register_netdev - register a network device
5379 * @dev: device to register
5380 *
5381 * Take a completed network device structure and add it to the kernel
5382 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5383 * chain. 0 is returned on success. A negative errno code is returned
5384 * on a failure to set up the device, or if the name is a duplicate.
5385 *
5386 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5387 * and expands the device name if you passed a format string to
5388 * alloc_netdev.
5389 */
5390 int register_netdev(struct net_device *dev)
5391 {
5392 int err;
5393
5394 rtnl_lock();
5395
5396 /*
5397 * If the name is a format string the caller wants us to do a
5398 * name allocation.
5399 */
5400 if (strchr(dev->name, '%')) {
5401 err = dev_alloc_name(dev, dev->name);
5402 if (err < 0)
5403 goto out;
5404 }
5405
5406 err = register_netdevice(dev);
5407 out:
5408 rtnl_unlock();
5409 return err;
5410 }
5411 EXPORT_SYMBOL(register_netdev);
5412
5413 int netdev_refcnt_read(const struct net_device *dev)
5414 {
5415 int i, refcnt = 0;
5416
5417 for_each_possible_cpu(i)
5418 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5419 return refcnt;
5420 }
5421 EXPORT_SYMBOL(netdev_refcnt_read);
5422
5423 /*
5424 * netdev_wait_allrefs - wait until all references are gone.
5425 *
5426 * This is called when unregistering network devices.
5427 *
5428 * Any protocol or device that holds a reference should register
5429 * for netdevice notification, and cleanup and put back the
5430 * reference if they receive an UNREGISTER event.
5431 * We can get stuck here if buggy protocols don't correctly
5432 * call dev_put.
5433 */
5434 static void netdev_wait_allrefs(struct net_device *dev)
5435 {
5436 unsigned long rebroadcast_time, warning_time;
5437 int refcnt;
5438
5439 linkwatch_forget_dev(dev);
5440
5441 rebroadcast_time = warning_time = jiffies;
5442 refcnt = netdev_refcnt_read(dev);
5443
5444 while (refcnt != 0) {
5445 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5446 rtnl_lock();
5447
5448 /* Rebroadcast unregister notification */
5449 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5450 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5451 * should have already handle it the first time */
5452
5453 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5454 &dev->state)) {
5455 /* We must not have linkwatch events
5456 * pending on unregister. If this
5457 * happens, we simply run the queue
5458 * unscheduled, resulting in a noop
5459 * for this device.
5460 */
5461 linkwatch_run_queue();
5462 }
5463
5464 __rtnl_unlock();
5465
5466 rebroadcast_time = jiffies;
5467 }
5468
5469 msleep(250);
5470
5471 refcnt = netdev_refcnt_read(dev);
5472
5473 if (time_after(jiffies, warning_time + 10 * HZ)) {
5474 printk(KERN_EMERG "unregister_netdevice: "
5475 "waiting for %s to become free. Usage "
5476 "count = %d\n",
5477 dev->name, refcnt);
5478 warning_time = jiffies;
5479 }
5480 }
5481 }
5482
5483 /* The sequence is:
5484 *
5485 * rtnl_lock();
5486 * ...
5487 * register_netdevice(x1);
5488 * register_netdevice(x2);
5489 * ...
5490 * unregister_netdevice(y1);
5491 * unregister_netdevice(y2);
5492 * ...
5493 * rtnl_unlock();
5494 * free_netdev(y1);
5495 * free_netdev(y2);
5496 *
5497 * We are invoked by rtnl_unlock().
5498 * This allows us to deal with problems:
5499 * 1) We can delete sysfs objects which invoke hotplug
5500 * without deadlocking with linkwatch via keventd.
5501 * 2) Since we run with the RTNL semaphore not held, we can sleep
5502 * safely in order to wait for the netdev refcnt to drop to zero.
5503 *
5504 * We must not return until all unregister events added during
5505 * the interval the lock was held have been completed.
5506 */
5507 void netdev_run_todo(void)
5508 {
5509 struct list_head list;
5510
5511 /* Snapshot list, allow later requests */
5512 list_replace_init(&net_todo_list, &list);
5513
5514 __rtnl_unlock();
5515
5516 while (!list_empty(&list)) {
5517 struct net_device *dev
5518 = list_first_entry(&list, struct net_device, todo_list);
5519 list_del(&dev->todo_list);
5520
5521 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5522 printk(KERN_ERR "network todo '%s' but state %d\n",
5523 dev->name, dev->reg_state);
5524 dump_stack();
5525 continue;
5526 }
5527
5528 dev->reg_state = NETREG_UNREGISTERED;
5529
5530 on_each_cpu(flush_backlog, dev, 1);
5531
5532 netdev_wait_allrefs(dev);
5533
5534 /* paranoia */
5535 BUG_ON(netdev_refcnt_read(dev));
5536 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5537 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5538 WARN_ON(dev->dn_ptr);
5539
5540 if (dev->destructor)
5541 dev->destructor(dev);
5542
5543 /* Free network device */
5544 kobject_put(&dev->dev.kobj);
5545 }
5546 }
5547
5548 /**
5549 * dev_txq_stats_fold - fold tx_queues stats
5550 * @dev: device to get statistics from
5551 * @stats: struct rtnl_link_stats64 to hold results
5552 */
5553 void dev_txq_stats_fold(const struct net_device *dev,
5554 struct rtnl_link_stats64 *stats)
5555 {
5556 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5557 unsigned int i;
5558 struct netdev_queue *txq;
5559
5560 for (i = 0; i < dev->num_tx_queues; i++) {
5561 txq = netdev_get_tx_queue(dev, i);
5562 spin_lock_bh(&txq->_xmit_lock);
5563 tx_bytes += txq->tx_bytes;
5564 tx_packets += txq->tx_packets;
5565 tx_dropped += txq->tx_dropped;
5566 spin_unlock_bh(&txq->_xmit_lock);
5567 }
5568 if (tx_bytes || tx_packets || tx_dropped) {
5569 stats->tx_bytes = tx_bytes;
5570 stats->tx_packets = tx_packets;
5571 stats->tx_dropped = tx_dropped;
5572 }
5573 }
5574 EXPORT_SYMBOL(dev_txq_stats_fold);
5575
5576 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5577 * fields in the same order, with only the type differing.
5578 */
5579 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5580 const struct net_device_stats *netdev_stats)
5581 {
5582 #if BITS_PER_LONG == 64
5583 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5584 memcpy(stats64, netdev_stats, sizeof(*stats64));
5585 #else
5586 size_t i, n = sizeof(*stats64) / sizeof(u64);
5587 const unsigned long *src = (const unsigned long *)netdev_stats;
5588 u64 *dst = (u64 *)stats64;
5589
5590 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5591 sizeof(*stats64) / sizeof(u64));
5592 for (i = 0; i < n; i++)
5593 dst[i] = src[i];
5594 #endif
5595 }
5596
5597 /**
5598 * dev_get_stats - get network device statistics
5599 * @dev: device to get statistics from
5600 * @storage: place to store stats
5601 *
5602 * Get network statistics from device. Return @storage.
5603 * The device driver may provide its own method by setting
5604 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5605 * otherwise the internal statistics structure is used.
5606 */
5607 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5608 struct rtnl_link_stats64 *storage)
5609 {
5610 const struct net_device_ops *ops = dev->netdev_ops;
5611
5612 if (ops->ndo_get_stats64) {
5613 memset(storage, 0, sizeof(*storage));
5614 ops->ndo_get_stats64(dev, storage);
5615 } else if (ops->ndo_get_stats) {
5616 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5617 } else {
5618 netdev_stats_to_stats64(storage, &dev->stats);
5619 dev_txq_stats_fold(dev, storage);
5620 }
5621 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5622 return storage;
5623 }
5624 EXPORT_SYMBOL(dev_get_stats);
5625
5626 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5627 {
5628 struct netdev_queue *queue = dev_ingress_queue(dev);
5629
5630 #ifdef CONFIG_NET_CLS_ACT
5631 if (queue)
5632 return queue;
5633 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5634 if (!queue)
5635 return NULL;
5636 netdev_init_one_queue(dev, queue, NULL);
5637 queue->qdisc = &noop_qdisc;
5638 queue->qdisc_sleeping = &noop_qdisc;
5639 rcu_assign_pointer(dev->ingress_queue, queue);
5640 #endif
5641 return queue;
5642 }
5643
5644 /**
5645 * alloc_netdev_mq - allocate network device
5646 * @sizeof_priv: size of private data to allocate space for
5647 * @name: device name format string
5648 * @setup: callback to initialize device
5649 * @queue_count: the number of subqueues to allocate
5650 *
5651 * Allocates a struct net_device with private data area for driver use
5652 * and performs basic initialization. Also allocates subquue structs
5653 * for each queue on the device at the end of the netdevice.
5654 */
5655 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5656 void (*setup)(struct net_device *), unsigned int queue_count)
5657 {
5658 struct net_device *dev;
5659 size_t alloc_size;
5660 struct net_device *p;
5661
5662 BUG_ON(strlen(name) >= sizeof(dev->name));
5663
5664 if (queue_count < 1) {
5665 pr_err("alloc_netdev: Unable to allocate device "
5666 "with zero queues.\n");
5667 return NULL;
5668 }
5669
5670 alloc_size = sizeof(struct net_device);
5671 if (sizeof_priv) {
5672 /* ensure 32-byte alignment of private area */
5673 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5674 alloc_size += sizeof_priv;
5675 }
5676 /* ensure 32-byte alignment of whole construct */
5677 alloc_size += NETDEV_ALIGN - 1;
5678
5679 p = kzalloc(alloc_size, GFP_KERNEL);
5680 if (!p) {
5681 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5682 return NULL;
5683 }
5684
5685 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5686 dev->padded = (char *)dev - (char *)p;
5687
5688 dev->pcpu_refcnt = alloc_percpu(int);
5689 if (!dev->pcpu_refcnt)
5690 goto free_p;
5691
5692 if (dev_addr_init(dev))
5693 goto free_pcpu;
5694
5695 dev_mc_init(dev);
5696 dev_uc_init(dev);
5697
5698 dev_net_set(dev, &init_net);
5699
5700 dev->num_tx_queues = queue_count;
5701 dev->real_num_tx_queues = queue_count;
5702 if (netif_alloc_netdev_queues(dev))
5703 goto free_pcpu;
5704
5705 #ifdef CONFIG_RPS
5706 dev->num_rx_queues = queue_count;
5707 dev->real_num_rx_queues = queue_count;
5708 if (netif_alloc_rx_queues(dev))
5709 goto free_pcpu;
5710 #endif
5711
5712 dev->gso_max_size = GSO_MAX_SIZE;
5713
5714 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5715 dev->ethtool_ntuple_list.count = 0;
5716 INIT_LIST_HEAD(&dev->napi_list);
5717 INIT_LIST_HEAD(&dev->unreg_list);
5718 INIT_LIST_HEAD(&dev->link_watch_list);
5719 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5720 setup(dev);
5721 strcpy(dev->name, name);
5722 return dev;
5723
5724 free_pcpu:
5725 free_percpu(dev->pcpu_refcnt);
5726 kfree(dev->_tx);
5727 #ifdef CONFIG_RPS
5728 kfree(dev->_rx);
5729 #endif
5730
5731 free_p:
5732 kfree(p);
5733 return NULL;
5734 }
5735 EXPORT_SYMBOL(alloc_netdev_mq);
5736
5737 /**
5738 * free_netdev - free network device
5739 * @dev: device
5740 *
5741 * This function does the last stage of destroying an allocated device
5742 * interface. The reference to the device object is released.
5743 * If this is the last reference then it will be freed.
5744 */
5745 void free_netdev(struct net_device *dev)
5746 {
5747 struct napi_struct *p, *n;
5748
5749 release_net(dev_net(dev));
5750
5751 kfree(dev->_tx);
5752 #ifdef CONFIG_RPS
5753 kfree(dev->_rx);
5754 #endif
5755
5756 kfree(rcu_dereference_raw(dev->ingress_queue));
5757
5758 /* Flush device addresses */
5759 dev_addr_flush(dev);
5760
5761 /* Clear ethtool n-tuple list */
5762 ethtool_ntuple_flush(dev);
5763
5764 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5765 netif_napi_del(p);
5766
5767 free_percpu(dev->pcpu_refcnt);
5768 dev->pcpu_refcnt = NULL;
5769
5770 /* Compatibility with error handling in drivers */
5771 if (dev->reg_state == NETREG_UNINITIALIZED) {
5772 kfree((char *)dev - dev->padded);
5773 return;
5774 }
5775
5776 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5777 dev->reg_state = NETREG_RELEASED;
5778
5779 /* will free via device release */
5780 put_device(&dev->dev);
5781 }
5782 EXPORT_SYMBOL(free_netdev);
5783
5784 /**
5785 * synchronize_net - Synchronize with packet receive processing
5786 *
5787 * Wait for packets currently being received to be done.
5788 * Does not block later packets from starting.
5789 */
5790 void synchronize_net(void)
5791 {
5792 might_sleep();
5793 synchronize_rcu();
5794 }
5795 EXPORT_SYMBOL(synchronize_net);
5796
5797 /**
5798 * unregister_netdevice_queue - remove device from the kernel
5799 * @dev: device
5800 * @head: list
5801 *
5802 * This function shuts down a device interface and removes it
5803 * from the kernel tables.
5804 * If head not NULL, device is queued to be unregistered later.
5805 *
5806 * Callers must hold the rtnl semaphore. You may want
5807 * unregister_netdev() instead of this.
5808 */
5809
5810 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5811 {
5812 ASSERT_RTNL();
5813
5814 if (head) {
5815 list_move_tail(&dev->unreg_list, head);
5816 } else {
5817 rollback_registered(dev);
5818 /* Finish processing unregister after unlock */
5819 net_set_todo(dev);
5820 }
5821 }
5822 EXPORT_SYMBOL(unregister_netdevice_queue);
5823
5824 /**
5825 * unregister_netdevice_many - unregister many devices
5826 * @head: list of devices
5827 */
5828 void unregister_netdevice_many(struct list_head *head)
5829 {
5830 struct net_device *dev;
5831
5832 if (!list_empty(head)) {
5833 rollback_registered_many(head);
5834 list_for_each_entry(dev, head, unreg_list)
5835 net_set_todo(dev);
5836 }
5837 }
5838 EXPORT_SYMBOL(unregister_netdevice_many);
5839
5840 /**
5841 * unregister_netdev - remove device from the kernel
5842 * @dev: device
5843 *
5844 * This function shuts down a device interface and removes it
5845 * from the kernel tables.
5846 *
5847 * This is just a wrapper for unregister_netdevice that takes
5848 * the rtnl semaphore. In general you want to use this and not
5849 * unregister_netdevice.
5850 */
5851 void unregister_netdev(struct net_device *dev)
5852 {
5853 rtnl_lock();
5854 unregister_netdevice(dev);
5855 rtnl_unlock();
5856 }
5857 EXPORT_SYMBOL(unregister_netdev);
5858
5859 /**
5860 * dev_change_net_namespace - move device to different nethost namespace
5861 * @dev: device
5862 * @net: network namespace
5863 * @pat: If not NULL name pattern to try if the current device name
5864 * is already taken in the destination network namespace.
5865 *
5866 * This function shuts down a device interface and moves it
5867 * to a new network namespace. On success 0 is returned, on
5868 * a failure a netagive errno code is returned.
5869 *
5870 * Callers must hold the rtnl semaphore.
5871 */
5872
5873 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5874 {
5875 int err;
5876
5877 ASSERT_RTNL();
5878
5879 /* Don't allow namespace local devices to be moved. */
5880 err = -EINVAL;
5881 if (dev->features & NETIF_F_NETNS_LOCAL)
5882 goto out;
5883
5884 /* Ensure the device has been registrered */
5885 err = -EINVAL;
5886 if (dev->reg_state != NETREG_REGISTERED)
5887 goto out;
5888
5889 /* Get out if there is nothing todo */
5890 err = 0;
5891 if (net_eq(dev_net(dev), net))
5892 goto out;
5893
5894 /* Pick the destination device name, and ensure
5895 * we can use it in the destination network namespace.
5896 */
5897 err = -EEXIST;
5898 if (__dev_get_by_name(net, dev->name)) {
5899 /* We get here if we can't use the current device name */
5900 if (!pat)
5901 goto out;
5902 if (dev_get_valid_name(dev, pat, 1))
5903 goto out;
5904 }
5905
5906 /*
5907 * And now a mini version of register_netdevice unregister_netdevice.
5908 */
5909
5910 /* If device is running close it first. */
5911 dev_close(dev);
5912
5913 /* And unlink it from device chain */
5914 err = -ENODEV;
5915 unlist_netdevice(dev);
5916
5917 synchronize_net();
5918
5919 /* Shutdown queueing discipline. */
5920 dev_shutdown(dev);
5921
5922 /* Notify protocols, that we are about to destroy
5923 this device. They should clean all the things.
5924
5925 Note that dev->reg_state stays at NETREG_REGISTERED.
5926 This is wanted because this way 8021q and macvlan know
5927 the device is just moving and can keep their slaves up.
5928 */
5929 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5930 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5931
5932 /*
5933 * Flush the unicast and multicast chains
5934 */
5935 dev_uc_flush(dev);
5936 dev_mc_flush(dev);
5937
5938 /* Actually switch the network namespace */
5939 dev_net_set(dev, net);
5940
5941 /* If there is an ifindex conflict assign a new one */
5942 if (__dev_get_by_index(net, dev->ifindex)) {
5943 int iflink = (dev->iflink == dev->ifindex);
5944 dev->ifindex = dev_new_index(net);
5945 if (iflink)
5946 dev->iflink = dev->ifindex;
5947 }
5948
5949 /* Fixup kobjects */
5950 err = device_rename(&dev->dev, dev->name);
5951 WARN_ON(err);
5952
5953 /* Add the device back in the hashes */
5954 list_netdevice(dev);
5955
5956 /* Notify protocols, that a new device appeared. */
5957 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5958
5959 /*
5960 * Prevent userspace races by waiting until the network
5961 * device is fully setup before sending notifications.
5962 */
5963 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5964
5965 synchronize_net();
5966 err = 0;
5967 out:
5968 return err;
5969 }
5970 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5971
5972 static int dev_cpu_callback(struct notifier_block *nfb,
5973 unsigned long action,
5974 void *ocpu)
5975 {
5976 struct sk_buff **list_skb;
5977 struct sk_buff *skb;
5978 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5979 struct softnet_data *sd, *oldsd;
5980
5981 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5982 return NOTIFY_OK;
5983
5984 local_irq_disable();
5985 cpu = smp_processor_id();
5986 sd = &per_cpu(softnet_data, cpu);
5987 oldsd = &per_cpu(softnet_data, oldcpu);
5988
5989 /* Find end of our completion_queue. */
5990 list_skb = &sd->completion_queue;
5991 while (*list_skb)
5992 list_skb = &(*list_skb)->next;
5993 /* Append completion queue from offline CPU. */
5994 *list_skb = oldsd->completion_queue;
5995 oldsd->completion_queue = NULL;
5996
5997 /* Append output queue from offline CPU. */
5998 if (oldsd->output_queue) {
5999 *sd->output_queue_tailp = oldsd->output_queue;
6000 sd->output_queue_tailp = oldsd->output_queue_tailp;
6001 oldsd->output_queue = NULL;
6002 oldsd->output_queue_tailp = &oldsd->output_queue;
6003 }
6004
6005 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6006 local_irq_enable();
6007
6008 /* Process offline CPU's input_pkt_queue */
6009 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6010 netif_rx(skb);
6011 input_queue_head_incr(oldsd);
6012 }
6013 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6014 netif_rx(skb);
6015 input_queue_head_incr(oldsd);
6016 }
6017
6018 return NOTIFY_OK;
6019 }
6020
6021
6022 /**
6023 * netdev_increment_features - increment feature set by one
6024 * @all: current feature set
6025 * @one: new feature set
6026 * @mask: mask feature set
6027 *
6028 * Computes a new feature set after adding a device with feature set
6029 * @one to the master device with current feature set @all. Will not
6030 * enable anything that is off in @mask. Returns the new feature set.
6031 */
6032 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6033 unsigned long mask)
6034 {
6035 /* If device needs checksumming, downgrade to it. */
6036 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6037 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6038 else if (mask & NETIF_F_ALL_CSUM) {
6039 /* If one device supports v4/v6 checksumming, set for all. */
6040 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6041 !(all & NETIF_F_GEN_CSUM)) {
6042 all &= ~NETIF_F_ALL_CSUM;
6043 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6044 }
6045
6046 /* If one device supports hw checksumming, set for all. */
6047 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6048 all &= ~NETIF_F_ALL_CSUM;
6049 all |= NETIF_F_HW_CSUM;
6050 }
6051 }
6052
6053 one |= NETIF_F_ALL_CSUM;
6054
6055 one |= all & NETIF_F_ONE_FOR_ALL;
6056 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6057 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6058
6059 return all;
6060 }
6061 EXPORT_SYMBOL(netdev_increment_features);
6062
6063 static struct hlist_head *netdev_create_hash(void)
6064 {
6065 int i;
6066 struct hlist_head *hash;
6067
6068 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6069 if (hash != NULL)
6070 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6071 INIT_HLIST_HEAD(&hash[i]);
6072
6073 return hash;
6074 }
6075
6076 /* Initialize per network namespace state */
6077 static int __net_init netdev_init(struct net *net)
6078 {
6079 INIT_LIST_HEAD(&net->dev_base_head);
6080
6081 net->dev_name_head = netdev_create_hash();
6082 if (net->dev_name_head == NULL)
6083 goto err_name;
6084
6085 net->dev_index_head = netdev_create_hash();
6086 if (net->dev_index_head == NULL)
6087 goto err_idx;
6088
6089 return 0;
6090
6091 err_idx:
6092 kfree(net->dev_name_head);
6093 err_name:
6094 return -ENOMEM;
6095 }
6096
6097 /**
6098 * netdev_drivername - network driver for the device
6099 * @dev: network device
6100 * @buffer: buffer for resulting name
6101 * @len: size of buffer
6102 *
6103 * Determine network driver for device.
6104 */
6105 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6106 {
6107 const struct device_driver *driver;
6108 const struct device *parent;
6109
6110 if (len <= 0 || !buffer)
6111 return buffer;
6112 buffer[0] = 0;
6113
6114 parent = dev->dev.parent;
6115
6116 if (!parent)
6117 return buffer;
6118
6119 driver = parent->driver;
6120 if (driver && driver->name)
6121 strlcpy(buffer, driver->name, len);
6122 return buffer;
6123 }
6124
6125 static int __netdev_printk(const char *level, const struct net_device *dev,
6126 struct va_format *vaf)
6127 {
6128 int r;
6129
6130 if (dev && dev->dev.parent)
6131 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6132 netdev_name(dev), vaf);
6133 else if (dev)
6134 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6135 else
6136 r = printk("%s(NULL net_device): %pV", level, vaf);
6137
6138 return r;
6139 }
6140
6141 int netdev_printk(const char *level, const struct net_device *dev,
6142 const char *format, ...)
6143 {
6144 struct va_format vaf;
6145 va_list args;
6146 int r;
6147
6148 va_start(args, format);
6149
6150 vaf.fmt = format;
6151 vaf.va = &args;
6152
6153 r = __netdev_printk(level, dev, &vaf);
6154 va_end(args);
6155
6156 return r;
6157 }
6158 EXPORT_SYMBOL(netdev_printk);
6159
6160 #define define_netdev_printk_level(func, level) \
6161 int func(const struct net_device *dev, const char *fmt, ...) \
6162 { \
6163 int r; \
6164 struct va_format vaf; \
6165 va_list args; \
6166 \
6167 va_start(args, fmt); \
6168 \
6169 vaf.fmt = fmt; \
6170 vaf.va = &args; \
6171 \
6172 r = __netdev_printk(level, dev, &vaf); \
6173 va_end(args); \
6174 \
6175 return r; \
6176 } \
6177 EXPORT_SYMBOL(func);
6178
6179 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6180 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6181 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6182 define_netdev_printk_level(netdev_err, KERN_ERR);
6183 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6184 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6185 define_netdev_printk_level(netdev_info, KERN_INFO);
6186
6187 static void __net_exit netdev_exit(struct net *net)
6188 {
6189 kfree(net->dev_name_head);
6190 kfree(net->dev_index_head);
6191 }
6192
6193 static struct pernet_operations __net_initdata netdev_net_ops = {
6194 .init = netdev_init,
6195 .exit = netdev_exit,
6196 };
6197
6198 static void __net_exit default_device_exit(struct net *net)
6199 {
6200 struct net_device *dev, *aux;
6201 /*
6202 * Push all migratable network devices back to the
6203 * initial network namespace
6204 */
6205 rtnl_lock();
6206 for_each_netdev_safe(net, dev, aux) {
6207 int err;
6208 char fb_name[IFNAMSIZ];
6209
6210 /* Ignore unmoveable devices (i.e. loopback) */
6211 if (dev->features & NETIF_F_NETNS_LOCAL)
6212 continue;
6213
6214 /* Leave virtual devices for the generic cleanup */
6215 if (dev->rtnl_link_ops)
6216 continue;
6217
6218 /* Push remaing network devices to init_net */
6219 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6220 err = dev_change_net_namespace(dev, &init_net, fb_name);
6221 if (err) {
6222 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6223 __func__, dev->name, err);
6224 BUG();
6225 }
6226 }
6227 rtnl_unlock();
6228 }
6229
6230 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6231 {
6232 /* At exit all network devices most be removed from a network
6233 * namespace. Do this in the reverse order of registeration.
6234 * Do this across as many network namespaces as possible to
6235 * improve batching efficiency.
6236 */
6237 struct net_device *dev;
6238 struct net *net;
6239 LIST_HEAD(dev_kill_list);
6240
6241 rtnl_lock();
6242 list_for_each_entry(net, net_list, exit_list) {
6243 for_each_netdev_reverse(net, dev) {
6244 if (dev->rtnl_link_ops)
6245 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6246 else
6247 unregister_netdevice_queue(dev, &dev_kill_list);
6248 }
6249 }
6250 unregister_netdevice_many(&dev_kill_list);
6251 rtnl_unlock();
6252 }
6253
6254 static struct pernet_operations __net_initdata default_device_ops = {
6255 .exit = default_device_exit,
6256 .exit_batch = default_device_exit_batch,
6257 };
6258
6259 /*
6260 * Initialize the DEV module. At boot time this walks the device list and
6261 * unhooks any devices that fail to initialise (normally hardware not
6262 * present) and leaves us with a valid list of present and active devices.
6263 *
6264 */
6265
6266 /*
6267 * This is called single threaded during boot, so no need
6268 * to take the rtnl semaphore.
6269 */
6270 static int __init net_dev_init(void)
6271 {
6272 int i, rc = -ENOMEM;
6273
6274 BUG_ON(!dev_boot_phase);
6275
6276 if (dev_proc_init())
6277 goto out;
6278
6279 if (netdev_kobject_init())
6280 goto out;
6281
6282 INIT_LIST_HEAD(&ptype_all);
6283 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6284 INIT_LIST_HEAD(&ptype_base[i]);
6285
6286 if (register_pernet_subsys(&netdev_net_ops))
6287 goto out;
6288
6289 /*
6290 * Initialise the packet receive queues.
6291 */
6292
6293 for_each_possible_cpu(i) {
6294 struct softnet_data *sd = &per_cpu(softnet_data, i);
6295
6296 memset(sd, 0, sizeof(*sd));
6297 skb_queue_head_init(&sd->input_pkt_queue);
6298 skb_queue_head_init(&sd->process_queue);
6299 sd->completion_queue = NULL;
6300 INIT_LIST_HEAD(&sd->poll_list);
6301 sd->output_queue = NULL;
6302 sd->output_queue_tailp = &sd->output_queue;
6303 #ifdef CONFIG_RPS
6304 sd->csd.func = rps_trigger_softirq;
6305 sd->csd.info = sd;
6306 sd->csd.flags = 0;
6307 sd->cpu = i;
6308 #endif
6309
6310 sd->backlog.poll = process_backlog;
6311 sd->backlog.weight = weight_p;
6312 sd->backlog.gro_list = NULL;
6313 sd->backlog.gro_count = 0;
6314 }
6315
6316 dev_boot_phase = 0;
6317
6318 /* The loopback device is special if any other network devices
6319 * is present in a network namespace the loopback device must
6320 * be present. Since we now dynamically allocate and free the
6321 * loopback device ensure this invariant is maintained by
6322 * keeping the loopback device as the first device on the
6323 * list of network devices. Ensuring the loopback devices
6324 * is the first device that appears and the last network device
6325 * that disappears.
6326 */
6327 if (register_pernet_device(&loopback_net_ops))
6328 goto out;
6329
6330 if (register_pernet_device(&default_device_ops))
6331 goto out;
6332
6333 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6334 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6335
6336 hotcpu_notifier(dev_cpu_callback, 0);
6337 dst_init();
6338 dev_mcast_init();
6339 rc = 0;
6340 out:
6341 return rc;
6342 }
6343
6344 subsys_initcall(net_dev_init);
6345
6346 static int __init initialize_hashrnd(void)
6347 {
6348 get_random_bytes(&hashrnd, sizeof(hashrnd));
6349 return 0;
6350 }
6351
6352 late_initcall_sync(initialize_hashrnd);
6353
This page took 0.214724 seconds and 5 git commands to generate.