netpoll: Remove dead packet receive code (CONFIG_NETPOLL_TRAP)
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly; /* Taps */
148 static struct list_head offload_base __read_mostly;
149
150 static int netif_rx_internal(struct sk_buff *skb);
151
152 /*
153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154 * semaphore.
155 *
156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157 *
158 * Writers must hold the rtnl semaphore while they loop through the
159 * dev_base_head list, and hold dev_base_lock for writing when they do the
160 * actual updates. This allows pure readers to access the list even
161 * while a writer is preparing to update it.
162 *
163 * To put it another way, dev_base_lock is held for writing only to
164 * protect against pure readers; the rtnl semaphore provides the
165 * protection against other writers.
166 *
167 * See, for example usages, register_netdevice() and
168 * unregister_netdevice(), which must be called with the rtnl
169 * semaphore held.
170 */
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
173
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
179
180 static seqcount_t devnet_rename_seq;
181
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184 while (++net->dev_base_seq == 0);
185 }
186
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188 {
189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190
191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192 }
193
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195 {
196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197 }
198
199 static inline void rps_lock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202 spin_lock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205
206 static inline void rps_unlock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
215 {
216 struct net *net = dev_net(dev);
217
218 ASSERT_RTNL();
219
220 write_lock_bh(&dev_base_lock);
221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 hlist_add_head_rcu(&dev->index_hlist,
224 dev_index_hash(net, dev->ifindex));
225 write_unlock_bh(&dev_base_lock);
226
227 dev_base_seq_inc(net);
228 }
229
230 /* Device list removal
231 * caller must respect a RCU grace period before freeing/reusing dev
232 */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 ASSERT_RTNL();
236
237 /* Unlink dev from the device chain */
238 write_lock_bh(&dev_base_lock);
239 list_del_rcu(&dev->dev_list);
240 hlist_del_rcu(&dev->name_hlist);
241 hlist_del_rcu(&dev->index_hlist);
242 write_unlock_bh(&dev_base_lock);
243
244 dev_base_seq_inc(dev_net(dev));
245 }
246
247 /*
248 * Our notifier list
249 */
250
251 static RAW_NOTIFIER_HEAD(netdev_chain);
252
253 /*
254 * Device drivers call our routines to queue packets here. We empty the
255 * queue in the local softnet handler.
256 */
257
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
260
261 #ifdef CONFIG_LOCKDEP
262 /*
263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264 * according to dev->type
265 */
266 static const unsigned short netdev_lock_type[] =
267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282
283 static const char *const netdev_lock_name[] =
284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
322 }
323
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 {
326 int i;
327
328 i = netdev_lock_pos(dev->type);
329 lockdep_set_class_and_name(&dev->addr_list_lock,
330 &netdev_addr_lock_key[i],
331 netdev_lock_name[i]);
332 }
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336 {
337 }
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 }
341 #endif
342
343 /*******************************************************************************
344
345 Protocol management and registration routines
346
347 *******************************************************************************/
348
349 /*
350 * Add a protocol ID to the list. Now that the input handler is
351 * smarter we can dispense with all the messy stuff that used to be
352 * here.
353 *
354 * BEWARE!!! Protocol handlers, mangling input packets,
355 * MUST BE last in hash buckets and checking protocol handlers
356 * MUST start from promiscuous ptype_all chain in net_bh.
357 * It is true now, do not change it.
358 * Explanation follows: if protocol handler, mangling packet, will
359 * be the first on list, it is not able to sense, that packet
360 * is cloned and should be copied-on-write, so that it will
361 * change it and subsequent readers will get broken packet.
362 * --ANK (980803)
363 */
364
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
366 {
367 if (pt->type == htons(ETH_P_ALL))
368 return &ptype_all;
369 else
370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 }
372
373 /**
374 * dev_add_pack - add packet handler
375 * @pt: packet type declaration
376 *
377 * Add a protocol handler to the networking stack. The passed &packet_type
378 * is linked into kernel lists and may not be freed until it has been
379 * removed from the kernel lists.
380 *
381 * This call does not sleep therefore it can not
382 * guarantee all CPU's that are in middle of receiving packets
383 * will see the new packet type (until the next received packet).
384 */
385
386 void dev_add_pack(struct packet_type *pt)
387 {
388 struct list_head *head = ptype_head(pt);
389
390 spin_lock(&ptype_lock);
391 list_add_rcu(&pt->list, head);
392 spin_unlock(&ptype_lock);
393 }
394 EXPORT_SYMBOL(dev_add_pack);
395
396 /**
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
399 *
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
404 *
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
408 */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 struct list_head *head = ptype_head(pt);
412 struct packet_type *pt1;
413
414 spin_lock(&ptype_lock);
415
416 list_for_each_entry(pt1, head, list) {
417 if (pt == pt1) {
418 list_del_rcu(&pt->list);
419 goto out;
420 }
421 }
422
423 pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 spin_unlock(&ptype_lock);
426 }
427 EXPORT_SYMBOL(__dev_remove_pack);
428
429 /**
430 * dev_remove_pack - remove packet handler
431 * @pt: packet type declaration
432 *
433 * Remove a protocol handler that was previously added to the kernel
434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
435 * from the kernel lists and can be freed or reused once this function
436 * returns.
437 *
438 * This call sleeps to guarantee that no CPU is looking at the packet
439 * type after return.
440 */
441 void dev_remove_pack(struct packet_type *pt)
442 {
443 __dev_remove_pack(pt);
444
445 synchronize_net();
446 }
447 EXPORT_SYMBOL(dev_remove_pack);
448
449
450 /**
451 * dev_add_offload - register offload handlers
452 * @po: protocol offload declaration
453 *
454 * Add protocol offload handlers to the networking stack. The passed
455 * &proto_offload is linked into kernel lists and may not be freed until
456 * it has been removed from the kernel lists.
457 *
458 * This call does not sleep therefore it can not
459 * guarantee all CPU's that are in middle of receiving packets
460 * will see the new offload handlers (until the next received packet).
461 */
462 void dev_add_offload(struct packet_offload *po)
463 {
464 struct list_head *head = &offload_base;
465
466 spin_lock(&offload_lock);
467 list_add_rcu(&po->list, head);
468 spin_unlock(&offload_lock);
469 }
470 EXPORT_SYMBOL(dev_add_offload);
471
472 /**
473 * __dev_remove_offload - remove offload handler
474 * @po: packet offload declaration
475 *
476 * Remove a protocol offload handler that was previously added to the
477 * kernel offload handlers by dev_add_offload(). The passed &offload_type
478 * is removed from the kernel lists and can be freed or reused once this
479 * function returns.
480 *
481 * The packet type might still be in use by receivers
482 * and must not be freed until after all the CPU's have gone
483 * through a quiescent state.
484 */
485 static void __dev_remove_offload(struct packet_offload *po)
486 {
487 struct list_head *head = &offload_base;
488 struct packet_offload *po1;
489
490 spin_lock(&offload_lock);
491
492 list_for_each_entry(po1, head, list) {
493 if (po == po1) {
494 list_del_rcu(&po->list);
495 goto out;
496 }
497 }
498
499 pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 spin_unlock(&offload_lock);
502 }
503
504 /**
505 * dev_remove_offload - remove packet offload handler
506 * @po: packet offload declaration
507 *
508 * Remove a packet offload handler that was previously added to the kernel
509 * offload handlers by dev_add_offload(). The passed &offload_type is
510 * removed from the kernel lists and can be freed or reused once this
511 * function returns.
512 *
513 * This call sleeps to guarantee that no CPU is looking at the packet
514 * type after return.
515 */
516 void dev_remove_offload(struct packet_offload *po)
517 {
518 __dev_remove_offload(po);
519
520 synchronize_net();
521 }
522 EXPORT_SYMBOL(dev_remove_offload);
523
524 /******************************************************************************
525
526 Device Boot-time Settings Routines
527
528 *******************************************************************************/
529
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532
533 /**
534 * netdev_boot_setup_add - add new setup entry
535 * @name: name of the device
536 * @map: configured settings for the device
537 *
538 * Adds new setup entry to the dev_boot_setup list. The function
539 * returns 0 on error and 1 on success. This is a generic routine to
540 * all netdevices.
541 */
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
543 {
544 struct netdev_boot_setup *s;
545 int i;
546
547 s = dev_boot_setup;
548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 memset(s[i].name, 0, sizeof(s[i].name));
551 strlcpy(s[i].name, name, IFNAMSIZ);
552 memcpy(&s[i].map, map, sizeof(s[i].map));
553 break;
554 }
555 }
556
557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558 }
559
560 /**
561 * netdev_boot_setup_check - check boot time settings
562 * @dev: the netdevice
563 *
564 * Check boot time settings for the device.
565 * The found settings are set for the device to be used
566 * later in the device probing.
567 * Returns 0 if no settings found, 1 if they are.
568 */
569 int netdev_boot_setup_check(struct net_device *dev)
570 {
571 struct netdev_boot_setup *s = dev_boot_setup;
572 int i;
573
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 !strcmp(dev->name, s[i].name)) {
577 dev->irq = s[i].map.irq;
578 dev->base_addr = s[i].map.base_addr;
579 dev->mem_start = s[i].map.mem_start;
580 dev->mem_end = s[i].map.mem_end;
581 return 1;
582 }
583 }
584 return 0;
585 }
586 EXPORT_SYMBOL(netdev_boot_setup_check);
587
588
589 /**
590 * netdev_boot_base - get address from boot time settings
591 * @prefix: prefix for network device
592 * @unit: id for network device
593 *
594 * Check boot time settings for the base address of device.
595 * The found settings are set for the device to be used
596 * later in the device probing.
597 * Returns 0 if no settings found.
598 */
599 unsigned long netdev_boot_base(const char *prefix, int unit)
600 {
601 const struct netdev_boot_setup *s = dev_boot_setup;
602 char name[IFNAMSIZ];
603 int i;
604
605 sprintf(name, "%s%d", prefix, unit);
606
607 /*
608 * If device already registered then return base of 1
609 * to indicate not to probe for this interface
610 */
611 if (__dev_get_by_name(&init_net, name))
612 return 1;
613
614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 if (!strcmp(name, s[i].name))
616 return s[i].map.base_addr;
617 return 0;
618 }
619
620 /*
621 * Saves at boot time configured settings for any netdevice.
622 */
623 int __init netdev_boot_setup(char *str)
624 {
625 int ints[5];
626 struct ifmap map;
627
628 str = get_options(str, ARRAY_SIZE(ints), ints);
629 if (!str || !*str)
630 return 0;
631
632 /* Save settings */
633 memset(&map, 0, sizeof(map));
634 if (ints[0] > 0)
635 map.irq = ints[1];
636 if (ints[0] > 1)
637 map.base_addr = ints[2];
638 if (ints[0] > 2)
639 map.mem_start = ints[3];
640 if (ints[0] > 3)
641 map.mem_end = ints[4];
642
643 /* Add new entry to the list */
644 return netdev_boot_setup_add(str, &map);
645 }
646
647 __setup("netdev=", netdev_boot_setup);
648
649 /*******************************************************************************
650
651 Device Interface Subroutines
652
653 *******************************************************************************/
654
655 /**
656 * __dev_get_by_name - find a device by its name
657 * @net: the applicable net namespace
658 * @name: name to find
659 *
660 * Find an interface by name. Must be called under RTNL semaphore
661 * or @dev_base_lock. If the name is found a pointer to the device
662 * is returned. If the name is not found then %NULL is returned. The
663 * reference counters are not incremented so the caller must be
664 * careful with locks.
665 */
666
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
668 {
669 struct net_device *dev;
670 struct hlist_head *head = dev_name_hash(net, name);
671
672 hlist_for_each_entry(dev, head, name_hlist)
673 if (!strncmp(dev->name, name, IFNAMSIZ))
674 return dev;
675
676 return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_name);
679
680 /**
681 * dev_get_by_name_rcu - find a device by its name
682 * @net: the applicable net namespace
683 * @name: name to find
684 *
685 * Find an interface by name.
686 * If the name is found a pointer to the device is returned.
687 * If the name is not found then %NULL is returned.
688 * The reference counters are not incremented so the caller must be
689 * careful with locks. The caller must hold RCU lock.
690 */
691
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693 {
694 struct net_device *dev;
695 struct hlist_head *head = dev_name_hash(net, name);
696
697 hlist_for_each_entry_rcu(dev, head, name_hlist)
698 if (!strncmp(dev->name, name, IFNAMSIZ))
699 return dev;
700
701 return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
704
705 /**
706 * dev_get_by_name - find a device by its name
707 * @net: the applicable net namespace
708 * @name: name to find
709 *
710 * Find an interface by name. This can be called from any
711 * context and does its own locking. The returned handle has
712 * the usage count incremented and the caller must use dev_put() to
713 * release it when it is no longer needed. %NULL is returned if no
714 * matching device is found.
715 */
716
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
718 {
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_name_rcu(net, name);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_name);
729
730 /**
731 * __dev_get_by_index - find a device by its ifindex
732 * @net: the applicable net namespace
733 * @ifindex: index of device
734 *
735 * Search for an interface by index. Returns %NULL if the device
736 * is not found or a pointer to the device. The device has not
737 * had its reference counter increased so the caller must be careful
738 * about locking. The caller must hold either the RTNL semaphore
739 * or @dev_base_lock.
740 */
741
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743 {
744 struct net_device *dev;
745 struct hlist_head *head = dev_index_hash(net, ifindex);
746
747 hlist_for_each_entry(dev, head, index_hlist)
748 if (dev->ifindex == ifindex)
749 return dev;
750
751 return NULL;
752 }
753 EXPORT_SYMBOL(__dev_get_by_index);
754
755 /**
756 * dev_get_by_index_rcu - find a device by its ifindex
757 * @net: the applicable net namespace
758 * @ifindex: index of device
759 *
760 * Search for an interface by index. Returns %NULL if the device
761 * is not found or a pointer to the device. The device has not
762 * had its reference counter increased so the caller must be careful
763 * about locking. The caller must hold RCU lock.
764 */
765
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767 {
768 struct net_device *dev;
769 struct hlist_head *head = dev_index_hash(net, ifindex);
770
771 hlist_for_each_entry_rcu(dev, head, index_hlist)
772 if (dev->ifindex == ifindex)
773 return dev;
774
775 return NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
778
779
780 /**
781 * dev_get_by_index - find a device by its ifindex
782 * @net: the applicable net namespace
783 * @ifindex: index of device
784 *
785 * Search for an interface by index. Returns NULL if the device
786 * is not found or a pointer to the device. The device returned has
787 * had a reference added and the pointer is safe until the user calls
788 * dev_put to indicate they have finished with it.
789 */
790
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
792 {
793 struct net_device *dev;
794
795 rcu_read_lock();
796 dev = dev_get_by_index_rcu(net, ifindex);
797 if (dev)
798 dev_hold(dev);
799 rcu_read_unlock();
800 return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_index);
803
804 /**
805 * netdev_get_name - get a netdevice name, knowing its ifindex.
806 * @net: network namespace
807 * @name: a pointer to the buffer where the name will be stored.
808 * @ifindex: the ifindex of the interface to get the name from.
809 *
810 * The use of raw_seqcount_begin() and cond_resched() before
811 * retrying is required as we want to give the writers a chance
812 * to complete when CONFIG_PREEMPT is not set.
813 */
814 int netdev_get_name(struct net *net, char *name, int ifindex)
815 {
816 struct net_device *dev;
817 unsigned int seq;
818
819 retry:
820 seq = raw_seqcount_begin(&devnet_rename_seq);
821 rcu_read_lock();
822 dev = dev_get_by_index_rcu(net, ifindex);
823 if (!dev) {
824 rcu_read_unlock();
825 return -ENODEV;
826 }
827
828 strcpy(name, dev->name);
829 rcu_read_unlock();
830 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 cond_resched();
832 goto retry;
833 }
834
835 return 0;
836 }
837
838 /**
839 * dev_getbyhwaddr_rcu - find a device by its hardware address
840 * @net: the applicable net namespace
841 * @type: media type of device
842 * @ha: hardware address
843 *
844 * Search for an interface by MAC address. Returns NULL if the device
845 * is not found or a pointer to the device.
846 * The caller must hold RCU or RTNL.
847 * The returned device has not had its ref count increased
848 * and the caller must therefore be careful about locking
849 *
850 */
851
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 const char *ha)
854 {
855 struct net_device *dev;
856
857 for_each_netdev_rcu(net, dev)
858 if (dev->type == type &&
859 !memcmp(dev->dev_addr, ha, dev->addr_len))
860 return dev;
861
862 return NULL;
863 }
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867 {
868 struct net_device *dev;
869
870 ASSERT_RTNL();
871 for_each_netdev(net, dev)
872 if (dev->type == type)
873 return dev;
874
875 return NULL;
876 }
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881 struct net_device *dev, *ret = NULL;
882
883 rcu_read_lock();
884 for_each_netdev_rcu(net, dev)
885 if (dev->type == type) {
886 dev_hold(dev);
887 ret = dev;
888 break;
889 }
890 rcu_read_unlock();
891 return ret;
892 }
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894
895 /**
896 * dev_get_by_flags_rcu - find any device with given flags
897 * @net: the applicable net namespace
898 * @if_flags: IFF_* values
899 * @mask: bitmask of bits in if_flags to check
900 *
901 * Search for any interface with the given flags. Returns NULL if a device
902 * is not found or a pointer to the device. Must be called inside
903 * rcu_read_lock(), and result refcount is unchanged.
904 */
905
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 unsigned short mask)
908 {
909 struct net_device *dev, *ret;
910
911 ret = NULL;
912 for_each_netdev_rcu(net, dev) {
913 if (((dev->flags ^ if_flags) & mask) == 0) {
914 ret = dev;
915 break;
916 }
917 }
918 return ret;
919 }
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921
922 /**
923 * dev_valid_name - check if name is okay for network device
924 * @name: name string
925 *
926 * Network device names need to be valid file names to
927 * to allow sysfs to work. We also disallow any kind of
928 * whitespace.
929 */
930 bool dev_valid_name(const char *name)
931 {
932 if (*name == '\0')
933 return false;
934 if (strlen(name) >= IFNAMSIZ)
935 return false;
936 if (!strcmp(name, ".") || !strcmp(name, ".."))
937 return false;
938
939 while (*name) {
940 if (*name == '/' || isspace(*name))
941 return false;
942 name++;
943 }
944 return true;
945 }
946 EXPORT_SYMBOL(dev_valid_name);
947
948 /**
949 * __dev_alloc_name - allocate a name for a device
950 * @net: network namespace to allocate the device name in
951 * @name: name format string
952 * @buf: scratch buffer and result name string
953 *
954 * Passed a format string - eg "lt%d" it will try and find a suitable
955 * id. It scans list of devices to build up a free map, then chooses
956 * the first empty slot. The caller must hold the dev_base or rtnl lock
957 * while allocating the name and adding the device in order to avoid
958 * duplicates.
959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960 * Returns the number of the unit assigned or a negative errno code.
961 */
962
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964 {
965 int i = 0;
966 const char *p;
967 const int max_netdevices = 8*PAGE_SIZE;
968 unsigned long *inuse;
969 struct net_device *d;
970
971 p = strnchr(name, IFNAMSIZ-1, '%');
972 if (p) {
973 /*
974 * Verify the string as this thing may have come from
975 * the user. There must be either one "%d" and no other "%"
976 * characters.
977 */
978 if (p[1] != 'd' || strchr(p + 2, '%'))
979 return -EINVAL;
980
981 /* Use one page as a bit array of possible slots */
982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 if (!inuse)
984 return -ENOMEM;
985
986 for_each_netdev(net, d) {
987 if (!sscanf(d->name, name, &i))
988 continue;
989 if (i < 0 || i >= max_netdevices)
990 continue;
991
992 /* avoid cases where sscanf is not exact inverse of printf */
993 snprintf(buf, IFNAMSIZ, name, i);
994 if (!strncmp(buf, d->name, IFNAMSIZ))
995 set_bit(i, inuse);
996 }
997
998 i = find_first_zero_bit(inuse, max_netdevices);
999 free_page((unsigned long) inuse);
1000 }
1001
1002 if (buf != name)
1003 snprintf(buf, IFNAMSIZ, name, i);
1004 if (!__dev_get_by_name(net, buf))
1005 return i;
1006
1007 /* It is possible to run out of possible slots
1008 * when the name is long and there isn't enough space left
1009 * for the digits, or if all bits are used.
1010 */
1011 return -ENFILE;
1012 }
1013
1014 /**
1015 * dev_alloc_name - allocate a name for a device
1016 * @dev: device
1017 * @name: name format string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1029 {
1030 char buf[IFNAMSIZ];
1031 struct net *net;
1032 int ret;
1033
1034 BUG_ON(!dev_net(dev));
1035 net = dev_net(dev);
1036 ret = __dev_alloc_name(net, name, buf);
1037 if (ret >= 0)
1038 strlcpy(dev->name, buf, IFNAMSIZ);
1039 return ret;
1040 }
1041 EXPORT_SYMBOL(dev_alloc_name);
1042
1043 static int dev_alloc_name_ns(struct net *net,
1044 struct net_device *dev,
1045 const char *name)
1046 {
1047 char buf[IFNAMSIZ];
1048 int ret;
1049
1050 ret = __dev_alloc_name(net, name, buf);
1051 if (ret >= 0)
1052 strlcpy(dev->name, buf, IFNAMSIZ);
1053 return ret;
1054 }
1055
1056 static int dev_get_valid_name(struct net *net,
1057 struct net_device *dev,
1058 const char *name)
1059 {
1060 BUG_ON(!net);
1061
1062 if (!dev_valid_name(name))
1063 return -EINVAL;
1064
1065 if (strchr(name, '%'))
1066 return dev_alloc_name_ns(net, dev, name);
1067 else if (__dev_get_by_name(net, name))
1068 return -EEXIST;
1069 else if (dev->name != name)
1070 strlcpy(dev->name, name, IFNAMSIZ);
1071
1072 return 0;
1073 }
1074
1075 /**
1076 * dev_change_name - change name of a device
1077 * @dev: device
1078 * @newname: name (or format string) must be at least IFNAMSIZ
1079 *
1080 * Change name of a device, can pass format strings "eth%d".
1081 * for wildcarding.
1082 */
1083 int dev_change_name(struct net_device *dev, const char *newname)
1084 {
1085 char oldname[IFNAMSIZ];
1086 int err = 0;
1087 int ret;
1088 struct net *net;
1089
1090 ASSERT_RTNL();
1091 BUG_ON(!dev_net(dev));
1092
1093 net = dev_net(dev);
1094 if (dev->flags & IFF_UP)
1095 return -EBUSY;
1096
1097 write_seqcount_begin(&devnet_rename_seq);
1098
1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 write_seqcount_end(&devnet_rename_seq);
1101 return 0;
1102 }
1103
1104 memcpy(oldname, dev->name, IFNAMSIZ);
1105
1106 err = dev_get_valid_name(net, dev, newname);
1107 if (err < 0) {
1108 write_seqcount_end(&devnet_rename_seq);
1109 return err;
1110 }
1111
1112 rollback:
1113 ret = device_rename(&dev->dev, dev->name);
1114 if (ret) {
1115 memcpy(dev->name, oldname, IFNAMSIZ);
1116 write_seqcount_end(&devnet_rename_seq);
1117 return ret;
1118 }
1119
1120 write_seqcount_end(&devnet_rename_seq);
1121
1122 netdev_adjacent_rename_links(dev, oldname);
1123
1124 write_lock_bh(&dev_base_lock);
1125 hlist_del_rcu(&dev->name_hlist);
1126 write_unlock_bh(&dev_base_lock);
1127
1128 synchronize_rcu();
1129
1130 write_lock_bh(&dev_base_lock);
1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 write_unlock_bh(&dev_base_lock);
1133
1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 ret = notifier_to_errno(ret);
1136
1137 if (ret) {
1138 /* err >= 0 after dev_alloc_name() or stores the first errno */
1139 if (err >= 0) {
1140 err = ret;
1141 write_seqcount_begin(&devnet_rename_seq);
1142 memcpy(dev->name, oldname, IFNAMSIZ);
1143 memcpy(oldname, newname, IFNAMSIZ);
1144 goto rollback;
1145 } else {
1146 pr_err("%s: name change rollback failed: %d\n",
1147 dev->name, ret);
1148 }
1149 }
1150
1151 return err;
1152 }
1153
1154 /**
1155 * dev_set_alias - change ifalias of a device
1156 * @dev: device
1157 * @alias: name up to IFALIASZ
1158 * @len: limit of bytes to copy from info
1159 *
1160 * Set ifalias for a device,
1161 */
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 {
1164 char *new_ifalias;
1165
1166 ASSERT_RTNL();
1167
1168 if (len >= IFALIASZ)
1169 return -EINVAL;
1170
1171 if (!len) {
1172 kfree(dev->ifalias);
1173 dev->ifalias = NULL;
1174 return 0;
1175 }
1176
1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 if (!new_ifalias)
1179 return -ENOMEM;
1180 dev->ifalias = new_ifalias;
1181
1182 strlcpy(dev->ifalias, alias, len+1);
1183 return len;
1184 }
1185
1186
1187 /**
1188 * netdev_features_change - device changes features
1189 * @dev: device to cause notification
1190 *
1191 * Called to indicate a device has changed features.
1192 */
1193 void netdev_features_change(struct net_device *dev)
1194 {
1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196 }
1197 EXPORT_SYMBOL(netdev_features_change);
1198
1199 /**
1200 * netdev_state_change - device changes state
1201 * @dev: device to cause notification
1202 *
1203 * Called to indicate a device has changed state. This function calls
1204 * the notifier chains for netdev_chain and sends a NEWLINK message
1205 * to the routing socket.
1206 */
1207 void netdev_state_change(struct net_device *dev)
1208 {
1209 if (dev->flags & IFF_UP) {
1210 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 }
1213 }
1214 EXPORT_SYMBOL(netdev_state_change);
1215
1216 /**
1217 * netdev_notify_peers - notify network peers about existence of @dev
1218 * @dev: network device
1219 *
1220 * Generate traffic such that interested network peers are aware of
1221 * @dev, such as by generating a gratuitous ARP. This may be used when
1222 * a device wants to inform the rest of the network about some sort of
1223 * reconfiguration such as a failover event or virtual machine
1224 * migration.
1225 */
1226 void netdev_notify_peers(struct net_device *dev)
1227 {
1228 rtnl_lock();
1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 rtnl_unlock();
1231 }
1232 EXPORT_SYMBOL(netdev_notify_peers);
1233
1234 static int __dev_open(struct net_device *dev)
1235 {
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237 int ret;
1238
1239 ASSERT_RTNL();
1240
1241 if (!netif_device_present(dev))
1242 return -ENODEV;
1243
1244 /* Block netpoll from trying to do any rx path servicing.
1245 * If we don't do this there is a chance ndo_poll_controller
1246 * or ndo_poll may be running while we open the device
1247 */
1248 netpoll_rx_disable(dev);
1249
1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 ret = notifier_to_errno(ret);
1252 if (ret)
1253 return ret;
1254
1255 set_bit(__LINK_STATE_START, &dev->state);
1256
1257 if (ops->ndo_validate_addr)
1258 ret = ops->ndo_validate_addr(dev);
1259
1260 if (!ret && ops->ndo_open)
1261 ret = ops->ndo_open(dev);
1262
1263 netpoll_rx_enable(dev);
1264
1265 if (ret)
1266 clear_bit(__LINK_STATE_START, &dev->state);
1267 else {
1268 dev->flags |= IFF_UP;
1269 net_dmaengine_get();
1270 dev_set_rx_mode(dev);
1271 dev_activate(dev);
1272 add_device_randomness(dev->dev_addr, dev->addr_len);
1273 }
1274
1275 return ret;
1276 }
1277
1278 /**
1279 * dev_open - prepare an interface for use.
1280 * @dev: device to open
1281 *
1282 * Takes a device from down to up state. The device's private open
1283 * function is invoked and then the multicast lists are loaded. Finally
1284 * the device is moved into the up state and a %NETDEV_UP message is
1285 * sent to the netdev notifier chain.
1286 *
1287 * Calling this function on an active interface is a nop. On a failure
1288 * a negative errno code is returned.
1289 */
1290 int dev_open(struct net_device *dev)
1291 {
1292 int ret;
1293
1294 if (dev->flags & IFF_UP)
1295 return 0;
1296
1297 ret = __dev_open(dev);
1298 if (ret < 0)
1299 return ret;
1300
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 call_netdevice_notifiers(NETDEV_UP, dev);
1303
1304 return ret;
1305 }
1306 EXPORT_SYMBOL(dev_open);
1307
1308 static int __dev_close_many(struct list_head *head)
1309 {
1310 struct net_device *dev;
1311
1312 ASSERT_RTNL();
1313 might_sleep();
1314
1315 list_for_each_entry(dev, head, close_list) {
1316 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1317
1318 clear_bit(__LINK_STATE_START, &dev->state);
1319
1320 /* Synchronize to scheduled poll. We cannot touch poll list, it
1321 * can be even on different cpu. So just clear netif_running().
1322 *
1323 * dev->stop() will invoke napi_disable() on all of it's
1324 * napi_struct instances on this device.
1325 */
1326 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1327 }
1328
1329 dev_deactivate_many(head);
1330
1331 list_for_each_entry(dev, head, close_list) {
1332 const struct net_device_ops *ops = dev->netdev_ops;
1333
1334 /*
1335 * Call the device specific close. This cannot fail.
1336 * Only if device is UP
1337 *
1338 * We allow it to be called even after a DETACH hot-plug
1339 * event.
1340 */
1341 if (ops->ndo_stop)
1342 ops->ndo_stop(dev);
1343
1344 dev->flags &= ~IFF_UP;
1345 net_dmaengine_put();
1346 }
1347
1348 return 0;
1349 }
1350
1351 static int __dev_close(struct net_device *dev)
1352 {
1353 int retval;
1354 LIST_HEAD(single);
1355
1356 /* Temporarily disable netpoll until the interface is down */
1357 netpoll_rx_disable(dev);
1358
1359 list_add(&dev->close_list, &single);
1360 retval = __dev_close_many(&single);
1361 list_del(&single);
1362
1363 netpoll_rx_enable(dev);
1364 return retval;
1365 }
1366
1367 static int dev_close_many(struct list_head *head)
1368 {
1369 struct net_device *dev, *tmp;
1370
1371 /* Remove the devices that don't need to be closed */
1372 list_for_each_entry_safe(dev, tmp, head, close_list)
1373 if (!(dev->flags & IFF_UP))
1374 list_del_init(&dev->close_list);
1375
1376 __dev_close_many(head);
1377
1378 list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 list_del_init(&dev->close_list);
1382 }
1383
1384 return 0;
1385 }
1386
1387 /**
1388 * dev_close - shutdown an interface.
1389 * @dev: device to shutdown
1390 *
1391 * This function moves an active device into down state. A
1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394 * chain.
1395 */
1396 int dev_close(struct net_device *dev)
1397 {
1398 if (dev->flags & IFF_UP) {
1399 LIST_HEAD(single);
1400
1401 /* Block netpoll rx while the interface is going down */
1402 netpoll_rx_disable(dev);
1403
1404 list_add(&dev->close_list, &single);
1405 dev_close_many(&single);
1406 list_del(&single);
1407
1408 netpoll_rx_enable(dev);
1409 }
1410 return 0;
1411 }
1412 EXPORT_SYMBOL(dev_close);
1413
1414
1415 /**
1416 * dev_disable_lro - disable Large Receive Offload on a device
1417 * @dev: device
1418 *
1419 * Disable Large Receive Offload (LRO) on a net device. Must be
1420 * called under RTNL. This is needed if received packets may be
1421 * forwarded to another interface.
1422 */
1423 void dev_disable_lro(struct net_device *dev)
1424 {
1425 /*
1426 * If we're trying to disable lro on a vlan device
1427 * use the underlying physical device instead
1428 */
1429 if (is_vlan_dev(dev))
1430 dev = vlan_dev_real_dev(dev);
1431
1432 /* the same for macvlan devices */
1433 if (netif_is_macvlan(dev))
1434 dev = macvlan_dev_real_dev(dev);
1435
1436 dev->wanted_features &= ~NETIF_F_LRO;
1437 netdev_update_features(dev);
1438
1439 if (unlikely(dev->features & NETIF_F_LRO))
1440 netdev_WARN(dev, "failed to disable LRO!\n");
1441 }
1442 EXPORT_SYMBOL(dev_disable_lro);
1443
1444 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1445 struct net_device *dev)
1446 {
1447 struct netdev_notifier_info info;
1448
1449 netdev_notifier_info_init(&info, dev);
1450 return nb->notifier_call(nb, val, &info);
1451 }
1452
1453 static int dev_boot_phase = 1;
1454
1455 /**
1456 * register_netdevice_notifier - register a network notifier block
1457 * @nb: notifier
1458 *
1459 * Register a notifier to be called when network device events occur.
1460 * The notifier passed is linked into the kernel structures and must
1461 * not be reused until it has been unregistered. A negative errno code
1462 * is returned on a failure.
1463 *
1464 * When registered all registration and up events are replayed
1465 * to the new notifier to allow device to have a race free
1466 * view of the network device list.
1467 */
1468
1469 int register_netdevice_notifier(struct notifier_block *nb)
1470 {
1471 struct net_device *dev;
1472 struct net_device *last;
1473 struct net *net;
1474 int err;
1475
1476 rtnl_lock();
1477 err = raw_notifier_chain_register(&netdev_chain, nb);
1478 if (err)
1479 goto unlock;
1480 if (dev_boot_phase)
1481 goto unlock;
1482 for_each_net(net) {
1483 for_each_netdev(net, dev) {
1484 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1485 err = notifier_to_errno(err);
1486 if (err)
1487 goto rollback;
1488
1489 if (!(dev->flags & IFF_UP))
1490 continue;
1491
1492 call_netdevice_notifier(nb, NETDEV_UP, dev);
1493 }
1494 }
1495
1496 unlock:
1497 rtnl_unlock();
1498 return err;
1499
1500 rollback:
1501 last = dev;
1502 for_each_net(net) {
1503 for_each_netdev(net, dev) {
1504 if (dev == last)
1505 goto outroll;
1506
1507 if (dev->flags & IFF_UP) {
1508 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1509 dev);
1510 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1511 }
1512 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1513 }
1514 }
1515
1516 outroll:
1517 raw_notifier_chain_unregister(&netdev_chain, nb);
1518 goto unlock;
1519 }
1520 EXPORT_SYMBOL(register_netdevice_notifier);
1521
1522 /**
1523 * unregister_netdevice_notifier - unregister a network notifier block
1524 * @nb: notifier
1525 *
1526 * Unregister a notifier previously registered by
1527 * register_netdevice_notifier(). The notifier is unlinked into the
1528 * kernel structures and may then be reused. A negative errno code
1529 * is returned on a failure.
1530 *
1531 * After unregistering unregister and down device events are synthesized
1532 * for all devices on the device list to the removed notifier to remove
1533 * the need for special case cleanup code.
1534 */
1535
1536 int unregister_netdevice_notifier(struct notifier_block *nb)
1537 {
1538 struct net_device *dev;
1539 struct net *net;
1540 int err;
1541
1542 rtnl_lock();
1543 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1544 if (err)
1545 goto unlock;
1546
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
1549 if (dev->flags & IFF_UP) {
1550 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1551 dev);
1552 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1553 }
1554 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1555 }
1556 }
1557 unlock:
1558 rtnl_unlock();
1559 return err;
1560 }
1561 EXPORT_SYMBOL(unregister_netdevice_notifier);
1562
1563 /**
1564 * call_netdevice_notifiers_info - call all network notifier blocks
1565 * @val: value passed unmodified to notifier function
1566 * @dev: net_device pointer passed unmodified to notifier function
1567 * @info: notifier information data
1568 *
1569 * Call all network notifier blocks. Parameters and return value
1570 * are as for raw_notifier_call_chain().
1571 */
1572
1573 static int call_netdevice_notifiers_info(unsigned long val,
1574 struct net_device *dev,
1575 struct netdev_notifier_info *info)
1576 {
1577 ASSERT_RTNL();
1578 netdev_notifier_info_init(info, dev);
1579 return raw_notifier_call_chain(&netdev_chain, val, info);
1580 }
1581
1582 /**
1583 * call_netdevice_notifiers - call all network notifier blocks
1584 * @val: value passed unmodified to notifier function
1585 * @dev: net_device pointer passed unmodified to notifier function
1586 *
1587 * Call all network notifier blocks. Parameters and return value
1588 * are as for raw_notifier_call_chain().
1589 */
1590
1591 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1592 {
1593 struct netdev_notifier_info info;
1594
1595 return call_netdevice_notifiers_info(val, dev, &info);
1596 }
1597 EXPORT_SYMBOL(call_netdevice_notifiers);
1598
1599 static struct static_key netstamp_needed __read_mostly;
1600 #ifdef HAVE_JUMP_LABEL
1601 /* We are not allowed to call static_key_slow_dec() from irq context
1602 * If net_disable_timestamp() is called from irq context, defer the
1603 * static_key_slow_dec() calls.
1604 */
1605 static atomic_t netstamp_needed_deferred;
1606 #endif
1607
1608 void net_enable_timestamp(void)
1609 {
1610 #ifdef HAVE_JUMP_LABEL
1611 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1612
1613 if (deferred) {
1614 while (--deferred)
1615 static_key_slow_dec(&netstamp_needed);
1616 return;
1617 }
1618 #endif
1619 static_key_slow_inc(&netstamp_needed);
1620 }
1621 EXPORT_SYMBOL(net_enable_timestamp);
1622
1623 void net_disable_timestamp(void)
1624 {
1625 #ifdef HAVE_JUMP_LABEL
1626 if (in_interrupt()) {
1627 atomic_inc(&netstamp_needed_deferred);
1628 return;
1629 }
1630 #endif
1631 static_key_slow_dec(&netstamp_needed);
1632 }
1633 EXPORT_SYMBOL(net_disable_timestamp);
1634
1635 static inline void net_timestamp_set(struct sk_buff *skb)
1636 {
1637 skb->tstamp.tv64 = 0;
1638 if (static_key_false(&netstamp_needed))
1639 __net_timestamp(skb);
1640 }
1641
1642 #define net_timestamp_check(COND, SKB) \
1643 if (static_key_false(&netstamp_needed)) { \
1644 if ((COND) && !(SKB)->tstamp.tv64) \
1645 __net_timestamp(SKB); \
1646 } \
1647
1648 static inline bool is_skb_forwardable(struct net_device *dev,
1649 struct sk_buff *skb)
1650 {
1651 unsigned int len;
1652
1653 if (!(dev->flags & IFF_UP))
1654 return false;
1655
1656 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1657 if (skb->len <= len)
1658 return true;
1659
1660 /* if TSO is enabled, we don't care about the length as the packet
1661 * could be forwarded without being segmented before
1662 */
1663 if (skb_is_gso(skb))
1664 return true;
1665
1666 return false;
1667 }
1668
1669 /**
1670 * dev_forward_skb - loopback an skb to another netif
1671 *
1672 * @dev: destination network device
1673 * @skb: buffer to forward
1674 *
1675 * return values:
1676 * NET_RX_SUCCESS (no congestion)
1677 * NET_RX_DROP (packet was dropped, but freed)
1678 *
1679 * dev_forward_skb can be used for injecting an skb from the
1680 * start_xmit function of one device into the receive queue
1681 * of another device.
1682 *
1683 * The receiving device may be in another namespace, so
1684 * we have to clear all information in the skb that could
1685 * impact namespace isolation.
1686 */
1687 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1688 {
1689 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1690 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1691 atomic_long_inc(&dev->rx_dropped);
1692 kfree_skb(skb);
1693 return NET_RX_DROP;
1694 }
1695 }
1696
1697 if (unlikely(!is_skb_forwardable(dev, skb))) {
1698 atomic_long_inc(&dev->rx_dropped);
1699 kfree_skb(skb);
1700 return NET_RX_DROP;
1701 }
1702
1703 skb_scrub_packet(skb, true);
1704 skb->protocol = eth_type_trans(skb, dev);
1705
1706 return netif_rx_internal(skb);
1707 }
1708 EXPORT_SYMBOL_GPL(dev_forward_skb);
1709
1710 static inline int deliver_skb(struct sk_buff *skb,
1711 struct packet_type *pt_prev,
1712 struct net_device *orig_dev)
1713 {
1714 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1715 return -ENOMEM;
1716 atomic_inc(&skb->users);
1717 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1718 }
1719
1720 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1721 {
1722 if (!ptype->af_packet_priv || !skb->sk)
1723 return false;
1724
1725 if (ptype->id_match)
1726 return ptype->id_match(ptype, skb->sk);
1727 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1728 return true;
1729
1730 return false;
1731 }
1732
1733 /*
1734 * Support routine. Sends outgoing frames to any network
1735 * taps currently in use.
1736 */
1737
1738 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1739 {
1740 struct packet_type *ptype;
1741 struct sk_buff *skb2 = NULL;
1742 struct packet_type *pt_prev = NULL;
1743
1744 rcu_read_lock();
1745 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1746 /* Never send packets back to the socket
1747 * they originated from - MvS (miquels@drinkel.ow.org)
1748 */
1749 if ((ptype->dev == dev || !ptype->dev) &&
1750 (!skb_loop_sk(ptype, skb))) {
1751 if (pt_prev) {
1752 deliver_skb(skb2, pt_prev, skb->dev);
1753 pt_prev = ptype;
1754 continue;
1755 }
1756
1757 skb2 = skb_clone(skb, GFP_ATOMIC);
1758 if (!skb2)
1759 break;
1760
1761 net_timestamp_set(skb2);
1762
1763 /* skb->nh should be correctly
1764 set by sender, so that the second statement is
1765 just protection against buggy protocols.
1766 */
1767 skb_reset_mac_header(skb2);
1768
1769 if (skb_network_header(skb2) < skb2->data ||
1770 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1771 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1772 ntohs(skb2->protocol),
1773 dev->name);
1774 skb_reset_network_header(skb2);
1775 }
1776
1777 skb2->transport_header = skb2->network_header;
1778 skb2->pkt_type = PACKET_OUTGOING;
1779 pt_prev = ptype;
1780 }
1781 }
1782 if (pt_prev)
1783 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1784 rcu_read_unlock();
1785 }
1786
1787 /**
1788 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1789 * @dev: Network device
1790 * @txq: number of queues available
1791 *
1792 * If real_num_tx_queues is changed the tc mappings may no longer be
1793 * valid. To resolve this verify the tc mapping remains valid and if
1794 * not NULL the mapping. With no priorities mapping to this
1795 * offset/count pair it will no longer be used. In the worst case TC0
1796 * is invalid nothing can be done so disable priority mappings. If is
1797 * expected that drivers will fix this mapping if they can before
1798 * calling netif_set_real_num_tx_queues.
1799 */
1800 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1801 {
1802 int i;
1803 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1804
1805 /* If TC0 is invalidated disable TC mapping */
1806 if (tc->offset + tc->count > txq) {
1807 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1808 dev->num_tc = 0;
1809 return;
1810 }
1811
1812 /* Invalidated prio to tc mappings set to TC0 */
1813 for (i = 1; i < TC_BITMASK + 1; i++) {
1814 int q = netdev_get_prio_tc_map(dev, i);
1815
1816 tc = &dev->tc_to_txq[q];
1817 if (tc->offset + tc->count > txq) {
1818 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1819 i, q);
1820 netdev_set_prio_tc_map(dev, i, 0);
1821 }
1822 }
1823 }
1824
1825 #ifdef CONFIG_XPS
1826 static DEFINE_MUTEX(xps_map_mutex);
1827 #define xmap_dereference(P) \
1828 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1829
1830 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1831 int cpu, u16 index)
1832 {
1833 struct xps_map *map = NULL;
1834 int pos;
1835
1836 if (dev_maps)
1837 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1838
1839 for (pos = 0; map && pos < map->len; pos++) {
1840 if (map->queues[pos] == index) {
1841 if (map->len > 1) {
1842 map->queues[pos] = map->queues[--map->len];
1843 } else {
1844 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1845 kfree_rcu(map, rcu);
1846 map = NULL;
1847 }
1848 break;
1849 }
1850 }
1851
1852 return map;
1853 }
1854
1855 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1856 {
1857 struct xps_dev_maps *dev_maps;
1858 int cpu, i;
1859 bool active = false;
1860
1861 mutex_lock(&xps_map_mutex);
1862 dev_maps = xmap_dereference(dev->xps_maps);
1863
1864 if (!dev_maps)
1865 goto out_no_maps;
1866
1867 for_each_possible_cpu(cpu) {
1868 for (i = index; i < dev->num_tx_queues; i++) {
1869 if (!remove_xps_queue(dev_maps, cpu, i))
1870 break;
1871 }
1872 if (i == dev->num_tx_queues)
1873 active = true;
1874 }
1875
1876 if (!active) {
1877 RCU_INIT_POINTER(dev->xps_maps, NULL);
1878 kfree_rcu(dev_maps, rcu);
1879 }
1880
1881 for (i = index; i < dev->num_tx_queues; i++)
1882 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1883 NUMA_NO_NODE);
1884
1885 out_no_maps:
1886 mutex_unlock(&xps_map_mutex);
1887 }
1888
1889 static struct xps_map *expand_xps_map(struct xps_map *map,
1890 int cpu, u16 index)
1891 {
1892 struct xps_map *new_map;
1893 int alloc_len = XPS_MIN_MAP_ALLOC;
1894 int i, pos;
1895
1896 for (pos = 0; map && pos < map->len; pos++) {
1897 if (map->queues[pos] != index)
1898 continue;
1899 return map;
1900 }
1901
1902 /* Need to add queue to this CPU's existing map */
1903 if (map) {
1904 if (pos < map->alloc_len)
1905 return map;
1906
1907 alloc_len = map->alloc_len * 2;
1908 }
1909
1910 /* Need to allocate new map to store queue on this CPU's map */
1911 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1912 cpu_to_node(cpu));
1913 if (!new_map)
1914 return NULL;
1915
1916 for (i = 0; i < pos; i++)
1917 new_map->queues[i] = map->queues[i];
1918 new_map->alloc_len = alloc_len;
1919 new_map->len = pos;
1920
1921 return new_map;
1922 }
1923
1924 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1925 u16 index)
1926 {
1927 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1928 struct xps_map *map, *new_map;
1929 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1930 int cpu, numa_node_id = -2;
1931 bool active = false;
1932
1933 mutex_lock(&xps_map_mutex);
1934
1935 dev_maps = xmap_dereference(dev->xps_maps);
1936
1937 /* allocate memory for queue storage */
1938 for_each_online_cpu(cpu) {
1939 if (!cpumask_test_cpu(cpu, mask))
1940 continue;
1941
1942 if (!new_dev_maps)
1943 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1944 if (!new_dev_maps) {
1945 mutex_unlock(&xps_map_mutex);
1946 return -ENOMEM;
1947 }
1948
1949 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1950 NULL;
1951
1952 map = expand_xps_map(map, cpu, index);
1953 if (!map)
1954 goto error;
1955
1956 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1957 }
1958
1959 if (!new_dev_maps)
1960 goto out_no_new_maps;
1961
1962 for_each_possible_cpu(cpu) {
1963 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1964 /* add queue to CPU maps */
1965 int pos = 0;
1966
1967 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1968 while ((pos < map->len) && (map->queues[pos] != index))
1969 pos++;
1970
1971 if (pos == map->len)
1972 map->queues[map->len++] = index;
1973 #ifdef CONFIG_NUMA
1974 if (numa_node_id == -2)
1975 numa_node_id = cpu_to_node(cpu);
1976 else if (numa_node_id != cpu_to_node(cpu))
1977 numa_node_id = -1;
1978 #endif
1979 } else if (dev_maps) {
1980 /* fill in the new device map from the old device map */
1981 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1982 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1983 }
1984
1985 }
1986
1987 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1988
1989 /* Cleanup old maps */
1990 if (dev_maps) {
1991 for_each_possible_cpu(cpu) {
1992 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1993 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1994 if (map && map != new_map)
1995 kfree_rcu(map, rcu);
1996 }
1997
1998 kfree_rcu(dev_maps, rcu);
1999 }
2000
2001 dev_maps = new_dev_maps;
2002 active = true;
2003
2004 out_no_new_maps:
2005 /* update Tx queue numa node */
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2007 (numa_node_id >= 0) ? numa_node_id :
2008 NUMA_NO_NODE);
2009
2010 if (!dev_maps)
2011 goto out_no_maps;
2012
2013 /* removes queue from unused CPUs */
2014 for_each_possible_cpu(cpu) {
2015 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2016 continue;
2017
2018 if (remove_xps_queue(dev_maps, cpu, index))
2019 active = true;
2020 }
2021
2022 /* free map if not active */
2023 if (!active) {
2024 RCU_INIT_POINTER(dev->xps_maps, NULL);
2025 kfree_rcu(dev_maps, rcu);
2026 }
2027
2028 out_no_maps:
2029 mutex_unlock(&xps_map_mutex);
2030
2031 return 0;
2032 error:
2033 /* remove any maps that we added */
2034 for_each_possible_cpu(cpu) {
2035 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2036 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2037 NULL;
2038 if (new_map && new_map != map)
2039 kfree(new_map);
2040 }
2041
2042 mutex_unlock(&xps_map_mutex);
2043
2044 kfree(new_dev_maps);
2045 return -ENOMEM;
2046 }
2047 EXPORT_SYMBOL(netif_set_xps_queue);
2048
2049 #endif
2050 /*
2051 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2052 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2053 */
2054 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2055 {
2056 int rc;
2057
2058 if (txq < 1 || txq > dev->num_tx_queues)
2059 return -EINVAL;
2060
2061 if (dev->reg_state == NETREG_REGISTERED ||
2062 dev->reg_state == NETREG_UNREGISTERING) {
2063 ASSERT_RTNL();
2064
2065 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2066 txq);
2067 if (rc)
2068 return rc;
2069
2070 if (dev->num_tc)
2071 netif_setup_tc(dev, txq);
2072
2073 if (txq < dev->real_num_tx_queues) {
2074 qdisc_reset_all_tx_gt(dev, txq);
2075 #ifdef CONFIG_XPS
2076 netif_reset_xps_queues_gt(dev, txq);
2077 #endif
2078 }
2079 }
2080
2081 dev->real_num_tx_queues = txq;
2082 return 0;
2083 }
2084 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2085
2086 #ifdef CONFIG_SYSFS
2087 /**
2088 * netif_set_real_num_rx_queues - set actual number of RX queues used
2089 * @dev: Network device
2090 * @rxq: Actual number of RX queues
2091 *
2092 * This must be called either with the rtnl_lock held or before
2093 * registration of the net device. Returns 0 on success, or a
2094 * negative error code. If called before registration, it always
2095 * succeeds.
2096 */
2097 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2098 {
2099 int rc;
2100
2101 if (rxq < 1 || rxq > dev->num_rx_queues)
2102 return -EINVAL;
2103
2104 if (dev->reg_state == NETREG_REGISTERED) {
2105 ASSERT_RTNL();
2106
2107 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2108 rxq);
2109 if (rc)
2110 return rc;
2111 }
2112
2113 dev->real_num_rx_queues = rxq;
2114 return 0;
2115 }
2116 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2117 #endif
2118
2119 /**
2120 * netif_get_num_default_rss_queues - default number of RSS queues
2121 *
2122 * This routine should set an upper limit on the number of RSS queues
2123 * used by default by multiqueue devices.
2124 */
2125 int netif_get_num_default_rss_queues(void)
2126 {
2127 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2128 }
2129 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2130
2131 static inline void __netif_reschedule(struct Qdisc *q)
2132 {
2133 struct softnet_data *sd;
2134 unsigned long flags;
2135
2136 local_irq_save(flags);
2137 sd = &__get_cpu_var(softnet_data);
2138 q->next_sched = NULL;
2139 *sd->output_queue_tailp = q;
2140 sd->output_queue_tailp = &q->next_sched;
2141 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2142 local_irq_restore(flags);
2143 }
2144
2145 void __netif_schedule(struct Qdisc *q)
2146 {
2147 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2148 __netif_reschedule(q);
2149 }
2150 EXPORT_SYMBOL(__netif_schedule);
2151
2152 struct dev_kfree_skb_cb {
2153 enum skb_free_reason reason;
2154 };
2155
2156 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2157 {
2158 return (struct dev_kfree_skb_cb *)skb->cb;
2159 }
2160
2161 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2162 {
2163 unsigned long flags;
2164
2165 if (likely(atomic_read(&skb->users) == 1)) {
2166 smp_rmb();
2167 atomic_set(&skb->users, 0);
2168 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2169 return;
2170 }
2171 get_kfree_skb_cb(skb)->reason = reason;
2172 local_irq_save(flags);
2173 skb->next = __this_cpu_read(softnet_data.completion_queue);
2174 __this_cpu_write(softnet_data.completion_queue, skb);
2175 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2176 local_irq_restore(flags);
2177 }
2178 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2179
2180 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2181 {
2182 if (in_irq() || irqs_disabled())
2183 __dev_kfree_skb_irq(skb, reason);
2184 else
2185 dev_kfree_skb(skb);
2186 }
2187 EXPORT_SYMBOL(__dev_kfree_skb_any);
2188
2189
2190 /**
2191 * netif_device_detach - mark device as removed
2192 * @dev: network device
2193 *
2194 * Mark device as removed from system and therefore no longer available.
2195 */
2196 void netif_device_detach(struct net_device *dev)
2197 {
2198 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2199 netif_running(dev)) {
2200 netif_tx_stop_all_queues(dev);
2201 }
2202 }
2203 EXPORT_SYMBOL(netif_device_detach);
2204
2205 /**
2206 * netif_device_attach - mark device as attached
2207 * @dev: network device
2208 *
2209 * Mark device as attached from system and restart if needed.
2210 */
2211 void netif_device_attach(struct net_device *dev)
2212 {
2213 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2214 netif_running(dev)) {
2215 netif_tx_wake_all_queues(dev);
2216 __netdev_watchdog_up(dev);
2217 }
2218 }
2219 EXPORT_SYMBOL(netif_device_attach);
2220
2221 static void skb_warn_bad_offload(const struct sk_buff *skb)
2222 {
2223 static const netdev_features_t null_features = 0;
2224 struct net_device *dev = skb->dev;
2225 const char *driver = "";
2226
2227 if (!net_ratelimit())
2228 return;
2229
2230 if (dev && dev->dev.parent)
2231 driver = dev_driver_string(dev->dev.parent);
2232
2233 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2234 "gso_type=%d ip_summed=%d\n",
2235 driver, dev ? &dev->features : &null_features,
2236 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2237 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2238 skb_shinfo(skb)->gso_type, skb->ip_summed);
2239 }
2240
2241 /*
2242 * Invalidate hardware checksum when packet is to be mangled, and
2243 * complete checksum manually on outgoing path.
2244 */
2245 int skb_checksum_help(struct sk_buff *skb)
2246 {
2247 __wsum csum;
2248 int ret = 0, offset;
2249
2250 if (skb->ip_summed == CHECKSUM_COMPLETE)
2251 goto out_set_summed;
2252
2253 if (unlikely(skb_shinfo(skb)->gso_size)) {
2254 skb_warn_bad_offload(skb);
2255 return -EINVAL;
2256 }
2257
2258 /* Before computing a checksum, we should make sure no frag could
2259 * be modified by an external entity : checksum could be wrong.
2260 */
2261 if (skb_has_shared_frag(skb)) {
2262 ret = __skb_linearize(skb);
2263 if (ret)
2264 goto out;
2265 }
2266
2267 offset = skb_checksum_start_offset(skb);
2268 BUG_ON(offset >= skb_headlen(skb));
2269 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2270
2271 offset += skb->csum_offset;
2272 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2273
2274 if (skb_cloned(skb) &&
2275 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2276 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2277 if (ret)
2278 goto out;
2279 }
2280
2281 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2282 out_set_summed:
2283 skb->ip_summed = CHECKSUM_NONE;
2284 out:
2285 return ret;
2286 }
2287 EXPORT_SYMBOL(skb_checksum_help);
2288
2289 __be16 skb_network_protocol(struct sk_buff *skb)
2290 {
2291 __be16 type = skb->protocol;
2292 int vlan_depth = ETH_HLEN;
2293
2294 /* Tunnel gso handlers can set protocol to ethernet. */
2295 if (type == htons(ETH_P_TEB)) {
2296 struct ethhdr *eth;
2297
2298 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2299 return 0;
2300
2301 eth = (struct ethhdr *)skb_mac_header(skb);
2302 type = eth->h_proto;
2303 }
2304
2305 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2306 struct vlan_hdr *vh;
2307
2308 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2309 return 0;
2310
2311 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2312 type = vh->h_vlan_encapsulated_proto;
2313 vlan_depth += VLAN_HLEN;
2314 }
2315
2316 return type;
2317 }
2318
2319 /**
2320 * skb_mac_gso_segment - mac layer segmentation handler.
2321 * @skb: buffer to segment
2322 * @features: features for the output path (see dev->features)
2323 */
2324 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2325 netdev_features_t features)
2326 {
2327 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2328 struct packet_offload *ptype;
2329 __be16 type = skb_network_protocol(skb);
2330
2331 if (unlikely(!type))
2332 return ERR_PTR(-EINVAL);
2333
2334 __skb_pull(skb, skb->mac_len);
2335
2336 rcu_read_lock();
2337 list_for_each_entry_rcu(ptype, &offload_base, list) {
2338 if (ptype->type == type && ptype->callbacks.gso_segment) {
2339 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2340 int err;
2341
2342 err = ptype->callbacks.gso_send_check(skb);
2343 segs = ERR_PTR(err);
2344 if (err || skb_gso_ok(skb, features))
2345 break;
2346 __skb_push(skb, (skb->data -
2347 skb_network_header(skb)));
2348 }
2349 segs = ptype->callbacks.gso_segment(skb, features);
2350 break;
2351 }
2352 }
2353 rcu_read_unlock();
2354
2355 __skb_push(skb, skb->data - skb_mac_header(skb));
2356
2357 return segs;
2358 }
2359 EXPORT_SYMBOL(skb_mac_gso_segment);
2360
2361
2362 /* openvswitch calls this on rx path, so we need a different check.
2363 */
2364 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2365 {
2366 if (tx_path)
2367 return skb->ip_summed != CHECKSUM_PARTIAL;
2368 else
2369 return skb->ip_summed == CHECKSUM_NONE;
2370 }
2371
2372 /**
2373 * __skb_gso_segment - Perform segmentation on skb.
2374 * @skb: buffer to segment
2375 * @features: features for the output path (see dev->features)
2376 * @tx_path: whether it is called in TX path
2377 *
2378 * This function segments the given skb and returns a list of segments.
2379 *
2380 * It may return NULL if the skb requires no segmentation. This is
2381 * only possible when GSO is used for verifying header integrity.
2382 */
2383 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2384 netdev_features_t features, bool tx_path)
2385 {
2386 if (unlikely(skb_needs_check(skb, tx_path))) {
2387 int err;
2388
2389 skb_warn_bad_offload(skb);
2390
2391 if (skb_header_cloned(skb) &&
2392 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2393 return ERR_PTR(err);
2394 }
2395
2396 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2397 SKB_GSO_CB(skb)->encap_level = 0;
2398
2399 skb_reset_mac_header(skb);
2400 skb_reset_mac_len(skb);
2401
2402 return skb_mac_gso_segment(skb, features);
2403 }
2404 EXPORT_SYMBOL(__skb_gso_segment);
2405
2406 /* Take action when hardware reception checksum errors are detected. */
2407 #ifdef CONFIG_BUG
2408 void netdev_rx_csum_fault(struct net_device *dev)
2409 {
2410 if (net_ratelimit()) {
2411 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2412 dump_stack();
2413 }
2414 }
2415 EXPORT_SYMBOL(netdev_rx_csum_fault);
2416 #endif
2417
2418 /* Actually, we should eliminate this check as soon as we know, that:
2419 * 1. IOMMU is present and allows to map all the memory.
2420 * 2. No high memory really exists on this machine.
2421 */
2422
2423 static int illegal_highdma(const struct net_device *dev, struct sk_buff *skb)
2424 {
2425 #ifdef CONFIG_HIGHMEM
2426 int i;
2427 if (!(dev->features & NETIF_F_HIGHDMA)) {
2428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2430 if (PageHighMem(skb_frag_page(frag)))
2431 return 1;
2432 }
2433 }
2434
2435 if (PCI_DMA_BUS_IS_PHYS) {
2436 struct device *pdev = dev->dev.parent;
2437
2438 if (!pdev)
2439 return 0;
2440 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2441 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2442 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2443 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2444 return 1;
2445 }
2446 }
2447 #endif
2448 return 0;
2449 }
2450
2451 struct dev_gso_cb {
2452 void (*destructor)(struct sk_buff *skb);
2453 };
2454
2455 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2456
2457 static void dev_gso_skb_destructor(struct sk_buff *skb)
2458 {
2459 struct dev_gso_cb *cb;
2460
2461 kfree_skb_list(skb->next);
2462 skb->next = NULL;
2463
2464 cb = DEV_GSO_CB(skb);
2465 if (cb->destructor)
2466 cb->destructor(skb);
2467 }
2468
2469 /**
2470 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2471 * @skb: buffer to segment
2472 * @features: device features as applicable to this skb
2473 *
2474 * This function segments the given skb and stores the list of segments
2475 * in skb->next.
2476 */
2477 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2478 {
2479 struct sk_buff *segs;
2480
2481 segs = skb_gso_segment(skb, features);
2482
2483 /* Verifying header integrity only. */
2484 if (!segs)
2485 return 0;
2486
2487 if (IS_ERR(segs))
2488 return PTR_ERR(segs);
2489
2490 skb->next = segs;
2491 DEV_GSO_CB(skb)->destructor = skb->destructor;
2492 skb->destructor = dev_gso_skb_destructor;
2493
2494 return 0;
2495 }
2496
2497 static netdev_features_t harmonize_features(struct sk_buff *skb,
2498 const struct net_device *dev,
2499 netdev_features_t features)
2500 {
2501 if (skb->ip_summed != CHECKSUM_NONE &&
2502 !can_checksum_protocol(features, skb_network_protocol(skb))) {
2503 features &= ~NETIF_F_ALL_CSUM;
2504 } else if (illegal_highdma(dev, skb)) {
2505 features &= ~NETIF_F_SG;
2506 }
2507
2508 return features;
2509 }
2510
2511 netdev_features_t netif_skb_dev_features(struct sk_buff *skb,
2512 const struct net_device *dev)
2513 {
2514 __be16 protocol = skb->protocol;
2515 netdev_features_t features = dev->features;
2516
2517 if (skb_shinfo(skb)->gso_segs > dev->gso_max_segs)
2518 features &= ~NETIF_F_GSO_MASK;
2519
2520 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2521 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2522 protocol = veh->h_vlan_encapsulated_proto;
2523 } else if (!vlan_tx_tag_present(skb)) {
2524 return harmonize_features(skb, dev, features);
2525 }
2526
2527 features &= (dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2528 NETIF_F_HW_VLAN_STAG_TX);
2529
2530 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2531 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2532 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2533 NETIF_F_HW_VLAN_STAG_TX;
2534
2535 return harmonize_features(skb, dev, features);
2536 }
2537 EXPORT_SYMBOL(netif_skb_dev_features);
2538
2539 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2540 struct netdev_queue *txq)
2541 {
2542 const struct net_device_ops *ops = dev->netdev_ops;
2543 int rc = NETDEV_TX_OK;
2544 unsigned int skb_len;
2545
2546 if (likely(!skb->next)) {
2547 netdev_features_t features;
2548
2549 /*
2550 * If device doesn't need skb->dst, release it right now while
2551 * its hot in this cpu cache
2552 */
2553 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2554 skb_dst_drop(skb);
2555
2556 features = netif_skb_features(skb);
2557
2558 if (vlan_tx_tag_present(skb) &&
2559 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2560 skb = __vlan_put_tag(skb, skb->vlan_proto,
2561 vlan_tx_tag_get(skb));
2562 if (unlikely(!skb))
2563 goto out;
2564
2565 skb->vlan_tci = 0;
2566 }
2567
2568 /* If encapsulation offload request, verify we are testing
2569 * hardware encapsulation features instead of standard
2570 * features for the netdev
2571 */
2572 if (skb->encapsulation)
2573 features &= dev->hw_enc_features;
2574
2575 if (netif_needs_gso(skb, features)) {
2576 if (unlikely(dev_gso_segment(skb, features)))
2577 goto out_kfree_skb;
2578 if (skb->next)
2579 goto gso;
2580 } else {
2581 if (skb_needs_linearize(skb, features) &&
2582 __skb_linearize(skb))
2583 goto out_kfree_skb;
2584
2585 /* If packet is not checksummed and device does not
2586 * support checksumming for this protocol, complete
2587 * checksumming here.
2588 */
2589 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2590 if (skb->encapsulation)
2591 skb_set_inner_transport_header(skb,
2592 skb_checksum_start_offset(skb));
2593 else
2594 skb_set_transport_header(skb,
2595 skb_checksum_start_offset(skb));
2596 if (!(features & NETIF_F_ALL_CSUM) &&
2597 skb_checksum_help(skb))
2598 goto out_kfree_skb;
2599 }
2600 }
2601
2602 if (!list_empty(&ptype_all))
2603 dev_queue_xmit_nit(skb, dev);
2604
2605 skb_len = skb->len;
2606 trace_net_dev_start_xmit(skb, dev);
2607 rc = ops->ndo_start_xmit(skb, dev);
2608 trace_net_dev_xmit(skb, rc, dev, skb_len);
2609 if (rc == NETDEV_TX_OK)
2610 txq_trans_update(txq);
2611 return rc;
2612 }
2613
2614 gso:
2615 do {
2616 struct sk_buff *nskb = skb->next;
2617
2618 skb->next = nskb->next;
2619 nskb->next = NULL;
2620
2621 if (!list_empty(&ptype_all))
2622 dev_queue_xmit_nit(nskb, dev);
2623
2624 skb_len = nskb->len;
2625 trace_net_dev_start_xmit(nskb, dev);
2626 rc = ops->ndo_start_xmit(nskb, dev);
2627 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2628 if (unlikely(rc != NETDEV_TX_OK)) {
2629 if (rc & ~NETDEV_TX_MASK)
2630 goto out_kfree_gso_skb;
2631 nskb->next = skb->next;
2632 skb->next = nskb;
2633 return rc;
2634 }
2635 txq_trans_update(txq);
2636 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2637 return NETDEV_TX_BUSY;
2638 } while (skb->next);
2639
2640 out_kfree_gso_skb:
2641 if (likely(skb->next == NULL)) {
2642 skb->destructor = DEV_GSO_CB(skb)->destructor;
2643 consume_skb(skb);
2644 return rc;
2645 }
2646 out_kfree_skb:
2647 kfree_skb(skb);
2648 out:
2649 return rc;
2650 }
2651 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2652
2653 static void qdisc_pkt_len_init(struct sk_buff *skb)
2654 {
2655 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2656
2657 qdisc_skb_cb(skb)->pkt_len = skb->len;
2658
2659 /* To get more precise estimation of bytes sent on wire,
2660 * we add to pkt_len the headers size of all segments
2661 */
2662 if (shinfo->gso_size) {
2663 unsigned int hdr_len;
2664 u16 gso_segs = shinfo->gso_segs;
2665
2666 /* mac layer + network layer */
2667 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2668
2669 /* + transport layer */
2670 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2671 hdr_len += tcp_hdrlen(skb);
2672 else
2673 hdr_len += sizeof(struct udphdr);
2674
2675 if (shinfo->gso_type & SKB_GSO_DODGY)
2676 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2677 shinfo->gso_size);
2678
2679 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2680 }
2681 }
2682
2683 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2684 struct net_device *dev,
2685 struct netdev_queue *txq)
2686 {
2687 spinlock_t *root_lock = qdisc_lock(q);
2688 bool contended;
2689 int rc;
2690
2691 qdisc_pkt_len_init(skb);
2692 qdisc_calculate_pkt_len(skb, q);
2693 /*
2694 * Heuristic to force contended enqueues to serialize on a
2695 * separate lock before trying to get qdisc main lock.
2696 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2697 * and dequeue packets faster.
2698 */
2699 contended = qdisc_is_running(q);
2700 if (unlikely(contended))
2701 spin_lock(&q->busylock);
2702
2703 spin_lock(root_lock);
2704 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2705 kfree_skb(skb);
2706 rc = NET_XMIT_DROP;
2707 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2708 qdisc_run_begin(q)) {
2709 /*
2710 * This is a work-conserving queue; there are no old skbs
2711 * waiting to be sent out; and the qdisc is not running -
2712 * xmit the skb directly.
2713 */
2714 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2715 skb_dst_force(skb);
2716
2717 qdisc_bstats_update(q, skb);
2718
2719 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2720 if (unlikely(contended)) {
2721 spin_unlock(&q->busylock);
2722 contended = false;
2723 }
2724 __qdisc_run(q);
2725 } else
2726 qdisc_run_end(q);
2727
2728 rc = NET_XMIT_SUCCESS;
2729 } else {
2730 skb_dst_force(skb);
2731 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2732 if (qdisc_run_begin(q)) {
2733 if (unlikely(contended)) {
2734 spin_unlock(&q->busylock);
2735 contended = false;
2736 }
2737 __qdisc_run(q);
2738 }
2739 }
2740 spin_unlock(root_lock);
2741 if (unlikely(contended))
2742 spin_unlock(&q->busylock);
2743 return rc;
2744 }
2745
2746 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2747 static void skb_update_prio(struct sk_buff *skb)
2748 {
2749 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2750
2751 if (!skb->priority && skb->sk && map) {
2752 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2753
2754 if (prioidx < map->priomap_len)
2755 skb->priority = map->priomap[prioidx];
2756 }
2757 }
2758 #else
2759 #define skb_update_prio(skb)
2760 #endif
2761
2762 static DEFINE_PER_CPU(int, xmit_recursion);
2763 #define RECURSION_LIMIT 10
2764
2765 /**
2766 * dev_loopback_xmit - loop back @skb
2767 * @skb: buffer to transmit
2768 */
2769 int dev_loopback_xmit(struct sk_buff *skb)
2770 {
2771 skb_reset_mac_header(skb);
2772 __skb_pull(skb, skb_network_offset(skb));
2773 skb->pkt_type = PACKET_LOOPBACK;
2774 skb->ip_summed = CHECKSUM_UNNECESSARY;
2775 WARN_ON(!skb_dst(skb));
2776 skb_dst_force(skb);
2777 netif_rx_ni(skb);
2778 return 0;
2779 }
2780 EXPORT_SYMBOL(dev_loopback_xmit);
2781
2782 /**
2783 * __dev_queue_xmit - transmit a buffer
2784 * @skb: buffer to transmit
2785 * @accel_priv: private data used for L2 forwarding offload
2786 *
2787 * Queue a buffer for transmission to a network device. The caller must
2788 * have set the device and priority and built the buffer before calling
2789 * this function. The function can be called from an interrupt.
2790 *
2791 * A negative errno code is returned on a failure. A success does not
2792 * guarantee the frame will be transmitted as it may be dropped due
2793 * to congestion or traffic shaping.
2794 *
2795 * -----------------------------------------------------------------------------------
2796 * I notice this method can also return errors from the queue disciplines,
2797 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2798 * be positive.
2799 *
2800 * Regardless of the return value, the skb is consumed, so it is currently
2801 * difficult to retry a send to this method. (You can bump the ref count
2802 * before sending to hold a reference for retry if you are careful.)
2803 *
2804 * When calling this method, interrupts MUST be enabled. This is because
2805 * the BH enable code must have IRQs enabled so that it will not deadlock.
2806 * --BLG
2807 */
2808 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2809 {
2810 struct net_device *dev = skb->dev;
2811 struct netdev_queue *txq;
2812 struct Qdisc *q;
2813 int rc = -ENOMEM;
2814
2815 skb_reset_mac_header(skb);
2816
2817 /* Disable soft irqs for various locks below. Also
2818 * stops preemption for RCU.
2819 */
2820 rcu_read_lock_bh();
2821
2822 skb_update_prio(skb);
2823
2824 txq = netdev_pick_tx(dev, skb, accel_priv);
2825 q = rcu_dereference_bh(txq->qdisc);
2826
2827 #ifdef CONFIG_NET_CLS_ACT
2828 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2829 #endif
2830 trace_net_dev_queue(skb);
2831 if (q->enqueue) {
2832 rc = __dev_xmit_skb(skb, q, dev, txq);
2833 goto out;
2834 }
2835
2836 /* The device has no queue. Common case for software devices:
2837 loopback, all the sorts of tunnels...
2838
2839 Really, it is unlikely that netif_tx_lock protection is necessary
2840 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2841 counters.)
2842 However, it is possible, that they rely on protection
2843 made by us here.
2844
2845 Check this and shot the lock. It is not prone from deadlocks.
2846 Either shot noqueue qdisc, it is even simpler 8)
2847 */
2848 if (dev->flags & IFF_UP) {
2849 int cpu = smp_processor_id(); /* ok because BHs are off */
2850
2851 if (txq->xmit_lock_owner != cpu) {
2852
2853 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2854 goto recursion_alert;
2855
2856 HARD_TX_LOCK(dev, txq, cpu);
2857
2858 if (!netif_xmit_stopped(txq)) {
2859 __this_cpu_inc(xmit_recursion);
2860 rc = dev_hard_start_xmit(skb, dev, txq);
2861 __this_cpu_dec(xmit_recursion);
2862 if (dev_xmit_complete(rc)) {
2863 HARD_TX_UNLOCK(dev, txq);
2864 goto out;
2865 }
2866 }
2867 HARD_TX_UNLOCK(dev, txq);
2868 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2869 dev->name);
2870 } else {
2871 /* Recursion is detected! It is possible,
2872 * unfortunately
2873 */
2874 recursion_alert:
2875 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2876 dev->name);
2877 }
2878 }
2879
2880 rc = -ENETDOWN;
2881 rcu_read_unlock_bh();
2882
2883 kfree_skb(skb);
2884 return rc;
2885 out:
2886 rcu_read_unlock_bh();
2887 return rc;
2888 }
2889
2890 int dev_queue_xmit(struct sk_buff *skb)
2891 {
2892 return __dev_queue_xmit(skb, NULL);
2893 }
2894 EXPORT_SYMBOL(dev_queue_xmit);
2895
2896 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2897 {
2898 return __dev_queue_xmit(skb, accel_priv);
2899 }
2900 EXPORT_SYMBOL(dev_queue_xmit_accel);
2901
2902
2903 /*=======================================================================
2904 Receiver routines
2905 =======================================================================*/
2906
2907 int netdev_max_backlog __read_mostly = 1000;
2908 EXPORT_SYMBOL(netdev_max_backlog);
2909
2910 int netdev_tstamp_prequeue __read_mostly = 1;
2911 int netdev_budget __read_mostly = 300;
2912 int weight_p __read_mostly = 64; /* old backlog weight */
2913
2914 /* Called with irq disabled */
2915 static inline void ____napi_schedule(struct softnet_data *sd,
2916 struct napi_struct *napi)
2917 {
2918 list_add_tail(&napi->poll_list, &sd->poll_list);
2919 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2920 }
2921
2922 #ifdef CONFIG_RPS
2923
2924 /* One global table that all flow-based protocols share. */
2925 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2926 EXPORT_SYMBOL(rps_sock_flow_table);
2927
2928 struct static_key rps_needed __read_mostly;
2929
2930 static struct rps_dev_flow *
2931 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2932 struct rps_dev_flow *rflow, u16 next_cpu)
2933 {
2934 if (next_cpu != RPS_NO_CPU) {
2935 #ifdef CONFIG_RFS_ACCEL
2936 struct netdev_rx_queue *rxqueue;
2937 struct rps_dev_flow_table *flow_table;
2938 struct rps_dev_flow *old_rflow;
2939 u32 flow_id;
2940 u16 rxq_index;
2941 int rc;
2942
2943 /* Should we steer this flow to a different hardware queue? */
2944 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2945 !(dev->features & NETIF_F_NTUPLE))
2946 goto out;
2947 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2948 if (rxq_index == skb_get_rx_queue(skb))
2949 goto out;
2950
2951 rxqueue = dev->_rx + rxq_index;
2952 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2953 if (!flow_table)
2954 goto out;
2955 flow_id = skb->rxhash & flow_table->mask;
2956 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2957 rxq_index, flow_id);
2958 if (rc < 0)
2959 goto out;
2960 old_rflow = rflow;
2961 rflow = &flow_table->flows[flow_id];
2962 rflow->filter = rc;
2963 if (old_rflow->filter == rflow->filter)
2964 old_rflow->filter = RPS_NO_FILTER;
2965 out:
2966 #endif
2967 rflow->last_qtail =
2968 per_cpu(softnet_data, next_cpu).input_queue_head;
2969 }
2970
2971 rflow->cpu = next_cpu;
2972 return rflow;
2973 }
2974
2975 /*
2976 * get_rps_cpu is called from netif_receive_skb and returns the target
2977 * CPU from the RPS map of the receiving queue for a given skb.
2978 * rcu_read_lock must be held on entry.
2979 */
2980 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2981 struct rps_dev_flow **rflowp)
2982 {
2983 struct netdev_rx_queue *rxqueue;
2984 struct rps_map *map;
2985 struct rps_dev_flow_table *flow_table;
2986 struct rps_sock_flow_table *sock_flow_table;
2987 int cpu = -1;
2988 u16 tcpu;
2989
2990 if (skb_rx_queue_recorded(skb)) {
2991 u16 index = skb_get_rx_queue(skb);
2992 if (unlikely(index >= dev->real_num_rx_queues)) {
2993 WARN_ONCE(dev->real_num_rx_queues > 1,
2994 "%s received packet on queue %u, but number "
2995 "of RX queues is %u\n",
2996 dev->name, index, dev->real_num_rx_queues);
2997 goto done;
2998 }
2999 rxqueue = dev->_rx + index;
3000 } else
3001 rxqueue = dev->_rx;
3002
3003 map = rcu_dereference(rxqueue->rps_map);
3004 if (map) {
3005 if (map->len == 1 &&
3006 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3007 tcpu = map->cpus[0];
3008 if (cpu_online(tcpu))
3009 cpu = tcpu;
3010 goto done;
3011 }
3012 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3013 goto done;
3014 }
3015
3016 skb_reset_network_header(skb);
3017 if (!skb_get_hash(skb))
3018 goto done;
3019
3020 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3021 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3022 if (flow_table && sock_flow_table) {
3023 u16 next_cpu;
3024 struct rps_dev_flow *rflow;
3025
3026 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3027 tcpu = rflow->cpu;
3028
3029 next_cpu = sock_flow_table->ents[skb->rxhash &
3030 sock_flow_table->mask];
3031
3032 /*
3033 * If the desired CPU (where last recvmsg was done) is
3034 * different from current CPU (one in the rx-queue flow
3035 * table entry), switch if one of the following holds:
3036 * - Current CPU is unset (equal to RPS_NO_CPU).
3037 * - Current CPU is offline.
3038 * - The current CPU's queue tail has advanced beyond the
3039 * last packet that was enqueued using this table entry.
3040 * This guarantees that all previous packets for the flow
3041 * have been dequeued, thus preserving in order delivery.
3042 */
3043 if (unlikely(tcpu != next_cpu) &&
3044 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3045 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3046 rflow->last_qtail)) >= 0)) {
3047 tcpu = next_cpu;
3048 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3049 }
3050
3051 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3052 *rflowp = rflow;
3053 cpu = tcpu;
3054 goto done;
3055 }
3056 }
3057
3058 if (map) {
3059 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3060
3061 if (cpu_online(tcpu)) {
3062 cpu = tcpu;
3063 goto done;
3064 }
3065 }
3066
3067 done:
3068 return cpu;
3069 }
3070
3071 #ifdef CONFIG_RFS_ACCEL
3072
3073 /**
3074 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3075 * @dev: Device on which the filter was set
3076 * @rxq_index: RX queue index
3077 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3078 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3079 *
3080 * Drivers that implement ndo_rx_flow_steer() should periodically call
3081 * this function for each installed filter and remove the filters for
3082 * which it returns %true.
3083 */
3084 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3085 u32 flow_id, u16 filter_id)
3086 {
3087 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3088 struct rps_dev_flow_table *flow_table;
3089 struct rps_dev_flow *rflow;
3090 bool expire = true;
3091 int cpu;
3092
3093 rcu_read_lock();
3094 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3095 if (flow_table && flow_id <= flow_table->mask) {
3096 rflow = &flow_table->flows[flow_id];
3097 cpu = ACCESS_ONCE(rflow->cpu);
3098 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3099 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3100 rflow->last_qtail) <
3101 (int)(10 * flow_table->mask)))
3102 expire = false;
3103 }
3104 rcu_read_unlock();
3105 return expire;
3106 }
3107 EXPORT_SYMBOL(rps_may_expire_flow);
3108
3109 #endif /* CONFIG_RFS_ACCEL */
3110
3111 /* Called from hardirq (IPI) context */
3112 static void rps_trigger_softirq(void *data)
3113 {
3114 struct softnet_data *sd = data;
3115
3116 ____napi_schedule(sd, &sd->backlog);
3117 sd->received_rps++;
3118 }
3119
3120 #endif /* CONFIG_RPS */
3121
3122 /*
3123 * Check if this softnet_data structure is another cpu one
3124 * If yes, queue it to our IPI list and return 1
3125 * If no, return 0
3126 */
3127 static int rps_ipi_queued(struct softnet_data *sd)
3128 {
3129 #ifdef CONFIG_RPS
3130 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3131
3132 if (sd != mysd) {
3133 sd->rps_ipi_next = mysd->rps_ipi_list;
3134 mysd->rps_ipi_list = sd;
3135
3136 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3137 return 1;
3138 }
3139 #endif /* CONFIG_RPS */
3140 return 0;
3141 }
3142
3143 #ifdef CONFIG_NET_FLOW_LIMIT
3144 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3145 #endif
3146
3147 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3148 {
3149 #ifdef CONFIG_NET_FLOW_LIMIT
3150 struct sd_flow_limit *fl;
3151 struct softnet_data *sd;
3152 unsigned int old_flow, new_flow;
3153
3154 if (qlen < (netdev_max_backlog >> 1))
3155 return false;
3156
3157 sd = &__get_cpu_var(softnet_data);
3158
3159 rcu_read_lock();
3160 fl = rcu_dereference(sd->flow_limit);
3161 if (fl) {
3162 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3163 old_flow = fl->history[fl->history_head];
3164 fl->history[fl->history_head] = new_flow;
3165
3166 fl->history_head++;
3167 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3168
3169 if (likely(fl->buckets[old_flow]))
3170 fl->buckets[old_flow]--;
3171
3172 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3173 fl->count++;
3174 rcu_read_unlock();
3175 return true;
3176 }
3177 }
3178 rcu_read_unlock();
3179 #endif
3180 return false;
3181 }
3182
3183 /*
3184 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3185 * queue (may be a remote CPU queue).
3186 */
3187 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3188 unsigned int *qtail)
3189 {
3190 struct softnet_data *sd;
3191 unsigned long flags;
3192 unsigned int qlen;
3193
3194 sd = &per_cpu(softnet_data, cpu);
3195
3196 local_irq_save(flags);
3197
3198 rps_lock(sd);
3199 qlen = skb_queue_len(&sd->input_pkt_queue);
3200 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3201 if (skb_queue_len(&sd->input_pkt_queue)) {
3202 enqueue:
3203 __skb_queue_tail(&sd->input_pkt_queue, skb);
3204 input_queue_tail_incr_save(sd, qtail);
3205 rps_unlock(sd);
3206 local_irq_restore(flags);
3207 return NET_RX_SUCCESS;
3208 }
3209
3210 /* Schedule NAPI for backlog device
3211 * We can use non atomic operation since we own the queue lock
3212 */
3213 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3214 if (!rps_ipi_queued(sd))
3215 ____napi_schedule(sd, &sd->backlog);
3216 }
3217 goto enqueue;
3218 }
3219
3220 sd->dropped++;
3221 rps_unlock(sd);
3222
3223 local_irq_restore(flags);
3224
3225 atomic_long_inc(&skb->dev->rx_dropped);
3226 kfree_skb(skb);
3227 return NET_RX_DROP;
3228 }
3229
3230 static int netif_rx_internal(struct sk_buff *skb)
3231 {
3232 int ret;
3233
3234 net_timestamp_check(netdev_tstamp_prequeue, skb);
3235
3236 trace_netif_rx(skb);
3237 #ifdef CONFIG_RPS
3238 if (static_key_false(&rps_needed)) {
3239 struct rps_dev_flow voidflow, *rflow = &voidflow;
3240 int cpu;
3241
3242 preempt_disable();
3243 rcu_read_lock();
3244
3245 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3246 if (cpu < 0)
3247 cpu = smp_processor_id();
3248
3249 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3250
3251 rcu_read_unlock();
3252 preempt_enable();
3253 } else
3254 #endif
3255 {
3256 unsigned int qtail;
3257 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3258 put_cpu();
3259 }
3260 return ret;
3261 }
3262
3263 /**
3264 * netif_rx - post buffer to the network code
3265 * @skb: buffer to post
3266 *
3267 * This function receives a packet from a device driver and queues it for
3268 * the upper (protocol) levels to process. It always succeeds. The buffer
3269 * may be dropped during processing for congestion control or by the
3270 * protocol layers.
3271 *
3272 * return values:
3273 * NET_RX_SUCCESS (no congestion)
3274 * NET_RX_DROP (packet was dropped)
3275 *
3276 */
3277
3278 int netif_rx(struct sk_buff *skb)
3279 {
3280 trace_netif_rx_entry(skb);
3281
3282 return netif_rx_internal(skb);
3283 }
3284 EXPORT_SYMBOL(netif_rx);
3285
3286 int netif_rx_ni(struct sk_buff *skb)
3287 {
3288 int err;
3289
3290 trace_netif_rx_ni_entry(skb);
3291
3292 preempt_disable();
3293 err = netif_rx_internal(skb);
3294 if (local_softirq_pending())
3295 do_softirq();
3296 preempt_enable();
3297
3298 return err;
3299 }
3300 EXPORT_SYMBOL(netif_rx_ni);
3301
3302 static void net_tx_action(struct softirq_action *h)
3303 {
3304 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3305
3306 if (sd->completion_queue) {
3307 struct sk_buff *clist;
3308
3309 local_irq_disable();
3310 clist = sd->completion_queue;
3311 sd->completion_queue = NULL;
3312 local_irq_enable();
3313
3314 while (clist) {
3315 struct sk_buff *skb = clist;
3316 clist = clist->next;
3317
3318 WARN_ON(atomic_read(&skb->users));
3319 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3320 trace_consume_skb(skb);
3321 else
3322 trace_kfree_skb(skb, net_tx_action);
3323 __kfree_skb(skb);
3324 }
3325 }
3326
3327 if (sd->output_queue) {
3328 struct Qdisc *head;
3329
3330 local_irq_disable();
3331 head = sd->output_queue;
3332 sd->output_queue = NULL;
3333 sd->output_queue_tailp = &sd->output_queue;
3334 local_irq_enable();
3335
3336 while (head) {
3337 struct Qdisc *q = head;
3338 spinlock_t *root_lock;
3339
3340 head = head->next_sched;
3341
3342 root_lock = qdisc_lock(q);
3343 if (spin_trylock(root_lock)) {
3344 smp_mb__before_clear_bit();
3345 clear_bit(__QDISC_STATE_SCHED,
3346 &q->state);
3347 qdisc_run(q);
3348 spin_unlock(root_lock);
3349 } else {
3350 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3351 &q->state)) {
3352 __netif_reschedule(q);
3353 } else {
3354 smp_mb__before_clear_bit();
3355 clear_bit(__QDISC_STATE_SCHED,
3356 &q->state);
3357 }
3358 }
3359 }
3360 }
3361 }
3362
3363 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3364 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3365 /* This hook is defined here for ATM LANE */
3366 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3367 unsigned char *addr) __read_mostly;
3368 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3369 #endif
3370
3371 #ifdef CONFIG_NET_CLS_ACT
3372 /* TODO: Maybe we should just force sch_ingress to be compiled in
3373 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3374 * a compare and 2 stores extra right now if we dont have it on
3375 * but have CONFIG_NET_CLS_ACT
3376 * NOTE: This doesn't stop any functionality; if you dont have
3377 * the ingress scheduler, you just can't add policies on ingress.
3378 *
3379 */
3380 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3381 {
3382 struct net_device *dev = skb->dev;
3383 u32 ttl = G_TC_RTTL(skb->tc_verd);
3384 int result = TC_ACT_OK;
3385 struct Qdisc *q;
3386
3387 if (unlikely(MAX_RED_LOOP < ttl++)) {
3388 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3389 skb->skb_iif, dev->ifindex);
3390 return TC_ACT_SHOT;
3391 }
3392
3393 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3394 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3395
3396 q = rxq->qdisc;
3397 if (q != &noop_qdisc) {
3398 spin_lock(qdisc_lock(q));
3399 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3400 result = qdisc_enqueue_root(skb, q);
3401 spin_unlock(qdisc_lock(q));
3402 }
3403
3404 return result;
3405 }
3406
3407 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3408 struct packet_type **pt_prev,
3409 int *ret, struct net_device *orig_dev)
3410 {
3411 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3412
3413 if (!rxq || rxq->qdisc == &noop_qdisc)
3414 goto out;
3415
3416 if (*pt_prev) {
3417 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3418 *pt_prev = NULL;
3419 }
3420
3421 switch (ing_filter(skb, rxq)) {
3422 case TC_ACT_SHOT:
3423 case TC_ACT_STOLEN:
3424 kfree_skb(skb);
3425 return NULL;
3426 }
3427
3428 out:
3429 skb->tc_verd = 0;
3430 return skb;
3431 }
3432 #endif
3433
3434 /**
3435 * netdev_rx_handler_register - register receive handler
3436 * @dev: device to register a handler for
3437 * @rx_handler: receive handler to register
3438 * @rx_handler_data: data pointer that is used by rx handler
3439 *
3440 * Register a receive hander for a device. This handler will then be
3441 * called from __netif_receive_skb. A negative errno code is returned
3442 * on a failure.
3443 *
3444 * The caller must hold the rtnl_mutex.
3445 *
3446 * For a general description of rx_handler, see enum rx_handler_result.
3447 */
3448 int netdev_rx_handler_register(struct net_device *dev,
3449 rx_handler_func_t *rx_handler,
3450 void *rx_handler_data)
3451 {
3452 ASSERT_RTNL();
3453
3454 if (dev->rx_handler)
3455 return -EBUSY;
3456
3457 /* Note: rx_handler_data must be set before rx_handler */
3458 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3459 rcu_assign_pointer(dev->rx_handler, rx_handler);
3460
3461 return 0;
3462 }
3463 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3464
3465 /**
3466 * netdev_rx_handler_unregister - unregister receive handler
3467 * @dev: device to unregister a handler from
3468 *
3469 * Unregister a receive handler from a device.
3470 *
3471 * The caller must hold the rtnl_mutex.
3472 */
3473 void netdev_rx_handler_unregister(struct net_device *dev)
3474 {
3475
3476 ASSERT_RTNL();
3477 RCU_INIT_POINTER(dev->rx_handler, NULL);
3478 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3479 * section has a guarantee to see a non NULL rx_handler_data
3480 * as well.
3481 */
3482 synchronize_net();
3483 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3484 }
3485 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3486
3487 /*
3488 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3489 * the special handling of PFMEMALLOC skbs.
3490 */
3491 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3492 {
3493 switch (skb->protocol) {
3494 case htons(ETH_P_ARP):
3495 case htons(ETH_P_IP):
3496 case htons(ETH_P_IPV6):
3497 case htons(ETH_P_8021Q):
3498 case htons(ETH_P_8021AD):
3499 return true;
3500 default:
3501 return false;
3502 }
3503 }
3504
3505 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3506 {
3507 struct packet_type *ptype, *pt_prev;
3508 rx_handler_func_t *rx_handler;
3509 struct net_device *orig_dev;
3510 struct net_device *null_or_dev;
3511 bool deliver_exact = false;
3512 int ret = NET_RX_DROP;
3513 __be16 type;
3514
3515 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3516
3517 trace_netif_receive_skb(skb);
3518
3519 orig_dev = skb->dev;
3520
3521 skb_reset_network_header(skb);
3522 if (!skb_transport_header_was_set(skb))
3523 skb_reset_transport_header(skb);
3524 skb_reset_mac_len(skb);
3525
3526 pt_prev = NULL;
3527
3528 rcu_read_lock();
3529
3530 another_round:
3531 skb->skb_iif = skb->dev->ifindex;
3532
3533 __this_cpu_inc(softnet_data.processed);
3534
3535 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3536 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3537 skb = vlan_untag(skb);
3538 if (unlikely(!skb))
3539 goto unlock;
3540 }
3541
3542 #ifdef CONFIG_NET_CLS_ACT
3543 if (skb->tc_verd & TC_NCLS) {
3544 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3545 goto ncls;
3546 }
3547 #endif
3548
3549 if (pfmemalloc)
3550 goto skip_taps;
3551
3552 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3553 if (!ptype->dev || ptype->dev == skb->dev) {
3554 if (pt_prev)
3555 ret = deliver_skb(skb, pt_prev, orig_dev);
3556 pt_prev = ptype;
3557 }
3558 }
3559
3560 skip_taps:
3561 #ifdef CONFIG_NET_CLS_ACT
3562 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3563 if (!skb)
3564 goto unlock;
3565 ncls:
3566 #endif
3567
3568 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3569 goto drop;
3570
3571 if (vlan_tx_tag_present(skb)) {
3572 if (pt_prev) {
3573 ret = deliver_skb(skb, pt_prev, orig_dev);
3574 pt_prev = NULL;
3575 }
3576 if (vlan_do_receive(&skb))
3577 goto another_round;
3578 else if (unlikely(!skb))
3579 goto unlock;
3580 }
3581
3582 rx_handler = rcu_dereference(skb->dev->rx_handler);
3583 if (rx_handler) {
3584 if (pt_prev) {
3585 ret = deliver_skb(skb, pt_prev, orig_dev);
3586 pt_prev = NULL;
3587 }
3588 switch (rx_handler(&skb)) {
3589 case RX_HANDLER_CONSUMED:
3590 ret = NET_RX_SUCCESS;
3591 goto unlock;
3592 case RX_HANDLER_ANOTHER:
3593 goto another_round;
3594 case RX_HANDLER_EXACT:
3595 deliver_exact = true;
3596 case RX_HANDLER_PASS:
3597 break;
3598 default:
3599 BUG();
3600 }
3601 }
3602
3603 if (unlikely(vlan_tx_tag_present(skb))) {
3604 if (vlan_tx_tag_get_id(skb))
3605 skb->pkt_type = PACKET_OTHERHOST;
3606 /* Note: we might in the future use prio bits
3607 * and set skb->priority like in vlan_do_receive()
3608 * For the time being, just ignore Priority Code Point
3609 */
3610 skb->vlan_tci = 0;
3611 }
3612
3613 /* deliver only exact match when indicated */
3614 null_or_dev = deliver_exact ? skb->dev : NULL;
3615
3616 type = skb->protocol;
3617 list_for_each_entry_rcu(ptype,
3618 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3619 if (ptype->type == type &&
3620 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3621 ptype->dev == orig_dev)) {
3622 if (pt_prev)
3623 ret = deliver_skb(skb, pt_prev, orig_dev);
3624 pt_prev = ptype;
3625 }
3626 }
3627
3628 if (pt_prev) {
3629 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3630 goto drop;
3631 else
3632 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3633 } else {
3634 drop:
3635 atomic_long_inc(&skb->dev->rx_dropped);
3636 kfree_skb(skb);
3637 /* Jamal, now you will not able to escape explaining
3638 * me how you were going to use this. :-)
3639 */
3640 ret = NET_RX_DROP;
3641 }
3642
3643 unlock:
3644 rcu_read_unlock();
3645 return ret;
3646 }
3647
3648 static int __netif_receive_skb(struct sk_buff *skb)
3649 {
3650 int ret;
3651
3652 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3653 unsigned long pflags = current->flags;
3654
3655 /*
3656 * PFMEMALLOC skbs are special, they should
3657 * - be delivered to SOCK_MEMALLOC sockets only
3658 * - stay away from userspace
3659 * - have bounded memory usage
3660 *
3661 * Use PF_MEMALLOC as this saves us from propagating the allocation
3662 * context down to all allocation sites.
3663 */
3664 current->flags |= PF_MEMALLOC;
3665 ret = __netif_receive_skb_core(skb, true);
3666 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3667 } else
3668 ret = __netif_receive_skb_core(skb, false);
3669
3670 return ret;
3671 }
3672
3673 static int netif_receive_skb_internal(struct sk_buff *skb)
3674 {
3675 net_timestamp_check(netdev_tstamp_prequeue, skb);
3676
3677 if (skb_defer_rx_timestamp(skb))
3678 return NET_RX_SUCCESS;
3679
3680 #ifdef CONFIG_RPS
3681 if (static_key_false(&rps_needed)) {
3682 struct rps_dev_flow voidflow, *rflow = &voidflow;
3683 int cpu, ret;
3684
3685 rcu_read_lock();
3686
3687 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3688
3689 if (cpu >= 0) {
3690 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3691 rcu_read_unlock();
3692 return ret;
3693 }
3694 rcu_read_unlock();
3695 }
3696 #endif
3697 return __netif_receive_skb(skb);
3698 }
3699
3700 /**
3701 * netif_receive_skb - process receive buffer from network
3702 * @skb: buffer to process
3703 *
3704 * netif_receive_skb() is the main receive data processing function.
3705 * It always succeeds. The buffer may be dropped during processing
3706 * for congestion control or by the protocol layers.
3707 *
3708 * This function may only be called from softirq context and interrupts
3709 * should be enabled.
3710 *
3711 * Return values (usually ignored):
3712 * NET_RX_SUCCESS: no congestion
3713 * NET_RX_DROP: packet was dropped
3714 */
3715 int netif_receive_skb(struct sk_buff *skb)
3716 {
3717 trace_netif_receive_skb_entry(skb);
3718
3719 return netif_receive_skb_internal(skb);
3720 }
3721 EXPORT_SYMBOL(netif_receive_skb);
3722
3723 /* Network device is going away, flush any packets still pending
3724 * Called with irqs disabled.
3725 */
3726 static void flush_backlog(void *arg)
3727 {
3728 struct net_device *dev = arg;
3729 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3730 struct sk_buff *skb, *tmp;
3731
3732 rps_lock(sd);
3733 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3734 if (skb->dev == dev) {
3735 __skb_unlink(skb, &sd->input_pkt_queue);
3736 kfree_skb(skb);
3737 input_queue_head_incr(sd);
3738 }
3739 }
3740 rps_unlock(sd);
3741
3742 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3743 if (skb->dev == dev) {
3744 __skb_unlink(skb, &sd->process_queue);
3745 kfree_skb(skb);
3746 input_queue_head_incr(sd);
3747 }
3748 }
3749 }
3750
3751 static int napi_gro_complete(struct sk_buff *skb)
3752 {
3753 struct packet_offload *ptype;
3754 __be16 type = skb->protocol;
3755 struct list_head *head = &offload_base;
3756 int err = -ENOENT;
3757
3758 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3759
3760 if (NAPI_GRO_CB(skb)->count == 1) {
3761 skb_shinfo(skb)->gso_size = 0;
3762 goto out;
3763 }
3764
3765 rcu_read_lock();
3766 list_for_each_entry_rcu(ptype, head, list) {
3767 if (ptype->type != type || !ptype->callbacks.gro_complete)
3768 continue;
3769
3770 err = ptype->callbacks.gro_complete(skb, 0);
3771 break;
3772 }
3773 rcu_read_unlock();
3774
3775 if (err) {
3776 WARN_ON(&ptype->list == head);
3777 kfree_skb(skb);
3778 return NET_RX_SUCCESS;
3779 }
3780
3781 out:
3782 return netif_receive_skb_internal(skb);
3783 }
3784
3785 /* napi->gro_list contains packets ordered by age.
3786 * youngest packets at the head of it.
3787 * Complete skbs in reverse order to reduce latencies.
3788 */
3789 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3790 {
3791 struct sk_buff *skb, *prev = NULL;
3792
3793 /* scan list and build reverse chain */
3794 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3795 skb->prev = prev;
3796 prev = skb;
3797 }
3798
3799 for (skb = prev; skb; skb = prev) {
3800 skb->next = NULL;
3801
3802 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3803 return;
3804
3805 prev = skb->prev;
3806 napi_gro_complete(skb);
3807 napi->gro_count--;
3808 }
3809
3810 napi->gro_list = NULL;
3811 }
3812 EXPORT_SYMBOL(napi_gro_flush);
3813
3814 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3815 {
3816 struct sk_buff *p;
3817 unsigned int maclen = skb->dev->hard_header_len;
3818 u32 hash = skb_get_hash_raw(skb);
3819
3820 for (p = napi->gro_list; p; p = p->next) {
3821 unsigned long diffs;
3822
3823 NAPI_GRO_CB(p)->flush = 0;
3824
3825 if (hash != skb_get_hash_raw(p)) {
3826 NAPI_GRO_CB(p)->same_flow = 0;
3827 continue;
3828 }
3829
3830 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3831 diffs |= p->vlan_tci ^ skb->vlan_tci;
3832 if (maclen == ETH_HLEN)
3833 diffs |= compare_ether_header(skb_mac_header(p),
3834 skb_gro_mac_header(skb));
3835 else if (!diffs)
3836 diffs = memcmp(skb_mac_header(p),
3837 skb_gro_mac_header(skb),
3838 maclen);
3839 NAPI_GRO_CB(p)->same_flow = !diffs;
3840 }
3841 }
3842
3843 static void skb_gro_reset_offset(struct sk_buff *skb)
3844 {
3845 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3846 const skb_frag_t *frag0 = &pinfo->frags[0];
3847
3848 NAPI_GRO_CB(skb)->data_offset = 0;
3849 NAPI_GRO_CB(skb)->frag0 = NULL;
3850 NAPI_GRO_CB(skb)->frag0_len = 0;
3851
3852 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3853 pinfo->nr_frags &&
3854 !PageHighMem(skb_frag_page(frag0))) {
3855 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3856 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3857 }
3858 }
3859
3860 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3861 {
3862 struct sk_buff **pp = NULL;
3863 struct packet_offload *ptype;
3864 __be16 type = skb->protocol;
3865 struct list_head *head = &offload_base;
3866 int same_flow;
3867 enum gro_result ret;
3868
3869 if (!(skb->dev->features & NETIF_F_GRO))
3870 goto normal;
3871
3872 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3873 goto normal;
3874
3875 skb_gro_reset_offset(skb);
3876 gro_list_prepare(napi, skb);
3877 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3878
3879 rcu_read_lock();
3880 list_for_each_entry_rcu(ptype, head, list) {
3881 if (ptype->type != type || !ptype->callbacks.gro_receive)
3882 continue;
3883
3884 skb_set_network_header(skb, skb_gro_offset(skb));
3885 skb_reset_mac_len(skb);
3886 NAPI_GRO_CB(skb)->same_flow = 0;
3887 NAPI_GRO_CB(skb)->flush = 0;
3888 NAPI_GRO_CB(skb)->free = 0;
3889 NAPI_GRO_CB(skb)->udp_mark = 0;
3890
3891 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3892 break;
3893 }
3894 rcu_read_unlock();
3895
3896 if (&ptype->list == head)
3897 goto normal;
3898
3899 same_flow = NAPI_GRO_CB(skb)->same_flow;
3900 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3901
3902 if (pp) {
3903 struct sk_buff *nskb = *pp;
3904
3905 *pp = nskb->next;
3906 nskb->next = NULL;
3907 napi_gro_complete(nskb);
3908 napi->gro_count--;
3909 }
3910
3911 if (same_flow)
3912 goto ok;
3913
3914 if (NAPI_GRO_CB(skb)->flush)
3915 goto normal;
3916
3917 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3918 struct sk_buff *nskb = napi->gro_list;
3919
3920 /* locate the end of the list to select the 'oldest' flow */
3921 while (nskb->next) {
3922 pp = &nskb->next;
3923 nskb = *pp;
3924 }
3925 *pp = NULL;
3926 nskb->next = NULL;
3927 napi_gro_complete(nskb);
3928 } else {
3929 napi->gro_count++;
3930 }
3931 NAPI_GRO_CB(skb)->count = 1;
3932 NAPI_GRO_CB(skb)->age = jiffies;
3933 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3934 skb->next = napi->gro_list;
3935 napi->gro_list = skb;
3936 ret = GRO_HELD;
3937
3938 pull:
3939 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3940 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3941
3942 BUG_ON(skb->end - skb->tail < grow);
3943
3944 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3945
3946 skb->tail += grow;
3947 skb->data_len -= grow;
3948
3949 skb_shinfo(skb)->frags[0].page_offset += grow;
3950 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3951
3952 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3953 skb_frag_unref(skb, 0);
3954 memmove(skb_shinfo(skb)->frags,
3955 skb_shinfo(skb)->frags + 1,
3956 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3957 }
3958 }
3959
3960 ok:
3961 return ret;
3962
3963 normal:
3964 ret = GRO_NORMAL;
3965 goto pull;
3966 }
3967
3968 struct packet_offload *gro_find_receive_by_type(__be16 type)
3969 {
3970 struct list_head *offload_head = &offload_base;
3971 struct packet_offload *ptype;
3972
3973 list_for_each_entry_rcu(ptype, offload_head, list) {
3974 if (ptype->type != type || !ptype->callbacks.gro_receive)
3975 continue;
3976 return ptype;
3977 }
3978 return NULL;
3979 }
3980 EXPORT_SYMBOL(gro_find_receive_by_type);
3981
3982 struct packet_offload *gro_find_complete_by_type(__be16 type)
3983 {
3984 struct list_head *offload_head = &offload_base;
3985 struct packet_offload *ptype;
3986
3987 list_for_each_entry_rcu(ptype, offload_head, list) {
3988 if (ptype->type != type || !ptype->callbacks.gro_complete)
3989 continue;
3990 return ptype;
3991 }
3992 return NULL;
3993 }
3994 EXPORT_SYMBOL(gro_find_complete_by_type);
3995
3996 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3997 {
3998 switch (ret) {
3999 case GRO_NORMAL:
4000 if (netif_receive_skb_internal(skb))
4001 ret = GRO_DROP;
4002 break;
4003
4004 case GRO_DROP:
4005 kfree_skb(skb);
4006 break;
4007
4008 case GRO_MERGED_FREE:
4009 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4010 kmem_cache_free(skbuff_head_cache, skb);
4011 else
4012 __kfree_skb(skb);
4013 break;
4014
4015 case GRO_HELD:
4016 case GRO_MERGED:
4017 break;
4018 }
4019
4020 return ret;
4021 }
4022
4023 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4024 {
4025 trace_napi_gro_receive_entry(skb);
4026
4027 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4028 }
4029 EXPORT_SYMBOL(napi_gro_receive);
4030
4031 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4032 {
4033 __skb_pull(skb, skb_headlen(skb));
4034 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4035 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4036 skb->vlan_tci = 0;
4037 skb->dev = napi->dev;
4038 skb->skb_iif = 0;
4039
4040 napi->skb = skb;
4041 }
4042
4043 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4044 {
4045 struct sk_buff *skb = napi->skb;
4046
4047 if (!skb) {
4048 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4049 napi->skb = skb;
4050 }
4051 return skb;
4052 }
4053 EXPORT_SYMBOL(napi_get_frags);
4054
4055 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
4056 gro_result_t ret)
4057 {
4058 switch (ret) {
4059 case GRO_NORMAL:
4060 if (netif_receive_skb_internal(skb))
4061 ret = GRO_DROP;
4062 break;
4063
4064 case GRO_DROP:
4065 case GRO_MERGED_FREE:
4066 napi_reuse_skb(napi, skb);
4067 break;
4068
4069 case GRO_HELD:
4070 case GRO_MERGED:
4071 break;
4072 }
4073
4074 return ret;
4075 }
4076
4077 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4078 {
4079 struct sk_buff *skb = napi->skb;
4080
4081 napi->skb = NULL;
4082
4083 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) {
4084 napi_reuse_skb(napi, skb);
4085 return NULL;
4086 }
4087 skb->protocol = eth_type_trans(skb, skb->dev);
4088
4089 return skb;
4090 }
4091
4092 gro_result_t napi_gro_frags(struct napi_struct *napi)
4093 {
4094 struct sk_buff *skb = napi_frags_skb(napi);
4095
4096 if (!skb)
4097 return GRO_DROP;
4098
4099 trace_napi_gro_frags_entry(skb);
4100
4101 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4102 }
4103 EXPORT_SYMBOL(napi_gro_frags);
4104
4105 /*
4106 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4107 * Note: called with local irq disabled, but exits with local irq enabled.
4108 */
4109 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4110 {
4111 #ifdef CONFIG_RPS
4112 struct softnet_data *remsd = sd->rps_ipi_list;
4113
4114 if (remsd) {
4115 sd->rps_ipi_list = NULL;
4116
4117 local_irq_enable();
4118
4119 /* Send pending IPI's to kick RPS processing on remote cpus. */
4120 while (remsd) {
4121 struct softnet_data *next = remsd->rps_ipi_next;
4122
4123 if (cpu_online(remsd->cpu))
4124 __smp_call_function_single(remsd->cpu,
4125 &remsd->csd, 0);
4126 remsd = next;
4127 }
4128 } else
4129 #endif
4130 local_irq_enable();
4131 }
4132
4133 static int process_backlog(struct napi_struct *napi, int quota)
4134 {
4135 int work = 0;
4136 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4137
4138 #ifdef CONFIG_RPS
4139 /* Check if we have pending ipi, its better to send them now,
4140 * not waiting net_rx_action() end.
4141 */
4142 if (sd->rps_ipi_list) {
4143 local_irq_disable();
4144 net_rps_action_and_irq_enable(sd);
4145 }
4146 #endif
4147 napi->weight = weight_p;
4148 local_irq_disable();
4149 while (work < quota) {
4150 struct sk_buff *skb;
4151 unsigned int qlen;
4152
4153 while ((skb = __skb_dequeue(&sd->process_queue))) {
4154 local_irq_enable();
4155 __netif_receive_skb(skb);
4156 local_irq_disable();
4157 input_queue_head_incr(sd);
4158 if (++work >= quota) {
4159 local_irq_enable();
4160 return work;
4161 }
4162 }
4163
4164 rps_lock(sd);
4165 qlen = skb_queue_len(&sd->input_pkt_queue);
4166 if (qlen)
4167 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4168 &sd->process_queue);
4169
4170 if (qlen < quota - work) {
4171 /*
4172 * Inline a custom version of __napi_complete().
4173 * only current cpu owns and manipulates this napi,
4174 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4175 * we can use a plain write instead of clear_bit(),
4176 * and we dont need an smp_mb() memory barrier.
4177 */
4178 list_del(&napi->poll_list);
4179 napi->state = 0;
4180
4181 quota = work + qlen;
4182 }
4183 rps_unlock(sd);
4184 }
4185 local_irq_enable();
4186
4187 return work;
4188 }
4189
4190 /**
4191 * __napi_schedule - schedule for receive
4192 * @n: entry to schedule
4193 *
4194 * The entry's receive function will be scheduled to run
4195 */
4196 void __napi_schedule(struct napi_struct *n)
4197 {
4198 unsigned long flags;
4199
4200 local_irq_save(flags);
4201 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4202 local_irq_restore(flags);
4203 }
4204 EXPORT_SYMBOL(__napi_schedule);
4205
4206 void __napi_complete(struct napi_struct *n)
4207 {
4208 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4209 BUG_ON(n->gro_list);
4210
4211 list_del(&n->poll_list);
4212 smp_mb__before_clear_bit();
4213 clear_bit(NAPI_STATE_SCHED, &n->state);
4214 }
4215 EXPORT_SYMBOL(__napi_complete);
4216
4217 void napi_complete(struct napi_struct *n)
4218 {
4219 unsigned long flags;
4220
4221 /*
4222 * don't let napi dequeue from the cpu poll list
4223 * just in case its running on a different cpu
4224 */
4225 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4226 return;
4227
4228 napi_gro_flush(n, false);
4229 local_irq_save(flags);
4230 __napi_complete(n);
4231 local_irq_restore(flags);
4232 }
4233 EXPORT_SYMBOL(napi_complete);
4234
4235 /* must be called under rcu_read_lock(), as we dont take a reference */
4236 struct napi_struct *napi_by_id(unsigned int napi_id)
4237 {
4238 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4239 struct napi_struct *napi;
4240
4241 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4242 if (napi->napi_id == napi_id)
4243 return napi;
4244
4245 return NULL;
4246 }
4247 EXPORT_SYMBOL_GPL(napi_by_id);
4248
4249 void napi_hash_add(struct napi_struct *napi)
4250 {
4251 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4252
4253 spin_lock(&napi_hash_lock);
4254
4255 /* 0 is not a valid id, we also skip an id that is taken
4256 * we expect both events to be extremely rare
4257 */
4258 napi->napi_id = 0;
4259 while (!napi->napi_id) {
4260 napi->napi_id = ++napi_gen_id;
4261 if (napi_by_id(napi->napi_id))
4262 napi->napi_id = 0;
4263 }
4264
4265 hlist_add_head_rcu(&napi->napi_hash_node,
4266 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4267
4268 spin_unlock(&napi_hash_lock);
4269 }
4270 }
4271 EXPORT_SYMBOL_GPL(napi_hash_add);
4272
4273 /* Warning : caller is responsible to make sure rcu grace period
4274 * is respected before freeing memory containing @napi
4275 */
4276 void napi_hash_del(struct napi_struct *napi)
4277 {
4278 spin_lock(&napi_hash_lock);
4279
4280 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4281 hlist_del_rcu(&napi->napi_hash_node);
4282
4283 spin_unlock(&napi_hash_lock);
4284 }
4285 EXPORT_SYMBOL_GPL(napi_hash_del);
4286
4287 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4288 int (*poll)(struct napi_struct *, int), int weight)
4289 {
4290 INIT_LIST_HEAD(&napi->poll_list);
4291 napi->gro_count = 0;
4292 napi->gro_list = NULL;
4293 napi->skb = NULL;
4294 napi->poll = poll;
4295 if (weight > NAPI_POLL_WEIGHT)
4296 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4297 weight, dev->name);
4298 napi->weight = weight;
4299 list_add(&napi->dev_list, &dev->napi_list);
4300 napi->dev = dev;
4301 #ifdef CONFIG_NETPOLL
4302 spin_lock_init(&napi->poll_lock);
4303 napi->poll_owner = -1;
4304 #endif
4305 set_bit(NAPI_STATE_SCHED, &napi->state);
4306 }
4307 EXPORT_SYMBOL(netif_napi_add);
4308
4309 void netif_napi_del(struct napi_struct *napi)
4310 {
4311 list_del_init(&napi->dev_list);
4312 napi_free_frags(napi);
4313
4314 kfree_skb_list(napi->gro_list);
4315 napi->gro_list = NULL;
4316 napi->gro_count = 0;
4317 }
4318 EXPORT_SYMBOL(netif_napi_del);
4319
4320 static void net_rx_action(struct softirq_action *h)
4321 {
4322 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4323 unsigned long time_limit = jiffies + 2;
4324 int budget = netdev_budget;
4325 void *have;
4326
4327 local_irq_disable();
4328
4329 while (!list_empty(&sd->poll_list)) {
4330 struct napi_struct *n;
4331 int work, weight;
4332
4333 /* If softirq window is exhuasted then punt.
4334 * Allow this to run for 2 jiffies since which will allow
4335 * an average latency of 1.5/HZ.
4336 */
4337 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4338 goto softnet_break;
4339
4340 local_irq_enable();
4341
4342 /* Even though interrupts have been re-enabled, this
4343 * access is safe because interrupts can only add new
4344 * entries to the tail of this list, and only ->poll()
4345 * calls can remove this head entry from the list.
4346 */
4347 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4348
4349 have = netpoll_poll_lock(n);
4350
4351 weight = n->weight;
4352
4353 /* This NAPI_STATE_SCHED test is for avoiding a race
4354 * with netpoll's poll_napi(). Only the entity which
4355 * obtains the lock and sees NAPI_STATE_SCHED set will
4356 * actually make the ->poll() call. Therefore we avoid
4357 * accidentally calling ->poll() when NAPI is not scheduled.
4358 */
4359 work = 0;
4360 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4361 work = n->poll(n, weight);
4362 trace_napi_poll(n);
4363 }
4364
4365 WARN_ON_ONCE(work > weight);
4366
4367 budget -= work;
4368
4369 local_irq_disable();
4370
4371 /* Drivers must not modify the NAPI state if they
4372 * consume the entire weight. In such cases this code
4373 * still "owns" the NAPI instance and therefore can
4374 * move the instance around on the list at-will.
4375 */
4376 if (unlikely(work == weight)) {
4377 if (unlikely(napi_disable_pending(n))) {
4378 local_irq_enable();
4379 napi_complete(n);
4380 local_irq_disable();
4381 } else {
4382 if (n->gro_list) {
4383 /* flush too old packets
4384 * If HZ < 1000, flush all packets.
4385 */
4386 local_irq_enable();
4387 napi_gro_flush(n, HZ >= 1000);
4388 local_irq_disable();
4389 }
4390 list_move_tail(&n->poll_list, &sd->poll_list);
4391 }
4392 }
4393
4394 netpoll_poll_unlock(have);
4395 }
4396 out:
4397 net_rps_action_and_irq_enable(sd);
4398
4399 #ifdef CONFIG_NET_DMA
4400 /*
4401 * There may not be any more sk_buffs coming right now, so push
4402 * any pending DMA copies to hardware
4403 */
4404 dma_issue_pending_all();
4405 #endif
4406
4407 return;
4408
4409 softnet_break:
4410 sd->time_squeeze++;
4411 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4412 goto out;
4413 }
4414
4415 struct netdev_adjacent {
4416 struct net_device *dev;
4417
4418 /* upper master flag, there can only be one master device per list */
4419 bool master;
4420
4421 /* counter for the number of times this device was added to us */
4422 u16 ref_nr;
4423
4424 /* private field for the users */
4425 void *private;
4426
4427 struct list_head list;
4428 struct rcu_head rcu;
4429 };
4430
4431 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4432 struct net_device *adj_dev,
4433 struct list_head *adj_list)
4434 {
4435 struct netdev_adjacent *adj;
4436
4437 list_for_each_entry(adj, adj_list, list) {
4438 if (adj->dev == adj_dev)
4439 return adj;
4440 }
4441 return NULL;
4442 }
4443
4444 /**
4445 * netdev_has_upper_dev - Check if device is linked to an upper device
4446 * @dev: device
4447 * @upper_dev: upper device to check
4448 *
4449 * Find out if a device is linked to specified upper device and return true
4450 * in case it is. Note that this checks only immediate upper device,
4451 * not through a complete stack of devices. The caller must hold the RTNL lock.
4452 */
4453 bool netdev_has_upper_dev(struct net_device *dev,
4454 struct net_device *upper_dev)
4455 {
4456 ASSERT_RTNL();
4457
4458 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4459 }
4460 EXPORT_SYMBOL(netdev_has_upper_dev);
4461
4462 /**
4463 * netdev_has_any_upper_dev - Check if device is linked to some device
4464 * @dev: device
4465 *
4466 * Find out if a device is linked to an upper device and return true in case
4467 * it is. The caller must hold the RTNL lock.
4468 */
4469 static bool netdev_has_any_upper_dev(struct net_device *dev)
4470 {
4471 ASSERT_RTNL();
4472
4473 return !list_empty(&dev->all_adj_list.upper);
4474 }
4475
4476 /**
4477 * netdev_master_upper_dev_get - Get master upper device
4478 * @dev: device
4479 *
4480 * Find a master upper device and return pointer to it or NULL in case
4481 * it's not there. The caller must hold the RTNL lock.
4482 */
4483 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4484 {
4485 struct netdev_adjacent *upper;
4486
4487 ASSERT_RTNL();
4488
4489 if (list_empty(&dev->adj_list.upper))
4490 return NULL;
4491
4492 upper = list_first_entry(&dev->adj_list.upper,
4493 struct netdev_adjacent, list);
4494 if (likely(upper->master))
4495 return upper->dev;
4496 return NULL;
4497 }
4498 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4499
4500 void *netdev_adjacent_get_private(struct list_head *adj_list)
4501 {
4502 struct netdev_adjacent *adj;
4503
4504 adj = list_entry(adj_list, struct netdev_adjacent, list);
4505
4506 return adj->private;
4507 }
4508 EXPORT_SYMBOL(netdev_adjacent_get_private);
4509
4510 /**
4511 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4512 * @dev: device
4513 * @iter: list_head ** of the current position
4514 *
4515 * Gets the next device from the dev's upper list, starting from iter
4516 * position. The caller must hold RCU read lock.
4517 */
4518 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4519 struct list_head **iter)
4520 {
4521 struct netdev_adjacent *upper;
4522
4523 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4524
4525 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4526
4527 if (&upper->list == &dev->all_adj_list.upper)
4528 return NULL;
4529
4530 *iter = &upper->list;
4531
4532 return upper->dev;
4533 }
4534 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4535
4536 /**
4537 * netdev_lower_get_next_private - Get the next ->private from the
4538 * lower neighbour list
4539 * @dev: device
4540 * @iter: list_head ** of the current position
4541 *
4542 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4543 * list, starting from iter position. The caller must hold either hold the
4544 * RTNL lock or its own locking that guarantees that the neighbour lower
4545 * list will remain unchainged.
4546 */
4547 void *netdev_lower_get_next_private(struct net_device *dev,
4548 struct list_head **iter)
4549 {
4550 struct netdev_adjacent *lower;
4551
4552 lower = list_entry(*iter, struct netdev_adjacent, list);
4553
4554 if (&lower->list == &dev->adj_list.lower)
4555 return NULL;
4556
4557 if (iter)
4558 *iter = lower->list.next;
4559
4560 return lower->private;
4561 }
4562 EXPORT_SYMBOL(netdev_lower_get_next_private);
4563
4564 /**
4565 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4566 * lower neighbour list, RCU
4567 * variant
4568 * @dev: device
4569 * @iter: list_head ** of the current position
4570 *
4571 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4572 * list, starting from iter position. The caller must hold RCU read lock.
4573 */
4574 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4575 struct list_head **iter)
4576 {
4577 struct netdev_adjacent *lower;
4578
4579 WARN_ON_ONCE(!rcu_read_lock_held());
4580
4581 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4582
4583 if (&lower->list == &dev->adj_list.lower)
4584 return NULL;
4585
4586 if (iter)
4587 *iter = &lower->list;
4588
4589 return lower->private;
4590 }
4591 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4592
4593 /**
4594 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4595 * lower neighbour list, RCU
4596 * variant
4597 * @dev: device
4598 *
4599 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4600 * list. The caller must hold RCU read lock.
4601 */
4602 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4603 {
4604 struct netdev_adjacent *lower;
4605
4606 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4607 struct netdev_adjacent, list);
4608 if (lower)
4609 return lower->private;
4610 return NULL;
4611 }
4612 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4613
4614 /**
4615 * netdev_master_upper_dev_get_rcu - Get master upper device
4616 * @dev: device
4617 *
4618 * Find a master upper device and return pointer to it or NULL in case
4619 * it's not there. The caller must hold the RCU read lock.
4620 */
4621 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4622 {
4623 struct netdev_adjacent *upper;
4624
4625 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4626 struct netdev_adjacent, list);
4627 if (upper && likely(upper->master))
4628 return upper->dev;
4629 return NULL;
4630 }
4631 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4632
4633 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4634 struct net_device *adj_dev,
4635 struct list_head *dev_list)
4636 {
4637 char linkname[IFNAMSIZ+7];
4638 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4639 "upper_%s" : "lower_%s", adj_dev->name);
4640 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4641 linkname);
4642 }
4643 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4644 char *name,
4645 struct list_head *dev_list)
4646 {
4647 char linkname[IFNAMSIZ+7];
4648 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4649 "upper_%s" : "lower_%s", name);
4650 sysfs_remove_link(&(dev->dev.kobj), linkname);
4651 }
4652
4653 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4654 (dev_list == &dev->adj_list.upper || \
4655 dev_list == &dev->adj_list.lower)
4656
4657 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4658 struct net_device *adj_dev,
4659 struct list_head *dev_list,
4660 void *private, bool master)
4661 {
4662 struct netdev_adjacent *adj;
4663 int ret;
4664
4665 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4666
4667 if (adj) {
4668 adj->ref_nr++;
4669 return 0;
4670 }
4671
4672 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4673 if (!adj)
4674 return -ENOMEM;
4675
4676 adj->dev = adj_dev;
4677 adj->master = master;
4678 adj->ref_nr = 1;
4679 adj->private = private;
4680 dev_hold(adj_dev);
4681
4682 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4683 adj_dev->name, dev->name, adj_dev->name);
4684
4685 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4686 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4687 if (ret)
4688 goto free_adj;
4689 }
4690
4691 /* Ensure that master link is always the first item in list. */
4692 if (master) {
4693 ret = sysfs_create_link(&(dev->dev.kobj),
4694 &(adj_dev->dev.kobj), "master");
4695 if (ret)
4696 goto remove_symlinks;
4697
4698 list_add_rcu(&adj->list, dev_list);
4699 } else {
4700 list_add_tail_rcu(&adj->list, dev_list);
4701 }
4702
4703 return 0;
4704
4705 remove_symlinks:
4706 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4707 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4708 free_adj:
4709 kfree(adj);
4710 dev_put(adj_dev);
4711
4712 return ret;
4713 }
4714
4715 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4716 struct net_device *adj_dev,
4717 struct list_head *dev_list)
4718 {
4719 struct netdev_adjacent *adj;
4720
4721 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4722
4723 if (!adj) {
4724 pr_err("tried to remove device %s from %s\n",
4725 dev->name, adj_dev->name);
4726 BUG();
4727 }
4728
4729 if (adj->ref_nr > 1) {
4730 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4731 adj->ref_nr-1);
4732 adj->ref_nr--;
4733 return;
4734 }
4735
4736 if (adj->master)
4737 sysfs_remove_link(&(dev->dev.kobj), "master");
4738
4739 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4740 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4741
4742 list_del_rcu(&adj->list);
4743 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4744 adj_dev->name, dev->name, adj_dev->name);
4745 dev_put(adj_dev);
4746 kfree_rcu(adj, rcu);
4747 }
4748
4749 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4750 struct net_device *upper_dev,
4751 struct list_head *up_list,
4752 struct list_head *down_list,
4753 void *private, bool master)
4754 {
4755 int ret;
4756
4757 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4758 master);
4759 if (ret)
4760 return ret;
4761
4762 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4763 false);
4764 if (ret) {
4765 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4766 return ret;
4767 }
4768
4769 return 0;
4770 }
4771
4772 static int __netdev_adjacent_dev_link(struct net_device *dev,
4773 struct net_device *upper_dev)
4774 {
4775 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4776 &dev->all_adj_list.upper,
4777 &upper_dev->all_adj_list.lower,
4778 NULL, false);
4779 }
4780
4781 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4782 struct net_device *upper_dev,
4783 struct list_head *up_list,
4784 struct list_head *down_list)
4785 {
4786 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4787 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4788 }
4789
4790 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4791 struct net_device *upper_dev)
4792 {
4793 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4794 &dev->all_adj_list.upper,
4795 &upper_dev->all_adj_list.lower);
4796 }
4797
4798 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4799 struct net_device *upper_dev,
4800 void *private, bool master)
4801 {
4802 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4803
4804 if (ret)
4805 return ret;
4806
4807 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4808 &dev->adj_list.upper,
4809 &upper_dev->adj_list.lower,
4810 private, master);
4811 if (ret) {
4812 __netdev_adjacent_dev_unlink(dev, upper_dev);
4813 return ret;
4814 }
4815
4816 return 0;
4817 }
4818
4819 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4820 struct net_device *upper_dev)
4821 {
4822 __netdev_adjacent_dev_unlink(dev, upper_dev);
4823 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4824 &dev->adj_list.upper,
4825 &upper_dev->adj_list.lower);
4826 }
4827
4828 static int __netdev_upper_dev_link(struct net_device *dev,
4829 struct net_device *upper_dev, bool master,
4830 void *private)
4831 {
4832 struct netdev_adjacent *i, *j, *to_i, *to_j;
4833 int ret = 0;
4834
4835 ASSERT_RTNL();
4836
4837 if (dev == upper_dev)
4838 return -EBUSY;
4839
4840 /* To prevent loops, check if dev is not upper device to upper_dev. */
4841 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4842 return -EBUSY;
4843
4844 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4845 return -EEXIST;
4846
4847 if (master && netdev_master_upper_dev_get(dev))
4848 return -EBUSY;
4849
4850 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4851 master);
4852 if (ret)
4853 return ret;
4854
4855 /* Now that we linked these devs, make all the upper_dev's
4856 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4857 * versa, and don't forget the devices itself. All of these
4858 * links are non-neighbours.
4859 */
4860 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4861 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4862 pr_debug("Interlinking %s with %s, non-neighbour\n",
4863 i->dev->name, j->dev->name);
4864 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4865 if (ret)
4866 goto rollback_mesh;
4867 }
4868 }
4869
4870 /* add dev to every upper_dev's upper device */
4871 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4872 pr_debug("linking %s's upper device %s with %s\n",
4873 upper_dev->name, i->dev->name, dev->name);
4874 ret = __netdev_adjacent_dev_link(dev, i->dev);
4875 if (ret)
4876 goto rollback_upper_mesh;
4877 }
4878
4879 /* add upper_dev to every dev's lower device */
4880 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4881 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4882 i->dev->name, upper_dev->name);
4883 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4884 if (ret)
4885 goto rollback_lower_mesh;
4886 }
4887
4888 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4889 return 0;
4890
4891 rollback_lower_mesh:
4892 to_i = i;
4893 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4894 if (i == to_i)
4895 break;
4896 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4897 }
4898
4899 i = NULL;
4900
4901 rollback_upper_mesh:
4902 to_i = i;
4903 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4904 if (i == to_i)
4905 break;
4906 __netdev_adjacent_dev_unlink(dev, i->dev);
4907 }
4908
4909 i = j = NULL;
4910
4911 rollback_mesh:
4912 to_i = i;
4913 to_j = j;
4914 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4915 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4916 if (i == to_i && j == to_j)
4917 break;
4918 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4919 }
4920 if (i == to_i)
4921 break;
4922 }
4923
4924 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4925
4926 return ret;
4927 }
4928
4929 /**
4930 * netdev_upper_dev_link - Add a link to the upper device
4931 * @dev: device
4932 * @upper_dev: new upper device
4933 *
4934 * Adds a link to device which is upper to this one. The caller must hold
4935 * the RTNL lock. On a failure a negative errno code is returned.
4936 * On success the reference counts are adjusted and the function
4937 * returns zero.
4938 */
4939 int netdev_upper_dev_link(struct net_device *dev,
4940 struct net_device *upper_dev)
4941 {
4942 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4943 }
4944 EXPORT_SYMBOL(netdev_upper_dev_link);
4945
4946 /**
4947 * netdev_master_upper_dev_link - Add a master link to the upper device
4948 * @dev: device
4949 * @upper_dev: new upper device
4950 *
4951 * Adds a link to device which is upper to this one. In this case, only
4952 * one master upper device can be linked, although other non-master devices
4953 * might be linked as well. The caller must hold the RTNL lock.
4954 * On a failure a negative errno code is returned. On success the reference
4955 * counts are adjusted and the function returns zero.
4956 */
4957 int netdev_master_upper_dev_link(struct net_device *dev,
4958 struct net_device *upper_dev)
4959 {
4960 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4961 }
4962 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4963
4964 int netdev_master_upper_dev_link_private(struct net_device *dev,
4965 struct net_device *upper_dev,
4966 void *private)
4967 {
4968 return __netdev_upper_dev_link(dev, upper_dev, true, private);
4969 }
4970 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4971
4972 /**
4973 * netdev_upper_dev_unlink - Removes a link to upper device
4974 * @dev: device
4975 * @upper_dev: new upper device
4976 *
4977 * Removes a link to device which is upper to this one. The caller must hold
4978 * the RTNL lock.
4979 */
4980 void netdev_upper_dev_unlink(struct net_device *dev,
4981 struct net_device *upper_dev)
4982 {
4983 struct netdev_adjacent *i, *j;
4984 ASSERT_RTNL();
4985
4986 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4987
4988 /* Here is the tricky part. We must remove all dev's lower
4989 * devices from all upper_dev's upper devices and vice
4990 * versa, to maintain the graph relationship.
4991 */
4992 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4993 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
4994 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4995
4996 /* remove also the devices itself from lower/upper device
4997 * list
4998 */
4999 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5000 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5001
5002 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5003 __netdev_adjacent_dev_unlink(dev, i->dev);
5004
5005 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5006 }
5007 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5008
5009 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5010 {
5011 struct netdev_adjacent *iter;
5012
5013 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5014 netdev_adjacent_sysfs_del(iter->dev, oldname,
5015 &iter->dev->adj_list.lower);
5016 netdev_adjacent_sysfs_add(iter->dev, dev,
5017 &iter->dev->adj_list.lower);
5018 }
5019
5020 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5021 netdev_adjacent_sysfs_del(iter->dev, oldname,
5022 &iter->dev->adj_list.upper);
5023 netdev_adjacent_sysfs_add(iter->dev, dev,
5024 &iter->dev->adj_list.upper);
5025 }
5026 }
5027
5028 void *netdev_lower_dev_get_private(struct net_device *dev,
5029 struct net_device *lower_dev)
5030 {
5031 struct netdev_adjacent *lower;
5032
5033 if (!lower_dev)
5034 return NULL;
5035 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5036 if (!lower)
5037 return NULL;
5038
5039 return lower->private;
5040 }
5041 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5042
5043 static void dev_change_rx_flags(struct net_device *dev, int flags)
5044 {
5045 const struct net_device_ops *ops = dev->netdev_ops;
5046
5047 if (ops->ndo_change_rx_flags)
5048 ops->ndo_change_rx_flags(dev, flags);
5049 }
5050
5051 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5052 {
5053 unsigned int old_flags = dev->flags;
5054 kuid_t uid;
5055 kgid_t gid;
5056
5057 ASSERT_RTNL();
5058
5059 dev->flags |= IFF_PROMISC;
5060 dev->promiscuity += inc;
5061 if (dev->promiscuity == 0) {
5062 /*
5063 * Avoid overflow.
5064 * If inc causes overflow, untouch promisc and return error.
5065 */
5066 if (inc < 0)
5067 dev->flags &= ~IFF_PROMISC;
5068 else {
5069 dev->promiscuity -= inc;
5070 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5071 dev->name);
5072 return -EOVERFLOW;
5073 }
5074 }
5075 if (dev->flags != old_flags) {
5076 pr_info("device %s %s promiscuous mode\n",
5077 dev->name,
5078 dev->flags & IFF_PROMISC ? "entered" : "left");
5079 if (audit_enabled) {
5080 current_uid_gid(&uid, &gid);
5081 audit_log(current->audit_context, GFP_ATOMIC,
5082 AUDIT_ANOM_PROMISCUOUS,
5083 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5084 dev->name, (dev->flags & IFF_PROMISC),
5085 (old_flags & IFF_PROMISC),
5086 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5087 from_kuid(&init_user_ns, uid),
5088 from_kgid(&init_user_ns, gid),
5089 audit_get_sessionid(current));
5090 }
5091
5092 dev_change_rx_flags(dev, IFF_PROMISC);
5093 }
5094 if (notify)
5095 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5096 return 0;
5097 }
5098
5099 /**
5100 * dev_set_promiscuity - update promiscuity count on a device
5101 * @dev: device
5102 * @inc: modifier
5103 *
5104 * Add or remove promiscuity from a device. While the count in the device
5105 * remains above zero the interface remains promiscuous. Once it hits zero
5106 * the device reverts back to normal filtering operation. A negative inc
5107 * value is used to drop promiscuity on the device.
5108 * Return 0 if successful or a negative errno code on error.
5109 */
5110 int dev_set_promiscuity(struct net_device *dev, int inc)
5111 {
5112 unsigned int old_flags = dev->flags;
5113 int err;
5114
5115 err = __dev_set_promiscuity(dev, inc, true);
5116 if (err < 0)
5117 return err;
5118 if (dev->flags != old_flags)
5119 dev_set_rx_mode(dev);
5120 return err;
5121 }
5122 EXPORT_SYMBOL(dev_set_promiscuity);
5123
5124 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5125 {
5126 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5127
5128 ASSERT_RTNL();
5129
5130 dev->flags |= IFF_ALLMULTI;
5131 dev->allmulti += inc;
5132 if (dev->allmulti == 0) {
5133 /*
5134 * Avoid overflow.
5135 * If inc causes overflow, untouch allmulti and return error.
5136 */
5137 if (inc < 0)
5138 dev->flags &= ~IFF_ALLMULTI;
5139 else {
5140 dev->allmulti -= inc;
5141 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5142 dev->name);
5143 return -EOVERFLOW;
5144 }
5145 }
5146 if (dev->flags ^ old_flags) {
5147 dev_change_rx_flags(dev, IFF_ALLMULTI);
5148 dev_set_rx_mode(dev);
5149 if (notify)
5150 __dev_notify_flags(dev, old_flags,
5151 dev->gflags ^ old_gflags);
5152 }
5153 return 0;
5154 }
5155
5156 /**
5157 * dev_set_allmulti - update allmulti count on a device
5158 * @dev: device
5159 * @inc: modifier
5160 *
5161 * Add or remove reception of all multicast frames to a device. While the
5162 * count in the device remains above zero the interface remains listening
5163 * to all interfaces. Once it hits zero the device reverts back to normal
5164 * filtering operation. A negative @inc value is used to drop the counter
5165 * when releasing a resource needing all multicasts.
5166 * Return 0 if successful or a negative errno code on error.
5167 */
5168
5169 int dev_set_allmulti(struct net_device *dev, int inc)
5170 {
5171 return __dev_set_allmulti(dev, inc, true);
5172 }
5173 EXPORT_SYMBOL(dev_set_allmulti);
5174
5175 /*
5176 * Upload unicast and multicast address lists to device and
5177 * configure RX filtering. When the device doesn't support unicast
5178 * filtering it is put in promiscuous mode while unicast addresses
5179 * are present.
5180 */
5181 void __dev_set_rx_mode(struct net_device *dev)
5182 {
5183 const struct net_device_ops *ops = dev->netdev_ops;
5184
5185 /* dev_open will call this function so the list will stay sane. */
5186 if (!(dev->flags&IFF_UP))
5187 return;
5188
5189 if (!netif_device_present(dev))
5190 return;
5191
5192 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5193 /* Unicast addresses changes may only happen under the rtnl,
5194 * therefore calling __dev_set_promiscuity here is safe.
5195 */
5196 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5197 __dev_set_promiscuity(dev, 1, false);
5198 dev->uc_promisc = true;
5199 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5200 __dev_set_promiscuity(dev, -1, false);
5201 dev->uc_promisc = false;
5202 }
5203 }
5204
5205 if (ops->ndo_set_rx_mode)
5206 ops->ndo_set_rx_mode(dev);
5207 }
5208
5209 void dev_set_rx_mode(struct net_device *dev)
5210 {
5211 netif_addr_lock_bh(dev);
5212 __dev_set_rx_mode(dev);
5213 netif_addr_unlock_bh(dev);
5214 }
5215
5216 /**
5217 * dev_get_flags - get flags reported to userspace
5218 * @dev: device
5219 *
5220 * Get the combination of flag bits exported through APIs to userspace.
5221 */
5222 unsigned int dev_get_flags(const struct net_device *dev)
5223 {
5224 unsigned int flags;
5225
5226 flags = (dev->flags & ~(IFF_PROMISC |
5227 IFF_ALLMULTI |
5228 IFF_RUNNING |
5229 IFF_LOWER_UP |
5230 IFF_DORMANT)) |
5231 (dev->gflags & (IFF_PROMISC |
5232 IFF_ALLMULTI));
5233
5234 if (netif_running(dev)) {
5235 if (netif_oper_up(dev))
5236 flags |= IFF_RUNNING;
5237 if (netif_carrier_ok(dev))
5238 flags |= IFF_LOWER_UP;
5239 if (netif_dormant(dev))
5240 flags |= IFF_DORMANT;
5241 }
5242
5243 return flags;
5244 }
5245 EXPORT_SYMBOL(dev_get_flags);
5246
5247 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5248 {
5249 unsigned int old_flags = dev->flags;
5250 int ret;
5251
5252 ASSERT_RTNL();
5253
5254 /*
5255 * Set the flags on our device.
5256 */
5257
5258 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5259 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5260 IFF_AUTOMEDIA)) |
5261 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5262 IFF_ALLMULTI));
5263
5264 /*
5265 * Load in the correct multicast list now the flags have changed.
5266 */
5267
5268 if ((old_flags ^ flags) & IFF_MULTICAST)
5269 dev_change_rx_flags(dev, IFF_MULTICAST);
5270
5271 dev_set_rx_mode(dev);
5272
5273 /*
5274 * Have we downed the interface. We handle IFF_UP ourselves
5275 * according to user attempts to set it, rather than blindly
5276 * setting it.
5277 */
5278
5279 ret = 0;
5280 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5281 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5282
5283 if (!ret)
5284 dev_set_rx_mode(dev);
5285 }
5286
5287 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5288 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5289 unsigned int old_flags = dev->flags;
5290
5291 dev->gflags ^= IFF_PROMISC;
5292
5293 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5294 if (dev->flags != old_flags)
5295 dev_set_rx_mode(dev);
5296 }
5297
5298 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5299 is important. Some (broken) drivers set IFF_PROMISC, when
5300 IFF_ALLMULTI is requested not asking us and not reporting.
5301 */
5302 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5303 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5304
5305 dev->gflags ^= IFF_ALLMULTI;
5306 __dev_set_allmulti(dev, inc, false);
5307 }
5308
5309 return ret;
5310 }
5311
5312 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5313 unsigned int gchanges)
5314 {
5315 unsigned int changes = dev->flags ^ old_flags;
5316
5317 if (gchanges)
5318 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5319
5320 if (changes & IFF_UP) {
5321 if (dev->flags & IFF_UP)
5322 call_netdevice_notifiers(NETDEV_UP, dev);
5323 else
5324 call_netdevice_notifiers(NETDEV_DOWN, dev);
5325 }
5326
5327 if (dev->flags & IFF_UP &&
5328 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5329 struct netdev_notifier_change_info change_info;
5330
5331 change_info.flags_changed = changes;
5332 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5333 &change_info.info);
5334 }
5335 }
5336
5337 /**
5338 * dev_change_flags - change device settings
5339 * @dev: device
5340 * @flags: device state flags
5341 *
5342 * Change settings on device based state flags. The flags are
5343 * in the userspace exported format.
5344 */
5345 int dev_change_flags(struct net_device *dev, unsigned int flags)
5346 {
5347 int ret;
5348 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5349
5350 ret = __dev_change_flags(dev, flags);
5351 if (ret < 0)
5352 return ret;
5353
5354 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5355 __dev_notify_flags(dev, old_flags, changes);
5356 return ret;
5357 }
5358 EXPORT_SYMBOL(dev_change_flags);
5359
5360 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5361 {
5362 const struct net_device_ops *ops = dev->netdev_ops;
5363
5364 if (ops->ndo_change_mtu)
5365 return ops->ndo_change_mtu(dev, new_mtu);
5366
5367 dev->mtu = new_mtu;
5368 return 0;
5369 }
5370
5371 /**
5372 * dev_set_mtu - Change maximum transfer unit
5373 * @dev: device
5374 * @new_mtu: new transfer unit
5375 *
5376 * Change the maximum transfer size of the network device.
5377 */
5378 int dev_set_mtu(struct net_device *dev, int new_mtu)
5379 {
5380 int err, orig_mtu;
5381
5382 if (new_mtu == dev->mtu)
5383 return 0;
5384
5385 /* MTU must be positive. */
5386 if (new_mtu < 0)
5387 return -EINVAL;
5388
5389 if (!netif_device_present(dev))
5390 return -ENODEV;
5391
5392 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5393 err = notifier_to_errno(err);
5394 if (err)
5395 return err;
5396
5397 orig_mtu = dev->mtu;
5398 err = __dev_set_mtu(dev, new_mtu);
5399
5400 if (!err) {
5401 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5402 err = notifier_to_errno(err);
5403 if (err) {
5404 /* setting mtu back and notifying everyone again,
5405 * so that they have a chance to revert changes.
5406 */
5407 __dev_set_mtu(dev, orig_mtu);
5408 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5409 }
5410 }
5411 return err;
5412 }
5413 EXPORT_SYMBOL(dev_set_mtu);
5414
5415 /**
5416 * dev_set_group - Change group this device belongs to
5417 * @dev: device
5418 * @new_group: group this device should belong to
5419 */
5420 void dev_set_group(struct net_device *dev, int new_group)
5421 {
5422 dev->group = new_group;
5423 }
5424 EXPORT_SYMBOL(dev_set_group);
5425
5426 /**
5427 * dev_set_mac_address - Change Media Access Control Address
5428 * @dev: device
5429 * @sa: new address
5430 *
5431 * Change the hardware (MAC) address of the device
5432 */
5433 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5434 {
5435 const struct net_device_ops *ops = dev->netdev_ops;
5436 int err;
5437
5438 if (!ops->ndo_set_mac_address)
5439 return -EOPNOTSUPP;
5440 if (sa->sa_family != dev->type)
5441 return -EINVAL;
5442 if (!netif_device_present(dev))
5443 return -ENODEV;
5444 err = ops->ndo_set_mac_address(dev, sa);
5445 if (err)
5446 return err;
5447 dev->addr_assign_type = NET_ADDR_SET;
5448 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5449 add_device_randomness(dev->dev_addr, dev->addr_len);
5450 return 0;
5451 }
5452 EXPORT_SYMBOL(dev_set_mac_address);
5453
5454 /**
5455 * dev_change_carrier - Change device carrier
5456 * @dev: device
5457 * @new_carrier: new value
5458 *
5459 * Change device carrier
5460 */
5461 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5462 {
5463 const struct net_device_ops *ops = dev->netdev_ops;
5464
5465 if (!ops->ndo_change_carrier)
5466 return -EOPNOTSUPP;
5467 if (!netif_device_present(dev))
5468 return -ENODEV;
5469 return ops->ndo_change_carrier(dev, new_carrier);
5470 }
5471 EXPORT_SYMBOL(dev_change_carrier);
5472
5473 /**
5474 * dev_get_phys_port_id - Get device physical port ID
5475 * @dev: device
5476 * @ppid: port ID
5477 *
5478 * Get device physical port ID
5479 */
5480 int dev_get_phys_port_id(struct net_device *dev,
5481 struct netdev_phys_port_id *ppid)
5482 {
5483 const struct net_device_ops *ops = dev->netdev_ops;
5484
5485 if (!ops->ndo_get_phys_port_id)
5486 return -EOPNOTSUPP;
5487 return ops->ndo_get_phys_port_id(dev, ppid);
5488 }
5489 EXPORT_SYMBOL(dev_get_phys_port_id);
5490
5491 /**
5492 * dev_new_index - allocate an ifindex
5493 * @net: the applicable net namespace
5494 *
5495 * Returns a suitable unique value for a new device interface
5496 * number. The caller must hold the rtnl semaphore or the
5497 * dev_base_lock to be sure it remains unique.
5498 */
5499 static int dev_new_index(struct net *net)
5500 {
5501 int ifindex = net->ifindex;
5502 for (;;) {
5503 if (++ifindex <= 0)
5504 ifindex = 1;
5505 if (!__dev_get_by_index(net, ifindex))
5506 return net->ifindex = ifindex;
5507 }
5508 }
5509
5510 /* Delayed registration/unregisteration */
5511 static LIST_HEAD(net_todo_list);
5512 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5513
5514 static void net_set_todo(struct net_device *dev)
5515 {
5516 list_add_tail(&dev->todo_list, &net_todo_list);
5517 dev_net(dev)->dev_unreg_count++;
5518 }
5519
5520 static void rollback_registered_many(struct list_head *head)
5521 {
5522 struct net_device *dev, *tmp;
5523 LIST_HEAD(close_head);
5524
5525 BUG_ON(dev_boot_phase);
5526 ASSERT_RTNL();
5527
5528 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5529 /* Some devices call without registering
5530 * for initialization unwind. Remove those
5531 * devices and proceed with the remaining.
5532 */
5533 if (dev->reg_state == NETREG_UNINITIALIZED) {
5534 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5535 dev->name, dev);
5536
5537 WARN_ON(1);
5538 list_del(&dev->unreg_list);
5539 continue;
5540 }
5541 dev->dismantle = true;
5542 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5543 }
5544
5545 /* If device is running, close it first. */
5546 list_for_each_entry(dev, head, unreg_list)
5547 list_add_tail(&dev->close_list, &close_head);
5548 dev_close_many(&close_head);
5549
5550 list_for_each_entry(dev, head, unreg_list) {
5551 /* And unlink it from device chain. */
5552 unlist_netdevice(dev);
5553
5554 dev->reg_state = NETREG_UNREGISTERING;
5555 }
5556
5557 synchronize_net();
5558
5559 list_for_each_entry(dev, head, unreg_list) {
5560 /* Shutdown queueing discipline. */
5561 dev_shutdown(dev);
5562
5563
5564 /* Notify protocols, that we are about to destroy
5565 this device. They should clean all the things.
5566 */
5567 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5568
5569 if (!dev->rtnl_link_ops ||
5570 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5571 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5572
5573 /*
5574 * Flush the unicast and multicast chains
5575 */
5576 dev_uc_flush(dev);
5577 dev_mc_flush(dev);
5578
5579 if (dev->netdev_ops->ndo_uninit)
5580 dev->netdev_ops->ndo_uninit(dev);
5581
5582 /* Notifier chain MUST detach us all upper devices. */
5583 WARN_ON(netdev_has_any_upper_dev(dev));
5584
5585 /* Remove entries from kobject tree */
5586 netdev_unregister_kobject(dev);
5587 #ifdef CONFIG_XPS
5588 /* Remove XPS queueing entries */
5589 netif_reset_xps_queues_gt(dev, 0);
5590 #endif
5591 }
5592
5593 synchronize_net();
5594
5595 list_for_each_entry(dev, head, unreg_list)
5596 dev_put(dev);
5597 }
5598
5599 static void rollback_registered(struct net_device *dev)
5600 {
5601 LIST_HEAD(single);
5602
5603 list_add(&dev->unreg_list, &single);
5604 rollback_registered_many(&single);
5605 list_del(&single);
5606 }
5607
5608 static netdev_features_t netdev_fix_features(struct net_device *dev,
5609 netdev_features_t features)
5610 {
5611 /* Fix illegal checksum combinations */
5612 if ((features & NETIF_F_HW_CSUM) &&
5613 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5614 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5615 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5616 }
5617
5618 /* TSO requires that SG is present as well. */
5619 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5620 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5621 features &= ~NETIF_F_ALL_TSO;
5622 }
5623
5624 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5625 !(features & NETIF_F_IP_CSUM)) {
5626 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5627 features &= ~NETIF_F_TSO;
5628 features &= ~NETIF_F_TSO_ECN;
5629 }
5630
5631 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5632 !(features & NETIF_F_IPV6_CSUM)) {
5633 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5634 features &= ~NETIF_F_TSO6;
5635 }
5636
5637 /* TSO ECN requires that TSO is present as well. */
5638 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5639 features &= ~NETIF_F_TSO_ECN;
5640
5641 /* Software GSO depends on SG. */
5642 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5643 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5644 features &= ~NETIF_F_GSO;
5645 }
5646
5647 /* UFO needs SG and checksumming */
5648 if (features & NETIF_F_UFO) {
5649 /* maybe split UFO into V4 and V6? */
5650 if (!((features & NETIF_F_GEN_CSUM) ||
5651 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5652 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5653 netdev_dbg(dev,
5654 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5655 features &= ~NETIF_F_UFO;
5656 }
5657
5658 if (!(features & NETIF_F_SG)) {
5659 netdev_dbg(dev,
5660 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5661 features &= ~NETIF_F_UFO;
5662 }
5663 }
5664
5665 return features;
5666 }
5667
5668 int __netdev_update_features(struct net_device *dev)
5669 {
5670 netdev_features_t features;
5671 int err = 0;
5672
5673 ASSERT_RTNL();
5674
5675 features = netdev_get_wanted_features(dev);
5676
5677 if (dev->netdev_ops->ndo_fix_features)
5678 features = dev->netdev_ops->ndo_fix_features(dev, features);
5679
5680 /* driver might be less strict about feature dependencies */
5681 features = netdev_fix_features(dev, features);
5682
5683 if (dev->features == features)
5684 return 0;
5685
5686 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5687 &dev->features, &features);
5688
5689 if (dev->netdev_ops->ndo_set_features)
5690 err = dev->netdev_ops->ndo_set_features(dev, features);
5691
5692 if (unlikely(err < 0)) {
5693 netdev_err(dev,
5694 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5695 err, &features, &dev->features);
5696 return -1;
5697 }
5698
5699 if (!err)
5700 dev->features = features;
5701
5702 return 1;
5703 }
5704
5705 /**
5706 * netdev_update_features - recalculate device features
5707 * @dev: the device to check
5708 *
5709 * Recalculate dev->features set and send notifications if it
5710 * has changed. Should be called after driver or hardware dependent
5711 * conditions might have changed that influence the features.
5712 */
5713 void netdev_update_features(struct net_device *dev)
5714 {
5715 if (__netdev_update_features(dev))
5716 netdev_features_change(dev);
5717 }
5718 EXPORT_SYMBOL(netdev_update_features);
5719
5720 /**
5721 * netdev_change_features - recalculate device features
5722 * @dev: the device to check
5723 *
5724 * Recalculate dev->features set and send notifications even
5725 * if they have not changed. Should be called instead of
5726 * netdev_update_features() if also dev->vlan_features might
5727 * have changed to allow the changes to be propagated to stacked
5728 * VLAN devices.
5729 */
5730 void netdev_change_features(struct net_device *dev)
5731 {
5732 __netdev_update_features(dev);
5733 netdev_features_change(dev);
5734 }
5735 EXPORT_SYMBOL(netdev_change_features);
5736
5737 /**
5738 * netif_stacked_transfer_operstate - transfer operstate
5739 * @rootdev: the root or lower level device to transfer state from
5740 * @dev: the device to transfer operstate to
5741 *
5742 * Transfer operational state from root to device. This is normally
5743 * called when a stacking relationship exists between the root
5744 * device and the device(a leaf device).
5745 */
5746 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5747 struct net_device *dev)
5748 {
5749 if (rootdev->operstate == IF_OPER_DORMANT)
5750 netif_dormant_on(dev);
5751 else
5752 netif_dormant_off(dev);
5753
5754 if (netif_carrier_ok(rootdev)) {
5755 if (!netif_carrier_ok(dev))
5756 netif_carrier_on(dev);
5757 } else {
5758 if (netif_carrier_ok(dev))
5759 netif_carrier_off(dev);
5760 }
5761 }
5762 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5763
5764 #ifdef CONFIG_SYSFS
5765 static int netif_alloc_rx_queues(struct net_device *dev)
5766 {
5767 unsigned int i, count = dev->num_rx_queues;
5768 struct netdev_rx_queue *rx;
5769
5770 BUG_ON(count < 1);
5771
5772 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5773 if (!rx)
5774 return -ENOMEM;
5775
5776 dev->_rx = rx;
5777
5778 for (i = 0; i < count; i++)
5779 rx[i].dev = dev;
5780 return 0;
5781 }
5782 #endif
5783
5784 static void netdev_init_one_queue(struct net_device *dev,
5785 struct netdev_queue *queue, void *_unused)
5786 {
5787 /* Initialize queue lock */
5788 spin_lock_init(&queue->_xmit_lock);
5789 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5790 queue->xmit_lock_owner = -1;
5791 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5792 queue->dev = dev;
5793 #ifdef CONFIG_BQL
5794 dql_init(&queue->dql, HZ);
5795 #endif
5796 }
5797
5798 static void netif_free_tx_queues(struct net_device *dev)
5799 {
5800 if (is_vmalloc_addr(dev->_tx))
5801 vfree(dev->_tx);
5802 else
5803 kfree(dev->_tx);
5804 }
5805
5806 static int netif_alloc_netdev_queues(struct net_device *dev)
5807 {
5808 unsigned int count = dev->num_tx_queues;
5809 struct netdev_queue *tx;
5810 size_t sz = count * sizeof(*tx);
5811
5812 BUG_ON(count < 1 || count > 0xffff);
5813
5814 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5815 if (!tx) {
5816 tx = vzalloc(sz);
5817 if (!tx)
5818 return -ENOMEM;
5819 }
5820 dev->_tx = tx;
5821
5822 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5823 spin_lock_init(&dev->tx_global_lock);
5824
5825 return 0;
5826 }
5827
5828 /**
5829 * register_netdevice - register a network device
5830 * @dev: device to register
5831 *
5832 * Take a completed network device structure and add it to the kernel
5833 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5834 * chain. 0 is returned on success. A negative errno code is returned
5835 * on a failure to set up the device, or if the name is a duplicate.
5836 *
5837 * Callers must hold the rtnl semaphore. You may want
5838 * register_netdev() instead of this.
5839 *
5840 * BUGS:
5841 * The locking appears insufficient to guarantee two parallel registers
5842 * will not get the same name.
5843 */
5844
5845 int register_netdevice(struct net_device *dev)
5846 {
5847 int ret;
5848 struct net *net = dev_net(dev);
5849
5850 BUG_ON(dev_boot_phase);
5851 ASSERT_RTNL();
5852
5853 might_sleep();
5854
5855 /* When net_device's are persistent, this will be fatal. */
5856 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5857 BUG_ON(!net);
5858
5859 spin_lock_init(&dev->addr_list_lock);
5860 netdev_set_addr_lockdep_class(dev);
5861
5862 dev->iflink = -1;
5863
5864 ret = dev_get_valid_name(net, dev, dev->name);
5865 if (ret < 0)
5866 goto out;
5867
5868 /* Init, if this function is available */
5869 if (dev->netdev_ops->ndo_init) {
5870 ret = dev->netdev_ops->ndo_init(dev);
5871 if (ret) {
5872 if (ret > 0)
5873 ret = -EIO;
5874 goto out;
5875 }
5876 }
5877
5878 if (((dev->hw_features | dev->features) &
5879 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5880 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5881 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5882 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5883 ret = -EINVAL;
5884 goto err_uninit;
5885 }
5886
5887 ret = -EBUSY;
5888 if (!dev->ifindex)
5889 dev->ifindex = dev_new_index(net);
5890 else if (__dev_get_by_index(net, dev->ifindex))
5891 goto err_uninit;
5892
5893 if (dev->iflink == -1)
5894 dev->iflink = dev->ifindex;
5895
5896 /* Transfer changeable features to wanted_features and enable
5897 * software offloads (GSO and GRO).
5898 */
5899 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5900 dev->features |= NETIF_F_SOFT_FEATURES;
5901 dev->wanted_features = dev->features & dev->hw_features;
5902
5903 if (!(dev->flags & IFF_LOOPBACK)) {
5904 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5905 }
5906
5907 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5908 */
5909 dev->vlan_features |= NETIF_F_HIGHDMA;
5910
5911 /* Make NETIF_F_SG inheritable to tunnel devices.
5912 */
5913 dev->hw_enc_features |= NETIF_F_SG;
5914
5915 /* Make NETIF_F_SG inheritable to MPLS.
5916 */
5917 dev->mpls_features |= NETIF_F_SG;
5918
5919 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5920 ret = notifier_to_errno(ret);
5921 if (ret)
5922 goto err_uninit;
5923
5924 ret = netdev_register_kobject(dev);
5925 if (ret)
5926 goto err_uninit;
5927 dev->reg_state = NETREG_REGISTERED;
5928
5929 __netdev_update_features(dev);
5930
5931 /*
5932 * Default initial state at registry is that the
5933 * device is present.
5934 */
5935
5936 set_bit(__LINK_STATE_PRESENT, &dev->state);
5937
5938 linkwatch_init_dev(dev);
5939
5940 dev_init_scheduler(dev);
5941 dev_hold(dev);
5942 list_netdevice(dev);
5943 add_device_randomness(dev->dev_addr, dev->addr_len);
5944
5945 /* If the device has permanent device address, driver should
5946 * set dev_addr and also addr_assign_type should be set to
5947 * NET_ADDR_PERM (default value).
5948 */
5949 if (dev->addr_assign_type == NET_ADDR_PERM)
5950 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5951
5952 /* Notify protocols, that a new device appeared. */
5953 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5954 ret = notifier_to_errno(ret);
5955 if (ret) {
5956 rollback_registered(dev);
5957 dev->reg_state = NETREG_UNREGISTERED;
5958 }
5959 /*
5960 * Prevent userspace races by waiting until the network
5961 * device is fully setup before sending notifications.
5962 */
5963 if (!dev->rtnl_link_ops ||
5964 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5965 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5966
5967 out:
5968 return ret;
5969
5970 err_uninit:
5971 if (dev->netdev_ops->ndo_uninit)
5972 dev->netdev_ops->ndo_uninit(dev);
5973 goto out;
5974 }
5975 EXPORT_SYMBOL(register_netdevice);
5976
5977 /**
5978 * init_dummy_netdev - init a dummy network device for NAPI
5979 * @dev: device to init
5980 *
5981 * This takes a network device structure and initialize the minimum
5982 * amount of fields so it can be used to schedule NAPI polls without
5983 * registering a full blown interface. This is to be used by drivers
5984 * that need to tie several hardware interfaces to a single NAPI
5985 * poll scheduler due to HW limitations.
5986 */
5987 int init_dummy_netdev(struct net_device *dev)
5988 {
5989 /* Clear everything. Note we don't initialize spinlocks
5990 * are they aren't supposed to be taken by any of the
5991 * NAPI code and this dummy netdev is supposed to be
5992 * only ever used for NAPI polls
5993 */
5994 memset(dev, 0, sizeof(struct net_device));
5995
5996 /* make sure we BUG if trying to hit standard
5997 * register/unregister code path
5998 */
5999 dev->reg_state = NETREG_DUMMY;
6000
6001 /* NAPI wants this */
6002 INIT_LIST_HEAD(&dev->napi_list);
6003
6004 /* a dummy interface is started by default */
6005 set_bit(__LINK_STATE_PRESENT, &dev->state);
6006 set_bit(__LINK_STATE_START, &dev->state);
6007
6008 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6009 * because users of this 'device' dont need to change
6010 * its refcount.
6011 */
6012
6013 return 0;
6014 }
6015 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6016
6017
6018 /**
6019 * register_netdev - register a network device
6020 * @dev: device to register
6021 *
6022 * Take a completed network device structure and add it to the kernel
6023 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6024 * chain. 0 is returned on success. A negative errno code is returned
6025 * on a failure to set up the device, or if the name is a duplicate.
6026 *
6027 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6028 * and expands the device name if you passed a format string to
6029 * alloc_netdev.
6030 */
6031 int register_netdev(struct net_device *dev)
6032 {
6033 int err;
6034
6035 rtnl_lock();
6036 err = register_netdevice(dev);
6037 rtnl_unlock();
6038 return err;
6039 }
6040 EXPORT_SYMBOL(register_netdev);
6041
6042 int netdev_refcnt_read(const struct net_device *dev)
6043 {
6044 int i, refcnt = 0;
6045
6046 for_each_possible_cpu(i)
6047 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6048 return refcnt;
6049 }
6050 EXPORT_SYMBOL(netdev_refcnt_read);
6051
6052 /**
6053 * netdev_wait_allrefs - wait until all references are gone.
6054 * @dev: target net_device
6055 *
6056 * This is called when unregistering network devices.
6057 *
6058 * Any protocol or device that holds a reference should register
6059 * for netdevice notification, and cleanup and put back the
6060 * reference if they receive an UNREGISTER event.
6061 * We can get stuck here if buggy protocols don't correctly
6062 * call dev_put.
6063 */
6064 static void netdev_wait_allrefs(struct net_device *dev)
6065 {
6066 unsigned long rebroadcast_time, warning_time;
6067 int refcnt;
6068
6069 linkwatch_forget_dev(dev);
6070
6071 rebroadcast_time = warning_time = jiffies;
6072 refcnt = netdev_refcnt_read(dev);
6073
6074 while (refcnt != 0) {
6075 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6076 rtnl_lock();
6077
6078 /* Rebroadcast unregister notification */
6079 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6080
6081 __rtnl_unlock();
6082 rcu_barrier();
6083 rtnl_lock();
6084
6085 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6086 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6087 &dev->state)) {
6088 /* We must not have linkwatch events
6089 * pending on unregister. If this
6090 * happens, we simply run the queue
6091 * unscheduled, resulting in a noop
6092 * for this device.
6093 */
6094 linkwatch_run_queue();
6095 }
6096
6097 __rtnl_unlock();
6098
6099 rebroadcast_time = jiffies;
6100 }
6101
6102 msleep(250);
6103
6104 refcnt = netdev_refcnt_read(dev);
6105
6106 if (time_after(jiffies, warning_time + 10 * HZ)) {
6107 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6108 dev->name, refcnt);
6109 warning_time = jiffies;
6110 }
6111 }
6112 }
6113
6114 /* The sequence is:
6115 *
6116 * rtnl_lock();
6117 * ...
6118 * register_netdevice(x1);
6119 * register_netdevice(x2);
6120 * ...
6121 * unregister_netdevice(y1);
6122 * unregister_netdevice(y2);
6123 * ...
6124 * rtnl_unlock();
6125 * free_netdev(y1);
6126 * free_netdev(y2);
6127 *
6128 * We are invoked by rtnl_unlock().
6129 * This allows us to deal with problems:
6130 * 1) We can delete sysfs objects which invoke hotplug
6131 * without deadlocking with linkwatch via keventd.
6132 * 2) Since we run with the RTNL semaphore not held, we can sleep
6133 * safely in order to wait for the netdev refcnt to drop to zero.
6134 *
6135 * We must not return until all unregister events added during
6136 * the interval the lock was held have been completed.
6137 */
6138 void netdev_run_todo(void)
6139 {
6140 struct list_head list;
6141
6142 /* Snapshot list, allow later requests */
6143 list_replace_init(&net_todo_list, &list);
6144
6145 __rtnl_unlock();
6146
6147
6148 /* Wait for rcu callbacks to finish before next phase */
6149 if (!list_empty(&list))
6150 rcu_barrier();
6151
6152 while (!list_empty(&list)) {
6153 struct net_device *dev
6154 = list_first_entry(&list, struct net_device, todo_list);
6155 list_del(&dev->todo_list);
6156
6157 rtnl_lock();
6158 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6159 __rtnl_unlock();
6160
6161 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6162 pr_err("network todo '%s' but state %d\n",
6163 dev->name, dev->reg_state);
6164 dump_stack();
6165 continue;
6166 }
6167
6168 dev->reg_state = NETREG_UNREGISTERED;
6169
6170 on_each_cpu(flush_backlog, dev, 1);
6171
6172 netdev_wait_allrefs(dev);
6173
6174 /* paranoia */
6175 BUG_ON(netdev_refcnt_read(dev));
6176 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6177 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6178 WARN_ON(dev->dn_ptr);
6179
6180 if (dev->destructor)
6181 dev->destructor(dev);
6182
6183 /* Report a network device has been unregistered */
6184 rtnl_lock();
6185 dev_net(dev)->dev_unreg_count--;
6186 __rtnl_unlock();
6187 wake_up(&netdev_unregistering_wq);
6188
6189 /* Free network device */
6190 kobject_put(&dev->dev.kobj);
6191 }
6192 }
6193
6194 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6195 * fields in the same order, with only the type differing.
6196 */
6197 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6198 const struct net_device_stats *netdev_stats)
6199 {
6200 #if BITS_PER_LONG == 64
6201 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6202 memcpy(stats64, netdev_stats, sizeof(*stats64));
6203 #else
6204 size_t i, n = sizeof(*stats64) / sizeof(u64);
6205 const unsigned long *src = (const unsigned long *)netdev_stats;
6206 u64 *dst = (u64 *)stats64;
6207
6208 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6209 sizeof(*stats64) / sizeof(u64));
6210 for (i = 0; i < n; i++)
6211 dst[i] = src[i];
6212 #endif
6213 }
6214 EXPORT_SYMBOL(netdev_stats_to_stats64);
6215
6216 /**
6217 * dev_get_stats - get network device statistics
6218 * @dev: device to get statistics from
6219 * @storage: place to store stats
6220 *
6221 * Get network statistics from device. Return @storage.
6222 * The device driver may provide its own method by setting
6223 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6224 * otherwise the internal statistics structure is used.
6225 */
6226 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6227 struct rtnl_link_stats64 *storage)
6228 {
6229 const struct net_device_ops *ops = dev->netdev_ops;
6230
6231 if (ops->ndo_get_stats64) {
6232 memset(storage, 0, sizeof(*storage));
6233 ops->ndo_get_stats64(dev, storage);
6234 } else if (ops->ndo_get_stats) {
6235 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6236 } else {
6237 netdev_stats_to_stats64(storage, &dev->stats);
6238 }
6239 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6240 return storage;
6241 }
6242 EXPORT_SYMBOL(dev_get_stats);
6243
6244 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6245 {
6246 struct netdev_queue *queue = dev_ingress_queue(dev);
6247
6248 #ifdef CONFIG_NET_CLS_ACT
6249 if (queue)
6250 return queue;
6251 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6252 if (!queue)
6253 return NULL;
6254 netdev_init_one_queue(dev, queue, NULL);
6255 queue->qdisc = &noop_qdisc;
6256 queue->qdisc_sleeping = &noop_qdisc;
6257 rcu_assign_pointer(dev->ingress_queue, queue);
6258 #endif
6259 return queue;
6260 }
6261
6262 static const struct ethtool_ops default_ethtool_ops;
6263
6264 void netdev_set_default_ethtool_ops(struct net_device *dev,
6265 const struct ethtool_ops *ops)
6266 {
6267 if (dev->ethtool_ops == &default_ethtool_ops)
6268 dev->ethtool_ops = ops;
6269 }
6270 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6271
6272 void netdev_freemem(struct net_device *dev)
6273 {
6274 char *addr = (char *)dev - dev->padded;
6275
6276 if (is_vmalloc_addr(addr))
6277 vfree(addr);
6278 else
6279 kfree(addr);
6280 }
6281
6282 /**
6283 * alloc_netdev_mqs - allocate network device
6284 * @sizeof_priv: size of private data to allocate space for
6285 * @name: device name format string
6286 * @setup: callback to initialize device
6287 * @txqs: the number of TX subqueues to allocate
6288 * @rxqs: the number of RX subqueues to allocate
6289 *
6290 * Allocates a struct net_device with private data area for driver use
6291 * and performs basic initialization. Also allocates subqueue structs
6292 * for each queue on the device.
6293 */
6294 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6295 void (*setup)(struct net_device *),
6296 unsigned int txqs, unsigned int rxqs)
6297 {
6298 struct net_device *dev;
6299 size_t alloc_size;
6300 struct net_device *p;
6301
6302 BUG_ON(strlen(name) >= sizeof(dev->name));
6303
6304 if (txqs < 1) {
6305 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6306 return NULL;
6307 }
6308
6309 #ifdef CONFIG_SYSFS
6310 if (rxqs < 1) {
6311 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6312 return NULL;
6313 }
6314 #endif
6315
6316 alloc_size = sizeof(struct net_device);
6317 if (sizeof_priv) {
6318 /* ensure 32-byte alignment of private area */
6319 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6320 alloc_size += sizeof_priv;
6321 }
6322 /* ensure 32-byte alignment of whole construct */
6323 alloc_size += NETDEV_ALIGN - 1;
6324
6325 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6326 if (!p)
6327 p = vzalloc(alloc_size);
6328 if (!p)
6329 return NULL;
6330
6331 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6332 dev->padded = (char *)dev - (char *)p;
6333
6334 dev->pcpu_refcnt = alloc_percpu(int);
6335 if (!dev->pcpu_refcnt)
6336 goto free_dev;
6337
6338 if (dev_addr_init(dev))
6339 goto free_pcpu;
6340
6341 dev_mc_init(dev);
6342 dev_uc_init(dev);
6343
6344 dev_net_set(dev, &init_net);
6345
6346 dev->gso_max_size = GSO_MAX_SIZE;
6347 dev->gso_max_segs = GSO_MAX_SEGS;
6348
6349 INIT_LIST_HEAD(&dev->napi_list);
6350 INIT_LIST_HEAD(&dev->unreg_list);
6351 INIT_LIST_HEAD(&dev->close_list);
6352 INIT_LIST_HEAD(&dev->link_watch_list);
6353 INIT_LIST_HEAD(&dev->adj_list.upper);
6354 INIT_LIST_HEAD(&dev->adj_list.lower);
6355 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6356 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6357 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6358 setup(dev);
6359
6360 dev->num_tx_queues = txqs;
6361 dev->real_num_tx_queues = txqs;
6362 if (netif_alloc_netdev_queues(dev))
6363 goto free_all;
6364
6365 #ifdef CONFIG_SYSFS
6366 dev->num_rx_queues = rxqs;
6367 dev->real_num_rx_queues = rxqs;
6368 if (netif_alloc_rx_queues(dev))
6369 goto free_all;
6370 #endif
6371
6372 strcpy(dev->name, name);
6373 dev->group = INIT_NETDEV_GROUP;
6374 if (!dev->ethtool_ops)
6375 dev->ethtool_ops = &default_ethtool_ops;
6376 return dev;
6377
6378 free_all:
6379 free_netdev(dev);
6380 return NULL;
6381
6382 free_pcpu:
6383 free_percpu(dev->pcpu_refcnt);
6384 netif_free_tx_queues(dev);
6385 #ifdef CONFIG_SYSFS
6386 kfree(dev->_rx);
6387 #endif
6388
6389 free_dev:
6390 netdev_freemem(dev);
6391 return NULL;
6392 }
6393 EXPORT_SYMBOL(alloc_netdev_mqs);
6394
6395 /**
6396 * free_netdev - free network device
6397 * @dev: device
6398 *
6399 * This function does the last stage of destroying an allocated device
6400 * interface. The reference to the device object is released.
6401 * If this is the last reference then it will be freed.
6402 */
6403 void free_netdev(struct net_device *dev)
6404 {
6405 struct napi_struct *p, *n;
6406
6407 release_net(dev_net(dev));
6408
6409 netif_free_tx_queues(dev);
6410 #ifdef CONFIG_SYSFS
6411 kfree(dev->_rx);
6412 #endif
6413
6414 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6415
6416 /* Flush device addresses */
6417 dev_addr_flush(dev);
6418
6419 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6420 netif_napi_del(p);
6421
6422 free_percpu(dev->pcpu_refcnt);
6423 dev->pcpu_refcnt = NULL;
6424
6425 /* Compatibility with error handling in drivers */
6426 if (dev->reg_state == NETREG_UNINITIALIZED) {
6427 netdev_freemem(dev);
6428 return;
6429 }
6430
6431 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6432 dev->reg_state = NETREG_RELEASED;
6433
6434 /* will free via device release */
6435 put_device(&dev->dev);
6436 }
6437 EXPORT_SYMBOL(free_netdev);
6438
6439 /**
6440 * synchronize_net - Synchronize with packet receive processing
6441 *
6442 * Wait for packets currently being received to be done.
6443 * Does not block later packets from starting.
6444 */
6445 void synchronize_net(void)
6446 {
6447 might_sleep();
6448 if (rtnl_is_locked())
6449 synchronize_rcu_expedited();
6450 else
6451 synchronize_rcu();
6452 }
6453 EXPORT_SYMBOL(synchronize_net);
6454
6455 /**
6456 * unregister_netdevice_queue - remove device from the kernel
6457 * @dev: device
6458 * @head: list
6459 *
6460 * This function shuts down a device interface and removes it
6461 * from the kernel tables.
6462 * If head not NULL, device is queued to be unregistered later.
6463 *
6464 * Callers must hold the rtnl semaphore. You may want
6465 * unregister_netdev() instead of this.
6466 */
6467
6468 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6469 {
6470 ASSERT_RTNL();
6471
6472 if (head) {
6473 list_move_tail(&dev->unreg_list, head);
6474 } else {
6475 rollback_registered(dev);
6476 /* Finish processing unregister after unlock */
6477 net_set_todo(dev);
6478 }
6479 }
6480 EXPORT_SYMBOL(unregister_netdevice_queue);
6481
6482 /**
6483 * unregister_netdevice_many - unregister many devices
6484 * @head: list of devices
6485 */
6486 void unregister_netdevice_many(struct list_head *head)
6487 {
6488 struct net_device *dev;
6489
6490 if (!list_empty(head)) {
6491 rollback_registered_many(head);
6492 list_for_each_entry(dev, head, unreg_list)
6493 net_set_todo(dev);
6494 }
6495 }
6496 EXPORT_SYMBOL(unregister_netdevice_many);
6497
6498 /**
6499 * unregister_netdev - remove device from the kernel
6500 * @dev: device
6501 *
6502 * This function shuts down a device interface and removes it
6503 * from the kernel tables.
6504 *
6505 * This is just a wrapper for unregister_netdevice that takes
6506 * the rtnl semaphore. In general you want to use this and not
6507 * unregister_netdevice.
6508 */
6509 void unregister_netdev(struct net_device *dev)
6510 {
6511 rtnl_lock();
6512 unregister_netdevice(dev);
6513 rtnl_unlock();
6514 }
6515 EXPORT_SYMBOL(unregister_netdev);
6516
6517 /**
6518 * dev_change_net_namespace - move device to different nethost namespace
6519 * @dev: device
6520 * @net: network namespace
6521 * @pat: If not NULL name pattern to try if the current device name
6522 * is already taken in the destination network namespace.
6523 *
6524 * This function shuts down a device interface and moves it
6525 * to a new network namespace. On success 0 is returned, on
6526 * a failure a netagive errno code is returned.
6527 *
6528 * Callers must hold the rtnl semaphore.
6529 */
6530
6531 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6532 {
6533 int err;
6534
6535 ASSERT_RTNL();
6536
6537 /* Don't allow namespace local devices to be moved. */
6538 err = -EINVAL;
6539 if (dev->features & NETIF_F_NETNS_LOCAL)
6540 goto out;
6541
6542 /* Ensure the device has been registrered */
6543 if (dev->reg_state != NETREG_REGISTERED)
6544 goto out;
6545
6546 /* Get out if there is nothing todo */
6547 err = 0;
6548 if (net_eq(dev_net(dev), net))
6549 goto out;
6550
6551 /* Pick the destination device name, and ensure
6552 * we can use it in the destination network namespace.
6553 */
6554 err = -EEXIST;
6555 if (__dev_get_by_name(net, dev->name)) {
6556 /* We get here if we can't use the current device name */
6557 if (!pat)
6558 goto out;
6559 if (dev_get_valid_name(net, dev, pat) < 0)
6560 goto out;
6561 }
6562
6563 /*
6564 * And now a mini version of register_netdevice unregister_netdevice.
6565 */
6566
6567 /* If device is running close it first. */
6568 dev_close(dev);
6569
6570 /* And unlink it from device chain */
6571 err = -ENODEV;
6572 unlist_netdevice(dev);
6573
6574 synchronize_net();
6575
6576 /* Shutdown queueing discipline. */
6577 dev_shutdown(dev);
6578
6579 /* Notify protocols, that we are about to destroy
6580 this device. They should clean all the things.
6581
6582 Note that dev->reg_state stays at NETREG_REGISTERED.
6583 This is wanted because this way 8021q and macvlan know
6584 the device is just moving and can keep their slaves up.
6585 */
6586 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6587 rcu_barrier();
6588 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6589 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6590
6591 /*
6592 * Flush the unicast and multicast chains
6593 */
6594 dev_uc_flush(dev);
6595 dev_mc_flush(dev);
6596
6597 /* Send a netdev-removed uevent to the old namespace */
6598 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6599
6600 /* Actually switch the network namespace */
6601 dev_net_set(dev, net);
6602
6603 /* If there is an ifindex conflict assign a new one */
6604 if (__dev_get_by_index(net, dev->ifindex)) {
6605 int iflink = (dev->iflink == dev->ifindex);
6606 dev->ifindex = dev_new_index(net);
6607 if (iflink)
6608 dev->iflink = dev->ifindex;
6609 }
6610
6611 /* Send a netdev-add uevent to the new namespace */
6612 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6613
6614 /* Fixup kobjects */
6615 err = device_rename(&dev->dev, dev->name);
6616 WARN_ON(err);
6617
6618 /* Add the device back in the hashes */
6619 list_netdevice(dev);
6620
6621 /* Notify protocols, that a new device appeared. */
6622 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6623
6624 /*
6625 * Prevent userspace races by waiting until the network
6626 * device is fully setup before sending notifications.
6627 */
6628 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6629
6630 synchronize_net();
6631 err = 0;
6632 out:
6633 return err;
6634 }
6635 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6636
6637 static int dev_cpu_callback(struct notifier_block *nfb,
6638 unsigned long action,
6639 void *ocpu)
6640 {
6641 struct sk_buff **list_skb;
6642 struct sk_buff *skb;
6643 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6644 struct softnet_data *sd, *oldsd;
6645
6646 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6647 return NOTIFY_OK;
6648
6649 local_irq_disable();
6650 cpu = smp_processor_id();
6651 sd = &per_cpu(softnet_data, cpu);
6652 oldsd = &per_cpu(softnet_data, oldcpu);
6653
6654 /* Find end of our completion_queue. */
6655 list_skb = &sd->completion_queue;
6656 while (*list_skb)
6657 list_skb = &(*list_skb)->next;
6658 /* Append completion queue from offline CPU. */
6659 *list_skb = oldsd->completion_queue;
6660 oldsd->completion_queue = NULL;
6661
6662 /* Append output queue from offline CPU. */
6663 if (oldsd->output_queue) {
6664 *sd->output_queue_tailp = oldsd->output_queue;
6665 sd->output_queue_tailp = oldsd->output_queue_tailp;
6666 oldsd->output_queue = NULL;
6667 oldsd->output_queue_tailp = &oldsd->output_queue;
6668 }
6669 /* Append NAPI poll list from offline CPU. */
6670 if (!list_empty(&oldsd->poll_list)) {
6671 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6672 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6673 }
6674
6675 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6676 local_irq_enable();
6677
6678 /* Process offline CPU's input_pkt_queue */
6679 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6680 netif_rx_internal(skb);
6681 input_queue_head_incr(oldsd);
6682 }
6683 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6684 netif_rx_internal(skb);
6685 input_queue_head_incr(oldsd);
6686 }
6687
6688 return NOTIFY_OK;
6689 }
6690
6691
6692 /**
6693 * netdev_increment_features - increment feature set by one
6694 * @all: current feature set
6695 * @one: new feature set
6696 * @mask: mask feature set
6697 *
6698 * Computes a new feature set after adding a device with feature set
6699 * @one to the master device with current feature set @all. Will not
6700 * enable anything that is off in @mask. Returns the new feature set.
6701 */
6702 netdev_features_t netdev_increment_features(netdev_features_t all,
6703 netdev_features_t one, netdev_features_t mask)
6704 {
6705 if (mask & NETIF_F_GEN_CSUM)
6706 mask |= NETIF_F_ALL_CSUM;
6707 mask |= NETIF_F_VLAN_CHALLENGED;
6708
6709 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6710 all &= one | ~NETIF_F_ALL_FOR_ALL;
6711
6712 /* If one device supports hw checksumming, set for all. */
6713 if (all & NETIF_F_GEN_CSUM)
6714 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6715
6716 return all;
6717 }
6718 EXPORT_SYMBOL(netdev_increment_features);
6719
6720 static struct hlist_head * __net_init netdev_create_hash(void)
6721 {
6722 int i;
6723 struct hlist_head *hash;
6724
6725 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6726 if (hash != NULL)
6727 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6728 INIT_HLIST_HEAD(&hash[i]);
6729
6730 return hash;
6731 }
6732
6733 /* Initialize per network namespace state */
6734 static int __net_init netdev_init(struct net *net)
6735 {
6736 if (net != &init_net)
6737 INIT_LIST_HEAD(&net->dev_base_head);
6738
6739 net->dev_name_head = netdev_create_hash();
6740 if (net->dev_name_head == NULL)
6741 goto err_name;
6742
6743 net->dev_index_head = netdev_create_hash();
6744 if (net->dev_index_head == NULL)
6745 goto err_idx;
6746
6747 return 0;
6748
6749 err_idx:
6750 kfree(net->dev_name_head);
6751 err_name:
6752 return -ENOMEM;
6753 }
6754
6755 /**
6756 * netdev_drivername - network driver for the device
6757 * @dev: network device
6758 *
6759 * Determine network driver for device.
6760 */
6761 const char *netdev_drivername(const struct net_device *dev)
6762 {
6763 const struct device_driver *driver;
6764 const struct device *parent;
6765 const char *empty = "";
6766
6767 parent = dev->dev.parent;
6768 if (!parent)
6769 return empty;
6770
6771 driver = parent->driver;
6772 if (driver && driver->name)
6773 return driver->name;
6774 return empty;
6775 }
6776
6777 static int __netdev_printk(const char *level, const struct net_device *dev,
6778 struct va_format *vaf)
6779 {
6780 int r;
6781
6782 if (dev && dev->dev.parent) {
6783 r = dev_printk_emit(level[1] - '0',
6784 dev->dev.parent,
6785 "%s %s %s: %pV",
6786 dev_driver_string(dev->dev.parent),
6787 dev_name(dev->dev.parent),
6788 netdev_name(dev), vaf);
6789 } else if (dev) {
6790 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6791 } else {
6792 r = printk("%s(NULL net_device): %pV", level, vaf);
6793 }
6794
6795 return r;
6796 }
6797
6798 int netdev_printk(const char *level, const struct net_device *dev,
6799 const char *format, ...)
6800 {
6801 struct va_format vaf;
6802 va_list args;
6803 int r;
6804
6805 va_start(args, format);
6806
6807 vaf.fmt = format;
6808 vaf.va = &args;
6809
6810 r = __netdev_printk(level, dev, &vaf);
6811
6812 va_end(args);
6813
6814 return r;
6815 }
6816 EXPORT_SYMBOL(netdev_printk);
6817
6818 #define define_netdev_printk_level(func, level) \
6819 int func(const struct net_device *dev, const char *fmt, ...) \
6820 { \
6821 int r; \
6822 struct va_format vaf; \
6823 va_list args; \
6824 \
6825 va_start(args, fmt); \
6826 \
6827 vaf.fmt = fmt; \
6828 vaf.va = &args; \
6829 \
6830 r = __netdev_printk(level, dev, &vaf); \
6831 \
6832 va_end(args); \
6833 \
6834 return r; \
6835 } \
6836 EXPORT_SYMBOL(func);
6837
6838 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6839 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6840 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6841 define_netdev_printk_level(netdev_err, KERN_ERR);
6842 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6843 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6844 define_netdev_printk_level(netdev_info, KERN_INFO);
6845
6846 static void __net_exit netdev_exit(struct net *net)
6847 {
6848 kfree(net->dev_name_head);
6849 kfree(net->dev_index_head);
6850 }
6851
6852 static struct pernet_operations __net_initdata netdev_net_ops = {
6853 .init = netdev_init,
6854 .exit = netdev_exit,
6855 };
6856
6857 static void __net_exit default_device_exit(struct net *net)
6858 {
6859 struct net_device *dev, *aux;
6860 /*
6861 * Push all migratable network devices back to the
6862 * initial network namespace
6863 */
6864 rtnl_lock();
6865 for_each_netdev_safe(net, dev, aux) {
6866 int err;
6867 char fb_name[IFNAMSIZ];
6868
6869 /* Ignore unmoveable devices (i.e. loopback) */
6870 if (dev->features & NETIF_F_NETNS_LOCAL)
6871 continue;
6872
6873 /* Leave virtual devices for the generic cleanup */
6874 if (dev->rtnl_link_ops)
6875 continue;
6876
6877 /* Push remaining network devices to init_net */
6878 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6879 err = dev_change_net_namespace(dev, &init_net, fb_name);
6880 if (err) {
6881 pr_emerg("%s: failed to move %s to init_net: %d\n",
6882 __func__, dev->name, err);
6883 BUG();
6884 }
6885 }
6886 rtnl_unlock();
6887 }
6888
6889 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6890 {
6891 /* Return with the rtnl_lock held when there are no network
6892 * devices unregistering in any network namespace in net_list.
6893 */
6894 struct net *net;
6895 bool unregistering;
6896 DEFINE_WAIT(wait);
6897
6898 for (;;) {
6899 prepare_to_wait(&netdev_unregistering_wq, &wait,
6900 TASK_UNINTERRUPTIBLE);
6901 unregistering = false;
6902 rtnl_lock();
6903 list_for_each_entry(net, net_list, exit_list) {
6904 if (net->dev_unreg_count > 0) {
6905 unregistering = true;
6906 break;
6907 }
6908 }
6909 if (!unregistering)
6910 break;
6911 __rtnl_unlock();
6912 schedule();
6913 }
6914 finish_wait(&netdev_unregistering_wq, &wait);
6915 }
6916
6917 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6918 {
6919 /* At exit all network devices most be removed from a network
6920 * namespace. Do this in the reverse order of registration.
6921 * Do this across as many network namespaces as possible to
6922 * improve batching efficiency.
6923 */
6924 struct net_device *dev;
6925 struct net *net;
6926 LIST_HEAD(dev_kill_list);
6927
6928 /* To prevent network device cleanup code from dereferencing
6929 * loopback devices or network devices that have been freed
6930 * wait here for all pending unregistrations to complete,
6931 * before unregistring the loopback device and allowing the
6932 * network namespace be freed.
6933 *
6934 * The netdev todo list containing all network devices
6935 * unregistrations that happen in default_device_exit_batch
6936 * will run in the rtnl_unlock() at the end of
6937 * default_device_exit_batch.
6938 */
6939 rtnl_lock_unregistering(net_list);
6940 list_for_each_entry(net, net_list, exit_list) {
6941 for_each_netdev_reverse(net, dev) {
6942 if (dev->rtnl_link_ops)
6943 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6944 else
6945 unregister_netdevice_queue(dev, &dev_kill_list);
6946 }
6947 }
6948 unregister_netdevice_many(&dev_kill_list);
6949 list_del(&dev_kill_list);
6950 rtnl_unlock();
6951 }
6952
6953 static struct pernet_operations __net_initdata default_device_ops = {
6954 .exit = default_device_exit,
6955 .exit_batch = default_device_exit_batch,
6956 };
6957
6958 /*
6959 * Initialize the DEV module. At boot time this walks the device list and
6960 * unhooks any devices that fail to initialise (normally hardware not
6961 * present) and leaves us with a valid list of present and active devices.
6962 *
6963 */
6964
6965 /*
6966 * This is called single threaded during boot, so no need
6967 * to take the rtnl semaphore.
6968 */
6969 static int __init net_dev_init(void)
6970 {
6971 int i, rc = -ENOMEM;
6972
6973 BUG_ON(!dev_boot_phase);
6974
6975 if (dev_proc_init())
6976 goto out;
6977
6978 if (netdev_kobject_init())
6979 goto out;
6980
6981 INIT_LIST_HEAD(&ptype_all);
6982 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6983 INIT_LIST_HEAD(&ptype_base[i]);
6984
6985 INIT_LIST_HEAD(&offload_base);
6986
6987 if (register_pernet_subsys(&netdev_net_ops))
6988 goto out;
6989
6990 /*
6991 * Initialise the packet receive queues.
6992 */
6993
6994 for_each_possible_cpu(i) {
6995 struct softnet_data *sd = &per_cpu(softnet_data, i);
6996
6997 skb_queue_head_init(&sd->input_pkt_queue);
6998 skb_queue_head_init(&sd->process_queue);
6999 INIT_LIST_HEAD(&sd->poll_list);
7000 sd->output_queue_tailp = &sd->output_queue;
7001 #ifdef CONFIG_RPS
7002 sd->csd.func = rps_trigger_softirq;
7003 sd->csd.info = sd;
7004 sd->cpu = i;
7005 #endif
7006
7007 sd->backlog.poll = process_backlog;
7008 sd->backlog.weight = weight_p;
7009 }
7010
7011 dev_boot_phase = 0;
7012
7013 /* The loopback device is special if any other network devices
7014 * is present in a network namespace the loopback device must
7015 * be present. Since we now dynamically allocate and free the
7016 * loopback device ensure this invariant is maintained by
7017 * keeping the loopback device as the first device on the
7018 * list of network devices. Ensuring the loopback devices
7019 * is the first device that appears and the last network device
7020 * that disappears.
7021 */
7022 if (register_pernet_device(&loopback_net_ops))
7023 goto out;
7024
7025 if (register_pernet_device(&default_device_ops))
7026 goto out;
7027
7028 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7029 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7030
7031 hotcpu_notifier(dev_cpu_callback, 0);
7032 dst_init();
7033 rc = 0;
7034 out:
7035 return rc;
7036 }
7037
7038 subsys_initcall(net_dev_init);
This page took 0.313573 seconds and 5 git commands to generate.