net: Fix locking in flush_backlog
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <linux/if_bridge.h>
104 #include <linux/if_macvlan.h>
105 #include <net/dst.h>
106 #include <net/pkt_sched.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <linux/highmem.h>
110 #include <linux/init.h>
111 #include <linux/kmod.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/wext.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 /*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
169 #define PTYPE_HASH_SIZE (16)
170 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
172 static DEFINE_SPINLOCK(ptype_lock);
173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174 static struct list_head ptype_all __read_mostly; /* Taps */
175
176 /*
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
179 *
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 /* Device list insertion */
210 static int list_netdevice(struct net_device *dev)
211 {
212 struct net *net = dev_net(dev);
213
214 ASSERT_RTNL();
215
216 write_lock_bh(&dev_base_lock);
217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
227 */
228 static void unlist_netdevice(struct net_device *dev)
229 {
230 ASSERT_RTNL();
231
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
234 list_del_rcu(&dev->dev_list);
235 hlist_del_rcu(&dev->name_hlist);
236 hlist_del_rcu(&dev->index_hlist);
237 write_unlock_bh(&dev_base_lock);
238 }
239
240 /*
241 * Our notifier list
242 */
243
244 static RAW_NOTIFIER_HEAD(netdev_chain);
245
246 /*
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
249 */
250
251 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 EXPORT_PER_CPU_SYMBOL(softnet_data);
253
254 #ifdef CONFIG_LOCKDEP
255 /*
256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
257 * according to dev->type
258 */
259 static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
275 ARPHRD_VOID, ARPHRD_NONE};
276
277 static const char *const netdev_lock_name[] =
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
293 "_xmit_VOID", "_xmit_NONE"};
294
295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
297
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 {
300 int i;
301
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
307 }
308
309 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
311 {
312 int i;
313
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
317 }
318
319 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
327 }
328 #else
329 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
331 {
332 }
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 }
336 #endif
337
338 /*******************************************************************************
339
340 Protocol management and registration routines
341
342 *******************************************************************************/
343
344 /*
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
348 *
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
358 */
359
360 /**
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
363 *
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
367 *
368 * This call does not sleep therefore it can not
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
371 */
372
373 void dev_add_pack(struct packet_type *pt)
374 {
375 int hash;
376
377 spin_lock_bh(&ptype_lock);
378 if (pt->type == htons(ETH_P_ALL))
379 list_add_rcu(&pt->list, &ptype_all);
380 else {
381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
382 list_add_rcu(&pt->list, &ptype_base[hash]);
383 }
384 spin_unlock_bh(&ptype_lock);
385 }
386 EXPORT_SYMBOL(dev_add_pack);
387
388 /**
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
391 *
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
395 * returns.
396 *
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
400 */
401 void __dev_remove_pack(struct packet_type *pt)
402 {
403 struct list_head *head;
404 struct packet_type *pt1;
405
406 spin_lock_bh(&ptype_lock);
407
408 if (pt->type == htons(ETH_P_ALL))
409 head = &ptype_all;
410 else
411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421 out:
422 spin_unlock_bh(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425
426 /**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 __dev_remove_pack(pt);
441
442 synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445
446 /******************************************************************************
447
448 Device Boot-time Settings Routines
449
450 *******************************************************************************/
451
452 /* Boot time configuration table */
453 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
454
455 /**
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
459 *
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
463 */
464 static int netdev_boot_setup_add(char *name, struct ifmap *map)
465 {
466 struct netdev_boot_setup *s;
467 int i;
468
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
473 strlcpy(s[i].name, name, IFNAMSIZ);
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
476 }
477 }
478
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
480 }
481
482 /**
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
485 *
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
490 */
491 int netdev_boot_setup_check(struct net_device *dev)
492 {
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
495
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
498 !strcmp(dev->name, s[i].name)) {
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
504 }
505 }
506 return 0;
507 }
508 EXPORT_SYMBOL(netdev_boot_setup_check);
509
510
511 /**
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
515 *
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
520 */
521 unsigned long netdev_boot_base(const char *prefix, int unit)
522 {
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
526
527 sprintf(name, "%s%d", prefix, unit);
528
529 /*
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
532 */
533 if (__dev_get_by_name(&init_net, name))
534 return 1;
535
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
540 }
541
542 /*
543 * Saves at boot time configured settings for any netdevice.
544 */
545 int __init netdev_boot_setup(char *str)
546 {
547 int ints[5];
548 struct ifmap map;
549
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
553
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
564
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
567 }
568
569 __setup("netdev=", netdev_boot_setup);
570
571 /*******************************************************************************
572
573 Device Interface Subroutines
574
575 *******************************************************************************/
576
577 /**
578 * __dev_get_by_name - find a device by its name
579 * @net: the applicable net namespace
580 * @name: name to find
581 *
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
587 */
588
589 struct net_device *__dev_get_by_name(struct net *net, const char *name)
590 {
591 struct hlist_node *p;
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
594
595 hlist_for_each_entry(dev, p, head, name_hlist)
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
598
599 return NULL;
600 }
601 EXPORT_SYMBOL(__dev_get_by_name);
602
603 /**
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
607 *
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
613 */
614
615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
616 {
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
620
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
624
625 return NULL;
626 }
627 EXPORT_SYMBOL(dev_get_by_name_rcu);
628
629 /**
630 * dev_get_by_name - find a device by its name
631 * @net: the applicable net namespace
632 * @name: name to find
633 *
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
639 */
640
641 struct net_device *dev_get_by_name(struct net *net, const char *name)
642 {
643 struct net_device *dev;
644
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
647 if (dev)
648 dev_hold(dev);
649 rcu_read_unlock();
650 return dev;
651 }
652 EXPORT_SYMBOL(dev_get_by_name);
653
654 /**
655 * __dev_get_by_index - find a device by its ifindex
656 * @net: the applicable net namespace
657 * @ifindex: index of device
658 *
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
664 */
665
666 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
667 {
668 struct hlist_node *p;
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
671
672 hlist_for_each_entry(dev, p, head, index_hlist)
673 if (dev->ifindex == ifindex)
674 return dev;
675
676 return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_index);
679
680 /**
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
684 *
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
689 */
690
691 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
692 {
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
696
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
700
701 return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_index_rcu);
704
705
706 /**
707 * dev_get_by_index - find a device by its ifindex
708 * @net: the applicable net namespace
709 * @ifindex: index of device
710 *
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
715 */
716
717 struct net_device *dev_get_by_index(struct net *net, int ifindex)
718 {
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_index);
729
730 /**
731 * dev_getbyhwaddr - find a device by its hardware address
732 * @net: the applicable net namespace
733 * @type: media type of device
734 * @ha: hardware address
735 *
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
740 *
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
743 */
744
745 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
746 {
747 struct net_device *dev;
748
749 ASSERT_RTNL();
750
751 for_each_netdev(net, dev)
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
754 return dev;
755
756 return NULL;
757 }
758 EXPORT_SYMBOL(dev_getbyhwaddr);
759
760 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
761 {
762 struct net_device *dev;
763
764 ASSERT_RTNL();
765 for_each_netdev(net, dev)
766 if (dev->type == type)
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
772
773 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev, *ret = NULL;
776
777 rcu_read_lock();
778 for_each_netdev_rcu(net, dev)
779 if (dev->type == type) {
780 dev_hold(dev);
781 ret = dev;
782 break;
783 }
784 rcu_read_unlock();
785 return ret;
786 }
787 EXPORT_SYMBOL(dev_getfirstbyhwtype);
788
789 /**
790 * dev_get_by_flags - find any device with given flags
791 * @net: the applicable net namespace
792 * @if_flags: IFF_* values
793 * @mask: bitmask of bits in if_flags to check
794 *
795 * Search for any interface with the given flags. Returns NULL if a device
796 * is not found or a pointer to the device. The device returned has
797 * had a reference added and the pointer is safe until the user calls
798 * dev_put to indicate they have finished with it.
799 */
800
801 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
802 unsigned short mask)
803 {
804 struct net_device *dev, *ret;
805
806 ret = NULL;
807 rcu_read_lock();
808 for_each_netdev_rcu(net, dev) {
809 if (((dev->flags ^ if_flags) & mask) == 0) {
810 dev_hold(dev);
811 ret = dev;
812 break;
813 }
814 }
815 rcu_read_unlock();
816 return ret;
817 }
818 EXPORT_SYMBOL(dev_get_by_flags);
819
820 /**
821 * dev_valid_name - check if name is okay for network device
822 * @name: name string
823 *
824 * Network device names need to be valid file names to
825 * to allow sysfs to work. We also disallow any kind of
826 * whitespace.
827 */
828 int dev_valid_name(const char *name)
829 {
830 if (*name == '\0')
831 return 0;
832 if (strlen(name) >= IFNAMSIZ)
833 return 0;
834 if (!strcmp(name, ".") || !strcmp(name, ".."))
835 return 0;
836
837 while (*name) {
838 if (*name == '/' || isspace(*name))
839 return 0;
840 name++;
841 }
842 return 1;
843 }
844 EXPORT_SYMBOL(dev_valid_name);
845
846 /**
847 * __dev_alloc_name - allocate a name for a device
848 * @net: network namespace to allocate the device name in
849 * @name: name format string
850 * @buf: scratch buffer and result name string
851 *
852 * Passed a format string - eg "lt%d" it will try and find a suitable
853 * id. It scans list of devices to build up a free map, then chooses
854 * the first empty slot. The caller must hold the dev_base or rtnl lock
855 * while allocating the name and adding the device in order to avoid
856 * duplicates.
857 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
858 * Returns the number of the unit assigned or a negative errno code.
859 */
860
861 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
862 {
863 int i = 0;
864 const char *p;
865 const int max_netdevices = 8*PAGE_SIZE;
866 unsigned long *inuse;
867 struct net_device *d;
868
869 p = strnchr(name, IFNAMSIZ-1, '%');
870 if (p) {
871 /*
872 * Verify the string as this thing may have come from
873 * the user. There must be either one "%d" and no other "%"
874 * characters.
875 */
876 if (p[1] != 'd' || strchr(p + 2, '%'))
877 return -EINVAL;
878
879 /* Use one page as a bit array of possible slots */
880 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
881 if (!inuse)
882 return -ENOMEM;
883
884 for_each_netdev(net, d) {
885 if (!sscanf(d->name, name, &i))
886 continue;
887 if (i < 0 || i >= max_netdevices)
888 continue;
889
890 /* avoid cases where sscanf is not exact inverse of printf */
891 snprintf(buf, IFNAMSIZ, name, i);
892 if (!strncmp(buf, d->name, IFNAMSIZ))
893 set_bit(i, inuse);
894 }
895
896 i = find_first_zero_bit(inuse, max_netdevices);
897 free_page((unsigned long) inuse);
898 }
899
900 if (buf != name)
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!__dev_get_by_name(net, buf))
903 return i;
904
905 /* It is possible to run out of possible slots
906 * when the name is long and there isn't enough space left
907 * for the digits, or if all bits are used.
908 */
909 return -ENFILE;
910 }
911
912 /**
913 * dev_alloc_name - allocate a name for a device
914 * @dev: device
915 * @name: name format string
916 *
917 * Passed a format string - eg "lt%d" it will try and find a suitable
918 * id. It scans list of devices to build up a free map, then chooses
919 * the first empty slot. The caller must hold the dev_base or rtnl lock
920 * while allocating the name and adding the device in order to avoid
921 * duplicates.
922 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
923 * Returns the number of the unit assigned or a negative errno code.
924 */
925
926 int dev_alloc_name(struct net_device *dev, const char *name)
927 {
928 char buf[IFNAMSIZ];
929 struct net *net;
930 int ret;
931
932 BUG_ON(!dev_net(dev));
933 net = dev_net(dev);
934 ret = __dev_alloc_name(net, name, buf);
935 if (ret >= 0)
936 strlcpy(dev->name, buf, IFNAMSIZ);
937 return ret;
938 }
939 EXPORT_SYMBOL(dev_alloc_name);
940
941 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
942 bool fmt)
943 {
944 if (!dev_valid_name(name))
945 return -EINVAL;
946
947 if (fmt && strchr(name, '%'))
948 return __dev_alloc_name(net, name, buf);
949 else if (__dev_get_by_name(net, name))
950 return -EEXIST;
951 else if (buf != name)
952 strlcpy(buf, name, IFNAMSIZ);
953
954 return 0;
955 }
956
957 /**
958 * dev_change_name - change name of a device
959 * @dev: device
960 * @newname: name (or format string) must be at least IFNAMSIZ
961 *
962 * Change name of a device, can pass format strings "eth%d".
963 * for wildcarding.
964 */
965 int dev_change_name(struct net_device *dev, const char *newname)
966 {
967 char oldname[IFNAMSIZ];
968 int err = 0;
969 int ret;
970 struct net *net;
971
972 ASSERT_RTNL();
973 BUG_ON(!dev_net(dev));
974
975 net = dev_net(dev);
976 if (dev->flags & IFF_UP)
977 return -EBUSY;
978
979 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
980 return 0;
981
982 memcpy(oldname, dev->name, IFNAMSIZ);
983
984 err = dev_get_valid_name(net, newname, dev->name, 1);
985 if (err < 0)
986 return err;
987
988 rollback:
989 /* For now only devices in the initial network namespace
990 * are in sysfs.
991 */
992 if (net_eq(net, &init_net)) {
993 ret = device_rename(&dev->dev, dev->name);
994 if (ret) {
995 memcpy(dev->name, oldname, IFNAMSIZ);
996 return ret;
997 }
998 }
999
1000 write_lock_bh(&dev_base_lock);
1001 hlist_del(&dev->name_hlist);
1002 write_unlock_bh(&dev_base_lock);
1003
1004 synchronize_rcu();
1005
1006 write_lock_bh(&dev_base_lock);
1007 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1008 write_unlock_bh(&dev_base_lock);
1009
1010 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1011 ret = notifier_to_errno(ret);
1012
1013 if (ret) {
1014 /* err >= 0 after dev_alloc_name() or stores the first errno */
1015 if (err >= 0) {
1016 err = ret;
1017 memcpy(dev->name, oldname, IFNAMSIZ);
1018 goto rollback;
1019 } else {
1020 printk(KERN_ERR
1021 "%s: name change rollback failed: %d.\n",
1022 dev->name, ret);
1023 }
1024 }
1025
1026 return err;
1027 }
1028
1029 /**
1030 * dev_set_alias - change ifalias of a device
1031 * @dev: device
1032 * @alias: name up to IFALIASZ
1033 * @len: limit of bytes to copy from info
1034 *
1035 * Set ifalias for a device,
1036 */
1037 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1038 {
1039 ASSERT_RTNL();
1040
1041 if (len >= IFALIASZ)
1042 return -EINVAL;
1043
1044 if (!len) {
1045 if (dev->ifalias) {
1046 kfree(dev->ifalias);
1047 dev->ifalias = NULL;
1048 }
1049 return 0;
1050 }
1051
1052 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1053 if (!dev->ifalias)
1054 return -ENOMEM;
1055
1056 strlcpy(dev->ifalias, alias, len+1);
1057 return len;
1058 }
1059
1060
1061 /**
1062 * netdev_features_change - device changes features
1063 * @dev: device to cause notification
1064 *
1065 * Called to indicate a device has changed features.
1066 */
1067 void netdev_features_change(struct net_device *dev)
1068 {
1069 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1070 }
1071 EXPORT_SYMBOL(netdev_features_change);
1072
1073 /**
1074 * netdev_state_change - device changes state
1075 * @dev: device to cause notification
1076 *
1077 * Called to indicate a device has changed state. This function calls
1078 * the notifier chains for netdev_chain and sends a NEWLINK message
1079 * to the routing socket.
1080 */
1081 void netdev_state_change(struct net_device *dev)
1082 {
1083 if (dev->flags & IFF_UP) {
1084 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1085 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1086 }
1087 }
1088 EXPORT_SYMBOL(netdev_state_change);
1089
1090 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1091 {
1092 return call_netdevice_notifiers(event, dev);
1093 }
1094 EXPORT_SYMBOL(netdev_bonding_change);
1095
1096 /**
1097 * dev_load - load a network module
1098 * @net: the applicable net namespace
1099 * @name: name of interface
1100 *
1101 * If a network interface is not present and the process has suitable
1102 * privileges this function loads the module. If module loading is not
1103 * available in this kernel then it becomes a nop.
1104 */
1105
1106 void dev_load(struct net *net, const char *name)
1107 {
1108 struct net_device *dev;
1109
1110 rcu_read_lock();
1111 dev = dev_get_by_name_rcu(net, name);
1112 rcu_read_unlock();
1113
1114 if (!dev && capable(CAP_NET_ADMIN))
1115 request_module("%s", name);
1116 }
1117 EXPORT_SYMBOL(dev_load);
1118
1119 static int __dev_open(struct net_device *dev)
1120 {
1121 const struct net_device_ops *ops = dev->netdev_ops;
1122 int ret;
1123
1124 ASSERT_RTNL();
1125
1126 /*
1127 * Is it even present?
1128 */
1129 if (!netif_device_present(dev))
1130 return -ENODEV;
1131
1132 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1133 ret = notifier_to_errno(ret);
1134 if (ret)
1135 return ret;
1136
1137 /*
1138 * Call device private open method
1139 */
1140 set_bit(__LINK_STATE_START, &dev->state);
1141
1142 if (ops->ndo_validate_addr)
1143 ret = ops->ndo_validate_addr(dev);
1144
1145 if (!ret && ops->ndo_open)
1146 ret = ops->ndo_open(dev);
1147
1148 /*
1149 * If it went open OK then:
1150 */
1151
1152 if (ret)
1153 clear_bit(__LINK_STATE_START, &dev->state);
1154 else {
1155 /*
1156 * Set the flags.
1157 */
1158 dev->flags |= IFF_UP;
1159
1160 /*
1161 * Enable NET_DMA
1162 */
1163 net_dmaengine_get();
1164
1165 /*
1166 * Initialize multicasting status
1167 */
1168 dev_set_rx_mode(dev);
1169
1170 /*
1171 * Wakeup transmit queue engine
1172 */
1173 dev_activate(dev);
1174 }
1175
1176 return ret;
1177 }
1178
1179 /**
1180 * dev_open - prepare an interface for use.
1181 * @dev: device to open
1182 *
1183 * Takes a device from down to up state. The device's private open
1184 * function is invoked and then the multicast lists are loaded. Finally
1185 * the device is moved into the up state and a %NETDEV_UP message is
1186 * sent to the netdev notifier chain.
1187 *
1188 * Calling this function on an active interface is a nop. On a failure
1189 * a negative errno code is returned.
1190 */
1191 int dev_open(struct net_device *dev)
1192 {
1193 int ret;
1194
1195 /*
1196 * Is it already up?
1197 */
1198 if (dev->flags & IFF_UP)
1199 return 0;
1200
1201 /*
1202 * Open device
1203 */
1204 ret = __dev_open(dev);
1205 if (ret < 0)
1206 return ret;
1207
1208 /*
1209 * ... and announce new interface.
1210 */
1211 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1212 call_netdevice_notifiers(NETDEV_UP, dev);
1213
1214 return ret;
1215 }
1216 EXPORT_SYMBOL(dev_open);
1217
1218 static int __dev_close(struct net_device *dev)
1219 {
1220 const struct net_device_ops *ops = dev->netdev_ops;
1221
1222 ASSERT_RTNL();
1223 might_sleep();
1224
1225 /*
1226 * Tell people we are going down, so that they can
1227 * prepare to death, when device is still operating.
1228 */
1229 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1230
1231 clear_bit(__LINK_STATE_START, &dev->state);
1232
1233 /* Synchronize to scheduled poll. We cannot touch poll list,
1234 * it can be even on different cpu. So just clear netif_running().
1235 *
1236 * dev->stop() will invoke napi_disable() on all of it's
1237 * napi_struct instances on this device.
1238 */
1239 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1240
1241 dev_deactivate(dev);
1242
1243 /*
1244 * Call the device specific close. This cannot fail.
1245 * Only if device is UP
1246 *
1247 * We allow it to be called even after a DETACH hot-plug
1248 * event.
1249 */
1250 if (ops->ndo_stop)
1251 ops->ndo_stop(dev);
1252
1253 /*
1254 * Device is now down.
1255 */
1256
1257 dev->flags &= ~IFF_UP;
1258
1259 /*
1260 * Shutdown NET_DMA
1261 */
1262 net_dmaengine_put();
1263
1264 return 0;
1265 }
1266
1267 /**
1268 * dev_close - shutdown an interface.
1269 * @dev: device to shutdown
1270 *
1271 * This function moves an active device into down state. A
1272 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1273 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1274 * chain.
1275 */
1276 int dev_close(struct net_device *dev)
1277 {
1278 if (!(dev->flags & IFF_UP))
1279 return 0;
1280
1281 __dev_close(dev);
1282
1283 /*
1284 * Tell people we are down
1285 */
1286 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1287 call_netdevice_notifiers(NETDEV_DOWN, dev);
1288
1289 return 0;
1290 }
1291 EXPORT_SYMBOL(dev_close);
1292
1293
1294 /**
1295 * dev_disable_lro - disable Large Receive Offload on a device
1296 * @dev: device
1297 *
1298 * Disable Large Receive Offload (LRO) on a net device. Must be
1299 * called under RTNL. This is needed if received packets may be
1300 * forwarded to another interface.
1301 */
1302 void dev_disable_lro(struct net_device *dev)
1303 {
1304 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1305 dev->ethtool_ops->set_flags) {
1306 u32 flags = dev->ethtool_ops->get_flags(dev);
1307 if (flags & ETH_FLAG_LRO) {
1308 flags &= ~ETH_FLAG_LRO;
1309 dev->ethtool_ops->set_flags(dev, flags);
1310 }
1311 }
1312 WARN_ON(dev->features & NETIF_F_LRO);
1313 }
1314 EXPORT_SYMBOL(dev_disable_lro);
1315
1316
1317 static int dev_boot_phase = 1;
1318
1319 /*
1320 * Device change register/unregister. These are not inline or static
1321 * as we export them to the world.
1322 */
1323
1324 /**
1325 * register_netdevice_notifier - register a network notifier block
1326 * @nb: notifier
1327 *
1328 * Register a notifier to be called when network device events occur.
1329 * The notifier passed is linked into the kernel structures and must
1330 * not be reused until it has been unregistered. A negative errno code
1331 * is returned on a failure.
1332 *
1333 * When registered all registration and up events are replayed
1334 * to the new notifier to allow device to have a race free
1335 * view of the network device list.
1336 */
1337
1338 int register_netdevice_notifier(struct notifier_block *nb)
1339 {
1340 struct net_device *dev;
1341 struct net_device *last;
1342 struct net *net;
1343 int err;
1344
1345 rtnl_lock();
1346 err = raw_notifier_chain_register(&netdev_chain, nb);
1347 if (err)
1348 goto unlock;
1349 if (dev_boot_phase)
1350 goto unlock;
1351 for_each_net(net) {
1352 for_each_netdev(net, dev) {
1353 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1354 err = notifier_to_errno(err);
1355 if (err)
1356 goto rollback;
1357
1358 if (!(dev->flags & IFF_UP))
1359 continue;
1360
1361 nb->notifier_call(nb, NETDEV_UP, dev);
1362 }
1363 }
1364
1365 unlock:
1366 rtnl_unlock();
1367 return err;
1368
1369 rollback:
1370 last = dev;
1371 for_each_net(net) {
1372 for_each_netdev(net, dev) {
1373 if (dev == last)
1374 break;
1375
1376 if (dev->flags & IFF_UP) {
1377 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1378 nb->notifier_call(nb, NETDEV_DOWN, dev);
1379 }
1380 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1381 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1382 }
1383 }
1384
1385 raw_notifier_chain_unregister(&netdev_chain, nb);
1386 goto unlock;
1387 }
1388 EXPORT_SYMBOL(register_netdevice_notifier);
1389
1390 /**
1391 * unregister_netdevice_notifier - unregister a network notifier block
1392 * @nb: notifier
1393 *
1394 * Unregister a notifier previously registered by
1395 * register_netdevice_notifier(). The notifier is unlinked into the
1396 * kernel structures and may then be reused. A negative errno code
1397 * is returned on a failure.
1398 */
1399
1400 int unregister_netdevice_notifier(struct notifier_block *nb)
1401 {
1402 int err;
1403
1404 rtnl_lock();
1405 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1406 rtnl_unlock();
1407 return err;
1408 }
1409 EXPORT_SYMBOL(unregister_netdevice_notifier);
1410
1411 /**
1412 * call_netdevice_notifiers - call all network notifier blocks
1413 * @val: value passed unmodified to notifier function
1414 * @dev: net_device pointer passed unmodified to notifier function
1415 *
1416 * Call all network notifier blocks. Parameters and return value
1417 * are as for raw_notifier_call_chain().
1418 */
1419
1420 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1421 {
1422 return raw_notifier_call_chain(&netdev_chain, val, dev);
1423 }
1424
1425 /* When > 0 there are consumers of rx skb time stamps */
1426 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1427
1428 void net_enable_timestamp(void)
1429 {
1430 atomic_inc(&netstamp_needed);
1431 }
1432 EXPORT_SYMBOL(net_enable_timestamp);
1433
1434 void net_disable_timestamp(void)
1435 {
1436 atomic_dec(&netstamp_needed);
1437 }
1438 EXPORT_SYMBOL(net_disable_timestamp);
1439
1440 static inline void net_timestamp(struct sk_buff *skb)
1441 {
1442 if (atomic_read(&netstamp_needed))
1443 __net_timestamp(skb);
1444 else
1445 skb->tstamp.tv64 = 0;
1446 }
1447
1448 /**
1449 * dev_forward_skb - loopback an skb to another netif
1450 *
1451 * @dev: destination network device
1452 * @skb: buffer to forward
1453 *
1454 * return values:
1455 * NET_RX_SUCCESS (no congestion)
1456 * NET_RX_DROP (packet was dropped)
1457 *
1458 * dev_forward_skb can be used for injecting an skb from the
1459 * start_xmit function of one device into the receive queue
1460 * of another device.
1461 *
1462 * The receiving device may be in another namespace, so
1463 * we have to clear all information in the skb that could
1464 * impact namespace isolation.
1465 */
1466 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1467 {
1468 skb_orphan(skb);
1469
1470 if (!(dev->flags & IFF_UP))
1471 return NET_RX_DROP;
1472
1473 if (skb->len > (dev->mtu + dev->hard_header_len))
1474 return NET_RX_DROP;
1475
1476 skb_set_dev(skb, dev);
1477 skb->tstamp.tv64 = 0;
1478 skb->pkt_type = PACKET_HOST;
1479 skb->protocol = eth_type_trans(skb, dev);
1480 return netif_rx(skb);
1481 }
1482 EXPORT_SYMBOL_GPL(dev_forward_skb);
1483
1484 /*
1485 * Support routine. Sends outgoing frames to any network
1486 * taps currently in use.
1487 */
1488
1489 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1490 {
1491 struct packet_type *ptype;
1492
1493 #ifdef CONFIG_NET_CLS_ACT
1494 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1495 net_timestamp(skb);
1496 #else
1497 net_timestamp(skb);
1498 #endif
1499
1500 rcu_read_lock();
1501 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1502 /* Never send packets back to the socket
1503 * they originated from - MvS (miquels@drinkel.ow.org)
1504 */
1505 if ((ptype->dev == dev || !ptype->dev) &&
1506 (ptype->af_packet_priv == NULL ||
1507 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1508 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1509 if (!skb2)
1510 break;
1511
1512 /* skb->nh should be correctly
1513 set by sender, so that the second statement is
1514 just protection against buggy protocols.
1515 */
1516 skb_reset_mac_header(skb2);
1517
1518 if (skb_network_header(skb2) < skb2->data ||
1519 skb2->network_header > skb2->tail) {
1520 if (net_ratelimit())
1521 printk(KERN_CRIT "protocol %04x is "
1522 "buggy, dev %s\n",
1523 skb2->protocol, dev->name);
1524 skb_reset_network_header(skb2);
1525 }
1526
1527 skb2->transport_header = skb2->network_header;
1528 skb2->pkt_type = PACKET_OUTGOING;
1529 ptype->func(skb2, skb->dev, ptype, skb->dev);
1530 }
1531 }
1532 rcu_read_unlock();
1533 }
1534
1535
1536 static inline void __netif_reschedule(struct Qdisc *q)
1537 {
1538 struct softnet_data *sd;
1539 unsigned long flags;
1540
1541 local_irq_save(flags);
1542 sd = &__get_cpu_var(softnet_data);
1543 q->next_sched = sd->output_queue;
1544 sd->output_queue = q;
1545 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1546 local_irq_restore(flags);
1547 }
1548
1549 void __netif_schedule(struct Qdisc *q)
1550 {
1551 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1552 __netif_reschedule(q);
1553 }
1554 EXPORT_SYMBOL(__netif_schedule);
1555
1556 void dev_kfree_skb_irq(struct sk_buff *skb)
1557 {
1558 if (atomic_dec_and_test(&skb->users)) {
1559 struct softnet_data *sd;
1560 unsigned long flags;
1561
1562 local_irq_save(flags);
1563 sd = &__get_cpu_var(softnet_data);
1564 skb->next = sd->completion_queue;
1565 sd->completion_queue = skb;
1566 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1567 local_irq_restore(flags);
1568 }
1569 }
1570 EXPORT_SYMBOL(dev_kfree_skb_irq);
1571
1572 void dev_kfree_skb_any(struct sk_buff *skb)
1573 {
1574 if (in_irq() || irqs_disabled())
1575 dev_kfree_skb_irq(skb);
1576 else
1577 dev_kfree_skb(skb);
1578 }
1579 EXPORT_SYMBOL(dev_kfree_skb_any);
1580
1581
1582 /**
1583 * netif_device_detach - mark device as removed
1584 * @dev: network device
1585 *
1586 * Mark device as removed from system and therefore no longer available.
1587 */
1588 void netif_device_detach(struct net_device *dev)
1589 {
1590 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1591 netif_running(dev)) {
1592 netif_tx_stop_all_queues(dev);
1593 }
1594 }
1595 EXPORT_SYMBOL(netif_device_detach);
1596
1597 /**
1598 * netif_device_attach - mark device as attached
1599 * @dev: network device
1600 *
1601 * Mark device as attached from system and restart if needed.
1602 */
1603 void netif_device_attach(struct net_device *dev)
1604 {
1605 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1606 netif_running(dev)) {
1607 netif_tx_wake_all_queues(dev);
1608 __netdev_watchdog_up(dev);
1609 }
1610 }
1611 EXPORT_SYMBOL(netif_device_attach);
1612
1613 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1614 {
1615 return ((features & NETIF_F_GEN_CSUM) ||
1616 ((features & NETIF_F_IP_CSUM) &&
1617 protocol == htons(ETH_P_IP)) ||
1618 ((features & NETIF_F_IPV6_CSUM) &&
1619 protocol == htons(ETH_P_IPV6)) ||
1620 ((features & NETIF_F_FCOE_CRC) &&
1621 protocol == htons(ETH_P_FCOE)));
1622 }
1623
1624 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1625 {
1626 if (can_checksum_protocol(dev->features, skb->protocol))
1627 return true;
1628
1629 if (skb->protocol == htons(ETH_P_8021Q)) {
1630 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1631 if (can_checksum_protocol(dev->features & dev->vlan_features,
1632 veh->h_vlan_encapsulated_proto))
1633 return true;
1634 }
1635
1636 return false;
1637 }
1638
1639 /**
1640 * skb_dev_set -- assign a new device to a buffer
1641 * @skb: buffer for the new device
1642 * @dev: network device
1643 *
1644 * If an skb is owned by a device already, we have to reset
1645 * all data private to the namespace a device belongs to
1646 * before assigning it a new device.
1647 */
1648 #ifdef CONFIG_NET_NS
1649 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1650 {
1651 skb_dst_drop(skb);
1652 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1653 secpath_reset(skb);
1654 nf_reset(skb);
1655 skb_init_secmark(skb);
1656 skb->mark = 0;
1657 skb->priority = 0;
1658 skb->nf_trace = 0;
1659 skb->ipvs_property = 0;
1660 #ifdef CONFIG_NET_SCHED
1661 skb->tc_index = 0;
1662 #endif
1663 }
1664 skb->dev = dev;
1665 }
1666 EXPORT_SYMBOL(skb_set_dev);
1667 #endif /* CONFIG_NET_NS */
1668
1669 /*
1670 * Invalidate hardware checksum when packet is to be mangled, and
1671 * complete checksum manually on outgoing path.
1672 */
1673 int skb_checksum_help(struct sk_buff *skb)
1674 {
1675 __wsum csum;
1676 int ret = 0, offset;
1677
1678 if (skb->ip_summed == CHECKSUM_COMPLETE)
1679 goto out_set_summed;
1680
1681 if (unlikely(skb_shinfo(skb)->gso_size)) {
1682 /* Let GSO fix up the checksum. */
1683 goto out_set_summed;
1684 }
1685
1686 offset = skb->csum_start - skb_headroom(skb);
1687 BUG_ON(offset >= skb_headlen(skb));
1688 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1689
1690 offset += skb->csum_offset;
1691 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1692
1693 if (skb_cloned(skb) &&
1694 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1695 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1696 if (ret)
1697 goto out;
1698 }
1699
1700 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1701 out_set_summed:
1702 skb->ip_summed = CHECKSUM_NONE;
1703 out:
1704 return ret;
1705 }
1706 EXPORT_SYMBOL(skb_checksum_help);
1707
1708 /**
1709 * skb_gso_segment - Perform segmentation on skb.
1710 * @skb: buffer to segment
1711 * @features: features for the output path (see dev->features)
1712 *
1713 * This function segments the given skb and returns a list of segments.
1714 *
1715 * It may return NULL if the skb requires no segmentation. This is
1716 * only possible when GSO is used for verifying header integrity.
1717 */
1718 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1719 {
1720 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1721 struct packet_type *ptype;
1722 __be16 type = skb->protocol;
1723 int err;
1724
1725 skb_reset_mac_header(skb);
1726 skb->mac_len = skb->network_header - skb->mac_header;
1727 __skb_pull(skb, skb->mac_len);
1728
1729 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1730 struct net_device *dev = skb->dev;
1731 struct ethtool_drvinfo info = {};
1732
1733 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1734 dev->ethtool_ops->get_drvinfo(dev, &info);
1735
1736 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1737 "ip_summed=%d",
1738 info.driver, dev ? dev->features : 0L,
1739 skb->sk ? skb->sk->sk_route_caps : 0L,
1740 skb->len, skb->data_len, skb->ip_summed);
1741
1742 if (skb_header_cloned(skb) &&
1743 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1744 return ERR_PTR(err);
1745 }
1746
1747 rcu_read_lock();
1748 list_for_each_entry_rcu(ptype,
1749 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1750 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1751 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1752 err = ptype->gso_send_check(skb);
1753 segs = ERR_PTR(err);
1754 if (err || skb_gso_ok(skb, features))
1755 break;
1756 __skb_push(skb, (skb->data -
1757 skb_network_header(skb)));
1758 }
1759 segs = ptype->gso_segment(skb, features);
1760 break;
1761 }
1762 }
1763 rcu_read_unlock();
1764
1765 __skb_push(skb, skb->data - skb_mac_header(skb));
1766
1767 return segs;
1768 }
1769 EXPORT_SYMBOL(skb_gso_segment);
1770
1771 /* Take action when hardware reception checksum errors are detected. */
1772 #ifdef CONFIG_BUG
1773 void netdev_rx_csum_fault(struct net_device *dev)
1774 {
1775 if (net_ratelimit()) {
1776 printk(KERN_ERR "%s: hw csum failure.\n",
1777 dev ? dev->name : "<unknown>");
1778 dump_stack();
1779 }
1780 }
1781 EXPORT_SYMBOL(netdev_rx_csum_fault);
1782 #endif
1783
1784 /* Actually, we should eliminate this check as soon as we know, that:
1785 * 1. IOMMU is present and allows to map all the memory.
1786 * 2. No high memory really exists on this machine.
1787 */
1788
1789 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1790 {
1791 #ifdef CONFIG_HIGHMEM
1792 int i;
1793
1794 if (dev->features & NETIF_F_HIGHDMA)
1795 return 0;
1796
1797 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1798 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1799 return 1;
1800
1801 #endif
1802 return 0;
1803 }
1804
1805 struct dev_gso_cb {
1806 void (*destructor)(struct sk_buff *skb);
1807 };
1808
1809 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1810
1811 static void dev_gso_skb_destructor(struct sk_buff *skb)
1812 {
1813 struct dev_gso_cb *cb;
1814
1815 do {
1816 struct sk_buff *nskb = skb->next;
1817
1818 skb->next = nskb->next;
1819 nskb->next = NULL;
1820 kfree_skb(nskb);
1821 } while (skb->next);
1822
1823 cb = DEV_GSO_CB(skb);
1824 if (cb->destructor)
1825 cb->destructor(skb);
1826 }
1827
1828 /**
1829 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1830 * @skb: buffer to segment
1831 *
1832 * This function segments the given skb and stores the list of segments
1833 * in skb->next.
1834 */
1835 static int dev_gso_segment(struct sk_buff *skb)
1836 {
1837 struct net_device *dev = skb->dev;
1838 struct sk_buff *segs;
1839 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1840 NETIF_F_SG : 0);
1841
1842 segs = skb_gso_segment(skb, features);
1843
1844 /* Verifying header integrity only. */
1845 if (!segs)
1846 return 0;
1847
1848 if (IS_ERR(segs))
1849 return PTR_ERR(segs);
1850
1851 skb->next = segs;
1852 DEV_GSO_CB(skb)->destructor = skb->destructor;
1853 skb->destructor = dev_gso_skb_destructor;
1854
1855 return 0;
1856 }
1857
1858 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1859 struct netdev_queue *txq)
1860 {
1861 const struct net_device_ops *ops = dev->netdev_ops;
1862 int rc = NETDEV_TX_OK;
1863
1864 if (likely(!skb->next)) {
1865 if (!list_empty(&ptype_all))
1866 dev_queue_xmit_nit(skb, dev);
1867
1868 if (netif_needs_gso(dev, skb)) {
1869 if (unlikely(dev_gso_segment(skb)))
1870 goto out_kfree_skb;
1871 if (skb->next)
1872 goto gso;
1873 }
1874
1875 /*
1876 * If device doesnt need skb->dst, release it right now while
1877 * its hot in this cpu cache
1878 */
1879 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1880 skb_dst_drop(skb);
1881
1882 rc = ops->ndo_start_xmit(skb, dev);
1883 if (rc == NETDEV_TX_OK)
1884 txq_trans_update(txq);
1885 /*
1886 * TODO: if skb_orphan() was called by
1887 * dev->hard_start_xmit() (for example, the unmodified
1888 * igb driver does that; bnx2 doesn't), then
1889 * skb_tx_software_timestamp() will be unable to send
1890 * back the time stamp.
1891 *
1892 * How can this be prevented? Always create another
1893 * reference to the socket before calling
1894 * dev->hard_start_xmit()? Prevent that skb_orphan()
1895 * does anything in dev->hard_start_xmit() by clearing
1896 * the skb destructor before the call and restoring it
1897 * afterwards, then doing the skb_orphan() ourselves?
1898 */
1899 return rc;
1900 }
1901
1902 gso:
1903 do {
1904 struct sk_buff *nskb = skb->next;
1905
1906 skb->next = nskb->next;
1907 nskb->next = NULL;
1908
1909 /*
1910 * If device doesnt need nskb->dst, release it right now while
1911 * its hot in this cpu cache
1912 */
1913 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1914 skb_dst_drop(nskb);
1915
1916 rc = ops->ndo_start_xmit(nskb, dev);
1917 if (unlikely(rc != NETDEV_TX_OK)) {
1918 if (rc & ~NETDEV_TX_MASK)
1919 goto out_kfree_gso_skb;
1920 nskb->next = skb->next;
1921 skb->next = nskb;
1922 return rc;
1923 }
1924 txq_trans_update(txq);
1925 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1926 return NETDEV_TX_BUSY;
1927 } while (skb->next);
1928
1929 out_kfree_gso_skb:
1930 if (likely(skb->next == NULL))
1931 skb->destructor = DEV_GSO_CB(skb)->destructor;
1932 out_kfree_skb:
1933 kfree_skb(skb);
1934 return rc;
1935 }
1936
1937 static u32 hashrnd __read_mostly;
1938
1939 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1940 {
1941 u32 hash;
1942
1943 if (skb_rx_queue_recorded(skb)) {
1944 hash = skb_get_rx_queue(skb);
1945 while (unlikely(hash >= dev->real_num_tx_queues))
1946 hash -= dev->real_num_tx_queues;
1947 return hash;
1948 }
1949
1950 if (skb->sk && skb->sk->sk_hash)
1951 hash = skb->sk->sk_hash;
1952 else
1953 hash = skb->protocol;
1954
1955 hash = jhash_1word(hash, hashrnd);
1956
1957 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1958 }
1959 EXPORT_SYMBOL(skb_tx_hash);
1960
1961 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1962 {
1963 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1964 if (net_ratelimit()) {
1965 netdev_warn(dev, "selects TX queue %d, but "
1966 "real number of TX queues is %d\n",
1967 queue_index, dev->real_num_tx_queues);
1968 }
1969 return 0;
1970 }
1971 return queue_index;
1972 }
1973
1974 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1975 struct sk_buff *skb)
1976 {
1977 u16 queue_index;
1978 struct sock *sk = skb->sk;
1979
1980 if (sk_tx_queue_recorded(sk)) {
1981 queue_index = sk_tx_queue_get(sk);
1982 } else {
1983 const struct net_device_ops *ops = dev->netdev_ops;
1984
1985 if (ops->ndo_select_queue) {
1986 queue_index = ops->ndo_select_queue(dev, skb);
1987 queue_index = dev_cap_txqueue(dev, queue_index);
1988 } else {
1989 queue_index = 0;
1990 if (dev->real_num_tx_queues > 1)
1991 queue_index = skb_tx_hash(dev, skb);
1992
1993 if (sk && sk->sk_dst_cache)
1994 sk_tx_queue_set(sk, queue_index);
1995 }
1996 }
1997
1998 skb_set_queue_mapping(skb, queue_index);
1999 return netdev_get_tx_queue(dev, queue_index);
2000 }
2001
2002 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2003 struct net_device *dev,
2004 struct netdev_queue *txq)
2005 {
2006 spinlock_t *root_lock = qdisc_lock(q);
2007 int rc;
2008
2009 spin_lock(root_lock);
2010 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2011 kfree_skb(skb);
2012 rc = NET_XMIT_DROP;
2013 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2014 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2015 /*
2016 * This is a work-conserving queue; there are no old skbs
2017 * waiting to be sent out; and the qdisc is not running -
2018 * xmit the skb directly.
2019 */
2020 __qdisc_update_bstats(q, skb->len);
2021 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2022 __qdisc_run(q);
2023 else
2024 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2025
2026 rc = NET_XMIT_SUCCESS;
2027 } else {
2028 rc = qdisc_enqueue_root(skb, q);
2029 qdisc_run(q);
2030 }
2031 spin_unlock(root_lock);
2032
2033 return rc;
2034 }
2035
2036 /*
2037 * Returns true if either:
2038 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2039 * 2. skb is fragmented and the device does not support SG, or if
2040 * at least one of fragments is in highmem and device does not
2041 * support DMA from it.
2042 */
2043 static inline int skb_needs_linearize(struct sk_buff *skb,
2044 struct net_device *dev)
2045 {
2046 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2047 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2048 illegal_highdma(dev, skb)));
2049 }
2050
2051 /**
2052 * dev_queue_xmit - transmit a buffer
2053 * @skb: buffer to transmit
2054 *
2055 * Queue a buffer for transmission to a network device. The caller must
2056 * have set the device and priority and built the buffer before calling
2057 * this function. The function can be called from an interrupt.
2058 *
2059 * A negative errno code is returned on a failure. A success does not
2060 * guarantee the frame will be transmitted as it may be dropped due
2061 * to congestion or traffic shaping.
2062 *
2063 * -----------------------------------------------------------------------------------
2064 * I notice this method can also return errors from the queue disciplines,
2065 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2066 * be positive.
2067 *
2068 * Regardless of the return value, the skb is consumed, so it is currently
2069 * difficult to retry a send to this method. (You can bump the ref count
2070 * before sending to hold a reference for retry if you are careful.)
2071 *
2072 * When calling this method, interrupts MUST be enabled. This is because
2073 * the BH enable code must have IRQs enabled so that it will not deadlock.
2074 * --BLG
2075 */
2076 int dev_queue_xmit(struct sk_buff *skb)
2077 {
2078 struct net_device *dev = skb->dev;
2079 struct netdev_queue *txq;
2080 struct Qdisc *q;
2081 int rc = -ENOMEM;
2082
2083 /* GSO will handle the following emulations directly. */
2084 if (netif_needs_gso(dev, skb))
2085 goto gso;
2086
2087 /* Convert a paged skb to linear, if required */
2088 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2089 goto out_kfree_skb;
2090
2091 /* If packet is not checksummed and device does not support
2092 * checksumming for this protocol, complete checksumming here.
2093 */
2094 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2095 skb_set_transport_header(skb, skb->csum_start -
2096 skb_headroom(skb));
2097 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2098 goto out_kfree_skb;
2099 }
2100
2101 gso:
2102 /* Disable soft irqs for various locks below. Also
2103 * stops preemption for RCU.
2104 */
2105 rcu_read_lock_bh();
2106
2107 txq = dev_pick_tx(dev, skb);
2108 q = rcu_dereference_bh(txq->qdisc);
2109
2110 #ifdef CONFIG_NET_CLS_ACT
2111 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2112 #endif
2113 if (q->enqueue) {
2114 rc = __dev_xmit_skb(skb, q, dev, txq);
2115 goto out;
2116 }
2117
2118 /* The device has no queue. Common case for software devices:
2119 loopback, all the sorts of tunnels...
2120
2121 Really, it is unlikely that netif_tx_lock protection is necessary
2122 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2123 counters.)
2124 However, it is possible, that they rely on protection
2125 made by us here.
2126
2127 Check this and shot the lock. It is not prone from deadlocks.
2128 Either shot noqueue qdisc, it is even simpler 8)
2129 */
2130 if (dev->flags & IFF_UP) {
2131 int cpu = smp_processor_id(); /* ok because BHs are off */
2132
2133 if (txq->xmit_lock_owner != cpu) {
2134
2135 HARD_TX_LOCK(dev, txq, cpu);
2136
2137 if (!netif_tx_queue_stopped(txq)) {
2138 rc = dev_hard_start_xmit(skb, dev, txq);
2139 if (dev_xmit_complete(rc)) {
2140 HARD_TX_UNLOCK(dev, txq);
2141 goto out;
2142 }
2143 }
2144 HARD_TX_UNLOCK(dev, txq);
2145 if (net_ratelimit())
2146 printk(KERN_CRIT "Virtual device %s asks to "
2147 "queue packet!\n", dev->name);
2148 } else {
2149 /* Recursion is detected! It is possible,
2150 * unfortunately */
2151 if (net_ratelimit())
2152 printk(KERN_CRIT "Dead loop on virtual device "
2153 "%s, fix it urgently!\n", dev->name);
2154 }
2155 }
2156
2157 rc = -ENETDOWN;
2158 rcu_read_unlock_bh();
2159
2160 out_kfree_skb:
2161 kfree_skb(skb);
2162 return rc;
2163 out:
2164 rcu_read_unlock_bh();
2165 return rc;
2166 }
2167 EXPORT_SYMBOL(dev_queue_xmit);
2168
2169
2170 /*=======================================================================
2171 Receiver routines
2172 =======================================================================*/
2173
2174 int netdev_max_backlog __read_mostly = 1000;
2175 int netdev_budget __read_mostly = 300;
2176 int weight_p __read_mostly = 64; /* old backlog weight */
2177
2178 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2179
2180 #ifdef CONFIG_SMP
2181 /*
2182 * get_rps_cpu is called from netif_receive_skb and returns the target
2183 * CPU from the RPS map of the receiving queue for a given skb.
2184 */
2185 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb)
2186 {
2187 struct ipv6hdr *ip6;
2188 struct iphdr *ip;
2189 struct netdev_rx_queue *rxqueue;
2190 struct rps_map *map;
2191 int cpu = -1;
2192 u8 ip_proto;
2193 u32 addr1, addr2, ports, ihl;
2194
2195 rcu_read_lock();
2196
2197 if (skb_rx_queue_recorded(skb)) {
2198 u16 index = skb_get_rx_queue(skb);
2199 if (unlikely(index >= dev->num_rx_queues)) {
2200 if (net_ratelimit()) {
2201 netdev_warn(dev, "received packet on queue "
2202 "%u, but number of RX queues is %u\n",
2203 index, dev->num_rx_queues);
2204 }
2205 goto done;
2206 }
2207 rxqueue = dev->_rx + index;
2208 } else
2209 rxqueue = dev->_rx;
2210
2211 if (!rxqueue->rps_map)
2212 goto done;
2213
2214 if (skb->rxhash)
2215 goto got_hash; /* Skip hash computation on packet header */
2216
2217 switch (skb->protocol) {
2218 case __constant_htons(ETH_P_IP):
2219 if (!pskb_may_pull(skb, sizeof(*ip)))
2220 goto done;
2221
2222 ip = (struct iphdr *) skb->data;
2223 ip_proto = ip->protocol;
2224 addr1 = ip->saddr;
2225 addr2 = ip->daddr;
2226 ihl = ip->ihl;
2227 break;
2228 case __constant_htons(ETH_P_IPV6):
2229 if (!pskb_may_pull(skb, sizeof(*ip6)))
2230 goto done;
2231
2232 ip6 = (struct ipv6hdr *) skb->data;
2233 ip_proto = ip6->nexthdr;
2234 addr1 = ip6->saddr.s6_addr32[3];
2235 addr2 = ip6->daddr.s6_addr32[3];
2236 ihl = (40 >> 2);
2237 break;
2238 default:
2239 goto done;
2240 }
2241 ports = 0;
2242 switch (ip_proto) {
2243 case IPPROTO_TCP:
2244 case IPPROTO_UDP:
2245 case IPPROTO_DCCP:
2246 case IPPROTO_ESP:
2247 case IPPROTO_AH:
2248 case IPPROTO_SCTP:
2249 case IPPROTO_UDPLITE:
2250 if (pskb_may_pull(skb, (ihl * 4) + 4))
2251 ports = *((u32 *) (skb->data + (ihl * 4)));
2252 break;
2253
2254 default:
2255 break;
2256 }
2257
2258 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2259 if (!skb->rxhash)
2260 skb->rxhash = 1;
2261
2262 got_hash:
2263 map = rcu_dereference(rxqueue->rps_map);
2264 if (map) {
2265 u16 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2266
2267 if (cpu_online(tcpu)) {
2268 cpu = tcpu;
2269 goto done;
2270 }
2271 }
2272
2273 done:
2274 rcu_read_unlock();
2275 return cpu;
2276 }
2277
2278 /*
2279 * This structure holds the per-CPU mask of CPUs for which IPIs are scheduled
2280 * to be sent to kick remote softirq processing. There are two masks since
2281 * the sending of IPIs must be done with interrupts enabled. The select field
2282 * indicates the current mask that enqueue_backlog uses to schedule IPIs.
2283 * select is flipped before net_rps_action is called while still under lock,
2284 * net_rps_action then uses the non-selected mask to send the IPIs and clears
2285 * it without conflicting with enqueue_backlog operation.
2286 */
2287 struct rps_remote_softirq_cpus {
2288 cpumask_t mask[2];
2289 int select;
2290 };
2291 static DEFINE_PER_CPU(struct rps_remote_softirq_cpus, rps_remote_softirq_cpus);
2292
2293 /* Called from hardirq (IPI) context */
2294 static void trigger_softirq(void *data)
2295 {
2296 struct softnet_data *queue = data;
2297 __napi_schedule(&queue->backlog);
2298 __get_cpu_var(netdev_rx_stat).received_rps++;
2299 }
2300 #endif /* CONFIG_SMP */
2301
2302 /*
2303 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2304 * queue (may be a remote CPU queue).
2305 */
2306 static int enqueue_to_backlog(struct sk_buff *skb, int cpu)
2307 {
2308 struct softnet_data *queue;
2309 unsigned long flags;
2310
2311 queue = &per_cpu(softnet_data, cpu);
2312
2313 local_irq_save(flags);
2314 __get_cpu_var(netdev_rx_stat).total++;
2315
2316 spin_lock(&queue->input_pkt_queue.lock);
2317 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2318 if (queue->input_pkt_queue.qlen) {
2319 enqueue:
2320 __skb_queue_tail(&queue->input_pkt_queue, skb);
2321 spin_unlock_irqrestore(&queue->input_pkt_queue.lock,
2322 flags);
2323 return NET_RX_SUCCESS;
2324 }
2325
2326 /* Schedule NAPI for backlog device */
2327 if (napi_schedule_prep(&queue->backlog)) {
2328 #ifdef CONFIG_SMP
2329 if (cpu != smp_processor_id()) {
2330 struct rps_remote_softirq_cpus *rcpus =
2331 &__get_cpu_var(rps_remote_softirq_cpus);
2332
2333 cpu_set(cpu, rcpus->mask[rcpus->select]);
2334 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2335 } else
2336 __napi_schedule(&queue->backlog);
2337 #else
2338 __napi_schedule(&queue->backlog);
2339 #endif
2340 }
2341 goto enqueue;
2342 }
2343
2344 spin_unlock(&queue->input_pkt_queue.lock);
2345
2346 __get_cpu_var(netdev_rx_stat).dropped++;
2347 local_irq_restore(flags);
2348
2349 kfree_skb(skb);
2350 return NET_RX_DROP;
2351 }
2352
2353 /**
2354 * netif_rx - post buffer to the network code
2355 * @skb: buffer to post
2356 *
2357 * This function receives a packet from a device driver and queues it for
2358 * the upper (protocol) levels to process. It always succeeds. The buffer
2359 * may be dropped during processing for congestion control or by the
2360 * protocol layers.
2361 *
2362 * return values:
2363 * NET_RX_SUCCESS (no congestion)
2364 * NET_RX_DROP (packet was dropped)
2365 *
2366 */
2367
2368 int netif_rx(struct sk_buff *skb)
2369 {
2370 int cpu;
2371
2372 /* if netpoll wants it, pretend we never saw it */
2373 if (netpoll_rx(skb))
2374 return NET_RX_DROP;
2375
2376 if (!skb->tstamp.tv64)
2377 net_timestamp(skb);
2378
2379 #ifdef CONFIG_SMP
2380 cpu = get_rps_cpu(skb->dev, skb);
2381 if (cpu < 0)
2382 cpu = smp_processor_id();
2383 #else
2384 cpu = smp_processor_id();
2385 #endif
2386
2387 return enqueue_to_backlog(skb, cpu);
2388 }
2389 EXPORT_SYMBOL(netif_rx);
2390
2391 int netif_rx_ni(struct sk_buff *skb)
2392 {
2393 int err;
2394
2395 preempt_disable();
2396 err = netif_rx(skb);
2397 if (local_softirq_pending())
2398 do_softirq();
2399 preempt_enable();
2400
2401 return err;
2402 }
2403 EXPORT_SYMBOL(netif_rx_ni);
2404
2405 static void net_tx_action(struct softirq_action *h)
2406 {
2407 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2408
2409 if (sd->completion_queue) {
2410 struct sk_buff *clist;
2411
2412 local_irq_disable();
2413 clist = sd->completion_queue;
2414 sd->completion_queue = NULL;
2415 local_irq_enable();
2416
2417 while (clist) {
2418 struct sk_buff *skb = clist;
2419 clist = clist->next;
2420
2421 WARN_ON(atomic_read(&skb->users));
2422 __kfree_skb(skb);
2423 }
2424 }
2425
2426 if (sd->output_queue) {
2427 struct Qdisc *head;
2428
2429 local_irq_disable();
2430 head = sd->output_queue;
2431 sd->output_queue = NULL;
2432 local_irq_enable();
2433
2434 while (head) {
2435 struct Qdisc *q = head;
2436 spinlock_t *root_lock;
2437
2438 head = head->next_sched;
2439
2440 root_lock = qdisc_lock(q);
2441 if (spin_trylock(root_lock)) {
2442 smp_mb__before_clear_bit();
2443 clear_bit(__QDISC_STATE_SCHED,
2444 &q->state);
2445 qdisc_run(q);
2446 spin_unlock(root_lock);
2447 } else {
2448 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2449 &q->state)) {
2450 __netif_reschedule(q);
2451 } else {
2452 smp_mb__before_clear_bit();
2453 clear_bit(__QDISC_STATE_SCHED,
2454 &q->state);
2455 }
2456 }
2457 }
2458 }
2459 }
2460
2461 static inline int deliver_skb(struct sk_buff *skb,
2462 struct packet_type *pt_prev,
2463 struct net_device *orig_dev)
2464 {
2465 atomic_inc(&skb->users);
2466 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2467 }
2468
2469 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2470
2471 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2472 /* This hook is defined here for ATM LANE */
2473 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2474 unsigned char *addr) __read_mostly;
2475 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2476 #endif
2477
2478 /*
2479 * If bridge module is loaded call bridging hook.
2480 * returns NULL if packet was consumed.
2481 */
2482 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2483 struct sk_buff *skb) __read_mostly;
2484 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2485
2486 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2487 struct packet_type **pt_prev, int *ret,
2488 struct net_device *orig_dev)
2489 {
2490 struct net_bridge_port *port;
2491
2492 if (skb->pkt_type == PACKET_LOOPBACK ||
2493 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2494 return skb;
2495
2496 if (*pt_prev) {
2497 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2498 *pt_prev = NULL;
2499 }
2500
2501 return br_handle_frame_hook(port, skb);
2502 }
2503 #else
2504 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2505 #endif
2506
2507 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2508 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2509 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2510
2511 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2512 struct packet_type **pt_prev,
2513 int *ret,
2514 struct net_device *orig_dev)
2515 {
2516 if (skb->dev->macvlan_port == NULL)
2517 return skb;
2518
2519 if (*pt_prev) {
2520 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2521 *pt_prev = NULL;
2522 }
2523 return macvlan_handle_frame_hook(skb);
2524 }
2525 #else
2526 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2527 #endif
2528
2529 #ifdef CONFIG_NET_CLS_ACT
2530 /* TODO: Maybe we should just force sch_ingress to be compiled in
2531 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2532 * a compare and 2 stores extra right now if we dont have it on
2533 * but have CONFIG_NET_CLS_ACT
2534 * NOTE: This doesnt stop any functionality; if you dont have
2535 * the ingress scheduler, you just cant add policies on ingress.
2536 *
2537 */
2538 static int ing_filter(struct sk_buff *skb)
2539 {
2540 struct net_device *dev = skb->dev;
2541 u32 ttl = G_TC_RTTL(skb->tc_verd);
2542 struct netdev_queue *rxq;
2543 int result = TC_ACT_OK;
2544 struct Qdisc *q;
2545
2546 if (MAX_RED_LOOP < ttl++) {
2547 printk(KERN_WARNING
2548 "Redir loop detected Dropping packet (%d->%d)\n",
2549 skb->skb_iif, dev->ifindex);
2550 return TC_ACT_SHOT;
2551 }
2552
2553 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2554 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2555
2556 rxq = &dev->rx_queue;
2557
2558 q = rxq->qdisc;
2559 if (q != &noop_qdisc) {
2560 spin_lock(qdisc_lock(q));
2561 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2562 result = qdisc_enqueue_root(skb, q);
2563 spin_unlock(qdisc_lock(q));
2564 }
2565
2566 return result;
2567 }
2568
2569 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2570 struct packet_type **pt_prev,
2571 int *ret, struct net_device *orig_dev)
2572 {
2573 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2574 goto out;
2575
2576 if (*pt_prev) {
2577 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2578 *pt_prev = NULL;
2579 } else {
2580 /* Huh? Why does turning on AF_PACKET affect this? */
2581 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2582 }
2583
2584 switch (ing_filter(skb)) {
2585 case TC_ACT_SHOT:
2586 case TC_ACT_STOLEN:
2587 kfree_skb(skb);
2588 return NULL;
2589 }
2590
2591 out:
2592 skb->tc_verd = 0;
2593 return skb;
2594 }
2595 #endif
2596
2597 /*
2598 * netif_nit_deliver - deliver received packets to network taps
2599 * @skb: buffer
2600 *
2601 * This function is used to deliver incoming packets to network
2602 * taps. It should be used when the normal netif_receive_skb path
2603 * is bypassed, for example because of VLAN acceleration.
2604 */
2605 void netif_nit_deliver(struct sk_buff *skb)
2606 {
2607 struct packet_type *ptype;
2608
2609 if (list_empty(&ptype_all))
2610 return;
2611
2612 skb_reset_network_header(skb);
2613 skb_reset_transport_header(skb);
2614 skb->mac_len = skb->network_header - skb->mac_header;
2615
2616 rcu_read_lock();
2617 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2618 if (!ptype->dev || ptype->dev == skb->dev)
2619 deliver_skb(skb, ptype, skb->dev);
2620 }
2621 rcu_read_unlock();
2622 }
2623
2624 int __netif_receive_skb(struct sk_buff *skb)
2625 {
2626 struct packet_type *ptype, *pt_prev;
2627 struct net_device *orig_dev;
2628 struct net_device *master;
2629 struct net_device *null_or_orig;
2630 struct net_device *null_or_bond;
2631 int ret = NET_RX_DROP;
2632 __be16 type;
2633
2634 if (!skb->tstamp.tv64)
2635 net_timestamp(skb);
2636
2637 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2638 return NET_RX_SUCCESS;
2639
2640 /* if we've gotten here through NAPI, check netpoll */
2641 if (netpoll_receive_skb(skb))
2642 return NET_RX_DROP;
2643
2644 if (!skb->skb_iif)
2645 skb->skb_iif = skb->dev->ifindex;
2646
2647 null_or_orig = NULL;
2648 orig_dev = skb->dev;
2649 master = ACCESS_ONCE(orig_dev->master);
2650 if (master) {
2651 if (skb_bond_should_drop(skb, master))
2652 null_or_orig = orig_dev; /* deliver only exact match */
2653 else
2654 skb->dev = master;
2655 }
2656
2657 __get_cpu_var(netdev_rx_stat).total++;
2658
2659 skb_reset_network_header(skb);
2660 skb_reset_transport_header(skb);
2661 skb->mac_len = skb->network_header - skb->mac_header;
2662
2663 pt_prev = NULL;
2664
2665 rcu_read_lock();
2666
2667 #ifdef CONFIG_NET_CLS_ACT
2668 if (skb->tc_verd & TC_NCLS) {
2669 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2670 goto ncls;
2671 }
2672 #endif
2673
2674 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2675 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2676 ptype->dev == orig_dev) {
2677 if (pt_prev)
2678 ret = deliver_skb(skb, pt_prev, orig_dev);
2679 pt_prev = ptype;
2680 }
2681 }
2682
2683 #ifdef CONFIG_NET_CLS_ACT
2684 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2685 if (!skb)
2686 goto out;
2687 ncls:
2688 #endif
2689
2690 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2691 if (!skb)
2692 goto out;
2693 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2694 if (!skb)
2695 goto out;
2696
2697 /*
2698 * Make sure frames received on VLAN interfaces stacked on
2699 * bonding interfaces still make their way to any base bonding
2700 * device that may have registered for a specific ptype. The
2701 * handler may have to adjust skb->dev and orig_dev.
2702 */
2703 null_or_bond = NULL;
2704 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2705 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2706 null_or_bond = vlan_dev_real_dev(skb->dev);
2707 }
2708
2709 type = skb->protocol;
2710 list_for_each_entry_rcu(ptype,
2711 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2712 if (ptype->type == type && (ptype->dev == null_or_orig ||
2713 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2714 ptype->dev == null_or_bond)) {
2715 if (pt_prev)
2716 ret = deliver_skb(skb, pt_prev, orig_dev);
2717 pt_prev = ptype;
2718 }
2719 }
2720
2721 if (pt_prev) {
2722 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2723 } else {
2724 kfree_skb(skb);
2725 /* Jamal, now you will not able to escape explaining
2726 * me how you were going to use this. :-)
2727 */
2728 ret = NET_RX_DROP;
2729 }
2730
2731 out:
2732 rcu_read_unlock();
2733 return ret;
2734 }
2735
2736 /**
2737 * netif_receive_skb - process receive buffer from network
2738 * @skb: buffer to process
2739 *
2740 * netif_receive_skb() is the main receive data processing function.
2741 * It always succeeds. The buffer may be dropped during processing
2742 * for congestion control or by the protocol layers.
2743 *
2744 * This function may only be called from softirq context and interrupts
2745 * should be enabled.
2746 *
2747 * Return values (usually ignored):
2748 * NET_RX_SUCCESS: no congestion
2749 * NET_RX_DROP: packet was dropped
2750 */
2751 int netif_receive_skb(struct sk_buff *skb)
2752 {
2753 #ifdef CONFIG_SMP
2754 int cpu;
2755
2756 cpu = get_rps_cpu(skb->dev, skb);
2757
2758 if (cpu < 0)
2759 return __netif_receive_skb(skb);
2760 else
2761 return enqueue_to_backlog(skb, cpu);
2762 #else
2763 return __netif_receive_skb(skb);
2764 #endif
2765 }
2766 EXPORT_SYMBOL(netif_receive_skb);
2767
2768 /* Network device is going away, flush any packets still pending */
2769 static void flush_backlog(struct net_device *dev, int cpu)
2770 {
2771 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
2772 struct sk_buff *skb, *tmp;
2773 unsigned long flags;
2774
2775 spin_lock_irqsave(&queue->input_pkt_queue.lock, flags);
2776 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2777 if (skb->dev == dev) {
2778 __skb_unlink(skb, &queue->input_pkt_queue);
2779 kfree_skb(skb);
2780 }
2781 spin_unlock_irqrestore(&queue->input_pkt_queue.lock, flags);
2782 }
2783
2784 static int napi_gro_complete(struct sk_buff *skb)
2785 {
2786 struct packet_type *ptype;
2787 __be16 type = skb->protocol;
2788 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2789 int err = -ENOENT;
2790
2791 if (NAPI_GRO_CB(skb)->count == 1) {
2792 skb_shinfo(skb)->gso_size = 0;
2793 goto out;
2794 }
2795
2796 rcu_read_lock();
2797 list_for_each_entry_rcu(ptype, head, list) {
2798 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2799 continue;
2800
2801 err = ptype->gro_complete(skb);
2802 break;
2803 }
2804 rcu_read_unlock();
2805
2806 if (err) {
2807 WARN_ON(&ptype->list == head);
2808 kfree_skb(skb);
2809 return NET_RX_SUCCESS;
2810 }
2811
2812 out:
2813 return netif_receive_skb(skb);
2814 }
2815
2816 static void napi_gro_flush(struct napi_struct *napi)
2817 {
2818 struct sk_buff *skb, *next;
2819
2820 for (skb = napi->gro_list; skb; skb = next) {
2821 next = skb->next;
2822 skb->next = NULL;
2823 napi_gro_complete(skb);
2824 }
2825
2826 napi->gro_count = 0;
2827 napi->gro_list = NULL;
2828 }
2829
2830 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2831 {
2832 struct sk_buff **pp = NULL;
2833 struct packet_type *ptype;
2834 __be16 type = skb->protocol;
2835 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2836 int same_flow;
2837 int mac_len;
2838 enum gro_result ret;
2839
2840 if (!(skb->dev->features & NETIF_F_GRO))
2841 goto normal;
2842
2843 if (skb_is_gso(skb) || skb_has_frags(skb))
2844 goto normal;
2845
2846 rcu_read_lock();
2847 list_for_each_entry_rcu(ptype, head, list) {
2848 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2849 continue;
2850
2851 skb_set_network_header(skb, skb_gro_offset(skb));
2852 mac_len = skb->network_header - skb->mac_header;
2853 skb->mac_len = mac_len;
2854 NAPI_GRO_CB(skb)->same_flow = 0;
2855 NAPI_GRO_CB(skb)->flush = 0;
2856 NAPI_GRO_CB(skb)->free = 0;
2857
2858 pp = ptype->gro_receive(&napi->gro_list, skb);
2859 break;
2860 }
2861 rcu_read_unlock();
2862
2863 if (&ptype->list == head)
2864 goto normal;
2865
2866 same_flow = NAPI_GRO_CB(skb)->same_flow;
2867 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2868
2869 if (pp) {
2870 struct sk_buff *nskb = *pp;
2871
2872 *pp = nskb->next;
2873 nskb->next = NULL;
2874 napi_gro_complete(nskb);
2875 napi->gro_count--;
2876 }
2877
2878 if (same_flow)
2879 goto ok;
2880
2881 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2882 goto normal;
2883
2884 napi->gro_count++;
2885 NAPI_GRO_CB(skb)->count = 1;
2886 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2887 skb->next = napi->gro_list;
2888 napi->gro_list = skb;
2889 ret = GRO_HELD;
2890
2891 pull:
2892 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2893 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2894
2895 BUG_ON(skb->end - skb->tail < grow);
2896
2897 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2898
2899 skb->tail += grow;
2900 skb->data_len -= grow;
2901
2902 skb_shinfo(skb)->frags[0].page_offset += grow;
2903 skb_shinfo(skb)->frags[0].size -= grow;
2904
2905 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2906 put_page(skb_shinfo(skb)->frags[0].page);
2907 memmove(skb_shinfo(skb)->frags,
2908 skb_shinfo(skb)->frags + 1,
2909 --skb_shinfo(skb)->nr_frags);
2910 }
2911 }
2912
2913 ok:
2914 return ret;
2915
2916 normal:
2917 ret = GRO_NORMAL;
2918 goto pull;
2919 }
2920 EXPORT_SYMBOL(dev_gro_receive);
2921
2922 static gro_result_t
2923 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2924 {
2925 struct sk_buff *p;
2926
2927 if (netpoll_rx_on(skb))
2928 return GRO_NORMAL;
2929
2930 for (p = napi->gro_list; p; p = p->next) {
2931 NAPI_GRO_CB(p)->same_flow =
2932 (p->dev == skb->dev) &&
2933 !compare_ether_header(skb_mac_header(p),
2934 skb_gro_mac_header(skb));
2935 NAPI_GRO_CB(p)->flush = 0;
2936 }
2937
2938 return dev_gro_receive(napi, skb);
2939 }
2940
2941 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2942 {
2943 switch (ret) {
2944 case GRO_NORMAL:
2945 if (netif_receive_skb(skb))
2946 ret = GRO_DROP;
2947 break;
2948
2949 case GRO_DROP:
2950 case GRO_MERGED_FREE:
2951 kfree_skb(skb);
2952 break;
2953
2954 case GRO_HELD:
2955 case GRO_MERGED:
2956 break;
2957 }
2958
2959 return ret;
2960 }
2961 EXPORT_SYMBOL(napi_skb_finish);
2962
2963 void skb_gro_reset_offset(struct sk_buff *skb)
2964 {
2965 NAPI_GRO_CB(skb)->data_offset = 0;
2966 NAPI_GRO_CB(skb)->frag0 = NULL;
2967 NAPI_GRO_CB(skb)->frag0_len = 0;
2968
2969 if (skb->mac_header == skb->tail &&
2970 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2971 NAPI_GRO_CB(skb)->frag0 =
2972 page_address(skb_shinfo(skb)->frags[0].page) +
2973 skb_shinfo(skb)->frags[0].page_offset;
2974 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2975 }
2976 }
2977 EXPORT_SYMBOL(skb_gro_reset_offset);
2978
2979 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2980 {
2981 skb_gro_reset_offset(skb);
2982
2983 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2984 }
2985 EXPORT_SYMBOL(napi_gro_receive);
2986
2987 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2988 {
2989 __skb_pull(skb, skb_headlen(skb));
2990 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2991
2992 napi->skb = skb;
2993 }
2994 EXPORT_SYMBOL(napi_reuse_skb);
2995
2996 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2997 {
2998 struct sk_buff *skb = napi->skb;
2999
3000 if (!skb) {
3001 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3002 if (skb)
3003 napi->skb = skb;
3004 }
3005 return skb;
3006 }
3007 EXPORT_SYMBOL(napi_get_frags);
3008
3009 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3010 gro_result_t ret)
3011 {
3012 switch (ret) {
3013 case GRO_NORMAL:
3014 case GRO_HELD:
3015 skb->protocol = eth_type_trans(skb, skb->dev);
3016
3017 if (ret == GRO_HELD)
3018 skb_gro_pull(skb, -ETH_HLEN);
3019 else if (netif_receive_skb(skb))
3020 ret = GRO_DROP;
3021 break;
3022
3023 case GRO_DROP:
3024 case GRO_MERGED_FREE:
3025 napi_reuse_skb(napi, skb);
3026 break;
3027
3028 case GRO_MERGED:
3029 break;
3030 }
3031
3032 return ret;
3033 }
3034 EXPORT_SYMBOL(napi_frags_finish);
3035
3036 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3037 {
3038 struct sk_buff *skb = napi->skb;
3039 struct ethhdr *eth;
3040 unsigned int hlen;
3041 unsigned int off;
3042
3043 napi->skb = NULL;
3044
3045 skb_reset_mac_header(skb);
3046 skb_gro_reset_offset(skb);
3047
3048 off = skb_gro_offset(skb);
3049 hlen = off + sizeof(*eth);
3050 eth = skb_gro_header_fast(skb, off);
3051 if (skb_gro_header_hard(skb, hlen)) {
3052 eth = skb_gro_header_slow(skb, hlen, off);
3053 if (unlikely(!eth)) {
3054 napi_reuse_skb(napi, skb);
3055 skb = NULL;
3056 goto out;
3057 }
3058 }
3059
3060 skb_gro_pull(skb, sizeof(*eth));
3061
3062 /*
3063 * This works because the only protocols we care about don't require
3064 * special handling. We'll fix it up properly at the end.
3065 */
3066 skb->protocol = eth->h_proto;
3067
3068 out:
3069 return skb;
3070 }
3071 EXPORT_SYMBOL(napi_frags_skb);
3072
3073 gro_result_t napi_gro_frags(struct napi_struct *napi)
3074 {
3075 struct sk_buff *skb = napi_frags_skb(napi);
3076
3077 if (!skb)
3078 return GRO_DROP;
3079
3080 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3081 }
3082 EXPORT_SYMBOL(napi_gro_frags);
3083
3084 static int process_backlog(struct napi_struct *napi, int quota)
3085 {
3086 int work = 0;
3087 struct softnet_data *queue = &__get_cpu_var(softnet_data);
3088 unsigned long start_time = jiffies;
3089
3090 napi->weight = weight_p;
3091 do {
3092 struct sk_buff *skb;
3093
3094 spin_lock_irq(&queue->input_pkt_queue.lock);
3095 skb = __skb_dequeue(&queue->input_pkt_queue);
3096 if (!skb) {
3097 __napi_complete(napi);
3098 spin_unlock_irq(&queue->input_pkt_queue.lock);
3099 break;
3100 }
3101 spin_unlock_irq(&queue->input_pkt_queue.lock);
3102
3103 __netif_receive_skb(skb);
3104 } while (++work < quota && jiffies == start_time);
3105
3106 return work;
3107 }
3108
3109 /**
3110 * __napi_schedule - schedule for receive
3111 * @n: entry to schedule
3112 *
3113 * The entry's receive function will be scheduled to run
3114 */
3115 void __napi_schedule(struct napi_struct *n)
3116 {
3117 unsigned long flags;
3118
3119 local_irq_save(flags);
3120 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3121 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3122 local_irq_restore(flags);
3123 }
3124 EXPORT_SYMBOL(__napi_schedule);
3125
3126 void __napi_complete(struct napi_struct *n)
3127 {
3128 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3129 BUG_ON(n->gro_list);
3130
3131 list_del(&n->poll_list);
3132 smp_mb__before_clear_bit();
3133 clear_bit(NAPI_STATE_SCHED, &n->state);
3134 }
3135 EXPORT_SYMBOL(__napi_complete);
3136
3137 void napi_complete(struct napi_struct *n)
3138 {
3139 unsigned long flags;
3140
3141 /*
3142 * don't let napi dequeue from the cpu poll list
3143 * just in case its running on a different cpu
3144 */
3145 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3146 return;
3147
3148 napi_gro_flush(n);
3149 local_irq_save(flags);
3150 __napi_complete(n);
3151 local_irq_restore(flags);
3152 }
3153 EXPORT_SYMBOL(napi_complete);
3154
3155 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3156 int (*poll)(struct napi_struct *, int), int weight)
3157 {
3158 INIT_LIST_HEAD(&napi->poll_list);
3159 napi->gro_count = 0;
3160 napi->gro_list = NULL;
3161 napi->skb = NULL;
3162 napi->poll = poll;
3163 napi->weight = weight;
3164 list_add(&napi->dev_list, &dev->napi_list);
3165 napi->dev = dev;
3166 #ifdef CONFIG_NETPOLL
3167 spin_lock_init(&napi->poll_lock);
3168 napi->poll_owner = -1;
3169 #endif
3170 set_bit(NAPI_STATE_SCHED, &napi->state);
3171 }
3172 EXPORT_SYMBOL(netif_napi_add);
3173
3174 void netif_napi_del(struct napi_struct *napi)
3175 {
3176 struct sk_buff *skb, *next;
3177
3178 list_del_init(&napi->dev_list);
3179 napi_free_frags(napi);
3180
3181 for (skb = napi->gro_list; skb; skb = next) {
3182 next = skb->next;
3183 skb->next = NULL;
3184 kfree_skb(skb);
3185 }
3186
3187 napi->gro_list = NULL;
3188 napi->gro_count = 0;
3189 }
3190 EXPORT_SYMBOL(netif_napi_del);
3191
3192 #ifdef CONFIG_SMP
3193 /*
3194 * net_rps_action sends any pending IPI's for rps. This is only called from
3195 * softirq and interrupts must be enabled.
3196 */
3197 static void net_rps_action(cpumask_t *mask)
3198 {
3199 int cpu;
3200
3201 /* Send pending IPI's to kick RPS processing on remote cpus. */
3202 for_each_cpu_mask_nr(cpu, *mask) {
3203 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
3204 if (cpu_online(cpu))
3205 __smp_call_function_single(cpu, &queue->csd, 0);
3206 }
3207 cpus_clear(*mask);
3208 }
3209 #endif
3210
3211 static void net_rx_action(struct softirq_action *h)
3212 {
3213 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3214 unsigned long time_limit = jiffies + 2;
3215 int budget = netdev_budget;
3216 void *have;
3217 #ifdef CONFIG_SMP
3218 int select;
3219 struct rps_remote_softirq_cpus *rcpus;
3220 #endif
3221
3222 local_irq_disable();
3223
3224 while (!list_empty(list)) {
3225 struct napi_struct *n;
3226 int work, weight;
3227
3228 /* If softirq window is exhuasted then punt.
3229 * Allow this to run for 2 jiffies since which will allow
3230 * an average latency of 1.5/HZ.
3231 */
3232 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3233 goto softnet_break;
3234
3235 local_irq_enable();
3236
3237 /* Even though interrupts have been re-enabled, this
3238 * access is safe because interrupts can only add new
3239 * entries to the tail of this list, and only ->poll()
3240 * calls can remove this head entry from the list.
3241 */
3242 n = list_first_entry(list, struct napi_struct, poll_list);
3243
3244 have = netpoll_poll_lock(n);
3245
3246 weight = n->weight;
3247
3248 /* This NAPI_STATE_SCHED test is for avoiding a race
3249 * with netpoll's poll_napi(). Only the entity which
3250 * obtains the lock and sees NAPI_STATE_SCHED set will
3251 * actually make the ->poll() call. Therefore we avoid
3252 * accidently calling ->poll() when NAPI is not scheduled.
3253 */
3254 work = 0;
3255 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3256 work = n->poll(n, weight);
3257 trace_napi_poll(n);
3258 }
3259
3260 WARN_ON_ONCE(work > weight);
3261
3262 budget -= work;
3263
3264 local_irq_disable();
3265
3266 /* Drivers must not modify the NAPI state if they
3267 * consume the entire weight. In such cases this code
3268 * still "owns" the NAPI instance and therefore can
3269 * move the instance around on the list at-will.
3270 */
3271 if (unlikely(work == weight)) {
3272 if (unlikely(napi_disable_pending(n))) {
3273 local_irq_enable();
3274 napi_complete(n);
3275 local_irq_disable();
3276 } else
3277 list_move_tail(&n->poll_list, list);
3278 }
3279
3280 netpoll_poll_unlock(have);
3281 }
3282 out:
3283 #ifdef CONFIG_SMP
3284 rcpus = &__get_cpu_var(rps_remote_softirq_cpus);
3285 select = rcpus->select;
3286 rcpus->select ^= 1;
3287
3288 local_irq_enable();
3289
3290 net_rps_action(&rcpus->mask[select]);
3291 #else
3292 local_irq_enable();
3293 #endif
3294
3295 #ifdef CONFIG_NET_DMA
3296 /*
3297 * There may not be any more sk_buffs coming right now, so push
3298 * any pending DMA copies to hardware
3299 */
3300 dma_issue_pending_all();
3301 #endif
3302
3303 return;
3304
3305 softnet_break:
3306 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3307 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3308 goto out;
3309 }
3310
3311 static gifconf_func_t *gifconf_list[NPROTO];
3312
3313 /**
3314 * register_gifconf - register a SIOCGIF handler
3315 * @family: Address family
3316 * @gifconf: Function handler
3317 *
3318 * Register protocol dependent address dumping routines. The handler
3319 * that is passed must not be freed or reused until it has been replaced
3320 * by another handler.
3321 */
3322 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3323 {
3324 if (family >= NPROTO)
3325 return -EINVAL;
3326 gifconf_list[family] = gifconf;
3327 return 0;
3328 }
3329 EXPORT_SYMBOL(register_gifconf);
3330
3331
3332 /*
3333 * Map an interface index to its name (SIOCGIFNAME)
3334 */
3335
3336 /*
3337 * We need this ioctl for efficient implementation of the
3338 * if_indextoname() function required by the IPv6 API. Without
3339 * it, we would have to search all the interfaces to find a
3340 * match. --pb
3341 */
3342
3343 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3344 {
3345 struct net_device *dev;
3346 struct ifreq ifr;
3347
3348 /*
3349 * Fetch the caller's info block.
3350 */
3351
3352 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3353 return -EFAULT;
3354
3355 rcu_read_lock();
3356 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3357 if (!dev) {
3358 rcu_read_unlock();
3359 return -ENODEV;
3360 }
3361
3362 strcpy(ifr.ifr_name, dev->name);
3363 rcu_read_unlock();
3364
3365 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3366 return -EFAULT;
3367 return 0;
3368 }
3369
3370 /*
3371 * Perform a SIOCGIFCONF call. This structure will change
3372 * size eventually, and there is nothing I can do about it.
3373 * Thus we will need a 'compatibility mode'.
3374 */
3375
3376 static int dev_ifconf(struct net *net, char __user *arg)
3377 {
3378 struct ifconf ifc;
3379 struct net_device *dev;
3380 char __user *pos;
3381 int len;
3382 int total;
3383 int i;
3384
3385 /*
3386 * Fetch the caller's info block.
3387 */
3388
3389 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3390 return -EFAULT;
3391
3392 pos = ifc.ifc_buf;
3393 len = ifc.ifc_len;
3394
3395 /*
3396 * Loop over the interfaces, and write an info block for each.
3397 */
3398
3399 total = 0;
3400 for_each_netdev(net, dev) {
3401 for (i = 0; i < NPROTO; i++) {
3402 if (gifconf_list[i]) {
3403 int done;
3404 if (!pos)
3405 done = gifconf_list[i](dev, NULL, 0);
3406 else
3407 done = gifconf_list[i](dev, pos + total,
3408 len - total);
3409 if (done < 0)
3410 return -EFAULT;
3411 total += done;
3412 }
3413 }
3414 }
3415
3416 /*
3417 * All done. Write the updated control block back to the caller.
3418 */
3419 ifc.ifc_len = total;
3420
3421 /*
3422 * Both BSD and Solaris return 0 here, so we do too.
3423 */
3424 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3425 }
3426
3427 #ifdef CONFIG_PROC_FS
3428 /*
3429 * This is invoked by the /proc filesystem handler to display a device
3430 * in detail.
3431 */
3432 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3433 __acquires(RCU)
3434 {
3435 struct net *net = seq_file_net(seq);
3436 loff_t off;
3437 struct net_device *dev;
3438
3439 rcu_read_lock();
3440 if (!*pos)
3441 return SEQ_START_TOKEN;
3442
3443 off = 1;
3444 for_each_netdev_rcu(net, dev)
3445 if (off++ == *pos)
3446 return dev;
3447
3448 return NULL;
3449 }
3450
3451 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3452 {
3453 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3454 first_net_device(seq_file_net(seq)) :
3455 next_net_device((struct net_device *)v);
3456
3457 ++*pos;
3458 return rcu_dereference(dev);
3459 }
3460
3461 void dev_seq_stop(struct seq_file *seq, void *v)
3462 __releases(RCU)
3463 {
3464 rcu_read_unlock();
3465 }
3466
3467 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3468 {
3469 const struct net_device_stats *stats = dev_get_stats(dev);
3470
3471 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3472 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3473 dev->name, stats->rx_bytes, stats->rx_packets,
3474 stats->rx_errors,
3475 stats->rx_dropped + stats->rx_missed_errors,
3476 stats->rx_fifo_errors,
3477 stats->rx_length_errors + stats->rx_over_errors +
3478 stats->rx_crc_errors + stats->rx_frame_errors,
3479 stats->rx_compressed, stats->multicast,
3480 stats->tx_bytes, stats->tx_packets,
3481 stats->tx_errors, stats->tx_dropped,
3482 stats->tx_fifo_errors, stats->collisions,
3483 stats->tx_carrier_errors +
3484 stats->tx_aborted_errors +
3485 stats->tx_window_errors +
3486 stats->tx_heartbeat_errors,
3487 stats->tx_compressed);
3488 }
3489
3490 /*
3491 * Called from the PROCfs module. This now uses the new arbitrary sized
3492 * /proc/net interface to create /proc/net/dev
3493 */
3494 static int dev_seq_show(struct seq_file *seq, void *v)
3495 {
3496 if (v == SEQ_START_TOKEN)
3497 seq_puts(seq, "Inter-| Receive "
3498 " | Transmit\n"
3499 " face |bytes packets errs drop fifo frame "
3500 "compressed multicast|bytes packets errs "
3501 "drop fifo colls carrier compressed\n");
3502 else
3503 dev_seq_printf_stats(seq, v);
3504 return 0;
3505 }
3506
3507 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3508 {
3509 struct netif_rx_stats *rc = NULL;
3510
3511 while (*pos < nr_cpu_ids)
3512 if (cpu_online(*pos)) {
3513 rc = &per_cpu(netdev_rx_stat, *pos);
3514 break;
3515 } else
3516 ++*pos;
3517 return rc;
3518 }
3519
3520 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3521 {
3522 return softnet_get_online(pos);
3523 }
3524
3525 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3526 {
3527 ++*pos;
3528 return softnet_get_online(pos);
3529 }
3530
3531 static void softnet_seq_stop(struct seq_file *seq, void *v)
3532 {
3533 }
3534
3535 static int softnet_seq_show(struct seq_file *seq, void *v)
3536 {
3537 struct netif_rx_stats *s = v;
3538
3539 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3540 s->total, s->dropped, s->time_squeeze, 0,
3541 0, 0, 0, 0, /* was fastroute */
3542 s->cpu_collision, s->received_rps);
3543 return 0;
3544 }
3545
3546 static const struct seq_operations dev_seq_ops = {
3547 .start = dev_seq_start,
3548 .next = dev_seq_next,
3549 .stop = dev_seq_stop,
3550 .show = dev_seq_show,
3551 };
3552
3553 static int dev_seq_open(struct inode *inode, struct file *file)
3554 {
3555 return seq_open_net(inode, file, &dev_seq_ops,
3556 sizeof(struct seq_net_private));
3557 }
3558
3559 static const struct file_operations dev_seq_fops = {
3560 .owner = THIS_MODULE,
3561 .open = dev_seq_open,
3562 .read = seq_read,
3563 .llseek = seq_lseek,
3564 .release = seq_release_net,
3565 };
3566
3567 static const struct seq_operations softnet_seq_ops = {
3568 .start = softnet_seq_start,
3569 .next = softnet_seq_next,
3570 .stop = softnet_seq_stop,
3571 .show = softnet_seq_show,
3572 };
3573
3574 static int softnet_seq_open(struct inode *inode, struct file *file)
3575 {
3576 return seq_open(file, &softnet_seq_ops);
3577 }
3578
3579 static const struct file_operations softnet_seq_fops = {
3580 .owner = THIS_MODULE,
3581 .open = softnet_seq_open,
3582 .read = seq_read,
3583 .llseek = seq_lseek,
3584 .release = seq_release,
3585 };
3586
3587 static void *ptype_get_idx(loff_t pos)
3588 {
3589 struct packet_type *pt = NULL;
3590 loff_t i = 0;
3591 int t;
3592
3593 list_for_each_entry_rcu(pt, &ptype_all, list) {
3594 if (i == pos)
3595 return pt;
3596 ++i;
3597 }
3598
3599 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3600 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3601 if (i == pos)
3602 return pt;
3603 ++i;
3604 }
3605 }
3606 return NULL;
3607 }
3608
3609 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3610 __acquires(RCU)
3611 {
3612 rcu_read_lock();
3613 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3614 }
3615
3616 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3617 {
3618 struct packet_type *pt;
3619 struct list_head *nxt;
3620 int hash;
3621
3622 ++*pos;
3623 if (v == SEQ_START_TOKEN)
3624 return ptype_get_idx(0);
3625
3626 pt = v;
3627 nxt = pt->list.next;
3628 if (pt->type == htons(ETH_P_ALL)) {
3629 if (nxt != &ptype_all)
3630 goto found;
3631 hash = 0;
3632 nxt = ptype_base[0].next;
3633 } else
3634 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3635
3636 while (nxt == &ptype_base[hash]) {
3637 if (++hash >= PTYPE_HASH_SIZE)
3638 return NULL;
3639 nxt = ptype_base[hash].next;
3640 }
3641 found:
3642 return list_entry(nxt, struct packet_type, list);
3643 }
3644
3645 static void ptype_seq_stop(struct seq_file *seq, void *v)
3646 __releases(RCU)
3647 {
3648 rcu_read_unlock();
3649 }
3650
3651 static int ptype_seq_show(struct seq_file *seq, void *v)
3652 {
3653 struct packet_type *pt = v;
3654
3655 if (v == SEQ_START_TOKEN)
3656 seq_puts(seq, "Type Device Function\n");
3657 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3658 if (pt->type == htons(ETH_P_ALL))
3659 seq_puts(seq, "ALL ");
3660 else
3661 seq_printf(seq, "%04x", ntohs(pt->type));
3662
3663 seq_printf(seq, " %-8s %pF\n",
3664 pt->dev ? pt->dev->name : "", pt->func);
3665 }
3666
3667 return 0;
3668 }
3669
3670 static const struct seq_operations ptype_seq_ops = {
3671 .start = ptype_seq_start,
3672 .next = ptype_seq_next,
3673 .stop = ptype_seq_stop,
3674 .show = ptype_seq_show,
3675 };
3676
3677 static int ptype_seq_open(struct inode *inode, struct file *file)
3678 {
3679 return seq_open_net(inode, file, &ptype_seq_ops,
3680 sizeof(struct seq_net_private));
3681 }
3682
3683 static const struct file_operations ptype_seq_fops = {
3684 .owner = THIS_MODULE,
3685 .open = ptype_seq_open,
3686 .read = seq_read,
3687 .llseek = seq_lseek,
3688 .release = seq_release_net,
3689 };
3690
3691
3692 static int __net_init dev_proc_net_init(struct net *net)
3693 {
3694 int rc = -ENOMEM;
3695
3696 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3697 goto out;
3698 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3699 goto out_dev;
3700 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3701 goto out_softnet;
3702
3703 if (wext_proc_init(net))
3704 goto out_ptype;
3705 rc = 0;
3706 out:
3707 return rc;
3708 out_ptype:
3709 proc_net_remove(net, "ptype");
3710 out_softnet:
3711 proc_net_remove(net, "softnet_stat");
3712 out_dev:
3713 proc_net_remove(net, "dev");
3714 goto out;
3715 }
3716
3717 static void __net_exit dev_proc_net_exit(struct net *net)
3718 {
3719 wext_proc_exit(net);
3720
3721 proc_net_remove(net, "ptype");
3722 proc_net_remove(net, "softnet_stat");
3723 proc_net_remove(net, "dev");
3724 }
3725
3726 static struct pernet_operations __net_initdata dev_proc_ops = {
3727 .init = dev_proc_net_init,
3728 .exit = dev_proc_net_exit,
3729 };
3730
3731 static int __init dev_proc_init(void)
3732 {
3733 return register_pernet_subsys(&dev_proc_ops);
3734 }
3735 #else
3736 #define dev_proc_init() 0
3737 #endif /* CONFIG_PROC_FS */
3738
3739
3740 /**
3741 * netdev_set_master - set up master/slave pair
3742 * @slave: slave device
3743 * @master: new master device
3744 *
3745 * Changes the master device of the slave. Pass %NULL to break the
3746 * bonding. The caller must hold the RTNL semaphore. On a failure
3747 * a negative errno code is returned. On success the reference counts
3748 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3749 * function returns zero.
3750 */
3751 int netdev_set_master(struct net_device *slave, struct net_device *master)
3752 {
3753 struct net_device *old = slave->master;
3754
3755 ASSERT_RTNL();
3756
3757 if (master) {
3758 if (old)
3759 return -EBUSY;
3760 dev_hold(master);
3761 }
3762
3763 slave->master = master;
3764
3765 if (old) {
3766 synchronize_net();
3767 dev_put(old);
3768 }
3769 if (master)
3770 slave->flags |= IFF_SLAVE;
3771 else
3772 slave->flags &= ~IFF_SLAVE;
3773
3774 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3775 return 0;
3776 }
3777 EXPORT_SYMBOL(netdev_set_master);
3778
3779 static void dev_change_rx_flags(struct net_device *dev, int flags)
3780 {
3781 const struct net_device_ops *ops = dev->netdev_ops;
3782
3783 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3784 ops->ndo_change_rx_flags(dev, flags);
3785 }
3786
3787 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3788 {
3789 unsigned short old_flags = dev->flags;
3790 uid_t uid;
3791 gid_t gid;
3792
3793 ASSERT_RTNL();
3794
3795 dev->flags |= IFF_PROMISC;
3796 dev->promiscuity += inc;
3797 if (dev->promiscuity == 0) {
3798 /*
3799 * Avoid overflow.
3800 * If inc causes overflow, untouch promisc and return error.
3801 */
3802 if (inc < 0)
3803 dev->flags &= ~IFF_PROMISC;
3804 else {
3805 dev->promiscuity -= inc;
3806 printk(KERN_WARNING "%s: promiscuity touches roof, "
3807 "set promiscuity failed, promiscuity feature "
3808 "of device might be broken.\n", dev->name);
3809 return -EOVERFLOW;
3810 }
3811 }
3812 if (dev->flags != old_flags) {
3813 printk(KERN_INFO "device %s %s promiscuous mode\n",
3814 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3815 "left");
3816 if (audit_enabled) {
3817 current_uid_gid(&uid, &gid);
3818 audit_log(current->audit_context, GFP_ATOMIC,
3819 AUDIT_ANOM_PROMISCUOUS,
3820 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3821 dev->name, (dev->flags & IFF_PROMISC),
3822 (old_flags & IFF_PROMISC),
3823 audit_get_loginuid(current),
3824 uid, gid,
3825 audit_get_sessionid(current));
3826 }
3827
3828 dev_change_rx_flags(dev, IFF_PROMISC);
3829 }
3830 return 0;
3831 }
3832
3833 /**
3834 * dev_set_promiscuity - update promiscuity count on a device
3835 * @dev: device
3836 * @inc: modifier
3837 *
3838 * Add or remove promiscuity from a device. While the count in the device
3839 * remains above zero the interface remains promiscuous. Once it hits zero
3840 * the device reverts back to normal filtering operation. A negative inc
3841 * value is used to drop promiscuity on the device.
3842 * Return 0 if successful or a negative errno code on error.
3843 */
3844 int dev_set_promiscuity(struct net_device *dev, int inc)
3845 {
3846 unsigned short old_flags = dev->flags;
3847 int err;
3848
3849 err = __dev_set_promiscuity(dev, inc);
3850 if (err < 0)
3851 return err;
3852 if (dev->flags != old_flags)
3853 dev_set_rx_mode(dev);
3854 return err;
3855 }
3856 EXPORT_SYMBOL(dev_set_promiscuity);
3857
3858 /**
3859 * dev_set_allmulti - update allmulti count on a device
3860 * @dev: device
3861 * @inc: modifier
3862 *
3863 * Add or remove reception of all multicast frames to a device. While the
3864 * count in the device remains above zero the interface remains listening
3865 * to all interfaces. Once it hits zero the device reverts back to normal
3866 * filtering operation. A negative @inc value is used to drop the counter
3867 * when releasing a resource needing all multicasts.
3868 * Return 0 if successful or a negative errno code on error.
3869 */
3870
3871 int dev_set_allmulti(struct net_device *dev, int inc)
3872 {
3873 unsigned short old_flags = dev->flags;
3874
3875 ASSERT_RTNL();
3876
3877 dev->flags |= IFF_ALLMULTI;
3878 dev->allmulti += inc;
3879 if (dev->allmulti == 0) {
3880 /*
3881 * Avoid overflow.
3882 * If inc causes overflow, untouch allmulti and return error.
3883 */
3884 if (inc < 0)
3885 dev->flags &= ~IFF_ALLMULTI;
3886 else {
3887 dev->allmulti -= inc;
3888 printk(KERN_WARNING "%s: allmulti touches roof, "
3889 "set allmulti failed, allmulti feature of "
3890 "device might be broken.\n", dev->name);
3891 return -EOVERFLOW;
3892 }
3893 }
3894 if (dev->flags ^ old_flags) {
3895 dev_change_rx_flags(dev, IFF_ALLMULTI);
3896 dev_set_rx_mode(dev);
3897 }
3898 return 0;
3899 }
3900 EXPORT_SYMBOL(dev_set_allmulti);
3901
3902 /*
3903 * Upload unicast and multicast address lists to device and
3904 * configure RX filtering. When the device doesn't support unicast
3905 * filtering it is put in promiscuous mode while unicast addresses
3906 * are present.
3907 */
3908 void __dev_set_rx_mode(struct net_device *dev)
3909 {
3910 const struct net_device_ops *ops = dev->netdev_ops;
3911
3912 /* dev_open will call this function so the list will stay sane. */
3913 if (!(dev->flags&IFF_UP))
3914 return;
3915
3916 if (!netif_device_present(dev))
3917 return;
3918
3919 if (ops->ndo_set_rx_mode)
3920 ops->ndo_set_rx_mode(dev);
3921 else {
3922 /* Unicast addresses changes may only happen under the rtnl,
3923 * therefore calling __dev_set_promiscuity here is safe.
3924 */
3925 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
3926 __dev_set_promiscuity(dev, 1);
3927 dev->uc_promisc = 1;
3928 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
3929 __dev_set_promiscuity(dev, -1);
3930 dev->uc_promisc = 0;
3931 }
3932
3933 if (ops->ndo_set_multicast_list)
3934 ops->ndo_set_multicast_list(dev);
3935 }
3936 }
3937
3938 void dev_set_rx_mode(struct net_device *dev)
3939 {
3940 netif_addr_lock_bh(dev);
3941 __dev_set_rx_mode(dev);
3942 netif_addr_unlock_bh(dev);
3943 }
3944
3945 /* hw addresses list handling functions */
3946
3947 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3948 int addr_len, unsigned char addr_type)
3949 {
3950 struct netdev_hw_addr *ha;
3951 int alloc_size;
3952
3953 if (addr_len > MAX_ADDR_LEN)
3954 return -EINVAL;
3955
3956 list_for_each_entry(ha, &list->list, list) {
3957 if (!memcmp(ha->addr, addr, addr_len) &&
3958 ha->type == addr_type) {
3959 ha->refcount++;
3960 return 0;
3961 }
3962 }
3963
3964
3965 alloc_size = sizeof(*ha);
3966 if (alloc_size < L1_CACHE_BYTES)
3967 alloc_size = L1_CACHE_BYTES;
3968 ha = kmalloc(alloc_size, GFP_ATOMIC);
3969 if (!ha)
3970 return -ENOMEM;
3971 memcpy(ha->addr, addr, addr_len);
3972 ha->type = addr_type;
3973 ha->refcount = 1;
3974 ha->synced = false;
3975 list_add_tail_rcu(&ha->list, &list->list);
3976 list->count++;
3977 return 0;
3978 }
3979
3980 static void ha_rcu_free(struct rcu_head *head)
3981 {
3982 struct netdev_hw_addr *ha;
3983
3984 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3985 kfree(ha);
3986 }
3987
3988 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3989 int addr_len, unsigned char addr_type)
3990 {
3991 struct netdev_hw_addr *ha;
3992
3993 list_for_each_entry(ha, &list->list, list) {
3994 if (!memcmp(ha->addr, addr, addr_len) &&
3995 (ha->type == addr_type || !addr_type)) {
3996 if (--ha->refcount)
3997 return 0;
3998 list_del_rcu(&ha->list);
3999 call_rcu(&ha->rcu_head, ha_rcu_free);
4000 list->count--;
4001 return 0;
4002 }
4003 }
4004 return -ENOENT;
4005 }
4006
4007 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
4008 struct netdev_hw_addr_list *from_list,
4009 int addr_len,
4010 unsigned char addr_type)
4011 {
4012 int err;
4013 struct netdev_hw_addr *ha, *ha2;
4014 unsigned char type;
4015
4016 list_for_each_entry(ha, &from_list->list, list) {
4017 type = addr_type ? addr_type : ha->type;
4018 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
4019 if (err)
4020 goto unroll;
4021 }
4022 return 0;
4023
4024 unroll:
4025 list_for_each_entry(ha2, &from_list->list, list) {
4026 if (ha2 == ha)
4027 break;
4028 type = addr_type ? addr_type : ha2->type;
4029 __hw_addr_del(to_list, ha2->addr, addr_len, type);
4030 }
4031 return err;
4032 }
4033
4034 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
4035 struct netdev_hw_addr_list *from_list,
4036 int addr_len,
4037 unsigned char addr_type)
4038 {
4039 struct netdev_hw_addr *ha;
4040 unsigned char type;
4041
4042 list_for_each_entry(ha, &from_list->list, list) {
4043 type = addr_type ? addr_type : ha->type;
4044 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
4045 }
4046 }
4047
4048 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4049 struct netdev_hw_addr_list *from_list,
4050 int addr_len)
4051 {
4052 int err = 0;
4053 struct netdev_hw_addr *ha, *tmp;
4054
4055 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
4056 if (!ha->synced) {
4057 err = __hw_addr_add(to_list, ha->addr,
4058 addr_len, ha->type);
4059 if (err)
4060 break;
4061 ha->synced = true;
4062 ha->refcount++;
4063 } else if (ha->refcount == 1) {
4064 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
4065 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
4066 }
4067 }
4068 return err;
4069 }
4070
4071 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4072 struct netdev_hw_addr_list *from_list,
4073 int addr_len)
4074 {
4075 struct netdev_hw_addr *ha, *tmp;
4076
4077 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
4078 if (ha->synced) {
4079 __hw_addr_del(to_list, ha->addr,
4080 addr_len, ha->type);
4081 ha->synced = false;
4082 __hw_addr_del(from_list, ha->addr,
4083 addr_len, ha->type);
4084 }
4085 }
4086 }
4087
4088 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
4089 {
4090 struct netdev_hw_addr *ha, *tmp;
4091
4092 list_for_each_entry_safe(ha, tmp, &list->list, list) {
4093 list_del_rcu(&ha->list);
4094 call_rcu(&ha->rcu_head, ha_rcu_free);
4095 }
4096 list->count = 0;
4097 }
4098
4099 static void __hw_addr_init(struct netdev_hw_addr_list *list)
4100 {
4101 INIT_LIST_HEAD(&list->list);
4102 list->count = 0;
4103 }
4104
4105 /* Device addresses handling functions */
4106
4107 static void dev_addr_flush(struct net_device *dev)
4108 {
4109 /* rtnl_mutex must be held here */
4110
4111 __hw_addr_flush(&dev->dev_addrs);
4112 dev->dev_addr = NULL;
4113 }
4114
4115 static int dev_addr_init(struct net_device *dev)
4116 {
4117 unsigned char addr[MAX_ADDR_LEN];
4118 struct netdev_hw_addr *ha;
4119 int err;
4120
4121 /* rtnl_mutex must be held here */
4122
4123 __hw_addr_init(&dev->dev_addrs);
4124 memset(addr, 0, sizeof(addr));
4125 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
4126 NETDEV_HW_ADDR_T_LAN);
4127 if (!err) {
4128 /*
4129 * Get the first (previously created) address from the list
4130 * and set dev_addr pointer to this location.
4131 */
4132 ha = list_first_entry(&dev->dev_addrs.list,
4133 struct netdev_hw_addr, list);
4134 dev->dev_addr = ha->addr;
4135 }
4136 return err;
4137 }
4138
4139 /**
4140 * dev_addr_add - Add a device address
4141 * @dev: device
4142 * @addr: address to add
4143 * @addr_type: address type
4144 *
4145 * Add a device address to the device or increase the reference count if
4146 * it already exists.
4147 *
4148 * The caller must hold the rtnl_mutex.
4149 */
4150 int dev_addr_add(struct net_device *dev, unsigned char *addr,
4151 unsigned char addr_type)
4152 {
4153 int err;
4154
4155 ASSERT_RTNL();
4156
4157 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
4158 if (!err)
4159 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4160 return err;
4161 }
4162 EXPORT_SYMBOL(dev_addr_add);
4163
4164 /**
4165 * dev_addr_del - Release a device address.
4166 * @dev: device
4167 * @addr: address to delete
4168 * @addr_type: address type
4169 *
4170 * Release reference to a device address and remove it from the device
4171 * if the reference count drops to zero.
4172 *
4173 * The caller must hold the rtnl_mutex.
4174 */
4175 int dev_addr_del(struct net_device *dev, unsigned char *addr,
4176 unsigned char addr_type)
4177 {
4178 int err;
4179 struct netdev_hw_addr *ha;
4180
4181 ASSERT_RTNL();
4182
4183 /*
4184 * We can not remove the first address from the list because
4185 * dev->dev_addr points to that.
4186 */
4187 ha = list_first_entry(&dev->dev_addrs.list,
4188 struct netdev_hw_addr, list);
4189 if (ha->addr == dev->dev_addr && ha->refcount == 1)
4190 return -ENOENT;
4191
4192 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
4193 addr_type);
4194 if (!err)
4195 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4196 return err;
4197 }
4198 EXPORT_SYMBOL(dev_addr_del);
4199
4200 /**
4201 * dev_addr_add_multiple - Add device addresses from another device
4202 * @to_dev: device to which addresses will be added
4203 * @from_dev: device from which addresses will be added
4204 * @addr_type: address type - 0 means type will be used from from_dev
4205 *
4206 * Add device addresses of the one device to another.
4207 **
4208 * The caller must hold the rtnl_mutex.
4209 */
4210 int dev_addr_add_multiple(struct net_device *to_dev,
4211 struct net_device *from_dev,
4212 unsigned char addr_type)
4213 {
4214 int err;
4215
4216 ASSERT_RTNL();
4217
4218 if (from_dev->addr_len != to_dev->addr_len)
4219 return -EINVAL;
4220 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4221 to_dev->addr_len, addr_type);
4222 if (!err)
4223 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4224 return err;
4225 }
4226 EXPORT_SYMBOL(dev_addr_add_multiple);
4227
4228 /**
4229 * dev_addr_del_multiple - Delete device addresses by another device
4230 * @to_dev: device where the addresses will be deleted
4231 * @from_dev: device by which addresses the addresses will be deleted
4232 * @addr_type: address type - 0 means type will used from from_dev
4233 *
4234 * Deletes addresses in to device by the list of addresses in from device.
4235 *
4236 * The caller must hold the rtnl_mutex.
4237 */
4238 int dev_addr_del_multiple(struct net_device *to_dev,
4239 struct net_device *from_dev,
4240 unsigned char addr_type)
4241 {
4242 ASSERT_RTNL();
4243
4244 if (from_dev->addr_len != to_dev->addr_len)
4245 return -EINVAL;
4246 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4247 to_dev->addr_len, addr_type);
4248 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4249 return 0;
4250 }
4251 EXPORT_SYMBOL(dev_addr_del_multiple);
4252
4253 /* multicast addresses handling functions */
4254
4255 int __dev_addr_delete(struct dev_addr_list **list, int *count,
4256 void *addr, int alen, int glbl)
4257 {
4258 struct dev_addr_list *da;
4259
4260 for (; (da = *list) != NULL; list = &da->next) {
4261 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4262 alen == da->da_addrlen) {
4263 if (glbl) {
4264 int old_glbl = da->da_gusers;
4265 da->da_gusers = 0;
4266 if (old_glbl == 0)
4267 break;
4268 }
4269 if (--da->da_users)
4270 return 0;
4271
4272 *list = da->next;
4273 kfree(da);
4274 (*count)--;
4275 return 0;
4276 }
4277 }
4278 return -ENOENT;
4279 }
4280
4281 int __dev_addr_add(struct dev_addr_list **list, int *count,
4282 void *addr, int alen, int glbl)
4283 {
4284 struct dev_addr_list *da;
4285
4286 for (da = *list; da != NULL; da = da->next) {
4287 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4288 da->da_addrlen == alen) {
4289 if (glbl) {
4290 int old_glbl = da->da_gusers;
4291 da->da_gusers = 1;
4292 if (old_glbl)
4293 return 0;
4294 }
4295 da->da_users++;
4296 return 0;
4297 }
4298 }
4299
4300 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4301 if (da == NULL)
4302 return -ENOMEM;
4303 memcpy(da->da_addr, addr, alen);
4304 da->da_addrlen = alen;
4305 da->da_users = 1;
4306 da->da_gusers = glbl ? 1 : 0;
4307 da->next = *list;
4308 *list = da;
4309 (*count)++;
4310 return 0;
4311 }
4312
4313 /**
4314 * dev_unicast_delete - Release secondary unicast address.
4315 * @dev: device
4316 * @addr: address to delete
4317 *
4318 * Release reference to a secondary unicast address and remove it
4319 * from the device if the reference count drops to zero.
4320 *
4321 * The caller must hold the rtnl_mutex.
4322 */
4323 int dev_unicast_delete(struct net_device *dev, void *addr)
4324 {
4325 int err;
4326
4327 ASSERT_RTNL();
4328
4329 netif_addr_lock_bh(dev);
4330 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4331 NETDEV_HW_ADDR_T_UNICAST);
4332 if (!err)
4333 __dev_set_rx_mode(dev);
4334 netif_addr_unlock_bh(dev);
4335 return err;
4336 }
4337 EXPORT_SYMBOL(dev_unicast_delete);
4338
4339 /**
4340 * dev_unicast_add - add a secondary unicast address
4341 * @dev: device
4342 * @addr: address to add
4343 *
4344 * Add a secondary unicast address to the device or increase
4345 * the reference count if it already exists.
4346 *
4347 * The caller must hold the rtnl_mutex.
4348 */
4349 int dev_unicast_add(struct net_device *dev, void *addr)
4350 {
4351 int err;
4352
4353 ASSERT_RTNL();
4354
4355 netif_addr_lock_bh(dev);
4356 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4357 NETDEV_HW_ADDR_T_UNICAST);
4358 if (!err)
4359 __dev_set_rx_mode(dev);
4360 netif_addr_unlock_bh(dev);
4361 return err;
4362 }
4363 EXPORT_SYMBOL(dev_unicast_add);
4364
4365 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4366 struct dev_addr_list **from, int *from_count)
4367 {
4368 struct dev_addr_list *da, *next;
4369 int err = 0;
4370
4371 da = *from;
4372 while (da != NULL) {
4373 next = da->next;
4374 if (!da->da_synced) {
4375 err = __dev_addr_add(to, to_count,
4376 da->da_addr, da->da_addrlen, 0);
4377 if (err < 0)
4378 break;
4379 da->da_synced = 1;
4380 da->da_users++;
4381 } else if (da->da_users == 1) {
4382 __dev_addr_delete(to, to_count,
4383 da->da_addr, da->da_addrlen, 0);
4384 __dev_addr_delete(from, from_count,
4385 da->da_addr, da->da_addrlen, 0);
4386 }
4387 da = next;
4388 }
4389 return err;
4390 }
4391 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4392
4393 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4394 struct dev_addr_list **from, int *from_count)
4395 {
4396 struct dev_addr_list *da, *next;
4397
4398 da = *from;
4399 while (da != NULL) {
4400 next = da->next;
4401 if (da->da_synced) {
4402 __dev_addr_delete(to, to_count,
4403 da->da_addr, da->da_addrlen, 0);
4404 da->da_synced = 0;
4405 __dev_addr_delete(from, from_count,
4406 da->da_addr, da->da_addrlen, 0);
4407 }
4408 da = next;
4409 }
4410 }
4411 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4412
4413 /**
4414 * dev_unicast_sync - Synchronize device's unicast list to another device
4415 * @to: destination device
4416 * @from: source device
4417 *
4418 * Add newly added addresses to the destination device and release
4419 * addresses that have no users left. The source device must be
4420 * locked by netif_tx_lock_bh.
4421 *
4422 * This function is intended to be called from the dev->set_rx_mode
4423 * function of layered software devices.
4424 */
4425 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4426 {
4427 int err = 0;
4428
4429 if (to->addr_len != from->addr_len)
4430 return -EINVAL;
4431
4432 netif_addr_lock_bh(to);
4433 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4434 if (!err)
4435 __dev_set_rx_mode(to);
4436 netif_addr_unlock_bh(to);
4437 return err;
4438 }
4439 EXPORT_SYMBOL(dev_unicast_sync);
4440
4441 /**
4442 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4443 * @to: destination device
4444 * @from: source device
4445 *
4446 * Remove all addresses that were added to the destination device by
4447 * dev_unicast_sync(). This function is intended to be called from the
4448 * dev->stop function of layered software devices.
4449 */
4450 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4451 {
4452 if (to->addr_len != from->addr_len)
4453 return;
4454
4455 netif_addr_lock_bh(from);
4456 netif_addr_lock(to);
4457 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4458 __dev_set_rx_mode(to);
4459 netif_addr_unlock(to);
4460 netif_addr_unlock_bh(from);
4461 }
4462 EXPORT_SYMBOL(dev_unicast_unsync);
4463
4464 void dev_unicast_flush(struct net_device *dev)
4465 {
4466 netif_addr_lock_bh(dev);
4467 __hw_addr_flush(&dev->uc);
4468 netif_addr_unlock_bh(dev);
4469 }
4470 EXPORT_SYMBOL(dev_unicast_flush);
4471
4472 static void dev_unicast_init(struct net_device *dev)
4473 {
4474 __hw_addr_init(&dev->uc);
4475 }
4476
4477
4478 static void __dev_addr_discard(struct dev_addr_list **list)
4479 {
4480 struct dev_addr_list *tmp;
4481
4482 while (*list != NULL) {
4483 tmp = *list;
4484 *list = tmp->next;
4485 if (tmp->da_users > tmp->da_gusers)
4486 printk("__dev_addr_discard: address leakage! "
4487 "da_users=%d\n", tmp->da_users);
4488 kfree(tmp);
4489 }
4490 }
4491
4492 void dev_addr_discard(struct net_device *dev)
4493 {
4494 netif_addr_lock_bh(dev);
4495
4496 __dev_addr_discard(&dev->mc_list);
4497 netdev_mc_count(dev) = 0;
4498
4499 netif_addr_unlock_bh(dev);
4500 }
4501 EXPORT_SYMBOL(dev_addr_discard);
4502
4503 /**
4504 * dev_get_flags - get flags reported to userspace
4505 * @dev: device
4506 *
4507 * Get the combination of flag bits exported through APIs to userspace.
4508 */
4509 unsigned dev_get_flags(const struct net_device *dev)
4510 {
4511 unsigned flags;
4512
4513 flags = (dev->flags & ~(IFF_PROMISC |
4514 IFF_ALLMULTI |
4515 IFF_RUNNING |
4516 IFF_LOWER_UP |
4517 IFF_DORMANT)) |
4518 (dev->gflags & (IFF_PROMISC |
4519 IFF_ALLMULTI));
4520
4521 if (netif_running(dev)) {
4522 if (netif_oper_up(dev))
4523 flags |= IFF_RUNNING;
4524 if (netif_carrier_ok(dev))
4525 flags |= IFF_LOWER_UP;
4526 if (netif_dormant(dev))
4527 flags |= IFF_DORMANT;
4528 }
4529
4530 return flags;
4531 }
4532 EXPORT_SYMBOL(dev_get_flags);
4533
4534 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4535 {
4536 int old_flags = dev->flags;
4537 int ret;
4538
4539 ASSERT_RTNL();
4540
4541 /*
4542 * Set the flags on our device.
4543 */
4544
4545 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4546 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4547 IFF_AUTOMEDIA)) |
4548 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4549 IFF_ALLMULTI));
4550
4551 /*
4552 * Load in the correct multicast list now the flags have changed.
4553 */
4554
4555 if ((old_flags ^ flags) & IFF_MULTICAST)
4556 dev_change_rx_flags(dev, IFF_MULTICAST);
4557
4558 dev_set_rx_mode(dev);
4559
4560 /*
4561 * Have we downed the interface. We handle IFF_UP ourselves
4562 * according to user attempts to set it, rather than blindly
4563 * setting it.
4564 */
4565
4566 ret = 0;
4567 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4568 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4569
4570 if (!ret)
4571 dev_set_rx_mode(dev);
4572 }
4573
4574 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4575 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4576
4577 dev->gflags ^= IFF_PROMISC;
4578 dev_set_promiscuity(dev, inc);
4579 }
4580
4581 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4582 is important. Some (broken) drivers set IFF_PROMISC, when
4583 IFF_ALLMULTI is requested not asking us and not reporting.
4584 */
4585 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4586 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4587
4588 dev->gflags ^= IFF_ALLMULTI;
4589 dev_set_allmulti(dev, inc);
4590 }
4591
4592 return ret;
4593 }
4594
4595 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4596 {
4597 unsigned int changes = dev->flags ^ old_flags;
4598
4599 if (changes & IFF_UP) {
4600 if (dev->flags & IFF_UP)
4601 call_netdevice_notifiers(NETDEV_UP, dev);
4602 else
4603 call_netdevice_notifiers(NETDEV_DOWN, dev);
4604 }
4605
4606 if (dev->flags & IFF_UP &&
4607 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4608 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4609 }
4610
4611 /**
4612 * dev_change_flags - change device settings
4613 * @dev: device
4614 * @flags: device state flags
4615 *
4616 * Change settings on device based state flags. The flags are
4617 * in the userspace exported format.
4618 */
4619 int dev_change_flags(struct net_device *dev, unsigned flags)
4620 {
4621 int ret, changes;
4622 int old_flags = dev->flags;
4623
4624 ret = __dev_change_flags(dev, flags);
4625 if (ret < 0)
4626 return ret;
4627
4628 changes = old_flags ^ dev->flags;
4629 if (changes)
4630 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4631
4632 __dev_notify_flags(dev, old_flags);
4633 return ret;
4634 }
4635 EXPORT_SYMBOL(dev_change_flags);
4636
4637 /**
4638 * dev_set_mtu - Change maximum transfer unit
4639 * @dev: device
4640 * @new_mtu: new transfer unit
4641 *
4642 * Change the maximum transfer size of the network device.
4643 */
4644 int dev_set_mtu(struct net_device *dev, int new_mtu)
4645 {
4646 const struct net_device_ops *ops = dev->netdev_ops;
4647 int err;
4648
4649 if (new_mtu == dev->mtu)
4650 return 0;
4651
4652 /* MTU must be positive. */
4653 if (new_mtu < 0)
4654 return -EINVAL;
4655
4656 if (!netif_device_present(dev))
4657 return -ENODEV;
4658
4659 err = 0;
4660 if (ops->ndo_change_mtu)
4661 err = ops->ndo_change_mtu(dev, new_mtu);
4662 else
4663 dev->mtu = new_mtu;
4664
4665 if (!err && dev->flags & IFF_UP)
4666 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4667 return err;
4668 }
4669 EXPORT_SYMBOL(dev_set_mtu);
4670
4671 /**
4672 * dev_set_mac_address - Change Media Access Control Address
4673 * @dev: device
4674 * @sa: new address
4675 *
4676 * Change the hardware (MAC) address of the device
4677 */
4678 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4679 {
4680 const struct net_device_ops *ops = dev->netdev_ops;
4681 int err;
4682
4683 if (!ops->ndo_set_mac_address)
4684 return -EOPNOTSUPP;
4685 if (sa->sa_family != dev->type)
4686 return -EINVAL;
4687 if (!netif_device_present(dev))
4688 return -ENODEV;
4689 err = ops->ndo_set_mac_address(dev, sa);
4690 if (!err)
4691 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4692 return err;
4693 }
4694 EXPORT_SYMBOL(dev_set_mac_address);
4695
4696 /*
4697 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4698 */
4699 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4700 {
4701 int err;
4702 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4703
4704 if (!dev)
4705 return -ENODEV;
4706
4707 switch (cmd) {
4708 case SIOCGIFFLAGS: /* Get interface flags */
4709 ifr->ifr_flags = (short) dev_get_flags(dev);
4710 return 0;
4711
4712 case SIOCGIFMETRIC: /* Get the metric on the interface
4713 (currently unused) */
4714 ifr->ifr_metric = 0;
4715 return 0;
4716
4717 case SIOCGIFMTU: /* Get the MTU of a device */
4718 ifr->ifr_mtu = dev->mtu;
4719 return 0;
4720
4721 case SIOCGIFHWADDR:
4722 if (!dev->addr_len)
4723 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4724 else
4725 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4726 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4727 ifr->ifr_hwaddr.sa_family = dev->type;
4728 return 0;
4729
4730 case SIOCGIFSLAVE:
4731 err = -EINVAL;
4732 break;
4733
4734 case SIOCGIFMAP:
4735 ifr->ifr_map.mem_start = dev->mem_start;
4736 ifr->ifr_map.mem_end = dev->mem_end;
4737 ifr->ifr_map.base_addr = dev->base_addr;
4738 ifr->ifr_map.irq = dev->irq;
4739 ifr->ifr_map.dma = dev->dma;
4740 ifr->ifr_map.port = dev->if_port;
4741 return 0;
4742
4743 case SIOCGIFINDEX:
4744 ifr->ifr_ifindex = dev->ifindex;
4745 return 0;
4746
4747 case SIOCGIFTXQLEN:
4748 ifr->ifr_qlen = dev->tx_queue_len;
4749 return 0;
4750
4751 default:
4752 /* dev_ioctl() should ensure this case
4753 * is never reached
4754 */
4755 WARN_ON(1);
4756 err = -EINVAL;
4757 break;
4758
4759 }
4760 return err;
4761 }
4762
4763 /*
4764 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4765 */
4766 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4767 {
4768 int err;
4769 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4770 const struct net_device_ops *ops;
4771
4772 if (!dev)
4773 return -ENODEV;
4774
4775 ops = dev->netdev_ops;
4776
4777 switch (cmd) {
4778 case SIOCSIFFLAGS: /* Set interface flags */
4779 return dev_change_flags(dev, ifr->ifr_flags);
4780
4781 case SIOCSIFMETRIC: /* Set the metric on the interface
4782 (currently unused) */
4783 return -EOPNOTSUPP;
4784
4785 case SIOCSIFMTU: /* Set the MTU of a device */
4786 return dev_set_mtu(dev, ifr->ifr_mtu);
4787
4788 case SIOCSIFHWADDR:
4789 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4790
4791 case SIOCSIFHWBROADCAST:
4792 if (ifr->ifr_hwaddr.sa_family != dev->type)
4793 return -EINVAL;
4794 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4795 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4796 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4797 return 0;
4798
4799 case SIOCSIFMAP:
4800 if (ops->ndo_set_config) {
4801 if (!netif_device_present(dev))
4802 return -ENODEV;
4803 return ops->ndo_set_config(dev, &ifr->ifr_map);
4804 }
4805 return -EOPNOTSUPP;
4806
4807 case SIOCADDMULTI:
4808 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4809 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4810 return -EINVAL;
4811 if (!netif_device_present(dev))
4812 return -ENODEV;
4813 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4814 dev->addr_len, 1);
4815
4816 case SIOCDELMULTI:
4817 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4818 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4819 return -EINVAL;
4820 if (!netif_device_present(dev))
4821 return -ENODEV;
4822 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4823 dev->addr_len, 1);
4824
4825 case SIOCSIFTXQLEN:
4826 if (ifr->ifr_qlen < 0)
4827 return -EINVAL;
4828 dev->tx_queue_len = ifr->ifr_qlen;
4829 return 0;
4830
4831 case SIOCSIFNAME:
4832 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4833 return dev_change_name(dev, ifr->ifr_newname);
4834
4835 /*
4836 * Unknown or private ioctl
4837 */
4838 default:
4839 if ((cmd >= SIOCDEVPRIVATE &&
4840 cmd <= SIOCDEVPRIVATE + 15) ||
4841 cmd == SIOCBONDENSLAVE ||
4842 cmd == SIOCBONDRELEASE ||
4843 cmd == SIOCBONDSETHWADDR ||
4844 cmd == SIOCBONDSLAVEINFOQUERY ||
4845 cmd == SIOCBONDINFOQUERY ||
4846 cmd == SIOCBONDCHANGEACTIVE ||
4847 cmd == SIOCGMIIPHY ||
4848 cmd == SIOCGMIIREG ||
4849 cmd == SIOCSMIIREG ||
4850 cmd == SIOCBRADDIF ||
4851 cmd == SIOCBRDELIF ||
4852 cmd == SIOCSHWTSTAMP ||
4853 cmd == SIOCWANDEV) {
4854 err = -EOPNOTSUPP;
4855 if (ops->ndo_do_ioctl) {
4856 if (netif_device_present(dev))
4857 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4858 else
4859 err = -ENODEV;
4860 }
4861 } else
4862 err = -EINVAL;
4863
4864 }
4865 return err;
4866 }
4867
4868 /*
4869 * This function handles all "interface"-type I/O control requests. The actual
4870 * 'doing' part of this is dev_ifsioc above.
4871 */
4872
4873 /**
4874 * dev_ioctl - network device ioctl
4875 * @net: the applicable net namespace
4876 * @cmd: command to issue
4877 * @arg: pointer to a struct ifreq in user space
4878 *
4879 * Issue ioctl functions to devices. This is normally called by the
4880 * user space syscall interfaces but can sometimes be useful for
4881 * other purposes. The return value is the return from the syscall if
4882 * positive or a negative errno code on error.
4883 */
4884
4885 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4886 {
4887 struct ifreq ifr;
4888 int ret;
4889 char *colon;
4890
4891 /* One special case: SIOCGIFCONF takes ifconf argument
4892 and requires shared lock, because it sleeps writing
4893 to user space.
4894 */
4895
4896 if (cmd == SIOCGIFCONF) {
4897 rtnl_lock();
4898 ret = dev_ifconf(net, (char __user *) arg);
4899 rtnl_unlock();
4900 return ret;
4901 }
4902 if (cmd == SIOCGIFNAME)
4903 return dev_ifname(net, (struct ifreq __user *)arg);
4904
4905 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4906 return -EFAULT;
4907
4908 ifr.ifr_name[IFNAMSIZ-1] = 0;
4909
4910 colon = strchr(ifr.ifr_name, ':');
4911 if (colon)
4912 *colon = 0;
4913
4914 /*
4915 * See which interface the caller is talking about.
4916 */
4917
4918 switch (cmd) {
4919 /*
4920 * These ioctl calls:
4921 * - can be done by all.
4922 * - atomic and do not require locking.
4923 * - return a value
4924 */
4925 case SIOCGIFFLAGS:
4926 case SIOCGIFMETRIC:
4927 case SIOCGIFMTU:
4928 case SIOCGIFHWADDR:
4929 case SIOCGIFSLAVE:
4930 case SIOCGIFMAP:
4931 case SIOCGIFINDEX:
4932 case SIOCGIFTXQLEN:
4933 dev_load(net, ifr.ifr_name);
4934 rcu_read_lock();
4935 ret = dev_ifsioc_locked(net, &ifr, cmd);
4936 rcu_read_unlock();
4937 if (!ret) {
4938 if (colon)
4939 *colon = ':';
4940 if (copy_to_user(arg, &ifr,
4941 sizeof(struct ifreq)))
4942 ret = -EFAULT;
4943 }
4944 return ret;
4945
4946 case SIOCETHTOOL:
4947 dev_load(net, ifr.ifr_name);
4948 rtnl_lock();
4949 ret = dev_ethtool(net, &ifr);
4950 rtnl_unlock();
4951 if (!ret) {
4952 if (colon)
4953 *colon = ':';
4954 if (copy_to_user(arg, &ifr,
4955 sizeof(struct ifreq)))
4956 ret = -EFAULT;
4957 }
4958 return ret;
4959
4960 /*
4961 * These ioctl calls:
4962 * - require superuser power.
4963 * - require strict serialization.
4964 * - return a value
4965 */
4966 case SIOCGMIIPHY:
4967 case SIOCGMIIREG:
4968 case SIOCSIFNAME:
4969 if (!capable(CAP_NET_ADMIN))
4970 return -EPERM;
4971 dev_load(net, ifr.ifr_name);
4972 rtnl_lock();
4973 ret = dev_ifsioc(net, &ifr, cmd);
4974 rtnl_unlock();
4975 if (!ret) {
4976 if (colon)
4977 *colon = ':';
4978 if (copy_to_user(arg, &ifr,
4979 sizeof(struct ifreq)))
4980 ret = -EFAULT;
4981 }
4982 return ret;
4983
4984 /*
4985 * These ioctl calls:
4986 * - require superuser power.
4987 * - require strict serialization.
4988 * - do not return a value
4989 */
4990 case SIOCSIFFLAGS:
4991 case SIOCSIFMETRIC:
4992 case SIOCSIFMTU:
4993 case SIOCSIFMAP:
4994 case SIOCSIFHWADDR:
4995 case SIOCSIFSLAVE:
4996 case SIOCADDMULTI:
4997 case SIOCDELMULTI:
4998 case SIOCSIFHWBROADCAST:
4999 case SIOCSIFTXQLEN:
5000 case SIOCSMIIREG:
5001 case SIOCBONDENSLAVE:
5002 case SIOCBONDRELEASE:
5003 case SIOCBONDSETHWADDR:
5004 case SIOCBONDCHANGEACTIVE:
5005 case SIOCBRADDIF:
5006 case SIOCBRDELIF:
5007 case SIOCSHWTSTAMP:
5008 if (!capable(CAP_NET_ADMIN))
5009 return -EPERM;
5010 /* fall through */
5011 case SIOCBONDSLAVEINFOQUERY:
5012 case SIOCBONDINFOQUERY:
5013 dev_load(net, ifr.ifr_name);
5014 rtnl_lock();
5015 ret = dev_ifsioc(net, &ifr, cmd);
5016 rtnl_unlock();
5017 return ret;
5018
5019 case SIOCGIFMEM:
5020 /* Get the per device memory space. We can add this but
5021 * currently do not support it */
5022 case SIOCSIFMEM:
5023 /* Set the per device memory buffer space.
5024 * Not applicable in our case */
5025 case SIOCSIFLINK:
5026 return -EINVAL;
5027
5028 /*
5029 * Unknown or private ioctl.
5030 */
5031 default:
5032 if (cmd == SIOCWANDEV ||
5033 (cmd >= SIOCDEVPRIVATE &&
5034 cmd <= SIOCDEVPRIVATE + 15)) {
5035 dev_load(net, ifr.ifr_name);
5036 rtnl_lock();
5037 ret = dev_ifsioc(net, &ifr, cmd);
5038 rtnl_unlock();
5039 if (!ret && copy_to_user(arg, &ifr,
5040 sizeof(struct ifreq)))
5041 ret = -EFAULT;
5042 return ret;
5043 }
5044 /* Take care of Wireless Extensions */
5045 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5046 return wext_handle_ioctl(net, &ifr, cmd, arg);
5047 return -EINVAL;
5048 }
5049 }
5050
5051
5052 /**
5053 * dev_new_index - allocate an ifindex
5054 * @net: the applicable net namespace
5055 *
5056 * Returns a suitable unique value for a new device interface
5057 * number. The caller must hold the rtnl semaphore or the
5058 * dev_base_lock to be sure it remains unique.
5059 */
5060 static int dev_new_index(struct net *net)
5061 {
5062 static int ifindex;
5063 for (;;) {
5064 if (++ifindex <= 0)
5065 ifindex = 1;
5066 if (!__dev_get_by_index(net, ifindex))
5067 return ifindex;
5068 }
5069 }
5070
5071 /* Delayed registration/unregisteration */
5072 static LIST_HEAD(net_todo_list);
5073
5074 static void net_set_todo(struct net_device *dev)
5075 {
5076 list_add_tail(&dev->todo_list, &net_todo_list);
5077 }
5078
5079 static void rollback_registered_many(struct list_head *head)
5080 {
5081 struct net_device *dev, *tmp;
5082
5083 BUG_ON(dev_boot_phase);
5084 ASSERT_RTNL();
5085
5086 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5087 /* Some devices call without registering
5088 * for initialization unwind. Remove those
5089 * devices and proceed with the remaining.
5090 */
5091 if (dev->reg_state == NETREG_UNINITIALIZED) {
5092 pr_debug("unregister_netdevice: device %s/%p never "
5093 "was registered\n", dev->name, dev);
5094
5095 WARN_ON(1);
5096 list_del(&dev->unreg_list);
5097 continue;
5098 }
5099
5100 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5101
5102 /* If device is running, close it first. */
5103 dev_close(dev);
5104
5105 /* And unlink it from device chain. */
5106 unlist_netdevice(dev);
5107
5108 dev->reg_state = NETREG_UNREGISTERING;
5109 }
5110
5111 synchronize_net();
5112
5113 list_for_each_entry(dev, head, unreg_list) {
5114 /* Shutdown queueing discipline. */
5115 dev_shutdown(dev);
5116
5117
5118 /* Notify protocols, that we are about to destroy
5119 this device. They should clean all the things.
5120 */
5121 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5122
5123 if (!dev->rtnl_link_ops ||
5124 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5125 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5126
5127 /*
5128 * Flush the unicast and multicast chains
5129 */
5130 dev_unicast_flush(dev);
5131 dev_addr_discard(dev);
5132
5133 if (dev->netdev_ops->ndo_uninit)
5134 dev->netdev_ops->ndo_uninit(dev);
5135
5136 /* Notifier chain MUST detach us from master device. */
5137 WARN_ON(dev->master);
5138
5139 /* Remove entries from kobject tree */
5140 netdev_unregister_kobject(dev);
5141 }
5142
5143 /* Process any work delayed until the end of the batch */
5144 dev = list_first_entry(head, struct net_device, unreg_list);
5145 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5146
5147 synchronize_net();
5148
5149 list_for_each_entry(dev, head, unreg_list)
5150 dev_put(dev);
5151 }
5152
5153 static void rollback_registered(struct net_device *dev)
5154 {
5155 LIST_HEAD(single);
5156
5157 list_add(&dev->unreg_list, &single);
5158 rollback_registered_many(&single);
5159 }
5160
5161 static void __netdev_init_queue_locks_one(struct net_device *dev,
5162 struct netdev_queue *dev_queue,
5163 void *_unused)
5164 {
5165 spin_lock_init(&dev_queue->_xmit_lock);
5166 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
5167 dev_queue->xmit_lock_owner = -1;
5168 }
5169
5170 static void netdev_init_queue_locks(struct net_device *dev)
5171 {
5172 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
5173 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
5174 }
5175
5176 unsigned long netdev_fix_features(unsigned long features, const char *name)
5177 {
5178 /* Fix illegal SG+CSUM combinations. */
5179 if ((features & NETIF_F_SG) &&
5180 !(features & NETIF_F_ALL_CSUM)) {
5181 if (name)
5182 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5183 "checksum feature.\n", name);
5184 features &= ~NETIF_F_SG;
5185 }
5186
5187 /* TSO requires that SG is present as well. */
5188 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5189 if (name)
5190 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5191 "SG feature.\n", name);
5192 features &= ~NETIF_F_TSO;
5193 }
5194
5195 if (features & NETIF_F_UFO) {
5196 if (!(features & NETIF_F_GEN_CSUM)) {
5197 if (name)
5198 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5199 "since no NETIF_F_HW_CSUM feature.\n",
5200 name);
5201 features &= ~NETIF_F_UFO;
5202 }
5203
5204 if (!(features & NETIF_F_SG)) {
5205 if (name)
5206 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5207 "since no NETIF_F_SG feature.\n", name);
5208 features &= ~NETIF_F_UFO;
5209 }
5210 }
5211
5212 return features;
5213 }
5214 EXPORT_SYMBOL(netdev_fix_features);
5215
5216 /**
5217 * netif_stacked_transfer_operstate - transfer operstate
5218 * @rootdev: the root or lower level device to transfer state from
5219 * @dev: the device to transfer operstate to
5220 *
5221 * Transfer operational state from root to device. This is normally
5222 * called when a stacking relationship exists between the root
5223 * device and the device(a leaf device).
5224 */
5225 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5226 struct net_device *dev)
5227 {
5228 if (rootdev->operstate == IF_OPER_DORMANT)
5229 netif_dormant_on(dev);
5230 else
5231 netif_dormant_off(dev);
5232
5233 if (netif_carrier_ok(rootdev)) {
5234 if (!netif_carrier_ok(dev))
5235 netif_carrier_on(dev);
5236 } else {
5237 if (netif_carrier_ok(dev))
5238 netif_carrier_off(dev);
5239 }
5240 }
5241 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5242
5243 /**
5244 * register_netdevice - register a network device
5245 * @dev: device to register
5246 *
5247 * Take a completed network device structure and add it to the kernel
5248 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5249 * chain. 0 is returned on success. A negative errno code is returned
5250 * on a failure to set up the device, or if the name is a duplicate.
5251 *
5252 * Callers must hold the rtnl semaphore. You may want
5253 * register_netdev() instead of this.
5254 *
5255 * BUGS:
5256 * The locking appears insufficient to guarantee two parallel registers
5257 * will not get the same name.
5258 */
5259
5260 int register_netdevice(struct net_device *dev)
5261 {
5262 int ret;
5263 struct net *net = dev_net(dev);
5264
5265 BUG_ON(dev_boot_phase);
5266 ASSERT_RTNL();
5267
5268 might_sleep();
5269
5270 /* When net_device's are persistent, this will be fatal. */
5271 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5272 BUG_ON(!net);
5273
5274 spin_lock_init(&dev->addr_list_lock);
5275 netdev_set_addr_lockdep_class(dev);
5276 netdev_init_queue_locks(dev);
5277
5278 dev->iflink = -1;
5279
5280 if (!dev->num_rx_queues) {
5281 /*
5282 * Allocate a single RX queue if driver never called
5283 * alloc_netdev_mq
5284 */
5285
5286 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
5287 if (!dev->_rx) {
5288 ret = -ENOMEM;
5289 goto out;
5290 }
5291
5292 dev->_rx->first = dev->_rx;
5293 atomic_set(&dev->_rx->count, 1);
5294 dev->num_rx_queues = 1;
5295 }
5296
5297 /* Init, if this function is available */
5298 if (dev->netdev_ops->ndo_init) {
5299 ret = dev->netdev_ops->ndo_init(dev);
5300 if (ret) {
5301 if (ret > 0)
5302 ret = -EIO;
5303 goto out;
5304 }
5305 }
5306
5307 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5308 if (ret)
5309 goto err_uninit;
5310
5311 dev->ifindex = dev_new_index(net);
5312 if (dev->iflink == -1)
5313 dev->iflink = dev->ifindex;
5314
5315 /* Fix illegal checksum combinations */
5316 if ((dev->features & NETIF_F_HW_CSUM) &&
5317 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5318 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5319 dev->name);
5320 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5321 }
5322
5323 if ((dev->features & NETIF_F_NO_CSUM) &&
5324 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5325 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5326 dev->name);
5327 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5328 }
5329
5330 dev->features = netdev_fix_features(dev->features, dev->name);
5331
5332 /* Enable software GSO if SG is supported. */
5333 if (dev->features & NETIF_F_SG)
5334 dev->features |= NETIF_F_GSO;
5335
5336 netdev_initialize_kobject(dev);
5337
5338 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5339 ret = notifier_to_errno(ret);
5340 if (ret)
5341 goto err_uninit;
5342
5343 ret = netdev_register_kobject(dev);
5344 if (ret)
5345 goto err_uninit;
5346 dev->reg_state = NETREG_REGISTERED;
5347
5348 /*
5349 * Default initial state at registry is that the
5350 * device is present.
5351 */
5352
5353 set_bit(__LINK_STATE_PRESENT, &dev->state);
5354
5355 dev_init_scheduler(dev);
5356 dev_hold(dev);
5357 list_netdevice(dev);
5358
5359 /* Notify protocols, that a new device appeared. */
5360 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5361 ret = notifier_to_errno(ret);
5362 if (ret) {
5363 rollback_registered(dev);
5364 dev->reg_state = NETREG_UNREGISTERED;
5365 }
5366 /*
5367 * Prevent userspace races by waiting until the network
5368 * device is fully setup before sending notifications.
5369 */
5370 if (!dev->rtnl_link_ops ||
5371 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5372 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5373
5374 out:
5375 return ret;
5376
5377 err_uninit:
5378 if (dev->netdev_ops->ndo_uninit)
5379 dev->netdev_ops->ndo_uninit(dev);
5380 goto out;
5381 }
5382 EXPORT_SYMBOL(register_netdevice);
5383
5384 /**
5385 * init_dummy_netdev - init a dummy network device for NAPI
5386 * @dev: device to init
5387 *
5388 * This takes a network device structure and initialize the minimum
5389 * amount of fields so it can be used to schedule NAPI polls without
5390 * registering a full blown interface. This is to be used by drivers
5391 * that need to tie several hardware interfaces to a single NAPI
5392 * poll scheduler due to HW limitations.
5393 */
5394 int init_dummy_netdev(struct net_device *dev)
5395 {
5396 /* Clear everything. Note we don't initialize spinlocks
5397 * are they aren't supposed to be taken by any of the
5398 * NAPI code and this dummy netdev is supposed to be
5399 * only ever used for NAPI polls
5400 */
5401 memset(dev, 0, sizeof(struct net_device));
5402
5403 /* make sure we BUG if trying to hit standard
5404 * register/unregister code path
5405 */
5406 dev->reg_state = NETREG_DUMMY;
5407
5408 /* initialize the ref count */
5409 atomic_set(&dev->refcnt, 1);
5410
5411 /* NAPI wants this */
5412 INIT_LIST_HEAD(&dev->napi_list);
5413
5414 /* a dummy interface is started by default */
5415 set_bit(__LINK_STATE_PRESENT, &dev->state);
5416 set_bit(__LINK_STATE_START, &dev->state);
5417
5418 return 0;
5419 }
5420 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5421
5422
5423 /**
5424 * register_netdev - register a network device
5425 * @dev: device to register
5426 *
5427 * Take a completed network device structure and add it to the kernel
5428 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5429 * chain. 0 is returned on success. A negative errno code is returned
5430 * on a failure to set up the device, or if the name is a duplicate.
5431 *
5432 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5433 * and expands the device name if you passed a format string to
5434 * alloc_netdev.
5435 */
5436 int register_netdev(struct net_device *dev)
5437 {
5438 int err;
5439
5440 rtnl_lock();
5441
5442 /*
5443 * If the name is a format string the caller wants us to do a
5444 * name allocation.
5445 */
5446 if (strchr(dev->name, '%')) {
5447 err = dev_alloc_name(dev, dev->name);
5448 if (err < 0)
5449 goto out;
5450 }
5451
5452 err = register_netdevice(dev);
5453 out:
5454 rtnl_unlock();
5455 return err;
5456 }
5457 EXPORT_SYMBOL(register_netdev);
5458
5459 /*
5460 * netdev_wait_allrefs - wait until all references are gone.
5461 *
5462 * This is called when unregistering network devices.
5463 *
5464 * Any protocol or device that holds a reference should register
5465 * for netdevice notification, and cleanup and put back the
5466 * reference if they receive an UNREGISTER event.
5467 * We can get stuck here if buggy protocols don't correctly
5468 * call dev_put.
5469 */
5470 static void netdev_wait_allrefs(struct net_device *dev)
5471 {
5472 unsigned long rebroadcast_time, warning_time;
5473
5474 linkwatch_forget_dev(dev);
5475
5476 rebroadcast_time = warning_time = jiffies;
5477 while (atomic_read(&dev->refcnt) != 0) {
5478 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5479 rtnl_lock();
5480
5481 /* Rebroadcast unregister notification */
5482 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5483 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5484 * should have already handle it the first time */
5485
5486 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5487 &dev->state)) {
5488 /* We must not have linkwatch events
5489 * pending on unregister. If this
5490 * happens, we simply run the queue
5491 * unscheduled, resulting in a noop
5492 * for this device.
5493 */
5494 linkwatch_run_queue();
5495 }
5496
5497 __rtnl_unlock();
5498
5499 rebroadcast_time = jiffies;
5500 }
5501
5502 msleep(250);
5503
5504 if (time_after(jiffies, warning_time + 10 * HZ)) {
5505 printk(KERN_EMERG "unregister_netdevice: "
5506 "waiting for %s to become free. Usage "
5507 "count = %d\n",
5508 dev->name, atomic_read(&dev->refcnt));
5509 warning_time = jiffies;
5510 }
5511 }
5512 }
5513
5514 /* The sequence is:
5515 *
5516 * rtnl_lock();
5517 * ...
5518 * register_netdevice(x1);
5519 * register_netdevice(x2);
5520 * ...
5521 * unregister_netdevice(y1);
5522 * unregister_netdevice(y2);
5523 * ...
5524 * rtnl_unlock();
5525 * free_netdev(y1);
5526 * free_netdev(y2);
5527 *
5528 * We are invoked by rtnl_unlock().
5529 * This allows us to deal with problems:
5530 * 1) We can delete sysfs objects which invoke hotplug
5531 * without deadlocking with linkwatch via keventd.
5532 * 2) Since we run with the RTNL semaphore not held, we can sleep
5533 * safely in order to wait for the netdev refcnt to drop to zero.
5534 *
5535 * We must not return until all unregister events added during
5536 * the interval the lock was held have been completed.
5537 */
5538 void netdev_run_todo(void)
5539 {
5540 struct list_head list;
5541
5542 /* Snapshot list, allow later requests */
5543 list_replace_init(&net_todo_list, &list);
5544
5545 __rtnl_unlock();
5546
5547 while (!list_empty(&list)) {
5548 struct net_device *dev
5549 = list_first_entry(&list, struct net_device, todo_list);
5550 int i;
5551 list_del(&dev->todo_list);
5552
5553 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5554 printk(KERN_ERR "network todo '%s' but state %d\n",
5555 dev->name, dev->reg_state);
5556 dump_stack();
5557 continue;
5558 }
5559
5560 dev->reg_state = NETREG_UNREGISTERED;
5561
5562 for_each_online_cpu(i)
5563 flush_backlog(dev, i);
5564
5565 netdev_wait_allrefs(dev);
5566
5567 /* paranoia */
5568 BUG_ON(atomic_read(&dev->refcnt));
5569 WARN_ON(dev->ip_ptr);
5570 WARN_ON(dev->ip6_ptr);
5571 WARN_ON(dev->dn_ptr);
5572
5573 if (dev->destructor)
5574 dev->destructor(dev);
5575
5576 /* Free network device */
5577 kobject_put(&dev->dev.kobj);
5578 }
5579 }
5580
5581 /**
5582 * dev_txq_stats_fold - fold tx_queues stats
5583 * @dev: device to get statistics from
5584 * @stats: struct net_device_stats to hold results
5585 */
5586 void dev_txq_stats_fold(const struct net_device *dev,
5587 struct net_device_stats *stats)
5588 {
5589 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5590 unsigned int i;
5591 struct netdev_queue *txq;
5592
5593 for (i = 0; i < dev->num_tx_queues; i++) {
5594 txq = netdev_get_tx_queue(dev, i);
5595 tx_bytes += txq->tx_bytes;
5596 tx_packets += txq->tx_packets;
5597 tx_dropped += txq->tx_dropped;
5598 }
5599 if (tx_bytes || tx_packets || tx_dropped) {
5600 stats->tx_bytes = tx_bytes;
5601 stats->tx_packets = tx_packets;
5602 stats->tx_dropped = tx_dropped;
5603 }
5604 }
5605 EXPORT_SYMBOL(dev_txq_stats_fold);
5606
5607 /**
5608 * dev_get_stats - get network device statistics
5609 * @dev: device to get statistics from
5610 *
5611 * Get network statistics from device. The device driver may provide
5612 * its own method by setting dev->netdev_ops->get_stats; otherwise
5613 * the internal statistics structure is used.
5614 */
5615 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5616 {
5617 const struct net_device_ops *ops = dev->netdev_ops;
5618
5619 if (ops->ndo_get_stats)
5620 return ops->ndo_get_stats(dev);
5621
5622 dev_txq_stats_fold(dev, &dev->stats);
5623 return &dev->stats;
5624 }
5625 EXPORT_SYMBOL(dev_get_stats);
5626
5627 static void netdev_init_one_queue(struct net_device *dev,
5628 struct netdev_queue *queue,
5629 void *_unused)
5630 {
5631 queue->dev = dev;
5632 }
5633
5634 static void netdev_init_queues(struct net_device *dev)
5635 {
5636 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5637 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5638 spin_lock_init(&dev->tx_global_lock);
5639 }
5640
5641 /**
5642 * alloc_netdev_mq - allocate network device
5643 * @sizeof_priv: size of private data to allocate space for
5644 * @name: device name format string
5645 * @setup: callback to initialize device
5646 * @queue_count: the number of subqueues to allocate
5647 *
5648 * Allocates a struct net_device with private data area for driver use
5649 * and performs basic initialization. Also allocates subquue structs
5650 * for each queue on the device at the end of the netdevice.
5651 */
5652 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5653 void (*setup)(struct net_device *), unsigned int queue_count)
5654 {
5655 struct netdev_queue *tx;
5656 struct netdev_rx_queue *rx;
5657 struct net_device *dev;
5658 size_t alloc_size;
5659 struct net_device *p;
5660 int i;
5661
5662 BUG_ON(strlen(name) >= sizeof(dev->name));
5663
5664 alloc_size = sizeof(struct net_device);
5665 if (sizeof_priv) {
5666 /* ensure 32-byte alignment of private area */
5667 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5668 alloc_size += sizeof_priv;
5669 }
5670 /* ensure 32-byte alignment of whole construct */
5671 alloc_size += NETDEV_ALIGN - 1;
5672
5673 p = kzalloc(alloc_size, GFP_KERNEL);
5674 if (!p) {
5675 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5676 return NULL;
5677 }
5678
5679 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5680 if (!tx) {
5681 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5682 "tx qdiscs.\n");
5683 goto free_p;
5684 }
5685
5686 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5687 if (!rx) {
5688 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5689 "rx queues.\n");
5690 goto free_tx;
5691 }
5692
5693 atomic_set(&rx->count, queue_count);
5694
5695 /*
5696 * Set a pointer to first element in the array which holds the
5697 * reference count.
5698 */
5699 for (i = 0; i < queue_count; i++)
5700 rx[i].first = rx;
5701
5702 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5703 dev->padded = (char *)dev - (char *)p;
5704
5705 if (dev_addr_init(dev))
5706 goto free_rx;
5707
5708 dev_unicast_init(dev);
5709
5710 dev_net_set(dev, &init_net);
5711
5712 dev->_tx = tx;
5713 dev->num_tx_queues = queue_count;
5714 dev->real_num_tx_queues = queue_count;
5715
5716 dev->_rx = rx;
5717 dev->num_rx_queues = queue_count;
5718
5719 dev->gso_max_size = GSO_MAX_SIZE;
5720
5721 netdev_init_queues(dev);
5722
5723 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5724 dev->ethtool_ntuple_list.count = 0;
5725 INIT_LIST_HEAD(&dev->napi_list);
5726 INIT_LIST_HEAD(&dev->unreg_list);
5727 INIT_LIST_HEAD(&dev->link_watch_list);
5728 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5729 setup(dev);
5730 strcpy(dev->name, name);
5731 return dev;
5732
5733 free_rx:
5734 kfree(rx);
5735 free_tx:
5736 kfree(tx);
5737 free_p:
5738 kfree(p);
5739 return NULL;
5740 }
5741 EXPORT_SYMBOL(alloc_netdev_mq);
5742
5743 /**
5744 * free_netdev - free network device
5745 * @dev: device
5746 *
5747 * This function does the last stage of destroying an allocated device
5748 * interface. The reference to the device object is released.
5749 * If this is the last reference then it will be freed.
5750 */
5751 void free_netdev(struct net_device *dev)
5752 {
5753 struct napi_struct *p, *n;
5754
5755 release_net(dev_net(dev));
5756
5757 kfree(dev->_tx);
5758
5759 /* Flush device addresses */
5760 dev_addr_flush(dev);
5761
5762 /* Clear ethtool n-tuple list */
5763 ethtool_ntuple_flush(dev);
5764
5765 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5766 netif_napi_del(p);
5767
5768 /* Compatibility with error handling in drivers */
5769 if (dev->reg_state == NETREG_UNINITIALIZED) {
5770 kfree((char *)dev - dev->padded);
5771 return;
5772 }
5773
5774 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5775 dev->reg_state = NETREG_RELEASED;
5776
5777 /* will free via device release */
5778 put_device(&dev->dev);
5779 }
5780 EXPORT_SYMBOL(free_netdev);
5781
5782 /**
5783 * synchronize_net - Synchronize with packet receive processing
5784 *
5785 * Wait for packets currently being received to be done.
5786 * Does not block later packets from starting.
5787 */
5788 void synchronize_net(void)
5789 {
5790 might_sleep();
5791 synchronize_rcu();
5792 }
5793 EXPORT_SYMBOL(synchronize_net);
5794
5795 /**
5796 * unregister_netdevice_queue - remove device from the kernel
5797 * @dev: device
5798 * @head: list
5799 *
5800 * This function shuts down a device interface and removes it
5801 * from the kernel tables.
5802 * If head not NULL, device is queued to be unregistered later.
5803 *
5804 * Callers must hold the rtnl semaphore. You may want
5805 * unregister_netdev() instead of this.
5806 */
5807
5808 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5809 {
5810 ASSERT_RTNL();
5811
5812 if (head) {
5813 list_move_tail(&dev->unreg_list, head);
5814 } else {
5815 rollback_registered(dev);
5816 /* Finish processing unregister after unlock */
5817 net_set_todo(dev);
5818 }
5819 }
5820 EXPORT_SYMBOL(unregister_netdevice_queue);
5821
5822 /**
5823 * unregister_netdevice_many - unregister many devices
5824 * @head: list of devices
5825 */
5826 void unregister_netdevice_many(struct list_head *head)
5827 {
5828 struct net_device *dev;
5829
5830 if (!list_empty(head)) {
5831 rollback_registered_many(head);
5832 list_for_each_entry(dev, head, unreg_list)
5833 net_set_todo(dev);
5834 }
5835 }
5836 EXPORT_SYMBOL(unregister_netdevice_many);
5837
5838 /**
5839 * unregister_netdev - remove device from the kernel
5840 * @dev: device
5841 *
5842 * This function shuts down a device interface and removes it
5843 * from the kernel tables.
5844 *
5845 * This is just a wrapper for unregister_netdevice that takes
5846 * the rtnl semaphore. In general you want to use this and not
5847 * unregister_netdevice.
5848 */
5849 void unregister_netdev(struct net_device *dev)
5850 {
5851 rtnl_lock();
5852 unregister_netdevice(dev);
5853 rtnl_unlock();
5854 }
5855 EXPORT_SYMBOL(unregister_netdev);
5856
5857 /**
5858 * dev_change_net_namespace - move device to different nethost namespace
5859 * @dev: device
5860 * @net: network namespace
5861 * @pat: If not NULL name pattern to try if the current device name
5862 * is already taken in the destination network namespace.
5863 *
5864 * This function shuts down a device interface and moves it
5865 * to a new network namespace. On success 0 is returned, on
5866 * a failure a netagive errno code is returned.
5867 *
5868 * Callers must hold the rtnl semaphore.
5869 */
5870
5871 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5872 {
5873 int err;
5874
5875 ASSERT_RTNL();
5876
5877 /* Don't allow namespace local devices to be moved. */
5878 err = -EINVAL;
5879 if (dev->features & NETIF_F_NETNS_LOCAL)
5880 goto out;
5881
5882 #ifdef CONFIG_SYSFS
5883 /* Don't allow real devices to be moved when sysfs
5884 * is enabled.
5885 */
5886 err = -EINVAL;
5887 if (dev->dev.parent)
5888 goto out;
5889 #endif
5890
5891 /* Ensure the device has been registrered */
5892 err = -EINVAL;
5893 if (dev->reg_state != NETREG_REGISTERED)
5894 goto out;
5895
5896 /* Get out if there is nothing todo */
5897 err = 0;
5898 if (net_eq(dev_net(dev), net))
5899 goto out;
5900
5901 /* Pick the destination device name, and ensure
5902 * we can use it in the destination network namespace.
5903 */
5904 err = -EEXIST;
5905 if (__dev_get_by_name(net, dev->name)) {
5906 /* We get here if we can't use the current device name */
5907 if (!pat)
5908 goto out;
5909 if (dev_get_valid_name(net, pat, dev->name, 1))
5910 goto out;
5911 }
5912
5913 /*
5914 * And now a mini version of register_netdevice unregister_netdevice.
5915 */
5916
5917 /* If device is running close it first. */
5918 dev_close(dev);
5919
5920 /* And unlink it from device chain */
5921 err = -ENODEV;
5922 unlist_netdevice(dev);
5923
5924 synchronize_net();
5925
5926 /* Shutdown queueing discipline. */
5927 dev_shutdown(dev);
5928
5929 /* Notify protocols, that we are about to destroy
5930 this device. They should clean all the things.
5931 */
5932 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5933 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5934
5935 /*
5936 * Flush the unicast and multicast chains
5937 */
5938 dev_unicast_flush(dev);
5939 dev_addr_discard(dev);
5940
5941 netdev_unregister_kobject(dev);
5942
5943 /* Actually switch the network namespace */
5944 dev_net_set(dev, net);
5945
5946 /* If there is an ifindex conflict assign a new one */
5947 if (__dev_get_by_index(net, dev->ifindex)) {
5948 int iflink = (dev->iflink == dev->ifindex);
5949 dev->ifindex = dev_new_index(net);
5950 if (iflink)
5951 dev->iflink = dev->ifindex;
5952 }
5953
5954 /* Fixup kobjects */
5955 err = netdev_register_kobject(dev);
5956 WARN_ON(err);
5957
5958 /* Add the device back in the hashes */
5959 list_netdevice(dev);
5960
5961 /* Notify protocols, that a new device appeared. */
5962 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5963
5964 /*
5965 * Prevent userspace races by waiting until the network
5966 * device is fully setup before sending notifications.
5967 */
5968 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5969
5970 synchronize_net();
5971 err = 0;
5972 out:
5973 return err;
5974 }
5975 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5976
5977 static int dev_cpu_callback(struct notifier_block *nfb,
5978 unsigned long action,
5979 void *ocpu)
5980 {
5981 struct sk_buff **list_skb;
5982 struct Qdisc **list_net;
5983 struct sk_buff *skb;
5984 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5985 struct softnet_data *sd, *oldsd;
5986
5987 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5988 return NOTIFY_OK;
5989
5990 local_irq_disable();
5991 cpu = smp_processor_id();
5992 sd = &per_cpu(softnet_data, cpu);
5993 oldsd = &per_cpu(softnet_data, oldcpu);
5994
5995 /* Find end of our completion_queue. */
5996 list_skb = &sd->completion_queue;
5997 while (*list_skb)
5998 list_skb = &(*list_skb)->next;
5999 /* Append completion queue from offline CPU. */
6000 *list_skb = oldsd->completion_queue;
6001 oldsd->completion_queue = NULL;
6002
6003 /* Find end of our output_queue. */
6004 list_net = &sd->output_queue;
6005 while (*list_net)
6006 list_net = &(*list_net)->next_sched;
6007 /* Append output queue from offline CPU. */
6008 *list_net = oldsd->output_queue;
6009 oldsd->output_queue = NULL;
6010
6011 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6012 local_irq_enable();
6013
6014 /* Process offline CPU's input_pkt_queue */
6015 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
6016 netif_rx(skb);
6017
6018 return NOTIFY_OK;
6019 }
6020
6021
6022 /**
6023 * netdev_increment_features - increment feature set by one
6024 * @all: current feature set
6025 * @one: new feature set
6026 * @mask: mask feature set
6027 *
6028 * Computes a new feature set after adding a device with feature set
6029 * @one to the master device with current feature set @all. Will not
6030 * enable anything that is off in @mask. Returns the new feature set.
6031 */
6032 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6033 unsigned long mask)
6034 {
6035 /* If device needs checksumming, downgrade to it. */
6036 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6037 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6038 else if (mask & NETIF_F_ALL_CSUM) {
6039 /* If one device supports v4/v6 checksumming, set for all. */
6040 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6041 !(all & NETIF_F_GEN_CSUM)) {
6042 all &= ~NETIF_F_ALL_CSUM;
6043 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6044 }
6045
6046 /* If one device supports hw checksumming, set for all. */
6047 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6048 all &= ~NETIF_F_ALL_CSUM;
6049 all |= NETIF_F_HW_CSUM;
6050 }
6051 }
6052
6053 one |= NETIF_F_ALL_CSUM;
6054
6055 one |= all & NETIF_F_ONE_FOR_ALL;
6056 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6057 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6058
6059 return all;
6060 }
6061 EXPORT_SYMBOL(netdev_increment_features);
6062
6063 static struct hlist_head *netdev_create_hash(void)
6064 {
6065 int i;
6066 struct hlist_head *hash;
6067
6068 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6069 if (hash != NULL)
6070 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6071 INIT_HLIST_HEAD(&hash[i]);
6072
6073 return hash;
6074 }
6075
6076 /* Initialize per network namespace state */
6077 static int __net_init netdev_init(struct net *net)
6078 {
6079 INIT_LIST_HEAD(&net->dev_base_head);
6080
6081 net->dev_name_head = netdev_create_hash();
6082 if (net->dev_name_head == NULL)
6083 goto err_name;
6084
6085 net->dev_index_head = netdev_create_hash();
6086 if (net->dev_index_head == NULL)
6087 goto err_idx;
6088
6089 return 0;
6090
6091 err_idx:
6092 kfree(net->dev_name_head);
6093 err_name:
6094 return -ENOMEM;
6095 }
6096
6097 /**
6098 * netdev_drivername - network driver for the device
6099 * @dev: network device
6100 * @buffer: buffer for resulting name
6101 * @len: size of buffer
6102 *
6103 * Determine network driver for device.
6104 */
6105 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6106 {
6107 const struct device_driver *driver;
6108 const struct device *parent;
6109
6110 if (len <= 0 || !buffer)
6111 return buffer;
6112 buffer[0] = 0;
6113
6114 parent = dev->dev.parent;
6115
6116 if (!parent)
6117 return buffer;
6118
6119 driver = parent->driver;
6120 if (driver && driver->name)
6121 strlcpy(buffer, driver->name, len);
6122 return buffer;
6123 }
6124
6125 static void __net_exit netdev_exit(struct net *net)
6126 {
6127 kfree(net->dev_name_head);
6128 kfree(net->dev_index_head);
6129 }
6130
6131 static struct pernet_operations __net_initdata netdev_net_ops = {
6132 .init = netdev_init,
6133 .exit = netdev_exit,
6134 };
6135
6136 static void __net_exit default_device_exit(struct net *net)
6137 {
6138 struct net_device *dev, *aux;
6139 /*
6140 * Push all migratable network devices back to the
6141 * initial network namespace
6142 */
6143 rtnl_lock();
6144 for_each_netdev_safe(net, dev, aux) {
6145 int err;
6146 char fb_name[IFNAMSIZ];
6147
6148 /* Ignore unmoveable devices (i.e. loopback) */
6149 if (dev->features & NETIF_F_NETNS_LOCAL)
6150 continue;
6151
6152 /* Leave virtual devices for the generic cleanup */
6153 if (dev->rtnl_link_ops)
6154 continue;
6155
6156 /* Push remaing network devices to init_net */
6157 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6158 err = dev_change_net_namespace(dev, &init_net, fb_name);
6159 if (err) {
6160 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6161 __func__, dev->name, err);
6162 BUG();
6163 }
6164 }
6165 rtnl_unlock();
6166 }
6167
6168 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6169 {
6170 /* At exit all network devices most be removed from a network
6171 * namespace. Do this in the reverse order of registeration.
6172 * Do this across as many network namespaces as possible to
6173 * improve batching efficiency.
6174 */
6175 struct net_device *dev;
6176 struct net *net;
6177 LIST_HEAD(dev_kill_list);
6178
6179 rtnl_lock();
6180 list_for_each_entry(net, net_list, exit_list) {
6181 for_each_netdev_reverse(net, dev) {
6182 if (dev->rtnl_link_ops)
6183 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6184 else
6185 unregister_netdevice_queue(dev, &dev_kill_list);
6186 }
6187 }
6188 unregister_netdevice_many(&dev_kill_list);
6189 rtnl_unlock();
6190 }
6191
6192 static struct pernet_operations __net_initdata default_device_ops = {
6193 .exit = default_device_exit,
6194 .exit_batch = default_device_exit_batch,
6195 };
6196
6197 /*
6198 * Initialize the DEV module. At boot time this walks the device list and
6199 * unhooks any devices that fail to initialise (normally hardware not
6200 * present) and leaves us with a valid list of present and active devices.
6201 *
6202 */
6203
6204 /*
6205 * This is called single threaded during boot, so no need
6206 * to take the rtnl semaphore.
6207 */
6208 static int __init net_dev_init(void)
6209 {
6210 int i, rc = -ENOMEM;
6211
6212 BUG_ON(!dev_boot_phase);
6213
6214 if (dev_proc_init())
6215 goto out;
6216
6217 if (netdev_kobject_init())
6218 goto out;
6219
6220 INIT_LIST_HEAD(&ptype_all);
6221 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6222 INIT_LIST_HEAD(&ptype_base[i]);
6223
6224 if (register_pernet_subsys(&netdev_net_ops))
6225 goto out;
6226
6227 /*
6228 * Initialise the packet receive queues.
6229 */
6230
6231 for_each_possible_cpu(i) {
6232 struct softnet_data *queue;
6233
6234 queue = &per_cpu(softnet_data, i);
6235 skb_queue_head_init(&queue->input_pkt_queue);
6236 queue->completion_queue = NULL;
6237 INIT_LIST_HEAD(&queue->poll_list);
6238
6239 #ifdef CONFIG_SMP
6240 queue->csd.func = trigger_softirq;
6241 queue->csd.info = queue;
6242 queue->csd.flags = 0;
6243 #endif
6244
6245 queue->backlog.poll = process_backlog;
6246 queue->backlog.weight = weight_p;
6247 queue->backlog.gro_list = NULL;
6248 queue->backlog.gro_count = 0;
6249 }
6250
6251 dev_boot_phase = 0;
6252
6253 /* The loopback device is special if any other network devices
6254 * is present in a network namespace the loopback device must
6255 * be present. Since we now dynamically allocate and free the
6256 * loopback device ensure this invariant is maintained by
6257 * keeping the loopback device as the first device on the
6258 * list of network devices. Ensuring the loopback devices
6259 * is the first device that appears and the last network device
6260 * that disappears.
6261 */
6262 if (register_pernet_device(&loopback_net_ops))
6263 goto out;
6264
6265 if (register_pernet_device(&default_device_ops))
6266 goto out;
6267
6268 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6269 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6270
6271 hotcpu_notifier(dev_cpu_callback, 0);
6272 dst_init();
6273 dev_mcast_init();
6274 rc = 0;
6275 out:
6276 return rc;
6277 }
6278
6279 subsys_initcall(net_dev_init);
6280
6281 static int __init initialize_hashrnd(void)
6282 {
6283 get_random_bytes(&hashrnd, sizeof(hashrnd));
6284 return 0;
6285 }
6286
6287 late_initcall_sync(initialize_hashrnd);
6288
This page took 0.25978 seconds and 5 git commands to generate.