60377b6c0a804798a41ce8d128421a41226c25f1
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137
138 /*
139 * The list of packet types we will receive (as opposed to discard)
140 * and the routines to invoke.
141 *
142 * Why 16. Because with 16 the only overlap we get on a hash of the
143 * low nibble of the protocol value is RARP/SNAP/X.25.
144 *
145 * NOTE: That is no longer true with the addition of VLAN tags. Not
146 * sure which should go first, but I bet it won't make much
147 * difference if we are running VLANs. The good news is that
148 * this protocol won't be in the list unless compiled in, so
149 * the average user (w/out VLANs) will not be adversely affected.
150 * --BLG
151 *
152 * 0800 IP
153 * 8100 802.1Q VLAN
154 * 0001 802.3
155 * 0002 AX.25
156 * 0004 802.2
157 * 8035 RARP
158 * 0005 SNAP
159 * 0805 X.25
160 * 0806 ARP
161 * 8137 IPX
162 * 0009 Localtalk
163 * 86DD IPv6
164 */
165
166 #define PTYPE_HASH_SIZE (16)
167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
168
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly; /* Taps */
172
173 /*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading.
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192 DEFINE_RWLOCK(dev_base_lock);
193
194 EXPORT_SYMBOL(dev_base_lock);
195
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250
251 #ifdef CONFIG_LOCKDEP
252 /*
253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254 * according to dev->type
255 */
256 static const unsigned short netdev_lock_type[] =
257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272
273 static const char *netdev_lock_name[] =
274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 int i;
296
297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 if (netdev_lock_type[i] == dev_type)
299 return i;
300 /* the last key is used by default */
301 return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 unsigned short dev_type)
306 {
307 int i;
308
309 i = netdev_lock_pos(dev_type);
310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 netdev_lock_name[i]);
312 }
313
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 int i;
317
318 i = netdev_lock_pos(dev->type);
319 lockdep_set_class_and_name(&dev->addr_list_lock,
320 &netdev_addr_lock_key[i],
321 netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 }
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332
333 /*******************************************************************************
334
335 Protocol management and registration routines
336
337 *******************************************************************************/
338
339 /*
340 * Add a protocol ID to the list. Now that the input handler is
341 * smarter we can dispense with all the messy stuff that used to be
342 * here.
343 *
344 * BEWARE!!! Protocol handlers, mangling input packets,
345 * MUST BE last in hash buckets and checking protocol handlers
346 * MUST start from promiscuous ptype_all chain in net_bh.
347 * It is true now, do not change it.
348 * Explanation follows: if protocol handler, mangling packet, will
349 * be the first on list, it is not able to sense, that packet
350 * is cloned and should be copied-on-write, so that it will
351 * change it and subsequent readers will get broken packet.
352 * --ANK (980803)
353 */
354
355 /**
356 * dev_add_pack - add packet handler
357 * @pt: packet type declaration
358 *
359 * Add a protocol handler to the networking stack. The passed &packet_type
360 * is linked into kernel lists and may not be freed until it has been
361 * removed from the kernel lists.
362 *
363 * This call does not sleep therefore it can not
364 * guarantee all CPU's that are in middle of receiving packets
365 * will see the new packet type (until the next received packet).
366 */
367
368 void dev_add_pack(struct packet_type *pt)
369 {
370 int hash;
371
372 spin_lock_bh(&ptype_lock);
373 if (pt->type == htons(ETH_P_ALL))
374 list_add_rcu(&pt->list, &ptype_all);
375 else {
376 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 list_add_rcu(&pt->list, &ptype_base[hash]);
378 }
379 spin_unlock_bh(&ptype_lock);
380 }
381
382 /**
383 * __dev_remove_pack - remove packet handler
384 * @pt: packet type declaration
385 *
386 * Remove a protocol handler that was previously added to the kernel
387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
388 * from the kernel lists and can be freed or reused once this function
389 * returns.
390 *
391 * The packet type might still be in use by receivers
392 * and must not be freed until after all the CPU's have gone
393 * through a quiescent state.
394 */
395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 struct list_head *head;
398 struct packet_type *pt1;
399
400 spin_lock_bh(&ptype_lock);
401
402 if (pt->type == htons(ETH_P_ALL))
403 head = &ptype_all;
404 else
405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 spin_unlock_bh(&ptype_lock);
417 }
418 /**
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
429 */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 __dev_remove_pack(pt);
433
434 synchronize_net();
435 }
436
437 /******************************************************************************
438
439 Device Boot-time Settings Routines
440
441 *******************************************************************************/
442
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445
446 /**
447 * netdev_boot_setup_add - add new setup entry
448 * @name: name of the device
449 * @map: configured settings for the device
450 *
451 * Adds new setup entry to the dev_boot_setup list. The function
452 * returns 0 on error and 1 on success. This is a generic routine to
453 * all netdevices.
454 */
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 struct netdev_boot_setup *s;
458 int i;
459
460 s = dev_boot_setup;
461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 memset(s[i].name, 0, sizeof(s[i].name));
464 strlcpy(s[i].name, name, IFNAMSIZ);
465 memcpy(&s[i].map, map, sizeof(s[i].map));
466 break;
467 }
468 }
469
470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472
473 /**
474 * netdev_boot_setup_check - check boot time settings
475 * @dev: the netdevice
476 *
477 * Check boot time settings for the device.
478 * The found settings are set for the device to be used
479 * later in the device probing.
480 * Returns 0 if no settings found, 1 if they are.
481 */
482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 struct netdev_boot_setup *s = dev_boot_setup;
485 int i;
486
487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 !strcmp(dev->name, s[i].name)) {
490 dev->irq = s[i].map.irq;
491 dev->base_addr = s[i].map.base_addr;
492 dev->mem_start = s[i].map.mem_start;
493 dev->mem_end = s[i].map.mem_end;
494 return 1;
495 }
496 }
497 return 0;
498 }
499
500
501 /**
502 * netdev_boot_base - get address from boot time settings
503 * @prefix: prefix for network device
504 * @unit: id for network device
505 *
506 * Check boot time settings for the base address of device.
507 * The found settings are set for the device to be used
508 * later in the device probing.
509 * Returns 0 if no settings found.
510 */
511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 const struct netdev_boot_setup *s = dev_boot_setup;
514 char name[IFNAMSIZ];
515 int i;
516
517 sprintf(name, "%s%d", prefix, unit);
518
519 /*
520 * If device already registered then return base of 1
521 * to indicate not to probe for this interface
522 */
523 if (__dev_get_by_name(&init_net, name))
524 return 1;
525
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 if (!strcmp(name, s[i].name))
528 return s[i].map.base_addr;
529 return 0;
530 }
531
532 /*
533 * Saves at boot time configured settings for any netdevice.
534 */
535 int __init netdev_boot_setup(char *str)
536 {
537 int ints[5];
538 struct ifmap map;
539
540 str = get_options(str, ARRAY_SIZE(ints), ints);
541 if (!str || !*str)
542 return 0;
543
544 /* Save settings */
545 memset(&map, 0, sizeof(map));
546 if (ints[0] > 0)
547 map.irq = ints[1];
548 if (ints[0] > 1)
549 map.base_addr = ints[2];
550 if (ints[0] > 2)
551 map.mem_start = ints[3];
552 if (ints[0] > 3)
553 map.mem_end = ints[4];
554
555 /* Add new entry to the list */
556 return netdev_boot_setup_add(str, &map);
557 }
558
559 __setup("netdev=", netdev_boot_setup);
560
561 /*******************************************************************************
562
563 Device Interface Subroutines
564
565 *******************************************************************************/
566
567 /**
568 * __dev_get_by_name - find a device by its name
569 * @net: the applicable net namespace
570 * @name: name to find
571 *
572 * Find an interface by name. Must be called under RTNL semaphore
573 * or @dev_base_lock. If the name is found a pointer to the device
574 * is returned. If the name is not found then %NULL is returned. The
575 * reference counters are not incremented so the caller must be
576 * careful with locks.
577 */
578
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 struct hlist_node *p;
582
583 hlist_for_each(p, dev_name_hash(net, name)) {
584 struct net_device *dev
585 = hlist_entry(p, struct net_device, name_hlist);
586 if (!strncmp(dev->name, name, IFNAMSIZ))
587 return dev;
588 }
589 return NULL;
590 }
591
592 /**
593 * dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. This can be called from any
598 * context and does its own locking. The returned handle has
599 * the usage count incremented and the caller must use dev_put() to
600 * release it when it is no longer needed. %NULL is returned if no
601 * matching device is found.
602 */
603
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 struct net_device *dev;
607
608 read_lock(&dev_base_lock);
609 dev = __dev_get_by_name(net, name);
610 if (dev)
611 dev_hold(dev);
612 read_unlock(&dev_base_lock);
613 return dev;
614 }
615
616 /**
617 * __dev_get_by_index - find a device by its ifindex
618 * @net: the applicable net namespace
619 * @ifindex: index of device
620 *
621 * Search for an interface by index. Returns %NULL if the device
622 * is not found or a pointer to the device. The device has not
623 * had its reference counter increased so the caller must be careful
624 * about locking. The caller must hold either the RTNL semaphore
625 * or @dev_base_lock.
626 */
627
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 struct hlist_node *p;
631
632 hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 struct net_device *dev
634 = hlist_entry(p, struct net_device, index_hlist);
635 if (dev->ifindex == ifindex)
636 return dev;
637 }
638 return NULL;
639 }
640
641
642 /**
643 * dev_get_by_index - find a device by its ifindex
644 * @net: the applicable net namespace
645 * @ifindex: index of device
646 *
647 * Search for an interface by index. Returns NULL if the device
648 * is not found or a pointer to the device. The device returned has
649 * had a reference added and the pointer is safe until the user calls
650 * dev_put to indicate they have finished with it.
651 */
652
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 struct net_device *dev;
656
657 read_lock(&dev_base_lock);
658 dev = __dev_get_by_index(net, ifindex);
659 if (dev)
660 dev_hold(dev);
661 read_unlock(&dev_base_lock);
662 return dev;
663 }
664
665 /**
666 * dev_getbyhwaddr - find a device by its hardware address
667 * @net: the applicable net namespace
668 * @type: media type of device
669 * @ha: hardware address
670 *
671 * Search for an interface by MAC address. Returns NULL if the device
672 * is not found or a pointer to the device. The caller must hold the
673 * rtnl semaphore. The returned device has not had its ref count increased
674 * and the caller must therefore be careful about locking
675 *
676 * BUGS:
677 * If the API was consistent this would be __dev_get_by_hwaddr
678 */
679
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 struct net_device *dev;
683
684 ASSERT_RTNL();
685
686 for_each_netdev(net, dev)
687 if (dev->type == type &&
688 !memcmp(dev->dev_addr, ha, dev->addr_len))
689 return dev;
690
691 return NULL;
692 }
693
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701 for_each_netdev(net, dev)
702 if (dev->type == type)
703 return dev;
704
705 return NULL;
706 }
707
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 struct net_device *dev;
713
714 rtnl_lock();
715 dev = __dev_getfirstbyhwtype(net, type);
716 if (dev)
717 dev_hold(dev);
718 rtnl_unlock();
719 return dev;
720 }
721
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723
724 /**
725 * dev_get_by_flags - find any device with given flags
726 * @net: the applicable net namespace
727 * @if_flags: IFF_* values
728 * @mask: bitmask of bits in if_flags to check
729 *
730 * Search for any interface with the given flags. Returns NULL if a device
731 * is not found or a pointer to the device. The device returned has
732 * had a reference added and the pointer is safe until the user calls
733 * dev_put to indicate they have finished with it.
734 */
735
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 struct net_device *dev, *ret;
739
740 ret = NULL;
741 read_lock(&dev_base_lock);
742 for_each_netdev(net, dev) {
743 if (((dev->flags ^ if_flags) & mask) == 0) {
744 dev_hold(dev);
745 ret = dev;
746 break;
747 }
748 }
749 read_unlock(&dev_base_lock);
750 return ret;
751 }
752
753 /**
754 * dev_valid_name - check if name is okay for network device
755 * @name: name string
756 *
757 * Network device names need to be valid file names to
758 * to allow sysfs to work. We also disallow any kind of
759 * whitespace.
760 */
761 int dev_valid_name(const char *name)
762 {
763 if (*name == '\0')
764 return 0;
765 if (strlen(name) >= IFNAMSIZ)
766 return 0;
767 if (!strcmp(name, ".") || !strcmp(name, ".."))
768 return 0;
769
770 while (*name) {
771 if (*name == '/' || isspace(*name))
772 return 0;
773 name++;
774 }
775 return 1;
776 }
777
778 /**
779 * __dev_alloc_name - allocate a name for a device
780 * @net: network namespace to allocate the device name in
781 * @name: name format string
782 * @buf: scratch buffer and result name string
783 *
784 * Passed a format string - eg "lt%d" it will try and find a suitable
785 * id. It scans list of devices to build up a free map, then chooses
786 * the first empty slot. The caller must hold the dev_base or rtnl lock
787 * while allocating the name and adding the device in order to avoid
788 * duplicates.
789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790 * Returns the number of the unit assigned or a negative errno code.
791 */
792
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 int i = 0;
796 const char *p;
797 const int max_netdevices = 8*PAGE_SIZE;
798 unsigned long *inuse;
799 struct net_device *d;
800
801 p = strnchr(name, IFNAMSIZ-1, '%');
802 if (p) {
803 /*
804 * Verify the string as this thing may have come from
805 * the user. There must be either one "%d" and no other "%"
806 * characters.
807 */
808 if (p[1] != 'd' || strchr(p + 2, '%'))
809 return -EINVAL;
810
811 /* Use one page as a bit array of possible slots */
812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 if (!inuse)
814 return -ENOMEM;
815
816 for_each_netdev(net, d) {
817 if (!sscanf(d->name, name, &i))
818 continue;
819 if (i < 0 || i >= max_netdevices)
820 continue;
821
822 /* avoid cases where sscanf is not exact inverse of printf */
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!strncmp(buf, d->name, IFNAMSIZ))
825 set_bit(i, inuse);
826 }
827
828 i = find_first_zero_bit(inuse, max_netdevices);
829 free_page((unsigned long) inuse);
830 }
831
832 snprintf(buf, IFNAMSIZ, name, i);
833 if (!__dev_get_by_name(net, buf))
834 return i;
835
836 /* It is possible to run out of possible slots
837 * when the name is long and there isn't enough space left
838 * for the digits, or if all bits are used.
839 */
840 return -ENFILE;
841 }
842
843 /**
844 * dev_alloc_name - allocate a name for a device
845 * @dev: device
846 * @name: name format string
847 *
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
855 */
856
857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 char buf[IFNAMSIZ];
860 struct net *net;
861 int ret;
862
863 BUG_ON(!dev_net(dev));
864 net = dev_net(dev);
865 ret = __dev_alloc_name(net, name, buf);
866 if (ret >= 0)
867 strlcpy(dev->name, buf, IFNAMSIZ);
868 return ret;
869 }
870
871
872 /**
873 * dev_change_name - change name of a device
874 * @dev: device
875 * @newname: name (or format string) must be at least IFNAMSIZ
876 *
877 * Change name of a device, can pass format strings "eth%d".
878 * for wildcarding.
879 */
880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 char oldname[IFNAMSIZ];
883 int err = 0;
884 int ret;
885 struct net *net;
886
887 ASSERT_RTNL();
888 BUG_ON(!dev_net(dev));
889
890 net = dev_net(dev);
891 if (dev->flags & IFF_UP)
892 return -EBUSY;
893
894 if (!dev_valid_name(newname))
895 return -EINVAL;
896
897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 return 0;
899
900 memcpy(oldname, dev->name, IFNAMSIZ);
901
902 if (strchr(newname, '%')) {
903 err = dev_alloc_name(dev, newname);
904 if (err < 0)
905 return err;
906 }
907 else if (__dev_get_by_name(net, newname))
908 return -EEXIST;
909 else
910 strlcpy(dev->name, newname, IFNAMSIZ);
911
912 rollback:
913 /* For now only devices in the initial network namespace
914 * are in sysfs.
915 */
916 if (net == &init_net) {
917 ret = device_rename(&dev->dev, dev->name);
918 if (ret) {
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 return ret;
921 }
922 }
923
924 write_lock_bh(&dev_base_lock);
925 hlist_del(&dev->name_hlist);
926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 write_unlock_bh(&dev_base_lock);
928
929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 ret = notifier_to_errno(ret);
931
932 if (ret) {
933 if (err) {
934 printk(KERN_ERR
935 "%s: name change rollback failed: %d.\n",
936 dev->name, ret);
937 } else {
938 err = ret;
939 memcpy(dev->name, oldname, IFNAMSIZ);
940 goto rollback;
941 }
942 }
943
944 return err;
945 }
946
947 /**
948 * dev_set_alias - change ifalias of a device
949 * @dev: device
950 * @alias: name up to IFALIASZ
951 * @len: limit of bytes to copy from info
952 *
953 * Set ifalias for a device,
954 */
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 ASSERT_RTNL();
958
959 if (len >= IFALIASZ)
960 return -EINVAL;
961
962 if (!len) {
963 if (dev->ifalias) {
964 kfree(dev->ifalias);
965 dev->ifalias = NULL;
966 }
967 return 0;
968 }
969
970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 if (!dev->ifalias)
972 return -ENOMEM;
973
974 strlcpy(dev->ifalias, alias, len+1);
975 return len;
976 }
977
978
979 /**
980 * netdev_features_change - device changes features
981 * @dev: device to cause notification
982 *
983 * Called to indicate a device has changed features.
984 */
985 void netdev_features_change(struct net_device *dev)
986 {
987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990
991 /**
992 * netdev_state_change - device changes state
993 * @dev: device to cause notification
994 *
995 * Called to indicate a device has changed state. This function calls
996 * the notifier chains for netdev_chain and sends a NEWLINK message
997 * to the routing socket.
998 */
999 void netdev_state_change(struct net_device *dev)
1000 {
1001 if (dev->flags & IFF_UP) {
1002 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 }
1005 }
1006
1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012
1013 /**
1014 * dev_load - load a network module
1015 * @net: the applicable net namespace
1016 * @name: name of interface
1017 *
1018 * If a network interface is not present and the process has suitable
1019 * privileges this function loads the module. If module loading is not
1020 * available in this kernel then it becomes a nop.
1021 */
1022
1023 void dev_load(struct net *net, const char *name)
1024 {
1025 struct net_device *dev;
1026
1027 read_lock(&dev_base_lock);
1028 dev = __dev_get_by_name(net, name);
1029 read_unlock(&dev_base_lock);
1030
1031 if (!dev && capable(CAP_SYS_MODULE))
1032 request_module("%s", name);
1033 }
1034
1035 /**
1036 * dev_open - prepare an interface for use.
1037 * @dev: device to open
1038 *
1039 * Takes a device from down to up state. The device's private open
1040 * function is invoked and then the multicast lists are loaded. Finally
1041 * the device is moved into the up state and a %NETDEV_UP message is
1042 * sent to the netdev notifier chain.
1043 *
1044 * Calling this function on an active interface is a nop. On a failure
1045 * a negative errno code is returned.
1046 */
1047 int dev_open(struct net_device *dev)
1048 {
1049 const struct net_device_ops *ops = dev->netdev_ops;
1050 int ret = 0;
1051
1052 ASSERT_RTNL();
1053
1054 /*
1055 * Is it already up?
1056 */
1057
1058 if (dev->flags & IFF_UP)
1059 return 0;
1060
1061 /*
1062 * Is it even present?
1063 */
1064 if (!netif_device_present(dev))
1065 return -ENODEV;
1066
1067 /*
1068 * Call device private open method
1069 */
1070 set_bit(__LINK_STATE_START, &dev->state);
1071
1072 if (ops->ndo_validate_addr)
1073 ret = ops->ndo_validate_addr(dev);
1074
1075 if (!ret && ops->ndo_open)
1076 ret = ops->ndo_open(dev);
1077
1078 /*
1079 * If it went open OK then:
1080 */
1081
1082 if (ret)
1083 clear_bit(__LINK_STATE_START, &dev->state);
1084 else {
1085 /*
1086 * Set the flags.
1087 */
1088 dev->flags |= IFF_UP;
1089
1090 /*
1091 * Enable NET_DMA
1092 */
1093 dmaengine_get();
1094
1095 /*
1096 * Initialize multicasting status
1097 */
1098 dev_set_rx_mode(dev);
1099
1100 /*
1101 * Wakeup transmit queue engine
1102 */
1103 dev_activate(dev);
1104
1105 /*
1106 * ... and announce new interface.
1107 */
1108 call_netdevice_notifiers(NETDEV_UP, dev);
1109 }
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * dev_close - shutdown an interface.
1116 * @dev: device to shutdown
1117 *
1118 * This function moves an active device into down state. A
1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121 * chain.
1122 */
1123 int dev_close(struct net_device *dev)
1124 {
1125 const struct net_device_ops *ops = dev->netdev_ops;
1126 ASSERT_RTNL();
1127
1128 might_sleep();
1129
1130 if (!(dev->flags & IFF_UP))
1131 return 0;
1132
1133 /*
1134 * Tell people we are going down, so that they can
1135 * prepare to death, when device is still operating.
1136 */
1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1138
1139 clear_bit(__LINK_STATE_START, &dev->state);
1140
1141 /* Synchronize to scheduled poll. We cannot touch poll list,
1142 * it can be even on different cpu. So just clear netif_running().
1143 *
1144 * dev->stop() will invoke napi_disable() on all of it's
1145 * napi_struct instances on this device.
1146 */
1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1148
1149 dev_deactivate(dev);
1150
1151 /*
1152 * Call the device specific close. This cannot fail.
1153 * Only if device is UP
1154 *
1155 * We allow it to be called even after a DETACH hot-plug
1156 * event.
1157 */
1158 if (ops->ndo_stop)
1159 ops->ndo_stop(dev);
1160
1161 /*
1162 * Device is now down.
1163 */
1164
1165 dev->flags &= ~IFF_UP;
1166
1167 /*
1168 * Tell people we are down
1169 */
1170 call_netdevice_notifiers(NETDEV_DOWN, dev);
1171
1172 /*
1173 * Shutdown NET_DMA
1174 */
1175 dmaengine_put();
1176
1177 return 0;
1178 }
1179
1180
1181 /**
1182 * dev_disable_lro - disable Large Receive Offload on a device
1183 * @dev: device
1184 *
1185 * Disable Large Receive Offload (LRO) on a net device. Must be
1186 * called under RTNL. This is needed if received packets may be
1187 * forwarded to another interface.
1188 */
1189 void dev_disable_lro(struct net_device *dev)
1190 {
1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 dev->ethtool_ops->set_flags) {
1193 u32 flags = dev->ethtool_ops->get_flags(dev);
1194 if (flags & ETH_FLAG_LRO) {
1195 flags &= ~ETH_FLAG_LRO;
1196 dev->ethtool_ops->set_flags(dev, flags);
1197 }
1198 }
1199 WARN_ON(dev->features & NETIF_F_LRO);
1200 }
1201 EXPORT_SYMBOL(dev_disable_lro);
1202
1203
1204 static int dev_boot_phase = 1;
1205
1206 /*
1207 * Device change register/unregister. These are not inline or static
1208 * as we export them to the world.
1209 */
1210
1211 /**
1212 * register_netdevice_notifier - register a network notifier block
1213 * @nb: notifier
1214 *
1215 * Register a notifier to be called when network device events occur.
1216 * The notifier passed is linked into the kernel structures and must
1217 * not be reused until it has been unregistered. A negative errno code
1218 * is returned on a failure.
1219 *
1220 * When registered all registration and up events are replayed
1221 * to the new notifier to allow device to have a race free
1222 * view of the network device list.
1223 */
1224
1225 int register_netdevice_notifier(struct notifier_block *nb)
1226 {
1227 struct net_device *dev;
1228 struct net_device *last;
1229 struct net *net;
1230 int err;
1231
1232 rtnl_lock();
1233 err = raw_notifier_chain_register(&netdev_chain, nb);
1234 if (err)
1235 goto unlock;
1236 if (dev_boot_phase)
1237 goto unlock;
1238 for_each_net(net) {
1239 for_each_netdev(net, dev) {
1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 err = notifier_to_errno(err);
1242 if (err)
1243 goto rollback;
1244
1245 if (!(dev->flags & IFF_UP))
1246 continue;
1247
1248 nb->notifier_call(nb, NETDEV_UP, dev);
1249 }
1250 }
1251
1252 unlock:
1253 rtnl_unlock();
1254 return err;
1255
1256 rollback:
1257 last = dev;
1258 for_each_net(net) {
1259 for_each_netdev(net, dev) {
1260 if (dev == last)
1261 break;
1262
1263 if (dev->flags & IFF_UP) {
1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 nb->notifier_call(nb, NETDEV_DOWN, dev);
1266 }
1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 }
1269 }
1270
1271 raw_notifier_chain_unregister(&netdev_chain, nb);
1272 goto unlock;
1273 }
1274
1275 /**
1276 * unregister_netdevice_notifier - unregister a network notifier block
1277 * @nb: notifier
1278 *
1279 * Unregister a notifier previously registered by
1280 * register_netdevice_notifier(). The notifier is unlinked into the
1281 * kernel structures and may then be reused. A negative errno code
1282 * is returned on a failure.
1283 */
1284
1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1286 {
1287 int err;
1288
1289 rtnl_lock();
1290 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 rtnl_unlock();
1292 return err;
1293 }
1294
1295 /**
1296 * call_netdevice_notifiers - call all network notifier blocks
1297 * @val: value passed unmodified to notifier function
1298 * @dev: net_device pointer passed unmodified to notifier function
1299 *
1300 * Call all network notifier blocks. Parameters and return value
1301 * are as for raw_notifier_call_chain().
1302 */
1303
1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1305 {
1306 return raw_notifier_call_chain(&netdev_chain, val, dev);
1307 }
1308
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1311
1312 void net_enable_timestamp(void)
1313 {
1314 atomic_inc(&netstamp_needed);
1315 }
1316
1317 void net_disable_timestamp(void)
1318 {
1319 atomic_dec(&netstamp_needed);
1320 }
1321
1322 static inline void net_timestamp(struct sk_buff *skb)
1323 {
1324 if (atomic_read(&netstamp_needed))
1325 __net_timestamp(skb);
1326 else
1327 skb->tstamp.tv64 = 0;
1328 }
1329
1330 /*
1331 * Support routine. Sends outgoing frames to any network
1332 * taps currently in use.
1333 */
1334
1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 struct packet_type *ptype;
1338
1339 net_timestamp(skb);
1340
1341 rcu_read_lock();
1342 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1343 /* Never send packets back to the socket
1344 * they originated from - MvS (miquels@drinkel.ow.org)
1345 */
1346 if ((ptype->dev == dev || !ptype->dev) &&
1347 (ptype->af_packet_priv == NULL ||
1348 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1349 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1350 if (!skb2)
1351 break;
1352
1353 /* skb->nh should be correctly
1354 set by sender, so that the second statement is
1355 just protection against buggy protocols.
1356 */
1357 skb_reset_mac_header(skb2);
1358
1359 if (skb_network_header(skb2) < skb2->data ||
1360 skb2->network_header > skb2->tail) {
1361 if (net_ratelimit())
1362 printk(KERN_CRIT "protocol %04x is "
1363 "buggy, dev %s\n",
1364 skb2->protocol, dev->name);
1365 skb_reset_network_header(skb2);
1366 }
1367
1368 skb2->transport_header = skb2->network_header;
1369 skb2->pkt_type = PACKET_OUTGOING;
1370 ptype->func(skb2, skb->dev, ptype, skb->dev);
1371 }
1372 }
1373 rcu_read_unlock();
1374 }
1375
1376
1377 static inline void __netif_reschedule(struct Qdisc *q)
1378 {
1379 struct softnet_data *sd;
1380 unsigned long flags;
1381
1382 local_irq_save(flags);
1383 sd = &__get_cpu_var(softnet_data);
1384 q->next_sched = sd->output_queue;
1385 sd->output_queue = q;
1386 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1387 local_irq_restore(flags);
1388 }
1389
1390 void __netif_schedule(struct Qdisc *q)
1391 {
1392 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1393 __netif_reschedule(q);
1394 }
1395 EXPORT_SYMBOL(__netif_schedule);
1396
1397 void dev_kfree_skb_irq(struct sk_buff *skb)
1398 {
1399 if (atomic_dec_and_test(&skb->users)) {
1400 struct softnet_data *sd;
1401 unsigned long flags;
1402
1403 local_irq_save(flags);
1404 sd = &__get_cpu_var(softnet_data);
1405 skb->next = sd->completion_queue;
1406 sd->completion_queue = skb;
1407 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1408 local_irq_restore(flags);
1409 }
1410 }
1411 EXPORT_SYMBOL(dev_kfree_skb_irq);
1412
1413 void dev_kfree_skb_any(struct sk_buff *skb)
1414 {
1415 if (in_irq() || irqs_disabled())
1416 dev_kfree_skb_irq(skb);
1417 else
1418 dev_kfree_skb(skb);
1419 }
1420 EXPORT_SYMBOL(dev_kfree_skb_any);
1421
1422
1423 /**
1424 * netif_device_detach - mark device as removed
1425 * @dev: network device
1426 *
1427 * Mark device as removed from system and therefore no longer available.
1428 */
1429 void netif_device_detach(struct net_device *dev)
1430 {
1431 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1432 netif_running(dev)) {
1433 netif_stop_queue(dev);
1434 }
1435 }
1436 EXPORT_SYMBOL(netif_device_detach);
1437
1438 /**
1439 * netif_device_attach - mark device as attached
1440 * @dev: network device
1441 *
1442 * Mark device as attached from system and restart if needed.
1443 */
1444 void netif_device_attach(struct net_device *dev)
1445 {
1446 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1447 netif_running(dev)) {
1448 netif_wake_queue(dev);
1449 __netdev_watchdog_up(dev);
1450 }
1451 }
1452 EXPORT_SYMBOL(netif_device_attach);
1453
1454 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1455 {
1456 return ((features & NETIF_F_GEN_CSUM) ||
1457 ((features & NETIF_F_IP_CSUM) &&
1458 protocol == htons(ETH_P_IP)) ||
1459 ((features & NETIF_F_IPV6_CSUM) &&
1460 protocol == htons(ETH_P_IPV6)));
1461 }
1462
1463 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1464 {
1465 if (can_checksum_protocol(dev->features, skb->protocol))
1466 return true;
1467
1468 if (skb->protocol == htons(ETH_P_8021Q)) {
1469 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1470 if (can_checksum_protocol(dev->features & dev->vlan_features,
1471 veh->h_vlan_encapsulated_proto))
1472 return true;
1473 }
1474
1475 return false;
1476 }
1477
1478 /*
1479 * Invalidate hardware checksum when packet is to be mangled, and
1480 * complete checksum manually on outgoing path.
1481 */
1482 int skb_checksum_help(struct sk_buff *skb)
1483 {
1484 __wsum csum;
1485 int ret = 0, offset;
1486
1487 if (skb->ip_summed == CHECKSUM_COMPLETE)
1488 goto out_set_summed;
1489
1490 if (unlikely(skb_shinfo(skb)->gso_size)) {
1491 /* Let GSO fix up the checksum. */
1492 goto out_set_summed;
1493 }
1494
1495 offset = skb->csum_start - skb_headroom(skb);
1496 BUG_ON(offset >= skb_headlen(skb));
1497 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1498
1499 offset += skb->csum_offset;
1500 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1501
1502 if (skb_cloned(skb) &&
1503 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1504 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1505 if (ret)
1506 goto out;
1507 }
1508
1509 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1510 out_set_summed:
1511 skb->ip_summed = CHECKSUM_NONE;
1512 out:
1513 return ret;
1514 }
1515
1516 /**
1517 * skb_gso_segment - Perform segmentation on skb.
1518 * @skb: buffer to segment
1519 * @features: features for the output path (see dev->features)
1520 *
1521 * This function segments the given skb and returns a list of segments.
1522 *
1523 * It may return NULL if the skb requires no segmentation. This is
1524 * only possible when GSO is used for verifying header integrity.
1525 */
1526 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1527 {
1528 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1529 struct packet_type *ptype;
1530 __be16 type = skb->protocol;
1531 int err;
1532
1533 skb_reset_mac_header(skb);
1534 skb->mac_len = skb->network_header - skb->mac_header;
1535 __skb_pull(skb, skb->mac_len);
1536
1537 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1538 if (skb_header_cloned(skb) &&
1539 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1540 return ERR_PTR(err);
1541 }
1542
1543 rcu_read_lock();
1544 list_for_each_entry_rcu(ptype,
1545 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1546 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1547 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1548 err = ptype->gso_send_check(skb);
1549 segs = ERR_PTR(err);
1550 if (err || skb_gso_ok(skb, features))
1551 break;
1552 __skb_push(skb, (skb->data -
1553 skb_network_header(skb)));
1554 }
1555 segs = ptype->gso_segment(skb, features);
1556 break;
1557 }
1558 }
1559 rcu_read_unlock();
1560
1561 __skb_push(skb, skb->data - skb_mac_header(skb));
1562
1563 return segs;
1564 }
1565
1566 EXPORT_SYMBOL(skb_gso_segment);
1567
1568 /* Take action when hardware reception checksum errors are detected. */
1569 #ifdef CONFIG_BUG
1570 void netdev_rx_csum_fault(struct net_device *dev)
1571 {
1572 if (net_ratelimit()) {
1573 printk(KERN_ERR "%s: hw csum failure.\n",
1574 dev ? dev->name : "<unknown>");
1575 dump_stack();
1576 }
1577 }
1578 EXPORT_SYMBOL(netdev_rx_csum_fault);
1579 #endif
1580
1581 /* Actually, we should eliminate this check as soon as we know, that:
1582 * 1. IOMMU is present and allows to map all the memory.
1583 * 2. No high memory really exists on this machine.
1584 */
1585
1586 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1587 {
1588 #ifdef CONFIG_HIGHMEM
1589 int i;
1590
1591 if (dev->features & NETIF_F_HIGHDMA)
1592 return 0;
1593
1594 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1595 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1596 return 1;
1597
1598 #endif
1599 return 0;
1600 }
1601
1602 struct dev_gso_cb {
1603 void (*destructor)(struct sk_buff *skb);
1604 };
1605
1606 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1607
1608 static void dev_gso_skb_destructor(struct sk_buff *skb)
1609 {
1610 struct dev_gso_cb *cb;
1611
1612 do {
1613 struct sk_buff *nskb = skb->next;
1614
1615 skb->next = nskb->next;
1616 nskb->next = NULL;
1617 kfree_skb(nskb);
1618 } while (skb->next);
1619
1620 cb = DEV_GSO_CB(skb);
1621 if (cb->destructor)
1622 cb->destructor(skb);
1623 }
1624
1625 /**
1626 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1627 * @skb: buffer to segment
1628 *
1629 * This function segments the given skb and stores the list of segments
1630 * in skb->next.
1631 */
1632 static int dev_gso_segment(struct sk_buff *skb)
1633 {
1634 struct net_device *dev = skb->dev;
1635 struct sk_buff *segs;
1636 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1637 NETIF_F_SG : 0);
1638
1639 segs = skb_gso_segment(skb, features);
1640
1641 /* Verifying header integrity only. */
1642 if (!segs)
1643 return 0;
1644
1645 if (IS_ERR(segs))
1646 return PTR_ERR(segs);
1647
1648 skb->next = segs;
1649 DEV_GSO_CB(skb)->destructor = skb->destructor;
1650 skb->destructor = dev_gso_skb_destructor;
1651
1652 return 0;
1653 }
1654
1655 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1656 struct netdev_queue *txq)
1657 {
1658 const struct net_device_ops *ops = dev->netdev_ops;
1659
1660 prefetch(&dev->netdev_ops->ndo_start_xmit);
1661 if (likely(!skb->next)) {
1662 if (!list_empty(&ptype_all))
1663 dev_queue_xmit_nit(skb, dev);
1664
1665 if (netif_needs_gso(dev, skb)) {
1666 if (unlikely(dev_gso_segment(skb)))
1667 goto out_kfree_skb;
1668 if (skb->next)
1669 goto gso;
1670 }
1671
1672 return ops->ndo_start_xmit(skb, dev);
1673 }
1674
1675 gso:
1676 do {
1677 struct sk_buff *nskb = skb->next;
1678 int rc;
1679
1680 skb->next = nskb->next;
1681 nskb->next = NULL;
1682 rc = ops->ndo_start_xmit(nskb, dev);
1683 if (unlikely(rc)) {
1684 nskb->next = skb->next;
1685 skb->next = nskb;
1686 return rc;
1687 }
1688 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1689 return NETDEV_TX_BUSY;
1690 } while (skb->next);
1691
1692 skb->destructor = DEV_GSO_CB(skb)->destructor;
1693
1694 out_kfree_skb:
1695 kfree_skb(skb);
1696 return 0;
1697 }
1698
1699 static u32 simple_tx_hashrnd;
1700 static int simple_tx_hashrnd_initialized = 0;
1701
1702 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1703 {
1704 u32 addr1, addr2, ports;
1705 u32 hash, ihl;
1706 u8 ip_proto = 0;
1707
1708 if (unlikely(!simple_tx_hashrnd_initialized)) {
1709 get_random_bytes(&simple_tx_hashrnd, 4);
1710 simple_tx_hashrnd_initialized = 1;
1711 }
1712
1713 switch (skb->protocol) {
1714 case htons(ETH_P_IP):
1715 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1716 ip_proto = ip_hdr(skb)->protocol;
1717 addr1 = ip_hdr(skb)->saddr;
1718 addr2 = ip_hdr(skb)->daddr;
1719 ihl = ip_hdr(skb)->ihl;
1720 break;
1721 case htons(ETH_P_IPV6):
1722 ip_proto = ipv6_hdr(skb)->nexthdr;
1723 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1724 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1725 ihl = (40 >> 2);
1726 break;
1727 default:
1728 return 0;
1729 }
1730
1731
1732 switch (ip_proto) {
1733 case IPPROTO_TCP:
1734 case IPPROTO_UDP:
1735 case IPPROTO_DCCP:
1736 case IPPROTO_ESP:
1737 case IPPROTO_AH:
1738 case IPPROTO_SCTP:
1739 case IPPROTO_UDPLITE:
1740 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1741 break;
1742
1743 default:
1744 ports = 0;
1745 break;
1746 }
1747
1748 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1749
1750 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1751 }
1752
1753 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1754 struct sk_buff *skb)
1755 {
1756 const struct net_device_ops *ops = dev->netdev_ops;
1757 u16 queue_index = 0;
1758
1759 if (ops->ndo_select_queue)
1760 queue_index = ops->ndo_select_queue(dev, skb);
1761 else if (dev->real_num_tx_queues > 1)
1762 queue_index = simple_tx_hash(dev, skb);
1763
1764 skb_set_queue_mapping(skb, queue_index);
1765 return netdev_get_tx_queue(dev, queue_index);
1766 }
1767
1768 /**
1769 * dev_queue_xmit - transmit a buffer
1770 * @skb: buffer to transmit
1771 *
1772 * Queue a buffer for transmission to a network device. The caller must
1773 * have set the device and priority and built the buffer before calling
1774 * this function. The function can be called from an interrupt.
1775 *
1776 * A negative errno code is returned on a failure. A success does not
1777 * guarantee the frame will be transmitted as it may be dropped due
1778 * to congestion or traffic shaping.
1779 *
1780 * -----------------------------------------------------------------------------------
1781 * I notice this method can also return errors from the queue disciplines,
1782 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1783 * be positive.
1784 *
1785 * Regardless of the return value, the skb is consumed, so it is currently
1786 * difficult to retry a send to this method. (You can bump the ref count
1787 * before sending to hold a reference for retry if you are careful.)
1788 *
1789 * When calling this method, interrupts MUST be enabled. This is because
1790 * the BH enable code must have IRQs enabled so that it will not deadlock.
1791 * --BLG
1792 */
1793 int dev_queue_xmit(struct sk_buff *skb)
1794 {
1795 struct net_device *dev = skb->dev;
1796 struct netdev_queue *txq;
1797 struct Qdisc *q;
1798 int rc = -ENOMEM;
1799
1800 /* GSO will handle the following emulations directly. */
1801 if (netif_needs_gso(dev, skb))
1802 goto gso;
1803
1804 if (skb_shinfo(skb)->frag_list &&
1805 !(dev->features & NETIF_F_FRAGLIST) &&
1806 __skb_linearize(skb))
1807 goto out_kfree_skb;
1808
1809 /* Fragmented skb is linearized if device does not support SG,
1810 * or if at least one of fragments is in highmem and device
1811 * does not support DMA from it.
1812 */
1813 if (skb_shinfo(skb)->nr_frags &&
1814 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1815 __skb_linearize(skb))
1816 goto out_kfree_skb;
1817
1818 /* If packet is not checksummed and device does not support
1819 * checksumming for this protocol, complete checksumming here.
1820 */
1821 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1822 skb_set_transport_header(skb, skb->csum_start -
1823 skb_headroom(skb));
1824 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1825 goto out_kfree_skb;
1826 }
1827
1828 gso:
1829 /* Disable soft irqs for various locks below. Also
1830 * stops preemption for RCU.
1831 */
1832 rcu_read_lock_bh();
1833
1834 txq = dev_pick_tx(dev, skb);
1835 q = rcu_dereference(txq->qdisc);
1836
1837 #ifdef CONFIG_NET_CLS_ACT
1838 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1839 #endif
1840 if (q->enqueue) {
1841 spinlock_t *root_lock = qdisc_lock(q);
1842
1843 spin_lock(root_lock);
1844
1845 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1846 kfree_skb(skb);
1847 rc = NET_XMIT_DROP;
1848 } else {
1849 rc = qdisc_enqueue_root(skb, q);
1850 qdisc_run(q);
1851 }
1852 spin_unlock(root_lock);
1853
1854 goto out;
1855 }
1856
1857 /* The device has no queue. Common case for software devices:
1858 loopback, all the sorts of tunnels...
1859
1860 Really, it is unlikely that netif_tx_lock protection is necessary
1861 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1862 counters.)
1863 However, it is possible, that they rely on protection
1864 made by us here.
1865
1866 Check this and shot the lock. It is not prone from deadlocks.
1867 Either shot noqueue qdisc, it is even simpler 8)
1868 */
1869 if (dev->flags & IFF_UP) {
1870 int cpu = smp_processor_id(); /* ok because BHs are off */
1871
1872 if (txq->xmit_lock_owner != cpu) {
1873
1874 HARD_TX_LOCK(dev, txq, cpu);
1875
1876 if (!netif_tx_queue_stopped(txq)) {
1877 rc = 0;
1878 if (!dev_hard_start_xmit(skb, dev, txq)) {
1879 HARD_TX_UNLOCK(dev, txq);
1880 goto out;
1881 }
1882 }
1883 HARD_TX_UNLOCK(dev, txq);
1884 if (net_ratelimit())
1885 printk(KERN_CRIT "Virtual device %s asks to "
1886 "queue packet!\n", dev->name);
1887 } else {
1888 /* Recursion is detected! It is possible,
1889 * unfortunately */
1890 if (net_ratelimit())
1891 printk(KERN_CRIT "Dead loop on virtual device "
1892 "%s, fix it urgently!\n", dev->name);
1893 }
1894 }
1895
1896 rc = -ENETDOWN;
1897 rcu_read_unlock_bh();
1898
1899 out_kfree_skb:
1900 kfree_skb(skb);
1901 return rc;
1902 out:
1903 rcu_read_unlock_bh();
1904 return rc;
1905 }
1906
1907
1908 /*=======================================================================
1909 Receiver routines
1910 =======================================================================*/
1911
1912 int netdev_max_backlog __read_mostly = 1000;
1913 int netdev_budget __read_mostly = 300;
1914 int weight_p __read_mostly = 64; /* old backlog weight */
1915
1916 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1917
1918
1919 /**
1920 * netif_rx - post buffer to the network code
1921 * @skb: buffer to post
1922 *
1923 * This function receives a packet from a device driver and queues it for
1924 * the upper (protocol) levels to process. It always succeeds. The buffer
1925 * may be dropped during processing for congestion control or by the
1926 * protocol layers.
1927 *
1928 * return values:
1929 * NET_RX_SUCCESS (no congestion)
1930 * NET_RX_DROP (packet was dropped)
1931 *
1932 */
1933
1934 int netif_rx(struct sk_buff *skb)
1935 {
1936 struct softnet_data *queue;
1937 unsigned long flags;
1938
1939 /* if netpoll wants it, pretend we never saw it */
1940 if (netpoll_rx(skb))
1941 return NET_RX_DROP;
1942
1943 if (!skb->tstamp.tv64)
1944 net_timestamp(skb);
1945
1946 /*
1947 * The code is rearranged so that the path is the most
1948 * short when CPU is congested, but is still operating.
1949 */
1950 local_irq_save(flags);
1951 queue = &__get_cpu_var(softnet_data);
1952
1953 __get_cpu_var(netdev_rx_stat).total++;
1954 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1955 if (queue->input_pkt_queue.qlen) {
1956 enqueue:
1957 __skb_queue_tail(&queue->input_pkt_queue, skb);
1958 local_irq_restore(flags);
1959 return NET_RX_SUCCESS;
1960 }
1961
1962 napi_schedule(&queue->backlog);
1963 goto enqueue;
1964 }
1965
1966 __get_cpu_var(netdev_rx_stat).dropped++;
1967 local_irq_restore(flags);
1968
1969 kfree_skb(skb);
1970 return NET_RX_DROP;
1971 }
1972
1973 int netif_rx_ni(struct sk_buff *skb)
1974 {
1975 int err;
1976
1977 preempt_disable();
1978 err = netif_rx(skb);
1979 if (local_softirq_pending())
1980 do_softirq();
1981 preempt_enable();
1982
1983 return err;
1984 }
1985
1986 EXPORT_SYMBOL(netif_rx_ni);
1987
1988 static void net_tx_action(struct softirq_action *h)
1989 {
1990 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1991
1992 if (sd->completion_queue) {
1993 struct sk_buff *clist;
1994
1995 local_irq_disable();
1996 clist = sd->completion_queue;
1997 sd->completion_queue = NULL;
1998 local_irq_enable();
1999
2000 while (clist) {
2001 struct sk_buff *skb = clist;
2002 clist = clist->next;
2003
2004 WARN_ON(atomic_read(&skb->users));
2005 __kfree_skb(skb);
2006 }
2007 }
2008
2009 if (sd->output_queue) {
2010 struct Qdisc *head;
2011
2012 local_irq_disable();
2013 head = sd->output_queue;
2014 sd->output_queue = NULL;
2015 local_irq_enable();
2016
2017 while (head) {
2018 struct Qdisc *q = head;
2019 spinlock_t *root_lock;
2020
2021 head = head->next_sched;
2022
2023 root_lock = qdisc_lock(q);
2024 if (spin_trylock(root_lock)) {
2025 smp_mb__before_clear_bit();
2026 clear_bit(__QDISC_STATE_SCHED,
2027 &q->state);
2028 qdisc_run(q);
2029 spin_unlock(root_lock);
2030 } else {
2031 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2032 &q->state)) {
2033 __netif_reschedule(q);
2034 } else {
2035 smp_mb__before_clear_bit();
2036 clear_bit(__QDISC_STATE_SCHED,
2037 &q->state);
2038 }
2039 }
2040 }
2041 }
2042 }
2043
2044 static inline int deliver_skb(struct sk_buff *skb,
2045 struct packet_type *pt_prev,
2046 struct net_device *orig_dev)
2047 {
2048 atomic_inc(&skb->users);
2049 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2050 }
2051
2052 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2053 /* These hooks defined here for ATM */
2054 struct net_bridge;
2055 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2056 unsigned char *addr);
2057 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2058
2059 /*
2060 * If bridge module is loaded call bridging hook.
2061 * returns NULL if packet was consumed.
2062 */
2063 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2064 struct sk_buff *skb) __read_mostly;
2065 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2066 struct packet_type **pt_prev, int *ret,
2067 struct net_device *orig_dev)
2068 {
2069 struct net_bridge_port *port;
2070
2071 if (skb->pkt_type == PACKET_LOOPBACK ||
2072 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2073 return skb;
2074
2075 if (*pt_prev) {
2076 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2077 *pt_prev = NULL;
2078 }
2079
2080 return br_handle_frame_hook(port, skb);
2081 }
2082 #else
2083 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2084 #endif
2085
2086 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2087 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2088 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2089
2090 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2091 struct packet_type **pt_prev,
2092 int *ret,
2093 struct net_device *orig_dev)
2094 {
2095 if (skb->dev->macvlan_port == NULL)
2096 return skb;
2097
2098 if (*pt_prev) {
2099 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2100 *pt_prev = NULL;
2101 }
2102 return macvlan_handle_frame_hook(skb);
2103 }
2104 #else
2105 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2106 #endif
2107
2108 #ifdef CONFIG_NET_CLS_ACT
2109 /* TODO: Maybe we should just force sch_ingress to be compiled in
2110 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2111 * a compare and 2 stores extra right now if we dont have it on
2112 * but have CONFIG_NET_CLS_ACT
2113 * NOTE: This doesnt stop any functionality; if you dont have
2114 * the ingress scheduler, you just cant add policies on ingress.
2115 *
2116 */
2117 static int ing_filter(struct sk_buff *skb)
2118 {
2119 struct net_device *dev = skb->dev;
2120 u32 ttl = G_TC_RTTL(skb->tc_verd);
2121 struct netdev_queue *rxq;
2122 int result = TC_ACT_OK;
2123 struct Qdisc *q;
2124
2125 if (MAX_RED_LOOP < ttl++) {
2126 printk(KERN_WARNING
2127 "Redir loop detected Dropping packet (%d->%d)\n",
2128 skb->iif, dev->ifindex);
2129 return TC_ACT_SHOT;
2130 }
2131
2132 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2133 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2134
2135 rxq = &dev->rx_queue;
2136
2137 q = rxq->qdisc;
2138 if (q != &noop_qdisc) {
2139 spin_lock(qdisc_lock(q));
2140 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2141 result = qdisc_enqueue_root(skb, q);
2142 spin_unlock(qdisc_lock(q));
2143 }
2144
2145 return result;
2146 }
2147
2148 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2149 struct packet_type **pt_prev,
2150 int *ret, struct net_device *orig_dev)
2151 {
2152 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2153 goto out;
2154
2155 if (*pt_prev) {
2156 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2157 *pt_prev = NULL;
2158 } else {
2159 /* Huh? Why does turning on AF_PACKET affect this? */
2160 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2161 }
2162
2163 switch (ing_filter(skb)) {
2164 case TC_ACT_SHOT:
2165 case TC_ACT_STOLEN:
2166 kfree_skb(skb);
2167 return NULL;
2168 }
2169
2170 out:
2171 skb->tc_verd = 0;
2172 return skb;
2173 }
2174 #endif
2175
2176 /*
2177 * netif_nit_deliver - deliver received packets to network taps
2178 * @skb: buffer
2179 *
2180 * This function is used to deliver incoming packets to network
2181 * taps. It should be used when the normal netif_receive_skb path
2182 * is bypassed, for example because of VLAN acceleration.
2183 */
2184 void netif_nit_deliver(struct sk_buff *skb)
2185 {
2186 struct packet_type *ptype;
2187
2188 if (list_empty(&ptype_all))
2189 return;
2190
2191 skb_reset_network_header(skb);
2192 skb_reset_transport_header(skb);
2193 skb->mac_len = skb->network_header - skb->mac_header;
2194
2195 rcu_read_lock();
2196 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2197 if (!ptype->dev || ptype->dev == skb->dev)
2198 deliver_skb(skb, ptype, skb->dev);
2199 }
2200 rcu_read_unlock();
2201 }
2202
2203 /**
2204 * netif_receive_skb - process receive buffer from network
2205 * @skb: buffer to process
2206 *
2207 * netif_receive_skb() is the main receive data processing function.
2208 * It always succeeds. The buffer may be dropped during processing
2209 * for congestion control or by the protocol layers.
2210 *
2211 * This function may only be called from softirq context and interrupts
2212 * should be enabled.
2213 *
2214 * Return values (usually ignored):
2215 * NET_RX_SUCCESS: no congestion
2216 * NET_RX_DROP: packet was dropped
2217 */
2218 int netif_receive_skb(struct sk_buff *skb)
2219 {
2220 struct packet_type *ptype, *pt_prev;
2221 struct net_device *orig_dev;
2222 struct net_device *null_or_orig;
2223 int ret = NET_RX_DROP;
2224 __be16 type;
2225
2226 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2227 return NET_RX_SUCCESS;
2228
2229 /* if we've gotten here through NAPI, check netpoll */
2230 if (netpoll_receive_skb(skb))
2231 return NET_RX_DROP;
2232
2233 if (!skb->tstamp.tv64)
2234 net_timestamp(skb);
2235
2236 if (!skb->iif)
2237 skb->iif = skb->dev->ifindex;
2238
2239 null_or_orig = NULL;
2240 orig_dev = skb->dev;
2241 if (orig_dev->master) {
2242 if (skb_bond_should_drop(skb))
2243 null_or_orig = orig_dev; /* deliver only exact match */
2244 else
2245 skb->dev = orig_dev->master;
2246 }
2247
2248 __get_cpu_var(netdev_rx_stat).total++;
2249
2250 skb_reset_network_header(skb);
2251 skb_reset_transport_header(skb);
2252 skb->mac_len = skb->network_header - skb->mac_header;
2253
2254 pt_prev = NULL;
2255
2256 rcu_read_lock();
2257
2258 /* Don't receive packets in an exiting network namespace */
2259 if (!net_alive(dev_net(skb->dev))) {
2260 kfree_skb(skb);
2261 goto out;
2262 }
2263
2264 #ifdef CONFIG_NET_CLS_ACT
2265 if (skb->tc_verd & TC_NCLS) {
2266 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2267 goto ncls;
2268 }
2269 #endif
2270
2271 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2272 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2273 ptype->dev == orig_dev) {
2274 if (pt_prev)
2275 ret = deliver_skb(skb, pt_prev, orig_dev);
2276 pt_prev = ptype;
2277 }
2278 }
2279
2280 #ifdef CONFIG_NET_CLS_ACT
2281 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2282 if (!skb)
2283 goto out;
2284 ncls:
2285 #endif
2286
2287 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2288 if (!skb)
2289 goto out;
2290 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2291 if (!skb)
2292 goto out;
2293
2294 type = skb->protocol;
2295 list_for_each_entry_rcu(ptype,
2296 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2297 if (ptype->type == type &&
2298 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2299 ptype->dev == orig_dev)) {
2300 if (pt_prev)
2301 ret = deliver_skb(skb, pt_prev, orig_dev);
2302 pt_prev = ptype;
2303 }
2304 }
2305
2306 if (pt_prev) {
2307 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2308 } else {
2309 kfree_skb(skb);
2310 /* Jamal, now you will not able to escape explaining
2311 * me how you were going to use this. :-)
2312 */
2313 ret = NET_RX_DROP;
2314 }
2315
2316 out:
2317 rcu_read_unlock();
2318 return ret;
2319 }
2320
2321 /* Network device is going away, flush any packets still pending */
2322 static void flush_backlog(void *arg)
2323 {
2324 struct net_device *dev = arg;
2325 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2326 struct sk_buff *skb, *tmp;
2327
2328 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2329 if (skb->dev == dev) {
2330 __skb_unlink(skb, &queue->input_pkt_queue);
2331 kfree_skb(skb);
2332 }
2333 }
2334
2335 static int napi_gro_complete(struct sk_buff *skb)
2336 {
2337 struct packet_type *ptype;
2338 __be16 type = skb->protocol;
2339 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2340 int err = -ENOENT;
2341
2342 if (NAPI_GRO_CB(skb)->count == 1)
2343 goto out;
2344
2345 rcu_read_lock();
2346 list_for_each_entry_rcu(ptype, head, list) {
2347 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2348 continue;
2349
2350 err = ptype->gro_complete(skb);
2351 break;
2352 }
2353 rcu_read_unlock();
2354
2355 if (err) {
2356 WARN_ON(&ptype->list == head);
2357 kfree_skb(skb);
2358 return NET_RX_SUCCESS;
2359 }
2360
2361 out:
2362 skb_shinfo(skb)->gso_size = 0;
2363 __skb_push(skb, -skb_network_offset(skb));
2364 return netif_receive_skb(skb);
2365 }
2366
2367 void napi_gro_flush(struct napi_struct *napi)
2368 {
2369 struct sk_buff *skb, *next;
2370
2371 for (skb = napi->gro_list; skb; skb = next) {
2372 next = skb->next;
2373 skb->next = NULL;
2374 napi_gro_complete(skb);
2375 }
2376
2377 napi->gro_list = NULL;
2378 }
2379 EXPORT_SYMBOL(napi_gro_flush);
2380
2381 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2382 {
2383 struct sk_buff **pp = NULL;
2384 struct packet_type *ptype;
2385 __be16 type = skb->protocol;
2386 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2387 int count = 0;
2388 int same_flow;
2389 int mac_len;
2390 int free;
2391
2392 if (!(skb->dev->features & NETIF_F_GRO))
2393 goto normal;
2394
2395 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2396 goto normal;
2397
2398 rcu_read_lock();
2399 list_for_each_entry_rcu(ptype, head, list) {
2400 struct sk_buff *p;
2401
2402 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2403 continue;
2404
2405 skb_reset_network_header(skb);
2406 mac_len = skb->network_header - skb->mac_header;
2407 skb->mac_len = mac_len;
2408 NAPI_GRO_CB(skb)->same_flow = 0;
2409 NAPI_GRO_CB(skb)->flush = 0;
2410 NAPI_GRO_CB(skb)->free = 0;
2411
2412 for (p = napi->gro_list; p; p = p->next) {
2413 count++;
2414
2415 if (!NAPI_GRO_CB(p)->same_flow)
2416 continue;
2417
2418 if (p->mac_len != mac_len ||
2419 memcmp(skb_mac_header(p), skb_mac_header(skb),
2420 mac_len))
2421 NAPI_GRO_CB(p)->same_flow = 0;
2422 }
2423
2424 pp = ptype->gro_receive(&napi->gro_list, skb);
2425 break;
2426 }
2427 rcu_read_unlock();
2428
2429 if (&ptype->list == head)
2430 goto normal;
2431
2432 same_flow = NAPI_GRO_CB(skb)->same_flow;
2433 free = NAPI_GRO_CB(skb)->free;
2434
2435 if (pp) {
2436 struct sk_buff *nskb = *pp;
2437
2438 *pp = nskb->next;
2439 nskb->next = NULL;
2440 napi_gro_complete(nskb);
2441 count--;
2442 }
2443
2444 if (same_flow)
2445 goto ok;
2446
2447 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) {
2448 __skb_push(skb, -skb_network_offset(skb));
2449 goto normal;
2450 }
2451
2452 NAPI_GRO_CB(skb)->count = 1;
2453 skb_shinfo(skb)->gso_size = skb->len;
2454 skb->next = napi->gro_list;
2455 napi->gro_list = skb;
2456
2457 ok:
2458 return free;
2459
2460 normal:
2461 return -1;
2462 }
2463 EXPORT_SYMBOL(dev_gro_receive);
2464
2465 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2466 {
2467 struct sk_buff *p;
2468
2469 for (p = napi->gro_list; p; p = p->next) {
2470 NAPI_GRO_CB(p)->same_flow = 1;
2471 NAPI_GRO_CB(p)->flush = 0;
2472 }
2473
2474 return dev_gro_receive(napi, skb);
2475 }
2476
2477 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2478 {
2479 switch (__napi_gro_receive(napi, skb)) {
2480 case -1:
2481 return netif_receive_skb(skb);
2482
2483 case 1:
2484 kfree_skb(skb);
2485 break;
2486 }
2487
2488 return NET_RX_SUCCESS;
2489 }
2490 EXPORT_SYMBOL(napi_gro_receive);
2491
2492 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2493 {
2494 __skb_pull(skb, skb_headlen(skb));
2495 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2496
2497 napi->skb = skb;
2498 }
2499 EXPORT_SYMBOL(napi_reuse_skb);
2500
2501 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2502 struct napi_gro_fraginfo *info)
2503 {
2504 struct net_device *dev = napi->dev;
2505 struct sk_buff *skb = napi->skb;
2506
2507 napi->skb = NULL;
2508
2509 if (!skb) {
2510 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2511 if (!skb)
2512 goto out;
2513
2514 skb_reserve(skb, NET_IP_ALIGN);
2515 }
2516
2517 BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2518 skb_shinfo(skb)->nr_frags = info->nr_frags;
2519 memcpy(skb_shinfo(skb)->frags, info->frags, sizeof(info->frags));
2520
2521 skb->data_len = info->len;
2522 skb->len += info->len;
2523 skb->truesize += info->len;
2524
2525 if (!pskb_may_pull(skb, ETH_HLEN)) {
2526 napi_reuse_skb(napi, skb);
2527 goto out;
2528 }
2529
2530 skb->protocol = eth_type_trans(skb, dev);
2531
2532 skb->ip_summed = info->ip_summed;
2533 skb->csum = info->csum;
2534
2535 out:
2536 return skb;
2537 }
2538 EXPORT_SYMBOL(napi_fraginfo_skb);
2539
2540 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2541 {
2542 struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2543 int err = NET_RX_DROP;
2544
2545 if (!skb)
2546 goto out;
2547
2548 err = NET_RX_SUCCESS;
2549
2550 switch (__napi_gro_receive(napi, skb)) {
2551 case -1:
2552 return netif_receive_skb(skb);
2553
2554 case 0:
2555 goto out;
2556 }
2557
2558 napi_reuse_skb(napi, skb);
2559
2560 out:
2561 return err;
2562 }
2563 EXPORT_SYMBOL(napi_gro_frags);
2564
2565 static int process_backlog(struct napi_struct *napi, int quota)
2566 {
2567 int work = 0;
2568 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2569 unsigned long start_time = jiffies;
2570
2571 napi->weight = weight_p;
2572 do {
2573 struct sk_buff *skb;
2574
2575 local_irq_disable();
2576 skb = __skb_dequeue(&queue->input_pkt_queue);
2577 if (!skb) {
2578 __napi_complete(napi);
2579 local_irq_enable();
2580 break;
2581 }
2582 local_irq_enable();
2583
2584 napi_gro_receive(napi, skb);
2585 } while (++work < quota && jiffies == start_time);
2586
2587 napi_gro_flush(napi);
2588
2589 return work;
2590 }
2591
2592 /**
2593 * __napi_schedule - schedule for receive
2594 * @n: entry to schedule
2595 *
2596 * The entry's receive function will be scheduled to run
2597 */
2598 void __napi_schedule(struct napi_struct *n)
2599 {
2600 unsigned long flags;
2601
2602 local_irq_save(flags);
2603 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2604 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2605 local_irq_restore(flags);
2606 }
2607 EXPORT_SYMBOL(__napi_schedule);
2608
2609 void __napi_complete(struct napi_struct *n)
2610 {
2611 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2612 BUG_ON(n->gro_list);
2613
2614 list_del(&n->poll_list);
2615 smp_mb__before_clear_bit();
2616 clear_bit(NAPI_STATE_SCHED, &n->state);
2617 }
2618 EXPORT_SYMBOL(__napi_complete);
2619
2620 void napi_complete(struct napi_struct *n)
2621 {
2622 unsigned long flags;
2623
2624 /*
2625 * don't let napi dequeue from the cpu poll list
2626 * just in case its running on a different cpu
2627 */
2628 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2629 return;
2630
2631 napi_gro_flush(n);
2632 local_irq_save(flags);
2633 __napi_complete(n);
2634 local_irq_restore(flags);
2635 }
2636 EXPORT_SYMBOL(napi_complete);
2637
2638 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2639 int (*poll)(struct napi_struct *, int), int weight)
2640 {
2641 INIT_LIST_HEAD(&napi->poll_list);
2642 napi->gro_list = NULL;
2643 napi->skb = NULL;
2644 napi->poll = poll;
2645 napi->weight = weight;
2646 list_add(&napi->dev_list, &dev->napi_list);
2647 napi->dev = dev;
2648 #ifdef CONFIG_NETPOLL
2649 spin_lock_init(&napi->poll_lock);
2650 napi->poll_owner = -1;
2651 #endif
2652 set_bit(NAPI_STATE_SCHED, &napi->state);
2653 }
2654 EXPORT_SYMBOL(netif_napi_add);
2655
2656 void netif_napi_del(struct napi_struct *napi)
2657 {
2658 struct sk_buff *skb, *next;
2659
2660 list_del_init(&napi->dev_list);
2661 kfree(napi->skb);
2662
2663 for (skb = napi->gro_list; skb; skb = next) {
2664 next = skb->next;
2665 skb->next = NULL;
2666 kfree_skb(skb);
2667 }
2668
2669 napi->gro_list = NULL;
2670 }
2671 EXPORT_SYMBOL(netif_napi_del);
2672
2673
2674 static void net_rx_action(struct softirq_action *h)
2675 {
2676 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2677 unsigned long time_limit = jiffies + 2;
2678 int budget = netdev_budget;
2679 void *have;
2680
2681 local_irq_disable();
2682
2683 while (!list_empty(list)) {
2684 struct napi_struct *n;
2685 int work, weight;
2686
2687 /* If softirq window is exhuasted then punt.
2688 * Allow this to run for 2 jiffies since which will allow
2689 * an average latency of 1.5/HZ.
2690 */
2691 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2692 goto softnet_break;
2693
2694 local_irq_enable();
2695
2696 /* Even though interrupts have been re-enabled, this
2697 * access is safe because interrupts can only add new
2698 * entries to the tail of this list, and only ->poll()
2699 * calls can remove this head entry from the list.
2700 */
2701 n = list_entry(list->next, struct napi_struct, poll_list);
2702
2703 have = netpoll_poll_lock(n);
2704
2705 weight = n->weight;
2706
2707 /* This NAPI_STATE_SCHED test is for avoiding a race
2708 * with netpoll's poll_napi(). Only the entity which
2709 * obtains the lock and sees NAPI_STATE_SCHED set will
2710 * actually make the ->poll() call. Therefore we avoid
2711 * accidently calling ->poll() when NAPI is not scheduled.
2712 */
2713 work = 0;
2714 if (test_bit(NAPI_STATE_SCHED, &n->state))
2715 work = n->poll(n, weight);
2716
2717 WARN_ON_ONCE(work > weight);
2718
2719 budget -= work;
2720
2721 local_irq_disable();
2722
2723 /* Drivers must not modify the NAPI state if they
2724 * consume the entire weight. In such cases this code
2725 * still "owns" the NAPI instance and therefore can
2726 * move the instance around on the list at-will.
2727 */
2728 if (unlikely(work == weight)) {
2729 if (unlikely(napi_disable_pending(n)))
2730 __napi_complete(n);
2731 else
2732 list_move_tail(&n->poll_list, list);
2733 }
2734
2735 netpoll_poll_unlock(have);
2736 }
2737 out:
2738 local_irq_enable();
2739
2740 #ifdef CONFIG_NET_DMA
2741 /*
2742 * There may not be any more sk_buffs coming right now, so push
2743 * any pending DMA copies to hardware
2744 */
2745 dma_issue_pending_all();
2746 #endif
2747
2748 return;
2749
2750 softnet_break:
2751 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2752 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2753 goto out;
2754 }
2755
2756 static gifconf_func_t * gifconf_list [NPROTO];
2757
2758 /**
2759 * register_gifconf - register a SIOCGIF handler
2760 * @family: Address family
2761 * @gifconf: Function handler
2762 *
2763 * Register protocol dependent address dumping routines. The handler
2764 * that is passed must not be freed or reused until it has been replaced
2765 * by another handler.
2766 */
2767 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2768 {
2769 if (family >= NPROTO)
2770 return -EINVAL;
2771 gifconf_list[family] = gifconf;
2772 return 0;
2773 }
2774
2775
2776 /*
2777 * Map an interface index to its name (SIOCGIFNAME)
2778 */
2779
2780 /*
2781 * We need this ioctl for efficient implementation of the
2782 * if_indextoname() function required by the IPv6 API. Without
2783 * it, we would have to search all the interfaces to find a
2784 * match. --pb
2785 */
2786
2787 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2788 {
2789 struct net_device *dev;
2790 struct ifreq ifr;
2791
2792 /*
2793 * Fetch the caller's info block.
2794 */
2795
2796 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2797 return -EFAULT;
2798
2799 read_lock(&dev_base_lock);
2800 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2801 if (!dev) {
2802 read_unlock(&dev_base_lock);
2803 return -ENODEV;
2804 }
2805
2806 strcpy(ifr.ifr_name, dev->name);
2807 read_unlock(&dev_base_lock);
2808
2809 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2810 return -EFAULT;
2811 return 0;
2812 }
2813
2814 /*
2815 * Perform a SIOCGIFCONF call. This structure will change
2816 * size eventually, and there is nothing I can do about it.
2817 * Thus we will need a 'compatibility mode'.
2818 */
2819
2820 static int dev_ifconf(struct net *net, char __user *arg)
2821 {
2822 struct ifconf ifc;
2823 struct net_device *dev;
2824 char __user *pos;
2825 int len;
2826 int total;
2827 int i;
2828
2829 /*
2830 * Fetch the caller's info block.
2831 */
2832
2833 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2834 return -EFAULT;
2835
2836 pos = ifc.ifc_buf;
2837 len = ifc.ifc_len;
2838
2839 /*
2840 * Loop over the interfaces, and write an info block for each.
2841 */
2842
2843 total = 0;
2844 for_each_netdev(net, dev) {
2845 for (i = 0; i < NPROTO; i++) {
2846 if (gifconf_list[i]) {
2847 int done;
2848 if (!pos)
2849 done = gifconf_list[i](dev, NULL, 0);
2850 else
2851 done = gifconf_list[i](dev, pos + total,
2852 len - total);
2853 if (done < 0)
2854 return -EFAULT;
2855 total += done;
2856 }
2857 }
2858 }
2859
2860 /*
2861 * All done. Write the updated control block back to the caller.
2862 */
2863 ifc.ifc_len = total;
2864
2865 /*
2866 * Both BSD and Solaris return 0 here, so we do too.
2867 */
2868 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2869 }
2870
2871 #ifdef CONFIG_PROC_FS
2872 /*
2873 * This is invoked by the /proc filesystem handler to display a device
2874 * in detail.
2875 */
2876 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2877 __acquires(dev_base_lock)
2878 {
2879 struct net *net = seq_file_net(seq);
2880 loff_t off;
2881 struct net_device *dev;
2882
2883 read_lock(&dev_base_lock);
2884 if (!*pos)
2885 return SEQ_START_TOKEN;
2886
2887 off = 1;
2888 for_each_netdev(net, dev)
2889 if (off++ == *pos)
2890 return dev;
2891
2892 return NULL;
2893 }
2894
2895 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2896 {
2897 struct net *net = seq_file_net(seq);
2898 ++*pos;
2899 return v == SEQ_START_TOKEN ?
2900 first_net_device(net) : next_net_device((struct net_device *)v);
2901 }
2902
2903 void dev_seq_stop(struct seq_file *seq, void *v)
2904 __releases(dev_base_lock)
2905 {
2906 read_unlock(&dev_base_lock);
2907 }
2908
2909 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2910 {
2911 const struct net_device_stats *stats = dev_get_stats(dev);
2912
2913 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2914 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2915 dev->name, stats->rx_bytes, stats->rx_packets,
2916 stats->rx_errors,
2917 stats->rx_dropped + stats->rx_missed_errors,
2918 stats->rx_fifo_errors,
2919 stats->rx_length_errors + stats->rx_over_errors +
2920 stats->rx_crc_errors + stats->rx_frame_errors,
2921 stats->rx_compressed, stats->multicast,
2922 stats->tx_bytes, stats->tx_packets,
2923 stats->tx_errors, stats->tx_dropped,
2924 stats->tx_fifo_errors, stats->collisions,
2925 stats->tx_carrier_errors +
2926 stats->tx_aborted_errors +
2927 stats->tx_window_errors +
2928 stats->tx_heartbeat_errors,
2929 stats->tx_compressed);
2930 }
2931
2932 /*
2933 * Called from the PROCfs module. This now uses the new arbitrary sized
2934 * /proc/net interface to create /proc/net/dev
2935 */
2936 static int dev_seq_show(struct seq_file *seq, void *v)
2937 {
2938 if (v == SEQ_START_TOKEN)
2939 seq_puts(seq, "Inter-| Receive "
2940 " | Transmit\n"
2941 " face |bytes packets errs drop fifo frame "
2942 "compressed multicast|bytes packets errs "
2943 "drop fifo colls carrier compressed\n");
2944 else
2945 dev_seq_printf_stats(seq, v);
2946 return 0;
2947 }
2948
2949 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2950 {
2951 struct netif_rx_stats *rc = NULL;
2952
2953 while (*pos < nr_cpu_ids)
2954 if (cpu_online(*pos)) {
2955 rc = &per_cpu(netdev_rx_stat, *pos);
2956 break;
2957 } else
2958 ++*pos;
2959 return rc;
2960 }
2961
2962 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2963 {
2964 return softnet_get_online(pos);
2965 }
2966
2967 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2968 {
2969 ++*pos;
2970 return softnet_get_online(pos);
2971 }
2972
2973 static void softnet_seq_stop(struct seq_file *seq, void *v)
2974 {
2975 }
2976
2977 static int softnet_seq_show(struct seq_file *seq, void *v)
2978 {
2979 struct netif_rx_stats *s = v;
2980
2981 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2982 s->total, s->dropped, s->time_squeeze, 0,
2983 0, 0, 0, 0, /* was fastroute */
2984 s->cpu_collision );
2985 return 0;
2986 }
2987
2988 static const struct seq_operations dev_seq_ops = {
2989 .start = dev_seq_start,
2990 .next = dev_seq_next,
2991 .stop = dev_seq_stop,
2992 .show = dev_seq_show,
2993 };
2994
2995 static int dev_seq_open(struct inode *inode, struct file *file)
2996 {
2997 return seq_open_net(inode, file, &dev_seq_ops,
2998 sizeof(struct seq_net_private));
2999 }
3000
3001 static const struct file_operations dev_seq_fops = {
3002 .owner = THIS_MODULE,
3003 .open = dev_seq_open,
3004 .read = seq_read,
3005 .llseek = seq_lseek,
3006 .release = seq_release_net,
3007 };
3008
3009 static const struct seq_operations softnet_seq_ops = {
3010 .start = softnet_seq_start,
3011 .next = softnet_seq_next,
3012 .stop = softnet_seq_stop,
3013 .show = softnet_seq_show,
3014 };
3015
3016 static int softnet_seq_open(struct inode *inode, struct file *file)
3017 {
3018 return seq_open(file, &softnet_seq_ops);
3019 }
3020
3021 static const struct file_operations softnet_seq_fops = {
3022 .owner = THIS_MODULE,
3023 .open = softnet_seq_open,
3024 .read = seq_read,
3025 .llseek = seq_lseek,
3026 .release = seq_release,
3027 };
3028
3029 static void *ptype_get_idx(loff_t pos)
3030 {
3031 struct packet_type *pt = NULL;
3032 loff_t i = 0;
3033 int t;
3034
3035 list_for_each_entry_rcu(pt, &ptype_all, list) {
3036 if (i == pos)
3037 return pt;
3038 ++i;
3039 }
3040
3041 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3042 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3043 if (i == pos)
3044 return pt;
3045 ++i;
3046 }
3047 }
3048 return NULL;
3049 }
3050
3051 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3052 __acquires(RCU)
3053 {
3054 rcu_read_lock();
3055 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3056 }
3057
3058 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3059 {
3060 struct packet_type *pt;
3061 struct list_head *nxt;
3062 int hash;
3063
3064 ++*pos;
3065 if (v == SEQ_START_TOKEN)
3066 return ptype_get_idx(0);
3067
3068 pt = v;
3069 nxt = pt->list.next;
3070 if (pt->type == htons(ETH_P_ALL)) {
3071 if (nxt != &ptype_all)
3072 goto found;
3073 hash = 0;
3074 nxt = ptype_base[0].next;
3075 } else
3076 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3077
3078 while (nxt == &ptype_base[hash]) {
3079 if (++hash >= PTYPE_HASH_SIZE)
3080 return NULL;
3081 nxt = ptype_base[hash].next;
3082 }
3083 found:
3084 return list_entry(nxt, struct packet_type, list);
3085 }
3086
3087 static void ptype_seq_stop(struct seq_file *seq, void *v)
3088 __releases(RCU)
3089 {
3090 rcu_read_unlock();
3091 }
3092
3093 static int ptype_seq_show(struct seq_file *seq, void *v)
3094 {
3095 struct packet_type *pt = v;
3096
3097 if (v == SEQ_START_TOKEN)
3098 seq_puts(seq, "Type Device Function\n");
3099 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3100 if (pt->type == htons(ETH_P_ALL))
3101 seq_puts(seq, "ALL ");
3102 else
3103 seq_printf(seq, "%04x", ntohs(pt->type));
3104
3105 seq_printf(seq, " %-8s %pF\n",
3106 pt->dev ? pt->dev->name : "", pt->func);
3107 }
3108
3109 return 0;
3110 }
3111
3112 static const struct seq_operations ptype_seq_ops = {
3113 .start = ptype_seq_start,
3114 .next = ptype_seq_next,
3115 .stop = ptype_seq_stop,
3116 .show = ptype_seq_show,
3117 };
3118
3119 static int ptype_seq_open(struct inode *inode, struct file *file)
3120 {
3121 return seq_open_net(inode, file, &ptype_seq_ops,
3122 sizeof(struct seq_net_private));
3123 }
3124
3125 static const struct file_operations ptype_seq_fops = {
3126 .owner = THIS_MODULE,
3127 .open = ptype_seq_open,
3128 .read = seq_read,
3129 .llseek = seq_lseek,
3130 .release = seq_release_net,
3131 };
3132
3133
3134 static int __net_init dev_proc_net_init(struct net *net)
3135 {
3136 int rc = -ENOMEM;
3137
3138 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3139 goto out;
3140 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3141 goto out_dev;
3142 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3143 goto out_softnet;
3144
3145 if (wext_proc_init(net))
3146 goto out_ptype;
3147 rc = 0;
3148 out:
3149 return rc;
3150 out_ptype:
3151 proc_net_remove(net, "ptype");
3152 out_softnet:
3153 proc_net_remove(net, "softnet_stat");
3154 out_dev:
3155 proc_net_remove(net, "dev");
3156 goto out;
3157 }
3158
3159 static void __net_exit dev_proc_net_exit(struct net *net)
3160 {
3161 wext_proc_exit(net);
3162
3163 proc_net_remove(net, "ptype");
3164 proc_net_remove(net, "softnet_stat");
3165 proc_net_remove(net, "dev");
3166 }
3167
3168 static struct pernet_operations __net_initdata dev_proc_ops = {
3169 .init = dev_proc_net_init,
3170 .exit = dev_proc_net_exit,
3171 };
3172
3173 static int __init dev_proc_init(void)
3174 {
3175 return register_pernet_subsys(&dev_proc_ops);
3176 }
3177 #else
3178 #define dev_proc_init() 0
3179 #endif /* CONFIG_PROC_FS */
3180
3181
3182 /**
3183 * netdev_set_master - set up master/slave pair
3184 * @slave: slave device
3185 * @master: new master device
3186 *
3187 * Changes the master device of the slave. Pass %NULL to break the
3188 * bonding. The caller must hold the RTNL semaphore. On a failure
3189 * a negative errno code is returned. On success the reference counts
3190 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3191 * function returns zero.
3192 */
3193 int netdev_set_master(struct net_device *slave, struct net_device *master)
3194 {
3195 struct net_device *old = slave->master;
3196
3197 ASSERT_RTNL();
3198
3199 if (master) {
3200 if (old)
3201 return -EBUSY;
3202 dev_hold(master);
3203 }
3204
3205 slave->master = master;
3206
3207 synchronize_net();
3208
3209 if (old)
3210 dev_put(old);
3211
3212 if (master)
3213 slave->flags |= IFF_SLAVE;
3214 else
3215 slave->flags &= ~IFF_SLAVE;
3216
3217 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3218 return 0;
3219 }
3220
3221 static void dev_change_rx_flags(struct net_device *dev, int flags)
3222 {
3223 const struct net_device_ops *ops = dev->netdev_ops;
3224
3225 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3226 ops->ndo_change_rx_flags(dev, flags);
3227 }
3228
3229 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3230 {
3231 unsigned short old_flags = dev->flags;
3232 uid_t uid;
3233 gid_t gid;
3234
3235 ASSERT_RTNL();
3236
3237 dev->flags |= IFF_PROMISC;
3238 dev->promiscuity += inc;
3239 if (dev->promiscuity == 0) {
3240 /*
3241 * Avoid overflow.
3242 * If inc causes overflow, untouch promisc and return error.
3243 */
3244 if (inc < 0)
3245 dev->flags &= ~IFF_PROMISC;
3246 else {
3247 dev->promiscuity -= inc;
3248 printk(KERN_WARNING "%s: promiscuity touches roof, "
3249 "set promiscuity failed, promiscuity feature "
3250 "of device might be broken.\n", dev->name);
3251 return -EOVERFLOW;
3252 }
3253 }
3254 if (dev->flags != old_flags) {
3255 printk(KERN_INFO "device %s %s promiscuous mode\n",
3256 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3257 "left");
3258 if (audit_enabled) {
3259 current_uid_gid(&uid, &gid);
3260 audit_log(current->audit_context, GFP_ATOMIC,
3261 AUDIT_ANOM_PROMISCUOUS,
3262 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3263 dev->name, (dev->flags & IFF_PROMISC),
3264 (old_flags & IFF_PROMISC),
3265 audit_get_loginuid(current),
3266 uid, gid,
3267 audit_get_sessionid(current));
3268 }
3269
3270 dev_change_rx_flags(dev, IFF_PROMISC);
3271 }
3272 return 0;
3273 }
3274
3275 /**
3276 * dev_set_promiscuity - update promiscuity count on a device
3277 * @dev: device
3278 * @inc: modifier
3279 *
3280 * Add or remove promiscuity from a device. While the count in the device
3281 * remains above zero the interface remains promiscuous. Once it hits zero
3282 * the device reverts back to normal filtering operation. A negative inc
3283 * value is used to drop promiscuity on the device.
3284 * Return 0 if successful or a negative errno code on error.
3285 */
3286 int dev_set_promiscuity(struct net_device *dev, int inc)
3287 {
3288 unsigned short old_flags = dev->flags;
3289 int err;
3290
3291 err = __dev_set_promiscuity(dev, inc);
3292 if (err < 0)
3293 return err;
3294 if (dev->flags != old_flags)
3295 dev_set_rx_mode(dev);
3296 return err;
3297 }
3298
3299 /**
3300 * dev_set_allmulti - update allmulti count on a device
3301 * @dev: device
3302 * @inc: modifier
3303 *
3304 * Add or remove reception of all multicast frames to a device. While the
3305 * count in the device remains above zero the interface remains listening
3306 * to all interfaces. Once it hits zero the device reverts back to normal
3307 * filtering operation. A negative @inc value is used to drop the counter
3308 * when releasing a resource needing all multicasts.
3309 * Return 0 if successful or a negative errno code on error.
3310 */
3311
3312 int dev_set_allmulti(struct net_device *dev, int inc)
3313 {
3314 unsigned short old_flags = dev->flags;
3315
3316 ASSERT_RTNL();
3317
3318 dev->flags |= IFF_ALLMULTI;
3319 dev->allmulti += inc;
3320 if (dev->allmulti == 0) {
3321 /*
3322 * Avoid overflow.
3323 * If inc causes overflow, untouch allmulti and return error.
3324 */
3325 if (inc < 0)
3326 dev->flags &= ~IFF_ALLMULTI;
3327 else {
3328 dev->allmulti -= inc;
3329 printk(KERN_WARNING "%s: allmulti touches roof, "
3330 "set allmulti failed, allmulti feature of "
3331 "device might be broken.\n", dev->name);
3332 return -EOVERFLOW;
3333 }
3334 }
3335 if (dev->flags ^ old_flags) {
3336 dev_change_rx_flags(dev, IFF_ALLMULTI);
3337 dev_set_rx_mode(dev);
3338 }
3339 return 0;
3340 }
3341
3342 /*
3343 * Upload unicast and multicast address lists to device and
3344 * configure RX filtering. When the device doesn't support unicast
3345 * filtering it is put in promiscuous mode while unicast addresses
3346 * are present.
3347 */
3348 void __dev_set_rx_mode(struct net_device *dev)
3349 {
3350 const struct net_device_ops *ops = dev->netdev_ops;
3351
3352 /* dev_open will call this function so the list will stay sane. */
3353 if (!(dev->flags&IFF_UP))
3354 return;
3355
3356 if (!netif_device_present(dev))
3357 return;
3358
3359 if (ops->ndo_set_rx_mode)
3360 ops->ndo_set_rx_mode(dev);
3361 else {
3362 /* Unicast addresses changes may only happen under the rtnl,
3363 * therefore calling __dev_set_promiscuity here is safe.
3364 */
3365 if (dev->uc_count > 0 && !dev->uc_promisc) {
3366 __dev_set_promiscuity(dev, 1);
3367 dev->uc_promisc = 1;
3368 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3369 __dev_set_promiscuity(dev, -1);
3370 dev->uc_promisc = 0;
3371 }
3372
3373 if (ops->ndo_set_multicast_list)
3374 ops->ndo_set_multicast_list(dev);
3375 }
3376 }
3377
3378 void dev_set_rx_mode(struct net_device *dev)
3379 {
3380 netif_addr_lock_bh(dev);
3381 __dev_set_rx_mode(dev);
3382 netif_addr_unlock_bh(dev);
3383 }
3384
3385 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3386 void *addr, int alen, int glbl)
3387 {
3388 struct dev_addr_list *da;
3389
3390 for (; (da = *list) != NULL; list = &da->next) {
3391 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3392 alen == da->da_addrlen) {
3393 if (glbl) {
3394 int old_glbl = da->da_gusers;
3395 da->da_gusers = 0;
3396 if (old_glbl == 0)
3397 break;
3398 }
3399 if (--da->da_users)
3400 return 0;
3401
3402 *list = da->next;
3403 kfree(da);
3404 (*count)--;
3405 return 0;
3406 }
3407 }
3408 return -ENOENT;
3409 }
3410
3411 int __dev_addr_add(struct dev_addr_list **list, int *count,
3412 void *addr, int alen, int glbl)
3413 {
3414 struct dev_addr_list *da;
3415
3416 for (da = *list; da != NULL; da = da->next) {
3417 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3418 da->da_addrlen == alen) {
3419 if (glbl) {
3420 int old_glbl = da->da_gusers;
3421 da->da_gusers = 1;
3422 if (old_glbl)
3423 return 0;
3424 }
3425 da->da_users++;
3426 return 0;
3427 }
3428 }
3429
3430 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3431 if (da == NULL)
3432 return -ENOMEM;
3433 memcpy(da->da_addr, addr, alen);
3434 da->da_addrlen = alen;
3435 da->da_users = 1;
3436 da->da_gusers = glbl ? 1 : 0;
3437 da->next = *list;
3438 *list = da;
3439 (*count)++;
3440 return 0;
3441 }
3442
3443 /**
3444 * dev_unicast_delete - Release secondary unicast address.
3445 * @dev: device
3446 * @addr: address to delete
3447 * @alen: length of @addr
3448 *
3449 * Release reference to a secondary unicast address and remove it
3450 * from the device if the reference count drops to zero.
3451 *
3452 * The caller must hold the rtnl_mutex.
3453 */
3454 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3455 {
3456 int err;
3457
3458 ASSERT_RTNL();
3459
3460 netif_addr_lock_bh(dev);
3461 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3462 if (!err)
3463 __dev_set_rx_mode(dev);
3464 netif_addr_unlock_bh(dev);
3465 return err;
3466 }
3467 EXPORT_SYMBOL(dev_unicast_delete);
3468
3469 /**
3470 * dev_unicast_add - add a secondary unicast address
3471 * @dev: device
3472 * @addr: address to add
3473 * @alen: length of @addr
3474 *
3475 * Add a secondary unicast address to the device or increase
3476 * the reference count if it already exists.
3477 *
3478 * The caller must hold the rtnl_mutex.
3479 */
3480 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3481 {
3482 int err;
3483
3484 ASSERT_RTNL();
3485
3486 netif_addr_lock_bh(dev);
3487 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3488 if (!err)
3489 __dev_set_rx_mode(dev);
3490 netif_addr_unlock_bh(dev);
3491 return err;
3492 }
3493 EXPORT_SYMBOL(dev_unicast_add);
3494
3495 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3496 struct dev_addr_list **from, int *from_count)
3497 {
3498 struct dev_addr_list *da, *next;
3499 int err = 0;
3500
3501 da = *from;
3502 while (da != NULL) {
3503 next = da->next;
3504 if (!da->da_synced) {
3505 err = __dev_addr_add(to, to_count,
3506 da->da_addr, da->da_addrlen, 0);
3507 if (err < 0)
3508 break;
3509 da->da_synced = 1;
3510 da->da_users++;
3511 } else if (da->da_users == 1) {
3512 __dev_addr_delete(to, to_count,
3513 da->da_addr, da->da_addrlen, 0);
3514 __dev_addr_delete(from, from_count,
3515 da->da_addr, da->da_addrlen, 0);
3516 }
3517 da = next;
3518 }
3519 return err;
3520 }
3521
3522 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3523 struct dev_addr_list **from, int *from_count)
3524 {
3525 struct dev_addr_list *da, *next;
3526
3527 da = *from;
3528 while (da != NULL) {
3529 next = da->next;
3530 if (da->da_synced) {
3531 __dev_addr_delete(to, to_count,
3532 da->da_addr, da->da_addrlen, 0);
3533 da->da_synced = 0;
3534 __dev_addr_delete(from, from_count,
3535 da->da_addr, da->da_addrlen, 0);
3536 }
3537 da = next;
3538 }
3539 }
3540
3541 /**
3542 * dev_unicast_sync - Synchronize device's unicast list to another device
3543 * @to: destination device
3544 * @from: source device
3545 *
3546 * Add newly added addresses to the destination device and release
3547 * addresses that have no users left. The source device must be
3548 * locked by netif_tx_lock_bh.
3549 *
3550 * This function is intended to be called from the dev->set_rx_mode
3551 * function of layered software devices.
3552 */
3553 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3554 {
3555 int err = 0;
3556
3557 netif_addr_lock_bh(to);
3558 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3559 &from->uc_list, &from->uc_count);
3560 if (!err)
3561 __dev_set_rx_mode(to);
3562 netif_addr_unlock_bh(to);
3563 return err;
3564 }
3565 EXPORT_SYMBOL(dev_unicast_sync);
3566
3567 /**
3568 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3569 * @to: destination device
3570 * @from: source device
3571 *
3572 * Remove all addresses that were added to the destination device by
3573 * dev_unicast_sync(). This function is intended to be called from the
3574 * dev->stop function of layered software devices.
3575 */
3576 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3577 {
3578 netif_addr_lock_bh(from);
3579 netif_addr_lock(to);
3580
3581 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3582 &from->uc_list, &from->uc_count);
3583 __dev_set_rx_mode(to);
3584
3585 netif_addr_unlock(to);
3586 netif_addr_unlock_bh(from);
3587 }
3588 EXPORT_SYMBOL(dev_unicast_unsync);
3589
3590 static void __dev_addr_discard(struct dev_addr_list **list)
3591 {
3592 struct dev_addr_list *tmp;
3593
3594 while (*list != NULL) {
3595 tmp = *list;
3596 *list = tmp->next;
3597 if (tmp->da_users > tmp->da_gusers)
3598 printk("__dev_addr_discard: address leakage! "
3599 "da_users=%d\n", tmp->da_users);
3600 kfree(tmp);
3601 }
3602 }
3603
3604 static void dev_addr_discard(struct net_device *dev)
3605 {
3606 netif_addr_lock_bh(dev);
3607
3608 __dev_addr_discard(&dev->uc_list);
3609 dev->uc_count = 0;
3610
3611 __dev_addr_discard(&dev->mc_list);
3612 dev->mc_count = 0;
3613
3614 netif_addr_unlock_bh(dev);
3615 }
3616
3617 /**
3618 * dev_get_flags - get flags reported to userspace
3619 * @dev: device
3620 *
3621 * Get the combination of flag bits exported through APIs to userspace.
3622 */
3623 unsigned dev_get_flags(const struct net_device *dev)
3624 {
3625 unsigned flags;
3626
3627 flags = (dev->flags & ~(IFF_PROMISC |
3628 IFF_ALLMULTI |
3629 IFF_RUNNING |
3630 IFF_LOWER_UP |
3631 IFF_DORMANT)) |
3632 (dev->gflags & (IFF_PROMISC |
3633 IFF_ALLMULTI));
3634
3635 if (netif_running(dev)) {
3636 if (netif_oper_up(dev))
3637 flags |= IFF_RUNNING;
3638 if (netif_carrier_ok(dev))
3639 flags |= IFF_LOWER_UP;
3640 if (netif_dormant(dev))
3641 flags |= IFF_DORMANT;
3642 }
3643
3644 return flags;
3645 }
3646
3647 /**
3648 * dev_change_flags - change device settings
3649 * @dev: device
3650 * @flags: device state flags
3651 *
3652 * Change settings on device based state flags. The flags are
3653 * in the userspace exported format.
3654 */
3655 int dev_change_flags(struct net_device *dev, unsigned flags)
3656 {
3657 int ret, changes;
3658 int old_flags = dev->flags;
3659
3660 ASSERT_RTNL();
3661
3662 /*
3663 * Set the flags on our device.
3664 */
3665
3666 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3667 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3668 IFF_AUTOMEDIA)) |
3669 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3670 IFF_ALLMULTI));
3671
3672 /*
3673 * Load in the correct multicast list now the flags have changed.
3674 */
3675
3676 if ((old_flags ^ flags) & IFF_MULTICAST)
3677 dev_change_rx_flags(dev, IFF_MULTICAST);
3678
3679 dev_set_rx_mode(dev);
3680
3681 /*
3682 * Have we downed the interface. We handle IFF_UP ourselves
3683 * according to user attempts to set it, rather than blindly
3684 * setting it.
3685 */
3686
3687 ret = 0;
3688 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3689 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3690
3691 if (!ret)
3692 dev_set_rx_mode(dev);
3693 }
3694
3695 if (dev->flags & IFF_UP &&
3696 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3697 IFF_VOLATILE)))
3698 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3699
3700 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3701 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3702 dev->gflags ^= IFF_PROMISC;
3703 dev_set_promiscuity(dev, inc);
3704 }
3705
3706 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3707 is important. Some (broken) drivers set IFF_PROMISC, when
3708 IFF_ALLMULTI is requested not asking us and not reporting.
3709 */
3710 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3711 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3712 dev->gflags ^= IFF_ALLMULTI;
3713 dev_set_allmulti(dev, inc);
3714 }
3715
3716 /* Exclude state transition flags, already notified */
3717 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3718 if (changes)
3719 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3720
3721 return ret;
3722 }
3723
3724 /**
3725 * dev_set_mtu - Change maximum transfer unit
3726 * @dev: device
3727 * @new_mtu: new transfer unit
3728 *
3729 * Change the maximum transfer size of the network device.
3730 */
3731 int dev_set_mtu(struct net_device *dev, int new_mtu)
3732 {
3733 const struct net_device_ops *ops = dev->netdev_ops;
3734 int err;
3735
3736 if (new_mtu == dev->mtu)
3737 return 0;
3738
3739 /* MTU must be positive. */
3740 if (new_mtu < 0)
3741 return -EINVAL;
3742
3743 if (!netif_device_present(dev))
3744 return -ENODEV;
3745
3746 err = 0;
3747 if (ops->ndo_change_mtu)
3748 err = ops->ndo_change_mtu(dev, new_mtu);
3749 else
3750 dev->mtu = new_mtu;
3751
3752 if (!err && dev->flags & IFF_UP)
3753 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3754 return err;
3755 }
3756
3757 /**
3758 * dev_set_mac_address - Change Media Access Control Address
3759 * @dev: device
3760 * @sa: new address
3761 *
3762 * Change the hardware (MAC) address of the device
3763 */
3764 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3765 {
3766 const struct net_device_ops *ops = dev->netdev_ops;
3767 int err;
3768
3769 if (!ops->ndo_set_mac_address)
3770 return -EOPNOTSUPP;
3771 if (sa->sa_family != dev->type)
3772 return -EINVAL;
3773 if (!netif_device_present(dev))
3774 return -ENODEV;
3775 err = ops->ndo_set_mac_address(dev, sa);
3776 if (!err)
3777 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3778 return err;
3779 }
3780
3781 /*
3782 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3783 */
3784 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3785 {
3786 int err;
3787 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3788
3789 if (!dev)
3790 return -ENODEV;
3791
3792 switch (cmd) {
3793 case SIOCGIFFLAGS: /* Get interface flags */
3794 ifr->ifr_flags = dev_get_flags(dev);
3795 return 0;
3796
3797 case SIOCGIFMETRIC: /* Get the metric on the interface
3798 (currently unused) */
3799 ifr->ifr_metric = 0;
3800 return 0;
3801
3802 case SIOCGIFMTU: /* Get the MTU of a device */
3803 ifr->ifr_mtu = dev->mtu;
3804 return 0;
3805
3806 case SIOCGIFHWADDR:
3807 if (!dev->addr_len)
3808 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3809 else
3810 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3811 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3812 ifr->ifr_hwaddr.sa_family = dev->type;
3813 return 0;
3814
3815 case SIOCGIFSLAVE:
3816 err = -EINVAL;
3817 break;
3818
3819 case SIOCGIFMAP:
3820 ifr->ifr_map.mem_start = dev->mem_start;
3821 ifr->ifr_map.mem_end = dev->mem_end;
3822 ifr->ifr_map.base_addr = dev->base_addr;
3823 ifr->ifr_map.irq = dev->irq;
3824 ifr->ifr_map.dma = dev->dma;
3825 ifr->ifr_map.port = dev->if_port;
3826 return 0;
3827
3828 case SIOCGIFINDEX:
3829 ifr->ifr_ifindex = dev->ifindex;
3830 return 0;
3831
3832 case SIOCGIFTXQLEN:
3833 ifr->ifr_qlen = dev->tx_queue_len;
3834 return 0;
3835
3836 default:
3837 /* dev_ioctl() should ensure this case
3838 * is never reached
3839 */
3840 WARN_ON(1);
3841 err = -EINVAL;
3842 break;
3843
3844 }
3845 return err;
3846 }
3847
3848 /*
3849 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3850 */
3851 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3852 {
3853 int err;
3854 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3855 const struct net_device_ops *ops;
3856
3857 if (!dev)
3858 return -ENODEV;
3859
3860 ops = dev->netdev_ops;
3861
3862 switch (cmd) {
3863 case SIOCSIFFLAGS: /* Set interface flags */
3864 return dev_change_flags(dev, ifr->ifr_flags);
3865
3866 case SIOCSIFMETRIC: /* Set the metric on the interface
3867 (currently unused) */
3868 return -EOPNOTSUPP;
3869
3870 case SIOCSIFMTU: /* Set the MTU of a device */
3871 return dev_set_mtu(dev, ifr->ifr_mtu);
3872
3873 case SIOCSIFHWADDR:
3874 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3875
3876 case SIOCSIFHWBROADCAST:
3877 if (ifr->ifr_hwaddr.sa_family != dev->type)
3878 return -EINVAL;
3879 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3880 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3881 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3882 return 0;
3883
3884 case SIOCSIFMAP:
3885 if (ops->ndo_set_config) {
3886 if (!netif_device_present(dev))
3887 return -ENODEV;
3888 return ops->ndo_set_config(dev, &ifr->ifr_map);
3889 }
3890 return -EOPNOTSUPP;
3891
3892 case SIOCADDMULTI:
3893 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3894 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3895 return -EINVAL;
3896 if (!netif_device_present(dev))
3897 return -ENODEV;
3898 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3899 dev->addr_len, 1);
3900
3901 case SIOCDELMULTI:
3902 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3903 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3904 return -EINVAL;
3905 if (!netif_device_present(dev))
3906 return -ENODEV;
3907 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3908 dev->addr_len, 1);
3909
3910 case SIOCSIFTXQLEN:
3911 if (ifr->ifr_qlen < 0)
3912 return -EINVAL;
3913 dev->tx_queue_len = ifr->ifr_qlen;
3914 return 0;
3915
3916 case SIOCSIFNAME:
3917 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3918 return dev_change_name(dev, ifr->ifr_newname);
3919
3920 /*
3921 * Unknown or private ioctl
3922 */
3923
3924 default:
3925 if ((cmd >= SIOCDEVPRIVATE &&
3926 cmd <= SIOCDEVPRIVATE + 15) ||
3927 cmd == SIOCBONDENSLAVE ||
3928 cmd == SIOCBONDRELEASE ||
3929 cmd == SIOCBONDSETHWADDR ||
3930 cmd == SIOCBONDSLAVEINFOQUERY ||
3931 cmd == SIOCBONDINFOQUERY ||
3932 cmd == SIOCBONDCHANGEACTIVE ||
3933 cmd == SIOCGMIIPHY ||
3934 cmd == SIOCGMIIREG ||
3935 cmd == SIOCSMIIREG ||
3936 cmd == SIOCBRADDIF ||
3937 cmd == SIOCBRDELIF ||
3938 cmd == SIOCWANDEV) {
3939 err = -EOPNOTSUPP;
3940 if (ops->ndo_do_ioctl) {
3941 if (netif_device_present(dev))
3942 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3943 else
3944 err = -ENODEV;
3945 }
3946 } else
3947 err = -EINVAL;
3948
3949 }
3950 return err;
3951 }
3952
3953 /*
3954 * This function handles all "interface"-type I/O control requests. The actual
3955 * 'doing' part of this is dev_ifsioc above.
3956 */
3957
3958 /**
3959 * dev_ioctl - network device ioctl
3960 * @net: the applicable net namespace
3961 * @cmd: command to issue
3962 * @arg: pointer to a struct ifreq in user space
3963 *
3964 * Issue ioctl functions to devices. This is normally called by the
3965 * user space syscall interfaces but can sometimes be useful for
3966 * other purposes. The return value is the return from the syscall if
3967 * positive or a negative errno code on error.
3968 */
3969
3970 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3971 {
3972 struct ifreq ifr;
3973 int ret;
3974 char *colon;
3975
3976 /* One special case: SIOCGIFCONF takes ifconf argument
3977 and requires shared lock, because it sleeps writing
3978 to user space.
3979 */
3980
3981 if (cmd == SIOCGIFCONF) {
3982 rtnl_lock();
3983 ret = dev_ifconf(net, (char __user *) arg);
3984 rtnl_unlock();
3985 return ret;
3986 }
3987 if (cmd == SIOCGIFNAME)
3988 return dev_ifname(net, (struct ifreq __user *)arg);
3989
3990 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3991 return -EFAULT;
3992
3993 ifr.ifr_name[IFNAMSIZ-1] = 0;
3994
3995 colon = strchr(ifr.ifr_name, ':');
3996 if (colon)
3997 *colon = 0;
3998
3999 /*
4000 * See which interface the caller is talking about.
4001 */
4002
4003 switch (cmd) {
4004 /*
4005 * These ioctl calls:
4006 * - can be done by all.
4007 * - atomic and do not require locking.
4008 * - return a value
4009 */
4010 case SIOCGIFFLAGS:
4011 case SIOCGIFMETRIC:
4012 case SIOCGIFMTU:
4013 case SIOCGIFHWADDR:
4014 case SIOCGIFSLAVE:
4015 case SIOCGIFMAP:
4016 case SIOCGIFINDEX:
4017 case SIOCGIFTXQLEN:
4018 dev_load(net, ifr.ifr_name);
4019 read_lock(&dev_base_lock);
4020 ret = dev_ifsioc_locked(net, &ifr, cmd);
4021 read_unlock(&dev_base_lock);
4022 if (!ret) {
4023 if (colon)
4024 *colon = ':';
4025 if (copy_to_user(arg, &ifr,
4026 sizeof(struct ifreq)))
4027 ret = -EFAULT;
4028 }
4029 return ret;
4030
4031 case SIOCETHTOOL:
4032 dev_load(net, ifr.ifr_name);
4033 rtnl_lock();
4034 ret = dev_ethtool(net, &ifr);
4035 rtnl_unlock();
4036 if (!ret) {
4037 if (colon)
4038 *colon = ':';
4039 if (copy_to_user(arg, &ifr,
4040 sizeof(struct ifreq)))
4041 ret = -EFAULT;
4042 }
4043 return ret;
4044
4045 /*
4046 * These ioctl calls:
4047 * - require superuser power.
4048 * - require strict serialization.
4049 * - return a value
4050 */
4051 case SIOCGMIIPHY:
4052 case SIOCGMIIREG:
4053 case SIOCSIFNAME:
4054 if (!capable(CAP_NET_ADMIN))
4055 return -EPERM;
4056 dev_load(net, ifr.ifr_name);
4057 rtnl_lock();
4058 ret = dev_ifsioc(net, &ifr, cmd);
4059 rtnl_unlock();
4060 if (!ret) {
4061 if (colon)
4062 *colon = ':';
4063 if (copy_to_user(arg, &ifr,
4064 sizeof(struct ifreq)))
4065 ret = -EFAULT;
4066 }
4067 return ret;
4068
4069 /*
4070 * These ioctl calls:
4071 * - require superuser power.
4072 * - require strict serialization.
4073 * - do not return a value
4074 */
4075 case SIOCSIFFLAGS:
4076 case SIOCSIFMETRIC:
4077 case SIOCSIFMTU:
4078 case SIOCSIFMAP:
4079 case SIOCSIFHWADDR:
4080 case SIOCSIFSLAVE:
4081 case SIOCADDMULTI:
4082 case SIOCDELMULTI:
4083 case SIOCSIFHWBROADCAST:
4084 case SIOCSIFTXQLEN:
4085 case SIOCSMIIREG:
4086 case SIOCBONDENSLAVE:
4087 case SIOCBONDRELEASE:
4088 case SIOCBONDSETHWADDR:
4089 case SIOCBONDCHANGEACTIVE:
4090 case SIOCBRADDIF:
4091 case SIOCBRDELIF:
4092 if (!capable(CAP_NET_ADMIN))
4093 return -EPERM;
4094 /* fall through */
4095 case SIOCBONDSLAVEINFOQUERY:
4096 case SIOCBONDINFOQUERY:
4097 dev_load(net, ifr.ifr_name);
4098 rtnl_lock();
4099 ret = dev_ifsioc(net, &ifr, cmd);
4100 rtnl_unlock();
4101 return ret;
4102
4103 case SIOCGIFMEM:
4104 /* Get the per device memory space. We can add this but
4105 * currently do not support it */
4106 case SIOCSIFMEM:
4107 /* Set the per device memory buffer space.
4108 * Not applicable in our case */
4109 case SIOCSIFLINK:
4110 return -EINVAL;
4111
4112 /*
4113 * Unknown or private ioctl.
4114 */
4115 default:
4116 if (cmd == SIOCWANDEV ||
4117 (cmd >= SIOCDEVPRIVATE &&
4118 cmd <= SIOCDEVPRIVATE + 15)) {
4119 dev_load(net, ifr.ifr_name);
4120 rtnl_lock();
4121 ret = dev_ifsioc(net, &ifr, cmd);
4122 rtnl_unlock();
4123 if (!ret && copy_to_user(arg, &ifr,
4124 sizeof(struct ifreq)))
4125 ret = -EFAULT;
4126 return ret;
4127 }
4128 /* Take care of Wireless Extensions */
4129 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4130 return wext_handle_ioctl(net, &ifr, cmd, arg);
4131 return -EINVAL;
4132 }
4133 }
4134
4135
4136 /**
4137 * dev_new_index - allocate an ifindex
4138 * @net: the applicable net namespace
4139 *
4140 * Returns a suitable unique value for a new device interface
4141 * number. The caller must hold the rtnl semaphore or the
4142 * dev_base_lock to be sure it remains unique.
4143 */
4144 static int dev_new_index(struct net *net)
4145 {
4146 static int ifindex;
4147 for (;;) {
4148 if (++ifindex <= 0)
4149 ifindex = 1;
4150 if (!__dev_get_by_index(net, ifindex))
4151 return ifindex;
4152 }
4153 }
4154
4155 /* Delayed registration/unregisteration */
4156 static LIST_HEAD(net_todo_list);
4157
4158 static void net_set_todo(struct net_device *dev)
4159 {
4160 list_add_tail(&dev->todo_list, &net_todo_list);
4161 }
4162
4163 static void rollback_registered(struct net_device *dev)
4164 {
4165 BUG_ON(dev_boot_phase);
4166 ASSERT_RTNL();
4167
4168 /* Some devices call without registering for initialization unwind. */
4169 if (dev->reg_state == NETREG_UNINITIALIZED) {
4170 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4171 "was registered\n", dev->name, dev);
4172
4173 WARN_ON(1);
4174 return;
4175 }
4176
4177 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4178
4179 /* If device is running, close it first. */
4180 dev_close(dev);
4181
4182 /* And unlink it from device chain. */
4183 unlist_netdevice(dev);
4184
4185 dev->reg_state = NETREG_UNREGISTERING;
4186
4187 synchronize_net();
4188
4189 /* Shutdown queueing discipline. */
4190 dev_shutdown(dev);
4191
4192
4193 /* Notify protocols, that we are about to destroy
4194 this device. They should clean all the things.
4195 */
4196 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4197
4198 /*
4199 * Flush the unicast and multicast chains
4200 */
4201 dev_addr_discard(dev);
4202
4203 if (dev->netdev_ops->ndo_uninit)
4204 dev->netdev_ops->ndo_uninit(dev);
4205
4206 /* Notifier chain MUST detach us from master device. */
4207 WARN_ON(dev->master);
4208
4209 /* Remove entries from kobject tree */
4210 netdev_unregister_kobject(dev);
4211
4212 synchronize_net();
4213
4214 dev_put(dev);
4215 }
4216
4217 static void __netdev_init_queue_locks_one(struct net_device *dev,
4218 struct netdev_queue *dev_queue,
4219 void *_unused)
4220 {
4221 spin_lock_init(&dev_queue->_xmit_lock);
4222 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4223 dev_queue->xmit_lock_owner = -1;
4224 }
4225
4226 static void netdev_init_queue_locks(struct net_device *dev)
4227 {
4228 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4229 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4230 }
4231
4232 unsigned long netdev_fix_features(unsigned long features, const char *name)
4233 {
4234 /* Fix illegal SG+CSUM combinations. */
4235 if ((features & NETIF_F_SG) &&
4236 !(features & NETIF_F_ALL_CSUM)) {
4237 if (name)
4238 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4239 "checksum feature.\n", name);
4240 features &= ~NETIF_F_SG;
4241 }
4242
4243 /* TSO requires that SG is present as well. */
4244 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4245 if (name)
4246 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4247 "SG feature.\n", name);
4248 features &= ~NETIF_F_TSO;
4249 }
4250
4251 if (features & NETIF_F_UFO) {
4252 if (!(features & NETIF_F_GEN_CSUM)) {
4253 if (name)
4254 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4255 "since no NETIF_F_HW_CSUM feature.\n",
4256 name);
4257 features &= ~NETIF_F_UFO;
4258 }
4259
4260 if (!(features & NETIF_F_SG)) {
4261 if (name)
4262 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4263 "since no NETIF_F_SG feature.\n", name);
4264 features &= ~NETIF_F_UFO;
4265 }
4266 }
4267
4268 return features;
4269 }
4270 EXPORT_SYMBOL(netdev_fix_features);
4271
4272 /**
4273 * register_netdevice - register a network device
4274 * @dev: device to register
4275 *
4276 * Take a completed network device structure and add it to the kernel
4277 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4278 * chain. 0 is returned on success. A negative errno code is returned
4279 * on a failure to set up the device, or if the name is a duplicate.
4280 *
4281 * Callers must hold the rtnl semaphore. You may want
4282 * register_netdev() instead of this.
4283 *
4284 * BUGS:
4285 * The locking appears insufficient to guarantee two parallel registers
4286 * will not get the same name.
4287 */
4288
4289 int register_netdevice(struct net_device *dev)
4290 {
4291 struct hlist_head *head;
4292 struct hlist_node *p;
4293 int ret;
4294 struct net *net = dev_net(dev);
4295
4296 BUG_ON(dev_boot_phase);
4297 ASSERT_RTNL();
4298
4299 might_sleep();
4300
4301 /* When net_device's are persistent, this will be fatal. */
4302 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4303 BUG_ON(!net);
4304
4305 spin_lock_init(&dev->addr_list_lock);
4306 netdev_set_addr_lockdep_class(dev);
4307 netdev_init_queue_locks(dev);
4308
4309 dev->iflink = -1;
4310
4311 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4312 /* Netdevice_ops API compatiability support.
4313 * This is temporary until all network devices are converted.
4314 */
4315 if (dev->netdev_ops) {
4316 const struct net_device_ops *ops = dev->netdev_ops;
4317
4318 dev->init = ops->ndo_init;
4319 dev->uninit = ops->ndo_uninit;
4320 dev->open = ops->ndo_open;
4321 dev->change_rx_flags = ops->ndo_change_rx_flags;
4322 dev->set_rx_mode = ops->ndo_set_rx_mode;
4323 dev->set_multicast_list = ops->ndo_set_multicast_list;
4324 dev->set_mac_address = ops->ndo_set_mac_address;
4325 dev->validate_addr = ops->ndo_validate_addr;
4326 dev->do_ioctl = ops->ndo_do_ioctl;
4327 dev->set_config = ops->ndo_set_config;
4328 dev->change_mtu = ops->ndo_change_mtu;
4329 dev->tx_timeout = ops->ndo_tx_timeout;
4330 dev->get_stats = ops->ndo_get_stats;
4331 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4332 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4333 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4334 #ifdef CONFIG_NET_POLL_CONTROLLER
4335 dev->poll_controller = ops->ndo_poll_controller;
4336 #endif
4337 } else {
4338 char drivername[64];
4339 pr_info("%s (%s): not using net_device_ops yet\n",
4340 dev->name, netdev_drivername(dev, drivername, 64));
4341
4342 /* This works only because net_device_ops and the
4343 compatiablity structure are the same. */
4344 dev->netdev_ops = (void *) &(dev->init);
4345 }
4346 #endif
4347
4348 /* Init, if this function is available */
4349 if (dev->netdev_ops->ndo_init) {
4350 ret = dev->netdev_ops->ndo_init(dev);
4351 if (ret) {
4352 if (ret > 0)
4353 ret = -EIO;
4354 goto out;
4355 }
4356 }
4357
4358 if (!dev_valid_name(dev->name)) {
4359 ret = -EINVAL;
4360 goto err_uninit;
4361 }
4362
4363 dev->ifindex = dev_new_index(net);
4364 if (dev->iflink == -1)
4365 dev->iflink = dev->ifindex;
4366
4367 /* Check for existence of name */
4368 head = dev_name_hash(net, dev->name);
4369 hlist_for_each(p, head) {
4370 struct net_device *d
4371 = hlist_entry(p, struct net_device, name_hlist);
4372 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4373 ret = -EEXIST;
4374 goto err_uninit;
4375 }
4376 }
4377
4378 /* Fix illegal checksum combinations */
4379 if ((dev->features & NETIF_F_HW_CSUM) &&
4380 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4381 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4382 dev->name);
4383 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4384 }
4385
4386 if ((dev->features & NETIF_F_NO_CSUM) &&
4387 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4388 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4389 dev->name);
4390 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4391 }
4392
4393 dev->features = netdev_fix_features(dev->features, dev->name);
4394
4395 /* Enable software GSO if SG is supported. */
4396 if (dev->features & NETIF_F_SG)
4397 dev->features |= NETIF_F_GSO;
4398
4399 netdev_initialize_kobject(dev);
4400 ret = netdev_register_kobject(dev);
4401 if (ret)
4402 goto err_uninit;
4403 dev->reg_state = NETREG_REGISTERED;
4404
4405 /*
4406 * Default initial state at registry is that the
4407 * device is present.
4408 */
4409
4410 set_bit(__LINK_STATE_PRESENT, &dev->state);
4411
4412 dev_init_scheduler(dev);
4413 dev_hold(dev);
4414 list_netdevice(dev);
4415
4416 /* Notify protocols, that a new device appeared. */
4417 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4418 ret = notifier_to_errno(ret);
4419 if (ret) {
4420 rollback_registered(dev);
4421 dev->reg_state = NETREG_UNREGISTERED;
4422 }
4423
4424 out:
4425 return ret;
4426
4427 err_uninit:
4428 if (dev->netdev_ops->ndo_uninit)
4429 dev->netdev_ops->ndo_uninit(dev);
4430 goto out;
4431 }
4432
4433 /**
4434 * register_netdev - register a network device
4435 * @dev: device to register
4436 *
4437 * Take a completed network device structure and add it to the kernel
4438 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4439 * chain. 0 is returned on success. A negative errno code is returned
4440 * on a failure to set up the device, or if the name is a duplicate.
4441 *
4442 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4443 * and expands the device name if you passed a format string to
4444 * alloc_netdev.
4445 */
4446 int register_netdev(struct net_device *dev)
4447 {
4448 int err;
4449
4450 rtnl_lock();
4451
4452 /*
4453 * If the name is a format string the caller wants us to do a
4454 * name allocation.
4455 */
4456 if (strchr(dev->name, '%')) {
4457 err = dev_alloc_name(dev, dev->name);
4458 if (err < 0)
4459 goto out;
4460 }
4461
4462 err = register_netdevice(dev);
4463 out:
4464 rtnl_unlock();
4465 return err;
4466 }
4467 EXPORT_SYMBOL(register_netdev);
4468
4469 /*
4470 * netdev_wait_allrefs - wait until all references are gone.
4471 *
4472 * This is called when unregistering network devices.
4473 *
4474 * Any protocol or device that holds a reference should register
4475 * for netdevice notification, and cleanup and put back the
4476 * reference if they receive an UNREGISTER event.
4477 * We can get stuck here if buggy protocols don't correctly
4478 * call dev_put.
4479 */
4480 static void netdev_wait_allrefs(struct net_device *dev)
4481 {
4482 unsigned long rebroadcast_time, warning_time;
4483
4484 rebroadcast_time = warning_time = jiffies;
4485 while (atomic_read(&dev->refcnt) != 0) {
4486 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4487 rtnl_lock();
4488
4489 /* Rebroadcast unregister notification */
4490 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4491
4492 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4493 &dev->state)) {
4494 /* We must not have linkwatch events
4495 * pending on unregister. If this
4496 * happens, we simply run the queue
4497 * unscheduled, resulting in a noop
4498 * for this device.
4499 */
4500 linkwatch_run_queue();
4501 }
4502
4503 __rtnl_unlock();
4504
4505 rebroadcast_time = jiffies;
4506 }
4507
4508 msleep(250);
4509
4510 if (time_after(jiffies, warning_time + 10 * HZ)) {
4511 printk(KERN_EMERG "unregister_netdevice: "
4512 "waiting for %s to become free. Usage "
4513 "count = %d\n",
4514 dev->name, atomic_read(&dev->refcnt));
4515 warning_time = jiffies;
4516 }
4517 }
4518 }
4519
4520 /* The sequence is:
4521 *
4522 * rtnl_lock();
4523 * ...
4524 * register_netdevice(x1);
4525 * register_netdevice(x2);
4526 * ...
4527 * unregister_netdevice(y1);
4528 * unregister_netdevice(y2);
4529 * ...
4530 * rtnl_unlock();
4531 * free_netdev(y1);
4532 * free_netdev(y2);
4533 *
4534 * We are invoked by rtnl_unlock().
4535 * This allows us to deal with problems:
4536 * 1) We can delete sysfs objects which invoke hotplug
4537 * without deadlocking with linkwatch via keventd.
4538 * 2) Since we run with the RTNL semaphore not held, we can sleep
4539 * safely in order to wait for the netdev refcnt to drop to zero.
4540 *
4541 * We must not return until all unregister events added during
4542 * the interval the lock was held have been completed.
4543 */
4544 void netdev_run_todo(void)
4545 {
4546 struct list_head list;
4547
4548 /* Snapshot list, allow later requests */
4549 list_replace_init(&net_todo_list, &list);
4550
4551 __rtnl_unlock();
4552
4553 while (!list_empty(&list)) {
4554 struct net_device *dev
4555 = list_entry(list.next, struct net_device, todo_list);
4556 list_del(&dev->todo_list);
4557
4558 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4559 printk(KERN_ERR "network todo '%s' but state %d\n",
4560 dev->name, dev->reg_state);
4561 dump_stack();
4562 continue;
4563 }
4564
4565 dev->reg_state = NETREG_UNREGISTERED;
4566
4567 on_each_cpu(flush_backlog, dev, 1);
4568
4569 netdev_wait_allrefs(dev);
4570
4571 /* paranoia */
4572 BUG_ON(atomic_read(&dev->refcnt));
4573 WARN_ON(dev->ip_ptr);
4574 WARN_ON(dev->ip6_ptr);
4575 WARN_ON(dev->dn_ptr);
4576
4577 if (dev->destructor)
4578 dev->destructor(dev);
4579
4580 /* Free network device */
4581 kobject_put(&dev->dev.kobj);
4582 }
4583 }
4584
4585 /**
4586 * dev_get_stats - get network device statistics
4587 * @dev: device to get statistics from
4588 *
4589 * Get network statistics from device. The device driver may provide
4590 * its own method by setting dev->netdev_ops->get_stats; otherwise
4591 * the internal statistics structure is used.
4592 */
4593 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4594 {
4595 const struct net_device_ops *ops = dev->netdev_ops;
4596
4597 if (ops->ndo_get_stats)
4598 return ops->ndo_get_stats(dev);
4599 else
4600 return &dev->stats;
4601 }
4602 EXPORT_SYMBOL(dev_get_stats);
4603
4604 static void netdev_init_one_queue(struct net_device *dev,
4605 struct netdev_queue *queue,
4606 void *_unused)
4607 {
4608 queue->dev = dev;
4609 }
4610
4611 static void netdev_init_queues(struct net_device *dev)
4612 {
4613 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4614 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4615 spin_lock_init(&dev->tx_global_lock);
4616 }
4617
4618 /**
4619 * alloc_netdev_mq - allocate network device
4620 * @sizeof_priv: size of private data to allocate space for
4621 * @name: device name format string
4622 * @setup: callback to initialize device
4623 * @queue_count: the number of subqueues to allocate
4624 *
4625 * Allocates a struct net_device with private data area for driver use
4626 * and performs basic initialization. Also allocates subquue structs
4627 * for each queue on the device at the end of the netdevice.
4628 */
4629 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4630 void (*setup)(struct net_device *), unsigned int queue_count)
4631 {
4632 struct netdev_queue *tx;
4633 struct net_device *dev;
4634 size_t alloc_size;
4635 void *p;
4636
4637 BUG_ON(strlen(name) >= sizeof(dev->name));
4638
4639 alloc_size = sizeof(struct net_device);
4640 if (sizeof_priv) {
4641 /* ensure 32-byte alignment of private area */
4642 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4643 alloc_size += sizeof_priv;
4644 }
4645 /* ensure 32-byte alignment of whole construct */
4646 alloc_size += NETDEV_ALIGN_CONST;
4647
4648 p = kzalloc(alloc_size, GFP_KERNEL);
4649 if (!p) {
4650 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4651 return NULL;
4652 }
4653
4654 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4655 if (!tx) {
4656 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4657 "tx qdiscs.\n");
4658 kfree(p);
4659 return NULL;
4660 }
4661
4662 dev = (struct net_device *)
4663 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4664 dev->padded = (char *)dev - (char *)p;
4665 dev_net_set(dev, &init_net);
4666
4667 dev->_tx = tx;
4668 dev->num_tx_queues = queue_count;
4669 dev->real_num_tx_queues = queue_count;
4670
4671 dev->gso_max_size = GSO_MAX_SIZE;
4672
4673 netdev_init_queues(dev);
4674
4675 INIT_LIST_HEAD(&dev->napi_list);
4676 setup(dev);
4677 strcpy(dev->name, name);
4678 return dev;
4679 }
4680 EXPORT_SYMBOL(alloc_netdev_mq);
4681
4682 /**
4683 * free_netdev - free network device
4684 * @dev: device
4685 *
4686 * This function does the last stage of destroying an allocated device
4687 * interface. The reference to the device object is released.
4688 * If this is the last reference then it will be freed.
4689 */
4690 void free_netdev(struct net_device *dev)
4691 {
4692 struct napi_struct *p, *n;
4693
4694 release_net(dev_net(dev));
4695
4696 kfree(dev->_tx);
4697
4698 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4699 netif_napi_del(p);
4700
4701 /* Compatibility with error handling in drivers */
4702 if (dev->reg_state == NETREG_UNINITIALIZED) {
4703 kfree((char *)dev - dev->padded);
4704 return;
4705 }
4706
4707 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4708 dev->reg_state = NETREG_RELEASED;
4709
4710 /* will free via device release */
4711 put_device(&dev->dev);
4712 }
4713
4714 /**
4715 * synchronize_net - Synchronize with packet receive processing
4716 *
4717 * Wait for packets currently being received to be done.
4718 * Does not block later packets from starting.
4719 */
4720 void synchronize_net(void)
4721 {
4722 might_sleep();
4723 synchronize_rcu();
4724 }
4725
4726 /**
4727 * unregister_netdevice - remove device from the kernel
4728 * @dev: device
4729 *
4730 * This function shuts down a device interface and removes it
4731 * from the kernel tables.
4732 *
4733 * Callers must hold the rtnl semaphore. You may want
4734 * unregister_netdev() instead of this.
4735 */
4736
4737 void unregister_netdevice(struct net_device *dev)
4738 {
4739 ASSERT_RTNL();
4740
4741 rollback_registered(dev);
4742 /* Finish processing unregister after unlock */
4743 net_set_todo(dev);
4744 }
4745
4746 /**
4747 * unregister_netdev - remove device from the kernel
4748 * @dev: device
4749 *
4750 * This function shuts down a device interface and removes it
4751 * from the kernel tables.
4752 *
4753 * This is just a wrapper for unregister_netdevice that takes
4754 * the rtnl semaphore. In general you want to use this and not
4755 * unregister_netdevice.
4756 */
4757 void unregister_netdev(struct net_device *dev)
4758 {
4759 rtnl_lock();
4760 unregister_netdevice(dev);
4761 rtnl_unlock();
4762 }
4763
4764 EXPORT_SYMBOL(unregister_netdev);
4765
4766 /**
4767 * dev_change_net_namespace - move device to different nethost namespace
4768 * @dev: device
4769 * @net: network namespace
4770 * @pat: If not NULL name pattern to try if the current device name
4771 * is already taken in the destination network namespace.
4772 *
4773 * This function shuts down a device interface and moves it
4774 * to a new network namespace. On success 0 is returned, on
4775 * a failure a netagive errno code is returned.
4776 *
4777 * Callers must hold the rtnl semaphore.
4778 */
4779
4780 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4781 {
4782 char buf[IFNAMSIZ];
4783 const char *destname;
4784 int err;
4785
4786 ASSERT_RTNL();
4787
4788 /* Don't allow namespace local devices to be moved. */
4789 err = -EINVAL;
4790 if (dev->features & NETIF_F_NETNS_LOCAL)
4791 goto out;
4792
4793 #ifdef CONFIG_SYSFS
4794 /* Don't allow real devices to be moved when sysfs
4795 * is enabled.
4796 */
4797 err = -EINVAL;
4798 if (dev->dev.parent)
4799 goto out;
4800 #endif
4801
4802 /* Ensure the device has been registrered */
4803 err = -EINVAL;
4804 if (dev->reg_state != NETREG_REGISTERED)
4805 goto out;
4806
4807 /* Get out if there is nothing todo */
4808 err = 0;
4809 if (net_eq(dev_net(dev), net))
4810 goto out;
4811
4812 /* Pick the destination device name, and ensure
4813 * we can use it in the destination network namespace.
4814 */
4815 err = -EEXIST;
4816 destname = dev->name;
4817 if (__dev_get_by_name(net, destname)) {
4818 /* We get here if we can't use the current device name */
4819 if (!pat)
4820 goto out;
4821 if (!dev_valid_name(pat))
4822 goto out;
4823 if (strchr(pat, '%')) {
4824 if (__dev_alloc_name(net, pat, buf) < 0)
4825 goto out;
4826 destname = buf;
4827 } else
4828 destname = pat;
4829 if (__dev_get_by_name(net, destname))
4830 goto out;
4831 }
4832
4833 /*
4834 * And now a mini version of register_netdevice unregister_netdevice.
4835 */
4836
4837 /* If device is running close it first. */
4838 dev_close(dev);
4839
4840 /* And unlink it from device chain */
4841 err = -ENODEV;
4842 unlist_netdevice(dev);
4843
4844 synchronize_net();
4845
4846 /* Shutdown queueing discipline. */
4847 dev_shutdown(dev);
4848
4849 /* Notify protocols, that we are about to destroy
4850 this device. They should clean all the things.
4851 */
4852 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4853
4854 /*
4855 * Flush the unicast and multicast chains
4856 */
4857 dev_addr_discard(dev);
4858
4859 netdev_unregister_kobject(dev);
4860
4861 /* Actually switch the network namespace */
4862 dev_net_set(dev, net);
4863
4864 /* Assign the new device name */
4865 if (destname != dev->name)
4866 strcpy(dev->name, destname);
4867
4868 /* If there is an ifindex conflict assign a new one */
4869 if (__dev_get_by_index(net, dev->ifindex)) {
4870 int iflink = (dev->iflink == dev->ifindex);
4871 dev->ifindex = dev_new_index(net);
4872 if (iflink)
4873 dev->iflink = dev->ifindex;
4874 }
4875
4876 /* Fixup kobjects */
4877 err = netdev_register_kobject(dev);
4878 WARN_ON(err);
4879
4880 /* Add the device back in the hashes */
4881 list_netdevice(dev);
4882
4883 /* Notify protocols, that a new device appeared. */
4884 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4885
4886 synchronize_net();
4887 err = 0;
4888 out:
4889 return err;
4890 }
4891
4892 static int dev_cpu_callback(struct notifier_block *nfb,
4893 unsigned long action,
4894 void *ocpu)
4895 {
4896 struct sk_buff **list_skb;
4897 struct Qdisc **list_net;
4898 struct sk_buff *skb;
4899 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4900 struct softnet_data *sd, *oldsd;
4901
4902 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4903 return NOTIFY_OK;
4904
4905 local_irq_disable();
4906 cpu = smp_processor_id();
4907 sd = &per_cpu(softnet_data, cpu);
4908 oldsd = &per_cpu(softnet_data, oldcpu);
4909
4910 /* Find end of our completion_queue. */
4911 list_skb = &sd->completion_queue;
4912 while (*list_skb)
4913 list_skb = &(*list_skb)->next;
4914 /* Append completion queue from offline CPU. */
4915 *list_skb = oldsd->completion_queue;
4916 oldsd->completion_queue = NULL;
4917
4918 /* Find end of our output_queue. */
4919 list_net = &sd->output_queue;
4920 while (*list_net)
4921 list_net = &(*list_net)->next_sched;
4922 /* Append output queue from offline CPU. */
4923 *list_net = oldsd->output_queue;
4924 oldsd->output_queue = NULL;
4925
4926 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4927 local_irq_enable();
4928
4929 /* Process offline CPU's input_pkt_queue */
4930 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4931 netif_rx(skb);
4932
4933 return NOTIFY_OK;
4934 }
4935
4936
4937 /**
4938 * netdev_increment_features - increment feature set by one
4939 * @all: current feature set
4940 * @one: new feature set
4941 * @mask: mask feature set
4942 *
4943 * Computes a new feature set after adding a device with feature set
4944 * @one to the master device with current feature set @all. Will not
4945 * enable anything that is off in @mask. Returns the new feature set.
4946 */
4947 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
4948 unsigned long mask)
4949 {
4950 /* If device needs checksumming, downgrade to it. */
4951 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4952 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
4953 else if (mask & NETIF_F_ALL_CSUM) {
4954 /* If one device supports v4/v6 checksumming, set for all. */
4955 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
4956 !(all & NETIF_F_GEN_CSUM)) {
4957 all &= ~NETIF_F_ALL_CSUM;
4958 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
4959 }
4960
4961 /* If one device supports hw checksumming, set for all. */
4962 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
4963 all &= ~NETIF_F_ALL_CSUM;
4964 all |= NETIF_F_HW_CSUM;
4965 }
4966 }
4967
4968 one |= NETIF_F_ALL_CSUM;
4969
4970 one |= all & NETIF_F_ONE_FOR_ALL;
4971 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
4972 all |= one & mask & NETIF_F_ONE_FOR_ALL;
4973
4974 return all;
4975 }
4976 EXPORT_SYMBOL(netdev_increment_features);
4977
4978 static struct hlist_head *netdev_create_hash(void)
4979 {
4980 int i;
4981 struct hlist_head *hash;
4982
4983 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4984 if (hash != NULL)
4985 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4986 INIT_HLIST_HEAD(&hash[i]);
4987
4988 return hash;
4989 }
4990
4991 /* Initialize per network namespace state */
4992 static int __net_init netdev_init(struct net *net)
4993 {
4994 INIT_LIST_HEAD(&net->dev_base_head);
4995
4996 net->dev_name_head = netdev_create_hash();
4997 if (net->dev_name_head == NULL)
4998 goto err_name;
4999
5000 net->dev_index_head = netdev_create_hash();
5001 if (net->dev_index_head == NULL)
5002 goto err_idx;
5003
5004 return 0;
5005
5006 err_idx:
5007 kfree(net->dev_name_head);
5008 err_name:
5009 return -ENOMEM;
5010 }
5011
5012 /**
5013 * netdev_drivername - network driver for the device
5014 * @dev: network device
5015 * @buffer: buffer for resulting name
5016 * @len: size of buffer
5017 *
5018 * Determine network driver for device.
5019 */
5020 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5021 {
5022 const struct device_driver *driver;
5023 const struct device *parent;
5024
5025 if (len <= 0 || !buffer)
5026 return buffer;
5027 buffer[0] = 0;
5028
5029 parent = dev->dev.parent;
5030
5031 if (!parent)
5032 return buffer;
5033
5034 driver = parent->driver;
5035 if (driver && driver->name)
5036 strlcpy(buffer, driver->name, len);
5037 return buffer;
5038 }
5039
5040 static void __net_exit netdev_exit(struct net *net)
5041 {
5042 kfree(net->dev_name_head);
5043 kfree(net->dev_index_head);
5044 }
5045
5046 static struct pernet_operations __net_initdata netdev_net_ops = {
5047 .init = netdev_init,
5048 .exit = netdev_exit,
5049 };
5050
5051 static void __net_exit default_device_exit(struct net *net)
5052 {
5053 struct net_device *dev;
5054 /*
5055 * Push all migratable of the network devices back to the
5056 * initial network namespace
5057 */
5058 rtnl_lock();
5059 restart:
5060 for_each_netdev(net, dev) {
5061 int err;
5062 char fb_name[IFNAMSIZ];
5063
5064 /* Ignore unmoveable devices (i.e. loopback) */
5065 if (dev->features & NETIF_F_NETNS_LOCAL)
5066 continue;
5067
5068 /* Delete virtual devices */
5069 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5070 dev->rtnl_link_ops->dellink(dev);
5071 goto restart;
5072 }
5073
5074 /* Push remaing network devices to init_net */
5075 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5076 err = dev_change_net_namespace(dev, &init_net, fb_name);
5077 if (err) {
5078 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5079 __func__, dev->name, err);
5080 BUG();
5081 }
5082 goto restart;
5083 }
5084 rtnl_unlock();
5085 }
5086
5087 static struct pernet_operations __net_initdata default_device_ops = {
5088 .exit = default_device_exit,
5089 };
5090
5091 /*
5092 * Initialize the DEV module. At boot time this walks the device list and
5093 * unhooks any devices that fail to initialise (normally hardware not
5094 * present) and leaves us with a valid list of present and active devices.
5095 *
5096 */
5097
5098 /*
5099 * This is called single threaded during boot, so no need
5100 * to take the rtnl semaphore.
5101 */
5102 static int __init net_dev_init(void)
5103 {
5104 int i, rc = -ENOMEM;
5105
5106 BUG_ON(!dev_boot_phase);
5107
5108 if (dev_proc_init())
5109 goto out;
5110
5111 if (netdev_kobject_init())
5112 goto out;
5113
5114 INIT_LIST_HEAD(&ptype_all);
5115 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5116 INIT_LIST_HEAD(&ptype_base[i]);
5117
5118 if (register_pernet_subsys(&netdev_net_ops))
5119 goto out;
5120
5121 /*
5122 * Initialise the packet receive queues.
5123 */
5124
5125 for_each_possible_cpu(i) {
5126 struct softnet_data *queue;
5127
5128 queue = &per_cpu(softnet_data, i);
5129 skb_queue_head_init(&queue->input_pkt_queue);
5130 queue->completion_queue = NULL;
5131 INIT_LIST_HEAD(&queue->poll_list);
5132
5133 queue->backlog.poll = process_backlog;
5134 queue->backlog.weight = weight_p;
5135 queue->backlog.gro_list = NULL;
5136 }
5137
5138 dev_boot_phase = 0;
5139
5140 /* The loopback device is special if any other network devices
5141 * is present in a network namespace the loopback device must
5142 * be present. Since we now dynamically allocate and free the
5143 * loopback device ensure this invariant is maintained by
5144 * keeping the loopback device as the first device on the
5145 * list of network devices. Ensuring the loopback devices
5146 * is the first device that appears and the last network device
5147 * that disappears.
5148 */
5149 if (register_pernet_device(&loopback_net_ops))
5150 goto out;
5151
5152 if (register_pernet_device(&default_device_ops))
5153 goto out;
5154
5155 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5156 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5157
5158 hotcpu_notifier(dev_cpu_callback, 0);
5159 dst_init();
5160 dev_mcast_init();
5161 rc = 0;
5162 out:
5163 return rc;
5164 }
5165
5166 subsys_initcall(net_dev_init);
5167
5168 EXPORT_SYMBOL(__dev_get_by_index);
5169 EXPORT_SYMBOL(__dev_get_by_name);
5170 EXPORT_SYMBOL(__dev_remove_pack);
5171 EXPORT_SYMBOL(dev_valid_name);
5172 EXPORT_SYMBOL(dev_add_pack);
5173 EXPORT_SYMBOL(dev_alloc_name);
5174 EXPORT_SYMBOL(dev_close);
5175 EXPORT_SYMBOL(dev_get_by_flags);
5176 EXPORT_SYMBOL(dev_get_by_index);
5177 EXPORT_SYMBOL(dev_get_by_name);
5178 EXPORT_SYMBOL(dev_open);
5179 EXPORT_SYMBOL(dev_queue_xmit);
5180 EXPORT_SYMBOL(dev_remove_pack);
5181 EXPORT_SYMBOL(dev_set_allmulti);
5182 EXPORT_SYMBOL(dev_set_promiscuity);
5183 EXPORT_SYMBOL(dev_change_flags);
5184 EXPORT_SYMBOL(dev_set_mtu);
5185 EXPORT_SYMBOL(dev_set_mac_address);
5186 EXPORT_SYMBOL(free_netdev);
5187 EXPORT_SYMBOL(netdev_boot_setup_check);
5188 EXPORT_SYMBOL(netdev_set_master);
5189 EXPORT_SYMBOL(netdev_state_change);
5190 EXPORT_SYMBOL(netif_receive_skb);
5191 EXPORT_SYMBOL(netif_rx);
5192 EXPORT_SYMBOL(register_gifconf);
5193 EXPORT_SYMBOL(register_netdevice);
5194 EXPORT_SYMBOL(register_netdevice_notifier);
5195 EXPORT_SYMBOL(skb_checksum_help);
5196 EXPORT_SYMBOL(synchronize_net);
5197 EXPORT_SYMBOL(unregister_netdevice);
5198 EXPORT_SYMBOL(unregister_netdevice_notifier);
5199 EXPORT_SYMBOL(net_enable_timestamp);
5200 EXPORT_SYMBOL(net_disable_timestamp);
5201 EXPORT_SYMBOL(dev_get_flags);
5202
5203 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5204 EXPORT_SYMBOL(br_handle_frame_hook);
5205 EXPORT_SYMBOL(br_fdb_get_hook);
5206 EXPORT_SYMBOL(br_fdb_put_hook);
5207 #endif
5208
5209 EXPORT_SYMBOL(dev_load);
5210
5211 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.146763 seconds and 4 git commands to generate.