net: pass info struct via netdevice notifier
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
146
147 /*
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
150 *
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152 *
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
157 *
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
161 *
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
165 */
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
168
169 seqcount_t devnet_rename_seq;
170
171 static inline void dev_base_seq_inc(struct net *net)
172 {
173 while (++net->dev_base_seq == 0);
174 }
175
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177 {
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181 }
182
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184 {
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186 }
187
188 static inline void rps_lock(struct softnet_data *sd)
189 {
190 #ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192 #endif
193 }
194
195 static inline void rps_unlock(struct softnet_data *sd)
196 {
197 #ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
200 }
201
202 /* Device list insertion */
203 static void list_netdevice(struct net_device *dev)
204 {
205 struct net *net = dev_net(dev);
206
207 ASSERT_RTNL();
208
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
215
216 dev_base_seq_inc(net);
217 }
218
219 /* Device list removal
220 * caller must respect a RCU grace period before freeing/reusing dev
221 */
222 static void unlist_netdevice(struct net_device *dev)
223 {
224 ASSERT_RTNL();
225
226 /* Unlink dev from the device chain */
227 write_lock_bh(&dev_base_lock);
228 list_del_rcu(&dev->dev_list);
229 hlist_del_rcu(&dev->name_hlist);
230 hlist_del_rcu(&dev->index_hlist);
231 write_unlock_bh(&dev_base_lock);
232
233 dev_base_seq_inc(dev_net(dev));
234 }
235
236 /*
237 * Our notifier list
238 */
239
240 static RAW_NOTIFIER_HEAD(netdev_chain);
241
242 /*
243 * Device drivers call our routines to queue packets here. We empty the
244 * queue in the local softnet handler.
245 */
246
247 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
248 EXPORT_PER_CPU_SYMBOL(softnet_data);
249
250 #ifdef CONFIG_LOCKDEP
251 /*
252 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
253 * according to dev->type
254 */
255 static const unsigned short netdev_lock_type[] =
256 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
257 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
258 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
259 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
260 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
261 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
262 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
263 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
264 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
265 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
266 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
267 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
268 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
269 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
270 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
271
272 static const char *const netdev_lock_name[] =
273 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
274 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
275 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
276 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
277 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
278 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
279 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
280 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
281 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
282 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
283 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
284 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
285 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
286 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
287 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
288
289 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
290 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
291
292 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
293 {
294 int i;
295
296 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
297 if (netdev_lock_type[i] == dev_type)
298 return i;
299 /* the last key is used by default */
300 return ARRAY_SIZE(netdev_lock_type) - 1;
301 }
302
303 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
304 unsigned short dev_type)
305 {
306 int i;
307
308 i = netdev_lock_pos(dev_type);
309 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
310 netdev_lock_name[i]);
311 }
312
313 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
314 {
315 int i;
316
317 i = netdev_lock_pos(dev->type);
318 lockdep_set_class_and_name(&dev->addr_list_lock,
319 &netdev_addr_lock_key[i],
320 netdev_lock_name[i]);
321 }
322 #else
323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 unsigned short dev_type)
325 {
326 }
327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
328 {
329 }
330 #endif
331
332 /*******************************************************************************
333
334 Protocol management and registration routines
335
336 *******************************************************************************/
337
338 /*
339 * Add a protocol ID to the list. Now that the input handler is
340 * smarter we can dispense with all the messy stuff that used to be
341 * here.
342 *
343 * BEWARE!!! Protocol handlers, mangling input packets,
344 * MUST BE last in hash buckets and checking protocol handlers
345 * MUST start from promiscuous ptype_all chain in net_bh.
346 * It is true now, do not change it.
347 * Explanation follows: if protocol handler, mangling packet, will
348 * be the first on list, it is not able to sense, that packet
349 * is cloned and should be copied-on-write, so that it will
350 * change it and subsequent readers will get broken packet.
351 * --ANK (980803)
352 */
353
354 static inline struct list_head *ptype_head(const struct packet_type *pt)
355 {
356 if (pt->type == htons(ETH_P_ALL))
357 return &ptype_all;
358 else
359 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
360 }
361
362 /**
363 * dev_add_pack - add packet handler
364 * @pt: packet type declaration
365 *
366 * Add a protocol handler to the networking stack. The passed &packet_type
367 * is linked into kernel lists and may not be freed until it has been
368 * removed from the kernel lists.
369 *
370 * This call does not sleep therefore it can not
371 * guarantee all CPU's that are in middle of receiving packets
372 * will see the new packet type (until the next received packet).
373 */
374
375 void dev_add_pack(struct packet_type *pt)
376 {
377 struct list_head *head = ptype_head(pt);
378
379 spin_lock(&ptype_lock);
380 list_add_rcu(&pt->list, head);
381 spin_unlock(&ptype_lock);
382 }
383 EXPORT_SYMBOL(dev_add_pack);
384
385 /**
386 * __dev_remove_pack - remove packet handler
387 * @pt: packet type declaration
388 *
389 * Remove a protocol handler that was previously added to the kernel
390 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
391 * from the kernel lists and can be freed or reused once this function
392 * returns.
393 *
394 * The packet type might still be in use by receivers
395 * and must not be freed until after all the CPU's have gone
396 * through a quiescent state.
397 */
398 void __dev_remove_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401 struct packet_type *pt1;
402
403 spin_lock(&ptype_lock);
404
405 list_for_each_entry(pt1, head, list) {
406 if (pt == pt1) {
407 list_del_rcu(&pt->list);
408 goto out;
409 }
410 }
411
412 pr_warn("dev_remove_pack: %p not found\n", pt);
413 out:
414 spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(__dev_remove_pack);
417
418 /**
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
429 */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 __dev_remove_pack(pt);
433
434 synchronize_net();
435 }
436 EXPORT_SYMBOL(dev_remove_pack);
437
438
439 /**
440 * dev_add_offload - register offload handlers
441 * @po: protocol offload declaration
442 *
443 * Add protocol offload handlers to the networking stack. The passed
444 * &proto_offload is linked into kernel lists and may not be freed until
445 * it has been removed from the kernel lists.
446 *
447 * This call does not sleep therefore it can not
448 * guarantee all CPU's that are in middle of receiving packets
449 * will see the new offload handlers (until the next received packet).
450 */
451 void dev_add_offload(struct packet_offload *po)
452 {
453 struct list_head *head = &offload_base;
454
455 spin_lock(&offload_lock);
456 list_add_rcu(&po->list, head);
457 spin_unlock(&offload_lock);
458 }
459 EXPORT_SYMBOL(dev_add_offload);
460
461 /**
462 * __dev_remove_offload - remove offload handler
463 * @po: packet offload declaration
464 *
465 * Remove a protocol offload handler that was previously added to the
466 * kernel offload handlers by dev_add_offload(). The passed &offload_type
467 * is removed from the kernel lists and can be freed or reused once this
468 * function returns.
469 *
470 * The packet type might still be in use by receivers
471 * and must not be freed until after all the CPU's have gone
472 * through a quiescent state.
473 */
474 void __dev_remove_offload(struct packet_offload *po)
475 {
476 struct list_head *head = &offload_base;
477 struct packet_offload *po1;
478
479 spin_lock(&offload_lock);
480
481 list_for_each_entry(po1, head, list) {
482 if (po == po1) {
483 list_del_rcu(&po->list);
484 goto out;
485 }
486 }
487
488 pr_warn("dev_remove_offload: %p not found\n", po);
489 out:
490 spin_unlock(&offload_lock);
491 }
492 EXPORT_SYMBOL(__dev_remove_offload);
493
494 /**
495 * dev_remove_offload - remove packet offload handler
496 * @po: packet offload declaration
497 *
498 * Remove a packet offload handler that was previously added to the kernel
499 * offload handlers by dev_add_offload(). The passed &offload_type is
500 * removed from the kernel lists and can be freed or reused once this
501 * function returns.
502 *
503 * This call sleeps to guarantee that no CPU is looking at the packet
504 * type after return.
505 */
506 void dev_remove_offload(struct packet_offload *po)
507 {
508 __dev_remove_offload(po);
509
510 synchronize_net();
511 }
512 EXPORT_SYMBOL(dev_remove_offload);
513
514 /******************************************************************************
515
516 Device Boot-time Settings Routines
517
518 *******************************************************************************/
519
520 /* Boot time configuration table */
521 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
522
523 /**
524 * netdev_boot_setup_add - add new setup entry
525 * @name: name of the device
526 * @map: configured settings for the device
527 *
528 * Adds new setup entry to the dev_boot_setup list. The function
529 * returns 0 on error and 1 on success. This is a generic routine to
530 * all netdevices.
531 */
532 static int netdev_boot_setup_add(char *name, struct ifmap *map)
533 {
534 struct netdev_boot_setup *s;
535 int i;
536
537 s = dev_boot_setup;
538 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
539 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
540 memset(s[i].name, 0, sizeof(s[i].name));
541 strlcpy(s[i].name, name, IFNAMSIZ);
542 memcpy(&s[i].map, map, sizeof(s[i].map));
543 break;
544 }
545 }
546
547 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
548 }
549
550 /**
551 * netdev_boot_setup_check - check boot time settings
552 * @dev: the netdevice
553 *
554 * Check boot time settings for the device.
555 * The found settings are set for the device to be used
556 * later in the device probing.
557 * Returns 0 if no settings found, 1 if they are.
558 */
559 int netdev_boot_setup_check(struct net_device *dev)
560 {
561 struct netdev_boot_setup *s = dev_boot_setup;
562 int i;
563
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
566 !strcmp(dev->name, s[i].name)) {
567 dev->irq = s[i].map.irq;
568 dev->base_addr = s[i].map.base_addr;
569 dev->mem_start = s[i].map.mem_start;
570 dev->mem_end = s[i].map.mem_end;
571 return 1;
572 }
573 }
574 return 0;
575 }
576 EXPORT_SYMBOL(netdev_boot_setup_check);
577
578
579 /**
580 * netdev_boot_base - get address from boot time settings
581 * @prefix: prefix for network device
582 * @unit: id for network device
583 *
584 * Check boot time settings for the base address of device.
585 * The found settings are set for the device to be used
586 * later in the device probing.
587 * Returns 0 if no settings found.
588 */
589 unsigned long netdev_boot_base(const char *prefix, int unit)
590 {
591 const struct netdev_boot_setup *s = dev_boot_setup;
592 char name[IFNAMSIZ];
593 int i;
594
595 sprintf(name, "%s%d", prefix, unit);
596
597 /*
598 * If device already registered then return base of 1
599 * to indicate not to probe for this interface
600 */
601 if (__dev_get_by_name(&init_net, name))
602 return 1;
603
604 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
605 if (!strcmp(name, s[i].name))
606 return s[i].map.base_addr;
607 return 0;
608 }
609
610 /*
611 * Saves at boot time configured settings for any netdevice.
612 */
613 int __init netdev_boot_setup(char *str)
614 {
615 int ints[5];
616 struct ifmap map;
617
618 str = get_options(str, ARRAY_SIZE(ints), ints);
619 if (!str || !*str)
620 return 0;
621
622 /* Save settings */
623 memset(&map, 0, sizeof(map));
624 if (ints[0] > 0)
625 map.irq = ints[1];
626 if (ints[0] > 1)
627 map.base_addr = ints[2];
628 if (ints[0] > 2)
629 map.mem_start = ints[3];
630 if (ints[0] > 3)
631 map.mem_end = ints[4];
632
633 /* Add new entry to the list */
634 return netdev_boot_setup_add(str, &map);
635 }
636
637 __setup("netdev=", netdev_boot_setup);
638
639 /*******************************************************************************
640
641 Device Interface Subroutines
642
643 *******************************************************************************/
644
645 /**
646 * __dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. Must be called under RTNL semaphore
651 * or @dev_base_lock. If the name is found a pointer to the device
652 * is returned. If the name is not found then %NULL is returned. The
653 * reference counters are not incremented so the caller must be
654 * careful with locks.
655 */
656
657 struct net_device *__dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660 struct hlist_head *head = dev_name_hash(net, name);
661
662 hlist_for_each_entry(dev, head, name_hlist)
663 if (!strncmp(dev->name, name, IFNAMSIZ))
664 return dev;
665
666 return NULL;
667 }
668 EXPORT_SYMBOL(__dev_get_by_name);
669
670 /**
671 * dev_get_by_name_rcu - find a device by its name
672 * @net: the applicable net namespace
673 * @name: name to find
674 *
675 * Find an interface by name.
676 * If the name is found a pointer to the device is returned.
677 * If the name is not found then %NULL is returned.
678 * The reference counters are not incremented so the caller must be
679 * careful with locks. The caller must hold RCU lock.
680 */
681
682 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
683 {
684 struct net_device *dev;
685 struct hlist_head *head = dev_name_hash(net, name);
686
687 hlist_for_each_entry_rcu(dev, head, name_hlist)
688 if (!strncmp(dev->name, name, IFNAMSIZ))
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(dev_get_by_name_rcu);
694
695 /**
696 * dev_get_by_name - find a device by its name
697 * @net: the applicable net namespace
698 * @name: name to find
699 *
700 * Find an interface by name. This can be called from any
701 * context and does its own locking. The returned handle has
702 * the usage count incremented and the caller must use dev_put() to
703 * release it when it is no longer needed. %NULL is returned if no
704 * matching device is found.
705 */
706
707 struct net_device *dev_get_by_name(struct net *net, const char *name)
708 {
709 struct net_device *dev;
710
711 rcu_read_lock();
712 dev = dev_get_by_name_rcu(net, name);
713 if (dev)
714 dev_hold(dev);
715 rcu_read_unlock();
716 return dev;
717 }
718 EXPORT_SYMBOL(dev_get_by_name);
719
720 /**
721 * __dev_get_by_index - find a device by its ifindex
722 * @net: the applicable net namespace
723 * @ifindex: index of device
724 *
725 * Search for an interface by index. Returns %NULL if the device
726 * is not found or a pointer to the device. The device has not
727 * had its reference counter increased so the caller must be careful
728 * about locking. The caller must hold either the RTNL semaphore
729 * or @dev_base_lock.
730 */
731
732 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735 struct hlist_head *head = dev_index_hash(net, ifindex);
736
737 hlist_for_each_entry(dev, head, index_hlist)
738 if (dev->ifindex == ifindex)
739 return dev;
740
741 return NULL;
742 }
743 EXPORT_SYMBOL(__dev_get_by_index);
744
745 /**
746 * dev_get_by_index_rcu - find a device by its ifindex
747 * @net: the applicable net namespace
748 * @ifindex: index of device
749 *
750 * Search for an interface by index. Returns %NULL if the device
751 * is not found or a pointer to the device. The device has not
752 * had its reference counter increased so the caller must be careful
753 * about locking. The caller must hold RCU lock.
754 */
755
756 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
757 {
758 struct net_device *dev;
759 struct hlist_head *head = dev_index_hash(net, ifindex);
760
761 hlist_for_each_entry_rcu(dev, head, index_hlist)
762 if (dev->ifindex == ifindex)
763 return dev;
764
765 return NULL;
766 }
767 EXPORT_SYMBOL(dev_get_by_index_rcu);
768
769
770 /**
771 * dev_get_by_index - find a device by its ifindex
772 * @net: the applicable net namespace
773 * @ifindex: index of device
774 *
775 * Search for an interface by index. Returns NULL if the device
776 * is not found or a pointer to the device. The device returned has
777 * had a reference added and the pointer is safe until the user calls
778 * dev_put to indicate they have finished with it.
779 */
780
781 struct net_device *dev_get_by_index(struct net *net, int ifindex)
782 {
783 struct net_device *dev;
784
785 rcu_read_lock();
786 dev = dev_get_by_index_rcu(net, ifindex);
787 if (dev)
788 dev_hold(dev);
789 rcu_read_unlock();
790 return dev;
791 }
792 EXPORT_SYMBOL(dev_get_by_index);
793
794 /**
795 * dev_getbyhwaddr_rcu - find a device by its hardware address
796 * @net: the applicable net namespace
797 * @type: media type of device
798 * @ha: hardware address
799 *
800 * Search for an interface by MAC address. Returns NULL if the device
801 * is not found or a pointer to the device.
802 * The caller must hold RCU or RTNL.
803 * The returned device has not had its ref count increased
804 * and the caller must therefore be careful about locking
805 *
806 */
807
808 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
809 const char *ha)
810 {
811 struct net_device *dev;
812
813 for_each_netdev_rcu(net, dev)
814 if (dev->type == type &&
815 !memcmp(dev->dev_addr, ha, dev->addr_len))
816 return dev;
817
818 return NULL;
819 }
820 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
821
822 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
823 {
824 struct net_device *dev;
825
826 ASSERT_RTNL();
827 for_each_netdev(net, dev)
828 if (dev->type == type)
829 return dev;
830
831 return NULL;
832 }
833 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
834
835 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
836 {
837 struct net_device *dev, *ret = NULL;
838
839 rcu_read_lock();
840 for_each_netdev_rcu(net, dev)
841 if (dev->type == type) {
842 dev_hold(dev);
843 ret = dev;
844 break;
845 }
846 rcu_read_unlock();
847 return ret;
848 }
849 EXPORT_SYMBOL(dev_getfirstbyhwtype);
850
851 /**
852 * dev_get_by_flags_rcu - find any device with given flags
853 * @net: the applicable net namespace
854 * @if_flags: IFF_* values
855 * @mask: bitmask of bits in if_flags to check
856 *
857 * Search for any interface with the given flags. Returns NULL if a device
858 * is not found or a pointer to the device. Must be called inside
859 * rcu_read_lock(), and result refcount is unchanged.
860 */
861
862 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
863 unsigned short mask)
864 {
865 struct net_device *dev, *ret;
866
867 ret = NULL;
868 for_each_netdev_rcu(net, dev) {
869 if (((dev->flags ^ if_flags) & mask) == 0) {
870 ret = dev;
871 break;
872 }
873 }
874 return ret;
875 }
876 EXPORT_SYMBOL(dev_get_by_flags_rcu);
877
878 /**
879 * dev_valid_name - check if name is okay for network device
880 * @name: name string
881 *
882 * Network device names need to be valid file names to
883 * to allow sysfs to work. We also disallow any kind of
884 * whitespace.
885 */
886 bool dev_valid_name(const char *name)
887 {
888 if (*name == '\0')
889 return false;
890 if (strlen(name) >= IFNAMSIZ)
891 return false;
892 if (!strcmp(name, ".") || !strcmp(name, ".."))
893 return false;
894
895 while (*name) {
896 if (*name == '/' || isspace(*name))
897 return false;
898 name++;
899 }
900 return true;
901 }
902 EXPORT_SYMBOL(dev_valid_name);
903
904 /**
905 * __dev_alloc_name - allocate a name for a device
906 * @net: network namespace to allocate the device name in
907 * @name: name format string
908 * @buf: scratch buffer and result name string
909 *
910 * Passed a format string - eg "lt%d" it will try and find a suitable
911 * id. It scans list of devices to build up a free map, then chooses
912 * the first empty slot. The caller must hold the dev_base or rtnl lock
913 * while allocating the name and adding the device in order to avoid
914 * duplicates.
915 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
916 * Returns the number of the unit assigned or a negative errno code.
917 */
918
919 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
920 {
921 int i = 0;
922 const char *p;
923 const int max_netdevices = 8*PAGE_SIZE;
924 unsigned long *inuse;
925 struct net_device *d;
926
927 p = strnchr(name, IFNAMSIZ-1, '%');
928 if (p) {
929 /*
930 * Verify the string as this thing may have come from
931 * the user. There must be either one "%d" and no other "%"
932 * characters.
933 */
934 if (p[1] != 'd' || strchr(p + 2, '%'))
935 return -EINVAL;
936
937 /* Use one page as a bit array of possible slots */
938 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
939 if (!inuse)
940 return -ENOMEM;
941
942 for_each_netdev(net, d) {
943 if (!sscanf(d->name, name, &i))
944 continue;
945 if (i < 0 || i >= max_netdevices)
946 continue;
947
948 /* avoid cases where sscanf is not exact inverse of printf */
949 snprintf(buf, IFNAMSIZ, name, i);
950 if (!strncmp(buf, d->name, IFNAMSIZ))
951 set_bit(i, inuse);
952 }
953
954 i = find_first_zero_bit(inuse, max_netdevices);
955 free_page((unsigned long) inuse);
956 }
957
958 if (buf != name)
959 snprintf(buf, IFNAMSIZ, name, i);
960 if (!__dev_get_by_name(net, buf))
961 return i;
962
963 /* It is possible to run out of possible slots
964 * when the name is long and there isn't enough space left
965 * for the digits, or if all bits are used.
966 */
967 return -ENFILE;
968 }
969
970 /**
971 * dev_alloc_name - allocate a name for a device
972 * @dev: device
973 * @name: name format string
974 *
975 * Passed a format string - eg "lt%d" it will try and find a suitable
976 * id. It scans list of devices to build up a free map, then chooses
977 * the first empty slot. The caller must hold the dev_base or rtnl lock
978 * while allocating the name and adding the device in order to avoid
979 * duplicates.
980 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
981 * Returns the number of the unit assigned or a negative errno code.
982 */
983
984 int dev_alloc_name(struct net_device *dev, const char *name)
985 {
986 char buf[IFNAMSIZ];
987 struct net *net;
988 int ret;
989
990 BUG_ON(!dev_net(dev));
991 net = dev_net(dev);
992 ret = __dev_alloc_name(net, name, buf);
993 if (ret >= 0)
994 strlcpy(dev->name, buf, IFNAMSIZ);
995 return ret;
996 }
997 EXPORT_SYMBOL(dev_alloc_name);
998
999 static int dev_alloc_name_ns(struct net *net,
1000 struct net_device *dev,
1001 const char *name)
1002 {
1003 char buf[IFNAMSIZ];
1004 int ret;
1005
1006 ret = __dev_alloc_name(net, name, buf);
1007 if (ret >= 0)
1008 strlcpy(dev->name, buf, IFNAMSIZ);
1009 return ret;
1010 }
1011
1012 static int dev_get_valid_name(struct net *net,
1013 struct net_device *dev,
1014 const char *name)
1015 {
1016 BUG_ON(!net);
1017
1018 if (!dev_valid_name(name))
1019 return -EINVAL;
1020
1021 if (strchr(name, '%'))
1022 return dev_alloc_name_ns(net, dev, name);
1023 else if (__dev_get_by_name(net, name))
1024 return -EEXIST;
1025 else if (dev->name != name)
1026 strlcpy(dev->name, name, IFNAMSIZ);
1027
1028 return 0;
1029 }
1030
1031 /**
1032 * dev_change_name - change name of a device
1033 * @dev: device
1034 * @newname: name (or format string) must be at least IFNAMSIZ
1035 *
1036 * Change name of a device, can pass format strings "eth%d".
1037 * for wildcarding.
1038 */
1039 int dev_change_name(struct net_device *dev, const char *newname)
1040 {
1041 char oldname[IFNAMSIZ];
1042 int err = 0;
1043 int ret;
1044 struct net *net;
1045
1046 ASSERT_RTNL();
1047 BUG_ON(!dev_net(dev));
1048
1049 net = dev_net(dev);
1050 if (dev->flags & IFF_UP)
1051 return -EBUSY;
1052
1053 write_seqcount_begin(&devnet_rename_seq);
1054
1055 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1056 write_seqcount_end(&devnet_rename_seq);
1057 return 0;
1058 }
1059
1060 memcpy(oldname, dev->name, IFNAMSIZ);
1061
1062 err = dev_get_valid_name(net, dev, newname);
1063 if (err < 0) {
1064 write_seqcount_end(&devnet_rename_seq);
1065 return err;
1066 }
1067
1068 rollback:
1069 ret = device_rename(&dev->dev, dev->name);
1070 if (ret) {
1071 memcpy(dev->name, oldname, IFNAMSIZ);
1072 write_seqcount_end(&devnet_rename_seq);
1073 return ret;
1074 }
1075
1076 write_seqcount_end(&devnet_rename_seq);
1077
1078 write_lock_bh(&dev_base_lock);
1079 hlist_del_rcu(&dev->name_hlist);
1080 write_unlock_bh(&dev_base_lock);
1081
1082 synchronize_rcu();
1083
1084 write_lock_bh(&dev_base_lock);
1085 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1086 write_unlock_bh(&dev_base_lock);
1087
1088 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1089 ret = notifier_to_errno(ret);
1090
1091 if (ret) {
1092 /* err >= 0 after dev_alloc_name() or stores the first errno */
1093 if (err >= 0) {
1094 err = ret;
1095 write_seqcount_begin(&devnet_rename_seq);
1096 memcpy(dev->name, oldname, IFNAMSIZ);
1097 goto rollback;
1098 } else {
1099 pr_err("%s: name change rollback failed: %d\n",
1100 dev->name, ret);
1101 }
1102 }
1103
1104 return err;
1105 }
1106
1107 /**
1108 * dev_set_alias - change ifalias of a device
1109 * @dev: device
1110 * @alias: name up to IFALIASZ
1111 * @len: limit of bytes to copy from info
1112 *
1113 * Set ifalias for a device,
1114 */
1115 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1116 {
1117 char *new_ifalias;
1118
1119 ASSERT_RTNL();
1120
1121 if (len >= IFALIASZ)
1122 return -EINVAL;
1123
1124 if (!len) {
1125 kfree(dev->ifalias);
1126 dev->ifalias = NULL;
1127 return 0;
1128 }
1129
1130 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1131 if (!new_ifalias)
1132 return -ENOMEM;
1133 dev->ifalias = new_ifalias;
1134
1135 strlcpy(dev->ifalias, alias, len+1);
1136 return len;
1137 }
1138
1139
1140 /**
1141 * netdev_features_change - device changes features
1142 * @dev: device to cause notification
1143 *
1144 * Called to indicate a device has changed features.
1145 */
1146 void netdev_features_change(struct net_device *dev)
1147 {
1148 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1149 }
1150 EXPORT_SYMBOL(netdev_features_change);
1151
1152 /**
1153 * netdev_state_change - device changes state
1154 * @dev: device to cause notification
1155 *
1156 * Called to indicate a device has changed state. This function calls
1157 * the notifier chains for netdev_chain and sends a NEWLINK message
1158 * to the routing socket.
1159 */
1160 void netdev_state_change(struct net_device *dev)
1161 {
1162 if (dev->flags & IFF_UP) {
1163 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1164 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1165 }
1166 }
1167 EXPORT_SYMBOL(netdev_state_change);
1168
1169 /**
1170 * netdev_notify_peers - notify network peers about existence of @dev
1171 * @dev: network device
1172 *
1173 * Generate traffic such that interested network peers are aware of
1174 * @dev, such as by generating a gratuitous ARP. This may be used when
1175 * a device wants to inform the rest of the network about some sort of
1176 * reconfiguration such as a failover event or virtual machine
1177 * migration.
1178 */
1179 void netdev_notify_peers(struct net_device *dev)
1180 {
1181 rtnl_lock();
1182 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1183 rtnl_unlock();
1184 }
1185 EXPORT_SYMBOL(netdev_notify_peers);
1186
1187 static int __dev_open(struct net_device *dev)
1188 {
1189 const struct net_device_ops *ops = dev->netdev_ops;
1190 int ret;
1191
1192 ASSERT_RTNL();
1193
1194 if (!netif_device_present(dev))
1195 return -ENODEV;
1196
1197 /* Block netpoll from trying to do any rx path servicing.
1198 * If we don't do this there is a chance ndo_poll_controller
1199 * or ndo_poll may be running while we open the device
1200 */
1201 netpoll_rx_disable(dev);
1202
1203 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1204 ret = notifier_to_errno(ret);
1205 if (ret)
1206 return ret;
1207
1208 set_bit(__LINK_STATE_START, &dev->state);
1209
1210 if (ops->ndo_validate_addr)
1211 ret = ops->ndo_validate_addr(dev);
1212
1213 if (!ret && ops->ndo_open)
1214 ret = ops->ndo_open(dev);
1215
1216 netpoll_rx_enable(dev);
1217
1218 if (ret)
1219 clear_bit(__LINK_STATE_START, &dev->state);
1220 else {
1221 dev->flags |= IFF_UP;
1222 net_dmaengine_get();
1223 dev_set_rx_mode(dev);
1224 dev_activate(dev);
1225 add_device_randomness(dev->dev_addr, dev->addr_len);
1226 }
1227
1228 return ret;
1229 }
1230
1231 /**
1232 * dev_open - prepare an interface for use.
1233 * @dev: device to open
1234 *
1235 * Takes a device from down to up state. The device's private open
1236 * function is invoked and then the multicast lists are loaded. Finally
1237 * the device is moved into the up state and a %NETDEV_UP message is
1238 * sent to the netdev notifier chain.
1239 *
1240 * Calling this function on an active interface is a nop. On a failure
1241 * a negative errno code is returned.
1242 */
1243 int dev_open(struct net_device *dev)
1244 {
1245 int ret;
1246
1247 if (dev->flags & IFF_UP)
1248 return 0;
1249
1250 ret = __dev_open(dev);
1251 if (ret < 0)
1252 return ret;
1253
1254 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1255 call_netdevice_notifiers(NETDEV_UP, dev);
1256
1257 return ret;
1258 }
1259 EXPORT_SYMBOL(dev_open);
1260
1261 static int __dev_close_many(struct list_head *head)
1262 {
1263 struct net_device *dev;
1264
1265 ASSERT_RTNL();
1266 might_sleep();
1267
1268 list_for_each_entry(dev, head, unreg_list) {
1269 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1270
1271 clear_bit(__LINK_STATE_START, &dev->state);
1272
1273 /* Synchronize to scheduled poll. We cannot touch poll list, it
1274 * can be even on different cpu. So just clear netif_running().
1275 *
1276 * dev->stop() will invoke napi_disable() on all of it's
1277 * napi_struct instances on this device.
1278 */
1279 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1280 }
1281
1282 dev_deactivate_many(head);
1283
1284 list_for_each_entry(dev, head, unreg_list) {
1285 const struct net_device_ops *ops = dev->netdev_ops;
1286
1287 /*
1288 * Call the device specific close. This cannot fail.
1289 * Only if device is UP
1290 *
1291 * We allow it to be called even after a DETACH hot-plug
1292 * event.
1293 */
1294 if (ops->ndo_stop)
1295 ops->ndo_stop(dev);
1296
1297 dev->flags &= ~IFF_UP;
1298 net_dmaengine_put();
1299 }
1300
1301 return 0;
1302 }
1303
1304 static int __dev_close(struct net_device *dev)
1305 {
1306 int retval;
1307 LIST_HEAD(single);
1308
1309 /* Temporarily disable netpoll until the interface is down */
1310 netpoll_rx_disable(dev);
1311
1312 list_add(&dev->unreg_list, &single);
1313 retval = __dev_close_many(&single);
1314 list_del(&single);
1315
1316 netpoll_rx_enable(dev);
1317 return retval;
1318 }
1319
1320 static int dev_close_many(struct list_head *head)
1321 {
1322 struct net_device *dev, *tmp;
1323 LIST_HEAD(tmp_list);
1324
1325 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1326 if (!(dev->flags & IFF_UP))
1327 list_move(&dev->unreg_list, &tmp_list);
1328
1329 __dev_close_many(head);
1330
1331 list_for_each_entry(dev, head, unreg_list) {
1332 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1333 call_netdevice_notifiers(NETDEV_DOWN, dev);
1334 }
1335
1336 /* rollback_registered_many needs the complete original list */
1337 list_splice(&tmp_list, head);
1338 return 0;
1339 }
1340
1341 /**
1342 * dev_close - shutdown an interface.
1343 * @dev: device to shutdown
1344 *
1345 * This function moves an active device into down state. A
1346 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1347 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1348 * chain.
1349 */
1350 int dev_close(struct net_device *dev)
1351 {
1352 if (dev->flags & IFF_UP) {
1353 LIST_HEAD(single);
1354
1355 /* Block netpoll rx while the interface is going down */
1356 netpoll_rx_disable(dev);
1357
1358 list_add(&dev->unreg_list, &single);
1359 dev_close_many(&single);
1360 list_del(&single);
1361
1362 netpoll_rx_enable(dev);
1363 }
1364 return 0;
1365 }
1366 EXPORT_SYMBOL(dev_close);
1367
1368
1369 /**
1370 * dev_disable_lro - disable Large Receive Offload on a device
1371 * @dev: device
1372 *
1373 * Disable Large Receive Offload (LRO) on a net device. Must be
1374 * called under RTNL. This is needed if received packets may be
1375 * forwarded to another interface.
1376 */
1377 void dev_disable_lro(struct net_device *dev)
1378 {
1379 /*
1380 * If we're trying to disable lro on a vlan device
1381 * use the underlying physical device instead
1382 */
1383 if (is_vlan_dev(dev))
1384 dev = vlan_dev_real_dev(dev);
1385
1386 dev->wanted_features &= ~NETIF_F_LRO;
1387 netdev_update_features(dev);
1388
1389 if (unlikely(dev->features & NETIF_F_LRO))
1390 netdev_WARN(dev, "failed to disable LRO!\n");
1391 }
1392 EXPORT_SYMBOL(dev_disable_lro);
1393
1394 static void netdev_notifier_info_init(struct netdev_notifier_info *info,
1395 struct net_device *dev)
1396 {
1397 info->dev = dev;
1398 }
1399
1400 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1401 struct net_device *dev)
1402 {
1403 struct netdev_notifier_info info;
1404
1405 netdev_notifier_info_init(&info, dev);
1406 return nb->notifier_call(nb, val, &info);
1407 }
1408
1409 static int dev_boot_phase = 1;
1410
1411 /**
1412 * register_netdevice_notifier - register a network notifier block
1413 * @nb: notifier
1414 *
1415 * Register a notifier to be called when network device events occur.
1416 * The notifier passed is linked into the kernel structures and must
1417 * not be reused until it has been unregistered. A negative errno code
1418 * is returned on a failure.
1419 *
1420 * When registered all registration and up events are replayed
1421 * to the new notifier to allow device to have a race free
1422 * view of the network device list.
1423 */
1424
1425 int register_netdevice_notifier(struct notifier_block *nb)
1426 {
1427 struct net_device *dev;
1428 struct net_device *last;
1429 struct net *net;
1430 int err;
1431
1432 rtnl_lock();
1433 err = raw_notifier_chain_register(&netdev_chain, nb);
1434 if (err)
1435 goto unlock;
1436 if (dev_boot_phase)
1437 goto unlock;
1438 for_each_net(net) {
1439 for_each_netdev(net, dev) {
1440 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1441 err = notifier_to_errno(err);
1442 if (err)
1443 goto rollback;
1444
1445 if (!(dev->flags & IFF_UP))
1446 continue;
1447
1448 call_netdevice_notifier(nb, NETDEV_UP, dev);
1449 }
1450 }
1451
1452 unlock:
1453 rtnl_unlock();
1454 return err;
1455
1456 rollback:
1457 last = dev;
1458 for_each_net(net) {
1459 for_each_netdev(net, dev) {
1460 if (dev == last)
1461 goto outroll;
1462
1463 if (dev->flags & IFF_UP) {
1464 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1465 dev);
1466 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1467 }
1468 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1469 }
1470 }
1471
1472 outroll:
1473 raw_notifier_chain_unregister(&netdev_chain, nb);
1474 goto unlock;
1475 }
1476 EXPORT_SYMBOL(register_netdevice_notifier);
1477
1478 /**
1479 * unregister_netdevice_notifier - unregister a network notifier block
1480 * @nb: notifier
1481 *
1482 * Unregister a notifier previously registered by
1483 * register_netdevice_notifier(). The notifier is unlinked into the
1484 * kernel structures and may then be reused. A negative errno code
1485 * is returned on a failure.
1486 *
1487 * After unregistering unregister and down device events are synthesized
1488 * for all devices on the device list to the removed notifier to remove
1489 * the need for special case cleanup code.
1490 */
1491
1492 int unregister_netdevice_notifier(struct notifier_block *nb)
1493 {
1494 struct net_device *dev;
1495 struct net *net;
1496 int err;
1497
1498 rtnl_lock();
1499 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1500 if (err)
1501 goto unlock;
1502
1503 for_each_net(net) {
1504 for_each_netdev(net, dev) {
1505 if (dev->flags & IFF_UP) {
1506 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1507 dev);
1508 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1509 }
1510 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1511 }
1512 }
1513 unlock:
1514 rtnl_unlock();
1515 return err;
1516 }
1517 EXPORT_SYMBOL(unregister_netdevice_notifier);
1518
1519 /**
1520 * call_netdevice_notifiers_info - call all network notifier blocks
1521 * @val: value passed unmodified to notifier function
1522 * @dev: net_device pointer passed unmodified to notifier function
1523 * @info: notifier information data
1524 *
1525 * Call all network notifier blocks. Parameters and return value
1526 * are as for raw_notifier_call_chain().
1527 */
1528
1529 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1530 struct netdev_notifier_info *info)
1531 {
1532 ASSERT_RTNL();
1533 netdev_notifier_info_init(info, dev);
1534 return raw_notifier_call_chain(&netdev_chain, val, info);
1535 }
1536 EXPORT_SYMBOL(call_netdevice_notifiers_info);
1537
1538 /**
1539 * call_netdevice_notifiers - call all network notifier blocks
1540 * @val: value passed unmodified to notifier function
1541 * @dev: net_device pointer passed unmodified to notifier function
1542 *
1543 * Call all network notifier blocks. Parameters and return value
1544 * are as for raw_notifier_call_chain().
1545 */
1546
1547 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1548 {
1549 struct netdev_notifier_info info;
1550
1551 return call_netdevice_notifiers_info(val, dev, &info);
1552 }
1553 EXPORT_SYMBOL(call_netdevice_notifiers);
1554
1555 static struct static_key netstamp_needed __read_mostly;
1556 #ifdef HAVE_JUMP_LABEL
1557 /* We are not allowed to call static_key_slow_dec() from irq context
1558 * If net_disable_timestamp() is called from irq context, defer the
1559 * static_key_slow_dec() calls.
1560 */
1561 static atomic_t netstamp_needed_deferred;
1562 #endif
1563
1564 void net_enable_timestamp(void)
1565 {
1566 #ifdef HAVE_JUMP_LABEL
1567 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1568
1569 if (deferred) {
1570 while (--deferred)
1571 static_key_slow_dec(&netstamp_needed);
1572 return;
1573 }
1574 #endif
1575 static_key_slow_inc(&netstamp_needed);
1576 }
1577 EXPORT_SYMBOL(net_enable_timestamp);
1578
1579 void net_disable_timestamp(void)
1580 {
1581 #ifdef HAVE_JUMP_LABEL
1582 if (in_interrupt()) {
1583 atomic_inc(&netstamp_needed_deferred);
1584 return;
1585 }
1586 #endif
1587 static_key_slow_dec(&netstamp_needed);
1588 }
1589 EXPORT_SYMBOL(net_disable_timestamp);
1590
1591 static inline void net_timestamp_set(struct sk_buff *skb)
1592 {
1593 skb->tstamp.tv64 = 0;
1594 if (static_key_false(&netstamp_needed))
1595 __net_timestamp(skb);
1596 }
1597
1598 #define net_timestamp_check(COND, SKB) \
1599 if (static_key_false(&netstamp_needed)) { \
1600 if ((COND) && !(SKB)->tstamp.tv64) \
1601 __net_timestamp(SKB); \
1602 } \
1603
1604 static inline bool is_skb_forwardable(struct net_device *dev,
1605 struct sk_buff *skb)
1606 {
1607 unsigned int len;
1608
1609 if (!(dev->flags & IFF_UP))
1610 return false;
1611
1612 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1613 if (skb->len <= len)
1614 return true;
1615
1616 /* if TSO is enabled, we don't care about the length as the packet
1617 * could be forwarded without being segmented before
1618 */
1619 if (skb_is_gso(skb))
1620 return true;
1621
1622 return false;
1623 }
1624
1625 /**
1626 * dev_forward_skb - loopback an skb to another netif
1627 *
1628 * @dev: destination network device
1629 * @skb: buffer to forward
1630 *
1631 * return values:
1632 * NET_RX_SUCCESS (no congestion)
1633 * NET_RX_DROP (packet was dropped, but freed)
1634 *
1635 * dev_forward_skb can be used for injecting an skb from the
1636 * start_xmit function of one device into the receive queue
1637 * of another device.
1638 *
1639 * The receiving device may be in another namespace, so
1640 * we have to clear all information in the skb that could
1641 * impact namespace isolation.
1642 */
1643 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1644 {
1645 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1646 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1647 atomic_long_inc(&dev->rx_dropped);
1648 kfree_skb(skb);
1649 return NET_RX_DROP;
1650 }
1651 }
1652
1653 skb_orphan(skb);
1654
1655 if (unlikely(!is_skb_forwardable(dev, skb))) {
1656 atomic_long_inc(&dev->rx_dropped);
1657 kfree_skb(skb);
1658 return NET_RX_DROP;
1659 }
1660 skb->skb_iif = 0;
1661 skb_dst_drop(skb);
1662 skb->tstamp.tv64 = 0;
1663 skb->pkt_type = PACKET_HOST;
1664 skb->protocol = eth_type_trans(skb, dev);
1665 skb->mark = 0;
1666 secpath_reset(skb);
1667 nf_reset(skb);
1668 nf_reset_trace(skb);
1669 return netif_rx(skb);
1670 }
1671 EXPORT_SYMBOL_GPL(dev_forward_skb);
1672
1673 static inline int deliver_skb(struct sk_buff *skb,
1674 struct packet_type *pt_prev,
1675 struct net_device *orig_dev)
1676 {
1677 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1678 return -ENOMEM;
1679 atomic_inc(&skb->users);
1680 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1681 }
1682
1683 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1684 {
1685 if (!ptype->af_packet_priv || !skb->sk)
1686 return false;
1687
1688 if (ptype->id_match)
1689 return ptype->id_match(ptype, skb->sk);
1690 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1691 return true;
1692
1693 return false;
1694 }
1695
1696 /*
1697 * Support routine. Sends outgoing frames to any network
1698 * taps currently in use.
1699 */
1700
1701 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1702 {
1703 struct packet_type *ptype;
1704 struct sk_buff *skb2 = NULL;
1705 struct packet_type *pt_prev = NULL;
1706
1707 rcu_read_lock();
1708 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1709 /* Never send packets back to the socket
1710 * they originated from - MvS (miquels@drinkel.ow.org)
1711 */
1712 if ((ptype->dev == dev || !ptype->dev) &&
1713 (!skb_loop_sk(ptype, skb))) {
1714 if (pt_prev) {
1715 deliver_skb(skb2, pt_prev, skb->dev);
1716 pt_prev = ptype;
1717 continue;
1718 }
1719
1720 skb2 = skb_clone(skb, GFP_ATOMIC);
1721 if (!skb2)
1722 break;
1723
1724 net_timestamp_set(skb2);
1725
1726 /* skb->nh should be correctly
1727 set by sender, so that the second statement is
1728 just protection against buggy protocols.
1729 */
1730 skb_reset_mac_header(skb2);
1731
1732 if (skb_network_header(skb2) < skb2->data ||
1733 skb2->network_header > skb2->tail) {
1734 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1735 ntohs(skb2->protocol),
1736 dev->name);
1737 skb_reset_network_header(skb2);
1738 }
1739
1740 skb2->transport_header = skb2->network_header;
1741 skb2->pkt_type = PACKET_OUTGOING;
1742 pt_prev = ptype;
1743 }
1744 }
1745 if (pt_prev)
1746 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1747 rcu_read_unlock();
1748 }
1749
1750 /**
1751 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1752 * @dev: Network device
1753 * @txq: number of queues available
1754 *
1755 * If real_num_tx_queues is changed the tc mappings may no longer be
1756 * valid. To resolve this verify the tc mapping remains valid and if
1757 * not NULL the mapping. With no priorities mapping to this
1758 * offset/count pair it will no longer be used. In the worst case TC0
1759 * is invalid nothing can be done so disable priority mappings. If is
1760 * expected that drivers will fix this mapping if they can before
1761 * calling netif_set_real_num_tx_queues.
1762 */
1763 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1764 {
1765 int i;
1766 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1767
1768 /* If TC0 is invalidated disable TC mapping */
1769 if (tc->offset + tc->count > txq) {
1770 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1771 dev->num_tc = 0;
1772 return;
1773 }
1774
1775 /* Invalidated prio to tc mappings set to TC0 */
1776 for (i = 1; i < TC_BITMASK + 1; i++) {
1777 int q = netdev_get_prio_tc_map(dev, i);
1778
1779 tc = &dev->tc_to_txq[q];
1780 if (tc->offset + tc->count > txq) {
1781 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1782 i, q);
1783 netdev_set_prio_tc_map(dev, i, 0);
1784 }
1785 }
1786 }
1787
1788 #ifdef CONFIG_XPS
1789 static DEFINE_MUTEX(xps_map_mutex);
1790 #define xmap_dereference(P) \
1791 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1792
1793 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1794 int cpu, u16 index)
1795 {
1796 struct xps_map *map = NULL;
1797 int pos;
1798
1799 if (dev_maps)
1800 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1801
1802 for (pos = 0; map && pos < map->len; pos++) {
1803 if (map->queues[pos] == index) {
1804 if (map->len > 1) {
1805 map->queues[pos] = map->queues[--map->len];
1806 } else {
1807 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1808 kfree_rcu(map, rcu);
1809 map = NULL;
1810 }
1811 break;
1812 }
1813 }
1814
1815 return map;
1816 }
1817
1818 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1819 {
1820 struct xps_dev_maps *dev_maps;
1821 int cpu, i;
1822 bool active = false;
1823
1824 mutex_lock(&xps_map_mutex);
1825 dev_maps = xmap_dereference(dev->xps_maps);
1826
1827 if (!dev_maps)
1828 goto out_no_maps;
1829
1830 for_each_possible_cpu(cpu) {
1831 for (i = index; i < dev->num_tx_queues; i++) {
1832 if (!remove_xps_queue(dev_maps, cpu, i))
1833 break;
1834 }
1835 if (i == dev->num_tx_queues)
1836 active = true;
1837 }
1838
1839 if (!active) {
1840 RCU_INIT_POINTER(dev->xps_maps, NULL);
1841 kfree_rcu(dev_maps, rcu);
1842 }
1843
1844 for (i = index; i < dev->num_tx_queues; i++)
1845 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1846 NUMA_NO_NODE);
1847
1848 out_no_maps:
1849 mutex_unlock(&xps_map_mutex);
1850 }
1851
1852 static struct xps_map *expand_xps_map(struct xps_map *map,
1853 int cpu, u16 index)
1854 {
1855 struct xps_map *new_map;
1856 int alloc_len = XPS_MIN_MAP_ALLOC;
1857 int i, pos;
1858
1859 for (pos = 0; map && pos < map->len; pos++) {
1860 if (map->queues[pos] != index)
1861 continue;
1862 return map;
1863 }
1864
1865 /* Need to add queue to this CPU's existing map */
1866 if (map) {
1867 if (pos < map->alloc_len)
1868 return map;
1869
1870 alloc_len = map->alloc_len * 2;
1871 }
1872
1873 /* Need to allocate new map to store queue on this CPU's map */
1874 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1875 cpu_to_node(cpu));
1876 if (!new_map)
1877 return NULL;
1878
1879 for (i = 0; i < pos; i++)
1880 new_map->queues[i] = map->queues[i];
1881 new_map->alloc_len = alloc_len;
1882 new_map->len = pos;
1883
1884 return new_map;
1885 }
1886
1887 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1888 {
1889 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1890 struct xps_map *map, *new_map;
1891 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1892 int cpu, numa_node_id = -2;
1893 bool active = false;
1894
1895 mutex_lock(&xps_map_mutex);
1896
1897 dev_maps = xmap_dereference(dev->xps_maps);
1898
1899 /* allocate memory for queue storage */
1900 for_each_online_cpu(cpu) {
1901 if (!cpumask_test_cpu(cpu, mask))
1902 continue;
1903
1904 if (!new_dev_maps)
1905 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1906 if (!new_dev_maps) {
1907 mutex_unlock(&xps_map_mutex);
1908 return -ENOMEM;
1909 }
1910
1911 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1912 NULL;
1913
1914 map = expand_xps_map(map, cpu, index);
1915 if (!map)
1916 goto error;
1917
1918 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1919 }
1920
1921 if (!new_dev_maps)
1922 goto out_no_new_maps;
1923
1924 for_each_possible_cpu(cpu) {
1925 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1926 /* add queue to CPU maps */
1927 int pos = 0;
1928
1929 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1930 while ((pos < map->len) && (map->queues[pos] != index))
1931 pos++;
1932
1933 if (pos == map->len)
1934 map->queues[map->len++] = index;
1935 #ifdef CONFIG_NUMA
1936 if (numa_node_id == -2)
1937 numa_node_id = cpu_to_node(cpu);
1938 else if (numa_node_id != cpu_to_node(cpu))
1939 numa_node_id = -1;
1940 #endif
1941 } else if (dev_maps) {
1942 /* fill in the new device map from the old device map */
1943 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1944 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1945 }
1946
1947 }
1948
1949 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1950
1951 /* Cleanup old maps */
1952 if (dev_maps) {
1953 for_each_possible_cpu(cpu) {
1954 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1955 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1956 if (map && map != new_map)
1957 kfree_rcu(map, rcu);
1958 }
1959
1960 kfree_rcu(dev_maps, rcu);
1961 }
1962
1963 dev_maps = new_dev_maps;
1964 active = true;
1965
1966 out_no_new_maps:
1967 /* update Tx queue numa node */
1968 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1969 (numa_node_id >= 0) ? numa_node_id :
1970 NUMA_NO_NODE);
1971
1972 if (!dev_maps)
1973 goto out_no_maps;
1974
1975 /* removes queue from unused CPUs */
1976 for_each_possible_cpu(cpu) {
1977 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1978 continue;
1979
1980 if (remove_xps_queue(dev_maps, cpu, index))
1981 active = true;
1982 }
1983
1984 /* free map if not active */
1985 if (!active) {
1986 RCU_INIT_POINTER(dev->xps_maps, NULL);
1987 kfree_rcu(dev_maps, rcu);
1988 }
1989
1990 out_no_maps:
1991 mutex_unlock(&xps_map_mutex);
1992
1993 return 0;
1994 error:
1995 /* remove any maps that we added */
1996 for_each_possible_cpu(cpu) {
1997 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1998 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1999 NULL;
2000 if (new_map && new_map != map)
2001 kfree(new_map);
2002 }
2003
2004 mutex_unlock(&xps_map_mutex);
2005
2006 kfree(new_dev_maps);
2007 return -ENOMEM;
2008 }
2009 EXPORT_SYMBOL(netif_set_xps_queue);
2010
2011 #endif
2012 /*
2013 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2014 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2015 */
2016 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2017 {
2018 int rc;
2019
2020 if (txq < 1 || txq > dev->num_tx_queues)
2021 return -EINVAL;
2022
2023 if (dev->reg_state == NETREG_REGISTERED ||
2024 dev->reg_state == NETREG_UNREGISTERING) {
2025 ASSERT_RTNL();
2026
2027 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2028 txq);
2029 if (rc)
2030 return rc;
2031
2032 if (dev->num_tc)
2033 netif_setup_tc(dev, txq);
2034
2035 if (txq < dev->real_num_tx_queues) {
2036 qdisc_reset_all_tx_gt(dev, txq);
2037 #ifdef CONFIG_XPS
2038 netif_reset_xps_queues_gt(dev, txq);
2039 #endif
2040 }
2041 }
2042
2043 dev->real_num_tx_queues = txq;
2044 return 0;
2045 }
2046 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2047
2048 #ifdef CONFIG_RPS
2049 /**
2050 * netif_set_real_num_rx_queues - set actual number of RX queues used
2051 * @dev: Network device
2052 * @rxq: Actual number of RX queues
2053 *
2054 * This must be called either with the rtnl_lock held or before
2055 * registration of the net device. Returns 0 on success, or a
2056 * negative error code. If called before registration, it always
2057 * succeeds.
2058 */
2059 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2060 {
2061 int rc;
2062
2063 if (rxq < 1 || rxq > dev->num_rx_queues)
2064 return -EINVAL;
2065
2066 if (dev->reg_state == NETREG_REGISTERED) {
2067 ASSERT_RTNL();
2068
2069 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2070 rxq);
2071 if (rc)
2072 return rc;
2073 }
2074
2075 dev->real_num_rx_queues = rxq;
2076 return 0;
2077 }
2078 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2079 #endif
2080
2081 /**
2082 * netif_get_num_default_rss_queues - default number of RSS queues
2083 *
2084 * This routine should set an upper limit on the number of RSS queues
2085 * used by default by multiqueue devices.
2086 */
2087 int netif_get_num_default_rss_queues(void)
2088 {
2089 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2090 }
2091 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2092
2093 static inline void __netif_reschedule(struct Qdisc *q)
2094 {
2095 struct softnet_data *sd;
2096 unsigned long flags;
2097
2098 local_irq_save(flags);
2099 sd = &__get_cpu_var(softnet_data);
2100 q->next_sched = NULL;
2101 *sd->output_queue_tailp = q;
2102 sd->output_queue_tailp = &q->next_sched;
2103 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2104 local_irq_restore(flags);
2105 }
2106
2107 void __netif_schedule(struct Qdisc *q)
2108 {
2109 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2110 __netif_reschedule(q);
2111 }
2112 EXPORT_SYMBOL(__netif_schedule);
2113
2114 void dev_kfree_skb_irq(struct sk_buff *skb)
2115 {
2116 if (atomic_dec_and_test(&skb->users)) {
2117 struct softnet_data *sd;
2118 unsigned long flags;
2119
2120 local_irq_save(flags);
2121 sd = &__get_cpu_var(softnet_data);
2122 skb->next = sd->completion_queue;
2123 sd->completion_queue = skb;
2124 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2125 local_irq_restore(flags);
2126 }
2127 }
2128 EXPORT_SYMBOL(dev_kfree_skb_irq);
2129
2130 void dev_kfree_skb_any(struct sk_buff *skb)
2131 {
2132 if (in_irq() || irqs_disabled())
2133 dev_kfree_skb_irq(skb);
2134 else
2135 dev_kfree_skb(skb);
2136 }
2137 EXPORT_SYMBOL(dev_kfree_skb_any);
2138
2139
2140 /**
2141 * netif_device_detach - mark device as removed
2142 * @dev: network device
2143 *
2144 * Mark device as removed from system and therefore no longer available.
2145 */
2146 void netif_device_detach(struct net_device *dev)
2147 {
2148 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2149 netif_running(dev)) {
2150 netif_tx_stop_all_queues(dev);
2151 }
2152 }
2153 EXPORT_SYMBOL(netif_device_detach);
2154
2155 /**
2156 * netif_device_attach - mark device as attached
2157 * @dev: network device
2158 *
2159 * Mark device as attached from system and restart if needed.
2160 */
2161 void netif_device_attach(struct net_device *dev)
2162 {
2163 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2164 netif_running(dev)) {
2165 netif_tx_wake_all_queues(dev);
2166 __netdev_watchdog_up(dev);
2167 }
2168 }
2169 EXPORT_SYMBOL(netif_device_attach);
2170
2171 static void skb_warn_bad_offload(const struct sk_buff *skb)
2172 {
2173 static const netdev_features_t null_features = 0;
2174 struct net_device *dev = skb->dev;
2175 const char *driver = "";
2176
2177 if (!net_ratelimit())
2178 return;
2179
2180 if (dev && dev->dev.parent)
2181 driver = dev_driver_string(dev->dev.parent);
2182
2183 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2184 "gso_type=%d ip_summed=%d\n",
2185 driver, dev ? &dev->features : &null_features,
2186 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2187 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2188 skb_shinfo(skb)->gso_type, skb->ip_summed);
2189 }
2190
2191 /*
2192 * Invalidate hardware checksum when packet is to be mangled, and
2193 * complete checksum manually on outgoing path.
2194 */
2195 int skb_checksum_help(struct sk_buff *skb)
2196 {
2197 __wsum csum;
2198 int ret = 0, offset;
2199
2200 if (skb->ip_summed == CHECKSUM_COMPLETE)
2201 goto out_set_summed;
2202
2203 if (unlikely(skb_shinfo(skb)->gso_size)) {
2204 skb_warn_bad_offload(skb);
2205 return -EINVAL;
2206 }
2207
2208 /* Before computing a checksum, we should make sure no frag could
2209 * be modified by an external entity : checksum could be wrong.
2210 */
2211 if (skb_has_shared_frag(skb)) {
2212 ret = __skb_linearize(skb);
2213 if (ret)
2214 goto out;
2215 }
2216
2217 offset = skb_checksum_start_offset(skb);
2218 BUG_ON(offset >= skb_headlen(skb));
2219 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2220
2221 offset += skb->csum_offset;
2222 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2223
2224 if (skb_cloned(skb) &&
2225 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2226 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2227 if (ret)
2228 goto out;
2229 }
2230
2231 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2232 out_set_summed:
2233 skb->ip_summed = CHECKSUM_NONE;
2234 out:
2235 return ret;
2236 }
2237 EXPORT_SYMBOL(skb_checksum_help);
2238
2239 __be16 skb_network_protocol(struct sk_buff *skb)
2240 {
2241 __be16 type = skb->protocol;
2242 int vlan_depth = ETH_HLEN;
2243
2244 /* Tunnel gso handlers can set protocol to ethernet. */
2245 if (type == htons(ETH_P_TEB)) {
2246 struct ethhdr *eth;
2247
2248 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2249 return 0;
2250
2251 eth = (struct ethhdr *)skb_mac_header(skb);
2252 type = eth->h_proto;
2253 }
2254
2255 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2256 struct vlan_hdr *vh;
2257
2258 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2259 return 0;
2260
2261 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2262 type = vh->h_vlan_encapsulated_proto;
2263 vlan_depth += VLAN_HLEN;
2264 }
2265
2266 return type;
2267 }
2268
2269 /**
2270 * skb_mac_gso_segment - mac layer segmentation handler.
2271 * @skb: buffer to segment
2272 * @features: features for the output path (see dev->features)
2273 */
2274 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2275 netdev_features_t features)
2276 {
2277 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2278 struct packet_offload *ptype;
2279 __be16 type = skb_network_protocol(skb);
2280
2281 if (unlikely(!type))
2282 return ERR_PTR(-EINVAL);
2283
2284 __skb_pull(skb, skb->mac_len);
2285
2286 rcu_read_lock();
2287 list_for_each_entry_rcu(ptype, &offload_base, list) {
2288 if (ptype->type == type && ptype->callbacks.gso_segment) {
2289 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2290 int err;
2291
2292 err = ptype->callbacks.gso_send_check(skb);
2293 segs = ERR_PTR(err);
2294 if (err || skb_gso_ok(skb, features))
2295 break;
2296 __skb_push(skb, (skb->data -
2297 skb_network_header(skb)));
2298 }
2299 segs = ptype->callbacks.gso_segment(skb, features);
2300 break;
2301 }
2302 }
2303 rcu_read_unlock();
2304
2305 __skb_push(skb, skb->data - skb_mac_header(skb));
2306
2307 return segs;
2308 }
2309 EXPORT_SYMBOL(skb_mac_gso_segment);
2310
2311
2312 /* openvswitch calls this on rx path, so we need a different check.
2313 */
2314 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2315 {
2316 if (tx_path)
2317 return skb->ip_summed != CHECKSUM_PARTIAL;
2318 else
2319 return skb->ip_summed == CHECKSUM_NONE;
2320 }
2321
2322 /**
2323 * __skb_gso_segment - Perform segmentation on skb.
2324 * @skb: buffer to segment
2325 * @features: features for the output path (see dev->features)
2326 * @tx_path: whether it is called in TX path
2327 *
2328 * This function segments the given skb and returns a list of segments.
2329 *
2330 * It may return NULL if the skb requires no segmentation. This is
2331 * only possible when GSO is used for verifying header integrity.
2332 */
2333 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2334 netdev_features_t features, bool tx_path)
2335 {
2336 if (unlikely(skb_needs_check(skb, tx_path))) {
2337 int err;
2338
2339 skb_warn_bad_offload(skb);
2340
2341 if (skb_header_cloned(skb) &&
2342 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2343 return ERR_PTR(err);
2344 }
2345
2346 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2347 skb_reset_mac_header(skb);
2348 skb_reset_mac_len(skb);
2349
2350 return skb_mac_gso_segment(skb, features);
2351 }
2352 EXPORT_SYMBOL(__skb_gso_segment);
2353
2354 /* Take action when hardware reception checksum errors are detected. */
2355 #ifdef CONFIG_BUG
2356 void netdev_rx_csum_fault(struct net_device *dev)
2357 {
2358 if (net_ratelimit()) {
2359 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2360 dump_stack();
2361 }
2362 }
2363 EXPORT_SYMBOL(netdev_rx_csum_fault);
2364 #endif
2365
2366 /* Actually, we should eliminate this check as soon as we know, that:
2367 * 1. IOMMU is present and allows to map all the memory.
2368 * 2. No high memory really exists on this machine.
2369 */
2370
2371 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2372 {
2373 #ifdef CONFIG_HIGHMEM
2374 int i;
2375 if (!(dev->features & NETIF_F_HIGHDMA)) {
2376 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2377 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2378 if (PageHighMem(skb_frag_page(frag)))
2379 return 1;
2380 }
2381 }
2382
2383 if (PCI_DMA_BUS_IS_PHYS) {
2384 struct device *pdev = dev->dev.parent;
2385
2386 if (!pdev)
2387 return 0;
2388 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2389 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2390 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2391 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2392 return 1;
2393 }
2394 }
2395 #endif
2396 return 0;
2397 }
2398
2399 struct dev_gso_cb {
2400 void (*destructor)(struct sk_buff *skb);
2401 };
2402
2403 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2404
2405 static void dev_gso_skb_destructor(struct sk_buff *skb)
2406 {
2407 struct dev_gso_cb *cb;
2408
2409 do {
2410 struct sk_buff *nskb = skb->next;
2411
2412 skb->next = nskb->next;
2413 nskb->next = NULL;
2414 kfree_skb(nskb);
2415 } while (skb->next);
2416
2417 cb = DEV_GSO_CB(skb);
2418 if (cb->destructor)
2419 cb->destructor(skb);
2420 }
2421
2422 /**
2423 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2424 * @skb: buffer to segment
2425 * @features: device features as applicable to this skb
2426 *
2427 * This function segments the given skb and stores the list of segments
2428 * in skb->next.
2429 */
2430 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2431 {
2432 struct sk_buff *segs;
2433
2434 segs = skb_gso_segment(skb, features);
2435
2436 /* Verifying header integrity only. */
2437 if (!segs)
2438 return 0;
2439
2440 if (IS_ERR(segs))
2441 return PTR_ERR(segs);
2442
2443 skb->next = segs;
2444 DEV_GSO_CB(skb)->destructor = skb->destructor;
2445 skb->destructor = dev_gso_skb_destructor;
2446
2447 return 0;
2448 }
2449
2450 static netdev_features_t harmonize_features(struct sk_buff *skb,
2451 __be16 protocol, netdev_features_t features)
2452 {
2453 if (skb->ip_summed != CHECKSUM_NONE &&
2454 !can_checksum_protocol(features, protocol)) {
2455 features &= ~NETIF_F_ALL_CSUM;
2456 } else if (illegal_highdma(skb->dev, skb)) {
2457 features &= ~NETIF_F_SG;
2458 }
2459
2460 return features;
2461 }
2462
2463 netdev_features_t netif_skb_features(struct sk_buff *skb)
2464 {
2465 __be16 protocol = skb->protocol;
2466 netdev_features_t features = skb->dev->features;
2467
2468 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2469 features &= ~NETIF_F_GSO_MASK;
2470
2471 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2472 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2473 protocol = veh->h_vlan_encapsulated_proto;
2474 } else if (!vlan_tx_tag_present(skb)) {
2475 return harmonize_features(skb, protocol, features);
2476 }
2477
2478 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2479 NETIF_F_HW_VLAN_STAG_TX);
2480
2481 if (protocol != htons(ETH_P_8021Q) && protocol != htons(ETH_P_8021AD)) {
2482 return harmonize_features(skb, protocol, features);
2483 } else {
2484 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2485 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2486 NETIF_F_HW_VLAN_STAG_TX;
2487 return harmonize_features(skb, protocol, features);
2488 }
2489 }
2490 EXPORT_SYMBOL(netif_skb_features);
2491
2492 /*
2493 * Returns true if either:
2494 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2495 * 2. skb is fragmented and the device does not support SG.
2496 */
2497 static inline int skb_needs_linearize(struct sk_buff *skb,
2498 netdev_features_t features)
2499 {
2500 return skb_is_nonlinear(skb) &&
2501 ((skb_has_frag_list(skb) &&
2502 !(features & NETIF_F_FRAGLIST)) ||
2503 (skb_shinfo(skb)->nr_frags &&
2504 !(features & NETIF_F_SG)));
2505 }
2506
2507 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2508 struct netdev_queue *txq)
2509 {
2510 const struct net_device_ops *ops = dev->netdev_ops;
2511 int rc = NETDEV_TX_OK;
2512 unsigned int skb_len;
2513
2514 if (likely(!skb->next)) {
2515 netdev_features_t features;
2516
2517 /*
2518 * If device doesn't need skb->dst, release it right now while
2519 * its hot in this cpu cache
2520 */
2521 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2522 skb_dst_drop(skb);
2523
2524 features = netif_skb_features(skb);
2525
2526 if (vlan_tx_tag_present(skb) &&
2527 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2528 skb = __vlan_put_tag(skb, skb->vlan_proto,
2529 vlan_tx_tag_get(skb));
2530 if (unlikely(!skb))
2531 goto out;
2532
2533 skb->vlan_tci = 0;
2534 }
2535
2536 /* If encapsulation offload request, verify we are testing
2537 * hardware encapsulation features instead of standard
2538 * features for the netdev
2539 */
2540 if (skb->encapsulation)
2541 features &= dev->hw_enc_features;
2542
2543 if (netif_needs_gso(skb, features)) {
2544 if (unlikely(dev_gso_segment(skb, features)))
2545 goto out_kfree_skb;
2546 if (skb->next)
2547 goto gso;
2548 } else {
2549 if (skb_needs_linearize(skb, features) &&
2550 __skb_linearize(skb))
2551 goto out_kfree_skb;
2552
2553 /* If packet is not checksummed and device does not
2554 * support checksumming for this protocol, complete
2555 * checksumming here.
2556 */
2557 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2558 if (skb->encapsulation)
2559 skb_set_inner_transport_header(skb,
2560 skb_checksum_start_offset(skb));
2561 else
2562 skb_set_transport_header(skb,
2563 skb_checksum_start_offset(skb));
2564 if (!(features & NETIF_F_ALL_CSUM) &&
2565 skb_checksum_help(skb))
2566 goto out_kfree_skb;
2567 }
2568 }
2569
2570 if (!list_empty(&ptype_all))
2571 dev_queue_xmit_nit(skb, dev);
2572
2573 skb_len = skb->len;
2574 rc = ops->ndo_start_xmit(skb, dev);
2575 trace_net_dev_xmit(skb, rc, dev, skb_len);
2576 if (rc == NETDEV_TX_OK)
2577 txq_trans_update(txq);
2578 return rc;
2579 }
2580
2581 gso:
2582 do {
2583 struct sk_buff *nskb = skb->next;
2584
2585 skb->next = nskb->next;
2586 nskb->next = NULL;
2587
2588 if (!list_empty(&ptype_all))
2589 dev_queue_xmit_nit(nskb, dev);
2590
2591 skb_len = nskb->len;
2592 rc = ops->ndo_start_xmit(nskb, dev);
2593 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2594 if (unlikely(rc != NETDEV_TX_OK)) {
2595 if (rc & ~NETDEV_TX_MASK)
2596 goto out_kfree_gso_skb;
2597 nskb->next = skb->next;
2598 skb->next = nskb;
2599 return rc;
2600 }
2601 txq_trans_update(txq);
2602 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2603 return NETDEV_TX_BUSY;
2604 } while (skb->next);
2605
2606 out_kfree_gso_skb:
2607 if (likely(skb->next == NULL)) {
2608 skb->destructor = DEV_GSO_CB(skb)->destructor;
2609 consume_skb(skb);
2610 return rc;
2611 }
2612 out_kfree_skb:
2613 kfree_skb(skb);
2614 out:
2615 return rc;
2616 }
2617
2618 static void qdisc_pkt_len_init(struct sk_buff *skb)
2619 {
2620 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2621
2622 qdisc_skb_cb(skb)->pkt_len = skb->len;
2623
2624 /* To get more precise estimation of bytes sent on wire,
2625 * we add to pkt_len the headers size of all segments
2626 */
2627 if (shinfo->gso_size) {
2628 unsigned int hdr_len;
2629 u16 gso_segs = shinfo->gso_segs;
2630
2631 /* mac layer + network layer */
2632 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2633
2634 /* + transport layer */
2635 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2636 hdr_len += tcp_hdrlen(skb);
2637 else
2638 hdr_len += sizeof(struct udphdr);
2639
2640 if (shinfo->gso_type & SKB_GSO_DODGY)
2641 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2642 shinfo->gso_size);
2643
2644 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2645 }
2646 }
2647
2648 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2649 struct net_device *dev,
2650 struct netdev_queue *txq)
2651 {
2652 spinlock_t *root_lock = qdisc_lock(q);
2653 bool contended;
2654 int rc;
2655
2656 qdisc_pkt_len_init(skb);
2657 qdisc_calculate_pkt_len(skb, q);
2658 /*
2659 * Heuristic to force contended enqueues to serialize on a
2660 * separate lock before trying to get qdisc main lock.
2661 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2662 * and dequeue packets faster.
2663 */
2664 contended = qdisc_is_running(q);
2665 if (unlikely(contended))
2666 spin_lock(&q->busylock);
2667
2668 spin_lock(root_lock);
2669 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2670 kfree_skb(skb);
2671 rc = NET_XMIT_DROP;
2672 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2673 qdisc_run_begin(q)) {
2674 /*
2675 * This is a work-conserving queue; there are no old skbs
2676 * waiting to be sent out; and the qdisc is not running -
2677 * xmit the skb directly.
2678 */
2679 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2680 skb_dst_force(skb);
2681
2682 qdisc_bstats_update(q, skb);
2683
2684 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2685 if (unlikely(contended)) {
2686 spin_unlock(&q->busylock);
2687 contended = false;
2688 }
2689 __qdisc_run(q);
2690 } else
2691 qdisc_run_end(q);
2692
2693 rc = NET_XMIT_SUCCESS;
2694 } else {
2695 skb_dst_force(skb);
2696 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2697 if (qdisc_run_begin(q)) {
2698 if (unlikely(contended)) {
2699 spin_unlock(&q->busylock);
2700 contended = false;
2701 }
2702 __qdisc_run(q);
2703 }
2704 }
2705 spin_unlock(root_lock);
2706 if (unlikely(contended))
2707 spin_unlock(&q->busylock);
2708 return rc;
2709 }
2710
2711 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2712 static void skb_update_prio(struct sk_buff *skb)
2713 {
2714 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2715
2716 if (!skb->priority && skb->sk && map) {
2717 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2718
2719 if (prioidx < map->priomap_len)
2720 skb->priority = map->priomap[prioidx];
2721 }
2722 }
2723 #else
2724 #define skb_update_prio(skb)
2725 #endif
2726
2727 static DEFINE_PER_CPU(int, xmit_recursion);
2728 #define RECURSION_LIMIT 10
2729
2730 /**
2731 * dev_loopback_xmit - loop back @skb
2732 * @skb: buffer to transmit
2733 */
2734 int dev_loopback_xmit(struct sk_buff *skb)
2735 {
2736 skb_reset_mac_header(skb);
2737 __skb_pull(skb, skb_network_offset(skb));
2738 skb->pkt_type = PACKET_LOOPBACK;
2739 skb->ip_summed = CHECKSUM_UNNECESSARY;
2740 WARN_ON(!skb_dst(skb));
2741 skb_dst_force(skb);
2742 netif_rx_ni(skb);
2743 return 0;
2744 }
2745 EXPORT_SYMBOL(dev_loopback_xmit);
2746
2747 /**
2748 * dev_queue_xmit - transmit a buffer
2749 * @skb: buffer to transmit
2750 *
2751 * Queue a buffer for transmission to a network device. The caller must
2752 * have set the device and priority and built the buffer before calling
2753 * this function. The function can be called from an interrupt.
2754 *
2755 * A negative errno code is returned on a failure. A success does not
2756 * guarantee the frame will be transmitted as it may be dropped due
2757 * to congestion or traffic shaping.
2758 *
2759 * -----------------------------------------------------------------------------------
2760 * I notice this method can also return errors from the queue disciplines,
2761 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2762 * be positive.
2763 *
2764 * Regardless of the return value, the skb is consumed, so it is currently
2765 * difficult to retry a send to this method. (You can bump the ref count
2766 * before sending to hold a reference for retry if you are careful.)
2767 *
2768 * When calling this method, interrupts MUST be enabled. This is because
2769 * the BH enable code must have IRQs enabled so that it will not deadlock.
2770 * --BLG
2771 */
2772 int dev_queue_xmit(struct sk_buff *skb)
2773 {
2774 struct net_device *dev = skb->dev;
2775 struct netdev_queue *txq;
2776 struct Qdisc *q;
2777 int rc = -ENOMEM;
2778
2779 skb_reset_mac_header(skb);
2780
2781 /* Disable soft irqs for various locks below. Also
2782 * stops preemption for RCU.
2783 */
2784 rcu_read_lock_bh();
2785
2786 skb_update_prio(skb);
2787
2788 txq = netdev_pick_tx(dev, skb);
2789 q = rcu_dereference_bh(txq->qdisc);
2790
2791 #ifdef CONFIG_NET_CLS_ACT
2792 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2793 #endif
2794 trace_net_dev_queue(skb);
2795 if (q->enqueue) {
2796 rc = __dev_xmit_skb(skb, q, dev, txq);
2797 goto out;
2798 }
2799
2800 /* The device has no queue. Common case for software devices:
2801 loopback, all the sorts of tunnels...
2802
2803 Really, it is unlikely that netif_tx_lock protection is necessary
2804 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2805 counters.)
2806 However, it is possible, that they rely on protection
2807 made by us here.
2808
2809 Check this and shot the lock. It is not prone from deadlocks.
2810 Either shot noqueue qdisc, it is even simpler 8)
2811 */
2812 if (dev->flags & IFF_UP) {
2813 int cpu = smp_processor_id(); /* ok because BHs are off */
2814
2815 if (txq->xmit_lock_owner != cpu) {
2816
2817 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2818 goto recursion_alert;
2819
2820 HARD_TX_LOCK(dev, txq, cpu);
2821
2822 if (!netif_xmit_stopped(txq)) {
2823 __this_cpu_inc(xmit_recursion);
2824 rc = dev_hard_start_xmit(skb, dev, txq);
2825 __this_cpu_dec(xmit_recursion);
2826 if (dev_xmit_complete(rc)) {
2827 HARD_TX_UNLOCK(dev, txq);
2828 goto out;
2829 }
2830 }
2831 HARD_TX_UNLOCK(dev, txq);
2832 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2833 dev->name);
2834 } else {
2835 /* Recursion is detected! It is possible,
2836 * unfortunately
2837 */
2838 recursion_alert:
2839 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2840 dev->name);
2841 }
2842 }
2843
2844 rc = -ENETDOWN;
2845 rcu_read_unlock_bh();
2846
2847 kfree_skb(skb);
2848 return rc;
2849 out:
2850 rcu_read_unlock_bh();
2851 return rc;
2852 }
2853 EXPORT_SYMBOL(dev_queue_xmit);
2854
2855
2856 /*=======================================================================
2857 Receiver routines
2858 =======================================================================*/
2859
2860 int netdev_max_backlog __read_mostly = 1000;
2861 EXPORT_SYMBOL(netdev_max_backlog);
2862
2863 int netdev_tstamp_prequeue __read_mostly = 1;
2864 int netdev_budget __read_mostly = 300;
2865 int weight_p __read_mostly = 64; /* old backlog weight */
2866
2867 /* Called with irq disabled */
2868 static inline void ____napi_schedule(struct softnet_data *sd,
2869 struct napi_struct *napi)
2870 {
2871 list_add_tail(&napi->poll_list, &sd->poll_list);
2872 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2873 }
2874
2875 #ifdef CONFIG_RPS
2876
2877 /* One global table that all flow-based protocols share. */
2878 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2879 EXPORT_SYMBOL(rps_sock_flow_table);
2880
2881 struct static_key rps_needed __read_mostly;
2882
2883 static struct rps_dev_flow *
2884 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2885 struct rps_dev_flow *rflow, u16 next_cpu)
2886 {
2887 if (next_cpu != RPS_NO_CPU) {
2888 #ifdef CONFIG_RFS_ACCEL
2889 struct netdev_rx_queue *rxqueue;
2890 struct rps_dev_flow_table *flow_table;
2891 struct rps_dev_flow *old_rflow;
2892 u32 flow_id;
2893 u16 rxq_index;
2894 int rc;
2895
2896 /* Should we steer this flow to a different hardware queue? */
2897 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2898 !(dev->features & NETIF_F_NTUPLE))
2899 goto out;
2900 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2901 if (rxq_index == skb_get_rx_queue(skb))
2902 goto out;
2903
2904 rxqueue = dev->_rx + rxq_index;
2905 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2906 if (!flow_table)
2907 goto out;
2908 flow_id = skb->rxhash & flow_table->mask;
2909 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2910 rxq_index, flow_id);
2911 if (rc < 0)
2912 goto out;
2913 old_rflow = rflow;
2914 rflow = &flow_table->flows[flow_id];
2915 rflow->filter = rc;
2916 if (old_rflow->filter == rflow->filter)
2917 old_rflow->filter = RPS_NO_FILTER;
2918 out:
2919 #endif
2920 rflow->last_qtail =
2921 per_cpu(softnet_data, next_cpu).input_queue_head;
2922 }
2923
2924 rflow->cpu = next_cpu;
2925 return rflow;
2926 }
2927
2928 /*
2929 * get_rps_cpu is called from netif_receive_skb and returns the target
2930 * CPU from the RPS map of the receiving queue for a given skb.
2931 * rcu_read_lock must be held on entry.
2932 */
2933 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2934 struct rps_dev_flow **rflowp)
2935 {
2936 struct netdev_rx_queue *rxqueue;
2937 struct rps_map *map;
2938 struct rps_dev_flow_table *flow_table;
2939 struct rps_sock_flow_table *sock_flow_table;
2940 int cpu = -1;
2941 u16 tcpu;
2942
2943 if (skb_rx_queue_recorded(skb)) {
2944 u16 index = skb_get_rx_queue(skb);
2945 if (unlikely(index >= dev->real_num_rx_queues)) {
2946 WARN_ONCE(dev->real_num_rx_queues > 1,
2947 "%s received packet on queue %u, but number "
2948 "of RX queues is %u\n",
2949 dev->name, index, dev->real_num_rx_queues);
2950 goto done;
2951 }
2952 rxqueue = dev->_rx + index;
2953 } else
2954 rxqueue = dev->_rx;
2955
2956 map = rcu_dereference(rxqueue->rps_map);
2957 if (map) {
2958 if (map->len == 1 &&
2959 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2960 tcpu = map->cpus[0];
2961 if (cpu_online(tcpu))
2962 cpu = tcpu;
2963 goto done;
2964 }
2965 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2966 goto done;
2967 }
2968
2969 skb_reset_network_header(skb);
2970 if (!skb_get_rxhash(skb))
2971 goto done;
2972
2973 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2974 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2975 if (flow_table && sock_flow_table) {
2976 u16 next_cpu;
2977 struct rps_dev_flow *rflow;
2978
2979 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2980 tcpu = rflow->cpu;
2981
2982 next_cpu = sock_flow_table->ents[skb->rxhash &
2983 sock_flow_table->mask];
2984
2985 /*
2986 * If the desired CPU (where last recvmsg was done) is
2987 * different from current CPU (one in the rx-queue flow
2988 * table entry), switch if one of the following holds:
2989 * - Current CPU is unset (equal to RPS_NO_CPU).
2990 * - Current CPU is offline.
2991 * - The current CPU's queue tail has advanced beyond the
2992 * last packet that was enqueued using this table entry.
2993 * This guarantees that all previous packets for the flow
2994 * have been dequeued, thus preserving in order delivery.
2995 */
2996 if (unlikely(tcpu != next_cpu) &&
2997 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2998 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2999 rflow->last_qtail)) >= 0)) {
3000 tcpu = next_cpu;
3001 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3002 }
3003
3004 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3005 *rflowp = rflow;
3006 cpu = tcpu;
3007 goto done;
3008 }
3009 }
3010
3011 if (map) {
3012 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3013
3014 if (cpu_online(tcpu)) {
3015 cpu = tcpu;
3016 goto done;
3017 }
3018 }
3019
3020 done:
3021 return cpu;
3022 }
3023
3024 #ifdef CONFIG_RFS_ACCEL
3025
3026 /**
3027 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3028 * @dev: Device on which the filter was set
3029 * @rxq_index: RX queue index
3030 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3031 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3032 *
3033 * Drivers that implement ndo_rx_flow_steer() should periodically call
3034 * this function for each installed filter and remove the filters for
3035 * which it returns %true.
3036 */
3037 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3038 u32 flow_id, u16 filter_id)
3039 {
3040 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3041 struct rps_dev_flow_table *flow_table;
3042 struct rps_dev_flow *rflow;
3043 bool expire = true;
3044 int cpu;
3045
3046 rcu_read_lock();
3047 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3048 if (flow_table && flow_id <= flow_table->mask) {
3049 rflow = &flow_table->flows[flow_id];
3050 cpu = ACCESS_ONCE(rflow->cpu);
3051 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3052 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3053 rflow->last_qtail) <
3054 (int)(10 * flow_table->mask)))
3055 expire = false;
3056 }
3057 rcu_read_unlock();
3058 return expire;
3059 }
3060 EXPORT_SYMBOL(rps_may_expire_flow);
3061
3062 #endif /* CONFIG_RFS_ACCEL */
3063
3064 /* Called from hardirq (IPI) context */
3065 static void rps_trigger_softirq(void *data)
3066 {
3067 struct softnet_data *sd = data;
3068
3069 ____napi_schedule(sd, &sd->backlog);
3070 sd->received_rps++;
3071 }
3072
3073 #endif /* CONFIG_RPS */
3074
3075 /*
3076 * Check if this softnet_data structure is another cpu one
3077 * If yes, queue it to our IPI list and return 1
3078 * If no, return 0
3079 */
3080 static int rps_ipi_queued(struct softnet_data *sd)
3081 {
3082 #ifdef CONFIG_RPS
3083 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3084
3085 if (sd != mysd) {
3086 sd->rps_ipi_next = mysd->rps_ipi_list;
3087 mysd->rps_ipi_list = sd;
3088
3089 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3090 return 1;
3091 }
3092 #endif /* CONFIG_RPS */
3093 return 0;
3094 }
3095
3096 #ifdef CONFIG_NET_FLOW_LIMIT
3097 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3098 #endif
3099
3100 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3101 {
3102 #ifdef CONFIG_NET_FLOW_LIMIT
3103 struct sd_flow_limit *fl;
3104 struct softnet_data *sd;
3105 unsigned int old_flow, new_flow;
3106
3107 if (qlen < (netdev_max_backlog >> 1))
3108 return false;
3109
3110 sd = &__get_cpu_var(softnet_data);
3111
3112 rcu_read_lock();
3113 fl = rcu_dereference(sd->flow_limit);
3114 if (fl) {
3115 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3116 old_flow = fl->history[fl->history_head];
3117 fl->history[fl->history_head] = new_flow;
3118
3119 fl->history_head++;
3120 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3121
3122 if (likely(fl->buckets[old_flow]))
3123 fl->buckets[old_flow]--;
3124
3125 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3126 fl->count++;
3127 rcu_read_unlock();
3128 return true;
3129 }
3130 }
3131 rcu_read_unlock();
3132 #endif
3133 return false;
3134 }
3135
3136 /*
3137 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3138 * queue (may be a remote CPU queue).
3139 */
3140 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3141 unsigned int *qtail)
3142 {
3143 struct softnet_data *sd;
3144 unsigned long flags;
3145 unsigned int qlen;
3146
3147 sd = &per_cpu(softnet_data, cpu);
3148
3149 local_irq_save(flags);
3150
3151 rps_lock(sd);
3152 qlen = skb_queue_len(&sd->input_pkt_queue);
3153 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3154 if (skb_queue_len(&sd->input_pkt_queue)) {
3155 enqueue:
3156 __skb_queue_tail(&sd->input_pkt_queue, skb);
3157 input_queue_tail_incr_save(sd, qtail);
3158 rps_unlock(sd);
3159 local_irq_restore(flags);
3160 return NET_RX_SUCCESS;
3161 }
3162
3163 /* Schedule NAPI for backlog device
3164 * We can use non atomic operation since we own the queue lock
3165 */
3166 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3167 if (!rps_ipi_queued(sd))
3168 ____napi_schedule(sd, &sd->backlog);
3169 }
3170 goto enqueue;
3171 }
3172
3173 sd->dropped++;
3174 rps_unlock(sd);
3175
3176 local_irq_restore(flags);
3177
3178 atomic_long_inc(&skb->dev->rx_dropped);
3179 kfree_skb(skb);
3180 return NET_RX_DROP;
3181 }
3182
3183 /**
3184 * netif_rx - post buffer to the network code
3185 * @skb: buffer to post
3186 *
3187 * This function receives a packet from a device driver and queues it for
3188 * the upper (protocol) levels to process. It always succeeds. The buffer
3189 * may be dropped during processing for congestion control or by the
3190 * protocol layers.
3191 *
3192 * return values:
3193 * NET_RX_SUCCESS (no congestion)
3194 * NET_RX_DROP (packet was dropped)
3195 *
3196 */
3197
3198 int netif_rx(struct sk_buff *skb)
3199 {
3200 int ret;
3201
3202 /* if netpoll wants it, pretend we never saw it */
3203 if (netpoll_rx(skb))
3204 return NET_RX_DROP;
3205
3206 net_timestamp_check(netdev_tstamp_prequeue, skb);
3207
3208 trace_netif_rx(skb);
3209 #ifdef CONFIG_RPS
3210 if (static_key_false(&rps_needed)) {
3211 struct rps_dev_flow voidflow, *rflow = &voidflow;
3212 int cpu;
3213
3214 preempt_disable();
3215 rcu_read_lock();
3216
3217 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3218 if (cpu < 0)
3219 cpu = smp_processor_id();
3220
3221 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3222
3223 rcu_read_unlock();
3224 preempt_enable();
3225 } else
3226 #endif
3227 {
3228 unsigned int qtail;
3229 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3230 put_cpu();
3231 }
3232 return ret;
3233 }
3234 EXPORT_SYMBOL(netif_rx);
3235
3236 int netif_rx_ni(struct sk_buff *skb)
3237 {
3238 int err;
3239
3240 preempt_disable();
3241 err = netif_rx(skb);
3242 if (local_softirq_pending())
3243 do_softirq();
3244 preempt_enable();
3245
3246 return err;
3247 }
3248 EXPORT_SYMBOL(netif_rx_ni);
3249
3250 static void net_tx_action(struct softirq_action *h)
3251 {
3252 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3253
3254 if (sd->completion_queue) {
3255 struct sk_buff *clist;
3256
3257 local_irq_disable();
3258 clist = sd->completion_queue;
3259 sd->completion_queue = NULL;
3260 local_irq_enable();
3261
3262 while (clist) {
3263 struct sk_buff *skb = clist;
3264 clist = clist->next;
3265
3266 WARN_ON(atomic_read(&skb->users));
3267 trace_kfree_skb(skb, net_tx_action);
3268 __kfree_skb(skb);
3269 }
3270 }
3271
3272 if (sd->output_queue) {
3273 struct Qdisc *head;
3274
3275 local_irq_disable();
3276 head = sd->output_queue;
3277 sd->output_queue = NULL;
3278 sd->output_queue_tailp = &sd->output_queue;
3279 local_irq_enable();
3280
3281 while (head) {
3282 struct Qdisc *q = head;
3283 spinlock_t *root_lock;
3284
3285 head = head->next_sched;
3286
3287 root_lock = qdisc_lock(q);
3288 if (spin_trylock(root_lock)) {
3289 smp_mb__before_clear_bit();
3290 clear_bit(__QDISC_STATE_SCHED,
3291 &q->state);
3292 qdisc_run(q);
3293 spin_unlock(root_lock);
3294 } else {
3295 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3296 &q->state)) {
3297 __netif_reschedule(q);
3298 } else {
3299 smp_mb__before_clear_bit();
3300 clear_bit(__QDISC_STATE_SCHED,
3301 &q->state);
3302 }
3303 }
3304 }
3305 }
3306 }
3307
3308 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3309 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3310 /* This hook is defined here for ATM LANE */
3311 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3312 unsigned char *addr) __read_mostly;
3313 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3314 #endif
3315
3316 #ifdef CONFIG_NET_CLS_ACT
3317 /* TODO: Maybe we should just force sch_ingress to be compiled in
3318 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3319 * a compare and 2 stores extra right now if we dont have it on
3320 * but have CONFIG_NET_CLS_ACT
3321 * NOTE: This doesn't stop any functionality; if you dont have
3322 * the ingress scheduler, you just can't add policies on ingress.
3323 *
3324 */
3325 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3326 {
3327 struct net_device *dev = skb->dev;
3328 u32 ttl = G_TC_RTTL(skb->tc_verd);
3329 int result = TC_ACT_OK;
3330 struct Qdisc *q;
3331
3332 if (unlikely(MAX_RED_LOOP < ttl++)) {
3333 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3334 skb->skb_iif, dev->ifindex);
3335 return TC_ACT_SHOT;
3336 }
3337
3338 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3339 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3340
3341 q = rxq->qdisc;
3342 if (q != &noop_qdisc) {
3343 spin_lock(qdisc_lock(q));
3344 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3345 result = qdisc_enqueue_root(skb, q);
3346 spin_unlock(qdisc_lock(q));
3347 }
3348
3349 return result;
3350 }
3351
3352 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3353 struct packet_type **pt_prev,
3354 int *ret, struct net_device *orig_dev)
3355 {
3356 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3357
3358 if (!rxq || rxq->qdisc == &noop_qdisc)
3359 goto out;
3360
3361 if (*pt_prev) {
3362 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3363 *pt_prev = NULL;
3364 }
3365
3366 switch (ing_filter(skb, rxq)) {
3367 case TC_ACT_SHOT:
3368 case TC_ACT_STOLEN:
3369 kfree_skb(skb);
3370 return NULL;
3371 }
3372
3373 out:
3374 skb->tc_verd = 0;
3375 return skb;
3376 }
3377 #endif
3378
3379 /**
3380 * netdev_rx_handler_register - register receive handler
3381 * @dev: device to register a handler for
3382 * @rx_handler: receive handler to register
3383 * @rx_handler_data: data pointer that is used by rx handler
3384 *
3385 * Register a receive hander for a device. This handler will then be
3386 * called from __netif_receive_skb. A negative errno code is returned
3387 * on a failure.
3388 *
3389 * The caller must hold the rtnl_mutex.
3390 *
3391 * For a general description of rx_handler, see enum rx_handler_result.
3392 */
3393 int netdev_rx_handler_register(struct net_device *dev,
3394 rx_handler_func_t *rx_handler,
3395 void *rx_handler_data)
3396 {
3397 ASSERT_RTNL();
3398
3399 if (dev->rx_handler)
3400 return -EBUSY;
3401
3402 /* Note: rx_handler_data must be set before rx_handler */
3403 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3404 rcu_assign_pointer(dev->rx_handler, rx_handler);
3405
3406 return 0;
3407 }
3408 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3409
3410 /**
3411 * netdev_rx_handler_unregister - unregister receive handler
3412 * @dev: device to unregister a handler from
3413 *
3414 * Unregister a receive handler from a device.
3415 *
3416 * The caller must hold the rtnl_mutex.
3417 */
3418 void netdev_rx_handler_unregister(struct net_device *dev)
3419 {
3420
3421 ASSERT_RTNL();
3422 RCU_INIT_POINTER(dev->rx_handler, NULL);
3423 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3424 * section has a guarantee to see a non NULL rx_handler_data
3425 * as well.
3426 */
3427 synchronize_net();
3428 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3429 }
3430 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3431
3432 /*
3433 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3434 * the special handling of PFMEMALLOC skbs.
3435 */
3436 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3437 {
3438 switch (skb->protocol) {
3439 case __constant_htons(ETH_P_ARP):
3440 case __constant_htons(ETH_P_IP):
3441 case __constant_htons(ETH_P_IPV6):
3442 case __constant_htons(ETH_P_8021Q):
3443 case __constant_htons(ETH_P_8021AD):
3444 return true;
3445 default:
3446 return false;
3447 }
3448 }
3449
3450 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3451 {
3452 struct packet_type *ptype, *pt_prev;
3453 rx_handler_func_t *rx_handler;
3454 struct net_device *orig_dev;
3455 struct net_device *null_or_dev;
3456 bool deliver_exact = false;
3457 int ret = NET_RX_DROP;
3458 __be16 type;
3459
3460 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3461
3462 trace_netif_receive_skb(skb);
3463
3464 /* if we've gotten here through NAPI, check netpoll */
3465 if (netpoll_receive_skb(skb))
3466 goto out;
3467
3468 orig_dev = skb->dev;
3469
3470 skb_reset_network_header(skb);
3471 if (!skb_transport_header_was_set(skb))
3472 skb_reset_transport_header(skb);
3473 skb_reset_mac_len(skb);
3474
3475 pt_prev = NULL;
3476
3477 rcu_read_lock();
3478
3479 another_round:
3480 skb->skb_iif = skb->dev->ifindex;
3481
3482 __this_cpu_inc(softnet_data.processed);
3483
3484 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3485 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3486 skb = vlan_untag(skb);
3487 if (unlikely(!skb))
3488 goto unlock;
3489 }
3490
3491 #ifdef CONFIG_NET_CLS_ACT
3492 if (skb->tc_verd & TC_NCLS) {
3493 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3494 goto ncls;
3495 }
3496 #endif
3497
3498 if (pfmemalloc)
3499 goto skip_taps;
3500
3501 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3502 if (!ptype->dev || ptype->dev == skb->dev) {
3503 if (pt_prev)
3504 ret = deliver_skb(skb, pt_prev, orig_dev);
3505 pt_prev = ptype;
3506 }
3507 }
3508
3509 skip_taps:
3510 #ifdef CONFIG_NET_CLS_ACT
3511 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3512 if (!skb)
3513 goto unlock;
3514 ncls:
3515 #endif
3516
3517 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3518 goto drop;
3519
3520 if (vlan_tx_tag_present(skb)) {
3521 if (pt_prev) {
3522 ret = deliver_skb(skb, pt_prev, orig_dev);
3523 pt_prev = NULL;
3524 }
3525 if (vlan_do_receive(&skb))
3526 goto another_round;
3527 else if (unlikely(!skb))
3528 goto unlock;
3529 }
3530
3531 rx_handler = rcu_dereference(skb->dev->rx_handler);
3532 if (rx_handler) {
3533 if (pt_prev) {
3534 ret = deliver_skb(skb, pt_prev, orig_dev);
3535 pt_prev = NULL;
3536 }
3537 switch (rx_handler(&skb)) {
3538 case RX_HANDLER_CONSUMED:
3539 ret = NET_RX_SUCCESS;
3540 goto unlock;
3541 case RX_HANDLER_ANOTHER:
3542 goto another_round;
3543 case RX_HANDLER_EXACT:
3544 deliver_exact = true;
3545 case RX_HANDLER_PASS:
3546 break;
3547 default:
3548 BUG();
3549 }
3550 }
3551
3552 if (vlan_tx_nonzero_tag_present(skb))
3553 skb->pkt_type = PACKET_OTHERHOST;
3554
3555 /* deliver only exact match when indicated */
3556 null_or_dev = deliver_exact ? skb->dev : NULL;
3557
3558 type = skb->protocol;
3559 list_for_each_entry_rcu(ptype,
3560 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3561 if (ptype->type == type &&
3562 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3563 ptype->dev == orig_dev)) {
3564 if (pt_prev)
3565 ret = deliver_skb(skb, pt_prev, orig_dev);
3566 pt_prev = ptype;
3567 }
3568 }
3569
3570 if (pt_prev) {
3571 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3572 goto drop;
3573 else
3574 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3575 } else {
3576 drop:
3577 atomic_long_inc(&skb->dev->rx_dropped);
3578 kfree_skb(skb);
3579 /* Jamal, now you will not able to escape explaining
3580 * me how you were going to use this. :-)
3581 */
3582 ret = NET_RX_DROP;
3583 }
3584
3585 unlock:
3586 rcu_read_unlock();
3587 out:
3588 return ret;
3589 }
3590
3591 static int __netif_receive_skb(struct sk_buff *skb)
3592 {
3593 int ret;
3594
3595 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3596 unsigned long pflags = current->flags;
3597
3598 /*
3599 * PFMEMALLOC skbs are special, they should
3600 * - be delivered to SOCK_MEMALLOC sockets only
3601 * - stay away from userspace
3602 * - have bounded memory usage
3603 *
3604 * Use PF_MEMALLOC as this saves us from propagating the allocation
3605 * context down to all allocation sites.
3606 */
3607 current->flags |= PF_MEMALLOC;
3608 ret = __netif_receive_skb_core(skb, true);
3609 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3610 } else
3611 ret = __netif_receive_skb_core(skb, false);
3612
3613 return ret;
3614 }
3615
3616 /**
3617 * netif_receive_skb - process receive buffer from network
3618 * @skb: buffer to process
3619 *
3620 * netif_receive_skb() is the main receive data processing function.
3621 * It always succeeds. The buffer may be dropped during processing
3622 * for congestion control or by the protocol layers.
3623 *
3624 * This function may only be called from softirq context and interrupts
3625 * should be enabled.
3626 *
3627 * Return values (usually ignored):
3628 * NET_RX_SUCCESS: no congestion
3629 * NET_RX_DROP: packet was dropped
3630 */
3631 int netif_receive_skb(struct sk_buff *skb)
3632 {
3633 net_timestamp_check(netdev_tstamp_prequeue, skb);
3634
3635 if (skb_defer_rx_timestamp(skb))
3636 return NET_RX_SUCCESS;
3637
3638 #ifdef CONFIG_RPS
3639 if (static_key_false(&rps_needed)) {
3640 struct rps_dev_flow voidflow, *rflow = &voidflow;
3641 int cpu, ret;
3642
3643 rcu_read_lock();
3644
3645 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3646
3647 if (cpu >= 0) {
3648 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3649 rcu_read_unlock();
3650 return ret;
3651 }
3652 rcu_read_unlock();
3653 }
3654 #endif
3655 return __netif_receive_skb(skb);
3656 }
3657 EXPORT_SYMBOL(netif_receive_skb);
3658
3659 /* Network device is going away, flush any packets still pending
3660 * Called with irqs disabled.
3661 */
3662 static void flush_backlog(void *arg)
3663 {
3664 struct net_device *dev = arg;
3665 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3666 struct sk_buff *skb, *tmp;
3667
3668 rps_lock(sd);
3669 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3670 if (skb->dev == dev) {
3671 __skb_unlink(skb, &sd->input_pkt_queue);
3672 kfree_skb(skb);
3673 input_queue_head_incr(sd);
3674 }
3675 }
3676 rps_unlock(sd);
3677
3678 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3679 if (skb->dev == dev) {
3680 __skb_unlink(skb, &sd->process_queue);
3681 kfree_skb(skb);
3682 input_queue_head_incr(sd);
3683 }
3684 }
3685 }
3686
3687 static int napi_gro_complete(struct sk_buff *skb)
3688 {
3689 struct packet_offload *ptype;
3690 __be16 type = skb->protocol;
3691 struct list_head *head = &offload_base;
3692 int err = -ENOENT;
3693
3694 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3695
3696 if (NAPI_GRO_CB(skb)->count == 1) {
3697 skb_shinfo(skb)->gso_size = 0;
3698 goto out;
3699 }
3700
3701 rcu_read_lock();
3702 list_for_each_entry_rcu(ptype, head, list) {
3703 if (ptype->type != type || !ptype->callbacks.gro_complete)
3704 continue;
3705
3706 err = ptype->callbacks.gro_complete(skb);
3707 break;
3708 }
3709 rcu_read_unlock();
3710
3711 if (err) {
3712 WARN_ON(&ptype->list == head);
3713 kfree_skb(skb);
3714 return NET_RX_SUCCESS;
3715 }
3716
3717 out:
3718 return netif_receive_skb(skb);
3719 }
3720
3721 /* napi->gro_list contains packets ordered by age.
3722 * youngest packets at the head of it.
3723 * Complete skbs in reverse order to reduce latencies.
3724 */
3725 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3726 {
3727 struct sk_buff *skb, *prev = NULL;
3728
3729 /* scan list and build reverse chain */
3730 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3731 skb->prev = prev;
3732 prev = skb;
3733 }
3734
3735 for (skb = prev; skb; skb = prev) {
3736 skb->next = NULL;
3737
3738 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3739 return;
3740
3741 prev = skb->prev;
3742 napi_gro_complete(skb);
3743 napi->gro_count--;
3744 }
3745
3746 napi->gro_list = NULL;
3747 }
3748 EXPORT_SYMBOL(napi_gro_flush);
3749
3750 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3751 {
3752 struct sk_buff *p;
3753 unsigned int maclen = skb->dev->hard_header_len;
3754
3755 for (p = napi->gro_list; p; p = p->next) {
3756 unsigned long diffs;
3757
3758 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3759 diffs |= p->vlan_tci ^ skb->vlan_tci;
3760 if (maclen == ETH_HLEN)
3761 diffs |= compare_ether_header(skb_mac_header(p),
3762 skb_gro_mac_header(skb));
3763 else if (!diffs)
3764 diffs = memcmp(skb_mac_header(p),
3765 skb_gro_mac_header(skb),
3766 maclen);
3767 NAPI_GRO_CB(p)->same_flow = !diffs;
3768 NAPI_GRO_CB(p)->flush = 0;
3769 }
3770 }
3771
3772 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3773 {
3774 struct sk_buff **pp = NULL;
3775 struct packet_offload *ptype;
3776 __be16 type = skb->protocol;
3777 struct list_head *head = &offload_base;
3778 int same_flow;
3779 enum gro_result ret;
3780
3781 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3782 goto normal;
3783
3784 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3785 goto normal;
3786
3787 gro_list_prepare(napi, skb);
3788
3789 rcu_read_lock();
3790 list_for_each_entry_rcu(ptype, head, list) {
3791 if (ptype->type != type || !ptype->callbacks.gro_receive)
3792 continue;
3793
3794 skb_set_network_header(skb, skb_gro_offset(skb));
3795 skb_reset_mac_len(skb);
3796 NAPI_GRO_CB(skb)->same_flow = 0;
3797 NAPI_GRO_CB(skb)->flush = 0;
3798 NAPI_GRO_CB(skb)->free = 0;
3799
3800 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3801 break;
3802 }
3803 rcu_read_unlock();
3804
3805 if (&ptype->list == head)
3806 goto normal;
3807
3808 same_flow = NAPI_GRO_CB(skb)->same_flow;
3809 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3810
3811 if (pp) {
3812 struct sk_buff *nskb = *pp;
3813
3814 *pp = nskb->next;
3815 nskb->next = NULL;
3816 napi_gro_complete(nskb);
3817 napi->gro_count--;
3818 }
3819
3820 if (same_flow)
3821 goto ok;
3822
3823 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3824 goto normal;
3825
3826 napi->gro_count++;
3827 NAPI_GRO_CB(skb)->count = 1;
3828 NAPI_GRO_CB(skb)->age = jiffies;
3829 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3830 skb->next = napi->gro_list;
3831 napi->gro_list = skb;
3832 ret = GRO_HELD;
3833
3834 pull:
3835 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3836 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3837
3838 BUG_ON(skb->end - skb->tail < grow);
3839
3840 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3841
3842 skb->tail += grow;
3843 skb->data_len -= grow;
3844
3845 skb_shinfo(skb)->frags[0].page_offset += grow;
3846 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3847
3848 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3849 skb_frag_unref(skb, 0);
3850 memmove(skb_shinfo(skb)->frags,
3851 skb_shinfo(skb)->frags + 1,
3852 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3853 }
3854 }
3855
3856 ok:
3857 return ret;
3858
3859 normal:
3860 ret = GRO_NORMAL;
3861 goto pull;
3862 }
3863
3864
3865 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3866 {
3867 switch (ret) {
3868 case GRO_NORMAL:
3869 if (netif_receive_skb(skb))
3870 ret = GRO_DROP;
3871 break;
3872
3873 case GRO_DROP:
3874 kfree_skb(skb);
3875 break;
3876
3877 case GRO_MERGED_FREE:
3878 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3879 kmem_cache_free(skbuff_head_cache, skb);
3880 else
3881 __kfree_skb(skb);
3882 break;
3883
3884 case GRO_HELD:
3885 case GRO_MERGED:
3886 break;
3887 }
3888
3889 return ret;
3890 }
3891
3892 static void skb_gro_reset_offset(struct sk_buff *skb)
3893 {
3894 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3895 const skb_frag_t *frag0 = &pinfo->frags[0];
3896
3897 NAPI_GRO_CB(skb)->data_offset = 0;
3898 NAPI_GRO_CB(skb)->frag0 = NULL;
3899 NAPI_GRO_CB(skb)->frag0_len = 0;
3900
3901 if (skb->mac_header == skb->tail &&
3902 pinfo->nr_frags &&
3903 !PageHighMem(skb_frag_page(frag0))) {
3904 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3905 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3906 }
3907 }
3908
3909 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3910 {
3911 skb_gro_reset_offset(skb);
3912
3913 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3914 }
3915 EXPORT_SYMBOL(napi_gro_receive);
3916
3917 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3918 {
3919 __skb_pull(skb, skb_headlen(skb));
3920 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3921 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3922 skb->vlan_tci = 0;
3923 skb->dev = napi->dev;
3924 skb->skb_iif = 0;
3925
3926 napi->skb = skb;
3927 }
3928
3929 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3930 {
3931 struct sk_buff *skb = napi->skb;
3932
3933 if (!skb) {
3934 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3935 if (skb)
3936 napi->skb = skb;
3937 }
3938 return skb;
3939 }
3940 EXPORT_SYMBOL(napi_get_frags);
3941
3942 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3943 gro_result_t ret)
3944 {
3945 switch (ret) {
3946 case GRO_NORMAL:
3947 case GRO_HELD:
3948 skb->protocol = eth_type_trans(skb, skb->dev);
3949
3950 if (ret == GRO_HELD)
3951 skb_gro_pull(skb, -ETH_HLEN);
3952 else if (netif_receive_skb(skb))
3953 ret = GRO_DROP;
3954 break;
3955
3956 case GRO_DROP:
3957 case GRO_MERGED_FREE:
3958 napi_reuse_skb(napi, skb);
3959 break;
3960
3961 case GRO_MERGED:
3962 break;
3963 }
3964
3965 return ret;
3966 }
3967
3968 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3969 {
3970 struct sk_buff *skb = napi->skb;
3971 struct ethhdr *eth;
3972 unsigned int hlen;
3973 unsigned int off;
3974
3975 napi->skb = NULL;
3976
3977 skb_reset_mac_header(skb);
3978 skb_gro_reset_offset(skb);
3979
3980 off = skb_gro_offset(skb);
3981 hlen = off + sizeof(*eth);
3982 eth = skb_gro_header_fast(skb, off);
3983 if (skb_gro_header_hard(skb, hlen)) {
3984 eth = skb_gro_header_slow(skb, hlen, off);
3985 if (unlikely(!eth)) {
3986 napi_reuse_skb(napi, skb);
3987 skb = NULL;
3988 goto out;
3989 }
3990 }
3991
3992 skb_gro_pull(skb, sizeof(*eth));
3993
3994 /*
3995 * This works because the only protocols we care about don't require
3996 * special handling. We'll fix it up properly at the end.
3997 */
3998 skb->protocol = eth->h_proto;
3999
4000 out:
4001 return skb;
4002 }
4003
4004 gro_result_t napi_gro_frags(struct napi_struct *napi)
4005 {
4006 struct sk_buff *skb = napi_frags_skb(napi);
4007
4008 if (!skb)
4009 return GRO_DROP;
4010
4011 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4012 }
4013 EXPORT_SYMBOL(napi_gro_frags);
4014
4015 /*
4016 * net_rps_action sends any pending IPI's for rps.
4017 * Note: called with local irq disabled, but exits with local irq enabled.
4018 */
4019 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4020 {
4021 #ifdef CONFIG_RPS
4022 struct softnet_data *remsd = sd->rps_ipi_list;
4023
4024 if (remsd) {
4025 sd->rps_ipi_list = NULL;
4026
4027 local_irq_enable();
4028
4029 /* Send pending IPI's to kick RPS processing on remote cpus. */
4030 while (remsd) {
4031 struct softnet_data *next = remsd->rps_ipi_next;
4032
4033 if (cpu_online(remsd->cpu))
4034 __smp_call_function_single(remsd->cpu,
4035 &remsd->csd, 0);
4036 remsd = next;
4037 }
4038 } else
4039 #endif
4040 local_irq_enable();
4041 }
4042
4043 static int process_backlog(struct napi_struct *napi, int quota)
4044 {
4045 int work = 0;
4046 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4047
4048 #ifdef CONFIG_RPS
4049 /* Check if we have pending ipi, its better to send them now,
4050 * not waiting net_rx_action() end.
4051 */
4052 if (sd->rps_ipi_list) {
4053 local_irq_disable();
4054 net_rps_action_and_irq_enable(sd);
4055 }
4056 #endif
4057 napi->weight = weight_p;
4058 local_irq_disable();
4059 while (work < quota) {
4060 struct sk_buff *skb;
4061 unsigned int qlen;
4062
4063 while ((skb = __skb_dequeue(&sd->process_queue))) {
4064 local_irq_enable();
4065 __netif_receive_skb(skb);
4066 local_irq_disable();
4067 input_queue_head_incr(sd);
4068 if (++work >= quota) {
4069 local_irq_enable();
4070 return work;
4071 }
4072 }
4073
4074 rps_lock(sd);
4075 qlen = skb_queue_len(&sd->input_pkt_queue);
4076 if (qlen)
4077 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4078 &sd->process_queue);
4079
4080 if (qlen < quota - work) {
4081 /*
4082 * Inline a custom version of __napi_complete().
4083 * only current cpu owns and manipulates this napi,
4084 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4085 * we can use a plain write instead of clear_bit(),
4086 * and we dont need an smp_mb() memory barrier.
4087 */
4088 list_del(&napi->poll_list);
4089 napi->state = 0;
4090
4091 quota = work + qlen;
4092 }
4093 rps_unlock(sd);
4094 }
4095 local_irq_enable();
4096
4097 return work;
4098 }
4099
4100 /**
4101 * __napi_schedule - schedule for receive
4102 * @n: entry to schedule
4103 *
4104 * The entry's receive function will be scheduled to run
4105 */
4106 void __napi_schedule(struct napi_struct *n)
4107 {
4108 unsigned long flags;
4109
4110 local_irq_save(flags);
4111 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4112 local_irq_restore(flags);
4113 }
4114 EXPORT_SYMBOL(__napi_schedule);
4115
4116 void __napi_complete(struct napi_struct *n)
4117 {
4118 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4119 BUG_ON(n->gro_list);
4120
4121 list_del(&n->poll_list);
4122 smp_mb__before_clear_bit();
4123 clear_bit(NAPI_STATE_SCHED, &n->state);
4124 }
4125 EXPORT_SYMBOL(__napi_complete);
4126
4127 void napi_complete(struct napi_struct *n)
4128 {
4129 unsigned long flags;
4130
4131 /*
4132 * don't let napi dequeue from the cpu poll list
4133 * just in case its running on a different cpu
4134 */
4135 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4136 return;
4137
4138 napi_gro_flush(n, false);
4139 local_irq_save(flags);
4140 __napi_complete(n);
4141 local_irq_restore(flags);
4142 }
4143 EXPORT_SYMBOL(napi_complete);
4144
4145 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4146 int (*poll)(struct napi_struct *, int), int weight)
4147 {
4148 INIT_LIST_HEAD(&napi->poll_list);
4149 napi->gro_count = 0;
4150 napi->gro_list = NULL;
4151 napi->skb = NULL;
4152 napi->poll = poll;
4153 if (weight > NAPI_POLL_WEIGHT)
4154 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4155 weight, dev->name);
4156 napi->weight = weight;
4157 list_add(&napi->dev_list, &dev->napi_list);
4158 napi->dev = dev;
4159 #ifdef CONFIG_NETPOLL
4160 spin_lock_init(&napi->poll_lock);
4161 napi->poll_owner = -1;
4162 #endif
4163 set_bit(NAPI_STATE_SCHED, &napi->state);
4164 }
4165 EXPORT_SYMBOL(netif_napi_add);
4166
4167 void netif_napi_del(struct napi_struct *napi)
4168 {
4169 struct sk_buff *skb, *next;
4170
4171 list_del_init(&napi->dev_list);
4172 napi_free_frags(napi);
4173
4174 for (skb = napi->gro_list; skb; skb = next) {
4175 next = skb->next;
4176 skb->next = NULL;
4177 kfree_skb(skb);
4178 }
4179
4180 napi->gro_list = NULL;
4181 napi->gro_count = 0;
4182 }
4183 EXPORT_SYMBOL(netif_napi_del);
4184
4185 static void net_rx_action(struct softirq_action *h)
4186 {
4187 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4188 unsigned long time_limit = jiffies + 2;
4189 int budget = netdev_budget;
4190 void *have;
4191
4192 local_irq_disable();
4193
4194 while (!list_empty(&sd->poll_list)) {
4195 struct napi_struct *n;
4196 int work, weight;
4197
4198 /* If softirq window is exhuasted then punt.
4199 * Allow this to run for 2 jiffies since which will allow
4200 * an average latency of 1.5/HZ.
4201 */
4202 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4203 goto softnet_break;
4204
4205 local_irq_enable();
4206
4207 /* Even though interrupts have been re-enabled, this
4208 * access is safe because interrupts can only add new
4209 * entries to the tail of this list, and only ->poll()
4210 * calls can remove this head entry from the list.
4211 */
4212 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4213
4214 have = netpoll_poll_lock(n);
4215
4216 weight = n->weight;
4217
4218 /* This NAPI_STATE_SCHED test is for avoiding a race
4219 * with netpoll's poll_napi(). Only the entity which
4220 * obtains the lock and sees NAPI_STATE_SCHED set will
4221 * actually make the ->poll() call. Therefore we avoid
4222 * accidentally calling ->poll() when NAPI is not scheduled.
4223 */
4224 work = 0;
4225 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4226 work = n->poll(n, weight);
4227 trace_napi_poll(n);
4228 }
4229
4230 WARN_ON_ONCE(work > weight);
4231
4232 budget -= work;
4233
4234 local_irq_disable();
4235
4236 /* Drivers must not modify the NAPI state if they
4237 * consume the entire weight. In such cases this code
4238 * still "owns" the NAPI instance and therefore can
4239 * move the instance around on the list at-will.
4240 */
4241 if (unlikely(work == weight)) {
4242 if (unlikely(napi_disable_pending(n))) {
4243 local_irq_enable();
4244 napi_complete(n);
4245 local_irq_disable();
4246 } else {
4247 if (n->gro_list) {
4248 /* flush too old packets
4249 * If HZ < 1000, flush all packets.
4250 */
4251 local_irq_enable();
4252 napi_gro_flush(n, HZ >= 1000);
4253 local_irq_disable();
4254 }
4255 list_move_tail(&n->poll_list, &sd->poll_list);
4256 }
4257 }
4258
4259 netpoll_poll_unlock(have);
4260 }
4261 out:
4262 net_rps_action_and_irq_enable(sd);
4263
4264 #ifdef CONFIG_NET_DMA
4265 /*
4266 * There may not be any more sk_buffs coming right now, so push
4267 * any pending DMA copies to hardware
4268 */
4269 dma_issue_pending_all();
4270 #endif
4271
4272 return;
4273
4274 softnet_break:
4275 sd->time_squeeze++;
4276 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4277 goto out;
4278 }
4279
4280 struct netdev_upper {
4281 struct net_device *dev;
4282 bool master;
4283 struct list_head list;
4284 struct rcu_head rcu;
4285 struct list_head search_list;
4286 };
4287
4288 static void __append_search_uppers(struct list_head *search_list,
4289 struct net_device *dev)
4290 {
4291 struct netdev_upper *upper;
4292
4293 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4294 /* check if this upper is not already in search list */
4295 if (list_empty(&upper->search_list))
4296 list_add_tail(&upper->search_list, search_list);
4297 }
4298 }
4299
4300 static bool __netdev_search_upper_dev(struct net_device *dev,
4301 struct net_device *upper_dev)
4302 {
4303 LIST_HEAD(search_list);
4304 struct netdev_upper *upper;
4305 struct netdev_upper *tmp;
4306 bool ret = false;
4307
4308 __append_search_uppers(&search_list, dev);
4309 list_for_each_entry(upper, &search_list, search_list) {
4310 if (upper->dev == upper_dev) {
4311 ret = true;
4312 break;
4313 }
4314 __append_search_uppers(&search_list, upper->dev);
4315 }
4316 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4317 INIT_LIST_HEAD(&upper->search_list);
4318 return ret;
4319 }
4320
4321 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4322 struct net_device *upper_dev)
4323 {
4324 struct netdev_upper *upper;
4325
4326 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4327 if (upper->dev == upper_dev)
4328 return upper;
4329 }
4330 return NULL;
4331 }
4332
4333 /**
4334 * netdev_has_upper_dev - Check if device is linked to an upper device
4335 * @dev: device
4336 * @upper_dev: upper device to check
4337 *
4338 * Find out if a device is linked to specified upper device and return true
4339 * in case it is. Note that this checks only immediate upper device,
4340 * not through a complete stack of devices. The caller must hold the RTNL lock.
4341 */
4342 bool netdev_has_upper_dev(struct net_device *dev,
4343 struct net_device *upper_dev)
4344 {
4345 ASSERT_RTNL();
4346
4347 return __netdev_find_upper(dev, upper_dev);
4348 }
4349 EXPORT_SYMBOL(netdev_has_upper_dev);
4350
4351 /**
4352 * netdev_has_any_upper_dev - Check if device is linked to some device
4353 * @dev: device
4354 *
4355 * Find out if a device is linked to an upper device and return true in case
4356 * it is. The caller must hold the RTNL lock.
4357 */
4358 bool netdev_has_any_upper_dev(struct net_device *dev)
4359 {
4360 ASSERT_RTNL();
4361
4362 return !list_empty(&dev->upper_dev_list);
4363 }
4364 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4365
4366 /**
4367 * netdev_master_upper_dev_get - Get master upper device
4368 * @dev: device
4369 *
4370 * Find a master upper device and return pointer to it or NULL in case
4371 * it's not there. The caller must hold the RTNL lock.
4372 */
4373 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4374 {
4375 struct netdev_upper *upper;
4376
4377 ASSERT_RTNL();
4378
4379 if (list_empty(&dev->upper_dev_list))
4380 return NULL;
4381
4382 upper = list_first_entry(&dev->upper_dev_list,
4383 struct netdev_upper, list);
4384 if (likely(upper->master))
4385 return upper->dev;
4386 return NULL;
4387 }
4388 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4389
4390 /**
4391 * netdev_master_upper_dev_get_rcu - Get master upper device
4392 * @dev: device
4393 *
4394 * Find a master upper device and return pointer to it or NULL in case
4395 * it's not there. The caller must hold the RCU read lock.
4396 */
4397 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4398 {
4399 struct netdev_upper *upper;
4400
4401 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4402 struct netdev_upper, list);
4403 if (upper && likely(upper->master))
4404 return upper->dev;
4405 return NULL;
4406 }
4407 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4408
4409 static int __netdev_upper_dev_link(struct net_device *dev,
4410 struct net_device *upper_dev, bool master)
4411 {
4412 struct netdev_upper *upper;
4413
4414 ASSERT_RTNL();
4415
4416 if (dev == upper_dev)
4417 return -EBUSY;
4418
4419 /* To prevent loops, check if dev is not upper device to upper_dev. */
4420 if (__netdev_search_upper_dev(upper_dev, dev))
4421 return -EBUSY;
4422
4423 if (__netdev_find_upper(dev, upper_dev))
4424 return -EEXIST;
4425
4426 if (master && netdev_master_upper_dev_get(dev))
4427 return -EBUSY;
4428
4429 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4430 if (!upper)
4431 return -ENOMEM;
4432
4433 upper->dev = upper_dev;
4434 upper->master = master;
4435 INIT_LIST_HEAD(&upper->search_list);
4436
4437 /* Ensure that master upper link is always the first item in list. */
4438 if (master)
4439 list_add_rcu(&upper->list, &dev->upper_dev_list);
4440 else
4441 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4442 dev_hold(upper_dev);
4443 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4444 return 0;
4445 }
4446
4447 /**
4448 * netdev_upper_dev_link - Add a link to the upper device
4449 * @dev: device
4450 * @upper_dev: new upper device
4451 *
4452 * Adds a link to device which is upper to this one. The caller must hold
4453 * the RTNL lock. On a failure a negative errno code is returned.
4454 * On success the reference counts are adjusted and the function
4455 * returns zero.
4456 */
4457 int netdev_upper_dev_link(struct net_device *dev,
4458 struct net_device *upper_dev)
4459 {
4460 return __netdev_upper_dev_link(dev, upper_dev, false);
4461 }
4462 EXPORT_SYMBOL(netdev_upper_dev_link);
4463
4464 /**
4465 * netdev_master_upper_dev_link - Add a master link to the upper device
4466 * @dev: device
4467 * @upper_dev: new upper device
4468 *
4469 * Adds a link to device which is upper to this one. In this case, only
4470 * one master upper device can be linked, although other non-master devices
4471 * might be linked as well. The caller must hold the RTNL lock.
4472 * On a failure a negative errno code is returned. On success the reference
4473 * counts are adjusted and the function returns zero.
4474 */
4475 int netdev_master_upper_dev_link(struct net_device *dev,
4476 struct net_device *upper_dev)
4477 {
4478 return __netdev_upper_dev_link(dev, upper_dev, true);
4479 }
4480 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4481
4482 /**
4483 * netdev_upper_dev_unlink - Removes a link to upper device
4484 * @dev: device
4485 * @upper_dev: new upper device
4486 *
4487 * Removes a link to device which is upper to this one. The caller must hold
4488 * the RTNL lock.
4489 */
4490 void netdev_upper_dev_unlink(struct net_device *dev,
4491 struct net_device *upper_dev)
4492 {
4493 struct netdev_upper *upper;
4494
4495 ASSERT_RTNL();
4496
4497 upper = __netdev_find_upper(dev, upper_dev);
4498 if (!upper)
4499 return;
4500 list_del_rcu(&upper->list);
4501 dev_put(upper_dev);
4502 kfree_rcu(upper, rcu);
4503 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4504 }
4505 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4506
4507 static void dev_change_rx_flags(struct net_device *dev, int flags)
4508 {
4509 const struct net_device_ops *ops = dev->netdev_ops;
4510
4511 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4512 ops->ndo_change_rx_flags(dev, flags);
4513 }
4514
4515 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4516 {
4517 unsigned int old_flags = dev->flags;
4518 kuid_t uid;
4519 kgid_t gid;
4520
4521 ASSERT_RTNL();
4522
4523 dev->flags |= IFF_PROMISC;
4524 dev->promiscuity += inc;
4525 if (dev->promiscuity == 0) {
4526 /*
4527 * Avoid overflow.
4528 * If inc causes overflow, untouch promisc and return error.
4529 */
4530 if (inc < 0)
4531 dev->flags &= ~IFF_PROMISC;
4532 else {
4533 dev->promiscuity -= inc;
4534 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4535 dev->name);
4536 return -EOVERFLOW;
4537 }
4538 }
4539 if (dev->flags != old_flags) {
4540 pr_info("device %s %s promiscuous mode\n",
4541 dev->name,
4542 dev->flags & IFF_PROMISC ? "entered" : "left");
4543 if (audit_enabled) {
4544 current_uid_gid(&uid, &gid);
4545 audit_log(current->audit_context, GFP_ATOMIC,
4546 AUDIT_ANOM_PROMISCUOUS,
4547 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4548 dev->name, (dev->flags & IFF_PROMISC),
4549 (old_flags & IFF_PROMISC),
4550 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4551 from_kuid(&init_user_ns, uid),
4552 from_kgid(&init_user_ns, gid),
4553 audit_get_sessionid(current));
4554 }
4555
4556 dev_change_rx_flags(dev, IFF_PROMISC);
4557 }
4558 return 0;
4559 }
4560
4561 /**
4562 * dev_set_promiscuity - update promiscuity count on a device
4563 * @dev: device
4564 * @inc: modifier
4565 *
4566 * Add or remove promiscuity from a device. While the count in the device
4567 * remains above zero the interface remains promiscuous. Once it hits zero
4568 * the device reverts back to normal filtering operation. A negative inc
4569 * value is used to drop promiscuity on the device.
4570 * Return 0 if successful or a negative errno code on error.
4571 */
4572 int dev_set_promiscuity(struct net_device *dev, int inc)
4573 {
4574 unsigned int old_flags = dev->flags;
4575 int err;
4576
4577 err = __dev_set_promiscuity(dev, inc);
4578 if (err < 0)
4579 return err;
4580 if (dev->flags != old_flags)
4581 dev_set_rx_mode(dev);
4582 return err;
4583 }
4584 EXPORT_SYMBOL(dev_set_promiscuity);
4585
4586 /**
4587 * dev_set_allmulti - update allmulti count on a device
4588 * @dev: device
4589 * @inc: modifier
4590 *
4591 * Add or remove reception of all multicast frames to a device. While the
4592 * count in the device remains above zero the interface remains listening
4593 * to all interfaces. Once it hits zero the device reverts back to normal
4594 * filtering operation. A negative @inc value is used to drop the counter
4595 * when releasing a resource needing all multicasts.
4596 * Return 0 if successful or a negative errno code on error.
4597 */
4598
4599 int dev_set_allmulti(struct net_device *dev, int inc)
4600 {
4601 unsigned int old_flags = dev->flags;
4602
4603 ASSERT_RTNL();
4604
4605 dev->flags |= IFF_ALLMULTI;
4606 dev->allmulti += inc;
4607 if (dev->allmulti == 0) {
4608 /*
4609 * Avoid overflow.
4610 * If inc causes overflow, untouch allmulti and return error.
4611 */
4612 if (inc < 0)
4613 dev->flags &= ~IFF_ALLMULTI;
4614 else {
4615 dev->allmulti -= inc;
4616 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4617 dev->name);
4618 return -EOVERFLOW;
4619 }
4620 }
4621 if (dev->flags ^ old_flags) {
4622 dev_change_rx_flags(dev, IFF_ALLMULTI);
4623 dev_set_rx_mode(dev);
4624 }
4625 return 0;
4626 }
4627 EXPORT_SYMBOL(dev_set_allmulti);
4628
4629 /*
4630 * Upload unicast and multicast address lists to device and
4631 * configure RX filtering. When the device doesn't support unicast
4632 * filtering it is put in promiscuous mode while unicast addresses
4633 * are present.
4634 */
4635 void __dev_set_rx_mode(struct net_device *dev)
4636 {
4637 const struct net_device_ops *ops = dev->netdev_ops;
4638
4639 /* dev_open will call this function so the list will stay sane. */
4640 if (!(dev->flags&IFF_UP))
4641 return;
4642
4643 if (!netif_device_present(dev))
4644 return;
4645
4646 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4647 /* Unicast addresses changes may only happen under the rtnl,
4648 * therefore calling __dev_set_promiscuity here is safe.
4649 */
4650 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4651 __dev_set_promiscuity(dev, 1);
4652 dev->uc_promisc = true;
4653 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4654 __dev_set_promiscuity(dev, -1);
4655 dev->uc_promisc = false;
4656 }
4657 }
4658
4659 if (ops->ndo_set_rx_mode)
4660 ops->ndo_set_rx_mode(dev);
4661 }
4662
4663 void dev_set_rx_mode(struct net_device *dev)
4664 {
4665 netif_addr_lock_bh(dev);
4666 __dev_set_rx_mode(dev);
4667 netif_addr_unlock_bh(dev);
4668 }
4669
4670 /**
4671 * dev_get_flags - get flags reported to userspace
4672 * @dev: device
4673 *
4674 * Get the combination of flag bits exported through APIs to userspace.
4675 */
4676 unsigned int dev_get_flags(const struct net_device *dev)
4677 {
4678 unsigned int flags;
4679
4680 flags = (dev->flags & ~(IFF_PROMISC |
4681 IFF_ALLMULTI |
4682 IFF_RUNNING |
4683 IFF_LOWER_UP |
4684 IFF_DORMANT)) |
4685 (dev->gflags & (IFF_PROMISC |
4686 IFF_ALLMULTI));
4687
4688 if (netif_running(dev)) {
4689 if (netif_oper_up(dev))
4690 flags |= IFF_RUNNING;
4691 if (netif_carrier_ok(dev))
4692 flags |= IFF_LOWER_UP;
4693 if (netif_dormant(dev))
4694 flags |= IFF_DORMANT;
4695 }
4696
4697 return flags;
4698 }
4699 EXPORT_SYMBOL(dev_get_flags);
4700
4701 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4702 {
4703 unsigned int old_flags = dev->flags;
4704 int ret;
4705
4706 ASSERT_RTNL();
4707
4708 /*
4709 * Set the flags on our device.
4710 */
4711
4712 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4713 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4714 IFF_AUTOMEDIA)) |
4715 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4716 IFF_ALLMULTI));
4717
4718 /*
4719 * Load in the correct multicast list now the flags have changed.
4720 */
4721
4722 if ((old_flags ^ flags) & IFF_MULTICAST)
4723 dev_change_rx_flags(dev, IFF_MULTICAST);
4724
4725 dev_set_rx_mode(dev);
4726
4727 /*
4728 * Have we downed the interface. We handle IFF_UP ourselves
4729 * according to user attempts to set it, rather than blindly
4730 * setting it.
4731 */
4732
4733 ret = 0;
4734 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4735 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4736
4737 if (!ret)
4738 dev_set_rx_mode(dev);
4739 }
4740
4741 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4742 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4743
4744 dev->gflags ^= IFF_PROMISC;
4745 dev_set_promiscuity(dev, inc);
4746 }
4747
4748 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4749 is important. Some (broken) drivers set IFF_PROMISC, when
4750 IFF_ALLMULTI is requested not asking us and not reporting.
4751 */
4752 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4753 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4754
4755 dev->gflags ^= IFF_ALLMULTI;
4756 dev_set_allmulti(dev, inc);
4757 }
4758
4759 return ret;
4760 }
4761
4762 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4763 {
4764 unsigned int changes = dev->flags ^ old_flags;
4765
4766 if (changes & IFF_UP) {
4767 if (dev->flags & IFF_UP)
4768 call_netdevice_notifiers(NETDEV_UP, dev);
4769 else
4770 call_netdevice_notifiers(NETDEV_DOWN, dev);
4771 }
4772
4773 if (dev->flags & IFF_UP &&
4774 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4775 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4776 }
4777
4778 /**
4779 * dev_change_flags - change device settings
4780 * @dev: device
4781 * @flags: device state flags
4782 *
4783 * Change settings on device based state flags. The flags are
4784 * in the userspace exported format.
4785 */
4786 int dev_change_flags(struct net_device *dev, unsigned int flags)
4787 {
4788 int ret;
4789 unsigned int changes, old_flags = dev->flags;
4790
4791 ret = __dev_change_flags(dev, flags);
4792 if (ret < 0)
4793 return ret;
4794
4795 changes = old_flags ^ dev->flags;
4796 if (changes)
4797 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4798
4799 __dev_notify_flags(dev, old_flags);
4800 return ret;
4801 }
4802 EXPORT_SYMBOL(dev_change_flags);
4803
4804 /**
4805 * dev_set_mtu - Change maximum transfer unit
4806 * @dev: device
4807 * @new_mtu: new transfer unit
4808 *
4809 * Change the maximum transfer size of the network device.
4810 */
4811 int dev_set_mtu(struct net_device *dev, int new_mtu)
4812 {
4813 const struct net_device_ops *ops = dev->netdev_ops;
4814 int err;
4815
4816 if (new_mtu == dev->mtu)
4817 return 0;
4818
4819 /* MTU must be positive. */
4820 if (new_mtu < 0)
4821 return -EINVAL;
4822
4823 if (!netif_device_present(dev))
4824 return -ENODEV;
4825
4826 err = 0;
4827 if (ops->ndo_change_mtu)
4828 err = ops->ndo_change_mtu(dev, new_mtu);
4829 else
4830 dev->mtu = new_mtu;
4831
4832 if (!err)
4833 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4834 return err;
4835 }
4836 EXPORT_SYMBOL(dev_set_mtu);
4837
4838 /**
4839 * dev_set_group - Change group this device belongs to
4840 * @dev: device
4841 * @new_group: group this device should belong to
4842 */
4843 void dev_set_group(struct net_device *dev, int new_group)
4844 {
4845 dev->group = new_group;
4846 }
4847 EXPORT_SYMBOL(dev_set_group);
4848
4849 /**
4850 * dev_set_mac_address - Change Media Access Control Address
4851 * @dev: device
4852 * @sa: new address
4853 *
4854 * Change the hardware (MAC) address of the device
4855 */
4856 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4857 {
4858 const struct net_device_ops *ops = dev->netdev_ops;
4859 int err;
4860
4861 if (!ops->ndo_set_mac_address)
4862 return -EOPNOTSUPP;
4863 if (sa->sa_family != dev->type)
4864 return -EINVAL;
4865 if (!netif_device_present(dev))
4866 return -ENODEV;
4867 err = ops->ndo_set_mac_address(dev, sa);
4868 if (err)
4869 return err;
4870 dev->addr_assign_type = NET_ADDR_SET;
4871 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4872 add_device_randomness(dev->dev_addr, dev->addr_len);
4873 return 0;
4874 }
4875 EXPORT_SYMBOL(dev_set_mac_address);
4876
4877 /**
4878 * dev_change_carrier - Change device carrier
4879 * @dev: device
4880 * @new_carrier: new value
4881 *
4882 * Change device carrier
4883 */
4884 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4885 {
4886 const struct net_device_ops *ops = dev->netdev_ops;
4887
4888 if (!ops->ndo_change_carrier)
4889 return -EOPNOTSUPP;
4890 if (!netif_device_present(dev))
4891 return -ENODEV;
4892 return ops->ndo_change_carrier(dev, new_carrier);
4893 }
4894 EXPORT_SYMBOL(dev_change_carrier);
4895
4896 /**
4897 * dev_new_index - allocate an ifindex
4898 * @net: the applicable net namespace
4899 *
4900 * Returns a suitable unique value for a new device interface
4901 * number. The caller must hold the rtnl semaphore or the
4902 * dev_base_lock to be sure it remains unique.
4903 */
4904 static int dev_new_index(struct net *net)
4905 {
4906 int ifindex = net->ifindex;
4907 for (;;) {
4908 if (++ifindex <= 0)
4909 ifindex = 1;
4910 if (!__dev_get_by_index(net, ifindex))
4911 return net->ifindex = ifindex;
4912 }
4913 }
4914
4915 /* Delayed registration/unregisteration */
4916 static LIST_HEAD(net_todo_list);
4917
4918 static void net_set_todo(struct net_device *dev)
4919 {
4920 list_add_tail(&dev->todo_list, &net_todo_list);
4921 }
4922
4923 static void rollback_registered_many(struct list_head *head)
4924 {
4925 struct net_device *dev, *tmp;
4926
4927 BUG_ON(dev_boot_phase);
4928 ASSERT_RTNL();
4929
4930 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4931 /* Some devices call without registering
4932 * for initialization unwind. Remove those
4933 * devices and proceed with the remaining.
4934 */
4935 if (dev->reg_state == NETREG_UNINITIALIZED) {
4936 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4937 dev->name, dev);
4938
4939 WARN_ON(1);
4940 list_del(&dev->unreg_list);
4941 continue;
4942 }
4943 dev->dismantle = true;
4944 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4945 }
4946
4947 /* If device is running, close it first. */
4948 dev_close_many(head);
4949
4950 list_for_each_entry(dev, head, unreg_list) {
4951 /* And unlink it from device chain. */
4952 unlist_netdevice(dev);
4953
4954 dev->reg_state = NETREG_UNREGISTERING;
4955 }
4956
4957 synchronize_net();
4958
4959 list_for_each_entry(dev, head, unreg_list) {
4960 /* Shutdown queueing discipline. */
4961 dev_shutdown(dev);
4962
4963
4964 /* Notify protocols, that we are about to destroy
4965 this device. They should clean all the things.
4966 */
4967 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4968
4969 if (!dev->rtnl_link_ops ||
4970 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4971 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4972
4973 /*
4974 * Flush the unicast and multicast chains
4975 */
4976 dev_uc_flush(dev);
4977 dev_mc_flush(dev);
4978
4979 if (dev->netdev_ops->ndo_uninit)
4980 dev->netdev_ops->ndo_uninit(dev);
4981
4982 /* Notifier chain MUST detach us all upper devices. */
4983 WARN_ON(netdev_has_any_upper_dev(dev));
4984
4985 /* Remove entries from kobject tree */
4986 netdev_unregister_kobject(dev);
4987 #ifdef CONFIG_XPS
4988 /* Remove XPS queueing entries */
4989 netif_reset_xps_queues_gt(dev, 0);
4990 #endif
4991 }
4992
4993 synchronize_net();
4994
4995 list_for_each_entry(dev, head, unreg_list)
4996 dev_put(dev);
4997 }
4998
4999 static void rollback_registered(struct net_device *dev)
5000 {
5001 LIST_HEAD(single);
5002
5003 list_add(&dev->unreg_list, &single);
5004 rollback_registered_many(&single);
5005 list_del(&single);
5006 }
5007
5008 static netdev_features_t netdev_fix_features(struct net_device *dev,
5009 netdev_features_t features)
5010 {
5011 /* Fix illegal checksum combinations */
5012 if ((features & NETIF_F_HW_CSUM) &&
5013 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5014 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5015 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5016 }
5017
5018 /* TSO requires that SG is present as well. */
5019 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5020 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5021 features &= ~NETIF_F_ALL_TSO;
5022 }
5023
5024 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5025 !(features & NETIF_F_IP_CSUM)) {
5026 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5027 features &= ~NETIF_F_TSO;
5028 features &= ~NETIF_F_TSO_ECN;
5029 }
5030
5031 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5032 !(features & NETIF_F_IPV6_CSUM)) {
5033 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5034 features &= ~NETIF_F_TSO6;
5035 }
5036
5037 /* TSO ECN requires that TSO is present as well. */
5038 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5039 features &= ~NETIF_F_TSO_ECN;
5040
5041 /* Software GSO depends on SG. */
5042 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5043 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5044 features &= ~NETIF_F_GSO;
5045 }
5046
5047 /* UFO needs SG and checksumming */
5048 if (features & NETIF_F_UFO) {
5049 /* maybe split UFO into V4 and V6? */
5050 if (!((features & NETIF_F_GEN_CSUM) ||
5051 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5052 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5053 netdev_dbg(dev,
5054 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5055 features &= ~NETIF_F_UFO;
5056 }
5057
5058 if (!(features & NETIF_F_SG)) {
5059 netdev_dbg(dev,
5060 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5061 features &= ~NETIF_F_UFO;
5062 }
5063 }
5064
5065 return features;
5066 }
5067
5068 int __netdev_update_features(struct net_device *dev)
5069 {
5070 netdev_features_t features;
5071 int err = 0;
5072
5073 ASSERT_RTNL();
5074
5075 features = netdev_get_wanted_features(dev);
5076
5077 if (dev->netdev_ops->ndo_fix_features)
5078 features = dev->netdev_ops->ndo_fix_features(dev, features);
5079
5080 /* driver might be less strict about feature dependencies */
5081 features = netdev_fix_features(dev, features);
5082
5083 if (dev->features == features)
5084 return 0;
5085
5086 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5087 &dev->features, &features);
5088
5089 if (dev->netdev_ops->ndo_set_features)
5090 err = dev->netdev_ops->ndo_set_features(dev, features);
5091
5092 if (unlikely(err < 0)) {
5093 netdev_err(dev,
5094 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5095 err, &features, &dev->features);
5096 return -1;
5097 }
5098
5099 if (!err)
5100 dev->features = features;
5101
5102 return 1;
5103 }
5104
5105 /**
5106 * netdev_update_features - recalculate device features
5107 * @dev: the device to check
5108 *
5109 * Recalculate dev->features set and send notifications if it
5110 * has changed. Should be called after driver or hardware dependent
5111 * conditions might have changed that influence the features.
5112 */
5113 void netdev_update_features(struct net_device *dev)
5114 {
5115 if (__netdev_update_features(dev))
5116 netdev_features_change(dev);
5117 }
5118 EXPORT_SYMBOL(netdev_update_features);
5119
5120 /**
5121 * netdev_change_features - recalculate device features
5122 * @dev: the device to check
5123 *
5124 * Recalculate dev->features set and send notifications even
5125 * if they have not changed. Should be called instead of
5126 * netdev_update_features() if also dev->vlan_features might
5127 * have changed to allow the changes to be propagated to stacked
5128 * VLAN devices.
5129 */
5130 void netdev_change_features(struct net_device *dev)
5131 {
5132 __netdev_update_features(dev);
5133 netdev_features_change(dev);
5134 }
5135 EXPORT_SYMBOL(netdev_change_features);
5136
5137 /**
5138 * netif_stacked_transfer_operstate - transfer operstate
5139 * @rootdev: the root or lower level device to transfer state from
5140 * @dev: the device to transfer operstate to
5141 *
5142 * Transfer operational state from root to device. This is normally
5143 * called when a stacking relationship exists between the root
5144 * device and the device(a leaf device).
5145 */
5146 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5147 struct net_device *dev)
5148 {
5149 if (rootdev->operstate == IF_OPER_DORMANT)
5150 netif_dormant_on(dev);
5151 else
5152 netif_dormant_off(dev);
5153
5154 if (netif_carrier_ok(rootdev)) {
5155 if (!netif_carrier_ok(dev))
5156 netif_carrier_on(dev);
5157 } else {
5158 if (netif_carrier_ok(dev))
5159 netif_carrier_off(dev);
5160 }
5161 }
5162 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5163
5164 #ifdef CONFIG_RPS
5165 static int netif_alloc_rx_queues(struct net_device *dev)
5166 {
5167 unsigned int i, count = dev->num_rx_queues;
5168 struct netdev_rx_queue *rx;
5169
5170 BUG_ON(count < 1);
5171
5172 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5173 if (!rx)
5174 return -ENOMEM;
5175
5176 dev->_rx = rx;
5177
5178 for (i = 0; i < count; i++)
5179 rx[i].dev = dev;
5180 return 0;
5181 }
5182 #endif
5183
5184 static void netdev_init_one_queue(struct net_device *dev,
5185 struct netdev_queue *queue, void *_unused)
5186 {
5187 /* Initialize queue lock */
5188 spin_lock_init(&queue->_xmit_lock);
5189 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5190 queue->xmit_lock_owner = -1;
5191 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5192 queue->dev = dev;
5193 #ifdef CONFIG_BQL
5194 dql_init(&queue->dql, HZ);
5195 #endif
5196 }
5197
5198 static int netif_alloc_netdev_queues(struct net_device *dev)
5199 {
5200 unsigned int count = dev->num_tx_queues;
5201 struct netdev_queue *tx;
5202
5203 BUG_ON(count < 1);
5204
5205 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5206 if (!tx)
5207 return -ENOMEM;
5208
5209 dev->_tx = tx;
5210
5211 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5212 spin_lock_init(&dev->tx_global_lock);
5213
5214 return 0;
5215 }
5216
5217 /**
5218 * register_netdevice - register a network device
5219 * @dev: device to register
5220 *
5221 * Take a completed network device structure and add it to the kernel
5222 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5223 * chain. 0 is returned on success. A negative errno code is returned
5224 * on a failure to set up the device, or if the name is a duplicate.
5225 *
5226 * Callers must hold the rtnl semaphore. You may want
5227 * register_netdev() instead of this.
5228 *
5229 * BUGS:
5230 * The locking appears insufficient to guarantee two parallel registers
5231 * will not get the same name.
5232 */
5233
5234 int register_netdevice(struct net_device *dev)
5235 {
5236 int ret;
5237 struct net *net = dev_net(dev);
5238
5239 BUG_ON(dev_boot_phase);
5240 ASSERT_RTNL();
5241
5242 might_sleep();
5243
5244 /* When net_device's are persistent, this will be fatal. */
5245 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5246 BUG_ON(!net);
5247
5248 spin_lock_init(&dev->addr_list_lock);
5249 netdev_set_addr_lockdep_class(dev);
5250
5251 dev->iflink = -1;
5252
5253 ret = dev_get_valid_name(net, dev, dev->name);
5254 if (ret < 0)
5255 goto out;
5256
5257 /* Init, if this function is available */
5258 if (dev->netdev_ops->ndo_init) {
5259 ret = dev->netdev_ops->ndo_init(dev);
5260 if (ret) {
5261 if (ret > 0)
5262 ret = -EIO;
5263 goto out;
5264 }
5265 }
5266
5267 if (((dev->hw_features | dev->features) &
5268 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5269 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5270 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5271 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5272 ret = -EINVAL;
5273 goto err_uninit;
5274 }
5275
5276 ret = -EBUSY;
5277 if (!dev->ifindex)
5278 dev->ifindex = dev_new_index(net);
5279 else if (__dev_get_by_index(net, dev->ifindex))
5280 goto err_uninit;
5281
5282 if (dev->iflink == -1)
5283 dev->iflink = dev->ifindex;
5284
5285 /* Transfer changeable features to wanted_features and enable
5286 * software offloads (GSO and GRO).
5287 */
5288 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5289 dev->features |= NETIF_F_SOFT_FEATURES;
5290 dev->wanted_features = dev->features & dev->hw_features;
5291
5292 /* Turn on no cache copy if HW is doing checksum */
5293 if (!(dev->flags & IFF_LOOPBACK)) {
5294 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5295 if (dev->features & NETIF_F_ALL_CSUM) {
5296 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5297 dev->features |= NETIF_F_NOCACHE_COPY;
5298 }
5299 }
5300
5301 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5302 */
5303 dev->vlan_features |= NETIF_F_HIGHDMA;
5304
5305 /* Make NETIF_F_SG inheritable to tunnel devices.
5306 */
5307 dev->hw_enc_features |= NETIF_F_SG;
5308
5309 /* Make NETIF_F_SG inheritable to MPLS.
5310 */
5311 dev->mpls_features |= NETIF_F_SG;
5312
5313 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5314 ret = notifier_to_errno(ret);
5315 if (ret)
5316 goto err_uninit;
5317
5318 ret = netdev_register_kobject(dev);
5319 if (ret)
5320 goto err_uninit;
5321 dev->reg_state = NETREG_REGISTERED;
5322
5323 __netdev_update_features(dev);
5324
5325 /*
5326 * Default initial state at registry is that the
5327 * device is present.
5328 */
5329
5330 set_bit(__LINK_STATE_PRESENT, &dev->state);
5331
5332 linkwatch_init_dev(dev);
5333
5334 dev_init_scheduler(dev);
5335 dev_hold(dev);
5336 list_netdevice(dev);
5337 add_device_randomness(dev->dev_addr, dev->addr_len);
5338
5339 /* If the device has permanent device address, driver should
5340 * set dev_addr and also addr_assign_type should be set to
5341 * NET_ADDR_PERM (default value).
5342 */
5343 if (dev->addr_assign_type == NET_ADDR_PERM)
5344 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5345
5346 /* Notify protocols, that a new device appeared. */
5347 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5348 ret = notifier_to_errno(ret);
5349 if (ret) {
5350 rollback_registered(dev);
5351 dev->reg_state = NETREG_UNREGISTERED;
5352 }
5353 /*
5354 * Prevent userspace races by waiting until the network
5355 * device is fully setup before sending notifications.
5356 */
5357 if (!dev->rtnl_link_ops ||
5358 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5359 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5360
5361 out:
5362 return ret;
5363
5364 err_uninit:
5365 if (dev->netdev_ops->ndo_uninit)
5366 dev->netdev_ops->ndo_uninit(dev);
5367 goto out;
5368 }
5369 EXPORT_SYMBOL(register_netdevice);
5370
5371 /**
5372 * init_dummy_netdev - init a dummy network device for NAPI
5373 * @dev: device to init
5374 *
5375 * This takes a network device structure and initialize the minimum
5376 * amount of fields so it can be used to schedule NAPI polls without
5377 * registering a full blown interface. This is to be used by drivers
5378 * that need to tie several hardware interfaces to a single NAPI
5379 * poll scheduler due to HW limitations.
5380 */
5381 int init_dummy_netdev(struct net_device *dev)
5382 {
5383 /* Clear everything. Note we don't initialize spinlocks
5384 * are they aren't supposed to be taken by any of the
5385 * NAPI code and this dummy netdev is supposed to be
5386 * only ever used for NAPI polls
5387 */
5388 memset(dev, 0, sizeof(struct net_device));
5389
5390 /* make sure we BUG if trying to hit standard
5391 * register/unregister code path
5392 */
5393 dev->reg_state = NETREG_DUMMY;
5394
5395 /* NAPI wants this */
5396 INIT_LIST_HEAD(&dev->napi_list);
5397
5398 /* a dummy interface is started by default */
5399 set_bit(__LINK_STATE_PRESENT, &dev->state);
5400 set_bit(__LINK_STATE_START, &dev->state);
5401
5402 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5403 * because users of this 'device' dont need to change
5404 * its refcount.
5405 */
5406
5407 return 0;
5408 }
5409 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5410
5411
5412 /**
5413 * register_netdev - register a network device
5414 * @dev: device to register
5415 *
5416 * Take a completed network device structure and add it to the kernel
5417 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5418 * chain. 0 is returned on success. A negative errno code is returned
5419 * on a failure to set up the device, or if the name is a duplicate.
5420 *
5421 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5422 * and expands the device name if you passed a format string to
5423 * alloc_netdev.
5424 */
5425 int register_netdev(struct net_device *dev)
5426 {
5427 int err;
5428
5429 rtnl_lock();
5430 err = register_netdevice(dev);
5431 rtnl_unlock();
5432 return err;
5433 }
5434 EXPORT_SYMBOL(register_netdev);
5435
5436 int netdev_refcnt_read(const struct net_device *dev)
5437 {
5438 int i, refcnt = 0;
5439
5440 for_each_possible_cpu(i)
5441 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5442 return refcnt;
5443 }
5444 EXPORT_SYMBOL(netdev_refcnt_read);
5445
5446 /**
5447 * netdev_wait_allrefs - wait until all references are gone.
5448 * @dev: target net_device
5449 *
5450 * This is called when unregistering network devices.
5451 *
5452 * Any protocol or device that holds a reference should register
5453 * for netdevice notification, and cleanup and put back the
5454 * reference if they receive an UNREGISTER event.
5455 * We can get stuck here if buggy protocols don't correctly
5456 * call dev_put.
5457 */
5458 static void netdev_wait_allrefs(struct net_device *dev)
5459 {
5460 unsigned long rebroadcast_time, warning_time;
5461 int refcnt;
5462
5463 linkwatch_forget_dev(dev);
5464
5465 rebroadcast_time = warning_time = jiffies;
5466 refcnt = netdev_refcnt_read(dev);
5467
5468 while (refcnt != 0) {
5469 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5470 rtnl_lock();
5471
5472 /* Rebroadcast unregister notification */
5473 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5474
5475 __rtnl_unlock();
5476 rcu_barrier();
5477 rtnl_lock();
5478
5479 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5480 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5481 &dev->state)) {
5482 /* We must not have linkwatch events
5483 * pending on unregister. If this
5484 * happens, we simply run the queue
5485 * unscheduled, resulting in a noop
5486 * for this device.
5487 */
5488 linkwatch_run_queue();
5489 }
5490
5491 __rtnl_unlock();
5492
5493 rebroadcast_time = jiffies;
5494 }
5495
5496 msleep(250);
5497
5498 refcnt = netdev_refcnt_read(dev);
5499
5500 if (time_after(jiffies, warning_time + 10 * HZ)) {
5501 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5502 dev->name, refcnt);
5503 warning_time = jiffies;
5504 }
5505 }
5506 }
5507
5508 /* The sequence is:
5509 *
5510 * rtnl_lock();
5511 * ...
5512 * register_netdevice(x1);
5513 * register_netdevice(x2);
5514 * ...
5515 * unregister_netdevice(y1);
5516 * unregister_netdevice(y2);
5517 * ...
5518 * rtnl_unlock();
5519 * free_netdev(y1);
5520 * free_netdev(y2);
5521 *
5522 * We are invoked by rtnl_unlock().
5523 * This allows us to deal with problems:
5524 * 1) We can delete sysfs objects which invoke hotplug
5525 * without deadlocking with linkwatch via keventd.
5526 * 2) Since we run with the RTNL semaphore not held, we can sleep
5527 * safely in order to wait for the netdev refcnt to drop to zero.
5528 *
5529 * We must not return until all unregister events added during
5530 * the interval the lock was held have been completed.
5531 */
5532 void netdev_run_todo(void)
5533 {
5534 struct list_head list;
5535
5536 /* Snapshot list, allow later requests */
5537 list_replace_init(&net_todo_list, &list);
5538
5539 __rtnl_unlock();
5540
5541
5542 /* Wait for rcu callbacks to finish before next phase */
5543 if (!list_empty(&list))
5544 rcu_barrier();
5545
5546 while (!list_empty(&list)) {
5547 struct net_device *dev
5548 = list_first_entry(&list, struct net_device, todo_list);
5549 list_del(&dev->todo_list);
5550
5551 rtnl_lock();
5552 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5553 __rtnl_unlock();
5554
5555 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5556 pr_err("network todo '%s' but state %d\n",
5557 dev->name, dev->reg_state);
5558 dump_stack();
5559 continue;
5560 }
5561
5562 dev->reg_state = NETREG_UNREGISTERED;
5563
5564 on_each_cpu(flush_backlog, dev, 1);
5565
5566 netdev_wait_allrefs(dev);
5567
5568 /* paranoia */
5569 BUG_ON(netdev_refcnt_read(dev));
5570 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5571 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5572 WARN_ON(dev->dn_ptr);
5573
5574 if (dev->destructor)
5575 dev->destructor(dev);
5576
5577 /* Free network device */
5578 kobject_put(&dev->dev.kobj);
5579 }
5580 }
5581
5582 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5583 * fields in the same order, with only the type differing.
5584 */
5585 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5586 const struct net_device_stats *netdev_stats)
5587 {
5588 #if BITS_PER_LONG == 64
5589 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5590 memcpy(stats64, netdev_stats, sizeof(*stats64));
5591 #else
5592 size_t i, n = sizeof(*stats64) / sizeof(u64);
5593 const unsigned long *src = (const unsigned long *)netdev_stats;
5594 u64 *dst = (u64 *)stats64;
5595
5596 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5597 sizeof(*stats64) / sizeof(u64));
5598 for (i = 0; i < n; i++)
5599 dst[i] = src[i];
5600 #endif
5601 }
5602 EXPORT_SYMBOL(netdev_stats_to_stats64);
5603
5604 /**
5605 * dev_get_stats - get network device statistics
5606 * @dev: device to get statistics from
5607 * @storage: place to store stats
5608 *
5609 * Get network statistics from device. Return @storage.
5610 * The device driver may provide its own method by setting
5611 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5612 * otherwise the internal statistics structure is used.
5613 */
5614 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5615 struct rtnl_link_stats64 *storage)
5616 {
5617 const struct net_device_ops *ops = dev->netdev_ops;
5618
5619 if (ops->ndo_get_stats64) {
5620 memset(storage, 0, sizeof(*storage));
5621 ops->ndo_get_stats64(dev, storage);
5622 } else if (ops->ndo_get_stats) {
5623 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5624 } else {
5625 netdev_stats_to_stats64(storage, &dev->stats);
5626 }
5627 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5628 return storage;
5629 }
5630 EXPORT_SYMBOL(dev_get_stats);
5631
5632 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5633 {
5634 struct netdev_queue *queue = dev_ingress_queue(dev);
5635
5636 #ifdef CONFIG_NET_CLS_ACT
5637 if (queue)
5638 return queue;
5639 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5640 if (!queue)
5641 return NULL;
5642 netdev_init_one_queue(dev, queue, NULL);
5643 queue->qdisc = &noop_qdisc;
5644 queue->qdisc_sleeping = &noop_qdisc;
5645 rcu_assign_pointer(dev->ingress_queue, queue);
5646 #endif
5647 return queue;
5648 }
5649
5650 static const struct ethtool_ops default_ethtool_ops;
5651
5652 void netdev_set_default_ethtool_ops(struct net_device *dev,
5653 const struct ethtool_ops *ops)
5654 {
5655 if (dev->ethtool_ops == &default_ethtool_ops)
5656 dev->ethtool_ops = ops;
5657 }
5658 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5659
5660 /**
5661 * alloc_netdev_mqs - allocate network device
5662 * @sizeof_priv: size of private data to allocate space for
5663 * @name: device name format string
5664 * @setup: callback to initialize device
5665 * @txqs: the number of TX subqueues to allocate
5666 * @rxqs: the number of RX subqueues to allocate
5667 *
5668 * Allocates a struct net_device with private data area for driver use
5669 * and performs basic initialization. Also allocates subquue structs
5670 * for each queue on the device.
5671 */
5672 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5673 void (*setup)(struct net_device *),
5674 unsigned int txqs, unsigned int rxqs)
5675 {
5676 struct net_device *dev;
5677 size_t alloc_size;
5678 struct net_device *p;
5679
5680 BUG_ON(strlen(name) >= sizeof(dev->name));
5681
5682 if (txqs < 1) {
5683 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5684 return NULL;
5685 }
5686
5687 #ifdef CONFIG_RPS
5688 if (rxqs < 1) {
5689 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5690 return NULL;
5691 }
5692 #endif
5693
5694 alloc_size = sizeof(struct net_device);
5695 if (sizeof_priv) {
5696 /* ensure 32-byte alignment of private area */
5697 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5698 alloc_size += sizeof_priv;
5699 }
5700 /* ensure 32-byte alignment of whole construct */
5701 alloc_size += NETDEV_ALIGN - 1;
5702
5703 p = kzalloc(alloc_size, GFP_KERNEL);
5704 if (!p)
5705 return NULL;
5706
5707 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5708 dev->padded = (char *)dev - (char *)p;
5709
5710 dev->pcpu_refcnt = alloc_percpu(int);
5711 if (!dev->pcpu_refcnt)
5712 goto free_p;
5713
5714 if (dev_addr_init(dev))
5715 goto free_pcpu;
5716
5717 dev_mc_init(dev);
5718 dev_uc_init(dev);
5719
5720 dev_net_set(dev, &init_net);
5721
5722 dev->gso_max_size = GSO_MAX_SIZE;
5723 dev->gso_max_segs = GSO_MAX_SEGS;
5724
5725 INIT_LIST_HEAD(&dev->napi_list);
5726 INIT_LIST_HEAD(&dev->unreg_list);
5727 INIT_LIST_HEAD(&dev->link_watch_list);
5728 INIT_LIST_HEAD(&dev->upper_dev_list);
5729 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5730 setup(dev);
5731
5732 dev->num_tx_queues = txqs;
5733 dev->real_num_tx_queues = txqs;
5734 if (netif_alloc_netdev_queues(dev))
5735 goto free_all;
5736
5737 #ifdef CONFIG_RPS
5738 dev->num_rx_queues = rxqs;
5739 dev->real_num_rx_queues = rxqs;
5740 if (netif_alloc_rx_queues(dev))
5741 goto free_all;
5742 #endif
5743
5744 strcpy(dev->name, name);
5745 dev->group = INIT_NETDEV_GROUP;
5746 if (!dev->ethtool_ops)
5747 dev->ethtool_ops = &default_ethtool_ops;
5748 return dev;
5749
5750 free_all:
5751 free_netdev(dev);
5752 return NULL;
5753
5754 free_pcpu:
5755 free_percpu(dev->pcpu_refcnt);
5756 kfree(dev->_tx);
5757 #ifdef CONFIG_RPS
5758 kfree(dev->_rx);
5759 #endif
5760
5761 free_p:
5762 kfree(p);
5763 return NULL;
5764 }
5765 EXPORT_SYMBOL(alloc_netdev_mqs);
5766
5767 /**
5768 * free_netdev - free network device
5769 * @dev: device
5770 *
5771 * This function does the last stage of destroying an allocated device
5772 * interface. The reference to the device object is released.
5773 * If this is the last reference then it will be freed.
5774 */
5775 void free_netdev(struct net_device *dev)
5776 {
5777 struct napi_struct *p, *n;
5778
5779 release_net(dev_net(dev));
5780
5781 kfree(dev->_tx);
5782 #ifdef CONFIG_RPS
5783 kfree(dev->_rx);
5784 #endif
5785
5786 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5787
5788 /* Flush device addresses */
5789 dev_addr_flush(dev);
5790
5791 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5792 netif_napi_del(p);
5793
5794 free_percpu(dev->pcpu_refcnt);
5795 dev->pcpu_refcnt = NULL;
5796
5797 /* Compatibility with error handling in drivers */
5798 if (dev->reg_state == NETREG_UNINITIALIZED) {
5799 kfree((char *)dev - dev->padded);
5800 return;
5801 }
5802
5803 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5804 dev->reg_state = NETREG_RELEASED;
5805
5806 /* will free via device release */
5807 put_device(&dev->dev);
5808 }
5809 EXPORT_SYMBOL(free_netdev);
5810
5811 /**
5812 * synchronize_net - Synchronize with packet receive processing
5813 *
5814 * Wait for packets currently being received to be done.
5815 * Does not block later packets from starting.
5816 */
5817 void synchronize_net(void)
5818 {
5819 might_sleep();
5820 if (rtnl_is_locked())
5821 synchronize_rcu_expedited();
5822 else
5823 synchronize_rcu();
5824 }
5825 EXPORT_SYMBOL(synchronize_net);
5826
5827 /**
5828 * unregister_netdevice_queue - remove device from the kernel
5829 * @dev: device
5830 * @head: list
5831 *
5832 * This function shuts down a device interface and removes it
5833 * from the kernel tables.
5834 * If head not NULL, device is queued to be unregistered later.
5835 *
5836 * Callers must hold the rtnl semaphore. You may want
5837 * unregister_netdev() instead of this.
5838 */
5839
5840 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5841 {
5842 ASSERT_RTNL();
5843
5844 if (head) {
5845 list_move_tail(&dev->unreg_list, head);
5846 } else {
5847 rollback_registered(dev);
5848 /* Finish processing unregister after unlock */
5849 net_set_todo(dev);
5850 }
5851 }
5852 EXPORT_SYMBOL(unregister_netdevice_queue);
5853
5854 /**
5855 * unregister_netdevice_many - unregister many devices
5856 * @head: list of devices
5857 */
5858 void unregister_netdevice_many(struct list_head *head)
5859 {
5860 struct net_device *dev;
5861
5862 if (!list_empty(head)) {
5863 rollback_registered_many(head);
5864 list_for_each_entry(dev, head, unreg_list)
5865 net_set_todo(dev);
5866 }
5867 }
5868 EXPORT_SYMBOL(unregister_netdevice_many);
5869
5870 /**
5871 * unregister_netdev - remove device from the kernel
5872 * @dev: device
5873 *
5874 * This function shuts down a device interface and removes it
5875 * from the kernel tables.
5876 *
5877 * This is just a wrapper for unregister_netdevice that takes
5878 * the rtnl semaphore. In general you want to use this and not
5879 * unregister_netdevice.
5880 */
5881 void unregister_netdev(struct net_device *dev)
5882 {
5883 rtnl_lock();
5884 unregister_netdevice(dev);
5885 rtnl_unlock();
5886 }
5887 EXPORT_SYMBOL(unregister_netdev);
5888
5889 /**
5890 * dev_change_net_namespace - move device to different nethost namespace
5891 * @dev: device
5892 * @net: network namespace
5893 * @pat: If not NULL name pattern to try if the current device name
5894 * is already taken in the destination network namespace.
5895 *
5896 * This function shuts down a device interface and moves it
5897 * to a new network namespace. On success 0 is returned, on
5898 * a failure a netagive errno code is returned.
5899 *
5900 * Callers must hold the rtnl semaphore.
5901 */
5902
5903 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5904 {
5905 int err;
5906
5907 ASSERT_RTNL();
5908
5909 /* Don't allow namespace local devices to be moved. */
5910 err = -EINVAL;
5911 if (dev->features & NETIF_F_NETNS_LOCAL)
5912 goto out;
5913
5914 /* Ensure the device has been registrered */
5915 if (dev->reg_state != NETREG_REGISTERED)
5916 goto out;
5917
5918 /* Get out if there is nothing todo */
5919 err = 0;
5920 if (net_eq(dev_net(dev), net))
5921 goto out;
5922
5923 /* Pick the destination device name, and ensure
5924 * we can use it in the destination network namespace.
5925 */
5926 err = -EEXIST;
5927 if (__dev_get_by_name(net, dev->name)) {
5928 /* We get here if we can't use the current device name */
5929 if (!pat)
5930 goto out;
5931 if (dev_get_valid_name(net, dev, pat) < 0)
5932 goto out;
5933 }
5934
5935 /*
5936 * And now a mini version of register_netdevice unregister_netdevice.
5937 */
5938
5939 /* If device is running close it first. */
5940 dev_close(dev);
5941
5942 /* And unlink it from device chain */
5943 err = -ENODEV;
5944 unlist_netdevice(dev);
5945
5946 synchronize_net();
5947
5948 /* Shutdown queueing discipline. */
5949 dev_shutdown(dev);
5950
5951 /* Notify protocols, that we are about to destroy
5952 this device. They should clean all the things.
5953
5954 Note that dev->reg_state stays at NETREG_REGISTERED.
5955 This is wanted because this way 8021q and macvlan know
5956 the device is just moving and can keep their slaves up.
5957 */
5958 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5959 rcu_barrier();
5960 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5961 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5962
5963 /*
5964 * Flush the unicast and multicast chains
5965 */
5966 dev_uc_flush(dev);
5967 dev_mc_flush(dev);
5968
5969 /* Send a netdev-removed uevent to the old namespace */
5970 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5971
5972 /* Actually switch the network namespace */
5973 dev_net_set(dev, net);
5974
5975 /* If there is an ifindex conflict assign a new one */
5976 if (__dev_get_by_index(net, dev->ifindex)) {
5977 int iflink = (dev->iflink == dev->ifindex);
5978 dev->ifindex = dev_new_index(net);
5979 if (iflink)
5980 dev->iflink = dev->ifindex;
5981 }
5982
5983 /* Send a netdev-add uevent to the new namespace */
5984 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5985
5986 /* Fixup kobjects */
5987 err = device_rename(&dev->dev, dev->name);
5988 WARN_ON(err);
5989
5990 /* Add the device back in the hashes */
5991 list_netdevice(dev);
5992
5993 /* Notify protocols, that a new device appeared. */
5994 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5995
5996 /*
5997 * Prevent userspace races by waiting until the network
5998 * device is fully setup before sending notifications.
5999 */
6000 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6001
6002 synchronize_net();
6003 err = 0;
6004 out:
6005 return err;
6006 }
6007 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6008
6009 static int dev_cpu_callback(struct notifier_block *nfb,
6010 unsigned long action,
6011 void *ocpu)
6012 {
6013 struct sk_buff **list_skb;
6014 struct sk_buff *skb;
6015 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6016 struct softnet_data *sd, *oldsd;
6017
6018 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6019 return NOTIFY_OK;
6020
6021 local_irq_disable();
6022 cpu = smp_processor_id();
6023 sd = &per_cpu(softnet_data, cpu);
6024 oldsd = &per_cpu(softnet_data, oldcpu);
6025
6026 /* Find end of our completion_queue. */
6027 list_skb = &sd->completion_queue;
6028 while (*list_skb)
6029 list_skb = &(*list_skb)->next;
6030 /* Append completion queue from offline CPU. */
6031 *list_skb = oldsd->completion_queue;
6032 oldsd->completion_queue = NULL;
6033
6034 /* Append output queue from offline CPU. */
6035 if (oldsd->output_queue) {
6036 *sd->output_queue_tailp = oldsd->output_queue;
6037 sd->output_queue_tailp = oldsd->output_queue_tailp;
6038 oldsd->output_queue = NULL;
6039 oldsd->output_queue_tailp = &oldsd->output_queue;
6040 }
6041 /* Append NAPI poll list from offline CPU. */
6042 if (!list_empty(&oldsd->poll_list)) {
6043 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6044 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6045 }
6046
6047 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6048 local_irq_enable();
6049
6050 /* Process offline CPU's input_pkt_queue */
6051 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6052 netif_rx(skb);
6053 input_queue_head_incr(oldsd);
6054 }
6055 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6056 netif_rx(skb);
6057 input_queue_head_incr(oldsd);
6058 }
6059
6060 return NOTIFY_OK;
6061 }
6062
6063
6064 /**
6065 * netdev_increment_features - increment feature set by one
6066 * @all: current feature set
6067 * @one: new feature set
6068 * @mask: mask feature set
6069 *
6070 * Computes a new feature set after adding a device with feature set
6071 * @one to the master device with current feature set @all. Will not
6072 * enable anything that is off in @mask. Returns the new feature set.
6073 */
6074 netdev_features_t netdev_increment_features(netdev_features_t all,
6075 netdev_features_t one, netdev_features_t mask)
6076 {
6077 if (mask & NETIF_F_GEN_CSUM)
6078 mask |= NETIF_F_ALL_CSUM;
6079 mask |= NETIF_F_VLAN_CHALLENGED;
6080
6081 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6082 all &= one | ~NETIF_F_ALL_FOR_ALL;
6083
6084 /* If one device supports hw checksumming, set for all. */
6085 if (all & NETIF_F_GEN_CSUM)
6086 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6087
6088 return all;
6089 }
6090 EXPORT_SYMBOL(netdev_increment_features);
6091
6092 static struct hlist_head *netdev_create_hash(void)
6093 {
6094 int i;
6095 struct hlist_head *hash;
6096
6097 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6098 if (hash != NULL)
6099 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6100 INIT_HLIST_HEAD(&hash[i]);
6101
6102 return hash;
6103 }
6104
6105 /* Initialize per network namespace state */
6106 static int __net_init netdev_init(struct net *net)
6107 {
6108 if (net != &init_net)
6109 INIT_LIST_HEAD(&net->dev_base_head);
6110
6111 net->dev_name_head = netdev_create_hash();
6112 if (net->dev_name_head == NULL)
6113 goto err_name;
6114
6115 net->dev_index_head = netdev_create_hash();
6116 if (net->dev_index_head == NULL)
6117 goto err_idx;
6118
6119 return 0;
6120
6121 err_idx:
6122 kfree(net->dev_name_head);
6123 err_name:
6124 return -ENOMEM;
6125 }
6126
6127 /**
6128 * netdev_drivername - network driver for the device
6129 * @dev: network device
6130 *
6131 * Determine network driver for device.
6132 */
6133 const char *netdev_drivername(const struct net_device *dev)
6134 {
6135 const struct device_driver *driver;
6136 const struct device *parent;
6137 const char *empty = "";
6138
6139 parent = dev->dev.parent;
6140 if (!parent)
6141 return empty;
6142
6143 driver = parent->driver;
6144 if (driver && driver->name)
6145 return driver->name;
6146 return empty;
6147 }
6148
6149 static int __netdev_printk(const char *level, const struct net_device *dev,
6150 struct va_format *vaf)
6151 {
6152 int r;
6153
6154 if (dev && dev->dev.parent) {
6155 r = dev_printk_emit(level[1] - '0',
6156 dev->dev.parent,
6157 "%s %s %s: %pV",
6158 dev_driver_string(dev->dev.parent),
6159 dev_name(dev->dev.parent),
6160 netdev_name(dev), vaf);
6161 } else if (dev) {
6162 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6163 } else {
6164 r = printk("%s(NULL net_device): %pV", level, vaf);
6165 }
6166
6167 return r;
6168 }
6169
6170 int netdev_printk(const char *level, const struct net_device *dev,
6171 const char *format, ...)
6172 {
6173 struct va_format vaf;
6174 va_list args;
6175 int r;
6176
6177 va_start(args, format);
6178
6179 vaf.fmt = format;
6180 vaf.va = &args;
6181
6182 r = __netdev_printk(level, dev, &vaf);
6183
6184 va_end(args);
6185
6186 return r;
6187 }
6188 EXPORT_SYMBOL(netdev_printk);
6189
6190 #define define_netdev_printk_level(func, level) \
6191 int func(const struct net_device *dev, const char *fmt, ...) \
6192 { \
6193 int r; \
6194 struct va_format vaf; \
6195 va_list args; \
6196 \
6197 va_start(args, fmt); \
6198 \
6199 vaf.fmt = fmt; \
6200 vaf.va = &args; \
6201 \
6202 r = __netdev_printk(level, dev, &vaf); \
6203 \
6204 va_end(args); \
6205 \
6206 return r; \
6207 } \
6208 EXPORT_SYMBOL(func);
6209
6210 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6211 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6212 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6213 define_netdev_printk_level(netdev_err, KERN_ERR);
6214 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6215 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6216 define_netdev_printk_level(netdev_info, KERN_INFO);
6217
6218 static void __net_exit netdev_exit(struct net *net)
6219 {
6220 kfree(net->dev_name_head);
6221 kfree(net->dev_index_head);
6222 }
6223
6224 static struct pernet_operations __net_initdata netdev_net_ops = {
6225 .init = netdev_init,
6226 .exit = netdev_exit,
6227 };
6228
6229 static void __net_exit default_device_exit(struct net *net)
6230 {
6231 struct net_device *dev, *aux;
6232 /*
6233 * Push all migratable network devices back to the
6234 * initial network namespace
6235 */
6236 rtnl_lock();
6237 for_each_netdev_safe(net, dev, aux) {
6238 int err;
6239 char fb_name[IFNAMSIZ];
6240
6241 /* Ignore unmoveable devices (i.e. loopback) */
6242 if (dev->features & NETIF_F_NETNS_LOCAL)
6243 continue;
6244
6245 /* Leave virtual devices for the generic cleanup */
6246 if (dev->rtnl_link_ops)
6247 continue;
6248
6249 /* Push remaining network devices to init_net */
6250 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6251 err = dev_change_net_namespace(dev, &init_net, fb_name);
6252 if (err) {
6253 pr_emerg("%s: failed to move %s to init_net: %d\n",
6254 __func__, dev->name, err);
6255 BUG();
6256 }
6257 }
6258 rtnl_unlock();
6259 }
6260
6261 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6262 {
6263 /* At exit all network devices most be removed from a network
6264 * namespace. Do this in the reverse order of registration.
6265 * Do this across as many network namespaces as possible to
6266 * improve batching efficiency.
6267 */
6268 struct net_device *dev;
6269 struct net *net;
6270 LIST_HEAD(dev_kill_list);
6271
6272 rtnl_lock();
6273 list_for_each_entry(net, net_list, exit_list) {
6274 for_each_netdev_reverse(net, dev) {
6275 if (dev->rtnl_link_ops)
6276 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6277 else
6278 unregister_netdevice_queue(dev, &dev_kill_list);
6279 }
6280 }
6281 unregister_netdevice_many(&dev_kill_list);
6282 list_del(&dev_kill_list);
6283 rtnl_unlock();
6284 }
6285
6286 static struct pernet_operations __net_initdata default_device_ops = {
6287 .exit = default_device_exit,
6288 .exit_batch = default_device_exit_batch,
6289 };
6290
6291 /*
6292 * Initialize the DEV module. At boot time this walks the device list and
6293 * unhooks any devices that fail to initialise (normally hardware not
6294 * present) and leaves us with a valid list of present and active devices.
6295 *
6296 */
6297
6298 /*
6299 * This is called single threaded during boot, so no need
6300 * to take the rtnl semaphore.
6301 */
6302 static int __init net_dev_init(void)
6303 {
6304 int i, rc = -ENOMEM;
6305
6306 BUG_ON(!dev_boot_phase);
6307
6308 if (dev_proc_init())
6309 goto out;
6310
6311 if (netdev_kobject_init())
6312 goto out;
6313
6314 INIT_LIST_HEAD(&ptype_all);
6315 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6316 INIT_LIST_HEAD(&ptype_base[i]);
6317
6318 INIT_LIST_HEAD(&offload_base);
6319
6320 if (register_pernet_subsys(&netdev_net_ops))
6321 goto out;
6322
6323 /*
6324 * Initialise the packet receive queues.
6325 */
6326
6327 for_each_possible_cpu(i) {
6328 struct softnet_data *sd = &per_cpu(softnet_data, i);
6329
6330 memset(sd, 0, sizeof(*sd));
6331 skb_queue_head_init(&sd->input_pkt_queue);
6332 skb_queue_head_init(&sd->process_queue);
6333 sd->completion_queue = NULL;
6334 INIT_LIST_HEAD(&sd->poll_list);
6335 sd->output_queue = NULL;
6336 sd->output_queue_tailp = &sd->output_queue;
6337 #ifdef CONFIG_RPS
6338 sd->csd.func = rps_trigger_softirq;
6339 sd->csd.info = sd;
6340 sd->csd.flags = 0;
6341 sd->cpu = i;
6342 #endif
6343
6344 sd->backlog.poll = process_backlog;
6345 sd->backlog.weight = weight_p;
6346 sd->backlog.gro_list = NULL;
6347 sd->backlog.gro_count = 0;
6348
6349 #ifdef CONFIG_NET_FLOW_LIMIT
6350 sd->flow_limit = NULL;
6351 #endif
6352 }
6353
6354 dev_boot_phase = 0;
6355
6356 /* The loopback device is special if any other network devices
6357 * is present in a network namespace the loopback device must
6358 * be present. Since we now dynamically allocate and free the
6359 * loopback device ensure this invariant is maintained by
6360 * keeping the loopback device as the first device on the
6361 * list of network devices. Ensuring the loopback devices
6362 * is the first device that appears and the last network device
6363 * that disappears.
6364 */
6365 if (register_pernet_device(&loopback_net_ops))
6366 goto out;
6367
6368 if (register_pernet_device(&default_device_ops))
6369 goto out;
6370
6371 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6372 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6373
6374 hotcpu_notifier(dev_cpu_callback, 0);
6375 dst_init();
6376 rc = 0;
6377 out:
6378 return rc;
6379 }
6380
6381 subsys_initcall(net_dev_init);
This page took 0.216429 seconds and 5 git commands to generate.