net: don't allow CAP_NET_ADMIN to load non-netdev kernel modules
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr_rcu - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device.
753 * The caller must hold RCU or RTNL.
754 * The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 */
758
759 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
760 const char *ha)
761 {
762 struct net_device *dev;
763
764 for_each_netdev_rcu(net, dev)
765 if (dev->type == type &&
766 !memcmp(dev->dev_addr, ha, dev->addr_len))
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
772
773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev;
776
777 ASSERT_RTNL();
778 for_each_netdev(net, dev)
779 if (dev->type == type)
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
785
786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 struct net_device *dev, *ret = NULL;
789
790 rcu_read_lock();
791 for_each_netdev_rcu(net, dev)
792 if (dev->type == type) {
793 dev_hold(dev);
794 ret = dev;
795 break;
796 }
797 rcu_read_unlock();
798 return ret;
799 }
800 EXPORT_SYMBOL(dev_getfirstbyhwtype);
801
802 /**
803 * dev_get_by_flags_rcu - find any device with given flags
804 * @net: the applicable net namespace
805 * @if_flags: IFF_* values
806 * @mask: bitmask of bits in if_flags to check
807 *
808 * Search for any interface with the given flags. Returns NULL if a device
809 * is not found or a pointer to the device. Must be called inside
810 * rcu_read_lock(), and result refcount is unchanged.
811 */
812
813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
814 unsigned short mask)
815 {
816 struct net_device *dev, *ret;
817
818 ret = NULL;
819 for_each_netdev_rcu(net, dev) {
820 if (((dev->flags ^ if_flags) & mask) == 0) {
821 ret = dev;
822 break;
823 }
824 }
825 return ret;
826 }
827 EXPORT_SYMBOL(dev_get_by_flags_rcu);
828
829 /**
830 * dev_valid_name - check if name is okay for network device
831 * @name: name string
832 *
833 * Network device names need to be valid file names to
834 * to allow sysfs to work. We also disallow any kind of
835 * whitespace.
836 */
837 int dev_valid_name(const char *name)
838 {
839 if (*name == '\0')
840 return 0;
841 if (strlen(name) >= IFNAMSIZ)
842 return 0;
843 if (!strcmp(name, ".") || !strcmp(name, ".."))
844 return 0;
845
846 while (*name) {
847 if (*name == '/' || isspace(*name))
848 return 0;
849 name++;
850 }
851 return 1;
852 }
853 EXPORT_SYMBOL(dev_valid_name);
854
855 /**
856 * __dev_alloc_name - allocate a name for a device
857 * @net: network namespace to allocate the device name in
858 * @name: name format string
859 * @buf: scratch buffer and result name string
860 *
861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid
865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code.
868 */
869
870 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
871 {
872 int i = 0;
873 const char *p;
874 const int max_netdevices = 8*PAGE_SIZE;
875 unsigned long *inuse;
876 struct net_device *d;
877
878 p = strnchr(name, IFNAMSIZ-1, '%');
879 if (p) {
880 /*
881 * Verify the string as this thing may have come from
882 * the user. There must be either one "%d" and no other "%"
883 * characters.
884 */
885 if (p[1] != 'd' || strchr(p + 2, '%'))
886 return -EINVAL;
887
888 /* Use one page as a bit array of possible slots */
889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
890 if (!inuse)
891 return -ENOMEM;
892
893 for_each_netdev(net, d) {
894 if (!sscanf(d->name, name, &i))
895 continue;
896 if (i < 0 || i >= max_netdevices)
897 continue;
898
899 /* avoid cases where sscanf is not exact inverse of printf */
900 snprintf(buf, IFNAMSIZ, name, i);
901 if (!strncmp(buf, d->name, IFNAMSIZ))
902 set_bit(i, inuse);
903 }
904
905 i = find_first_zero_bit(inuse, max_netdevices);
906 free_page((unsigned long) inuse);
907 }
908
909 if (buf != name)
910 snprintf(buf, IFNAMSIZ, name, i);
911 if (!__dev_get_by_name(net, buf))
912 return i;
913
914 /* It is possible to run out of possible slots
915 * when the name is long and there isn't enough space left
916 * for the digits, or if all bits are used.
917 */
918 return -ENFILE;
919 }
920
921 /**
922 * dev_alloc_name - allocate a name for a device
923 * @dev: device
924 * @name: name format string
925 *
926 * Passed a format string - eg "lt%d" it will try and find a suitable
927 * id. It scans list of devices to build up a free map, then chooses
928 * the first empty slot. The caller must hold the dev_base or rtnl lock
929 * while allocating the name and adding the device in order to avoid
930 * duplicates.
931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
932 * Returns the number of the unit assigned or a negative errno code.
933 */
934
935 int dev_alloc_name(struct net_device *dev, const char *name)
936 {
937 char buf[IFNAMSIZ];
938 struct net *net;
939 int ret;
940
941 BUG_ON(!dev_net(dev));
942 net = dev_net(dev);
943 ret = __dev_alloc_name(net, name, buf);
944 if (ret >= 0)
945 strlcpy(dev->name, buf, IFNAMSIZ);
946 return ret;
947 }
948 EXPORT_SYMBOL(dev_alloc_name);
949
950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
951 {
952 struct net *net;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956
957 if (!dev_valid_name(name))
958 return -EINVAL;
959
960 if (fmt && strchr(name, '%'))
961 return dev_alloc_name(dev, name);
962 else if (__dev_get_by_name(net, name))
963 return -EEXIST;
964 else if (dev->name != name)
965 strlcpy(dev->name, name, IFNAMSIZ);
966
967 return 0;
968 }
969
970 /**
971 * dev_change_name - change name of a device
972 * @dev: device
973 * @newname: name (or format string) must be at least IFNAMSIZ
974 *
975 * Change name of a device, can pass format strings "eth%d".
976 * for wildcarding.
977 */
978 int dev_change_name(struct net_device *dev, const char *newname)
979 {
980 char oldname[IFNAMSIZ];
981 int err = 0;
982 int ret;
983 struct net *net;
984
985 ASSERT_RTNL();
986 BUG_ON(!dev_net(dev));
987
988 net = dev_net(dev);
989 if (dev->flags & IFF_UP)
990 return -EBUSY;
991
992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
993 return 0;
994
995 memcpy(oldname, dev->name, IFNAMSIZ);
996
997 err = dev_get_valid_name(dev, newname, 1);
998 if (err < 0)
999 return err;
1000
1001 rollback:
1002 ret = device_rename(&dev->dev, dev->name);
1003 if (ret) {
1004 memcpy(dev->name, oldname, IFNAMSIZ);
1005 return ret;
1006 }
1007
1008 write_lock_bh(&dev_base_lock);
1009 hlist_del(&dev->name_hlist);
1010 write_unlock_bh(&dev_base_lock);
1011
1012 synchronize_rcu();
1013
1014 write_lock_bh(&dev_base_lock);
1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1016 write_unlock_bh(&dev_base_lock);
1017
1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1019 ret = notifier_to_errno(ret);
1020
1021 if (ret) {
1022 /* err >= 0 after dev_alloc_name() or stores the first errno */
1023 if (err >= 0) {
1024 err = ret;
1025 memcpy(dev->name, oldname, IFNAMSIZ);
1026 goto rollback;
1027 } else {
1028 printk(KERN_ERR
1029 "%s: name change rollback failed: %d.\n",
1030 dev->name, ret);
1031 }
1032 }
1033
1034 return err;
1035 }
1036
1037 /**
1038 * dev_set_alias - change ifalias of a device
1039 * @dev: device
1040 * @alias: name up to IFALIASZ
1041 * @len: limit of bytes to copy from info
1042 *
1043 * Set ifalias for a device,
1044 */
1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1046 {
1047 ASSERT_RTNL();
1048
1049 if (len >= IFALIASZ)
1050 return -EINVAL;
1051
1052 if (!len) {
1053 if (dev->ifalias) {
1054 kfree(dev->ifalias);
1055 dev->ifalias = NULL;
1056 }
1057 return 0;
1058 }
1059
1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1061 if (!dev->ifalias)
1062 return -ENOMEM;
1063
1064 strlcpy(dev->ifalias, alias, len+1);
1065 return len;
1066 }
1067
1068
1069 /**
1070 * netdev_features_change - device changes features
1071 * @dev: device to cause notification
1072 *
1073 * Called to indicate a device has changed features.
1074 */
1075 void netdev_features_change(struct net_device *dev)
1076 {
1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1078 }
1079 EXPORT_SYMBOL(netdev_features_change);
1080
1081 /**
1082 * netdev_state_change - device changes state
1083 * @dev: device to cause notification
1084 *
1085 * Called to indicate a device has changed state. This function calls
1086 * the notifier chains for netdev_chain and sends a NEWLINK message
1087 * to the routing socket.
1088 */
1089 void netdev_state_change(struct net_device *dev)
1090 {
1091 if (dev->flags & IFF_UP) {
1092 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1094 }
1095 }
1096 EXPORT_SYMBOL(netdev_state_change);
1097
1098 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1099 {
1100 return call_netdevice_notifiers(event, dev);
1101 }
1102 EXPORT_SYMBOL(netdev_bonding_change);
1103
1104 /**
1105 * dev_load - load a network module
1106 * @net: the applicable net namespace
1107 * @name: name of interface
1108 *
1109 * If a network interface is not present and the process has suitable
1110 * privileges this function loads the module. If module loading is not
1111 * available in this kernel then it becomes a nop.
1112 */
1113
1114 void dev_load(struct net *net, const char *name)
1115 {
1116 struct net_device *dev;
1117 int no_module;
1118
1119 rcu_read_lock();
1120 dev = dev_get_by_name_rcu(net, name);
1121 rcu_read_unlock();
1122
1123 no_module = !dev;
1124 if (no_module && capable(CAP_NET_ADMIN))
1125 no_module = request_module("netdev-%s", name);
1126 if (no_module && capable(CAP_SYS_MODULE)) {
1127 if (!request_module("%s", name))
1128 pr_err("Loading kernel module for a network device "
1129 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1130 "instead\n", name);
1131 }
1132 }
1133 EXPORT_SYMBOL(dev_load);
1134
1135 static int __dev_open(struct net_device *dev)
1136 {
1137 const struct net_device_ops *ops = dev->netdev_ops;
1138 int ret;
1139
1140 ASSERT_RTNL();
1141
1142 /*
1143 * Is it even present?
1144 */
1145 if (!netif_device_present(dev))
1146 return -ENODEV;
1147
1148 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1149 ret = notifier_to_errno(ret);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Call device private open method
1155 */
1156 set_bit(__LINK_STATE_START, &dev->state);
1157
1158 if (ops->ndo_validate_addr)
1159 ret = ops->ndo_validate_addr(dev);
1160
1161 if (!ret && ops->ndo_open)
1162 ret = ops->ndo_open(dev);
1163
1164 /*
1165 * If it went open OK then:
1166 */
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 /*
1172 * Set the flags.
1173 */
1174 dev->flags |= IFF_UP;
1175
1176 /*
1177 * Enable NET_DMA
1178 */
1179 net_dmaengine_get();
1180
1181 /*
1182 * Initialize multicasting status
1183 */
1184 dev_set_rx_mode(dev);
1185
1186 /*
1187 * Wakeup transmit queue engine
1188 */
1189 dev_activate(dev);
1190 }
1191
1192 return ret;
1193 }
1194
1195 /**
1196 * dev_open - prepare an interface for use.
1197 * @dev: device to open
1198 *
1199 * Takes a device from down to up state. The device's private open
1200 * function is invoked and then the multicast lists are loaded. Finally
1201 * the device is moved into the up state and a %NETDEV_UP message is
1202 * sent to the netdev notifier chain.
1203 *
1204 * Calling this function on an active interface is a nop. On a failure
1205 * a negative errno code is returned.
1206 */
1207 int dev_open(struct net_device *dev)
1208 {
1209 int ret;
1210
1211 /*
1212 * Is it already up?
1213 */
1214 if (dev->flags & IFF_UP)
1215 return 0;
1216
1217 /*
1218 * Open device
1219 */
1220 ret = __dev_open(dev);
1221 if (ret < 0)
1222 return ret;
1223
1224 /*
1225 * ... and announce new interface.
1226 */
1227 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1228 call_netdevice_notifiers(NETDEV_UP, dev);
1229
1230 return ret;
1231 }
1232 EXPORT_SYMBOL(dev_open);
1233
1234 static int __dev_close_many(struct list_head *head)
1235 {
1236 struct net_device *dev;
1237
1238 ASSERT_RTNL();
1239 might_sleep();
1240
1241 list_for_each_entry(dev, head, unreg_list) {
1242 /*
1243 * Tell people we are going down, so that they can
1244 * prepare to death, when device is still operating.
1245 */
1246 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1247
1248 clear_bit(__LINK_STATE_START, &dev->state);
1249
1250 /* Synchronize to scheduled poll. We cannot touch poll list, it
1251 * can be even on different cpu. So just clear netif_running().
1252 *
1253 * dev->stop() will invoke napi_disable() on all of it's
1254 * napi_struct instances on this device.
1255 */
1256 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1257 }
1258
1259 dev_deactivate_many(head);
1260
1261 list_for_each_entry(dev, head, unreg_list) {
1262 const struct net_device_ops *ops = dev->netdev_ops;
1263
1264 /*
1265 * Call the device specific close. This cannot fail.
1266 * Only if device is UP
1267 *
1268 * We allow it to be called even after a DETACH hot-plug
1269 * event.
1270 */
1271 if (ops->ndo_stop)
1272 ops->ndo_stop(dev);
1273
1274 /*
1275 * Device is now down.
1276 */
1277
1278 dev->flags &= ~IFF_UP;
1279
1280 /*
1281 * Shutdown NET_DMA
1282 */
1283 net_dmaengine_put();
1284 }
1285
1286 return 0;
1287 }
1288
1289 static int __dev_close(struct net_device *dev)
1290 {
1291 int retval;
1292 LIST_HEAD(single);
1293
1294 list_add(&dev->unreg_list, &single);
1295 retval = __dev_close_many(&single);
1296 list_del(&single);
1297 return retval;
1298 }
1299
1300 int dev_close_many(struct list_head *head)
1301 {
1302 struct net_device *dev, *tmp;
1303 LIST_HEAD(tmp_list);
1304
1305 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1306 if (!(dev->flags & IFF_UP))
1307 list_move(&dev->unreg_list, &tmp_list);
1308
1309 __dev_close_many(head);
1310
1311 /*
1312 * Tell people we are down
1313 */
1314 list_for_each_entry(dev, head, unreg_list) {
1315 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1316 call_netdevice_notifiers(NETDEV_DOWN, dev);
1317 }
1318
1319 /* rollback_registered_many needs the complete original list */
1320 list_splice(&tmp_list, head);
1321 return 0;
1322 }
1323
1324 /**
1325 * dev_close - shutdown an interface.
1326 * @dev: device to shutdown
1327 *
1328 * This function moves an active device into down state. A
1329 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1330 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1331 * chain.
1332 */
1333 int dev_close(struct net_device *dev)
1334 {
1335 LIST_HEAD(single);
1336
1337 list_add(&dev->unreg_list, &single);
1338 dev_close_many(&single);
1339 list_del(&single);
1340 return 0;
1341 }
1342 EXPORT_SYMBOL(dev_close);
1343
1344
1345 /**
1346 * dev_disable_lro - disable Large Receive Offload on a device
1347 * @dev: device
1348 *
1349 * Disable Large Receive Offload (LRO) on a net device. Must be
1350 * called under RTNL. This is needed if received packets may be
1351 * forwarded to another interface.
1352 */
1353 void dev_disable_lro(struct net_device *dev)
1354 {
1355 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1356 dev->ethtool_ops->set_flags) {
1357 u32 flags = dev->ethtool_ops->get_flags(dev);
1358 if (flags & ETH_FLAG_LRO) {
1359 flags &= ~ETH_FLAG_LRO;
1360 dev->ethtool_ops->set_flags(dev, flags);
1361 }
1362 }
1363 WARN_ON(dev->features & NETIF_F_LRO);
1364 }
1365 EXPORT_SYMBOL(dev_disable_lro);
1366
1367
1368 static int dev_boot_phase = 1;
1369
1370 /*
1371 * Device change register/unregister. These are not inline or static
1372 * as we export them to the world.
1373 */
1374
1375 /**
1376 * register_netdevice_notifier - register a network notifier block
1377 * @nb: notifier
1378 *
1379 * Register a notifier to be called when network device events occur.
1380 * The notifier passed is linked into the kernel structures and must
1381 * not be reused until it has been unregistered. A negative errno code
1382 * is returned on a failure.
1383 *
1384 * When registered all registration and up events are replayed
1385 * to the new notifier to allow device to have a race free
1386 * view of the network device list.
1387 */
1388
1389 int register_netdevice_notifier(struct notifier_block *nb)
1390 {
1391 struct net_device *dev;
1392 struct net_device *last;
1393 struct net *net;
1394 int err;
1395
1396 rtnl_lock();
1397 err = raw_notifier_chain_register(&netdev_chain, nb);
1398 if (err)
1399 goto unlock;
1400 if (dev_boot_phase)
1401 goto unlock;
1402 for_each_net(net) {
1403 for_each_netdev(net, dev) {
1404 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1405 err = notifier_to_errno(err);
1406 if (err)
1407 goto rollback;
1408
1409 if (!(dev->flags & IFF_UP))
1410 continue;
1411
1412 nb->notifier_call(nb, NETDEV_UP, dev);
1413 }
1414 }
1415
1416 unlock:
1417 rtnl_unlock();
1418 return err;
1419
1420 rollback:
1421 last = dev;
1422 for_each_net(net) {
1423 for_each_netdev(net, dev) {
1424 if (dev == last)
1425 break;
1426
1427 if (dev->flags & IFF_UP) {
1428 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1429 nb->notifier_call(nb, NETDEV_DOWN, dev);
1430 }
1431 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1432 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1433 }
1434 }
1435
1436 raw_notifier_chain_unregister(&netdev_chain, nb);
1437 goto unlock;
1438 }
1439 EXPORT_SYMBOL(register_netdevice_notifier);
1440
1441 /**
1442 * unregister_netdevice_notifier - unregister a network notifier block
1443 * @nb: notifier
1444 *
1445 * Unregister a notifier previously registered by
1446 * register_netdevice_notifier(). The notifier is unlinked into the
1447 * kernel structures and may then be reused. A negative errno code
1448 * is returned on a failure.
1449 */
1450
1451 int unregister_netdevice_notifier(struct notifier_block *nb)
1452 {
1453 int err;
1454
1455 rtnl_lock();
1456 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1457 rtnl_unlock();
1458 return err;
1459 }
1460 EXPORT_SYMBOL(unregister_netdevice_notifier);
1461
1462 /**
1463 * call_netdevice_notifiers - call all network notifier blocks
1464 * @val: value passed unmodified to notifier function
1465 * @dev: net_device pointer passed unmodified to notifier function
1466 *
1467 * Call all network notifier blocks. Parameters and return value
1468 * are as for raw_notifier_call_chain().
1469 */
1470
1471 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1472 {
1473 ASSERT_RTNL();
1474 return raw_notifier_call_chain(&netdev_chain, val, dev);
1475 }
1476
1477 /* When > 0 there are consumers of rx skb time stamps */
1478 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1479
1480 void net_enable_timestamp(void)
1481 {
1482 atomic_inc(&netstamp_needed);
1483 }
1484 EXPORT_SYMBOL(net_enable_timestamp);
1485
1486 void net_disable_timestamp(void)
1487 {
1488 atomic_dec(&netstamp_needed);
1489 }
1490 EXPORT_SYMBOL(net_disable_timestamp);
1491
1492 static inline void net_timestamp_set(struct sk_buff *skb)
1493 {
1494 if (atomic_read(&netstamp_needed))
1495 __net_timestamp(skb);
1496 else
1497 skb->tstamp.tv64 = 0;
1498 }
1499
1500 static inline void net_timestamp_check(struct sk_buff *skb)
1501 {
1502 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1503 __net_timestamp(skb);
1504 }
1505
1506 /**
1507 * dev_forward_skb - loopback an skb to another netif
1508 *
1509 * @dev: destination network device
1510 * @skb: buffer to forward
1511 *
1512 * return values:
1513 * NET_RX_SUCCESS (no congestion)
1514 * NET_RX_DROP (packet was dropped, but freed)
1515 *
1516 * dev_forward_skb can be used for injecting an skb from the
1517 * start_xmit function of one device into the receive queue
1518 * of another device.
1519 *
1520 * The receiving device may be in another namespace, so
1521 * we have to clear all information in the skb that could
1522 * impact namespace isolation.
1523 */
1524 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1525 {
1526 skb_orphan(skb);
1527 nf_reset(skb);
1528
1529 if (unlikely(!(dev->flags & IFF_UP) ||
1530 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1531 atomic_long_inc(&dev->rx_dropped);
1532 kfree_skb(skb);
1533 return NET_RX_DROP;
1534 }
1535 skb_set_dev(skb, dev);
1536 skb->tstamp.tv64 = 0;
1537 skb->pkt_type = PACKET_HOST;
1538 skb->protocol = eth_type_trans(skb, dev);
1539 return netif_rx(skb);
1540 }
1541 EXPORT_SYMBOL_GPL(dev_forward_skb);
1542
1543 static inline int deliver_skb(struct sk_buff *skb,
1544 struct packet_type *pt_prev,
1545 struct net_device *orig_dev)
1546 {
1547 atomic_inc(&skb->users);
1548 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1549 }
1550
1551 /*
1552 * Support routine. Sends outgoing frames to any network
1553 * taps currently in use.
1554 */
1555
1556 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1557 {
1558 struct packet_type *ptype;
1559 struct sk_buff *skb2 = NULL;
1560 struct packet_type *pt_prev = NULL;
1561
1562 rcu_read_lock();
1563 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1564 /* Never send packets back to the socket
1565 * they originated from - MvS (miquels@drinkel.ow.org)
1566 */
1567 if ((ptype->dev == dev || !ptype->dev) &&
1568 (ptype->af_packet_priv == NULL ||
1569 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1570 if (pt_prev) {
1571 deliver_skb(skb2, pt_prev, skb->dev);
1572 pt_prev = ptype;
1573 continue;
1574 }
1575
1576 skb2 = skb_clone(skb, GFP_ATOMIC);
1577 if (!skb2)
1578 break;
1579
1580 net_timestamp_set(skb2);
1581
1582 /* skb->nh should be correctly
1583 set by sender, so that the second statement is
1584 just protection against buggy protocols.
1585 */
1586 skb_reset_mac_header(skb2);
1587
1588 if (skb_network_header(skb2) < skb2->data ||
1589 skb2->network_header > skb2->tail) {
1590 if (net_ratelimit())
1591 printk(KERN_CRIT "protocol %04x is "
1592 "buggy, dev %s\n",
1593 ntohs(skb2->protocol),
1594 dev->name);
1595 skb_reset_network_header(skb2);
1596 }
1597
1598 skb2->transport_header = skb2->network_header;
1599 skb2->pkt_type = PACKET_OUTGOING;
1600 pt_prev = ptype;
1601 }
1602 }
1603 if (pt_prev)
1604 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1605 rcu_read_unlock();
1606 }
1607
1608 /*
1609 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1610 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1611 */
1612 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1613 {
1614 int rc;
1615
1616 if (txq < 1 || txq > dev->num_tx_queues)
1617 return -EINVAL;
1618
1619 if (dev->reg_state == NETREG_REGISTERED) {
1620 ASSERT_RTNL();
1621
1622 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1623 txq);
1624 if (rc)
1625 return rc;
1626
1627 if (txq < dev->real_num_tx_queues)
1628 qdisc_reset_all_tx_gt(dev, txq);
1629 }
1630
1631 dev->real_num_tx_queues = txq;
1632 return 0;
1633 }
1634 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1635
1636 #ifdef CONFIG_RPS
1637 /**
1638 * netif_set_real_num_rx_queues - set actual number of RX queues used
1639 * @dev: Network device
1640 * @rxq: Actual number of RX queues
1641 *
1642 * This must be called either with the rtnl_lock held or before
1643 * registration of the net device. Returns 0 on success, or a
1644 * negative error code. If called before registration, it always
1645 * succeeds.
1646 */
1647 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1648 {
1649 int rc;
1650
1651 if (rxq < 1 || rxq > dev->num_rx_queues)
1652 return -EINVAL;
1653
1654 if (dev->reg_state == NETREG_REGISTERED) {
1655 ASSERT_RTNL();
1656
1657 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1658 rxq);
1659 if (rc)
1660 return rc;
1661 }
1662
1663 dev->real_num_rx_queues = rxq;
1664 return 0;
1665 }
1666 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1667 #endif
1668
1669 static inline void __netif_reschedule(struct Qdisc *q)
1670 {
1671 struct softnet_data *sd;
1672 unsigned long flags;
1673
1674 local_irq_save(flags);
1675 sd = &__get_cpu_var(softnet_data);
1676 q->next_sched = NULL;
1677 *sd->output_queue_tailp = q;
1678 sd->output_queue_tailp = &q->next_sched;
1679 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1680 local_irq_restore(flags);
1681 }
1682
1683 void __netif_schedule(struct Qdisc *q)
1684 {
1685 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1686 __netif_reschedule(q);
1687 }
1688 EXPORT_SYMBOL(__netif_schedule);
1689
1690 void dev_kfree_skb_irq(struct sk_buff *skb)
1691 {
1692 if (atomic_dec_and_test(&skb->users)) {
1693 struct softnet_data *sd;
1694 unsigned long flags;
1695
1696 local_irq_save(flags);
1697 sd = &__get_cpu_var(softnet_data);
1698 skb->next = sd->completion_queue;
1699 sd->completion_queue = skb;
1700 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1701 local_irq_restore(flags);
1702 }
1703 }
1704 EXPORT_SYMBOL(dev_kfree_skb_irq);
1705
1706 void dev_kfree_skb_any(struct sk_buff *skb)
1707 {
1708 if (in_irq() || irqs_disabled())
1709 dev_kfree_skb_irq(skb);
1710 else
1711 dev_kfree_skb(skb);
1712 }
1713 EXPORT_SYMBOL(dev_kfree_skb_any);
1714
1715
1716 /**
1717 * netif_device_detach - mark device as removed
1718 * @dev: network device
1719 *
1720 * Mark device as removed from system and therefore no longer available.
1721 */
1722 void netif_device_detach(struct net_device *dev)
1723 {
1724 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1725 netif_running(dev)) {
1726 netif_tx_stop_all_queues(dev);
1727 }
1728 }
1729 EXPORT_SYMBOL(netif_device_detach);
1730
1731 /**
1732 * netif_device_attach - mark device as attached
1733 * @dev: network device
1734 *
1735 * Mark device as attached from system and restart if needed.
1736 */
1737 void netif_device_attach(struct net_device *dev)
1738 {
1739 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1740 netif_running(dev)) {
1741 netif_tx_wake_all_queues(dev);
1742 __netdev_watchdog_up(dev);
1743 }
1744 }
1745 EXPORT_SYMBOL(netif_device_attach);
1746
1747 /**
1748 * skb_dev_set -- assign a new device to a buffer
1749 * @skb: buffer for the new device
1750 * @dev: network device
1751 *
1752 * If an skb is owned by a device already, we have to reset
1753 * all data private to the namespace a device belongs to
1754 * before assigning it a new device.
1755 */
1756 #ifdef CONFIG_NET_NS
1757 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1758 {
1759 skb_dst_drop(skb);
1760 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1761 secpath_reset(skb);
1762 nf_reset(skb);
1763 skb_init_secmark(skb);
1764 skb->mark = 0;
1765 skb->priority = 0;
1766 skb->nf_trace = 0;
1767 skb->ipvs_property = 0;
1768 #ifdef CONFIG_NET_SCHED
1769 skb->tc_index = 0;
1770 #endif
1771 }
1772 skb->dev = dev;
1773 }
1774 EXPORT_SYMBOL(skb_set_dev);
1775 #endif /* CONFIG_NET_NS */
1776
1777 /*
1778 * Invalidate hardware checksum when packet is to be mangled, and
1779 * complete checksum manually on outgoing path.
1780 */
1781 int skb_checksum_help(struct sk_buff *skb)
1782 {
1783 __wsum csum;
1784 int ret = 0, offset;
1785
1786 if (skb->ip_summed == CHECKSUM_COMPLETE)
1787 goto out_set_summed;
1788
1789 if (unlikely(skb_shinfo(skb)->gso_size)) {
1790 /* Let GSO fix up the checksum. */
1791 goto out_set_summed;
1792 }
1793
1794 offset = skb_checksum_start_offset(skb);
1795 BUG_ON(offset >= skb_headlen(skb));
1796 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1797
1798 offset += skb->csum_offset;
1799 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1800
1801 if (skb_cloned(skb) &&
1802 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1803 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1804 if (ret)
1805 goto out;
1806 }
1807
1808 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1809 out_set_summed:
1810 skb->ip_summed = CHECKSUM_NONE;
1811 out:
1812 return ret;
1813 }
1814 EXPORT_SYMBOL(skb_checksum_help);
1815
1816 /**
1817 * skb_gso_segment - Perform segmentation on skb.
1818 * @skb: buffer to segment
1819 * @features: features for the output path (see dev->features)
1820 *
1821 * This function segments the given skb and returns a list of segments.
1822 *
1823 * It may return NULL if the skb requires no segmentation. This is
1824 * only possible when GSO is used for verifying header integrity.
1825 */
1826 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1827 {
1828 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1829 struct packet_type *ptype;
1830 __be16 type = skb->protocol;
1831 int vlan_depth = ETH_HLEN;
1832 int err;
1833
1834 while (type == htons(ETH_P_8021Q)) {
1835 struct vlan_hdr *vh;
1836
1837 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1838 return ERR_PTR(-EINVAL);
1839
1840 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1841 type = vh->h_vlan_encapsulated_proto;
1842 vlan_depth += VLAN_HLEN;
1843 }
1844
1845 skb_reset_mac_header(skb);
1846 skb->mac_len = skb->network_header - skb->mac_header;
1847 __skb_pull(skb, skb->mac_len);
1848
1849 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1850 struct net_device *dev = skb->dev;
1851 struct ethtool_drvinfo info = {};
1852
1853 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1854 dev->ethtool_ops->get_drvinfo(dev, &info);
1855
1856 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1857 info.driver, dev ? dev->features : 0L,
1858 skb->sk ? skb->sk->sk_route_caps : 0L,
1859 skb->len, skb->data_len, skb->ip_summed);
1860
1861 if (skb_header_cloned(skb) &&
1862 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1863 return ERR_PTR(err);
1864 }
1865
1866 rcu_read_lock();
1867 list_for_each_entry_rcu(ptype,
1868 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1869 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1870 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1871 err = ptype->gso_send_check(skb);
1872 segs = ERR_PTR(err);
1873 if (err || skb_gso_ok(skb, features))
1874 break;
1875 __skb_push(skb, (skb->data -
1876 skb_network_header(skb)));
1877 }
1878 segs = ptype->gso_segment(skb, features);
1879 break;
1880 }
1881 }
1882 rcu_read_unlock();
1883
1884 __skb_push(skb, skb->data - skb_mac_header(skb));
1885
1886 return segs;
1887 }
1888 EXPORT_SYMBOL(skb_gso_segment);
1889
1890 /* Take action when hardware reception checksum errors are detected. */
1891 #ifdef CONFIG_BUG
1892 void netdev_rx_csum_fault(struct net_device *dev)
1893 {
1894 if (net_ratelimit()) {
1895 printk(KERN_ERR "%s: hw csum failure.\n",
1896 dev ? dev->name : "<unknown>");
1897 dump_stack();
1898 }
1899 }
1900 EXPORT_SYMBOL(netdev_rx_csum_fault);
1901 #endif
1902
1903 /* Actually, we should eliminate this check as soon as we know, that:
1904 * 1. IOMMU is present and allows to map all the memory.
1905 * 2. No high memory really exists on this machine.
1906 */
1907
1908 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1909 {
1910 #ifdef CONFIG_HIGHMEM
1911 int i;
1912 if (!(dev->features & NETIF_F_HIGHDMA)) {
1913 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1914 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1915 return 1;
1916 }
1917
1918 if (PCI_DMA_BUS_IS_PHYS) {
1919 struct device *pdev = dev->dev.parent;
1920
1921 if (!pdev)
1922 return 0;
1923 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1924 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1925 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1926 return 1;
1927 }
1928 }
1929 #endif
1930 return 0;
1931 }
1932
1933 struct dev_gso_cb {
1934 void (*destructor)(struct sk_buff *skb);
1935 };
1936
1937 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1938
1939 static void dev_gso_skb_destructor(struct sk_buff *skb)
1940 {
1941 struct dev_gso_cb *cb;
1942
1943 do {
1944 struct sk_buff *nskb = skb->next;
1945
1946 skb->next = nskb->next;
1947 nskb->next = NULL;
1948 kfree_skb(nskb);
1949 } while (skb->next);
1950
1951 cb = DEV_GSO_CB(skb);
1952 if (cb->destructor)
1953 cb->destructor(skb);
1954 }
1955
1956 /**
1957 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1958 * @skb: buffer to segment
1959 * @features: device features as applicable to this skb
1960 *
1961 * This function segments the given skb and stores the list of segments
1962 * in skb->next.
1963 */
1964 static int dev_gso_segment(struct sk_buff *skb, int features)
1965 {
1966 struct sk_buff *segs;
1967
1968 segs = skb_gso_segment(skb, features);
1969
1970 /* Verifying header integrity only. */
1971 if (!segs)
1972 return 0;
1973
1974 if (IS_ERR(segs))
1975 return PTR_ERR(segs);
1976
1977 skb->next = segs;
1978 DEV_GSO_CB(skb)->destructor = skb->destructor;
1979 skb->destructor = dev_gso_skb_destructor;
1980
1981 return 0;
1982 }
1983
1984 /*
1985 * Try to orphan skb early, right before transmission by the device.
1986 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1987 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1988 */
1989 static inline void skb_orphan_try(struct sk_buff *skb)
1990 {
1991 struct sock *sk = skb->sk;
1992
1993 if (sk && !skb_shinfo(skb)->tx_flags) {
1994 /* skb_tx_hash() wont be able to get sk.
1995 * We copy sk_hash into skb->rxhash
1996 */
1997 if (!skb->rxhash)
1998 skb->rxhash = sk->sk_hash;
1999 skb_orphan(skb);
2000 }
2001 }
2002
2003 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2004 {
2005 return ((features & NETIF_F_GEN_CSUM) ||
2006 ((features & NETIF_F_V4_CSUM) &&
2007 protocol == htons(ETH_P_IP)) ||
2008 ((features & NETIF_F_V6_CSUM) &&
2009 protocol == htons(ETH_P_IPV6)) ||
2010 ((features & NETIF_F_FCOE_CRC) &&
2011 protocol == htons(ETH_P_FCOE)));
2012 }
2013
2014 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features)
2015 {
2016 if (!can_checksum_protocol(features, protocol)) {
2017 features &= ~NETIF_F_ALL_CSUM;
2018 features &= ~NETIF_F_SG;
2019 } else if (illegal_highdma(skb->dev, skb)) {
2020 features &= ~NETIF_F_SG;
2021 }
2022
2023 return features;
2024 }
2025
2026 int netif_skb_features(struct sk_buff *skb)
2027 {
2028 __be16 protocol = skb->protocol;
2029 int features = skb->dev->features;
2030
2031 if (protocol == htons(ETH_P_8021Q)) {
2032 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2033 protocol = veh->h_vlan_encapsulated_proto;
2034 } else if (!vlan_tx_tag_present(skb)) {
2035 return harmonize_features(skb, protocol, features);
2036 }
2037
2038 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2039
2040 if (protocol != htons(ETH_P_8021Q)) {
2041 return harmonize_features(skb, protocol, features);
2042 } else {
2043 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2044 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2045 return harmonize_features(skb, protocol, features);
2046 }
2047 }
2048 EXPORT_SYMBOL(netif_skb_features);
2049
2050 /*
2051 * Returns true if either:
2052 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2053 * 2. skb is fragmented and the device does not support SG, or if
2054 * at least one of fragments is in highmem and device does not
2055 * support DMA from it.
2056 */
2057 static inline int skb_needs_linearize(struct sk_buff *skb,
2058 int features)
2059 {
2060 return skb_is_nonlinear(skb) &&
2061 ((skb_has_frag_list(skb) &&
2062 !(features & NETIF_F_FRAGLIST)) ||
2063 (skb_shinfo(skb)->nr_frags &&
2064 !(features & NETIF_F_SG)));
2065 }
2066
2067 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2068 struct netdev_queue *txq)
2069 {
2070 const struct net_device_ops *ops = dev->netdev_ops;
2071 int rc = NETDEV_TX_OK;
2072
2073 if (likely(!skb->next)) {
2074 int features;
2075
2076 /*
2077 * If device doesnt need skb->dst, release it right now while
2078 * its hot in this cpu cache
2079 */
2080 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2081 skb_dst_drop(skb);
2082
2083 if (!list_empty(&ptype_all))
2084 dev_queue_xmit_nit(skb, dev);
2085
2086 skb_orphan_try(skb);
2087
2088 features = netif_skb_features(skb);
2089
2090 if (vlan_tx_tag_present(skb) &&
2091 !(features & NETIF_F_HW_VLAN_TX)) {
2092 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2093 if (unlikely(!skb))
2094 goto out;
2095
2096 skb->vlan_tci = 0;
2097 }
2098
2099 if (netif_needs_gso(skb, features)) {
2100 if (unlikely(dev_gso_segment(skb, features)))
2101 goto out_kfree_skb;
2102 if (skb->next)
2103 goto gso;
2104 } else {
2105 if (skb_needs_linearize(skb, features) &&
2106 __skb_linearize(skb))
2107 goto out_kfree_skb;
2108
2109 /* If packet is not checksummed and device does not
2110 * support checksumming for this protocol, complete
2111 * checksumming here.
2112 */
2113 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2114 skb_set_transport_header(skb,
2115 skb_checksum_start_offset(skb));
2116 if (!(features & NETIF_F_ALL_CSUM) &&
2117 skb_checksum_help(skb))
2118 goto out_kfree_skb;
2119 }
2120 }
2121
2122 rc = ops->ndo_start_xmit(skb, dev);
2123 trace_net_dev_xmit(skb, rc);
2124 if (rc == NETDEV_TX_OK)
2125 txq_trans_update(txq);
2126 return rc;
2127 }
2128
2129 gso:
2130 do {
2131 struct sk_buff *nskb = skb->next;
2132
2133 skb->next = nskb->next;
2134 nskb->next = NULL;
2135
2136 /*
2137 * If device doesnt need nskb->dst, release it right now while
2138 * its hot in this cpu cache
2139 */
2140 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2141 skb_dst_drop(nskb);
2142
2143 rc = ops->ndo_start_xmit(nskb, dev);
2144 trace_net_dev_xmit(nskb, rc);
2145 if (unlikely(rc != NETDEV_TX_OK)) {
2146 if (rc & ~NETDEV_TX_MASK)
2147 goto out_kfree_gso_skb;
2148 nskb->next = skb->next;
2149 skb->next = nskb;
2150 return rc;
2151 }
2152 txq_trans_update(txq);
2153 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2154 return NETDEV_TX_BUSY;
2155 } while (skb->next);
2156
2157 out_kfree_gso_skb:
2158 if (likely(skb->next == NULL))
2159 skb->destructor = DEV_GSO_CB(skb)->destructor;
2160 out_kfree_skb:
2161 kfree_skb(skb);
2162 out:
2163 return rc;
2164 }
2165
2166 static u32 hashrnd __read_mostly;
2167
2168 /*
2169 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2170 * to be used as a distribution range.
2171 */
2172 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2173 unsigned int num_tx_queues)
2174 {
2175 u32 hash;
2176
2177 if (skb_rx_queue_recorded(skb)) {
2178 hash = skb_get_rx_queue(skb);
2179 while (unlikely(hash >= num_tx_queues))
2180 hash -= num_tx_queues;
2181 return hash;
2182 }
2183
2184 if (skb->sk && skb->sk->sk_hash)
2185 hash = skb->sk->sk_hash;
2186 else
2187 hash = (__force u16) skb->protocol ^ skb->rxhash;
2188 hash = jhash_1word(hash, hashrnd);
2189
2190 return (u16) (((u64) hash * num_tx_queues) >> 32);
2191 }
2192 EXPORT_SYMBOL(__skb_tx_hash);
2193
2194 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2195 {
2196 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2197 if (net_ratelimit()) {
2198 pr_warning("%s selects TX queue %d, but "
2199 "real number of TX queues is %d\n",
2200 dev->name, queue_index, dev->real_num_tx_queues);
2201 }
2202 return 0;
2203 }
2204 return queue_index;
2205 }
2206
2207 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2208 {
2209 #ifdef CONFIG_XPS
2210 struct xps_dev_maps *dev_maps;
2211 struct xps_map *map;
2212 int queue_index = -1;
2213
2214 rcu_read_lock();
2215 dev_maps = rcu_dereference(dev->xps_maps);
2216 if (dev_maps) {
2217 map = rcu_dereference(
2218 dev_maps->cpu_map[raw_smp_processor_id()]);
2219 if (map) {
2220 if (map->len == 1)
2221 queue_index = map->queues[0];
2222 else {
2223 u32 hash;
2224 if (skb->sk && skb->sk->sk_hash)
2225 hash = skb->sk->sk_hash;
2226 else
2227 hash = (__force u16) skb->protocol ^
2228 skb->rxhash;
2229 hash = jhash_1word(hash, hashrnd);
2230 queue_index = map->queues[
2231 ((u64)hash * map->len) >> 32];
2232 }
2233 if (unlikely(queue_index >= dev->real_num_tx_queues))
2234 queue_index = -1;
2235 }
2236 }
2237 rcu_read_unlock();
2238
2239 return queue_index;
2240 #else
2241 return -1;
2242 #endif
2243 }
2244
2245 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2246 struct sk_buff *skb)
2247 {
2248 int queue_index;
2249 const struct net_device_ops *ops = dev->netdev_ops;
2250
2251 if (dev->real_num_tx_queues == 1)
2252 queue_index = 0;
2253 else if (ops->ndo_select_queue) {
2254 queue_index = ops->ndo_select_queue(dev, skb);
2255 queue_index = dev_cap_txqueue(dev, queue_index);
2256 } else {
2257 struct sock *sk = skb->sk;
2258 queue_index = sk_tx_queue_get(sk);
2259
2260 if (queue_index < 0 || skb->ooo_okay ||
2261 queue_index >= dev->real_num_tx_queues) {
2262 int old_index = queue_index;
2263
2264 queue_index = get_xps_queue(dev, skb);
2265 if (queue_index < 0)
2266 queue_index = skb_tx_hash(dev, skb);
2267
2268 if (queue_index != old_index && sk) {
2269 struct dst_entry *dst =
2270 rcu_dereference_check(sk->sk_dst_cache, 1);
2271
2272 if (dst && skb_dst(skb) == dst)
2273 sk_tx_queue_set(sk, queue_index);
2274 }
2275 }
2276 }
2277
2278 skb_set_queue_mapping(skb, queue_index);
2279 return netdev_get_tx_queue(dev, queue_index);
2280 }
2281
2282 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2283 struct net_device *dev,
2284 struct netdev_queue *txq)
2285 {
2286 spinlock_t *root_lock = qdisc_lock(q);
2287 bool contended = qdisc_is_running(q);
2288 int rc;
2289
2290 /*
2291 * Heuristic to force contended enqueues to serialize on a
2292 * separate lock before trying to get qdisc main lock.
2293 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2294 * and dequeue packets faster.
2295 */
2296 if (unlikely(contended))
2297 spin_lock(&q->busylock);
2298
2299 spin_lock(root_lock);
2300 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2301 kfree_skb(skb);
2302 rc = NET_XMIT_DROP;
2303 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2304 qdisc_run_begin(q)) {
2305 /*
2306 * This is a work-conserving queue; there are no old skbs
2307 * waiting to be sent out; and the qdisc is not running -
2308 * xmit the skb directly.
2309 */
2310 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2311 skb_dst_force(skb);
2312
2313 qdisc_skb_cb(skb)->pkt_len = skb->len;
2314 qdisc_bstats_update(q, skb);
2315
2316 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2317 if (unlikely(contended)) {
2318 spin_unlock(&q->busylock);
2319 contended = false;
2320 }
2321 __qdisc_run(q);
2322 } else
2323 qdisc_run_end(q);
2324
2325 rc = NET_XMIT_SUCCESS;
2326 } else {
2327 skb_dst_force(skb);
2328 rc = qdisc_enqueue_root(skb, q);
2329 if (qdisc_run_begin(q)) {
2330 if (unlikely(contended)) {
2331 spin_unlock(&q->busylock);
2332 contended = false;
2333 }
2334 __qdisc_run(q);
2335 }
2336 }
2337 spin_unlock(root_lock);
2338 if (unlikely(contended))
2339 spin_unlock(&q->busylock);
2340 return rc;
2341 }
2342
2343 static DEFINE_PER_CPU(int, xmit_recursion);
2344 #define RECURSION_LIMIT 10
2345
2346 /**
2347 * dev_queue_xmit - transmit a buffer
2348 * @skb: buffer to transmit
2349 *
2350 * Queue a buffer for transmission to a network device. The caller must
2351 * have set the device and priority and built the buffer before calling
2352 * this function. The function can be called from an interrupt.
2353 *
2354 * A negative errno code is returned on a failure. A success does not
2355 * guarantee the frame will be transmitted as it may be dropped due
2356 * to congestion or traffic shaping.
2357 *
2358 * -----------------------------------------------------------------------------------
2359 * I notice this method can also return errors from the queue disciplines,
2360 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2361 * be positive.
2362 *
2363 * Regardless of the return value, the skb is consumed, so it is currently
2364 * difficult to retry a send to this method. (You can bump the ref count
2365 * before sending to hold a reference for retry if you are careful.)
2366 *
2367 * When calling this method, interrupts MUST be enabled. This is because
2368 * the BH enable code must have IRQs enabled so that it will not deadlock.
2369 * --BLG
2370 */
2371 int dev_queue_xmit(struct sk_buff *skb)
2372 {
2373 struct net_device *dev = skb->dev;
2374 struct netdev_queue *txq;
2375 struct Qdisc *q;
2376 int rc = -ENOMEM;
2377
2378 /* Disable soft irqs for various locks below. Also
2379 * stops preemption for RCU.
2380 */
2381 rcu_read_lock_bh();
2382
2383 txq = dev_pick_tx(dev, skb);
2384 q = rcu_dereference_bh(txq->qdisc);
2385
2386 #ifdef CONFIG_NET_CLS_ACT
2387 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2388 #endif
2389 trace_net_dev_queue(skb);
2390 if (q->enqueue) {
2391 rc = __dev_xmit_skb(skb, q, dev, txq);
2392 goto out;
2393 }
2394
2395 /* The device has no queue. Common case for software devices:
2396 loopback, all the sorts of tunnels...
2397
2398 Really, it is unlikely that netif_tx_lock protection is necessary
2399 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2400 counters.)
2401 However, it is possible, that they rely on protection
2402 made by us here.
2403
2404 Check this and shot the lock. It is not prone from deadlocks.
2405 Either shot noqueue qdisc, it is even simpler 8)
2406 */
2407 if (dev->flags & IFF_UP) {
2408 int cpu = smp_processor_id(); /* ok because BHs are off */
2409
2410 if (txq->xmit_lock_owner != cpu) {
2411
2412 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2413 goto recursion_alert;
2414
2415 HARD_TX_LOCK(dev, txq, cpu);
2416
2417 if (!netif_tx_queue_stopped(txq)) {
2418 __this_cpu_inc(xmit_recursion);
2419 rc = dev_hard_start_xmit(skb, dev, txq);
2420 __this_cpu_dec(xmit_recursion);
2421 if (dev_xmit_complete(rc)) {
2422 HARD_TX_UNLOCK(dev, txq);
2423 goto out;
2424 }
2425 }
2426 HARD_TX_UNLOCK(dev, txq);
2427 if (net_ratelimit())
2428 printk(KERN_CRIT "Virtual device %s asks to "
2429 "queue packet!\n", dev->name);
2430 } else {
2431 /* Recursion is detected! It is possible,
2432 * unfortunately
2433 */
2434 recursion_alert:
2435 if (net_ratelimit())
2436 printk(KERN_CRIT "Dead loop on virtual device "
2437 "%s, fix it urgently!\n", dev->name);
2438 }
2439 }
2440
2441 rc = -ENETDOWN;
2442 rcu_read_unlock_bh();
2443
2444 kfree_skb(skb);
2445 return rc;
2446 out:
2447 rcu_read_unlock_bh();
2448 return rc;
2449 }
2450 EXPORT_SYMBOL(dev_queue_xmit);
2451
2452
2453 /*=======================================================================
2454 Receiver routines
2455 =======================================================================*/
2456
2457 int netdev_max_backlog __read_mostly = 1000;
2458 int netdev_tstamp_prequeue __read_mostly = 1;
2459 int netdev_budget __read_mostly = 300;
2460 int weight_p __read_mostly = 64; /* old backlog weight */
2461
2462 /* Called with irq disabled */
2463 static inline void ____napi_schedule(struct softnet_data *sd,
2464 struct napi_struct *napi)
2465 {
2466 list_add_tail(&napi->poll_list, &sd->poll_list);
2467 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2468 }
2469
2470 /*
2471 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2472 * and src/dst port numbers. Returns a non-zero hash number on success
2473 * and 0 on failure.
2474 */
2475 __u32 __skb_get_rxhash(struct sk_buff *skb)
2476 {
2477 int nhoff, hash = 0, poff;
2478 struct ipv6hdr *ip6;
2479 struct iphdr *ip;
2480 u8 ip_proto;
2481 u32 addr1, addr2, ihl;
2482 union {
2483 u32 v32;
2484 u16 v16[2];
2485 } ports;
2486
2487 nhoff = skb_network_offset(skb);
2488
2489 switch (skb->protocol) {
2490 case __constant_htons(ETH_P_IP):
2491 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2492 goto done;
2493
2494 ip = (struct iphdr *) (skb->data + nhoff);
2495 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2496 ip_proto = 0;
2497 else
2498 ip_proto = ip->protocol;
2499 addr1 = (__force u32) ip->saddr;
2500 addr2 = (__force u32) ip->daddr;
2501 ihl = ip->ihl;
2502 break;
2503 case __constant_htons(ETH_P_IPV6):
2504 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2505 goto done;
2506
2507 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2508 ip_proto = ip6->nexthdr;
2509 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2510 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2511 ihl = (40 >> 2);
2512 break;
2513 default:
2514 goto done;
2515 }
2516
2517 ports.v32 = 0;
2518 poff = proto_ports_offset(ip_proto);
2519 if (poff >= 0) {
2520 nhoff += ihl * 4 + poff;
2521 if (pskb_may_pull(skb, nhoff + 4)) {
2522 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2523 if (ports.v16[1] < ports.v16[0])
2524 swap(ports.v16[0], ports.v16[1]);
2525 }
2526 }
2527
2528 /* get a consistent hash (same value on both flow directions) */
2529 if (addr2 < addr1)
2530 swap(addr1, addr2);
2531
2532 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2533 if (!hash)
2534 hash = 1;
2535
2536 done:
2537 return hash;
2538 }
2539 EXPORT_SYMBOL(__skb_get_rxhash);
2540
2541 #ifdef CONFIG_RPS
2542
2543 /* One global table that all flow-based protocols share. */
2544 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2545 EXPORT_SYMBOL(rps_sock_flow_table);
2546
2547 /*
2548 * get_rps_cpu is called from netif_receive_skb and returns the target
2549 * CPU from the RPS map of the receiving queue for a given skb.
2550 * rcu_read_lock must be held on entry.
2551 */
2552 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2553 struct rps_dev_flow **rflowp)
2554 {
2555 struct netdev_rx_queue *rxqueue;
2556 struct rps_map *map;
2557 struct rps_dev_flow_table *flow_table;
2558 struct rps_sock_flow_table *sock_flow_table;
2559 int cpu = -1;
2560 u16 tcpu;
2561
2562 if (skb_rx_queue_recorded(skb)) {
2563 u16 index = skb_get_rx_queue(skb);
2564 if (unlikely(index >= dev->real_num_rx_queues)) {
2565 WARN_ONCE(dev->real_num_rx_queues > 1,
2566 "%s received packet on queue %u, but number "
2567 "of RX queues is %u\n",
2568 dev->name, index, dev->real_num_rx_queues);
2569 goto done;
2570 }
2571 rxqueue = dev->_rx + index;
2572 } else
2573 rxqueue = dev->_rx;
2574
2575 map = rcu_dereference(rxqueue->rps_map);
2576 if (map) {
2577 if (map->len == 1 &&
2578 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2579 tcpu = map->cpus[0];
2580 if (cpu_online(tcpu))
2581 cpu = tcpu;
2582 goto done;
2583 }
2584 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2585 goto done;
2586 }
2587
2588 skb_reset_network_header(skb);
2589 if (!skb_get_rxhash(skb))
2590 goto done;
2591
2592 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2593 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2594 if (flow_table && sock_flow_table) {
2595 u16 next_cpu;
2596 struct rps_dev_flow *rflow;
2597
2598 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2599 tcpu = rflow->cpu;
2600
2601 next_cpu = sock_flow_table->ents[skb->rxhash &
2602 sock_flow_table->mask];
2603
2604 /*
2605 * If the desired CPU (where last recvmsg was done) is
2606 * different from current CPU (one in the rx-queue flow
2607 * table entry), switch if one of the following holds:
2608 * - Current CPU is unset (equal to RPS_NO_CPU).
2609 * - Current CPU is offline.
2610 * - The current CPU's queue tail has advanced beyond the
2611 * last packet that was enqueued using this table entry.
2612 * This guarantees that all previous packets for the flow
2613 * have been dequeued, thus preserving in order delivery.
2614 */
2615 if (unlikely(tcpu != next_cpu) &&
2616 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2617 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2618 rflow->last_qtail)) >= 0)) {
2619 tcpu = rflow->cpu = next_cpu;
2620 if (tcpu != RPS_NO_CPU)
2621 rflow->last_qtail = per_cpu(softnet_data,
2622 tcpu).input_queue_head;
2623 }
2624 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2625 *rflowp = rflow;
2626 cpu = tcpu;
2627 goto done;
2628 }
2629 }
2630
2631 if (map) {
2632 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2633
2634 if (cpu_online(tcpu)) {
2635 cpu = tcpu;
2636 goto done;
2637 }
2638 }
2639
2640 done:
2641 return cpu;
2642 }
2643
2644 /* Called from hardirq (IPI) context */
2645 static void rps_trigger_softirq(void *data)
2646 {
2647 struct softnet_data *sd = data;
2648
2649 ____napi_schedule(sd, &sd->backlog);
2650 sd->received_rps++;
2651 }
2652
2653 #endif /* CONFIG_RPS */
2654
2655 /*
2656 * Check if this softnet_data structure is another cpu one
2657 * If yes, queue it to our IPI list and return 1
2658 * If no, return 0
2659 */
2660 static int rps_ipi_queued(struct softnet_data *sd)
2661 {
2662 #ifdef CONFIG_RPS
2663 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2664
2665 if (sd != mysd) {
2666 sd->rps_ipi_next = mysd->rps_ipi_list;
2667 mysd->rps_ipi_list = sd;
2668
2669 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2670 return 1;
2671 }
2672 #endif /* CONFIG_RPS */
2673 return 0;
2674 }
2675
2676 /*
2677 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2678 * queue (may be a remote CPU queue).
2679 */
2680 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2681 unsigned int *qtail)
2682 {
2683 struct softnet_data *sd;
2684 unsigned long flags;
2685
2686 sd = &per_cpu(softnet_data, cpu);
2687
2688 local_irq_save(flags);
2689
2690 rps_lock(sd);
2691 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2692 if (skb_queue_len(&sd->input_pkt_queue)) {
2693 enqueue:
2694 __skb_queue_tail(&sd->input_pkt_queue, skb);
2695 input_queue_tail_incr_save(sd, qtail);
2696 rps_unlock(sd);
2697 local_irq_restore(flags);
2698 return NET_RX_SUCCESS;
2699 }
2700
2701 /* Schedule NAPI for backlog device
2702 * We can use non atomic operation since we own the queue lock
2703 */
2704 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2705 if (!rps_ipi_queued(sd))
2706 ____napi_schedule(sd, &sd->backlog);
2707 }
2708 goto enqueue;
2709 }
2710
2711 sd->dropped++;
2712 rps_unlock(sd);
2713
2714 local_irq_restore(flags);
2715
2716 atomic_long_inc(&skb->dev->rx_dropped);
2717 kfree_skb(skb);
2718 return NET_RX_DROP;
2719 }
2720
2721 /**
2722 * netif_rx - post buffer to the network code
2723 * @skb: buffer to post
2724 *
2725 * This function receives a packet from a device driver and queues it for
2726 * the upper (protocol) levels to process. It always succeeds. The buffer
2727 * may be dropped during processing for congestion control or by the
2728 * protocol layers.
2729 *
2730 * return values:
2731 * NET_RX_SUCCESS (no congestion)
2732 * NET_RX_DROP (packet was dropped)
2733 *
2734 */
2735
2736 int netif_rx(struct sk_buff *skb)
2737 {
2738 int ret;
2739
2740 /* if netpoll wants it, pretend we never saw it */
2741 if (netpoll_rx(skb))
2742 return NET_RX_DROP;
2743
2744 if (netdev_tstamp_prequeue)
2745 net_timestamp_check(skb);
2746
2747 trace_netif_rx(skb);
2748 #ifdef CONFIG_RPS
2749 {
2750 struct rps_dev_flow voidflow, *rflow = &voidflow;
2751 int cpu;
2752
2753 preempt_disable();
2754 rcu_read_lock();
2755
2756 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2757 if (cpu < 0)
2758 cpu = smp_processor_id();
2759
2760 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2761
2762 rcu_read_unlock();
2763 preempt_enable();
2764 }
2765 #else
2766 {
2767 unsigned int qtail;
2768 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2769 put_cpu();
2770 }
2771 #endif
2772 return ret;
2773 }
2774 EXPORT_SYMBOL(netif_rx);
2775
2776 int netif_rx_ni(struct sk_buff *skb)
2777 {
2778 int err;
2779
2780 preempt_disable();
2781 err = netif_rx(skb);
2782 if (local_softirq_pending())
2783 do_softirq();
2784 preempt_enable();
2785
2786 return err;
2787 }
2788 EXPORT_SYMBOL(netif_rx_ni);
2789
2790 static void net_tx_action(struct softirq_action *h)
2791 {
2792 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2793
2794 if (sd->completion_queue) {
2795 struct sk_buff *clist;
2796
2797 local_irq_disable();
2798 clist = sd->completion_queue;
2799 sd->completion_queue = NULL;
2800 local_irq_enable();
2801
2802 while (clist) {
2803 struct sk_buff *skb = clist;
2804 clist = clist->next;
2805
2806 WARN_ON(atomic_read(&skb->users));
2807 trace_kfree_skb(skb, net_tx_action);
2808 __kfree_skb(skb);
2809 }
2810 }
2811
2812 if (sd->output_queue) {
2813 struct Qdisc *head;
2814
2815 local_irq_disable();
2816 head = sd->output_queue;
2817 sd->output_queue = NULL;
2818 sd->output_queue_tailp = &sd->output_queue;
2819 local_irq_enable();
2820
2821 while (head) {
2822 struct Qdisc *q = head;
2823 spinlock_t *root_lock;
2824
2825 head = head->next_sched;
2826
2827 root_lock = qdisc_lock(q);
2828 if (spin_trylock(root_lock)) {
2829 smp_mb__before_clear_bit();
2830 clear_bit(__QDISC_STATE_SCHED,
2831 &q->state);
2832 qdisc_run(q);
2833 spin_unlock(root_lock);
2834 } else {
2835 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2836 &q->state)) {
2837 __netif_reschedule(q);
2838 } else {
2839 smp_mb__before_clear_bit();
2840 clear_bit(__QDISC_STATE_SCHED,
2841 &q->state);
2842 }
2843 }
2844 }
2845 }
2846 }
2847
2848 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2849 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2850 /* This hook is defined here for ATM LANE */
2851 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2852 unsigned char *addr) __read_mostly;
2853 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2854 #endif
2855
2856 #ifdef CONFIG_NET_CLS_ACT
2857 /* TODO: Maybe we should just force sch_ingress to be compiled in
2858 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2859 * a compare and 2 stores extra right now if we dont have it on
2860 * but have CONFIG_NET_CLS_ACT
2861 * NOTE: This doesnt stop any functionality; if you dont have
2862 * the ingress scheduler, you just cant add policies on ingress.
2863 *
2864 */
2865 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2866 {
2867 struct net_device *dev = skb->dev;
2868 u32 ttl = G_TC_RTTL(skb->tc_verd);
2869 int result = TC_ACT_OK;
2870 struct Qdisc *q;
2871
2872 if (unlikely(MAX_RED_LOOP < ttl++)) {
2873 if (net_ratelimit())
2874 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2875 skb->skb_iif, dev->ifindex);
2876 return TC_ACT_SHOT;
2877 }
2878
2879 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2880 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2881
2882 q = rxq->qdisc;
2883 if (q != &noop_qdisc) {
2884 spin_lock(qdisc_lock(q));
2885 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2886 result = qdisc_enqueue_root(skb, q);
2887 spin_unlock(qdisc_lock(q));
2888 }
2889
2890 return result;
2891 }
2892
2893 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2894 struct packet_type **pt_prev,
2895 int *ret, struct net_device *orig_dev)
2896 {
2897 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2898
2899 if (!rxq || rxq->qdisc == &noop_qdisc)
2900 goto out;
2901
2902 if (*pt_prev) {
2903 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2904 *pt_prev = NULL;
2905 }
2906
2907 switch (ing_filter(skb, rxq)) {
2908 case TC_ACT_SHOT:
2909 case TC_ACT_STOLEN:
2910 kfree_skb(skb);
2911 return NULL;
2912 }
2913
2914 out:
2915 skb->tc_verd = 0;
2916 return skb;
2917 }
2918 #endif
2919
2920 /**
2921 * netdev_rx_handler_register - register receive handler
2922 * @dev: device to register a handler for
2923 * @rx_handler: receive handler to register
2924 * @rx_handler_data: data pointer that is used by rx handler
2925 *
2926 * Register a receive hander for a device. This handler will then be
2927 * called from __netif_receive_skb. A negative errno code is returned
2928 * on a failure.
2929 *
2930 * The caller must hold the rtnl_mutex.
2931 */
2932 int netdev_rx_handler_register(struct net_device *dev,
2933 rx_handler_func_t *rx_handler,
2934 void *rx_handler_data)
2935 {
2936 ASSERT_RTNL();
2937
2938 if (dev->rx_handler)
2939 return -EBUSY;
2940
2941 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2942 rcu_assign_pointer(dev->rx_handler, rx_handler);
2943
2944 return 0;
2945 }
2946 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2947
2948 /**
2949 * netdev_rx_handler_unregister - unregister receive handler
2950 * @dev: device to unregister a handler from
2951 *
2952 * Unregister a receive hander from a device.
2953 *
2954 * The caller must hold the rtnl_mutex.
2955 */
2956 void netdev_rx_handler_unregister(struct net_device *dev)
2957 {
2958
2959 ASSERT_RTNL();
2960 rcu_assign_pointer(dev->rx_handler, NULL);
2961 rcu_assign_pointer(dev->rx_handler_data, NULL);
2962 }
2963 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2964
2965 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2966 struct net_device *master)
2967 {
2968 if (skb->pkt_type == PACKET_HOST) {
2969 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2970
2971 memcpy(dest, master->dev_addr, ETH_ALEN);
2972 }
2973 }
2974
2975 /* On bonding slaves other than the currently active slave, suppress
2976 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2977 * ARP on active-backup slaves with arp_validate enabled.
2978 */
2979 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2980 {
2981 struct net_device *dev = skb->dev;
2982
2983 if (master->priv_flags & IFF_MASTER_ARPMON)
2984 dev->last_rx = jiffies;
2985
2986 if ((master->priv_flags & IFF_MASTER_ALB) &&
2987 (master->priv_flags & IFF_BRIDGE_PORT)) {
2988 /* Do address unmangle. The local destination address
2989 * will be always the one master has. Provides the right
2990 * functionality in a bridge.
2991 */
2992 skb_bond_set_mac_by_master(skb, master);
2993 }
2994
2995 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2996 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2997 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2998 return 0;
2999
3000 if (master->priv_flags & IFF_MASTER_ALB) {
3001 if (skb->pkt_type != PACKET_BROADCAST &&
3002 skb->pkt_type != PACKET_MULTICAST)
3003 return 0;
3004 }
3005 if (master->priv_flags & IFF_MASTER_8023AD &&
3006 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
3007 return 0;
3008
3009 return 1;
3010 }
3011 return 0;
3012 }
3013 EXPORT_SYMBOL(__skb_bond_should_drop);
3014
3015 static int __netif_receive_skb(struct sk_buff *skb)
3016 {
3017 struct packet_type *ptype, *pt_prev;
3018 rx_handler_func_t *rx_handler;
3019 struct net_device *orig_dev;
3020 struct net_device *master;
3021 struct net_device *null_or_orig;
3022 struct net_device *orig_or_bond;
3023 int ret = NET_RX_DROP;
3024 __be16 type;
3025
3026 if (!netdev_tstamp_prequeue)
3027 net_timestamp_check(skb);
3028
3029 trace_netif_receive_skb(skb);
3030
3031 /* if we've gotten here through NAPI, check netpoll */
3032 if (netpoll_receive_skb(skb))
3033 return NET_RX_DROP;
3034
3035 if (!skb->skb_iif)
3036 skb->skb_iif = skb->dev->ifindex;
3037
3038 /*
3039 * bonding note: skbs received on inactive slaves should only
3040 * be delivered to pkt handlers that are exact matches. Also
3041 * the deliver_no_wcard flag will be set. If packet handlers
3042 * are sensitive to duplicate packets these skbs will need to
3043 * be dropped at the handler.
3044 */
3045 null_or_orig = NULL;
3046 orig_dev = skb->dev;
3047 master = ACCESS_ONCE(orig_dev->master);
3048 if (skb->deliver_no_wcard)
3049 null_or_orig = orig_dev;
3050 else if (master) {
3051 if (skb_bond_should_drop(skb, master)) {
3052 skb->deliver_no_wcard = 1;
3053 null_or_orig = orig_dev; /* deliver only exact match */
3054 } else
3055 skb->dev = master;
3056 }
3057
3058 __this_cpu_inc(softnet_data.processed);
3059 skb_reset_network_header(skb);
3060 skb_reset_transport_header(skb);
3061 skb->mac_len = skb->network_header - skb->mac_header;
3062
3063 pt_prev = NULL;
3064
3065 rcu_read_lock();
3066
3067 #ifdef CONFIG_NET_CLS_ACT
3068 if (skb->tc_verd & TC_NCLS) {
3069 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3070 goto ncls;
3071 }
3072 #endif
3073
3074 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3075 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3076 ptype->dev == orig_dev) {
3077 if (pt_prev)
3078 ret = deliver_skb(skb, pt_prev, orig_dev);
3079 pt_prev = ptype;
3080 }
3081 }
3082
3083 #ifdef CONFIG_NET_CLS_ACT
3084 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3085 if (!skb)
3086 goto out;
3087 ncls:
3088 #endif
3089
3090 /* Handle special case of bridge or macvlan */
3091 rx_handler = rcu_dereference(skb->dev->rx_handler);
3092 if (rx_handler) {
3093 if (pt_prev) {
3094 ret = deliver_skb(skb, pt_prev, orig_dev);
3095 pt_prev = NULL;
3096 }
3097 skb = rx_handler(skb);
3098 if (!skb)
3099 goto out;
3100 }
3101
3102 if (vlan_tx_tag_present(skb)) {
3103 if (pt_prev) {
3104 ret = deliver_skb(skb, pt_prev, orig_dev);
3105 pt_prev = NULL;
3106 }
3107 if (vlan_hwaccel_do_receive(&skb)) {
3108 ret = __netif_receive_skb(skb);
3109 goto out;
3110 } else if (unlikely(!skb))
3111 goto out;
3112 }
3113
3114 /*
3115 * Make sure frames received on VLAN interfaces stacked on
3116 * bonding interfaces still make their way to any base bonding
3117 * device that may have registered for a specific ptype. The
3118 * handler may have to adjust skb->dev and orig_dev.
3119 */
3120 orig_or_bond = orig_dev;
3121 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3122 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3123 orig_or_bond = vlan_dev_real_dev(skb->dev);
3124 }
3125
3126 type = skb->protocol;
3127 list_for_each_entry_rcu(ptype,
3128 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3129 if (ptype->type == type && (ptype->dev == null_or_orig ||
3130 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3131 ptype->dev == orig_or_bond)) {
3132 if (pt_prev)
3133 ret = deliver_skb(skb, pt_prev, orig_dev);
3134 pt_prev = ptype;
3135 }
3136 }
3137
3138 if (pt_prev) {
3139 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3140 } else {
3141 atomic_long_inc(&skb->dev->rx_dropped);
3142 kfree_skb(skb);
3143 /* Jamal, now you will not able to escape explaining
3144 * me how you were going to use this. :-)
3145 */
3146 ret = NET_RX_DROP;
3147 }
3148
3149 out:
3150 rcu_read_unlock();
3151 return ret;
3152 }
3153
3154 /**
3155 * netif_receive_skb - process receive buffer from network
3156 * @skb: buffer to process
3157 *
3158 * netif_receive_skb() is the main receive data processing function.
3159 * It always succeeds. The buffer may be dropped during processing
3160 * for congestion control or by the protocol layers.
3161 *
3162 * This function may only be called from softirq context and interrupts
3163 * should be enabled.
3164 *
3165 * Return values (usually ignored):
3166 * NET_RX_SUCCESS: no congestion
3167 * NET_RX_DROP: packet was dropped
3168 */
3169 int netif_receive_skb(struct sk_buff *skb)
3170 {
3171 if (netdev_tstamp_prequeue)
3172 net_timestamp_check(skb);
3173
3174 if (skb_defer_rx_timestamp(skb))
3175 return NET_RX_SUCCESS;
3176
3177 #ifdef CONFIG_RPS
3178 {
3179 struct rps_dev_flow voidflow, *rflow = &voidflow;
3180 int cpu, ret;
3181
3182 rcu_read_lock();
3183
3184 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3185
3186 if (cpu >= 0) {
3187 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3188 rcu_read_unlock();
3189 } else {
3190 rcu_read_unlock();
3191 ret = __netif_receive_skb(skb);
3192 }
3193
3194 return ret;
3195 }
3196 #else
3197 return __netif_receive_skb(skb);
3198 #endif
3199 }
3200 EXPORT_SYMBOL(netif_receive_skb);
3201
3202 /* Network device is going away, flush any packets still pending
3203 * Called with irqs disabled.
3204 */
3205 static void flush_backlog(void *arg)
3206 {
3207 struct net_device *dev = arg;
3208 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3209 struct sk_buff *skb, *tmp;
3210
3211 rps_lock(sd);
3212 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3213 if (skb->dev == dev) {
3214 __skb_unlink(skb, &sd->input_pkt_queue);
3215 kfree_skb(skb);
3216 input_queue_head_incr(sd);
3217 }
3218 }
3219 rps_unlock(sd);
3220
3221 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3222 if (skb->dev == dev) {
3223 __skb_unlink(skb, &sd->process_queue);
3224 kfree_skb(skb);
3225 input_queue_head_incr(sd);
3226 }
3227 }
3228 }
3229
3230 static int napi_gro_complete(struct sk_buff *skb)
3231 {
3232 struct packet_type *ptype;
3233 __be16 type = skb->protocol;
3234 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3235 int err = -ENOENT;
3236
3237 if (NAPI_GRO_CB(skb)->count == 1) {
3238 skb_shinfo(skb)->gso_size = 0;
3239 goto out;
3240 }
3241
3242 rcu_read_lock();
3243 list_for_each_entry_rcu(ptype, head, list) {
3244 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3245 continue;
3246
3247 err = ptype->gro_complete(skb);
3248 break;
3249 }
3250 rcu_read_unlock();
3251
3252 if (err) {
3253 WARN_ON(&ptype->list == head);
3254 kfree_skb(skb);
3255 return NET_RX_SUCCESS;
3256 }
3257
3258 out:
3259 return netif_receive_skb(skb);
3260 }
3261
3262 inline void napi_gro_flush(struct napi_struct *napi)
3263 {
3264 struct sk_buff *skb, *next;
3265
3266 for (skb = napi->gro_list; skb; skb = next) {
3267 next = skb->next;
3268 skb->next = NULL;
3269 napi_gro_complete(skb);
3270 }
3271
3272 napi->gro_count = 0;
3273 napi->gro_list = NULL;
3274 }
3275 EXPORT_SYMBOL(napi_gro_flush);
3276
3277 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3278 {
3279 struct sk_buff **pp = NULL;
3280 struct packet_type *ptype;
3281 __be16 type = skb->protocol;
3282 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3283 int same_flow;
3284 int mac_len;
3285 enum gro_result ret;
3286
3287 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3288 goto normal;
3289
3290 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3291 goto normal;
3292
3293 rcu_read_lock();
3294 list_for_each_entry_rcu(ptype, head, list) {
3295 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3296 continue;
3297
3298 skb_set_network_header(skb, skb_gro_offset(skb));
3299 mac_len = skb->network_header - skb->mac_header;
3300 skb->mac_len = mac_len;
3301 NAPI_GRO_CB(skb)->same_flow = 0;
3302 NAPI_GRO_CB(skb)->flush = 0;
3303 NAPI_GRO_CB(skb)->free = 0;
3304
3305 pp = ptype->gro_receive(&napi->gro_list, skb);
3306 break;
3307 }
3308 rcu_read_unlock();
3309
3310 if (&ptype->list == head)
3311 goto normal;
3312
3313 same_flow = NAPI_GRO_CB(skb)->same_flow;
3314 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3315
3316 if (pp) {
3317 struct sk_buff *nskb = *pp;
3318
3319 *pp = nskb->next;
3320 nskb->next = NULL;
3321 napi_gro_complete(nskb);
3322 napi->gro_count--;
3323 }
3324
3325 if (same_flow)
3326 goto ok;
3327
3328 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3329 goto normal;
3330
3331 napi->gro_count++;
3332 NAPI_GRO_CB(skb)->count = 1;
3333 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3334 skb->next = napi->gro_list;
3335 napi->gro_list = skb;
3336 ret = GRO_HELD;
3337
3338 pull:
3339 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3340 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3341
3342 BUG_ON(skb->end - skb->tail < grow);
3343
3344 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3345
3346 skb->tail += grow;
3347 skb->data_len -= grow;
3348
3349 skb_shinfo(skb)->frags[0].page_offset += grow;
3350 skb_shinfo(skb)->frags[0].size -= grow;
3351
3352 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3353 put_page(skb_shinfo(skb)->frags[0].page);
3354 memmove(skb_shinfo(skb)->frags,
3355 skb_shinfo(skb)->frags + 1,
3356 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3357 }
3358 }
3359
3360 ok:
3361 return ret;
3362
3363 normal:
3364 ret = GRO_NORMAL;
3365 goto pull;
3366 }
3367 EXPORT_SYMBOL(dev_gro_receive);
3368
3369 static inline gro_result_t
3370 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3371 {
3372 struct sk_buff *p;
3373
3374 for (p = napi->gro_list; p; p = p->next) {
3375 unsigned long diffs;
3376
3377 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3378 diffs |= p->vlan_tci ^ skb->vlan_tci;
3379 diffs |= compare_ether_header(skb_mac_header(p),
3380 skb_gro_mac_header(skb));
3381 NAPI_GRO_CB(p)->same_flow = !diffs;
3382 NAPI_GRO_CB(p)->flush = 0;
3383 }
3384
3385 return dev_gro_receive(napi, skb);
3386 }
3387
3388 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3389 {
3390 switch (ret) {
3391 case GRO_NORMAL:
3392 if (netif_receive_skb(skb))
3393 ret = GRO_DROP;
3394 break;
3395
3396 case GRO_DROP:
3397 case GRO_MERGED_FREE:
3398 kfree_skb(skb);
3399 break;
3400
3401 case GRO_HELD:
3402 case GRO_MERGED:
3403 break;
3404 }
3405
3406 return ret;
3407 }
3408 EXPORT_SYMBOL(napi_skb_finish);
3409
3410 void skb_gro_reset_offset(struct sk_buff *skb)
3411 {
3412 NAPI_GRO_CB(skb)->data_offset = 0;
3413 NAPI_GRO_CB(skb)->frag0 = NULL;
3414 NAPI_GRO_CB(skb)->frag0_len = 0;
3415
3416 if (skb->mac_header == skb->tail &&
3417 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3418 NAPI_GRO_CB(skb)->frag0 =
3419 page_address(skb_shinfo(skb)->frags[0].page) +
3420 skb_shinfo(skb)->frags[0].page_offset;
3421 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3422 }
3423 }
3424 EXPORT_SYMBOL(skb_gro_reset_offset);
3425
3426 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3427 {
3428 skb_gro_reset_offset(skb);
3429
3430 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3431 }
3432 EXPORT_SYMBOL(napi_gro_receive);
3433
3434 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3435 {
3436 __skb_pull(skb, skb_headlen(skb));
3437 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3438 skb->vlan_tci = 0;
3439 skb->dev = napi->dev;
3440 skb->skb_iif = 0;
3441
3442 napi->skb = skb;
3443 }
3444
3445 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3446 {
3447 struct sk_buff *skb = napi->skb;
3448
3449 if (!skb) {
3450 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3451 if (skb)
3452 napi->skb = skb;
3453 }
3454 return skb;
3455 }
3456 EXPORT_SYMBOL(napi_get_frags);
3457
3458 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3459 gro_result_t ret)
3460 {
3461 switch (ret) {
3462 case GRO_NORMAL:
3463 case GRO_HELD:
3464 skb->protocol = eth_type_trans(skb, skb->dev);
3465
3466 if (ret == GRO_HELD)
3467 skb_gro_pull(skb, -ETH_HLEN);
3468 else if (netif_receive_skb(skb))
3469 ret = GRO_DROP;
3470 break;
3471
3472 case GRO_DROP:
3473 case GRO_MERGED_FREE:
3474 napi_reuse_skb(napi, skb);
3475 break;
3476
3477 case GRO_MERGED:
3478 break;
3479 }
3480
3481 return ret;
3482 }
3483 EXPORT_SYMBOL(napi_frags_finish);
3484
3485 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3486 {
3487 struct sk_buff *skb = napi->skb;
3488 struct ethhdr *eth;
3489 unsigned int hlen;
3490 unsigned int off;
3491
3492 napi->skb = NULL;
3493
3494 skb_reset_mac_header(skb);
3495 skb_gro_reset_offset(skb);
3496
3497 off = skb_gro_offset(skb);
3498 hlen = off + sizeof(*eth);
3499 eth = skb_gro_header_fast(skb, off);
3500 if (skb_gro_header_hard(skb, hlen)) {
3501 eth = skb_gro_header_slow(skb, hlen, off);
3502 if (unlikely(!eth)) {
3503 napi_reuse_skb(napi, skb);
3504 skb = NULL;
3505 goto out;
3506 }
3507 }
3508
3509 skb_gro_pull(skb, sizeof(*eth));
3510
3511 /*
3512 * This works because the only protocols we care about don't require
3513 * special handling. We'll fix it up properly at the end.
3514 */
3515 skb->protocol = eth->h_proto;
3516
3517 out:
3518 return skb;
3519 }
3520 EXPORT_SYMBOL(napi_frags_skb);
3521
3522 gro_result_t napi_gro_frags(struct napi_struct *napi)
3523 {
3524 struct sk_buff *skb = napi_frags_skb(napi);
3525
3526 if (!skb)
3527 return GRO_DROP;
3528
3529 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3530 }
3531 EXPORT_SYMBOL(napi_gro_frags);
3532
3533 /*
3534 * net_rps_action sends any pending IPI's for rps.
3535 * Note: called with local irq disabled, but exits with local irq enabled.
3536 */
3537 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3538 {
3539 #ifdef CONFIG_RPS
3540 struct softnet_data *remsd = sd->rps_ipi_list;
3541
3542 if (remsd) {
3543 sd->rps_ipi_list = NULL;
3544
3545 local_irq_enable();
3546
3547 /* Send pending IPI's to kick RPS processing on remote cpus. */
3548 while (remsd) {
3549 struct softnet_data *next = remsd->rps_ipi_next;
3550
3551 if (cpu_online(remsd->cpu))
3552 __smp_call_function_single(remsd->cpu,
3553 &remsd->csd, 0);
3554 remsd = next;
3555 }
3556 } else
3557 #endif
3558 local_irq_enable();
3559 }
3560
3561 static int process_backlog(struct napi_struct *napi, int quota)
3562 {
3563 int work = 0;
3564 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3565
3566 #ifdef CONFIG_RPS
3567 /* Check if we have pending ipi, its better to send them now,
3568 * not waiting net_rx_action() end.
3569 */
3570 if (sd->rps_ipi_list) {
3571 local_irq_disable();
3572 net_rps_action_and_irq_enable(sd);
3573 }
3574 #endif
3575 napi->weight = weight_p;
3576 local_irq_disable();
3577 while (work < quota) {
3578 struct sk_buff *skb;
3579 unsigned int qlen;
3580
3581 while ((skb = __skb_dequeue(&sd->process_queue))) {
3582 local_irq_enable();
3583 __netif_receive_skb(skb);
3584 local_irq_disable();
3585 input_queue_head_incr(sd);
3586 if (++work >= quota) {
3587 local_irq_enable();
3588 return work;
3589 }
3590 }
3591
3592 rps_lock(sd);
3593 qlen = skb_queue_len(&sd->input_pkt_queue);
3594 if (qlen)
3595 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3596 &sd->process_queue);
3597
3598 if (qlen < quota - work) {
3599 /*
3600 * Inline a custom version of __napi_complete().
3601 * only current cpu owns and manipulates this napi,
3602 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3603 * we can use a plain write instead of clear_bit(),
3604 * and we dont need an smp_mb() memory barrier.
3605 */
3606 list_del(&napi->poll_list);
3607 napi->state = 0;
3608
3609 quota = work + qlen;
3610 }
3611 rps_unlock(sd);
3612 }
3613 local_irq_enable();
3614
3615 return work;
3616 }
3617
3618 /**
3619 * __napi_schedule - schedule for receive
3620 * @n: entry to schedule
3621 *
3622 * The entry's receive function will be scheduled to run
3623 */
3624 void __napi_schedule(struct napi_struct *n)
3625 {
3626 unsigned long flags;
3627
3628 local_irq_save(flags);
3629 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3630 local_irq_restore(flags);
3631 }
3632 EXPORT_SYMBOL(__napi_schedule);
3633
3634 void __napi_complete(struct napi_struct *n)
3635 {
3636 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3637 BUG_ON(n->gro_list);
3638
3639 list_del(&n->poll_list);
3640 smp_mb__before_clear_bit();
3641 clear_bit(NAPI_STATE_SCHED, &n->state);
3642 }
3643 EXPORT_SYMBOL(__napi_complete);
3644
3645 void napi_complete(struct napi_struct *n)
3646 {
3647 unsigned long flags;
3648
3649 /*
3650 * don't let napi dequeue from the cpu poll list
3651 * just in case its running on a different cpu
3652 */
3653 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3654 return;
3655
3656 napi_gro_flush(n);
3657 local_irq_save(flags);
3658 __napi_complete(n);
3659 local_irq_restore(flags);
3660 }
3661 EXPORT_SYMBOL(napi_complete);
3662
3663 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3664 int (*poll)(struct napi_struct *, int), int weight)
3665 {
3666 INIT_LIST_HEAD(&napi->poll_list);
3667 napi->gro_count = 0;
3668 napi->gro_list = NULL;
3669 napi->skb = NULL;
3670 napi->poll = poll;
3671 napi->weight = weight;
3672 list_add(&napi->dev_list, &dev->napi_list);
3673 napi->dev = dev;
3674 #ifdef CONFIG_NETPOLL
3675 spin_lock_init(&napi->poll_lock);
3676 napi->poll_owner = -1;
3677 #endif
3678 set_bit(NAPI_STATE_SCHED, &napi->state);
3679 }
3680 EXPORT_SYMBOL(netif_napi_add);
3681
3682 void netif_napi_del(struct napi_struct *napi)
3683 {
3684 struct sk_buff *skb, *next;
3685
3686 list_del_init(&napi->dev_list);
3687 napi_free_frags(napi);
3688
3689 for (skb = napi->gro_list; skb; skb = next) {
3690 next = skb->next;
3691 skb->next = NULL;
3692 kfree_skb(skb);
3693 }
3694
3695 napi->gro_list = NULL;
3696 napi->gro_count = 0;
3697 }
3698 EXPORT_SYMBOL(netif_napi_del);
3699
3700 static void net_rx_action(struct softirq_action *h)
3701 {
3702 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3703 unsigned long time_limit = jiffies + 2;
3704 int budget = netdev_budget;
3705 void *have;
3706
3707 local_irq_disable();
3708
3709 while (!list_empty(&sd->poll_list)) {
3710 struct napi_struct *n;
3711 int work, weight;
3712
3713 /* If softirq window is exhuasted then punt.
3714 * Allow this to run for 2 jiffies since which will allow
3715 * an average latency of 1.5/HZ.
3716 */
3717 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3718 goto softnet_break;
3719
3720 local_irq_enable();
3721
3722 /* Even though interrupts have been re-enabled, this
3723 * access is safe because interrupts can only add new
3724 * entries to the tail of this list, and only ->poll()
3725 * calls can remove this head entry from the list.
3726 */
3727 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3728
3729 have = netpoll_poll_lock(n);
3730
3731 weight = n->weight;
3732
3733 /* This NAPI_STATE_SCHED test is for avoiding a race
3734 * with netpoll's poll_napi(). Only the entity which
3735 * obtains the lock and sees NAPI_STATE_SCHED set will
3736 * actually make the ->poll() call. Therefore we avoid
3737 * accidently calling ->poll() when NAPI is not scheduled.
3738 */
3739 work = 0;
3740 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3741 work = n->poll(n, weight);
3742 trace_napi_poll(n);
3743 }
3744
3745 WARN_ON_ONCE(work > weight);
3746
3747 budget -= work;
3748
3749 local_irq_disable();
3750
3751 /* Drivers must not modify the NAPI state if they
3752 * consume the entire weight. In such cases this code
3753 * still "owns" the NAPI instance and therefore can
3754 * move the instance around on the list at-will.
3755 */
3756 if (unlikely(work == weight)) {
3757 if (unlikely(napi_disable_pending(n))) {
3758 local_irq_enable();
3759 napi_complete(n);
3760 local_irq_disable();
3761 } else
3762 list_move_tail(&n->poll_list, &sd->poll_list);
3763 }
3764
3765 netpoll_poll_unlock(have);
3766 }
3767 out:
3768 net_rps_action_and_irq_enable(sd);
3769
3770 #ifdef CONFIG_NET_DMA
3771 /*
3772 * There may not be any more sk_buffs coming right now, so push
3773 * any pending DMA copies to hardware
3774 */
3775 dma_issue_pending_all();
3776 #endif
3777
3778 return;
3779
3780 softnet_break:
3781 sd->time_squeeze++;
3782 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3783 goto out;
3784 }
3785
3786 static gifconf_func_t *gifconf_list[NPROTO];
3787
3788 /**
3789 * register_gifconf - register a SIOCGIF handler
3790 * @family: Address family
3791 * @gifconf: Function handler
3792 *
3793 * Register protocol dependent address dumping routines. The handler
3794 * that is passed must not be freed or reused until it has been replaced
3795 * by another handler.
3796 */
3797 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3798 {
3799 if (family >= NPROTO)
3800 return -EINVAL;
3801 gifconf_list[family] = gifconf;
3802 return 0;
3803 }
3804 EXPORT_SYMBOL(register_gifconf);
3805
3806
3807 /*
3808 * Map an interface index to its name (SIOCGIFNAME)
3809 */
3810
3811 /*
3812 * We need this ioctl for efficient implementation of the
3813 * if_indextoname() function required by the IPv6 API. Without
3814 * it, we would have to search all the interfaces to find a
3815 * match. --pb
3816 */
3817
3818 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3819 {
3820 struct net_device *dev;
3821 struct ifreq ifr;
3822
3823 /*
3824 * Fetch the caller's info block.
3825 */
3826
3827 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3828 return -EFAULT;
3829
3830 rcu_read_lock();
3831 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3832 if (!dev) {
3833 rcu_read_unlock();
3834 return -ENODEV;
3835 }
3836
3837 strcpy(ifr.ifr_name, dev->name);
3838 rcu_read_unlock();
3839
3840 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3841 return -EFAULT;
3842 return 0;
3843 }
3844
3845 /*
3846 * Perform a SIOCGIFCONF call. This structure will change
3847 * size eventually, and there is nothing I can do about it.
3848 * Thus we will need a 'compatibility mode'.
3849 */
3850
3851 static int dev_ifconf(struct net *net, char __user *arg)
3852 {
3853 struct ifconf ifc;
3854 struct net_device *dev;
3855 char __user *pos;
3856 int len;
3857 int total;
3858 int i;
3859
3860 /*
3861 * Fetch the caller's info block.
3862 */
3863
3864 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3865 return -EFAULT;
3866
3867 pos = ifc.ifc_buf;
3868 len = ifc.ifc_len;
3869
3870 /*
3871 * Loop over the interfaces, and write an info block for each.
3872 */
3873
3874 total = 0;
3875 for_each_netdev(net, dev) {
3876 for (i = 0; i < NPROTO; i++) {
3877 if (gifconf_list[i]) {
3878 int done;
3879 if (!pos)
3880 done = gifconf_list[i](dev, NULL, 0);
3881 else
3882 done = gifconf_list[i](dev, pos + total,
3883 len - total);
3884 if (done < 0)
3885 return -EFAULT;
3886 total += done;
3887 }
3888 }
3889 }
3890
3891 /*
3892 * All done. Write the updated control block back to the caller.
3893 */
3894 ifc.ifc_len = total;
3895
3896 /*
3897 * Both BSD and Solaris return 0 here, so we do too.
3898 */
3899 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3900 }
3901
3902 #ifdef CONFIG_PROC_FS
3903 /*
3904 * This is invoked by the /proc filesystem handler to display a device
3905 * in detail.
3906 */
3907 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3908 __acquires(RCU)
3909 {
3910 struct net *net = seq_file_net(seq);
3911 loff_t off;
3912 struct net_device *dev;
3913
3914 rcu_read_lock();
3915 if (!*pos)
3916 return SEQ_START_TOKEN;
3917
3918 off = 1;
3919 for_each_netdev_rcu(net, dev)
3920 if (off++ == *pos)
3921 return dev;
3922
3923 return NULL;
3924 }
3925
3926 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3927 {
3928 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3929 first_net_device(seq_file_net(seq)) :
3930 next_net_device((struct net_device *)v);
3931
3932 ++*pos;
3933 return rcu_dereference(dev);
3934 }
3935
3936 void dev_seq_stop(struct seq_file *seq, void *v)
3937 __releases(RCU)
3938 {
3939 rcu_read_unlock();
3940 }
3941
3942 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3943 {
3944 struct rtnl_link_stats64 temp;
3945 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3946
3947 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3948 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3949 dev->name, stats->rx_bytes, stats->rx_packets,
3950 stats->rx_errors,
3951 stats->rx_dropped + stats->rx_missed_errors,
3952 stats->rx_fifo_errors,
3953 stats->rx_length_errors + stats->rx_over_errors +
3954 stats->rx_crc_errors + stats->rx_frame_errors,
3955 stats->rx_compressed, stats->multicast,
3956 stats->tx_bytes, stats->tx_packets,
3957 stats->tx_errors, stats->tx_dropped,
3958 stats->tx_fifo_errors, stats->collisions,
3959 stats->tx_carrier_errors +
3960 stats->tx_aborted_errors +
3961 stats->tx_window_errors +
3962 stats->tx_heartbeat_errors,
3963 stats->tx_compressed);
3964 }
3965
3966 /*
3967 * Called from the PROCfs module. This now uses the new arbitrary sized
3968 * /proc/net interface to create /proc/net/dev
3969 */
3970 static int dev_seq_show(struct seq_file *seq, void *v)
3971 {
3972 if (v == SEQ_START_TOKEN)
3973 seq_puts(seq, "Inter-| Receive "
3974 " | Transmit\n"
3975 " face |bytes packets errs drop fifo frame "
3976 "compressed multicast|bytes packets errs "
3977 "drop fifo colls carrier compressed\n");
3978 else
3979 dev_seq_printf_stats(seq, v);
3980 return 0;
3981 }
3982
3983 static struct softnet_data *softnet_get_online(loff_t *pos)
3984 {
3985 struct softnet_data *sd = NULL;
3986
3987 while (*pos < nr_cpu_ids)
3988 if (cpu_online(*pos)) {
3989 sd = &per_cpu(softnet_data, *pos);
3990 break;
3991 } else
3992 ++*pos;
3993 return sd;
3994 }
3995
3996 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3997 {
3998 return softnet_get_online(pos);
3999 }
4000
4001 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4002 {
4003 ++*pos;
4004 return softnet_get_online(pos);
4005 }
4006
4007 static void softnet_seq_stop(struct seq_file *seq, void *v)
4008 {
4009 }
4010
4011 static int softnet_seq_show(struct seq_file *seq, void *v)
4012 {
4013 struct softnet_data *sd = v;
4014
4015 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4016 sd->processed, sd->dropped, sd->time_squeeze, 0,
4017 0, 0, 0, 0, /* was fastroute */
4018 sd->cpu_collision, sd->received_rps);
4019 return 0;
4020 }
4021
4022 static const struct seq_operations dev_seq_ops = {
4023 .start = dev_seq_start,
4024 .next = dev_seq_next,
4025 .stop = dev_seq_stop,
4026 .show = dev_seq_show,
4027 };
4028
4029 static int dev_seq_open(struct inode *inode, struct file *file)
4030 {
4031 return seq_open_net(inode, file, &dev_seq_ops,
4032 sizeof(struct seq_net_private));
4033 }
4034
4035 static const struct file_operations dev_seq_fops = {
4036 .owner = THIS_MODULE,
4037 .open = dev_seq_open,
4038 .read = seq_read,
4039 .llseek = seq_lseek,
4040 .release = seq_release_net,
4041 };
4042
4043 static const struct seq_operations softnet_seq_ops = {
4044 .start = softnet_seq_start,
4045 .next = softnet_seq_next,
4046 .stop = softnet_seq_stop,
4047 .show = softnet_seq_show,
4048 };
4049
4050 static int softnet_seq_open(struct inode *inode, struct file *file)
4051 {
4052 return seq_open(file, &softnet_seq_ops);
4053 }
4054
4055 static const struct file_operations softnet_seq_fops = {
4056 .owner = THIS_MODULE,
4057 .open = softnet_seq_open,
4058 .read = seq_read,
4059 .llseek = seq_lseek,
4060 .release = seq_release,
4061 };
4062
4063 static void *ptype_get_idx(loff_t pos)
4064 {
4065 struct packet_type *pt = NULL;
4066 loff_t i = 0;
4067 int t;
4068
4069 list_for_each_entry_rcu(pt, &ptype_all, list) {
4070 if (i == pos)
4071 return pt;
4072 ++i;
4073 }
4074
4075 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4076 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4077 if (i == pos)
4078 return pt;
4079 ++i;
4080 }
4081 }
4082 return NULL;
4083 }
4084
4085 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4086 __acquires(RCU)
4087 {
4088 rcu_read_lock();
4089 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4090 }
4091
4092 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4093 {
4094 struct packet_type *pt;
4095 struct list_head *nxt;
4096 int hash;
4097
4098 ++*pos;
4099 if (v == SEQ_START_TOKEN)
4100 return ptype_get_idx(0);
4101
4102 pt = v;
4103 nxt = pt->list.next;
4104 if (pt->type == htons(ETH_P_ALL)) {
4105 if (nxt != &ptype_all)
4106 goto found;
4107 hash = 0;
4108 nxt = ptype_base[0].next;
4109 } else
4110 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4111
4112 while (nxt == &ptype_base[hash]) {
4113 if (++hash >= PTYPE_HASH_SIZE)
4114 return NULL;
4115 nxt = ptype_base[hash].next;
4116 }
4117 found:
4118 return list_entry(nxt, struct packet_type, list);
4119 }
4120
4121 static void ptype_seq_stop(struct seq_file *seq, void *v)
4122 __releases(RCU)
4123 {
4124 rcu_read_unlock();
4125 }
4126
4127 static int ptype_seq_show(struct seq_file *seq, void *v)
4128 {
4129 struct packet_type *pt = v;
4130
4131 if (v == SEQ_START_TOKEN)
4132 seq_puts(seq, "Type Device Function\n");
4133 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4134 if (pt->type == htons(ETH_P_ALL))
4135 seq_puts(seq, "ALL ");
4136 else
4137 seq_printf(seq, "%04x", ntohs(pt->type));
4138
4139 seq_printf(seq, " %-8s %pF\n",
4140 pt->dev ? pt->dev->name : "", pt->func);
4141 }
4142
4143 return 0;
4144 }
4145
4146 static const struct seq_operations ptype_seq_ops = {
4147 .start = ptype_seq_start,
4148 .next = ptype_seq_next,
4149 .stop = ptype_seq_stop,
4150 .show = ptype_seq_show,
4151 };
4152
4153 static int ptype_seq_open(struct inode *inode, struct file *file)
4154 {
4155 return seq_open_net(inode, file, &ptype_seq_ops,
4156 sizeof(struct seq_net_private));
4157 }
4158
4159 static const struct file_operations ptype_seq_fops = {
4160 .owner = THIS_MODULE,
4161 .open = ptype_seq_open,
4162 .read = seq_read,
4163 .llseek = seq_lseek,
4164 .release = seq_release_net,
4165 };
4166
4167
4168 static int __net_init dev_proc_net_init(struct net *net)
4169 {
4170 int rc = -ENOMEM;
4171
4172 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4173 goto out;
4174 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4175 goto out_dev;
4176 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4177 goto out_softnet;
4178
4179 if (wext_proc_init(net))
4180 goto out_ptype;
4181 rc = 0;
4182 out:
4183 return rc;
4184 out_ptype:
4185 proc_net_remove(net, "ptype");
4186 out_softnet:
4187 proc_net_remove(net, "softnet_stat");
4188 out_dev:
4189 proc_net_remove(net, "dev");
4190 goto out;
4191 }
4192
4193 static void __net_exit dev_proc_net_exit(struct net *net)
4194 {
4195 wext_proc_exit(net);
4196
4197 proc_net_remove(net, "ptype");
4198 proc_net_remove(net, "softnet_stat");
4199 proc_net_remove(net, "dev");
4200 }
4201
4202 static struct pernet_operations __net_initdata dev_proc_ops = {
4203 .init = dev_proc_net_init,
4204 .exit = dev_proc_net_exit,
4205 };
4206
4207 static int __init dev_proc_init(void)
4208 {
4209 return register_pernet_subsys(&dev_proc_ops);
4210 }
4211 #else
4212 #define dev_proc_init() 0
4213 #endif /* CONFIG_PROC_FS */
4214
4215
4216 /**
4217 * netdev_set_master - set up master/slave pair
4218 * @slave: slave device
4219 * @master: new master device
4220 *
4221 * Changes the master device of the slave. Pass %NULL to break the
4222 * bonding. The caller must hold the RTNL semaphore. On a failure
4223 * a negative errno code is returned. On success the reference counts
4224 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4225 * function returns zero.
4226 */
4227 int netdev_set_master(struct net_device *slave, struct net_device *master)
4228 {
4229 struct net_device *old = slave->master;
4230
4231 ASSERT_RTNL();
4232
4233 if (master) {
4234 if (old)
4235 return -EBUSY;
4236 dev_hold(master);
4237 }
4238
4239 slave->master = master;
4240
4241 if (old) {
4242 synchronize_net();
4243 dev_put(old);
4244 }
4245 if (master)
4246 slave->flags |= IFF_SLAVE;
4247 else
4248 slave->flags &= ~IFF_SLAVE;
4249
4250 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4251 return 0;
4252 }
4253 EXPORT_SYMBOL(netdev_set_master);
4254
4255 static void dev_change_rx_flags(struct net_device *dev, int flags)
4256 {
4257 const struct net_device_ops *ops = dev->netdev_ops;
4258
4259 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4260 ops->ndo_change_rx_flags(dev, flags);
4261 }
4262
4263 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4264 {
4265 unsigned short old_flags = dev->flags;
4266 uid_t uid;
4267 gid_t gid;
4268
4269 ASSERT_RTNL();
4270
4271 dev->flags |= IFF_PROMISC;
4272 dev->promiscuity += inc;
4273 if (dev->promiscuity == 0) {
4274 /*
4275 * Avoid overflow.
4276 * If inc causes overflow, untouch promisc and return error.
4277 */
4278 if (inc < 0)
4279 dev->flags &= ~IFF_PROMISC;
4280 else {
4281 dev->promiscuity -= inc;
4282 printk(KERN_WARNING "%s: promiscuity touches roof, "
4283 "set promiscuity failed, promiscuity feature "
4284 "of device might be broken.\n", dev->name);
4285 return -EOVERFLOW;
4286 }
4287 }
4288 if (dev->flags != old_flags) {
4289 printk(KERN_INFO "device %s %s promiscuous mode\n",
4290 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4291 "left");
4292 if (audit_enabled) {
4293 current_uid_gid(&uid, &gid);
4294 audit_log(current->audit_context, GFP_ATOMIC,
4295 AUDIT_ANOM_PROMISCUOUS,
4296 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4297 dev->name, (dev->flags & IFF_PROMISC),
4298 (old_flags & IFF_PROMISC),
4299 audit_get_loginuid(current),
4300 uid, gid,
4301 audit_get_sessionid(current));
4302 }
4303
4304 dev_change_rx_flags(dev, IFF_PROMISC);
4305 }
4306 return 0;
4307 }
4308
4309 /**
4310 * dev_set_promiscuity - update promiscuity count on a device
4311 * @dev: device
4312 * @inc: modifier
4313 *
4314 * Add or remove promiscuity from a device. While the count in the device
4315 * remains above zero the interface remains promiscuous. Once it hits zero
4316 * the device reverts back to normal filtering operation. A negative inc
4317 * value is used to drop promiscuity on the device.
4318 * Return 0 if successful or a negative errno code on error.
4319 */
4320 int dev_set_promiscuity(struct net_device *dev, int inc)
4321 {
4322 unsigned short old_flags = dev->flags;
4323 int err;
4324
4325 err = __dev_set_promiscuity(dev, inc);
4326 if (err < 0)
4327 return err;
4328 if (dev->flags != old_flags)
4329 dev_set_rx_mode(dev);
4330 return err;
4331 }
4332 EXPORT_SYMBOL(dev_set_promiscuity);
4333
4334 /**
4335 * dev_set_allmulti - update allmulti count on a device
4336 * @dev: device
4337 * @inc: modifier
4338 *
4339 * Add or remove reception of all multicast frames to a device. While the
4340 * count in the device remains above zero the interface remains listening
4341 * to all interfaces. Once it hits zero the device reverts back to normal
4342 * filtering operation. A negative @inc value is used to drop the counter
4343 * when releasing a resource needing all multicasts.
4344 * Return 0 if successful or a negative errno code on error.
4345 */
4346
4347 int dev_set_allmulti(struct net_device *dev, int inc)
4348 {
4349 unsigned short old_flags = dev->flags;
4350
4351 ASSERT_RTNL();
4352
4353 dev->flags |= IFF_ALLMULTI;
4354 dev->allmulti += inc;
4355 if (dev->allmulti == 0) {
4356 /*
4357 * Avoid overflow.
4358 * If inc causes overflow, untouch allmulti and return error.
4359 */
4360 if (inc < 0)
4361 dev->flags &= ~IFF_ALLMULTI;
4362 else {
4363 dev->allmulti -= inc;
4364 printk(KERN_WARNING "%s: allmulti touches roof, "
4365 "set allmulti failed, allmulti feature of "
4366 "device might be broken.\n", dev->name);
4367 return -EOVERFLOW;
4368 }
4369 }
4370 if (dev->flags ^ old_flags) {
4371 dev_change_rx_flags(dev, IFF_ALLMULTI);
4372 dev_set_rx_mode(dev);
4373 }
4374 return 0;
4375 }
4376 EXPORT_SYMBOL(dev_set_allmulti);
4377
4378 /*
4379 * Upload unicast and multicast address lists to device and
4380 * configure RX filtering. When the device doesn't support unicast
4381 * filtering it is put in promiscuous mode while unicast addresses
4382 * are present.
4383 */
4384 void __dev_set_rx_mode(struct net_device *dev)
4385 {
4386 const struct net_device_ops *ops = dev->netdev_ops;
4387
4388 /* dev_open will call this function so the list will stay sane. */
4389 if (!(dev->flags&IFF_UP))
4390 return;
4391
4392 if (!netif_device_present(dev))
4393 return;
4394
4395 if (ops->ndo_set_rx_mode)
4396 ops->ndo_set_rx_mode(dev);
4397 else {
4398 /* Unicast addresses changes may only happen under the rtnl,
4399 * therefore calling __dev_set_promiscuity here is safe.
4400 */
4401 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4402 __dev_set_promiscuity(dev, 1);
4403 dev->uc_promisc = 1;
4404 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4405 __dev_set_promiscuity(dev, -1);
4406 dev->uc_promisc = 0;
4407 }
4408
4409 if (ops->ndo_set_multicast_list)
4410 ops->ndo_set_multicast_list(dev);
4411 }
4412 }
4413
4414 void dev_set_rx_mode(struct net_device *dev)
4415 {
4416 netif_addr_lock_bh(dev);
4417 __dev_set_rx_mode(dev);
4418 netif_addr_unlock_bh(dev);
4419 }
4420
4421 /**
4422 * dev_get_flags - get flags reported to userspace
4423 * @dev: device
4424 *
4425 * Get the combination of flag bits exported through APIs to userspace.
4426 */
4427 unsigned dev_get_flags(const struct net_device *dev)
4428 {
4429 unsigned flags;
4430
4431 flags = (dev->flags & ~(IFF_PROMISC |
4432 IFF_ALLMULTI |
4433 IFF_RUNNING |
4434 IFF_LOWER_UP |
4435 IFF_DORMANT)) |
4436 (dev->gflags & (IFF_PROMISC |
4437 IFF_ALLMULTI));
4438
4439 if (netif_running(dev)) {
4440 if (netif_oper_up(dev))
4441 flags |= IFF_RUNNING;
4442 if (netif_carrier_ok(dev))
4443 flags |= IFF_LOWER_UP;
4444 if (netif_dormant(dev))
4445 flags |= IFF_DORMANT;
4446 }
4447
4448 return flags;
4449 }
4450 EXPORT_SYMBOL(dev_get_flags);
4451
4452 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4453 {
4454 int old_flags = dev->flags;
4455 int ret;
4456
4457 ASSERT_RTNL();
4458
4459 /*
4460 * Set the flags on our device.
4461 */
4462
4463 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4464 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4465 IFF_AUTOMEDIA)) |
4466 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4467 IFF_ALLMULTI));
4468
4469 /*
4470 * Load in the correct multicast list now the flags have changed.
4471 */
4472
4473 if ((old_flags ^ flags) & IFF_MULTICAST)
4474 dev_change_rx_flags(dev, IFF_MULTICAST);
4475
4476 dev_set_rx_mode(dev);
4477
4478 /*
4479 * Have we downed the interface. We handle IFF_UP ourselves
4480 * according to user attempts to set it, rather than blindly
4481 * setting it.
4482 */
4483
4484 ret = 0;
4485 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4486 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4487
4488 if (!ret)
4489 dev_set_rx_mode(dev);
4490 }
4491
4492 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4493 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4494
4495 dev->gflags ^= IFF_PROMISC;
4496 dev_set_promiscuity(dev, inc);
4497 }
4498
4499 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4500 is important. Some (broken) drivers set IFF_PROMISC, when
4501 IFF_ALLMULTI is requested not asking us and not reporting.
4502 */
4503 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4504 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4505
4506 dev->gflags ^= IFF_ALLMULTI;
4507 dev_set_allmulti(dev, inc);
4508 }
4509
4510 return ret;
4511 }
4512
4513 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4514 {
4515 unsigned int changes = dev->flags ^ old_flags;
4516
4517 if (changes & IFF_UP) {
4518 if (dev->flags & IFF_UP)
4519 call_netdevice_notifiers(NETDEV_UP, dev);
4520 else
4521 call_netdevice_notifiers(NETDEV_DOWN, dev);
4522 }
4523
4524 if (dev->flags & IFF_UP &&
4525 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4526 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4527 }
4528
4529 /**
4530 * dev_change_flags - change device settings
4531 * @dev: device
4532 * @flags: device state flags
4533 *
4534 * Change settings on device based state flags. The flags are
4535 * in the userspace exported format.
4536 */
4537 int dev_change_flags(struct net_device *dev, unsigned flags)
4538 {
4539 int ret, changes;
4540 int old_flags = dev->flags;
4541
4542 ret = __dev_change_flags(dev, flags);
4543 if (ret < 0)
4544 return ret;
4545
4546 changes = old_flags ^ dev->flags;
4547 if (changes)
4548 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4549
4550 __dev_notify_flags(dev, old_flags);
4551 return ret;
4552 }
4553 EXPORT_SYMBOL(dev_change_flags);
4554
4555 /**
4556 * dev_set_mtu - Change maximum transfer unit
4557 * @dev: device
4558 * @new_mtu: new transfer unit
4559 *
4560 * Change the maximum transfer size of the network device.
4561 */
4562 int dev_set_mtu(struct net_device *dev, int new_mtu)
4563 {
4564 const struct net_device_ops *ops = dev->netdev_ops;
4565 int err;
4566
4567 if (new_mtu == dev->mtu)
4568 return 0;
4569
4570 /* MTU must be positive. */
4571 if (new_mtu < 0)
4572 return -EINVAL;
4573
4574 if (!netif_device_present(dev))
4575 return -ENODEV;
4576
4577 err = 0;
4578 if (ops->ndo_change_mtu)
4579 err = ops->ndo_change_mtu(dev, new_mtu);
4580 else
4581 dev->mtu = new_mtu;
4582
4583 if (!err && dev->flags & IFF_UP)
4584 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4585 return err;
4586 }
4587 EXPORT_SYMBOL(dev_set_mtu);
4588
4589 /**
4590 * dev_set_mac_address - Change Media Access Control Address
4591 * @dev: device
4592 * @sa: new address
4593 *
4594 * Change the hardware (MAC) address of the device
4595 */
4596 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4597 {
4598 const struct net_device_ops *ops = dev->netdev_ops;
4599 int err;
4600
4601 if (!ops->ndo_set_mac_address)
4602 return -EOPNOTSUPP;
4603 if (sa->sa_family != dev->type)
4604 return -EINVAL;
4605 if (!netif_device_present(dev))
4606 return -ENODEV;
4607 err = ops->ndo_set_mac_address(dev, sa);
4608 if (!err)
4609 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4610 return err;
4611 }
4612 EXPORT_SYMBOL(dev_set_mac_address);
4613
4614 /*
4615 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4616 */
4617 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4618 {
4619 int err;
4620 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4621
4622 if (!dev)
4623 return -ENODEV;
4624
4625 switch (cmd) {
4626 case SIOCGIFFLAGS: /* Get interface flags */
4627 ifr->ifr_flags = (short) dev_get_flags(dev);
4628 return 0;
4629
4630 case SIOCGIFMETRIC: /* Get the metric on the interface
4631 (currently unused) */
4632 ifr->ifr_metric = 0;
4633 return 0;
4634
4635 case SIOCGIFMTU: /* Get the MTU of a device */
4636 ifr->ifr_mtu = dev->mtu;
4637 return 0;
4638
4639 case SIOCGIFHWADDR:
4640 if (!dev->addr_len)
4641 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4642 else
4643 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4644 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4645 ifr->ifr_hwaddr.sa_family = dev->type;
4646 return 0;
4647
4648 case SIOCGIFSLAVE:
4649 err = -EINVAL;
4650 break;
4651
4652 case SIOCGIFMAP:
4653 ifr->ifr_map.mem_start = dev->mem_start;
4654 ifr->ifr_map.mem_end = dev->mem_end;
4655 ifr->ifr_map.base_addr = dev->base_addr;
4656 ifr->ifr_map.irq = dev->irq;
4657 ifr->ifr_map.dma = dev->dma;
4658 ifr->ifr_map.port = dev->if_port;
4659 return 0;
4660
4661 case SIOCGIFINDEX:
4662 ifr->ifr_ifindex = dev->ifindex;
4663 return 0;
4664
4665 case SIOCGIFTXQLEN:
4666 ifr->ifr_qlen = dev->tx_queue_len;
4667 return 0;
4668
4669 default:
4670 /* dev_ioctl() should ensure this case
4671 * is never reached
4672 */
4673 WARN_ON(1);
4674 err = -EINVAL;
4675 break;
4676
4677 }
4678 return err;
4679 }
4680
4681 /*
4682 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4683 */
4684 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4685 {
4686 int err;
4687 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4688 const struct net_device_ops *ops;
4689
4690 if (!dev)
4691 return -ENODEV;
4692
4693 ops = dev->netdev_ops;
4694
4695 switch (cmd) {
4696 case SIOCSIFFLAGS: /* Set interface flags */
4697 return dev_change_flags(dev, ifr->ifr_flags);
4698
4699 case SIOCSIFMETRIC: /* Set the metric on the interface
4700 (currently unused) */
4701 return -EOPNOTSUPP;
4702
4703 case SIOCSIFMTU: /* Set the MTU of a device */
4704 return dev_set_mtu(dev, ifr->ifr_mtu);
4705
4706 case SIOCSIFHWADDR:
4707 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4708
4709 case SIOCSIFHWBROADCAST:
4710 if (ifr->ifr_hwaddr.sa_family != dev->type)
4711 return -EINVAL;
4712 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4713 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4714 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4715 return 0;
4716
4717 case SIOCSIFMAP:
4718 if (ops->ndo_set_config) {
4719 if (!netif_device_present(dev))
4720 return -ENODEV;
4721 return ops->ndo_set_config(dev, &ifr->ifr_map);
4722 }
4723 return -EOPNOTSUPP;
4724
4725 case SIOCADDMULTI:
4726 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4727 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4728 return -EINVAL;
4729 if (!netif_device_present(dev))
4730 return -ENODEV;
4731 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4732
4733 case SIOCDELMULTI:
4734 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4735 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4736 return -EINVAL;
4737 if (!netif_device_present(dev))
4738 return -ENODEV;
4739 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4740
4741 case SIOCSIFTXQLEN:
4742 if (ifr->ifr_qlen < 0)
4743 return -EINVAL;
4744 dev->tx_queue_len = ifr->ifr_qlen;
4745 return 0;
4746
4747 case SIOCSIFNAME:
4748 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4749 return dev_change_name(dev, ifr->ifr_newname);
4750
4751 /*
4752 * Unknown or private ioctl
4753 */
4754 default:
4755 if ((cmd >= SIOCDEVPRIVATE &&
4756 cmd <= SIOCDEVPRIVATE + 15) ||
4757 cmd == SIOCBONDENSLAVE ||
4758 cmd == SIOCBONDRELEASE ||
4759 cmd == SIOCBONDSETHWADDR ||
4760 cmd == SIOCBONDSLAVEINFOQUERY ||
4761 cmd == SIOCBONDINFOQUERY ||
4762 cmd == SIOCBONDCHANGEACTIVE ||
4763 cmd == SIOCGMIIPHY ||
4764 cmd == SIOCGMIIREG ||
4765 cmd == SIOCSMIIREG ||
4766 cmd == SIOCBRADDIF ||
4767 cmd == SIOCBRDELIF ||
4768 cmd == SIOCSHWTSTAMP ||
4769 cmd == SIOCWANDEV) {
4770 err = -EOPNOTSUPP;
4771 if (ops->ndo_do_ioctl) {
4772 if (netif_device_present(dev))
4773 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4774 else
4775 err = -ENODEV;
4776 }
4777 } else
4778 err = -EINVAL;
4779
4780 }
4781 return err;
4782 }
4783
4784 /*
4785 * This function handles all "interface"-type I/O control requests. The actual
4786 * 'doing' part of this is dev_ifsioc above.
4787 */
4788
4789 /**
4790 * dev_ioctl - network device ioctl
4791 * @net: the applicable net namespace
4792 * @cmd: command to issue
4793 * @arg: pointer to a struct ifreq in user space
4794 *
4795 * Issue ioctl functions to devices. This is normally called by the
4796 * user space syscall interfaces but can sometimes be useful for
4797 * other purposes. The return value is the return from the syscall if
4798 * positive or a negative errno code on error.
4799 */
4800
4801 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4802 {
4803 struct ifreq ifr;
4804 int ret;
4805 char *colon;
4806
4807 /* One special case: SIOCGIFCONF takes ifconf argument
4808 and requires shared lock, because it sleeps writing
4809 to user space.
4810 */
4811
4812 if (cmd == SIOCGIFCONF) {
4813 rtnl_lock();
4814 ret = dev_ifconf(net, (char __user *) arg);
4815 rtnl_unlock();
4816 return ret;
4817 }
4818 if (cmd == SIOCGIFNAME)
4819 return dev_ifname(net, (struct ifreq __user *)arg);
4820
4821 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4822 return -EFAULT;
4823
4824 ifr.ifr_name[IFNAMSIZ-1] = 0;
4825
4826 colon = strchr(ifr.ifr_name, ':');
4827 if (colon)
4828 *colon = 0;
4829
4830 /*
4831 * See which interface the caller is talking about.
4832 */
4833
4834 switch (cmd) {
4835 /*
4836 * These ioctl calls:
4837 * - can be done by all.
4838 * - atomic and do not require locking.
4839 * - return a value
4840 */
4841 case SIOCGIFFLAGS:
4842 case SIOCGIFMETRIC:
4843 case SIOCGIFMTU:
4844 case SIOCGIFHWADDR:
4845 case SIOCGIFSLAVE:
4846 case SIOCGIFMAP:
4847 case SIOCGIFINDEX:
4848 case SIOCGIFTXQLEN:
4849 dev_load(net, ifr.ifr_name);
4850 rcu_read_lock();
4851 ret = dev_ifsioc_locked(net, &ifr, cmd);
4852 rcu_read_unlock();
4853 if (!ret) {
4854 if (colon)
4855 *colon = ':';
4856 if (copy_to_user(arg, &ifr,
4857 sizeof(struct ifreq)))
4858 ret = -EFAULT;
4859 }
4860 return ret;
4861
4862 case SIOCETHTOOL:
4863 dev_load(net, ifr.ifr_name);
4864 rtnl_lock();
4865 ret = dev_ethtool(net, &ifr);
4866 rtnl_unlock();
4867 if (!ret) {
4868 if (colon)
4869 *colon = ':';
4870 if (copy_to_user(arg, &ifr,
4871 sizeof(struct ifreq)))
4872 ret = -EFAULT;
4873 }
4874 return ret;
4875
4876 /*
4877 * These ioctl calls:
4878 * - require superuser power.
4879 * - require strict serialization.
4880 * - return a value
4881 */
4882 case SIOCGMIIPHY:
4883 case SIOCGMIIREG:
4884 case SIOCSIFNAME:
4885 if (!capable(CAP_NET_ADMIN))
4886 return -EPERM;
4887 dev_load(net, ifr.ifr_name);
4888 rtnl_lock();
4889 ret = dev_ifsioc(net, &ifr, cmd);
4890 rtnl_unlock();
4891 if (!ret) {
4892 if (colon)
4893 *colon = ':';
4894 if (copy_to_user(arg, &ifr,
4895 sizeof(struct ifreq)))
4896 ret = -EFAULT;
4897 }
4898 return ret;
4899
4900 /*
4901 * These ioctl calls:
4902 * - require superuser power.
4903 * - require strict serialization.
4904 * - do not return a value
4905 */
4906 case SIOCSIFFLAGS:
4907 case SIOCSIFMETRIC:
4908 case SIOCSIFMTU:
4909 case SIOCSIFMAP:
4910 case SIOCSIFHWADDR:
4911 case SIOCSIFSLAVE:
4912 case SIOCADDMULTI:
4913 case SIOCDELMULTI:
4914 case SIOCSIFHWBROADCAST:
4915 case SIOCSIFTXQLEN:
4916 case SIOCSMIIREG:
4917 case SIOCBONDENSLAVE:
4918 case SIOCBONDRELEASE:
4919 case SIOCBONDSETHWADDR:
4920 case SIOCBONDCHANGEACTIVE:
4921 case SIOCBRADDIF:
4922 case SIOCBRDELIF:
4923 case SIOCSHWTSTAMP:
4924 if (!capable(CAP_NET_ADMIN))
4925 return -EPERM;
4926 /* fall through */
4927 case SIOCBONDSLAVEINFOQUERY:
4928 case SIOCBONDINFOQUERY:
4929 dev_load(net, ifr.ifr_name);
4930 rtnl_lock();
4931 ret = dev_ifsioc(net, &ifr, cmd);
4932 rtnl_unlock();
4933 return ret;
4934
4935 case SIOCGIFMEM:
4936 /* Get the per device memory space. We can add this but
4937 * currently do not support it */
4938 case SIOCSIFMEM:
4939 /* Set the per device memory buffer space.
4940 * Not applicable in our case */
4941 case SIOCSIFLINK:
4942 return -EINVAL;
4943
4944 /*
4945 * Unknown or private ioctl.
4946 */
4947 default:
4948 if (cmd == SIOCWANDEV ||
4949 (cmd >= SIOCDEVPRIVATE &&
4950 cmd <= SIOCDEVPRIVATE + 15)) {
4951 dev_load(net, ifr.ifr_name);
4952 rtnl_lock();
4953 ret = dev_ifsioc(net, &ifr, cmd);
4954 rtnl_unlock();
4955 if (!ret && copy_to_user(arg, &ifr,
4956 sizeof(struct ifreq)))
4957 ret = -EFAULT;
4958 return ret;
4959 }
4960 /* Take care of Wireless Extensions */
4961 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4962 return wext_handle_ioctl(net, &ifr, cmd, arg);
4963 return -EINVAL;
4964 }
4965 }
4966
4967
4968 /**
4969 * dev_new_index - allocate an ifindex
4970 * @net: the applicable net namespace
4971 *
4972 * Returns a suitable unique value for a new device interface
4973 * number. The caller must hold the rtnl semaphore or the
4974 * dev_base_lock to be sure it remains unique.
4975 */
4976 static int dev_new_index(struct net *net)
4977 {
4978 static int ifindex;
4979 for (;;) {
4980 if (++ifindex <= 0)
4981 ifindex = 1;
4982 if (!__dev_get_by_index(net, ifindex))
4983 return ifindex;
4984 }
4985 }
4986
4987 /* Delayed registration/unregisteration */
4988 static LIST_HEAD(net_todo_list);
4989
4990 static void net_set_todo(struct net_device *dev)
4991 {
4992 list_add_tail(&dev->todo_list, &net_todo_list);
4993 }
4994
4995 static void rollback_registered_many(struct list_head *head)
4996 {
4997 struct net_device *dev, *tmp;
4998
4999 BUG_ON(dev_boot_phase);
5000 ASSERT_RTNL();
5001
5002 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5003 /* Some devices call without registering
5004 * for initialization unwind. Remove those
5005 * devices and proceed with the remaining.
5006 */
5007 if (dev->reg_state == NETREG_UNINITIALIZED) {
5008 pr_debug("unregister_netdevice: device %s/%p never "
5009 "was registered\n", dev->name, dev);
5010
5011 WARN_ON(1);
5012 list_del(&dev->unreg_list);
5013 continue;
5014 }
5015
5016 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5017 }
5018
5019 /* If device is running, close it first. */
5020 dev_close_many(head);
5021
5022 list_for_each_entry(dev, head, unreg_list) {
5023 /* And unlink it from device chain. */
5024 unlist_netdevice(dev);
5025
5026 dev->reg_state = NETREG_UNREGISTERING;
5027 }
5028
5029 synchronize_net();
5030
5031 list_for_each_entry(dev, head, unreg_list) {
5032 /* Shutdown queueing discipline. */
5033 dev_shutdown(dev);
5034
5035
5036 /* Notify protocols, that we are about to destroy
5037 this device. They should clean all the things.
5038 */
5039 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5040
5041 if (!dev->rtnl_link_ops ||
5042 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5043 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5044
5045 /*
5046 * Flush the unicast and multicast chains
5047 */
5048 dev_uc_flush(dev);
5049 dev_mc_flush(dev);
5050
5051 if (dev->netdev_ops->ndo_uninit)
5052 dev->netdev_ops->ndo_uninit(dev);
5053
5054 /* Notifier chain MUST detach us from master device. */
5055 WARN_ON(dev->master);
5056
5057 /* Remove entries from kobject tree */
5058 netdev_unregister_kobject(dev);
5059 }
5060
5061 /* Process any work delayed until the end of the batch */
5062 dev = list_first_entry(head, struct net_device, unreg_list);
5063 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5064
5065 rcu_barrier();
5066
5067 list_for_each_entry(dev, head, unreg_list)
5068 dev_put(dev);
5069 }
5070
5071 static void rollback_registered(struct net_device *dev)
5072 {
5073 LIST_HEAD(single);
5074
5075 list_add(&dev->unreg_list, &single);
5076 rollback_registered_many(&single);
5077 list_del(&single);
5078 }
5079
5080 unsigned long netdev_fix_features(unsigned long features, const char *name)
5081 {
5082 /* Fix illegal SG+CSUM combinations. */
5083 if ((features & NETIF_F_SG) &&
5084 !(features & NETIF_F_ALL_CSUM)) {
5085 if (name)
5086 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5087 "checksum feature.\n", name);
5088 features &= ~NETIF_F_SG;
5089 }
5090
5091 /* TSO requires that SG is present as well. */
5092 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5093 if (name)
5094 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5095 "SG feature.\n", name);
5096 features &= ~NETIF_F_TSO;
5097 }
5098
5099 if (features & NETIF_F_UFO) {
5100 /* maybe split UFO into V4 and V6? */
5101 if (!((features & NETIF_F_GEN_CSUM) ||
5102 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5103 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5104 if (name)
5105 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5106 "since no checksum offload features.\n",
5107 name);
5108 features &= ~NETIF_F_UFO;
5109 }
5110
5111 if (!(features & NETIF_F_SG)) {
5112 if (name)
5113 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5114 "since no NETIF_F_SG feature.\n", name);
5115 features &= ~NETIF_F_UFO;
5116 }
5117 }
5118
5119 return features;
5120 }
5121 EXPORT_SYMBOL(netdev_fix_features);
5122
5123 /**
5124 * netif_stacked_transfer_operstate - transfer operstate
5125 * @rootdev: the root or lower level device to transfer state from
5126 * @dev: the device to transfer operstate to
5127 *
5128 * Transfer operational state from root to device. This is normally
5129 * called when a stacking relationship exists between the root
5130 * device and the device(a leaf device).
5131 */
5132 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5133 struct net_device *dev)
5134 {
5135 if (rootdev->operstate == IF_OPER_DORMANT)
5136 netif_dormant_on(dev);
5137 else
5138 netif_dormant_off(dev);
5139
5140 if (netif_carrier_ok(rootdev)) {
5141 if (!netif_carrier_ok(dev))
5142 netif_carrier_on(dev);
5143 } else {
5144 if (netif_carrier_ok(dev))
5145 netif_carrier_off(dev);
5146 }
5147 }
5148 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5149
5150 #ifdef CONFIG_RPS
5151 static int netif_alloc_rx_queues(struct net_device *dev)
5152 {
5153 unsigned int i, count = dev->num_rx_queues;
5154 struct netdev_rx_queue *rx;
5155
5156 BUG_ON(count < 1);
5157
5158 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5159 if (!rx) {
5160 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5161 return -ENOMEM;
5162 }
5163 dev->_rx = rx;
5164
5165 for (i = 0; i < count; i++)
5166 rx[i].dev = dev;
5167 return 0;
5168 }
5169 #endif
5170
5171 static void netdev_init_one_queue(struct net_device *dev,
5172 struct netdev_queue *queue, void *_unused)
5173 {
5174 /* Initialize queue lock */
5175 spin_lock_init(&queue->_xmit_lock);
5176 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5177 queue->xmit_lock_owner = -1;
5178 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5179 queue->dev = dev;
5180 }
5181
5182 static int netif_alloc_netdev_queues(struct net_device *dev)
5183 {
5184 unsigned int count = dev->num_tx_queues;
5185 struct netdev_queue *tx;
5186
5187 BUG_ON(count < 1);
5188
5189 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5190 if (!tx) {
5191 pr_err("netdev: Unable to allocate %u tx queues.\n",
5192 count);
5193 return -ENOMEM;
5194 }
5195 dev->_tx = tx;
5196
5197 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5198 spin_lock_init(&dev->tx_global_lock);
5199
5200 return 0;
5201 }
5202
5203 /**
5204 * register_netdevice - register a network device
5205 * @dev: device to register
5206 *
5207 * Take a completed network device structure and add it to the kernel
5208 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5209 * chain. 0 is returned on success. A negative errno code is returned
5210 * on a failure to set up the device, or if the name is a duplicate.
5211 *
5212 * Callers must hold the rtnl semaphore. You may want
5213 * register_netdev() instead of this.
5214 *
5215 * BUGS:
5216 * The locking appears insufficient to guarantee two parallel registers
5217 * will not get the same name.
5218 */
5219
5220 int register_netdevice(struct net_device *dev)
5221 {
5222 int ret;
5223 struct net *net = dev_net(dev);
5224
5225 BUG_ON(dev_boot_phase);
5226 ASSERT_RTNL();
5227
5228 might_sleep();
5229
5230 /* When net_device's are persistent, this will be fatal. */
5231 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5232 BUG_ON(!net);
5233
5234 spin_lock_init(&dev->addr_list_lock);
5235 netdev_set_addr_lockdep_class(dev);
5236
5237 dev->iflink = -1;
5238
5239 /* Init, if this function is available */
5240 if (dev->netdev_ops->ndo_init) {
5241 ret = dev->netdev_ops->ndo_init(dev);
5242 if (ret) {
5243 if (ret > 0)
5244 ret = -EIO;
5245 goto out;
5246 }
5247 }
5248
5249 ret = dev_get_valid_name(dev, dev->name, 0);
5250 if (ret)
5251 goto err_uninit;
5252
5253 dev->ifindex = dev_new_index(net);
5254 if (dev->iflink == -1)
5255 dev->iflink = dev->ifindex;
5256
5257 /* Fix illegal checksum combinations */
5258 if ((dev->features & NETIF_F_HW_CSUM) &&
5259 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5260 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5261 dev->name);
5262 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5263 }
5264
5265 if ((dev->features & NETIF_F_NO_CSUM) &&
5266 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5267 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5268 dev->name);
5269 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5270 }
5271
5272 dev->features = netdev_fix_features(dev->features, dev->name);
5273
5274 /* Enable software GSO if SG is supported. */
5275 if (dev->features & NETIF_F_SG)
5276 dev->features |= NETIF_F_GSO;
5277
5278 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5279 * vlan_dev_init() will do the dev->features check, so these features
5280 * are enabled only if supported by underlying device.
5281 */
5282 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5283
5284 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5285 ret = notifier_to_errno(ret);
5286 if (ret)
5287 goto err_uninit;
5288
5289 ret = netdev_register_kobject(dev);
5290 if (ret)
5291 goto err_uninit;
5292 dev->reg_state = NETREG_REGISTERED;
5293
5294 /*
5295 * Default initial state at registry is that the
5296 * device is present.
5297 */
5298
5299 set_bit(__LINK_STATE_PRESENT, &dev->state);
5300
5301 dev_init_scheduler(dev);
5302 dev_hold(dev);
5303 list_netdevice(dev);
5304
5305 /* Notify protocols, that a new device appeared. */
5306 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5307 ret = notifier_to_errno(ret);
5308 if (ret) {
5309 rollback_registered(dev);
5310 dev->reg_state = NETREG_UNREGISTERED;
5311 }
5312 /*
5313 * Prevent userspace races by waiting until the network
5314 * device is fully setup before sending notifications.
5315 */
5316 if (!dev->rtnl_link_ops ||
5317 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5318 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5319
5320 out:
5321 return ret;
5322
5323 err_uninit:
5324 if (dev->netdev_ops->ndo_uninit)
5325 dev->netdev_ops->ndo_uninit(dev);
5326 goto out;
5327 }
5328 EXPORT_SYMBOL(register_netdevice);
5329
5330 /**
5331 * init_dummy_netdev - init a dummy network device for NAPI
5332 * @dev: device to init
5333 *
5334 * This takes a network device structure and initialize the minimum
5335 * amount of fields so it can be used to schedule NAPI polls without
5336 * registering a full blown interface. This is to be used by drivers
5337 * that need to tie several hardware interfaces to a single NAPI
5338 * poll scheduler due to HW limitations.
5339 */
5340 int init_dummy_netdev(struct net_device *dev)
5341 {
5342 /* Clear everything. Note we don't initialize spinlocks
5343 * are they aren't supposed to be taken by any of the
5344 * NAPI code and this dummy netdev is supposed to be
5345 * only ever used for NAPI polls
5346 */
5347 memset(dev, 0, sizeof(struct net_device));
5348
5349 /* make sure we BUG if trying to hit standard
5350 * register/unregister code path
5351 */
5352 dev->reg_state = NETREG_DUMMY;
5353
5354 /* NAPI wants this */
5355 INIT_LIST_HEAD(&dev->napi_list);
5356
5357 /* a dummy interface is started by default */
5358 set_bit(__LINK_STATE_PRESENT, &dev->state);
5359 set_bit(__LINK_STATE_START, &dev->state);
5360
5361 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5362 * because users of this 'device' dont need to change
5363 * its refcount.
5364 */
5365
5366 return 0;
5367 }
5368 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5369
5370
5371 /**
5372 * register_netdev - register a network device
5373 * @dev: device to register
5374 *
5375 * Take a completed network device structure and add it to the kernel
5376 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5377 * chain. 0 is returned on success. A negative errno code is returned
5378 * on a failure to set up the device, or if the name is a duplicate.
5379 *
5380 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5381 * and expands the device name if you passed a format string to
5382 * alloc_netdev.
5383 */
5384 int register_netdev(struct net_device *dev)
5385 {
5386 int err;
5387
5388 rtnl_lock();
5389
5390 /*
5391 * If the name is a format string the caller wants us to do a
5392 * name allocation.
5393 */
5394 if (strchr(dev->name, '%')) {
5395 err = dev_alloc_name(dev, dev->name);
5396 if (err < 0)
5397 goto out;
5398 }
5399
5400 err = register_netdevice(dev);
5401 out:
5402 rtnl_unlock();
5403 return err;
5404 }
5405 EXPORT_SYMBOL(register_netdev);
5406
5407 int netdev_refcnt_read(const struct net_device *dev)
5408 {
5409 int i, refcnt = 0;
5410
5411 for_each_possible_cpu(i)
5412 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5413 return refcnt;
5414 }
5415 EXPORT_SYMBOL(netdev_refcnt_read);
5416
5417 /*
5418 * netdev_wait_allrefs - wait until all references are gone.
5419 *
5420 * This is called when unregistering network devices.
5421 *
5422 * Any protocol or device that holds a reference should register
5423 * for netdevice notification, and cleanup and put back the
5424 * reference if they receive an UNREGISTER event.
5425 * We can get stuck here if buggy protocols don't correctly
5426 * call dev_put.
5427 */
5428 static void netdev_wait_allrefs(struct net_device *dev)
5429 {
5430 unsigned long rebroadcast_time, warning_time;
5431 int refcnt;
5432
5433 linkwatch_forget_dev(dev);
5434
5435 rebroadcast_time = warning_time = jiffies;
5436 refcnt = netdev_refcnt_read(dev);
5437
5438 while (refcnt != 0) {
5439 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5440 rtnl_lock();
5441
5442 /* Rebroadcast unregister notification */
5443 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5444 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5445 * should have already handle it the first time */
5446
5447 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5448 &dev->state)) {
5449 /* We must not have linkwatch events
5450 * pending on unregister. If this
5451 * happens, we simply run the queue
5452 * unscheduled, resulting in a noop
5453 * for this device.
5454 */
5455 linkwatch_run_queue();
5456 }
5457
5458 __rtnl_unlock();
5459
5460 rebroadcast_time = jiffies;
5461 }
5462
5463 msleep(250);
5464
5465 refcnt = netdev_refcnt_read(dev);
5466
5467 if (time_after(jiffies, warning_time + 10 * HZ)) {
5468 printk(KERN_EMERG "unregister_netdevice: "
5469 "waiting for %s to become free. Usage "
5470 "count = %d\n",
5471 dev->name, refcnt);
5472 warning_time = jiffies;
5473 }
5474 }
5475 }
5476
5477 /* The sequence is:
5478 *
5479 * rtnl_lock();
5480 * ...
5481 * register_netdevice(x1);
5482 * register_netdevice(x2);
5483 * ...
5484 * unregister_netdevice(y1);
5485 * unregister_netdevice(y2);
5486 * ...
5487 * rtnl_unlock();
5488 * free_netdev(y1);
5489 * free_netdev(y2);
5490 *
5491 * We are invoked by rtnl_unlock().
5492 * This allows us to deal with problems:
5493 * 1) We can delete sysfs objects which invoke hotplug
5494 * without deadlocking with linkwatch via keventd.
5495 * 2) Since we run with the RTNL semaphore not held, we can sleep
5496 * safely in order to wait for the netdev refcnt to drop to zero.
5497 *
5498 * We must not return until all unregister events added during
5499 * the interval the lock was held have been completed.
5500 */
5501 void netdev_run_todo(void)
5502 {
5503 struct list_head list;
5504
5505 /* Snapshot list, allow later requests */
5506 list_replace_init(&net_todo_list, &list);
5507
5508 __rtnl_unlock();
5509
5510 while (!list_empty(&list)) {
5511 struct net_device *dev
5512 = list_first_entry(&list, struct net_device, todo_list);
5513 list_del(&dev->todo_list);
5514
5515 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5516 printk(KERN_ERR "network todo '%s' but state %d\n",
5517 dev->name, dev->reg_state);
5518 dump_stack();
5519 continue;
5520 }
5521
5522 dev->reg_state = NETREG_UNREGISTERED;
5523
5524 on_each_cpu(flush_backlog, dev, 1);
5525
5526 netdev_wait_allrefs(dev);
5527
5528 /* paranoia */
5529 BUG_ON(netdev_refcnt_read(dev));
5530 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5531 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5532 WARN_ON(dev->dn_ptr);
5533
5534 if (dev->destructor)
5535 dev->destructor(dev);
5536
5537 /* Free network device */
5538 kobject_put(&dev->dev.kobj);
5539 }
5540 }
5541
5542 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5543 * fields in the same order, with only the type differing.
5544 */
5545 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5546 const struct net_device_stats *netdev_stats)
5547 {
5548 #if BITS_PER_LONG == 64
5549 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5550 memcpy(stats64, netdev_stats, sizeof(*stats64));
5551 #else
5552 size_t i, n = sizeof(*stats64) / sizeof(u64);
5553 const unsigned long *src = (const unsigned long *)netdev_stats;
5554 u64 *dst = (u64 *)stats64;
5555
5556 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5557 sizeof(*stats64) / sizeof(u64));
5558 for (i = 0; i < n; i++)
5559 dst[i] = src[i];
5560 #endif
5561 }
5562
5563 /**
5564 * dev_get_stats - get network device statistics
5565 * @dev: device to get statistics from
5566 * @storage: place to store stats
5567 *
5568 * Get network statistics from device. Return @storage.
5569 * The device driver may provide its own method by setting
5570 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5571 * otherwise the internal statistics structure is used.
5572 */
5573 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5574 struct rtnl_link_stats64 *storage)
5575 {
5576 const struct net_device_ops *ops = dev->netdev_ops;
5577
5578 if (ops->ndo_get_stats64) {
5579 memset(storage, 0, sizeof(*storage));
5580 ops->ndo_get_stats64(dev, storage);
5581 } else if (ops->ndo_get_stats) {
5582 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5583 } else {
5584 netdev_stats_to_stats64(storage, &dev->stats);
5585 }
5586 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5587 return storage;
5588 }
5589 EXPORT_SYMBOL(dev_get_stats);
5590
5591 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5592 {
5593 struct netdev_queue *queue = dev_ingress_queue(dev);
5594
5595 #ifdef CONFIG_NET_CLS_ACT
5596 if (queue)
5597 return queue;
5598 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5599 if (!queue)
5600 return NULL;
5601 netdev_init_one_queue(dev, queue, NULL);
5602 queue->qdisc = &noop_qdisc;
5603 queue->qdisc_sleeping = &noop_qdisc;
5604 rcu_assign_pointer(dev->ingress_queue, queue);
5605 #endif
5606 return queue;
5607 }
5608
5609 /**
5610 * alloc_netdev_mqs - allocate network device
5611 * @sizeof_priv: size of private data to allocate space for
5612 * @name: device name format string
5613 * @setup: callback to initialize device
5614 * @txqs: the number of TX subqueues to allocate
5615 * @rxqs: the number of RX subqueues to allocate
5616 *
5617 * Allocates a struct net_device with private data area for driver use
5618 * and performs basic initialization. Also allocates subquue structs
5619 * for each queue on the device.
5620 */
5621 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5622 void (*setup)(struct net_device *),
5623 unsigned int txqs, unsigned int rxqs)
5624 {
5625 struct net_device *dev;
5626 size_t alloc_size;
5627 struct net_device *p;
5628
5629 BUG_ON(strlen(name) >= sizeof(dev->name));
5630
5631 if (txqs < 1) {
5632 pr_err("alloc_netdev: Unable to allocate device "
5633 "with zero queues.\n");
5634 return NULL;
5635 }
5636
5637 #ifdef CONFIG_RPS
5638 if (rxqs < 1) {
5639 pr_err("alloc_netdev: Unable to allocate device "
5640 "with zero RX queues.\n");
5641 return NULL;
5642 }
5643 #endif
5644
5645 alloc_size = sizeof(struct net_device);
5646 if (sizeof_priv) {
5647 /* ensure 32-byte alignment of private area */
5648 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5649 alloc_size += sizeof_priv;
5650 }
5651 /* ensure 32-byte alignment of whole construct */
5652 alloc_size += NETDEV_ALIGN - 1;
5653
5654 p = kzalloc(alloc_size, GFP_KERNEL);
5655 if (!p) {
5656 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5657 return NULL;
5658 }
5659
5660 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5661 dev->padded = (char *)dev - (char *)p;
5662
5663 dev->pcpu_refcnt = alloc_percpu(int);
5664 if (!dev->pcpu_refcnt)
5665 goto free_p;
5666
5667 if (dev_addr_init(dev))
5668 goto free_pcpu;
5669
5670 dev_mc_init(dev);
5671 dev_uc_init(dev);
5672
5673 dev_net_set(dev, &init_net);
5674
5675 dev->gso_max_size = GSO_MAX_SIZE;
5676
5677 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5678 dev->ethtool_ntuple_list.count = 0;
5679 INIT_LIST_HEAD(&dev->napi_list);
5680 INIT_LIST_HEAD(&dev->unreg_list);
5681 INIT_LIST_HEAD(&dev->link_watch_list);
5682 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5683 setup(dev);
5684
5685 dev->num_tx_queues = txqs;
5686 dev->real_num_tx_queues = txqs;
5687 if (netif_alloc_netdev_queues(dev))
5688 goto free_all;
5689
5690 #ifdef CONFIG_RPS
5691 dev->num_rx_queues = rxqs;
5692 dev->real_num_rx_queues = rxqs;
5693 if (netif_alloc_rx_queues(dev))
5694 goto free_all;
5695 #endif
5696
5697 strcpy(dev->name, name);
5698 return dev;
5699
5700 free_all:
5701 free_netdev(dev);
5702 return NULL;
5703
5704 free_pcpu:
5705 free_percpu(dev->pcpu_refcnt);
5706 kfree(dev->_tx);
5707 #ifdef CONFIG_RPS
5708 kfree(dev->_rx);
5709 #endif
5710
5711 free_p:
5712 kfree(p);
5713 return NULL;
5714 }
5715 EXPORT_SYMBOL(alloc_netdev_mqs);
5716
5717 /**
5718 * free_netdev - free network device
5719 * @dev: device
5720 *
5721 * This function does the last stage of destroying an allocated device
5722 * interface. The reference to the device object is released.
5723 * If this is the last reference then it will be freed.
5724 */
5725 void free_netdev(struct net_device *dev)
5726 {
5727 struct napi_struct *p, *n;
5728
5729 release_net(dev_net(dev));
5730
5731 kfree(dev->_tx);
5732 #ifdef CONFIG_RPS
5733 kfree(dev->_rx);
5734 #endif
5735
5736 kfree(rcu_dereference_raw(dev->ingress_queue));
5737
5738 /* Flush device addresses */
5739 dev_addr_flush(dev);
5740
5741 /* Clear ethtool n-tuple list */
5742 ethtool_ntuple_flush(dev);
5743
5744 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5745 netif_napi_del(p);
5746
5747 free_percpu(dev->pcpu_refcnt);
5748 dev->pcpu_refcnt = NULL;
5749
5750 /* Compatibility with error handling in drivers */
5751 if (dev->reg_state == NETREG_UNINITIALIZED) {
5752 kfree((char *)dev - dev->padded);
5753 return;
5754 }
5755
5756 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5757 dev->reg_state = NETREG_RELEASED;
5758
5759 /* will free via device release */
5760 put_device(&dev->dev);
5761 }
5762 EXPORT_SYMBOL(free_netdev);
5763
5764 /**
5765 * synchronize_net - Synchronize with packet receive processing
5766 *
5767 * Wait for packets currently being received to be done.
5768 * Does not block later packets from starting.
5769 */
5770 void synchronize_net(void)
5771 {
5772 might_sleep();
5773 synchronize_rcu();
5774 }
5775 EXPORT_SYMBOL(synchronize_net);
5776
5777 /**
5778 * unregister_netdevice_queue - remove device from the kernel
5779 * @dev: device
5780 * @head: list
5781 *
5782 * This function shuts down a device interface and removes it
5783 * from the kernel tables.
5784 * If head not NULL, device is queued to be unregistered later.
5785 *
5786 * Callers must hold the rtnl semaphore. You may want
5787 * unregister_netdev() instead of this.
5788 */
5789
5790 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5791 {
5792 ASSERT_RTNL();
5793
5794 if (head) {
5795 list_move_tail(&dev->unreg_list, head);
5796 } else {
5797 rollback_registered(dev);
5798 /* Finish processing unregister after unlock */
5799 net_set_todo(dev);
5800 }
5801 }
5802 EXPORT_SYMBOL(unregister_netdevice_queue);
5803
5804 /**
5805 * unregister_netdevice_many - unregister many devices
5806 * @head: list of devices
5807 */
5808 void unregister_netdevice_many(struct list_head *head)
5809 {
5810 struct net_device *dev;
5811
5812 if (!list_empty(head)) {
5813 rollback_registered_many(head);
5814 list_for_each_entry(dev, head, unreg_list)
5815 net_set_todo(dev);
5816 }
5817 }
5818 EXPORT_SYMBOL(unregister_netdevice_many);
5819
5820 /**
5821 * unregister_netdev - remove device from the kernel
5822 * @dev: device
5823 *
5824 * This function shuts down a device interface and removes it
5825 * from the kernel tables.
5826 *
5827 * This is just a wrapper for unregister_netdevice that takes
5828 * the rtnl semaphore. In general you want to use this and not
5829 * unregister_netdevice.
5830 */
5831 void unregister_netdev(struct net_device *dev)
5832 {
5833 rtnl_lock();
5834 unregister_netdevice(dev);
5835 rtnl_unlock();
5836 }
5837 EXPORT_SYMBOL(unregister_netdev);
5838
5839 /**
5840 * dev_change_net_namespace - move device to different nethost namespace
5841 * @dev: device
5842 * @net: network namespace
5843 * @pat: If not NULL name pattern to try if the current device name
5844 * is already taken in the destination network namespace.
5845 *
5846 * This function shuts down a device interface and moves it
5847 * to a new network namespace. On success 0 is returned, on
5848 * a failure a netagive errno code is returned.
5849 *
5850 * Callers must hold the rtnl semaphore.
5851 */
5852
5853 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5854 {
5855 int err;
5856
5857 ASSERT_RTNL();
5858
5859 /* Don't allow namespace local devices to be moved. */
5860 err = -EINVAL;
5861 if (dev->features & NETIF_F_NETNS_LOCAL)
5862 goto out;
5863
5864 /* Ensure the device has been registrered */
5865 err = -EINVAL;
5866 if (dev->reg_state != NETREG_REGISTERED)
5867 goto out;
5868
5869 /* Get out if there is nothing todo */
5870 err = 0;
5871 if (net_eq(dev_net(dev), net))
5872 goto out;
5873
5874 /* Pick the destination device name, and ensure
5875 * we can use it in the destination network namespace.
5876 */
5877 err = -EEXIST;
5878 if (__dev_get_by_name(net, dev->name)) {
5879 /* We get here if we can't use the current device name */
5880 if (!pat)
5881 goto out;
5882 if (dev_get_valid_name(dev, pat, 1))
5883 goto out;
5884 }
5885
5886 /*
5887 * And now a mini version of register_netdevice unregister_netdevice.
5888 */
5889
5890 /* If device is running close it first. */
5891 dev_close(dev);
5892
5893 /* And unlink it from device chain */
5894 err = -ENODEV;
5895 unlist_netdevice(dev);
5896
5897 synchronize_net();
5898
5899 /* Shutdown queueing discipline. */
5900 dev_shutdown(dev);
5901
5902 /* Notify protocols, that we are about to destroy
5903 this device. They should clean all the things.
5904
5905 Note that dev->reg_state stays at NETREG_REGISTERED.
5906 This is wanted because this way 8021q and macvlan know
5907 the device is just moving and can keep their slaves up.
5908 */
5909 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5910 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5911
5912 /*
5913 * Flush the unicast and multicast chains
5914 */
5915 dev_uc_flush(dev);
5916 dev_mc_flush(dev);
5917
5918 /* Actually switch the network namespace */
5919 dev_net_set(dev, net);
5920
5921 /* If there is an ifindex conflict assign a new one */
5922 if (__dev_get_by_index(net, dev->ifindex)) {
5923 int iflink = (dev->iflink == dev->ifindex);
5924 dev->ifindex = dev_new_index(net);
5925 if (iflink)
5926 dev->iflink = dev->ifindex;
5927 }
5928
5929 /* Fixup kobjects */
5930 err = device_rename(&dev->dev, dev->name);
5931 WARN_ON(err);
5932
5933 /* Add the device back in the hashes */
5934 list_netdevice(dev);
5935
5936 /* Notify protocols, that a new device appeared. */
5937 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5938
5939 /*
5940 * Prevent userspace races by waiting until the network
5941 * device is fully setup before sending notifications.
5942 */
5943 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5944
5945 synchronize_net();
5946 err = 0;
5947 out:
5948 return err;
5949 }
5950 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5951
5952 static int dev_cpu_callback(struct notifier_block *nfb,
5953 unsigned long action,
5954 void *ocpu)
5955 {
5956 struct sk_buff **list_skb;
5957 struct sk_buff *skb;
5958 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5959 struct softnet_data *sd, *oldsd;
5960
5961 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5962 return NOTIFY_OK;
5963
5964 local_irq_disable();
5965 cpu = smp_processor_id();
5966 sd = &per_cpu(softnet_data, cpu);
5967 oldsd = &per_cpu(softnet_data, oldcpu);
5968
5969 /* Find end of our completion_queue. */
5970 list_skb = &sd->completion_queue;
5971 while (*list_skb)
5972 list_skb = &(*list_skb)->next;
5973 /* Append completion queue from offline CPU. */
5974 *list_skb = oldsd->completion_queue;
5975 oldsd->completion_queue = NULL;
5976
5977 /* Append output queue from offline CPU. */
5978 if (oldsd->output_queue) {
5979 *sd->output_queue_tailp = oldsd->output_queue;
5980 sd->output_queue_tailp = oldsd->output_queue_tailp;
5981 oldsd->output_queue = NULL;
5982 oldsd->output_queue_tailp = &oldsd->output_queue;
5983 }
5984
5985 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5986 local_irq_enable();
5987
5988 /* Process offline CPU's input_pkt_queue */
5989 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5990 netif_rx(skb);
5991 input_queue_head_incr(oldsd);
5992 }
5993 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5994 netif_rx(skb);
5995 input_queue_head_incr(oldsd);
5996 }
5997
5998 return NOTIFY_OK;
5999 }
6000
6001
6002 /**
6003 * netdev_increment_features - increment feature set by one
6004 * @all: current feature set
6005 * @one: new feature set
6006 * @mask: mask feature set
6007 *
6008 * Computes a new feature set after adding a device with feature set
6009 * @one to the master device with current feature set @all. Will not
6010 * enable anything that is off in @mask. Returns the new feature set.
6011 */
6012 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6013 unsigned long mask)
6014 {
6015 /* If device needs checksumming, downgrade to it. */
6016 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6017 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6018 else if (mask & NETIF_F_ALL_CSUM) {
6019 /* If one device supports v4/v6 checksumming, set for all. */
6020 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6021 !(all & NETIF_F_GEN_CSUM)) {
6022 all &= ~NETIF_F_ALL_CSUM;
6023 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6024 }
6025
6026 /* If one device supports hw checksumming, set for all. */
6027 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6028 all &= ~NETIF_F_ALL_CSUM;
6029 all |= NETIF_F_HW_CSUM;
6030 }
6031 }
6032
6033 one |= NETIF_F_ALL_CSUM;
6034
6035 one |= all & NETIF_F_ONE_FOR_ALL;
6036 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6037 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6038
6039 return all;
6040 }
6041 EXPORT_SYMBOL(netdev_increment_features);
6042
6043 static struct hlist_head *netdev_create_hash(void)
6044 {
6045 int i;
6046 struct hlist_head *hash;
6047
6048 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6049 if (hash != NULL)
6050 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6051 INIT_HLIST_HEAD(&hash[i]);
6052
6053 return hash;
6054 }
6055
6056 /* Initialize per network namespace state */
6057 static int __net_init netdev_init(struct net *net)
6058 {
6059 INIT_LIST_HEAD(&net->dev_base_head);
6060
6061 net->dev_name_head = netdev_create_hash();
6062 if (net->dev_name_head == NULL)
6063 goto err_name;
6064
6065 net->dev_index_head = netdev_create_hash();
6066 if (net->dev_index_head == NULL)
6067 goto err_idx;
6068
6069 return 0;
6070
6071 err_idx:
6072 kfree(net->dev_name_head);
6073 err_name:
6074 return -ENOMEM;
6075 }
6076
6077 /**
6078 * netdev_drivername - network driver for the device
6079 * @dev: network device
6080 * @buffer: buffer for resulting name
6081 * @len: size of buffer
6082 *
6083 * Determine network driver for device.
6084 */
6085 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6086 {
6087 const struct device_driver *driver;
6088 const struct device *parent;
6089
6090 if (len <= 0 || !buffer)
6091 return buffer;
6092 buffer[0] = 0;
6093
6094 parent = dev->dev.parent;
6095
6096 if (!parent)
6097 return buffer;
6098
6099 driver = parent->driver;
6100 if (driver && driver->name)
6101 strlcpy(buffer, driver->name, len);
6102 return buffer;
6103 }
6104
6105 static int __netdev_printk(const char *level, const struct net_device *dev,
6106 struct va_format *vaf)
6107 {
6108 int r;
6109
6110 if (dev && dev->dev.parent)
6111 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6112 netdev_name(dev), vaf);
6113 else if (dev)
6114 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6115 else
6116 r = printk("%s(NULL net_device): %pV", level, vaf);
6117
6118 return r;
6119 }
6120
6121 int netdev_printk(const char *level, const struct net_device *dev,
6122 const char *format, ...)
6123 {
6124 struct va_format vaf;
6125 va_list args;
6126 int r;
6127
6128 va_start(args, format);
6129
6130 vaf.fmt = format;
6131 vaf.va = &args;
6132
6133 r = __netdev_printk(level, dev, &vaf);
6134 va_end(args);
6135
6136 return r;
6137 }
6138 EXPORT_SYMBOL(netdev_printk);
6139
6140 #define define_netdev_printk_level(func, level) \
6141 int func(const struct net_device *dev, const char *fmt, ...) \
6142 { \
6143 int r; \
6144 struct va_format vaf; \
6145 va_list args; \
6146 \
6147 va_start(args, fmt); \
6148 \
6149 vaf.fmt = fmt; \
6150 vaf.va = &args; \
6151 \
6152 r = __netdev_printk(level, dev, &vaf); \
6153 va_end(args); \
6154 \
6155 return r; \
6156 } \
6157 EXPORT_SYMBOL(func);
6158
6159 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6160 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6161 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6162 define_netdev_printk_level(netdev_err, KERN_ERR);
6163 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6164 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6165 define_netdev_printk_level(netdev_info, KERN_INFO);
6166
6167 static void __net_exit netdev_exit(struct net *net)
6168 {
6169 kfree(net->dev_name_head);
6170 kfree(net->dev_index_head);
6171 }
6172
6173 static struct pernet_operations __net_initdata netdev_net_ops = {
6174 .init = netdev_init,
6175 .exit = netdev_exit,
6176 };
6177
6178 static void __net_exit default_device_exit(struct net *net)
6179 {
6180 struct net_device *dev, *aux;
6181 /*
6182 * Push all migratable network devices back to the
6183 * initial network namespace
6184 */
6185 rtnl_lock();
6186 for_each_netdev_safe(net, dev, aux) {
6187 int err;
6188 char fb_name[IFNAMSIZ];
6189
6190 /* Ignore unmoveable devices (i.e. loopback) */
6191 if (dev->features & NETIF_F_NETNS_LOCAL)
6192 continue;
6193
6194 /* Leave virtual devices for the generic cleanup */
6195 if (dev->rtnl_link_ops)
6196 continue;
6197
6198 /* Push remaing network devices to init_net */
6199 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6200 err = dev_change_net_namespace(dev, &init_net, fb_name);
6201 if (err) {
6202 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6203 __func__, dev->name, err);
6204 BUG();
6205 }
6206 }
6207 rtnl_unlock();
6208 }
6209
6210 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6211 {
6212 /* At exit all network devices most be removed from a network
6213 * namespace. Do this in the reverse order of registration.
6214 * Do this across as many network namespaces as possible to
6215 * improve batching efficiency.
6216 */
6217 struct net_device *dev;
6218 struct net *net;
6219 LIST_HEAD(dev_kill_list);
6220
6221 rtnl_lock();
6222 list_for_each_entry(net, net_list, exit_list) {
6223 for_each_netdev_reverse(net, dev) {
6224 if (dev->rtnl_link_ops)
6225 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6226 else
6227 unregister_netdevice_queue(dev, &dev_kill_list);
6228 }
6229 }
6230 unregister_netdevice_many(&dev_kill_list);
6231 list_del(&dev_kill_list);
6232 rtnl_unlock();
6233 }
6234
6235 static struct pernet_operations __net_initdata default_device_ops = {
6236 .exit = default_device_exit,
6237 .exit_batch = default_device_exit_batch,
6238 };
6239
6240 /*
6241 * Initialize the DEV module. At boot time this walks the device list and
6242 * unhooks any devices that fail to initialise (normally hardware not
6243 * present) and leaves us with a valid list of present and active devices.
6244 *
6245 */
6246
6247 /*
6248 * This is called single threaded during boot, so no need
6249 * to take the rtnl semaphore.
6250 */
6251 static int __init net_dev_init(void)
6252 {
6253 int i, rc = -ENOMEM;
6254
6255 BUG_ON(!dev_boot_phase);
6256
6257 if (dev_proc_init())
6258 goto out;
6259
6260 if (netdev_kobject_init())
6261 goto out;
6262
6263 INIT_LIST_HEAD(&ptype_all);
6264 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6265 INIT_LIST_HEAD(&ptype_base[i]);
6266
6267 if (register_pernet_subsys(&netdev_net_ops))
6268 goto out;
6269
6270 /*
6271 * Initialise the packet receive queues.
6272 */
6273
6274 for_each_possible_cpu(i) {
6275 struct softnet_data *sd = &per_cpu(softnet_data, i);
6276
6277 memset(sd, 0, sizeof(*sd));
6278 skb_queue_head_init(&sd->input_pkt_queue);
6279 skb_queue_head_init(&sd->process_queue);
6280 sd->completion_queue = NULL;
6281 INIT_LIST_HEAD(&sd->poll_list);
6282 sd->output_queue = NULL;
6283 sd->output_queue_tailp = &sd->output_queue;
6284 #ifdef CONFIG_RPS
6285 sd->csd.func = rps_trigger_softirq;
6286 sd->csd.info = sd;
6287 sd->csd.flags = 0;
6288 sd->cpu = i;
6289 #endif
6290
6291 sd->backlog.poll = process_backlog;
6292 sd->backlog.weight = weight_p;
6293 sd->backlog.gro_list = NULL;
6294 sd->backlog.gro_count = 0;
6295 }
6296
6297 dev_boot_phase = 0;
6298
6299 /* The loopback device is special if any other network devices
6300 * is present in a network namespace the loopback device must
6301 * be present. Since we now dynamically allocate and free the
6302 * loopback device ensure this invariant is maintained by
6303 * keeping the loopback device as the first device on the
6304 * list of network devices. Ensuring the loopback devices
6305 * is the first device that appears and the last network device
6306 * that disappears.
6307 */
6308 if (register_pernet_device(&loopback_net_ops))
6309 goto out;
6310
6311 if (register_pernet_device(&default_device_ops))
6312 goto out;
6313
6314 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6315 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6316
6317 hotcpu_notifier(dev_cpu_callback, 0);
6318 dst_init();
6319 dev_mcast_init();
6320 rc = 0;
6321 out:
6322 return rc;
6323 }
6324
6325 subsys_initcall(net_dev_init);
6326
6327 static int __init initialize_hashrnd(void)
6328 {
6329 get_random_bytes(&hashrnd, sizeof(hashrnd));
6330 return 0;
6331 }
6332
6333 late_initcall_sync(initialize_hashrnd);
6334
This page took 0.158028 seconds and 5 git commands to generate.