Merge tag 'range-macro' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 static DEFINE_SPINLOCK(ptype_lock);
144 static DEFINE_SPINLOCK(offload_lock);
145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
146 struct list_head ptype_all __read_mostly; /* Taps */
147 static struct list_head offload_base __read_mostly;
148
149 /*
150 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
151 * semaphore.
152 *
153 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
154 *
155 * Writers must hold the rtnl semaphore while they loop through the
156 * dev_base_head list, and hold dev_base_lock for writing when they do the
157 * actual updates. This allows pure readers to access the list even
158 * while a writer is preparing to update it.
159 *
160 * To put it another way, dev_base_lock is held for writing only to
161 * protect against pure readers; the rtnl semaphore provides the
162 * protection against other writers.
163 *
164 * See, for example usages, register_netdevice() and
165 * unregister_netdevice(), which must be called with the rtnl
166 * semaphore held.
167 */
168 DEFINE_RWLOCK(dev_base_lock);
169 EXPORT_SYMBOL(dev_base_lock);
170
171 /* protects napi_hash addition/deletion and napi_gen_id */
172 static DEFINE_SPINLOCK(napi_hash_lock);
173
174 static unsigned int napi_gen_id;
175 static DEFINE_HASHTABLE(napi_hash, 8);
176
177 static seqcount_t devnet_rename_seq;
178
179 static inline void dev_base_seq_inc(struct net *net)
180 {
181 while (++net->dev_base_seq == 0);
182 }
183
184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
185 {
186 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
187
188 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
189 }
190
191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
192 {
193 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
194 }
195
196 static inline void rps_lock(struct softnet_data *sd)
197 {
198 #ifdef CONFIG_RPS
199 spin_lock(&sd->input_pkt_queue.lock);
200 #endif
201 }
202
203 static inline void rps_unlock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_unlock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 /* Device list insertion */
211 static void list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head_rcu(&dev->index_hlist,
221 dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223
224 dev_base_seq_inc(net);
225 }
226
227 /* Device list removal
228 * caller must respect a RCU grace period before freeing/reusing dev
229 */
230 static void unlist_netdevice(struct net_device *dev)
231 {
232 ASSERT_RTNL();
233
234 /* Unlink dev from the device chain */
235 write_lock_bh(&dev_base_lock);
236 list_del_rcu(&dev->dev_list);
237 hlist_del_rcu(&dev->name_hlist);
238 hlist_del_rcu(&dev->index_hlist);
239 write_unlock_bh(&dev_base_lock);
240
241 dev_base_seq_inc(dev_net(dev));
242 }
243
244 /*
245 * Our notifier list
246 */
247
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249
250 /*
251 * Device drivers call our routines to queue packets here. We empty the
252 * queue in the local softnet handler.
253 */
254
255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
256 EXPORT_PER_CPU_SYMBOL(softnet_data);
257
258 #ifdef CONFIG_LOCKDEP
259 /*
260 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
261 * according to dev->type
262 */
263 static const unsigned short netdev_lock_type[] =
264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
276 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
277 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
278 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
279
280 static const char *const netdev_lock_name[] =
281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
293 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
294 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
295 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
296
297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
299
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310
311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
313 {
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319 }
320
321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev->type);
326 lockdep_set_class_and_name(&dev->addr_list_lock,
327 &netdev_addr_lock_key[i],
328 netdev_lock_name[i]);
329 }
330 #else
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 unsigned short dev_type)
333 {
334 }
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 }
338 #endif
339
340 /*******************************************************************************
341
342 Protocol management and registration routines
343
344 *******************************************************************************/
345
346 /*
347 * Add a protocol ID to the list. Now that the input handler is
348 * smarter we can dispense with all the messy stuff that used to be
349 * here.
350 *
351 * BEWARE!!! Protocol handlers, mangling input packets,
352 * MUST BE last in hash buckets and checking protocol handlers
353 * MUST start from promiscuous ptype_all chain in net_bh.
354 * It is true now, do not change it.
355 * Explanation follows: if protocol handler, mangling packet, will
356 * be the first on list, it is not able to sense, that packet
357 * is cloned and should be copied-on-write, so that it will
358 * change it and subsequent readers will get broken packet.
359 * --ANK (980803)
360 */
361
362 static inline struct list_head *ptype_head(const struct packet_type *pt)
363 {
364 if (pt->type == htons(ETH_P_ALL))
365 return &ptype_all;
366 else
367 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
368 }
369
370 /**
371 * dev_add_pack - add packet handler
372 * @pt: packet type declaration
373 *
374 * Add a protocol handler to the networking stack. The passed &packet_type
375 * is linked into kernel lists and may not be freed until it has been
376 * removed from the kernel lists.
377 *
378 * This call does not sleep therefore it can not
379 * guarantee all CPU's that are in middle of receiving packets
380 * will see the new packet type (until the next received packet).
381 */
382
383 void dev_add_pack(struct packet_type *pt)
384 {
385 struct list_head *head = ptype_head(pt);
386
387 spin_lock(&ptype_lock);
388 list_add_rcu(&pt->list, head);
389 spin_unlock(&ptype_lock);
390 }
391 EXPORT_SYMBOL(dev_add_pack);
392
393 /**
394 * __dev_remove_pack - remove packet handler
395 * @pt: packet type declaration
396 *
397 * Remove a protocol handler that was previously added to the kernel
398 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
399 * from the kernel lists and can be freed or reused once this function
400 * returns.
401 *
402 * The packet type might still be in use by receivers
403 * and must not be freed until after all the CPU's have gone
404 * through a quiescent state.
405 */
406 void __dev_remove_pack(struct packet_type *pt)
407 {
408 struct list_head *head = ptype_head(pt);
409 struct packet_type *pt1;
410
411 spin_lock(&ptype_lock);
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 pr_warn("dev_remove_pack: %p not found\n", pt);
421 out:
422 spin_unlock(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425
426 /**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 __dev_remove_pack(pt);
441
442 synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445
446
447 /**
448 * dev_add_offload - register offload handlers
449 * @po: protocol offload declaration
450 *
451 * Add protocol offload handlers to the networking stack. The passed
452 * &proto_offload is linked into kernel lists and may not be freed until
453 * it has been removed from the kernel lists.
454 *
455 * This call does not sleep therefore it can not
456 * guarantee all CPU's that are in middle of receiving packets
457 * will see the new offload handlers (until the next received packet).
458 */
459 void dev_add_offload(struct packet_offload *po)
460 {
461 struct list_head *head = &offload_base;
462
463 spin_lock(&offload_lock);
464 list_add_rcu(&po->list, head);
465 spin_unlock(&offload_lock);
466 }
467 EXPORT_SYMBOL(dev_add_offload);
468
469 /**
470 * __dev_remove_offload - remove offload handler
471 * @po: packet offload declaration
472 *
473 * Remove a protocol offload handler that was previously added to the
474 * kernel offload handlers by dev_add_offload(). The passed &offload_type
475 * is removed from the kernel lists and can be freed or reused once this
476 * function returns.
477 *
478 * The packet type might still be in use by receivers
479 * and must not be freed until after all the CPU's have gone
480 * through a quiescent state.
481 */
482 void __dev_remove_offload(struct packet_offload *po)
483 {
484 struct list_head *head = &offload_base;
485 struct packet_offload *po1;
486
487 spin_lock(&offload_lock);
488
489 list_for_each_entry(po1, head, list) {
490 if (po == po1) {
491 list_del_rcu(&po->list);
492 goto out;
493 }
494 }
495
496 pr_warn("dev_remove_offload: %p not found\n", po);
497 out:
498 spin_unlock(&offload_lock);
499 }
500 EXPORT_SYMBOL(__dev_remove_offload);
501
502 /**
503 * dev_remove_offload - remove packet offload handler
504 * @po: packet offload declaration
505 *
506 * Remove a packet offload handler that was previously added to the kernel
507 * offload handlers by dev_add_offload(). The passed &offload_type is
508 * removed from the kernel lists and can be freed or reused once this
509 * function returns.
510 *
511 * This call sleeps to guarantee that no CPU is looking at the packet
512 * type after return.
513 */
514 void dev_remove_offload(struct packet_offload *po)
515 {
516 __dev_remove_offload(po);
517
518 synchronize_net();
519 }
520 EXPORT_SYMBOL(dev_remove_offload);
521
522 /******************************************************************************
523
524 Device Boot-time Settings Routines
525
526 *******************************************************************************/
527
528 /* Boot time configuration table */
529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
530
531 /**
532 * netdev_boot_setup_add - add new setup entry
533 * @name: name of the device
534 * @map: configured settings for the device
535 *
536 * Adds new setup entry to the dev_boot_setup list. The function
537 * returns 0 on error and 1 on success. This is a generic routine to
538 * all netdevices.
539 */
540 static int netdev_boot_setup_add(char *name, struct ifmap *map)
541 {
542 struct netdev_boot_setup *s;
543 int i;
544
545 s = dev_boot_setup;
546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
548 memset(s[i].name, 0, sizeof(s[i].name));
549 strlcpy(s[i].name, name, IFNAMSIZ);
550 memcpy(&s[i].map, map, sizeof(s[i].map));
551 break;
552 }
553 }
554
555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
556 }
557
558 /**
559 * netdev_boot_setup_check - check boot time settings
560 * @dev: the netdevice
561 *
562 * Check boot time settings for the device.
563 * The found settings are set for the device to be used
564 * later in the device probing.
565 * Returns 0 if no settings found, 1 if they are.
566 */
567 int netdev_boot_setup_check(struct net_device *dev)
568 {
569 struct netdev_boot_setup *s = dev_boot_setup;
570 int i;
571
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
574 !strcmp(dev->name, s[i].name)) {
575 dev->irq = s[i].map.irq;
576 dev->base_addr = s[i].map.base_addr;
577 dev->mem_start = s[i].map.mem_start;
578 dev->mem_end = s[i].map.mem_end;
579 return 1;
580 }
581 }
582 return 0;
583 }
584 EXPORT_SYMBOL(netdev_boot_setup_check);
585
586
587 /**
588 * netdev_boot_base - get address from boot time settings
589 * @prefix: prefix for network device
590 * @unit: id for network device
591 *
592 * Check boot time settings for the base address of device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found.
596 */
597 unsigned long netdev_boot_base(const char *prefix, int unit)
598 {
599 const struct netdev_boot_setup *s = dev_boot_setup;
600 char name[IFNAMSIZ];
601 int i;
602
603 sprintf(name, "%s%d", prefix, unit);
604
605 /*
606 * If device already registered then return base of 1
607 * to indicate not to probe for this interface
608 */
609 if (__dev_get_by_name(&init_net, name))
610 return 1;
611
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
613 if (!strcmp(name, s[i].name))
614 return s[i].map.base_addr;
615 return 0;
616 }
617
618 /*
619 * Saves at boot time configured settings for any netdevice.
620 */
621 int __init netdev_boot_setup(char *str)
622 {
623 int ints[5];
624 struct ifmap map;
625
626 str = get_options(str, ARRAY_SIZE(ints), ints);
627 if (!str || !*str)
628 return 0;
629
630 /* Save settings */
631 memset(&map, 0, sizeof(map));
632 if (ints[0] > 0)
633 map.irq = ints[1];
634 if (ints[0] > 1)
635 map.base_addr = ints[2];
636 if (ints[0] > 2)
637 map.mem_start = ints[3];
638 if (ints[0] > 3)
639 map.mem_end = ints[4];
640
641 /* Add new entry to the list */
642 return netdev_boot_setup_add(str, &map);
643 }
644
645 __setup("netdev=", netdev_boot_setup);
646
647 /*******************************************************************************
648
649 Device Interface Subroutines
650
651 *******************************************************************************/
652
653 /**
654 * __dev_get_by_name - find a device by its name
655 * @net: the applicable net namespace
656 * @name: name to find
657 *
658 * Find an interface by name. Must be called under RTNL semaphore
659 * or @dev_base_lock. If the name is found a pointer to the device
660 * is returned. If the name is not found then %NULL is returned. The
661 * reference counters are not incremented so the caller must be
662 * careful with locks.
663 */
664
665 struct net_device *__dev_get_by_name(struct net *net, const char *name)
666 {
667 struct net_device *dev;
668 struct hlist_head *head = dev_name_hash(net, name);
669
670 hlist_for_each_entry(dev, head, name_hlist)
671 if (!strncmp(dev->name, name, IFNAMSIZ))
672 return dev;
673
674 return NULL;
675 }
676 EXPORT_SYMBOL(__dev_get_by_name);
677
678 /**
679 * dev_get_by_name_rcu - find a device by its name
680 * @net: the applicable net namespace
681 * @name: name to find
682 *
683 * Find an interface by name.
684 * If the name is found a pointer to the device is returned.
685 * If the name is not found then %NULL is returned.
686 * The reference counters are not incremented so the caller must be
687 * careful with locks. The caller must hold RCU lock.
688 */
689
690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
691 {
692 struct net_device *dev;
693 struct hlist_head *head = dev_name_hash(net, name);
694
695 hlist_for_each_entry_rcu(dev, head, name_hlist)
696 if (!strncmp(dev->name, name, IFNAMSIZ))
697 return dev;
698
699 return NULL;
700 }
701 EXPORT_SYMBOL(dev_get_by_name_rcu);
702
703 /**
704 * dev_get_by_name - find a device by its name
705 * @net: the applicable net namespace
706 * @name: name to find
707 *
708 * Find an interface by name. This can be called from any
709 * context and does its own locking. The returned handle has
710 * the usage count incremented and the caller must use dev_put() to
711 * release it when it is no longer needed. %NULL is returned if no
712 * matching device is found.
713 */
714
715 struct net_device *dev_get_by_name(struct net *net, const char *name)
716 {
717 struct net_device *dev;
718
719 rcu_read_lock();
720 dev = dev_get_by_name_rcu(net, name);
721 if (dev)
722 dev_hold(dev);
723 rcu_read_unlock();
724 return dev;
725 }
726 EXPORT_SYMBOL(dev_get_by_name);
727
728 /**
729 * __dev_get_by_index - find a device by its ifindex
730 * @net: the applicable net namespace
731 * @ifindex: index of device
732 *
733 * Search for an interface by index. Returns %NULL if the device
734 * is not found or a pointer to the device. The device has not
735 * had its reference counter increased so the caller must be careful
736 * about locking. The caller must hold either the RTNL semaphore
737 * or @dev_base_lock.
738 */
739
740 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
741 {
742 struct net_device *dev;
743 struct hlist_head *head = dev_index_hash(net, ifindex);
744
745 hlist_for_each_entry(dev, head, index_hlist)
746 if (dev->ifindex == ifindex)
747 return dev;
748
749 return NULL;
750 }
751 EXPORT_SYMBOL(__dev_get_by_index);
752
753 /**
754 * dev_get_by_index_rcu - find a device by its ifindex
755 * @net: the applicable net namespace
756 * @ifindex: index of device
757 *
758 * Search for an interface by index. Returns %NULL if the device
759 * is not found or a pointer to the device. The device has not
760 * had its reference counter increased so the caller must be careful
761 * about locking. The caller must hold RCU lock.
762 */
763
764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
765 {
766 struct net_device *dev;
767 struct hlist_head *head = dev_index_hash(net, ifindex);
768
769 hlist_for_each_entry_rcu(dev, head, index_hlist)
770 if (dev->ifindex == ifindex)
771 return dev;
772
773 return NULL;
774 }
775 EXPORT_SYMBOL(dev_get_by_index_rcu);
776
777
778 /**
779 * dev_get_by_index - find a device by its ifindex
780 * @net: the applicable net namespace
781 * @ifindex: index of device
782 *
783 * Search for an interface by index. Returns NULL if the device
784 * is not found or a pointer to the device. The device returned has
785 * had a reference added and the pointer is safe until the user calls
786 * dev_put to indicate they have finished with it.
787 */
788
789 struct net_device *dev_get_by_index(struct net *net, int ifindex)
790 {
791 struct net_device *dev;
792
793 rcu_read_lock();
794 dev = dev_get_by_index_rcu(net, ifindex);
795 if (dev)
796 dev_hold(dev);
797 rcu_read_unlock();
798 return dev;
799 }
800 EXPORT_SYMBOL(dev_get_by_index);
801
802 /**
803 * netdev_get_name - get a netdevice name, knowing its ifindex.
804 * @net: network namespace
805 * @name: a pointer to the buffer where the name will be stored.
806 * @ifindex: the ifindex of the interface to get the name from.
807 *
808 * The use of raw_seqcount_begin() and cond_resched() before
809 * retrying is required as we want to give the writers a chance
810 * to complete when CONFIG_PREEMPT is not set.
811 */
812 int netdev_get_name(struct net *net, char *name, int ifindex)
813 {
814 struct net_device *dev;
815 unsigned int seq;
816
817 retry:
818 seq = raw_seqcount_begin(&devnet_rename_seq);
819 rcu_read_lock();
820 dev = dev_get_by_index_rcu(net, ifindex);
821 if (!dev) {
822 rcu_read_unlock();
823 return -ENODEV;
824 }
825
826 strcpy(name, dev->name);
827 rcu_read_unlock();
828 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
829 cond_resched();
830 goto retry;
831 }
832
833 return 0;
834 }
835
836 /**
837 * dev_getbyhwaddr_rcu - find a device by its hardware address
838 * @net: the applicable net namespace
839 * @type: media type of device
840 * @ha: hardware address
841 *
842 * Search for an interface by MAC address. Returns NULL if the device
843 * is not found or a pointer to the device.
844 * The caller must hold RCU or RTNL.
845 * The returned device has not had its ref count increased
846 * and the caller must therefore be careful about locking
847 *
848 */
849
850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
851 const char *ha)
852 {
853 struct net_device *dev;
854
855 for_each_netdev_rcu(net, dev)
856 if (dev->type == type &&
857 !memcmp(dev->dev_addr, ha, dev->addr_len))
858 return dev;
859
860 return NULL;
861 }
862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
863
864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
865 {
866 struct net_device *dev;
867
868 ASSERT_RTNL();
869 for_each_netdev(net, dev)
870 if (dev->type == type)
871 return dev;
872
873 return NULL;
874 }
875 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876
877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879 struct net_device *dev, *ret = NULL;
880
881 rcu_read_lock();
882 for_each_netdev_rcu(net, dev)
883 if (dev->type == type) {
884 dev_hold(dev);
885 ret = dev;
886 break;
887 }
888 rcu_read_unlock();
889 return ret;
890 }
891 EXPORT_SYMBOL(dev_getfirstbyhwtype);
892
893 /**
894 * dev_get_by_flags_rcu - find any device with given flags
895 * @net: the applicable net namespace
896 * @if_flags: IFF_* values
897 * @mask: bitmask of bits in if_flags to check
898 *
899 * Search for any interface with the given flags. Returns NULL if a device
900 * is not found or a pointer to the device. Must be called inside
901 * rcu_read_lock(), and result refcount is unchanged.
902 */
903
904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
905 unsigned short mask)
906 {
907 struct net_device *dev, *ret;
908
909 ret = NULL;
910 for_each_netdev_rcu(net, dev) {
911 if (((dev->flags ^ if_flags) & mask) == 0) {
912 ret = dev;
913 break;
914 }
915 }
916 return ret;
917 }
918 EXPORT_SYMBOL(dev_get_by_flags_rcu);
919
920 /**
921 * dev_valid_name - check if name is okay for network device
922 * @name: name string
923 *
924 * Network device names need to be valid file names to
925 * to allow sysfs to work. We also disallow any kind of
926 * whitespace.
927 */
928 bool dev_valid_name(const char *name)
929 {
930 if (*name == '\0')
931 return false;
932 if (strlen(name) >= IFNAMSIZ)
933 return false;
934 if (!strcmp(name, ".") || !strcmp(name, ".."))
935 return false;
936
937 while (*name) {
938 if (*name == '/' || isspace(*name))
939 return false;
940 name++;
941 }
942 return true;
943 }
944 EXPORT_SYMBOL(dev_valid_name);
945
946 /**
947 * __dev_alloc_name - allocate a name for a device
948 * @net: network namespace to allocate the device name in
949 * @name: name format string
950 * @buf: scratch buffer and result name string
951 *
952 * Passed a format string - eg "lt%d" it will try and find a suitable
953 * id. It scans list of devices to build up a free map, then chooses
954 * the first empty slot. The caller must hold the dev_base or rtnl lock
955 * while allocating the name and adding the device in order to avoid
956 * duplicates.
957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958 * Returns the number of the unit assigned or a negative errno code.
959 */
960
961 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
962 {
963 int i = 0;
964 const char *p;
965 const int max_netdevices = 8*PAGE_SIZE;
966 unsigned long *inuse;
967 struct net_device *d;
968
969 p = strnchr(name, IFNAMSIZ-1, '%');
970 if (p) {
971 /*
972 * Verify the string as this thing may have come from
973 * the user. There must be either one "%d" and no other "%"
974 * characters.
975 */
976 if (p[1] != 'd' || strchr(p + 2, '%'))
977 return -EINVAL;
978
979 /* Use one page as a bit array of possible slots */
980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
981 if (!inuse)
982 return -ENOMEM;
983
984 for_each_netdev(net, d) {
985 if (!sscanf(d->name, name, &i))
986 continue;
987 if (i < 0 || i >= max_netdevices)
988 continue;
989
990 /* avoid cases where sscanf is not exact inverse of printf */
991 snprintf(buf, IFNAMSIZ, name, i);
992 if (!strncmp(buf, d->name, IFNAMSIZ))
993 set_bit(i, inuse);
994 }
995
996 i = find_first_zero_bit(inuse, max_netdevices);
997 free_page((unsigned long) inuse);
998 }
999
1000 if (buf != name)
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!__dev_get_by_name(net, buf))
1003 return i;
1004
1005 /* It is possible to run out of possible slots
1006 * when the name is long and there isn't enough space left
1007 * for the digits, or if all bits are used.
1008 */
1009 return -ENFILE;
1010 }
1011
1012 /**
1013 * dev_alloc_name - allocate a name for a device
1014 * @dev: device
1015 * @name: name format string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026 int dev_alloc_name(struct net_device *dev, const char *name)
1027 {
1028 char buf[IFNAMSIZ];
1029 struct net *net;
1030 int ret;
1031
1032 BUG_ON(!dev_net(dev));
1033 net = dev_net(dev);
1034 ret = __dev_alloc_name(net, name, buf);
1035 if (ret >= 0)
1036 strlcpy(dev->name, buf, IFNAMSIZ);
1037 return ret;
1038 }
1039 EXPORT_SYMBOL(dev_alloc_name);
1040
1041 static int dev_alloc_name_ns(struct net *net,
1042 struct net_device *dev,
1043 const char *name)
1044 {
1045 char buf[IFNAMSIZ];
1046 int ret;
1047
1048 ret = __dev_alloc_name(net, name, buf);
1049 if (ret >= 0)
1050 strlcpy(dev->name, buf, IFNAMSIZ);
1051 return ret;
1052 }
1053
1054 static int dev_get_valid_name(struct net *net,
1055 struct net_device *dev,
1056 const char *name)
1057 {
1058 BUG_ON(!net);
1059
1060 if (!dev_valid_name(name))
1061 return -EINVAL;
1062
1063 if (strchr(name, '%'))
1064 return dev_alloc_name_ns(net, dev, name);
1065 else if (__dev_get_by_name(net, name))
1066 return -EEXIST;
1067 else if (dev->name != name)
1068 strlcpy(dev->name, name, IFNAMSIZ);
1069
1070 return 0;
1071 }
1072
1073 /**
1074 * dev_change_name - change name of a device
1075 * @dev: device
1076 * @newname: name (or format string) must be at least IFNAMSIZ
1077 *
1078 * Change name of a device, can pass format strings "eth%d".
1079 * for wildcarding.
1080 */
1081 int dev_change_name(struct net_device *dev, const char *newname)
1082 {
1083 char oldname[IFNAMSIZ];
1084 int err = 0;
1085 int ret;
1086 struct net *net;
1087
1088 ASSERT_RTNL();
1089 BUG_ON(!dev_net(dev));
1090
1091 net = dev_net(dev);
1092 if (dev->flags & IFF_UP)
1093 return -EBUSY;
1094
1095 write_seqcount_begin(&devnet_rename_seq);
1096
1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 write_seqcount_end(&devnet_rename_seq);
1099 return 0;
1100 }
1101
1102 memcpy(oldname, dev->name, IFNAMSIZ);
1103
1104 err = dev_get_valid_name(net, dev, newname);
1105 if (err < 0) {
1106 write_seqcount_end(&devnet_rename_seq);
1107 return err;
1108 }
1109
1110 rollback:
1111 ret = device_rename(&dev->dev, dev->name);
1112 if (ret) {
1113 memcpy(dev->name, oldname, IFNAMSIZ);
1114 write_seqcount_end(&devnet_rename_seq);
1115 return ret;
1116 }
1117
1118 write_seqcount_end(&devnet_rename_seq);
1119
1120 write_lock_bh(&dev_base_lock);
1121 hlist_del_rcu(&dev->name_hlist);
1122 write_unlock_bh(&dev_base_lock);
1123
1124 synchronize_rcu();
1125
1126 write_lock_bh(&dev_base_lock);
1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 write_unlock_bh(&dev_base_lock);
1129
1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 ret = notifier_to_errno(ret);
1132
1133 if (ret) {
1134 /* err >= 0 after dev_alloc_name() or stores the first errno */
1135 if (err >= 0) {
1136 err = ret;
1137 write_seqcount_begin(&devnet_rename_seq);
1138 memcpy(dev->name, oldname, IFNAMSIZ);
1139 goto rollback;
1140 } else {
1141 pr_err("%s: name change rollback failed: %d\n",
1142 dev->name, ret);
1143 }
1144 }
1145
1146 return err;
1147 }
1148
1149 /**
1150 * dev_set_alias - change ifalias of a device
1151 * @dev: device
1152 * @alias: name up to IFALIASZ
1153 * @len: limit of bytes to copy from info
1154 *
1155 * Set ifalias for a device,
1156 */
1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1158 {
1159 char *new_ifalias;
1160
1161 ASSERT_RTNL();
1162
1163 if (len >= IFALIASZ)
1164 return -EINVAL;
1165
1166 if (!len) {
1167 kfree(dev->ifalias);
1168 dev->ifalias = NULL;
1169 return 0;
1170 }
1171
1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1173 if (!new_ifalias)
1174 return -ENOMEM;
1175 dev->ifalias = new_ifalias;
1176
1177 strlcpy(dev->ifalias, alias, len+1);
1178 return len;
1179 }
1180
1181
1182 /**
1183 * netdev_features_change - device changes features
1184 * @dev: device to cause notification
1185 *
1186 * Called to indicate a device has changed features.
1187 */
1188 void netdev_features_change(struct net_device *dev)
1189 {
1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1191 }
1192 EXPORT_SYMBOL(netdev_features_change);
1193
1194 /**
1195 * netdev_state_change - device changes state
1196 * @dev: device to cause notification
1197 *
1198 * Called to indicate a device has changed state. This function calls
1199 * the notifier chains for netdev_chain and sends a NEWLINK message
1200 * to the routing socket.
1201 */
1202 void netdev_state_change(struct net_device *dev)
1203 {
1204 if (dev->flags & IFF_UP) {
1205 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1207 }
1208 }
1209 EXPORT_SYMBOL(netdev_state_change);
1210
1211 /**
1212 * netdev_notify_peers - notify network peers about existence of @dev
1213 * @dev: network device
1214 *
1215 * Generate traffic such that interested network peers are aware of
1216 * @dev, such as by generating a gratuitous ARP. This may be used when
1217 * a device wants to inform the rest of the network about some sort of
1218 * reconfiguration such as a failover event or virtual machine
1219 * migration.
1220 */
1221 void netdev_notify_peers(struct net_device *dev)
1222 {
1223 rtnl_lock();
1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1225 rtnl_unlock();
1226 }
1227 EXPORT_SYMBOL(netdev_notify_peers);
1228
1229 static int __dev_open(struct net_device *dev)
1230 {
1231 const struct net_device_ops *ops = dev->netdev_ops;
1232 int ret;
1233
1234 ASSERT_RTNL();
1235
1236 if (!netif_device_present(dev))
1237 return -ENODEV;
1238
1239 /* Block netpoll from trying to do any rx path servicing.
1240 * If we don't do this there is a chance ndo_poll_controller
1241 * or ndo_poll may be running while we open the device
1242 */
1243 netpoll_rx_disable(dev);
1244
1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1246 ret = notifier_to_errno(ret);
1247 if (ret)
1248 return ret;
1249
1250 set_bit(__LINK_STATE_START, &dev->state);
1251
1252 if (ops->ndo_validate_addr)
1253 ret = ops->ndo_validate_addr(dev);
1254
1255 if (!ret && ops->ndo_open)
1256 ret = ops->ndo_open(dev);
1257
1258 netpoll_rx_enable(dev);
1259
1260 if (ret)
1261 clear_bit(__LINK_STATE_START, &dev->state);
1262 else {
1263 dev->flags |= IFF_UP;
1264 net_dmaengine_get();
1265 dev_set_rx_mode(dev);
1266 dev_activate(dev);
1267 add_device_randomness(dev->dev_addr, dev->addr_len);
1268 }
1269
1270 return ret;
1271 }
1272
1273 /**
1274 * dev_open - prepare an interface for use.
1275 * @dev: device to open
1276 *
1277 * Takes a device from down to up state. The device's private open
1278 * function is invoked and then the multicast lists are loaded. Finally
1279 * the device is moved into the up state and a %NETDEV_UP message is
1280 * sent to the netdev notifier chain.
1281 *
1282 * Calling this function on an active interface is a nop. On a failure
1283 * a negative errno code is returned.
1284 */
1285 int dev_open(struct net_device *dev)
1286 {
1287 int ret;
1288
1289 if (dev->flags & IFF_UP)
1290 return 0;
1291
1292 ret = __dev_open(dev);
1293 if (ret < 0)
1294 return ret;
1295
1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1297 call_netdevice_notifiers(NETDEV_UP, dev);
1298
1299 return ret;
1300 }
1301 EXPORT_SYMBOL(dev_open);
1302
1303 static int __dev_close_many(struct list_head *head)
1304 {
1305 struct net_device *dev;
1306
1307 ASSERT_RTNL();
1308 might_sleep();
1309
1310 list_for_each_entry(dev, head, unreg_list) {
1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1312
1313 clear_bit(__LINK_STATE_START, &dev->state);
1314
1315 /* Synchronize to scheduled poll. We cannot touch poll list, it
1316 * can be even on different cpu. So just clear netif_running().
1317 *
1318 * dev->stop() will invoke napi_disable() on all of it's
1319 * napi_struct instances on this device.
1320 */
1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1322 }
1323
1324 dev_deactivate_many(head);
1325
1326 list_for_each_entry(dev, head, unreg_list) {
1327 const struct net_device_ops *ops = dev->netdev_ops;
1328
1329 /*
1330 * Call the device specific close. This cannot fail.
1331 * Only if device is UP
1332 *
1333 * We allow it to be called even after a DETACH hot-plug
1334 * event.
1335 */
1336 if (ops->ndo_stop)
1337 ops->ndo_stop(dev);
1338
1339 dev->flags &= ~IFF_UP;
1340 net_dmaengine_put();
1341 }
1342
1343 return 0;
1344 }
1345
1346 static int __dev_close(struct net_device *dev)
1347 {
1348 int retval;
1349 LIST_HEAD(single);
1350
1351 /* Temporarily disable netpoll until the interface is down */
1352 netpoll_rx_disable(dev);
1353
1354 list_add(&dev->unreg_list, &single);
1355 retval = __dev_close_many(&single);
1356 list_del(&single);
1357
1358 netpoll_rx_enable(dev);
1359 return retval;
1360 }
1361
1362 static int dev_close_many(struct list_head *head)
1363 {
1364 struct net_device *dev, *tmp;
1365 LIST_HEAD(tmp_list);
1366
1367 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1368 if (!(dev->flags & IFF_UP))
1369 list_move(&dev->unreg_list, &tmp_list);
1370
1371 __dev_close_many(head);
1372
1373 list_for_each_entry(dev, head, unreg_list) {
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1375 call_netdevice_notifiers(NETDEV_DOWN, dev);
1376 }
1377
1378 /* rollback_registered_many needs the complete original list */
1379 list_splice(&tmp_list, head);
1380 return 0;
1381 }
1382
1383 /**
1384 * dev_close - shutdown an interface.
1385 * @dev: device to shutdown
1386 *
1387 * This function moves an active device into down state. A
1388 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1389 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1390 * chain.
1391 */
1392 int dev_close(struct net_device *dev)
1393 {
1394 if (dev->flags & IFF_UP) {
1395 LIST_HEAD(single);
1396
1397 /* Block netpoll rx while the interface is going down */
1398 netpoll_rx_disable(dev);
1399
1400 list_add(&dev->unreg_list, &single);
1401 dev_close_many(&single);
1402 list_del(&single);
1403
1404 netpoll_rx_enable(dev);
1405 }
1406 return 0;
1407 }
1408 EXPORT_SYMBOL(dev_close);
1409
1410
1411 /**
1412 * dev_disable_lro - disable Large Receive Offload on a device
1413 * @dev: device
1414 *
1415 * Disable Large Receive Offload (LRO) on a net device. Must be
1416 * called under RTNL. This is needed if received packets may be
1417 * forwarded to another interface.
1418 */
1419 void dev_disable_lro(struct net_device *dev)
1420 {
1421 /*
1422 * If we're trying to disable lro on a vlan device
1423 * use the underlying physical device instead
1424 */
1425 if (is_vlan_dev(dev))
1426 dev = vlan_dev_real_dev(dev);
1427
1428 dev->wanted_features &= ~NETIF_F_LRO;
1429 netdev_update_features(dev);
1430
1431 if (unlikely(dev->features & NETIF_F_LRO))
1432 netdev_WARN(dev, "failed to disable LRO!\n");
1433 }
1434 EXPORT_SYMBOL(dev_disable_lro);
1435
1436 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1437 struct net_device *dev)
1438 {
1439 struct netdev_notifier_info info;
1440
1441 netdev_notifier_info_init(&info, dev);
1442 return nb->notifier_call(nb, val, &info);
1443 }
1444
1445 static int dev_boot_phase = 1;
1446
1447 /**
1448 * register_netdevice_notifier - register a network notifier block
1449 * @nb: notifier
1450 *
1451 * Register a notifier to be called when network device events occur.
1452 * The notifier passed is linked into the kernel structures and must
1453 * not be reused until it has been unregistered. A negative errno code
1454 * is returned on a failure.
1455 *
1456 * When registered all registration and up events are replayed
1457 * to the new notifier to allow device to have a race free
1458 * view of the network device list.
1459 */
1460
1461 int register_netdevice_notifier(struct notifier_block *nb)
1462 {
1463 struct net_device *dev;
1464 struct net_device *last;
1465 struct net *net;
1466 int err;
1467
1468 rtnl_lock();
1469 err = raw_notifier_chain_register(&netdev_chain, nb);
1470 if (err)
1471 goto unlock;
1472 if (dev_boot_phase)
1473 goto unlock;
1474 for_each_net(net) {
1475 for_each_netdev(net, dev) {
1476 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1477 err = notifier_to_errno(err);
1478 if (err)
1479 goto rollback;
1480
1481 if (!(dev->flags & IFF_UP))
1482 continue;
1483
1484 call_netdevice_notifier(nb, NETDEV_UP, dev);
1485 }
1486 }
1487
1488 unlock:
1489 rtnl_unlock();
1490 return err;
1491
1492 rollback:
1493 last = dev;
1494 for_each_net(net) {
1495 for_each_netdev(net, dev) {
1496 if (dev == last)
1497 goto outroll;
1498
1499 if (dev->flags & IFF_UP) {
1500 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1501 dev);
1502 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1503 }
1504 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1505 }
1506 }
1507
1508 outroll:
1509 raw_notifier_chain_unregister(&netdev_chain, nb);
1510 goto unlock;
1511 }
1512 EXPORT_SYMBOL(register_netdevice_notifier);
1513
1514 /**
1515 * unregister_netdevice_notifier - unregister a network notifier block
1516 * @nb: notifier
1517 *
1518 * Unregister a notifier previously registered by
1519 * register_netdevice_notifier(). The notifier is unlinked into the
1520 * kernel structures and may then be reused. A negative errno code
1521 * is returned on a failure.
1522 *
1523 * After unregistering unregister and down device events are synthesized
1524 * for all devices on the device list to the removed notifier to remove
1525 * the need for special case cleanup code.
1526 */
1527
1528 int unregister_netdevice_notifier(struct notifier_block *nb)
1529 {
1530 struct net_device *dev;
1531 struct net *net;
1532 int err;
1533
1534 rtnl_lock();
1535 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1536 if (err)
1537 goto unlock;
1538
1539 for_each_net(net) {
1540 for_each_netdev(net, dev) {
1541 if (dev->flags & IFF_UP) {
1542 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1543 dev);
1544 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1545 }
1546 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1547 }
1548 }
1549 unlock:
1550 rtnl_unlock();
1551 return err;
1552 }
1553 EXPORT_SYMBOL(unregister_netdevice_notifier);
1554
1555 /**
1556 * call_netdevice_notifiers_info - call all network notifier blocks
1557 * @val: value passed unmodified to notifier function
1558 * @dev: net_device pointer passed unmodified to notifier function
1559 * @info: notifier information data
1560 *
1561 * Call all network notifier blocks. Parameters and return value
1562 * are as for raw_notifier_call_chain().
1563 */
1564
1565 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1566 struct netdev_notifier_info *info)
1567 {
1568 ASSERT_RTNL();
1569 netdev_notifier_info_init(info, dev);
1570 return raw_notifier_call_chain(&netdev_chain, val, info);
1571 }
1572 EXPORT_SYMBOL(call_netdevice_notifiers_info);
1573
1574 /**
1575 * call_netdevice_notifiers - call all network notifier blocks
1576 * @val: value passed unmodified to notifier function
1577 * @dev: net_device pointer passed unmodified to notifier function
1578 *
1579 * Call all network notifier blocks. Parameters and return value
1580 * are as for raw_notifier_call_chain().
1581 */
1582
1583 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1584 {
1585 struct netdev_notifier_info info;
1586
1587 return call_netdevice_notifiers_info(val, dev, &info);
1588 }
1589 EXPORT_SYMBOL(call_netdevice_notifiers);
1590
1591 static struct static_key netstamp_needed __read_mostly;
1592 #ifdef HAVE_JUMP_LABEL
1593 /* We are not allowed to call static_key_slow_dec() from irq context
1594 * If net_disable_timestamp() is called from irq context, defer the
1595 * static_key_slow_dec() calls.
1596 */
1597 static atomic_t netstamp_needed_deferred;
1598 #endif
1599
1600 void net_enable_timestamp(void)
1601 {
1602 #ifdef HAVE_JUMP_LABEL
1603 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1604
1605 if (deferred) {
1606 while (--deferred)
1607 static_key_slow_dec(&netstamp_needed);
1608 return;
1609 }
1610 #endif
1611 static_key_slow_inc(&netstamp_needed);
1612 }
1613 EXPORT_SYMBOL(net_enable_timestamp);
1614
1615 void net_disable_timestamp(void)
1616 {
1617 #ifdef HAVE_JUMP_LABEL
1618 if (in_interrupt()) {
1619 atomic_inc(&netstamp_needed_deferred);
1620 return;
1621 }
1622 #endif
1623 static_key_slow_dec(&netstamp_needed);
1624 }
1625 EXPORT_SYMBOL(net_disable_timestamp);
1626
1627 static inline void net_timestamp_set(struct sk_buff *skb)
1628 {
1629 skb->tstamp.tv64 = 0;
1630 if (static_key_false(&netstamp_needed))
1631 __net_timestamp(skb);
1632 }
1633
1634 #define net_timestamp_check(COND, SKB) \
1635 if (static_key_false(&netstamp_needed)) { \
1636 if ((COND) && !(SKB)->tstamp.tv64) \
1637 __net_timestamp(SKB); \
1638 } \
1639
1640 static inline bool is_skb_forwardable(struct net_device *dev,
1641 struct sk_buff *skb)
1642 {
1643 unsigned int len;
1644
1645 if (!(dev->flags & IFF_UP))
1646 return false;
1647
1648 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1649 if (skb->len <= len)
1650 return true;
1651
1652 /* if TSO is enabled, we don't care about the length as the packet
1653 * could be forwarded without being segmented before
1654 */
1655 if (skb_is_gso(skb))
1656 return true;
1657
1658 return false;
1659 }
1660
1661 /**
1662 * dev_forward_skb - loopback an skb to another netif
1663 *
1664 * @dev: destination network device
1665 * @skb: buffer to forward
1666 *
1667 * return values:
1668 * NET_RX_SUCCESS (no congestion)
1669 * NET_RX_DROP (packet was dropped, but freed)
1670 *
1671 * dev_forward_skb can be used for injecting an skb from the
1672 * start_xmit function of one device into the receive queue
1673 * of another device.
1674 *
1675 * The receiving device may be in another namespace, so
1676 * we have to clear all information in the skb that could
1677 * impact namespace isolation.
1678 */
1679 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680 {
1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683 atomic_long_inc(&dev->rx_dropped);
1684 kfree_skb(skb);
1685 return NET_RX_DROP;
1686 }
1687 }
1688
1689 if (unlikely(!is_skb_forwardable(dev, skb))) {
1690 atomic_long_inc(&dev->rx_dropped);
1691 kfree_skb(skb);
1692 return NET_RX_DROP;
1693 }
1694 skb->protocol = eth_type_trans(skb, dev);
1695
1696 /* eth_type_trans() can set pkt_type.
1697 * call skb_scrub_packet() after it to clear pkt_type _after_ calling
1698 * eth_type_trans().
1699 */
1700 skb_scrub_packet(skb, true);
1701
1702 return netif_rx(skb);
1703 }
1704 EXPORT_SYMBOL_GPL(dev_forward_skb);
1705
1706 static inline int deliver_skb(struct sk_buff *skb,
1707 struct packet_type *pt_prev,
1708 struct net_device *orig_dev)
1709 {
1710 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1711 return -ENOMEM;
1712 atomic_inc(&skb->users);
1713 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1714 }
1715
1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1717 {
1718 if (!ptype->af_packet_priv || !skb->sk)
1719 return false;
1720
1721 if (ptype->id_match)
1722 return ptype->id_match(ptype, skb->sk);
1723 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1724 return true;
1725
1726 return false;
1727 }
1728
1729 /*
1730 * Support routine. Sends outgoing frames to any network
1731 * taps currently in use.
1732 */
1733
1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1735 {
1736 struct packet_type *ptype;
1737 struct sk_buff *skb2 = NULL;
1738 struct packet_type *pt_prev = NULL;
1739
1740 rcu_read_lock();
1741 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1742 /* Never send packets back to the socket
1743 * they originated from - MvS (miquels@drinkel.ow.org)
1744 */
1745 if ((ptype->dev == dev || !ptype->dev) &&
1746 (!skb_loop_sk(ptype, skb))) {
1747 if (pt_prev) {
1748 deliver_skb(skb2, pt_prev, skb->dev);
1749 pt_prev = ptype;
1750 continue;
1751 }
1752
1753 skb2 = skb_clone(skb, GFP_ATOMIC);
1754 if (!skb2)
1755 break;
1756
1757 net_timestamp_set(skb2);
1758
1759 /* skb->nh should be correctly
1760 set by sender, so that the second statement is
1761 just protection against buggy protocols.
1762 */
1763 skb_reset_mac_header(skb2);
1764
1765 if (skb_network_header(skb2) < skb2->data ||
1766 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1767 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1768 ntohs(skb2->protocol),
1769 dev->name);
1770 skb_reset_network_header(skb2);
1771 }
1772
1773 skb2->transport_header = skb2->network_header;
1774 skb2->pkt_type = PACKET_OUTGOING;
1775 pt_prev = ptype;
1776 }
1777 }
1778 if (pt_prev)
1779 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1780 rcu_read_unlock();
1781 }
1782
1783 /**
1784 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1785 * @dev: Network device
1786 * @txq: number of queues available
1787 *
1788 * If real_num_tx_queues is changed the tc mappings may no longer be
1789 * valid. To resolve this verify the tc mapping remains valid and if
1790 * not NULL the mapping. With no priorities mapping to this
1791 * offset/count pair it will no longer be used. In the worst case TC0
1792 * is invalid nothing can be done so disable priority mappings. If is
1793 * expected that drivers will fix this mapping if they can before
1794 * calling netif_set_real_num_tx_queues.
1795 */
1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1797 {
1798 int i;
1799 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1800
1801 /* If TC0 is invalidated disable TC mapping */
1802 if (tc->offset + tc->count > txq) {
1803 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1804 dev->num_tc = 0;
1805 return;
1806 }
1807
1808 /* Invalidated prio to tc mappings set to TC0 */
1809 for (i = 1; i < TC_BITMASK + 1; i++) {
1810 int q = netdev_get_prio_tc_map(dev, i);
1811
1812 tc = &dev->tc_to_txq[q];
1813 if (tc->offset + tc->count > txq) {
1814 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1815 i, q);
1816 netdev_set_prio_tc_map(dev, i, 0);
1817 }
1818 }
1819 }
1820
1821 #ifdef CONFIG_XPS
1822 static DEFINE_MUTEX(xps_map_mutex);
1823 #define xmap_dereference(P) \
1824 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1825
1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1827 int cpu, u16 index)
1828 {
1829 struct xps_map *map = NULL;
1830 int pos;
1831
1832 if (dev_maps)
1833 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1834
1835 for (pos = 0; map && pos < map->len; pos++) {
1836 if (map->queues[pos] == index) {
1837 if (map->len > 1) {
1838 map->queues[pos] = map->queues[--map->len];
1839 } else {
1840 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1841 kfree_rcu(map, rcu);
1842 map = NULL;
1843 }
1844 break;
1845 }
1846 }
1847
1848 return map;
1849 }
1850
1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1852 {
1853 struct xps_dev_maps *dev_maps;
1854 int cpu, i;
1855 bool active = false;
1856
1857 mutex_lock(&xps_map_mutex);
1858 dev_maps = xmap_dereference(dev->xps_maps);
1859
1860 if (!dev_maps)
1861 goto out_no_maps;
1862
1863 for_each_possible_cpu(cpu) {
1864 for (i = index; i < dev->num_tx_queues; i++) {
1865 if (!remove_xps_queue(dev_maps, cpu, i))
1866 break;
1867 }
1868 if (i == dev->num_tx_queues)
1869 active = true;
1870 }
1871
1872 if (!active) {
1873 RCU_INIT_POINTER(dev->xps_maps, NULL);
1874 kfree_rcu(dev_maps, rcu);
1875 }
1876
1877 for (i = index; i < dev->num_tx_queues; i++)
1878 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1879 NUMA_NO_NODE);
1880
1881 out_no_maps:
1882 mutex_unlock(&xps_map_mutex);
1883 }
1884
1885 static struct xps_map *expand_xps_map(struct xps_map *map,
1886 int cpu, u16 index)
1887 {
1888 struct xps_map *new_map;
1889 int alloc_len = XPS_MIN_MAP_ALLOC;
1890 int i, pos;
1891
1892 for (pos = 0; map && pos < map->len; pos++) {
1893 if (map->queues[pos] != index)
1894 continue;
1895 return map;
1896 }
1897
1898 /* Need to add queue to this CPU's existing map */
1899 if (map) {
1900 if (pos < map->alloc_len)
1901 return map;
1902
1903 alloc_len = map->alloc_len * 2;
1904 }
1905
1906 /* Need to allocate new map to store queue on this CPU's map */
1907 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1908 cpu_to_node(cpu));
1909 if (!new_map)
1910 return NULL;
1911
1912 for (i = 0; i < pos; i++)
1913 new_map->queues[i] = map->queues[i];
1914 new_map->alloc_len = alloc_len;
1915 new_map->len = pos;
1916
1917 return new_map;
1918 }
1919
1920 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1921 {
1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 struct xps_map *map, *new_map;
1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 int cpu, numa_node_id = -2;
1926 bool active = false;
1927
1928 mutex_lock(&xps_map_mutex);
1929
1930 dev_maps = xmap_dereference(dev->xps_maps);
1931
1932 /* allocate memory for queue storage */
1933 for_each_online_cpu(cpu) {
1934 if (!cpumask_test_cpu(cpu, mask))
1935 continue;
1936
1937 if (!new_dev_maps)
1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 if (!new_dev_maps) {
1940 mutex_unlock(&xps_map_mutex);
1941 return -ENOMEM;
1942 }
1943
1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 NULL;
1946
1947 map = expand_xps_map(map, cpu, index);
1948 if (!map)
1949 goto error;
1950
1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 }
1953
1954 if (!new_dev_maps)
1955 goto out_no_new_maps;
1956
1957 for_each_possible_cpu(cpu) {
1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 /* add queue to CPU maps */
1960 int pos = 0;
1961
1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 while ((pos < map->len) && (map->queues[pos] != index))
1964 pos++;
1965
1966 if (pos == map->len)
1967 map->queues[map->len++] = index;
1968 #ifdef CONFIG_NUMA
1969 if (numa_node_id == -2)
1970 numa_node_id = cpu_to_node(cpu);
1971 else if (numa_node_id != cpu_to_node(cpu))
1972 numa_node_id = -1;
1973 #endif
1974 } else if (dev_maps) {
1975 /* fill in the new device map from the old device map */
1976 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 }
1979
1980 }
1981
1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983
1984 /* Cleanup old maps */
1985 if (dev_maps) {
1986 for_each_possible_cpu(cpu) {
1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 if (map && map != new_map)
1990 kfree_rcu(map, rcu);
1991 }
1992
1993 kfree_rcu(dev_maps, rcu);
1994 }
1995
1996 dev_maps = new_dev_maps;
1997 active = true;
1998
1999 out_no_new_maps:
2000 /* update Tx queue numa node */
2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 (numa_node_id >= 0) ? numa_node_id :
2003 NUMA_NO_NODE);
2004
2005 if (!dev_maps)
2006 goto out_no_maps;
2007
2008 /* removes queue from unused CPUs */
2009 for_each_possible_cpu(cpu) {
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 continue;
2012
2013 if (remove_xps_queue(dev_maps, cpu, index))
2014 active = true;
2015 }
2016
2017 /* free map if not active */
2018 if (!active) {
2019 RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 kfree_rcu(dev_maps, rcu);
2021 }
2022
2023 out_no_maps:
2024 mutex_unlock(&xps_map_mutex);
2025
2026 return 0;
2027 error:
2028 /* remove any maps that we added */
2029 for_each_possible_cpu(cpu) {
2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 NULL;
2033 if (new_map && new_map != map)
2034 kfree(new_map);
2035 }
2036
2037 mutex_unlock(&xps_map_mutex);
2038
2039 kfree(new_dev_maps);
2040 return -ENOMEM;
2041 }
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2043
2044 #endif
2045 /*
2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048 */
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050 {
2051 int rc;
2052
2053 if (txq < 1 || txq > dev->num_tx_queues)
2054 return -EINVAL;
2055
2056 if (dev->reg_state == NETREG_REGISTERED ||
2057 dev->reg_state == NETREG_UNREGISTERING) {
2058 ASSERT_RTNL();
2059
2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 txq);
2062 if (rc)
2063 return rc;
2064
2065 if (dev->num_tc)
2066 netif_setup_tc(dev, txq);
2067
2068 if (txq < dev->real_num_tx_queues) {
2069 qdisc_reset_all_tx_gt(dev, txq);
2070 #ifdef CONFIG_XPS
2071 netif_reset_xps_queues_gt(dev, txq);
2072 #endif
2073 }
2074 }
2075
2076 dev->real_num_tx_queues = txq;
2077 return 0;
2078 }
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080
2081 #ifdef CONFIG_RPS
2082 /**
2083 * netif_set_real_num_rx_queues - set actual number of RX queues used
2084 * @dev: Network device
2085 * @rxq: Actual number of RX queues
2086 *
2087 * This must be called either with the rtnl_lock held or before
2088 * registration of the net device. Returns 0 on success, or a
2089 * negative error code. If called before registration, it always
2090 * succeeds.
2091 */
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093 {
2094 int rc;
2095
2096 if (rxq < 1 || rxq > dev->num_rx_queues)
2097 return -EINVAL;
2098
2099 if (dev->reg_state == NETREG_REGISTERED) {
2100 ASSERT_RTNL();
2101
2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 rxq);
2104 if (rc)
2105 return rc;
2106 }
2107
2108 dev->real_num_rx_queues = rxq;
2109 return 0;
2110 }
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112 #endif
2113
2114 /**
2115 * netif_get_num_default_rss_queues - default number of RSS queues
2116 *
2117 * This routine should set an upper limit on the number of RSS queues
2118 * used by default by multiqueue devices.
2119 */
2120 int netif_get_num_default_rss_queues(void)
2121 {
2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123 }
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125
2126 static inline void __netif_reschedule(struct Qdisc *q)
2127 {
2128 struct softnet_data *sd;
2129 unsigned long flags;
2130
2131 local_irq_save(flags);
2132 sd = &__get_cpu_var(softnet_data);
2133 q->next_sched = NULL;
2134 *sd->output_queue_tailp = q;
2135 sd->output_queue_tailp = &q->next_sched;
2136 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 local_irq_restore(flags);
2138 }
2139
2140 void __netif_schedule(struct Qdisc *q)
2141 {
2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 __netif_reschedule(q);
2144 }
2145 EXPORT_SYMBOL(__netif_schedule);
2146
2147 void dev_kfree_skb_irq(struct sk_buff *skb)
2148 {
2149 if (atomic_dec_and_test(&skb->users)) {
2150 struct softnet_data *sd;
2151 unsigned long flags;
2152
2153 local_irq_save(flags);
2154 sd = &__get_cpu_var(softnet_data);
2155 skb->next = sd->completion_queue;
2156 sd->completion_queue = skb;
2157 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2158 local_irq_restore(flags);
2159 }
2160 }
2161 EXPORT_SYMBOL(dev_kfree_skb_irq);
2162
2163 void dev_kfree_skb_any(struct sk_buff *skb)
2164 {
2165 if (in_irq() || irqs_disabled())
2166 dev_kfree_skb_irq(skb);
2167 else
2168 dev_kfree_skb(skb);
2169 }
2170 EXPORT_SYMBOL(dev_kfree_skb_any);
2171
2172
2173 /**
2174 * netif_device_detach - mark device as removed
2175 * @dev: network device
2176 *
2177 * Mark device as removed from system and therefore no longer available.
2178 */
2179 void netif_device_detach(struct net_device *dev)
2180 {
2181 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2182 netif_running(dev)) {
2183 netif_tx_stop_all_queues(dev);
2184 }
2185 }
2186 EXPORT_SYMBOL(netif_device_detach);
2187
2188 /**
2189 * netif_device_attach - mark device as attached
2190 * @dev: network device
2191 *
2192 * Mark device as attached from system and restart if needed.
2193 */
2194 void netif_device_attach(struct net_device *dev)
2195 {
2196 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2197 netif_running(dev)) {
2198 netif_tx_wake_all_queues(dev);
2199 __netdev_watchdog_up(dev);
2200 }
2201 }
2202 EXPORT_SYMBOL(netif_device_attach);
2203
2204 static void skb_warn_bad_offload(const struct sk_buff *skb)
2205 {
2206 static const netdev_features_t null_features = 0;
2207 struct net_device *dev = skb->dev;
2208 const char *driver = "";
2209
2210 if (!net_ratelimit())
2211 return;
2212
2213 if (dev && dev->dev.parent)
2214 driver = dev_driver_string(dev->dev.parent);
2215
2216 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2217 "gso_type=%d ip_summed=%d\n",
2218 driver, dev ? &dev->features : &null_features,
2219 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2220 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2221 skb_shinfo(skb)->gso_type, skb->ip_summed);
2222 }
2223
2224 /*
2225 * Invalidate hardware checksum when packet is to be mangled, and
2226 * complete checksum manually on outgoing path.
2227 */
2228 int skb_checksum_help(struct sk_buff *skb)
2229 {
2230 __wsum csum;
2231 int ret = 0, offset;
2232
2233 if (skb->ip_summed == CHECKSUM_COMPLETE)
2234 goto out_set_summed;
2235
2236 if (unlikely(skb_shinfo(skb)->gso_size)) {
2237 skb_warn_bad_offload(skb);
2238 return -EINVAL;
2239 }
2240
2241 /* Before computing a checksum, we should make sure no frag could
2242 * be modified by an external entity : checksum could be wrong.
2243 */
2244 if (skb_has_shared_frag(skb)) {
2245 ret = __skb_linearize(skb);
2246 if (ret)
2247 goto out;
2248 }
2249
2250 offset = skb_checksum_start_offset(skb);
2251 BUG_ON(offset >= skb_headlen(skb));
2252 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2253
2254 offset += skb->csum_offset;
2255 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2256
2257 if (skb_cloned(skb) &&
2258 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2259 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2260 if (ret)
2261 goto out;
2262 }
2263
2264 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2265 out_set_summed:
2266 skb->ip_summed = CHECKSUM_NONE;
2267 out:
2268 return ret;
2269 }
2270 EXPORT_SYMBOL(skb_checksum_help);
2271
2272 __be16 skb_network_protocol(struct sk_buff *skb)
2273 {
2274 __be16 type = skb->protocol;
2275 int vlan_depth = ETH_HLEN;
2276
2277 /* Tunnel gso handlers can set protocol to ethernet. */
2278 if (type == htons(ETH_P_TEB)) {
2279 struct ethhdr *eth;
2280
2281 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2282 return 0;
2283
2284 eth = (struct ethhdr *)skb_mac_header(skb);
2285 type = eth->h_proto;
2286 }
2287
2288 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2289 struct vlan_hdr *vh;
2290
2291 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2292 return 0;
2293
2294 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2295 type = vh->h_vlan_encapsulated_proto;
2296 vlan_depth += VLAN_HLEN;
2297 }
2298
2299 return type;
2300 }
2301
2302 /**
2303 * skb_mac_gso_segment - mac layer segmentation handler.
2304 * @skb: buffer to segment
2305 * @features: features for the output path (see dev->features)
2306 */
2307 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2308 netdev_features_t features)
2309 {
2310 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2311 struct packet_offload *ptype;
2312 __be16 type = skb_network_protocol(skb);
2313
2314 if (unlikely(!type))
2315 return ERR_PTR(-EINVAL);
2316
2317 __skb_pull(skb, skb->mac_len);
2318
2319 rcu_read_lock();
2320 list_for_each_entry_rcu(ptype, &offload_base, list) {
2321 if (ptype->type == type && ptype->callbacks.gso_segment) {
2322 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2323 int err;
2324
2325 err = ptype->callbacks.gso_send_check(skb);
2326 segs = ERR_PTR(err);
2327 if (err || skb_gso_ok(skb, features))
2328 break;
2329 __skb_push(skb, (skb->data -
2330 skb_network_header(skb)));
2331 }
2332 segs = ptype->callbacks.gso_segment(skb, features);
2333 break;
2334 }
2335 }
2336 rcu_read_unlock();
2337
2338 __skb_push(skb, skb->data - skb_mac_header(skb));
2339
2340 return segs;
2341 }
2342 EXPORT_SYMBOL(skb_mac_gso_segment);
2343
2344
2345 /* openvswitch calls this on rx path, so we need a different check.
2346 */
2347 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2348 {
2349 if (tx_path)
2350 return skb->ip_summed != CHECKSUM_PARTIAL;
2351 else
2352 return skb->ip_summed == CHECKSUM_NONE;
2353 }
2354
2355 /**
2356 * __skb_gso_segment - Perform segmentation on skb.
2357 * @skb: buffer to segment
2358 * @features: features for the output path (see dev->features)
2359 * @tx_path: whether it is called in TX path
2360 *
2361 * This function segments the given skb and returns a list of segments.
2362 *
2363 * It may return NULL if the skb requires no segmentation. This is
2364 * only possible when GSO is used for verifying header integrity.
2365 */
2366 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2367 netdev_features_t features, bool tx_path)
2368 {
2369 if (unlikely(skb_needs_check(skb, tx_path))) {
2370 int err;
2371
2372 skb_warn_bad_offload(skb);
2373
2374 if (skb_header_cloned(skb) &&
2375 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2376 return ERR_PTR(err);
2377 }
2378
2379 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2380 skb_reset_mac_header(skb);
2381 skb_reset_mac_len(skb);
2382
2383 return skb_mac_gso_segment(skb, features);
2384 }
2385 EXPORT_SYMBOL(__skb_gso_segment);
2386
2387 /* Take action when hardware reception checksum errors are detected. */
2388 #ifdef CONFIG_BUG
2389 void netdev_rx_csum_fault(struct net_device *dev)
2390 {
2391 if (net_ratelimit()) {
2392 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2393 dump_stack();
2394 }
2395 }
2396 EXPORT_SYMBOL(netdev_rx_csum_fault);
2397 #endif
2398
2399 /* Actually, we should eliminate this check as soon as we know, that:
2400 * 1. IOMMU is present and allows to map all the memory.
2401 * 2. No high memory really exists on this machine.
2402 */
2403
2404 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2405 {
2406 #ifdef CONFIG_HIGHMEM
2407 int i;
2408 if (!(dev->features & NETIF_F_HIGHDMA)) {
2409 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2410 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2411 if (PageHighMem(skb_frag_page(frag)))
2412 return 1;
2413 }
2414 }
2415
2416 if (PCI_DMA_BUS_IS_PHYS) {
2417 struct device *pdev = dev->dev.parent;
2418
2419 if (!pdev)
2420 return 0;
2421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2422 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2423 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2424 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2425 return 1;
2426 }
2427 }
2428 #endif
2429 return 0;
2430 }
2431
2432 struct dev_gso_cb {
2433 void (*destructor)(struct sk_buff *skb);
2434 };
2435
2436 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2437
2438 static void dev_gso_skb_destructor(struct sk_buff *skb)
2439 {
2440 struct dev_gso_cb *cb;
2441
2442 do {
2443 struct sk_buff *nskb = skb->next;
2444
2445 skb->next = nskb->next;
2446 nskb->next = NULL;
2447 kfree_skb(nskb);
2448 } while (skb->next);
2449
2450 cb = DEV_GSO_CB(skb);
2451 if (cb->destructor)
2452 cb->destructor(skb);
2453 }
2454
2455 /**
2456 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2457 * @skb: buffer to segment
2458 * @features: device features as applicable to this skb
2459 *
2460 * This function segments the given skb and stores the list of segments
2461 * in skb->next.
2462 */
2463 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2464 {
2465 struct sk_buff *segs;
2466
2467 segs = skb_gso_segment(skb, features);
2468
2469 /* Verifying header integrity only. */
2470 if (!segs)
2471 return 0;
2472
2473 if (IS_ERR(segs))
2474 return PTR_ERR(segs);
2475
2476 skb->next = segs;
2477 DEV_GSO_CB(skb)->destructor = skb->destructor;
2478 skb->destructor = dev_gso_skb_destructor;
2479
2480 return 0;
2481 }
2482
2483 static netdev_features_t harmonize_features(struct sk_buff *skb,
2484 netdev_features_t features)
2485 {
2486 if (skb->ip_summed != CHECKSUM_NONE &&
2487 !can_checksum_protocol(features, skb_network_protocol(skb))) {
2488 features &= ~NETIF_F_ALL_CSUM;
2489 } else if (illegal_highdma(skb->dev, skb)) {
2490 features &= ~NETIF_F_SG;
2491 }
2492
2493 return features;
2494 }
2495
2496 netdev_features_t netif_skb_features(struct sk_buff *skb)
2497 {
2498 __be16 protocol = skb->protocol;
2499 netdev_features_t features = skb->dev->features;
2500
2501 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2502 features &= ~NETIF_F_GSO_MASK;
2503
2504 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2505 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2506 protocol = veh->h_vlan_encapsulated_proto;
2507 } else if (!vlan_tx_tag_present(skb)) {
2508 return harmonize_features(skb, features);
2509 }
2510
2511 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2512 NETIF_F_HW_VLAN_STAG_TX);
2513
2514 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2515 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2516 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2517 NETIF_F_HW_VLAN_STAG_TX;
2518
2519 return harmonize_features(skb, features);
2520 }
2521 EXPORT_SYMBOL(netif_skb_features);
2522
2523 /*
2524 * Returns true if either:
2525 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2526 * 2. skb is fragmented and the device does not support SG.
2527 */
2528 static inline int skb_needs_linearize(struct sk_buff *skb,
2529 netdev_features_t features)
2530 {
2531 return skb_is_nonlinear(skb) &&
2532 ((skb_has_frag_list(skb) &&
2533 !(features & NETIF_F_FRAGLIST)) ||
2534 (skb_shinfo(skb)->nr_frags &&
2535 !(features & NETIF_F_SG)));
2536 }
2537
2538 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2539 struct netdev_queue *txq)
2540 {
2541 const struct net_device_ops *ops = dev->netdev_ops;
2542 int rc = NETDEV_TX_OK;
2543 unsigned int skb_len;
2544
2545 if (likely(!skb->next)) {
2546 netdev_features_t features;
2547
2548 /*
2549 * If device doesn't need skb->dst, release it right now while
2550 * its hot in this cpu cache
2551 */
2552 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2553 skb_dst_drop(skb);
2554
2555 features = netif_skb_features(skb);
2556
2557 if (vlan_tx_tag_present(skb) &&
2558 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2559 skb = __vlan_put_tag(skb, skb->vlan_proto,
2560 vlan_tx_tag_get(skb));
2561 if (unlikely(!skb))
2562 goto out;
2563
2564 skb->vlan_tci = 0;
2565 }
2566
2567 /* If encapsulation offload request, verify we are testing
2568 * hardware encapsulation features instead of standard
2569 * features for the netdev
2570 */
2571 if (skb->encapsulation)
2572 features &= dev->hw_enc_features;
2573
2574 if (netif_needs_gso(skb, features)) {
2575 if (unlikely(dev_gso_segment(skb, features)))
2576 goto out_kfree_skb;
2577 if (skb->next)
2578 goto gso;
2579 } else {
2580 if (skb_needs_linearize(skb, features) &&
2581 __skb_linearize(skb))
2582 goto out_kfree_skb;
2583
2584 /* If packet is not checksummed and device does not
2585 * support checksumming for this protocol, complete
2586 * checksumming here.
2587 */
2588 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2589 if (skb->encapsulation)
2590 skb_set_inner_transport_header(skb,
2591 skb_checksum_start_offset(skb));
2592 else
2593 skb_set_transport_header(skb,
2594 skb_checksum_start_offset(skb));
2595 if (!(features & NETIF_F_ALL_CSUM) &&
2596 skb_checksum_help(skb))
2597 goto out_kfree_skb;
2598 }
2599 }
2600
2601 if (!list_empty(&ptype_all))
2602 dev_queue_xmit_nit(skb, dev);
2603
2604 skb_len = skb->len;
2605 rc = ops->ndo_start_xmit(skb, dev);
2606 trace_net_dev_xmit(skb, rc, dev, skb_len);
2607 if (rc == NETDEV_TX_OK)
2608 txq_trans_update(txq);
2609 return rc;
2610 }
2611
2612 gso:
2613 do {
2614 struct sk_buff *nskb = skb->next;
2615
2616 skb->next = nskb->next;
2617 nskb->next = NULL;
2618
2619 if (!list_empty(&ptype_all))
2620 dev_queue_xmit_nit(nskb, dev);
2621
2622 skb_len = nskb->len;
2623 rc = ops->ndo_start_xmit(nskb, dev);
2624 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2625 if (unlikely(rc != NETDEV_TX_OK)) {
2626 if (rc & ~NETDEV_TX_MASK)
2627 goto out_kfree_gso_skb;
2628 nskb->next = skb->next;
2629 skb->next = nskb;
2630 return rc;
2631 }
2632 txq_trans_update(txq);
2633 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2634 return NETDEV_TX_BUSY;
2635 } while (skb->next);
2636
2637 out_kfree_gso_skb:
2638 if (likely(skb->next == NULL)) {
2639 skb->destructor = DEV_GSO_CB(skb)->destructor;
2640 consume_skb(skb);
2641 return rc;
2642 }
2643 out_kfree_skb:
2644 kfree_skb(skb);
2645 out:
2646 return rc;
2647 }
2648
2649 static void qdisc_pkt_len_init(struct sk_buff *skb)
2650 {
2651 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2652
2653 qdisc_skb_cb(skb)->pkt_len = skb->len;
2654
2655 /* To get more precise estimation of bytes sent on wire,
2656 * we add to pkt_len the headers size of all segments
2657 */
2658 if (shinfo->gso_size) {
2659 unsigned int hdr_len;
2660 u16 gso_segs = shinfo->gso_segs;
2661
2662 /* mac layer + network layer */
2663 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2664
2665 /* + transport layer */
2666 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2667 hdr_len += tcp_hdrlen(skb);
2668 else
2669 hdr_len += sizeof(struct udphdr);
2670
2671 if (shinfo->gso_type & SKB_GSO_DODGY)
2672 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2673 shinfo->gso_size);
2674
2675 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2676 }
2677 }
2678
2679 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2680 struct net_device *dev,
2681 struct netdev_queue *txq)
2682 {
2683 spinlock_t *root_lock = qdisc_lock(q);
2684 bool contended;
2685 int rc;
2686
2687 qdisc_pkt_len_init(skb);
2688 qdisc_calculate_pkt_len(skb, q);
2689 /*
2690 * Heuristic to force contended enqueues to serialize on a
2691 * separate lock before trying to get qdisc main lock.
2692 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2693 * and dequeue packets faster.
2694 */
2695 contended = qdisc_is_running(q);
2696 if (unlikely(contended))
2697 spin_lock(&q->busylock);
2698
2699 spin_lock(root_lock);
2700 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2701 kfree_skb(skb);
2702 rc = NET_XMIT_DROP;
2703 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2704 qdisc_run_begin(q)) {
2705 /*
2706 * This is a work-conserving queue; there are no old skbs
2707 * waiting to be sent out; and the qdisc is not running -
2708 * xmit the skb directly.
2709 */
2710 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2711 skb_dst_force(skb);
2712
2713 qdisc_bstats_update(q, skb);
2714
2715 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2716 if (unlikely(contended)) {
2717 spin_unlock(&q->busylock);
2718 contended = false;
2719 }
2720 __qdisc_run(q);
2721 } else
2722 qdisc_run_end(q);
2723
2724 rc = NET_XMIT_SUCCESS;
2725 } else {
2726 skb_dst_force(skb);
2727 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2728 if (qdisc_run_begin(q)) {
2729 if (unlikely(contended)) {
2730 spin_unlock(&q->busylock);
2731 contended = false;
2732 }
2733 __qdisc_run(q);
2734 }
2735 }
2736 spin_unlock(root_lock);
2737 if (unlikely(contended))
2738 spin_unlock(&q->busylock);
2739 return rc;
2740 }
2741
2742 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2743 static void skb_update_prio(struct sk_buff *skb)
2744 {
2745 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2746
2747 if (!skb->priority && skb->sk && map) {
2748 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2749
2750 if (prioidx < map->priomap_len)
2751 skb->priority = map->priomap[prioidx];
2752 }
2753 }
2754 #else
2755 #define skb_update_prio(skb)
2756 #endif
2757
2758 static DEFINE_PER_CPU(int, xmit_recursion);
2759 #define RECURSION_LIMIT 10
2760
2761 /**
2762 * dev_loopback_xmit - loop back @skb
2763 * @skb: buffer to transmit
2764 */
2765 int dev_loopback_xmit(struct sk_buff *skb)
2766 {
2767 skb_reset_mac_header(skb);
2768 __skb_pull(skb, skb_network_offset(skb));
2769 skb->pkt_type = PACKET_LOOPBACK;
2770 skb->ip_summed = CHECKSUM_UNNECESSARY;
2771 WARN_ON(!skb_dst(skb));
2772 skb_dst_force(skb);
2773 netif_rx_ni(skb);
2774 return 0;
2775 }
2776 EXPORT_SYMBOL(dev_loopback_xmit);
2777
2778 /**
2779 * dev_queue_xmit - transmit a buffer
2780 * @skb: buffer to transmit
2781 *
2782 * Queue a buffer for transmission to a network device. The caller must
2783 * have set the device and priority and built the buffer before calling
2784 * this function. The function can be called from an interrupt.
2785 *
2786 * A negative errno code is returned on a failure. A success does not
2787 * guarantee the frame will be transmitted as it may be dropped due
2788 * to congestion or traffic shaping.
2789 *
2790 * -----------------------------------------------------------------------------------
2791 * I notice this method can also return errors from the queue disciplines,
2792 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2793 * be positive.
2794 *
2795 * Regardless of the return value, the skb is consumed, so it is currently
2796 * difficult to retry a send to this method. (You can bump the ref count
2797 * before sending to hold a reference for retry if you are careful.)
2798 *
2799 * When calling this method, interrupts MUST be enabled. This is because
2800 * the BH enable code must have IRQs enabled so that it will not deadlock.
2801 * --BLG
2802 */
2803 int dev_queue_xmit(struct sk_buff *skb)
2804 {
2805 struct net_device *dev = skb->dev;
2806 struct netdev_queue *txq;
2807 struct Qdisc *q;
2808 int rc = -ENOMEM;
2809
2810 skb_reset_mac_header(skb);
2811
2812 /* Disable soft irqs for various locks below. Also
2813 * stops preemption for RCU.
2814 */
2815 rcu_read_lock_bh();
2816
2817 skb_update_prio(skb);
2818
2819 txq = netdev_pick_tx(dev, skb);
2820 q = rcu_dereference_bh(txq->qdisc);
2821
2822 #ifdef CONFIG_NET_CLS_ACT
2823 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2824 #endif
2825 trace_net_dev_queue(skb);
2826 if (q->enqueue) {
2827 rc = __dev_xmit_skb(skb, q, dev, txq);
2828 goto out;
2829 }
2830
2831 /* The device has no queue. Common case for software devices:
2832 loopback, all the sorts of tunnels...
2833
2834 Really, it is unlikely that netif_tx_lock protection is necessary
2835 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2836 counters.)
2837 However, it is possible, that they rely on protection
2838 made by us here.
2839
2840 Check this and shot the lock. It is not prone from deadlocks.
2841 Either shot noqueue qdisc, it is even simpler 8)
2842 */
2843 if (dev->flags & IFF_UP) {
2844 int cpu = smp_processor_id(); /* ok because BHs are off */
2845
2846 if (txq->xmit_lock_owner != cpu) {
2847
2848 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2849 goto recursion_alert;
2850
2851 HARD_TX_LOCK(dev, txq, cpu);
2852
2853 if (!netif_xmit_stopped(txq)) {
2854 __this_cpu_inc(xmit_recursion);
2855 rc = dev_hard_start_xmit(skb, dev, txq);
2856 __this_cpu_dec(xmit_recursion);
2857 if (dev_xmit_complete(rc)) {
2858 HARD_TX_UNLOCK(dev, txq);
2859 goto out;
2860 }
2861 }
2862 HARD_TX_UNLOCK(dev, txq);
2863 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2864 dev->name);
2865 } else {
2866 /* Recursion is detected! It is possible,
2867 * unfortunately
2868 */
2869 recursion_alert:
2870 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2871 dev->name);
2872 }
2873 }
2874
2875 rc = -ENETDOWN;
2876 rcu_read_unlock_bh();
2877
2878 kfree_skb(skb);
2879 return rc;
2880 out:
2881 rcu_read_unlock_bh();
2882 return rc;
2883 }
2884 EXPORT_SYMBOL(dev_queue_xmit);
2885
2886
2887 /*=======================================================================
2888 Receiver routines
2889 =======================================================================*/
2890
2891 int netdev_max_backlog __read_mostly = 1000;
2892 EXPORT_SYMBOL(netdev_max_backlog);
2893
2894 int netdev_tstamp_prequeue __read_mostly = 1;
2895 int netdev_budget __read_mostly = 300;
2896 int weight_p __read_mostly = 64; /* old backlog weight */
2897
2898 /* Called with irq disabled */
2899 static inline void ____napi_schedule(struct softnet_data *sd,
2900 struct napi_struct *napi)
2901 {
2902 list_add_tail(&napi->poll_list, &sd->poll_list);
2903 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2904 }
2905
2906 #ifdef CONFIG_RPS
2907
2908 /* One global table that all flow-based protocols share. */
2909 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2910 EXPORT_SYMBOL(rps_sock_flow_table);
2911
2912 struct static_key rps_needed __read_mostly;
2913
2914 static struct rps_dev_flow *
2915 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2916 struct rps_dev_flow *rflow, u16 next_cpu)
2917 {
2918 if (next_cpu != RPS_NO_CPU) {
2919 #ifdef CONFIG_RFS_ACCEL
2920 struct netdev_rx_queue *rxqueue;
2921 struct rps_dev_flow_table *flow_table;
2922 struct rps_dev_flow *old_rflow;
2923 u32 flow_id;
2924 u16 rxq_index;
2925 int rc;
2926
2927 /* Should we steer this flow to a different hardware queue? */
2928 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2929 !(dev->features & NETIF_F_NTUPLE))
2930 goto out;
2931 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2932 if (rxq_index == skb_get_rx_queue(skb))
2933 goto out;
2934
2935 rxqueue = dev->_rx + rxq_index;
2936 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2937 if (!flow_table)
2938 goto out;
2939 flow_id = skb->rxhash & flow_table->mask;
2940 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2941 rxq_index, flow_id);
2942 if (rc < 0)
2943 goto out;
2944 old_rflow = rflow;
2945 rflow = &flow_table->flows[flow_id];
2946 rflow->filter = rc;
2947 if (old_rflow->filter == rflow->filter)
2948 old_rflow->filter = RPS_NO_FILTER;
2949 out:
2950 #endif
2951 rflow->last_qtail =
2952 per_cpu(softnet_data, next_cpu).input_queue_head;
2953 }
2954
2955 rflow->cpu = next_cpu;
2956 return rflow;
2957 }
2958
2959 /*
2960 * get_rps_cpu is called from netif_receive_skb and returns the target
2961 * CPU from the RPS map of the receiving queue for a given skb.
2962 * rcu_read_lock must be held on entry.
2963 */
2964 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2965 struct rps_dev_flow **rflowp)
2966 {
2967 struct netdev_rx_queue *rxqueue;
2968 struct rps_map *map;
2969 struct rps_dev_flow_table *flow_table;
2970 struct rps_sock_flow_table *sock_flow_table;
2971 int cpu = -1;
2972 u16 tcpu;
2973
2974 if (skb_rx_queue_recorded(skb)) {
2975 u16 index = skb_get_rx_queue(skb);
2976 if (unlikely(index >= dev->real_num_rx_queues)) {
2977 WARN_ONCE(dev->real_num_rx_queues > 1,
2978 "%s received packet on queue %u, but number "
2979 "of RX queues is %u\n",
2980 dev->name, index, dev->real_num_rx_queues);
2981 goto done;
2982 }
2983 rxqueue = dev->_rx + index;
2984 } else
2985 rxqueue = dev->_rx;
2986
2987 map = rcu_dereference(rxqueue->rps_map);
2988 if (map) {
2989 if (map->len == 1 &&
2990 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2991 tcpu = map->cpus[0];
2992 if (cpu_online(tcpu))
2993 cpu = tcpu;
2994 goto done;
2995 }
2996 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2997 goto done;
2998 }
2999
3000 skb_reset_network_header(skb);
3001 if (!skb_get_rxhash(skb))
3002 goto done;
3003
3004 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3005 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3006 if (flow_table && sock_flow_table) {
3007 u16 next_cpu;
3008 struct rps_dev_flow *rflow;
3009
3010 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3011 tcpu = rflow->cpu;
3012
3013 next_cpu = sock_flow_table->ents[skb->rxhash &
3014 sock_flow_table->mask];
3015
3016 /*
3017 * If the desired CPU (where last recvmsg was done) is
3018 * different from current CPU (one in the rx-queue flow
3019 * table entry), switch if one of the following holds:
3020 * - Current CPU is unset (equal to RPS_NO_CPU).
3021 * - Current CPU is offline.
3022 * - The current CPU's queue tail has advanced beyond the
3023 * last packet that was enqueued using this table entry.
3024 * This guarantees that all previous packets for the flow
3025 * have been dequeued, thus preserving in order delivery.
3026 */
3027 if (unlikely(tcpu != next_cpu) &&
3028 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3029 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3030 rflow->last_qtail)) >= 0)) {
3031 tcpu = next_cpu;
3032 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3033 }
3034
3035 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3036 *rflowp = rflow;
3037 cpu = tcpu;
3038 goto done;
3039 }
3040 }
3041
3042 if (map) {
3043 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3044
3045 if (cpu_online(tcpu)) {
3046 cpu = tcpu;
3047 goto done;
3048 }
3049 }
3050
3051 done:
3052 return cpu;
3053 }
3054
3055 #ifdef CONFIG_RFS_ACCEL
3056
3057 /**
3058 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3059 * @dev: Device on which the filter was set
3060 * @rxq_index: RX queue index
3061 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3062 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3063 *
3064 * Drivers that implement ndo_rx_flow_steer() should periodically call
3065 * this function for each installed filter and remove the filters for
3066 * which it returns %true.
3067 */
3068 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3069 u32 flow_id, u16 filter_id)
3070 {
3071 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3072 struct rps_dev_flow_table *flow_table;
3073 struct rps_dev_flow *rflow;
3074 bool expire = true;
3075 int cpu;
3076
3077 rcu_read_lock();
3078 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3079 if (flow_table && flow_id <= flow_table->mask) {
3080 rflow = &flow_table->flows[flow_id];
3081 cpu = ACCESS_ONCE(rflow->cpu);
3082 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3083 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3084 rflow->last_qtail) <
3085 (int)(10 * flow_table->mask)))
3086 expire = false;
3087 }
3088 rcu_read_unlock();
3089 return expire;
3090 }
3091 EXPORT_SYMBOL(rps_may_expire_flow);
3092
3093 #endif /* CONFIG_RFS_ACCEL */
3094
3095 /* Called from hardirq (IPI) context */
3096 static void rps_trigger_softirq(void *data)
3097 {
3098 struct softnet_data *sd = data;
3099
3100 ____napi_schedule(sd, &sd->backlog);
3101 sd->received_rps++;
3102 }
3103
3104 #endif /* CONFIG_RPS */
3105
3106 /*
3107 * Check if this softnet_data structure is another cpu one
3108 * If yes, queue it to our IPI list and return 1
3109 * If no, return 0
3110 */
3111 static int rps_ipi_queued(struct softnet_data *sd)
3112 {
3113 #ifdef CONFIG_RPS
3114 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3115
3116 if (sd != mysd) {
3117 sd->rps_ipi_next = mysd->rps_ipi_list;
3118 mysd->rps_ipi_list = sd;
3119
3120 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3121 return 1;
3122 }
3123 #endif /* CONFIG_RPS */
3124 return 0;
3125 }
3126
3127 #ifdef CONFIG_NET_FLOW_LIMIT
3128 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3129 #endif
3130
3131 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3132 {
3133 #ifdef CONFIG_NET_FLOW_LIMIT
3134 struct sd_flow_limit *fl;
3135 struct softnet_data *sd;
3136 unsigned int old_flow, new_flow;
3137
3138 if (qlen < (netdev_max_backlog >> 1))
3139 return false;
3140
3141 sd = &__get_cpu_var(softnet_data);
3142
3143 rcu_read_lock();
3144 fl = rcu_dereference(sd->flow_limit);
3145 if (fl) {
3146 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3147 old_flow = fl->history[fl->history_head];
3148 fl->history[fl->history_head] = new_flow;
3149
3150 fl->history_head++;
3151 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3152
3153 if (likely(fl->buckets[old_flow]))
3154 fl->buckets[old_flow]--;
3155
3156 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3157 fl->count++;
3158 rcu_read_unlock();
3159 return true;
3160 }
3161 }
3162 rcu_read_unlock();
3163 #endif
3164 return false;
3165 }
3166
3167 /*
3168 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3169 * queue (may be a remote CPU queue).
3170 */
3171 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3172 unsigned int *qtail)
3173 {
3174 struct softnet_data *sd;
3175 unsigned long flags;
3176 unsigned int qlen;
3177
3178 sd = &per_cpu(softnet_data, cpu);
3179
3180 local_irq_save(flags);
3181
3182 rps_lock(sd);
3183 qlen = skb_queue_len(&sd->input_pkt_queue);
3184 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3185 if (skb_queue_len(&sd->input_pkt_queue)) {
3186 enqueue:
3187 __skb_queue_tail(&sd->input_pkt_queue, skb);
3188 input_queue_tail_incr_save(sd, qtail);
3189 rps_unlock(sd);
3190 local_irq_restore(flags);
3191 return NET_RX_SUCCESS;
3192 }
3193
3194 /* Schedule NAPI for backlog device
3195 * We can use non atomic operation since we own the queue lock
3196 */
3197 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3198 if (!rps_ipi_queued(sd))
3199 ____napi_schedule(sd, &sd->backlog);
3200 }
3201 goto enqueue;
3202 }
3203
3204 sd->dropped++;
3205 rps_unlock(sd);
3206
3207 local_irq_restore(flags);
3208
3209 atomic_long_inc(&skb->dev->rx_dropped);
3210 kfree_skb(skb);
3211 return NET_RX_DROP;
3212 }
3213
3214 /**
3215 * netif_rx - post buffer to the network code
3216 * @skb: buffer to post
3217 *
3218 * This function receives a packet from a device driver and queues it for
3219 * the upper (protocol) levels to process. It always succeeds. The buffer
3220 * may be dropped during processing for congestion control or by the
3221 * protocol layers.
3222 *
3223 * return values:
3224 * NET_RX_SUCCESS (no congestion)
3225 * NET_RX_DROP (packet was dropped)
3226 *
3227 */
3228
3229 int netif_rx(struct sk_buff *skb)
3230 {
3231 int ret;
3232
3233 /* if netpoll wants it, pretend we never saw it */
3234 if (netpoll_rx(skb))
3235 return NET_RX_DROP;
3236
3237 net_timestamp_check(netdev_tstamp_prequeue, skb);
3238
3239 trace_netif_rx(skb);
3240 #ifdef CONFIG_RPS
3241 if (static_key_false(&rps_needed)) {
3242 struct rps_dev_flow voidflow, *rflow = &voidflow;
3243 int cpu;
3244
3245 preempt_disable();
3246 rcu_read_lock();
3247
3248 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3249 if (cpu < 0)
3250 cpu = smp_processor_id();
3251
3252 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3253
3254 rcu_read_unlock();
3255 preempt_enable();
3256 } else
3257 #endif
3258 {
3259 unsigned int qtail;
3260 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3261 put_cpu();
3262 }
3263 return ret;
3264 }
3265 EXPORT_SYMBOL(netif_rx);
3266
3267 int netif_rx_ni(struct sk_buff *skb)
3268 {
3269 int err;
3270
3271 preempt_disable();
3272 err = netif_rx(skb);
3273 if (local_softirq_pending())
3274 do_softirq();
3275 preempt_enable();
3276
3277 return err;
3278 }
3279 EXPORT_SYMBOL(netif_rx_ni);
3280
3281 static void net_tx_action(struct softirq_action *h)
3282 {
3283 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3284
3285 if (sd->completion_queue) {
3286 struct sk_buff *clist;
3287
3288 local_irq_disable();
3289 clist = sd->completion_queue;
3290 sd->completion_queue = NULL;
3291 local_irq_enable();
3292
3293 while (clist) {
3294 struct sk_buff *skb = clist;
3295 clist = clist->next;
3296
3297 WARN_ON(atomic_read(&skb->users));
3298 trace_kfree_skb(skb, net_tx_action);
3299 __kfree_skb(skb);
3300 }
3301 }
3302
3303 if (sd->output_queue) {
3304 struct Qdisc *head;
3305
3306 local_irq_disable();
3307 head = sd->output_queue;
3308 sd->output_queue = NULL;
3309 sd->output_queue_tailp = &sd->output_queue;
3310 local_irq_enable();
3311
3312 while (head) {
3313 struct Qdisc *q = head;
3314 spinlock_t *root_lock;
3315
3316 head = head->next_sched;
3317
3318 root_lock = qdisc_lock(q);
3319 if (spin_trylock(root_lock)) {
3320 smp_mb__before_clear_bit();
3321 clear_bit(__QDISC_STATE_SCHED,
3322 &q->state);
3323 qdisc_run(q);
3324 spin_unlock(root_lock);
3325 } else {
3326 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3327 &q->state)) {
3328 __netif_reschedule(q);
3329 } else {
3330 smp_mb__before_clear_bit();
3331 clear_bit(__QDISC_STATE_SCHED,
3332 &q->state);
3333 }
3334 }
3335 }
3336 }
3337 }
3338
3339 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3340 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3341 /* This hook is defined here for ATM LANE */
3342 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3343 unsigned char *addr) __read_mostly;
3344 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3345 #endif
3346
3347 #ifdef CONFIG_NET_CLS_ACT
3348 /* TODO: Maybe we should just force sch_ingress to be compiled in
3349 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3350 * a compare and 2 stores extra right now if we dont have it on
3351 * but have CONFIG_NET_CLS_ACT
3352 * NOTE: This doesn't stop any functionality; if you dont have
3353 * the ingress scheduler, you just can't add policies on ingress.
3354 *
3355 */
3356 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3357 {
3358 struct net_device *dev = skb->dev;
3359 u32 ttl = G_TC_RTTL(skb->tc_verd);
3360 int result = TC_ACT_OK;
3361 struct Qdisc *q;
3362
3363 if (unlikely(MAX_RED_LOOP < ttl++)) {
3364 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3365 skb->skb_iif, dev->ifindex);
3366 return TC_ACT_SHOT;
3367 }
3368
3369 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3370 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3371
3372 q = rxq->qdisc;
3373 if (q != &noop_qdisc) {
3374 spin_lock(qdisc_lock(q));
3375 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3376 result = qdisc_enqueue_root(skb, q);
3377 spin_unlock(qdisc_lock(q));
3378 }
3379
3380 return result;
3381 }
3382
3383 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3384 struct packet_type **pt_prev,
3385 int *ret, struct net_device *orig_dev)
3386 {
3387 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3388
3389 if (!rxq || rxq->qdisc == &noop_qdisc)
3390 goto out;
3391
3392 if (*pt_prev) {
3393 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3394 *pt_prev = NULL;
3395 }
3396
3397 switch (ing_filter(skb, rxq)) {
3398 case TC_ACT_SHOT:
3399 case TC_ACT_STOLEN:
3400 kfree_skb(skb);
3401 return NULL;
3402 }
3403
3404 out:
3405 skb->tc_verd = 0;
3406 return skb;
3407 }
3408 #endif
3409
3410 /**
3411 * netdev_rx_handler_register - register receive handler
3412 * @dev: device to register a handler for
3413 * @rx_handler: receive handler to register
3414 * @rx_handler_data: data pointer that is used by rx handler
3415 *
3416 * Register a receive hander for a device. This handler will then be
3417 * called from __netif_receive_skb. A negative errno code is returned
3418 * on a failure.
3419 *
3420 * The caller must hold the rtnl_mutex.
3421 *
3422 * For a general description of rx_handler, see enum rx_handler_result.
3423 */
3424 int netdev_rx_handler_register(struct net_device *dev,
3425 rx_handler_func_t *rx_handler,
3426 void *rx_handler_data)
3427 {
3428 ASSERT_RTNL();
3429
3430 if (dev->rx_handler)
3431 return -EBUSY;
3432
3433 /* Note: rx_handler_data must be set before rx_handler */
3434 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3435 rcu_assign_pointer(dev->rx_handler, rx_handler);
3436
3437 return 0;
3438 }
3439 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3440
3441 /**
3442 * netdev_rx_handler_unregister - unregister receive handler
3443 * @dev: device to unregister a handler from
3444 *
3445 * Unregister a receive handler from a device.
3446 *
3447 * The caller must hold the rtnl_mutex.
3448 */
3449 void netdev_rx_handler_unregister(struct net_device *dev)
3450 {
3451
3452 ASSERT_RTNL();
3453 RCU_INIT_POINTER(dev->rx_handler, NULL);
3454 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3455 * section has a guarantee to see a non NULL rx_handler_data
3456 * as well.
3457 */
3458 synchronize_net();
3459 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3460 }
3461 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3462
3463 /*
3464 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3465 * the special handling of PFMEMALLOC skbs.
3466 */
3467 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3468 {
3469 switch (skb->protocol) {
3470 case __constant_htons(ETH_P_ARP):
3471 case __constant_htons(ETH_P_IP):
3472 case __constant_htons(ETH_P_IPV6):
3473 case __constant_htons(ETH_P_8021Q):
3474 case __constant_htons(ETH_P_8021AD):
3475 return true;
3476 default:
3477 return false;
3478 }
3479 }
3480
3481 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3482 {
3483 struct packet_type *ptype, *pt_prev;
3484 rx_handler_func_t *rx_handler;
3485 struct net_device *orig_dev;
3486 struct net_device *null_or_dev;
3487 bool deliver_exact = false;
3488 int ret = NET_RX_DROP;
3489 __be16 type;
3490
3491 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3492
3493 trace_netif_receive_skb(skb);
3494
3495 /* if we've gotten here through NAPI, check netpoll */
3496 if (netpoll_receive_skb(skb))
3497 goto out;
3498
3499 orig_dev = skb->dev;
3500
3501 skb_reset_network_header(skb);
3502 if (!skb_transport_header_was_set(skb))
3503 skb_reset_transport_header(skb);
3504 skb_reset_mac_len(skb);
3505
3506 pt_prev = NULL;
3507
3508 rcu_read_lock();
3509
3510 another_round:
3511 skb->skb_iif = skb->dev->ifindex;
3512
3513 __this_cpu_inc(softnet_data.processed);
3514
3515 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3516 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3517 skb = vlan_untag(skb);
3518 if (unlikely(!skb))
3519 goto unlock;
3520 }
3521
3522 #ifdef CONFIG_NET_CLS_ACT
3523 if (skb->tc_verd & TC_NCLS) {
3524 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3525 goto ncls;
3526 }
3527 #endif
3528
3529 if (pfmemalloc)
3530 goto skip_taps;
3531
3532 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3533 if (!ptype->dev || ptype->dev == skb->dev) {
3534 if (pt_prev)
3535 ret = deliver_skb(skb, pt_prev, orig_dev);
3536 pt_prev = ptype;
3537 }
3538 }
3539
3540 skip_taps:
3541 #ifdef CONFIG_NET_CLS_ACT
3542 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3543 if (!skb)
3544 goto unlock;
3545 ncls:
3546 #endif
3547
3548 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3549 goto drop;
3550
3551 if (vlan_tx_tag_present(skb)) {
3552 if (pt_prev) {
3553 ret = deliver_skb(skb, pt_prev, orig_dev);
3554 pt_prev = NULL;
3555 }
3556 if (vlan_do_receive(&skb))
3557 goto another_round;
3558 else if (unlikely(!skb))
3559 goto unlock;
3560 }
3561
3562 rx_handler = rcu_dereference(skb->dev->rx_handler);
3563 if (rx_handler) {
3564 if (pt_prev) {
3565 ret = deliver_skb(skb, pt_prev, orig_dev);
3566 pt_prev = NULL;
3567 }
3568 switch (rx_handler(&skb)) {
3569 case RX_HANDLER_CONSUMED:
3570 ret = NET_RX_SUCCESS;
3571 goto unlock;
3572 case RX_HANDLER_ANOTHER:
3573 goto another_round;
3574 case RX_HANDLER_EXACT:
3575 deliver_exact = true;
3576 case RX_HANDLER_PASS:
3577 break;
3578 default:
3579 BUG();
3580 }
3581 }
3582
3583 if (unlikely(vlan_tx_tag_present(skb))) {
3584 if (vlan_tx_tag_get_id(skb))
3585 skb->pkt_type = PACKET_OTHERHOST;
3586 /* Note: we might in the future use prio bits
3587 * and set skb->priority like in vlan_do_receive()
3588 * For the time being, just ignore Priority Code Point
3589 */
3590 skb->vlan_tci = 0;
3591 }
3592
3593 /* deliver only exact match when indicated */
3594 null_or_dev = deliver_exact ? skb->dev : NULL;
3595
3596 type = skb->protocol;
3597 list_for_each_entry_rcu(ptype,
3598 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3599 if (ptype->type == type &&
3600 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3601 ptype->dev == orig_dev)) {
3602 if (pt_prev)
3603 ret = deliver_skb(skb, pt_prev, orig_dev);
3604 pt_prev = ptype;
3605 }
3606 }
3607
3608 if (pt_prev) {
3609 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3610 goto drop;
3611 else
3612 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3613 } else {
3614 drop:
3615 atomic_long_inc(&skb->dev->rx_dropped);
3616 kfree_skb(skb);
3617 /* Jamal, now you will not able to escape explaining
3618 * me how you were going to use this. :-)
3619 */
3620 ret = NET_RX_DROP;
3621 }
3622
3623 unlock:
3624 rcu_read_unlock();
3625 out:
3626 return ret;
3627 }
3628
3629 static int __netif_receive_skb(struct sk_buff *skb)
3630 {
3631 int ret;
3632
3633 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3634 unsigned long pflags = current->flags;
3635
3636 /*
3637 * PFMEMALLOC skbs are special, they should
3638 * - be delivered to SOCK_MEMALLOC sockets only
3639 * - stay away from userspace
3640 * - have bounded memory usage
3641 *
3642 * Use PF_MEMALLOC as this saves us from propagating the allocation
3643 * context down to all allocation sites.
3644 */
3645 current->flags |= PF_MEMALLOC;
3646 ret = __netif_receive_skb_core(skb, true);
3647 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3648 } else
3649 ret = __netif_receive_skb_core(skb, false);
3650
3651 return ret;
3652 }
3653
3654 /**
3655 * netif_receive_skb - process receive buffer from network
3656 * @skb: buffer to process
3657 *
3658 * netif_receive_skb() is the main receive data processing function.
3659 * It always succeeds. The buffer may be dropped during processing
3660 * for congestion control or by the protocol layers.
3661 *
3662 * This function may only be called from softirq context and interrupts
3663 * should be enabled.
3664 *
3665 * Return values (usually ignored):
3666 * NET_RX_SUCCESS: no congestion
3667 * NET_RX_DROP: packet was dropped
3668 */
3669 int netif_receive_skb(struct sk_buff *skb)
3670 {
3671 net_timestamp_check(netdev_tstamp_prequeue, skb);
3672
3673 if (skb_defer_rx_timestamp(skb))
3674 return NET_RX_SUCCESS;
3675
3676 #ifdef CONFIG_RPS
3677 if (static_key_false(&rps_needed)) {
3678 struct rps_dev_flow voidflow, *rflow = &voidflow;
3679 int cpu, ret;
3680
3681 rcu_read_lock();
3682
3683 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3684
3685 if (cpu >= 0) {
3686 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3687 rcu_read_unlock();
3688 return ret;
3689 }
3690 rcu_read_unlock();
3691 }
3692 #endif
3693 return __netif_receive_skb(skb);
3694 }
3695 EXPORT_SYMBOL(netif_receive_skb);
3696
3697 /* Network device is going away, flush any packets still pending
3698 * Called with irqs disabled.
3699 */
3700 static void flush_backlog(void *arg)
3701 {
3702 struct net_device *dev = arg;
3703 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3704 struct sk_buff *skb, *tmp;
3705
3706 rps_lock(sd);
3707 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3708 if (skb->dev == dev) {
3709 __skb_unlink(skb, &sd->input_pkt_queue);
3710 kfree_skb(skb);
3711 input_queue_head_incr(sd);
3712 }
3713 }
3714 rps_unlock(sd);
3715
3716 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3717 if (skb->dev == dev) {
3718 __skb_unlink(skb, &sd->process_queue);
3719 kfree_skb(skb);
3720 input_queue_head_incr(sd);
3721 }
3722 }
3723 }
3724
3725 static int napi_gro_complete(struct sk_buff *skb)
3726 {
3727 struct packet_offload *ptype;
3728 __be16 type = skb->protocol;
3729 struct list_head *head = &offload_base;
3730 int err = -ENOENT;
3731
3732 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3733
3734 if (NAPI_GRO_CB(skb)->count == 1) {
3735 skb_shinfo(skb)->gso_size = 0;
3736 goto out;
3737 }
3738
3739 rcu_read_lock();
3740 list_for_each_entry_rcu(ptype, head, list) {
3741 if (ptype->type != type || !ptype->callbacks.gro_complete)
3742 continue;
3743
3744 err = ptype->callbacks.gro_complete(skb);
3745 break;
3746 }
3747 rcu_read_unlock();
3748
3749 if (err) {
3750 WARN_ON(&ptype->list == head);
3751 kfree_skb(skb);
3752 return NET_RX_SUCCESS;
3753 }
3754
3755 out:
3756 return netif_receive_skb(skb);
3757 }
3758
3759 /* napi->gro_list contains packets ordered by age.
3760 * youngest packets at the head of it.
3761 * Complete skbs in reverse order to reduce latencies.
3762 */
3763 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3764 {
3765 struct sk_buff *skb, *prev = NULL;
3766
3767 /* scan list and build reverse chain */
3768 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3769 skb->prev = prev;
3770 prev = skb;
3771 }
3772
3773 for (skb = prev; skb; skb = prev) {
3774 skb->next = NULL;
3775
3776 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3777 return;
3778
3779 prev = skb->prev;
3780 napi_gro_complete(skb);
3781 napi->gro_count--;
3782 }
3783
3784 napi->gro_list = NULL;
3785 }
3786 EXPORT_SYMBOL(napi_gro_flush);
3787
3788 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3789 {
3790 struct sk_buff *p;
3791 unsigned int maclen = skb->dev->hard_header_len;
3792
3793 for (p = napi->gro_list; p; p = p->next) {
3794 unsigned long diffs;
3795
3796 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3797 diffs |= p->vlan_tci ^ skb->vlan_tci;
3798 if (maclen == ETH_HLEN)
3799 diffs |= compare_ether_header(skb_mac_header(p),
3800 skb_gro_mac_header(skb));
3801 else if (!diffs)
3802 diffs = memcmp(skb_mac_header(p),
3803 skb_gro_mac_header(skb),
3804 maclen);
3805 NAPI_GRO_CB(p)->same_flow = !diffs;
3806 NAPI_GRO_CB(p)->flush = 0;
3807 }
3808 }
3809
3810 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3811 {
3812 struct sk_buff **pp = NULL;
3813 struct packet_offload *ptype;
3814 __be16 type = skb->protocol;
3815 struct list_head *head = &offload_base;
3816 int same_flow;
3817 enum gro_result ret;
3818
3819 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3820 goto normal;
3821
3822 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3823 goto normal;
3824
3825 gro_list_prepare(napi, skb);
3826
3827 rcu_read_lock();
3828 list_for_each_entry_rcu(ptype, head, list) {
3829 if (ptype->type != type || !ptype->callbacks.gro_receive)
3830 continue;
3831
3832 skb_set_network_header(skb, skb_gro_offset(skb));
3833 skb_reset_mac_len(skb);
3834 NAPI_GRO_CB(skb)->same_flow = 0;
3835 NAPI_GRO_CB(skb)->flush = 0;
3836 NAPI_GRO_CB(skb)->free = 0;
3837
3838 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3839 break;
3840 }
3841 rcu_read_unlock();
3842
3843 if (&ptype->list == head)
3844 goto normal;
3845
3846 same_flow = NAPI_GRO_CB(skb)->same_flow;
3847 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3848
3849 if (pp) {
3850 struct sk_buff *nskb = *pp;
3851
3852 *pp = nskb->next;
3853 nskb->next = NULL;
3854 napi_gro_complete(nskb);
3855 napi->gro_count--;
3856 }
3857
3858 if (same_flow)
3859 goto ok;
3860
3861 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3862 goto normal;
3863
3864 napi->gro_count++;
3865 NAPI_GRO_CB(skb)->count = 1;
3866 NAPI_GRO_CB(skb)->age = jiffies;
3867 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3868 skb->next = napi->gro_list;
3869 napi->gro_list = skb;
3870 ret = GRO_HELD;
3871
3872 pull:
3873 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3874 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3875
3876 BUG_ON(skb->end - skb->tail < grow);
3877
3878 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3879
3880 skb->tail += grow;
3881 skb->data_len -= grow;
3882
3883 skb_shinfo(skb)->frags[0].page_offset += grow;
3884 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3885
3886 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3887 skb_frag_unref(skb, 0);
3888 memmove(skb_shinfo(skb)->frags,
3889 skb_shinfo(skb)->frags + 1,
3890 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3891 }
3892 }
3893
3894 ok:
3895 return ret;
3896
3897 normal:
3898 ret = GRO_NORMAL;
3899 goto pull;
3900 }
3901
3902
3903 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3904 {
3905 switch (ret) {
3906 case GRO_NORMAL:
3907 if (netif_receive_skb(skb))
3908 ret = GRO_DROP;
3909 break;
3910
3911 case GRO_DROP:
3912 kfree_skb(skb);
3913 break;
3914
3915 case GRO_MERGED_FREE:
3916 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3917 kmem_cache_free(skbuff_head_cache, skb);
3918 else
3919 __kfree_skb(skb);
3920 break;
3921
3922 case GRO_HELD:
3923 case GRO_MERGED:
3924 break;
3925 }
3926
3927 return ret;
3928 }
3929
3930 static void skb_gro_reset_offset(struct sk_buff *skb)
3931 {
3932 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3933 const skb_frag_t *frag0 = &pinfo->frags[0];
3934
3935 NAPI_GRO_CB(skb)->data_offset = 0;
3936 NAPI_GRO_CB(skb)->frag0 = NULL;
3937 NAPI_GRO_CB(skb)->frag0_len = 0;
3938
3939 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3940 pinfo->nr_frags &&
3941 !PageHighMem(skb_frag_page(frag0))) {
3942 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3943 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3944 }
3945 }
3946
3947 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3948 {
3949 skb_gro_reset_offset(skb);
3950
3951 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3952 }
3953 EXPORT_SYMBOL(napi_gro_receive);
3954
3955 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3956 {
3957 __skb_pull(skb, skb_headlen(skb));
3958 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3959 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3960 skb->vlan_tci = 0;
3961 skb->dev = napi->dev;
3962 skb->skb_iif = 0;
3963
3964 napi->skb = skb;
3965 }
3966
3967 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3968 {
3969 struct sk_buff *skb = napi->skb;
3970
3971 if (!skb) {
3972 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3973 if (skb)
3974 napi->skb = skb;
3975 }
3976 return skb;
3977 }
3978 EXPORT_SYMBOL(napi_get_frags);
3979
3980 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3981 gro_result_t ret)
3982 {
3983 switch (ret) {
3984 case GRO_NORMAL:
3985 case GRO_HELD:
3986 skb->protocol = eth_type_trans(skb, skb->dev);
3987
3988 if (ret == GRO_HELD)
3989 skb_gro_pull(skb, -ETH_HLEN);
3990 else if (netif_receive_skb(skb))
3991 ret = GRO_DROP;
3992 break;
3993
3994 case GRO_DROP:
3995 case GRO_MERGED_FREE:
3996 napi_reuse_skb(napi, skb);
3997 break;
3998
3999 case GRO_MERGED:
4000 break;
4001 }
4002
4003 return ret;
4004 }
4005
4006 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4007 {
4008 struct sk_buff *skb = napi->skb;
4009 struct ethhdr *eth;
4010 unsigned int hlen;
4011 unsigned int off;
4012
4013 napi->skb = NULL;
4014
4015 skb_reset_mac_header(skb);
4016 skb_gro_reset_offset(skb);
4017
4018 off = skb_gro_offset(skb);
4019 hlen = off + sizeof(*eth);
4020 eth = skb_gro_header_fast(skb, off);
4021 if (skb_gro_header_hard(skb, hlen)) {
4022 eth = skb_gro_header_slow(skb, hlen, off);
4023 if (unlikely(!eth)) {
4024 napi_reuse_skb(napi, skb);
4025 skb = NULL;
4026 goto out;
4027 }
4028 }
4029
4030 skb_gro_pull(skb, sizeof(*eth));
4031
4032 /*
4033 * This works because the only protocols we care about don't require
4034 * special handling. We'll fix it up properly at the end.
4035 */
4036 skb->protocol = eth->h_proto;
4037
4038 out:
4039 return skb;
4040 }
4041
4042 gro_result_t napi_gro_frags(struct napi_struct *napi)
4043 {
4044 struct sk_buff *skb = napi_frags_skb(napi);
4045
4046 if (!skb)
4047 return GRO_DROP;
4048
4049 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4050 }
4051 EXPORT_SYMBOL(napi_gro_frags);
4052
4053 /*
4054 * net_rps_action sends any pending IPI's for rps.
4055 * Note: called with local irq disabled, but exits with local irq enabled.
4056 */
4057 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4058 {
4059 #ifdef CONFIG_RPS
4060 struct softnet_data *remsd = sd->rps_ipi_list;
4061
4062 if (remsd) {
4063 sd->rps_ipi_list = NULL;
4064
4065 local_irq_enable();
4066
4067 /* Send pending IPI's to kick RPS processing on remote cpus. */
4068 while (remsd) {
4069 struct softnet_data *next = remsd->rps_ipi_next;
4070
4071 if (cpu_online(remsd->cpu))
4072 __smp_call_function_single(remsd->cpu,
4073 &remsd->csd, 0);
4074 remsd = next;
4075 }
4076 } else
4077 #endif
4078 local_irq_enable();
4079 }
4080
4081 static int process_backlog(struct napi_struct *napi, int quota)
4082 {
4083 int work = 0;
4084 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4085
4086 #ifdef CONFIG_RPS
4087 /* Check if we have pending ipi, its better to send them now,
4088 * not waiting net_rx_action() end.
4089 */
4090 if (sd->rps_ipi_list) {
4091 local_irq_disable();
4092 net_rps_action_and_irq_enable(sd);
4093 }
4094 #endif
4095 napi->weight = weight_p;
4096 local_irq_disable();
4097 while (work < quota) {
4098 struct sk_buff *skb;
4099 unsigned int qlen;
4100
4101 while ((skb = __skb_dequeue(&sd->process_queue))) {
4102 local_irq_enable();
4103 __netif_receive_skb(skb);
4104 local_irq_disable();
4105 input_queue_head_incr(sd);
4106 if (++work >= quota) {
4107 local_irq_enable();
4108 return work;
4109 }
4110 }
4111
4112 rps_lock(sd);
4113 qlen = skb_queue_len(&sd->input_pkt_queue);
4114 if (qlen)
4115 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4116 &sd->process_queue);
4117
4118 if (qlen < quota - work) {
4119 /*
4120 * Inline a custom version of __napi_complete().
4121 * only current cpu owns and manipulates this napi,
4122 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4123 * we can use a plain write instead of clear_bit(),
4124 * and we dont need an smp_mb() memory barrier.
4125 */
4126 list_del(&napi->poll_list);
4127 napi->state = 0;
4128
4129 quota = work + qlen;
4130 }
4131 rps_unlock(sd);
4132 }
4133 local_irq_enable();
4134
4135 return work;
4136 }
4137
4138 /**
4139 * __napi_schedule - schedule for receive
4140 * @n: entry to schedule
4141 *
4142 * The entry's receive function will be scheduled to run
4143 */
4144 void __napi_schedule(struct napi_struct *n)
4145 {
4146 unsigned long flags;
4147
4148 local_irq_save(flags);
4149 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4150 local_irq_restore(flags);
4151 }
4152 EXPORT_SYMBOL(__napi_schedule);
4153
4154 void __napi_complete(struct napi_struct *n)
4155 {
4156 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4157 BUG_ON(n->gro_list);
4158
4159 list_del(&n->poll_list);
4160 smp_mb__before_clear_bit();
4161 clear_bit(NAPI_STATE_SCHED, &n->state);
4162 }
4163 EXPORT_SYMBOL(__napi_complete);
4164
4165 void napi_complete(struct napi_struct *n)
4166 {
4167 unsigned long flags;
4168
4169 /*
4170 * don't let napi dequeue from the cpu poll list
4171 * just in case its running on a different cpu
4172 */
4173 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4174 return;
4175
4176 napi_gro_flush(n, false);
4177 local_irq_save(flags);
4178 __napi_complete(n);
4179 local_irq_restore(flags);
4180 }
4181 EXPORT_SYMBOL(napi_complete);
4182
4183 /* must be called under rcu_read_lock(), as we dont take a reference */
4184 struct napi_struct *napi_by_id(unsigned int napi_id)
4185 {
4186 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4187 struct napi_struct *napi;
4188
4189 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4190 if (napi->napi_id == napi_id)
4191 return napi;
4192
4193 return NULL;
4194 }
4195 EXPORT_SYMBOL_GPL(napi_by_id);
4196
4197 void napi_hash_add(struct napi_struct *napi)
4198 {
4199 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4200
4201 spin_lock(&napi_hash_lock);
4202
4203 /* 0 is not a valid id, we also skip an id that is taken
4204 * we expect both events to be extremely rare
4205 */
4206 napi->napi_id = 0;
4207 while (!napi->napi_id) {
4208 napi->napi_id = ++napi_gen_id;
4209 if (napi_by_id(napi->napi_id))
4210 napi->napi_id = 0;
4211 }
4212
4213 hlist_add_head_rcu(&napi->napi_hash_node,
4214 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4215
4216 spin_unlock(&napi_hash_lock);
4217 }
4218 }
4219 EXPORT_SYMBOL_GPL(napi_hash_add);
4220
4221 /* Warning : caller is responsible to make sure rcu grace period
4222 * is respected before freeing memory containing @napi
4223 */
4224 void napi_hash_del(struct napi_struct *napi)
4225 {
4226 spin_lock(&napi_hash_lock);
4227
4228 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4229 hlist_del_rcu(&napi->napi_hash_node);
4230
4231 spin_unlock(&napi_hash_lock);
4232 }
4233 EXPORT_SYMBOL_GPL(napi_hash_del);
4234
4235 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4236 int (*poll)(struct napi_struct *, int), int weight)
4237 {
4238 INIT_LIST_HEAD(&napi->poll_list);
4239 napi->gro_count = 0;
4240 napi->gro_list = NULL;
4241 napi->skb = NULL;
4242 napi->poll = poll;
4243 if (weight > NAPI_POLL_WEIGHT)
4244 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4245 weight, dev->name);
4246 napi->weight = weight;
4247 list_add(&napi->dev_list, &dev->napi_list);
4248 napi->dev = dev;
4249 #ifdef CONFIG_NETPOLL
4250 spin_lock_init(&napi->poll_lock);
4251 napi->poll_owner = -1;
4252 #endif
4253 set_bit(NAPI_STATE_SCHED, &napi->state);
4254 }
4255 EXPORT_SYMBOL(netif_napi_add);
4256
4257 void netif_napi_del(struct napi_struct *napi)
4258 {
4259 struct sk_buff *skb, *next;
4260
4261 list_del_init(&napi->dev_list);
4262 napi_free_frags(napi);
4263
4264 for (skb = napi->gro_list; skb; skb = next) {
4265 next = skb->next;
4266 skb->next = NULL;
4267 kfree_skb(skb);
4268 }
4269
4270 napi->gro_list = NULL;
4271 napi->gro_count = 0;
4272 }
4273 EXPORT_SYMBOL(netif_napi_del);
4274
4275 static void net_rx_action(struct softirq_action *h)
4276 {
4277 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4278 unsigned long time_limit = jiffies + 2;
4279 int budget = netdev_budget;
4280 void *have;
4281
4282 local_irq_disable();
4283
4284 while (!list_empty(&sd->poll_list)) {
4285 struct napi_struct *n;
4286 int work, weight;
4287
4288 /* If softirq window is exhuasted then punt.
4289 * Allow this to run for 2 jiffies since which will allow
4290 * an average latency of 1.5/HZ.
4291 */
4292 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4293 goto softnet_break;
4294
4295 local_irq_enable();
4296
4297 /* Even though interrupts have been re-enabled, this
4298 * access is safe because interrupts can only add new
4299 * entries to the tail of this list, and only ->poll()
4300 * calls can remove this head entry from the list.
4301 */
4302 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4303
4304 have = netpoll_poll_lock(n);
4305
4306 weight = n->weight;
4307
4308 /* This NAPI_STATE_SCHED test is for avoiding a race
4309 * with netpoll's poll_napi(). Only the entity which
4310 * obtains the lock and sees NAPI_STATE_SCHED set will
4311 * actually make the ->poll() call. Therefore we avoid
4312 * accidentally calling ->poll() when NAPI is not scheduled.
4313 */
4314 work = 0;
4315 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4316 work = n->poll(n, weight);
4317 trace_napi_poll(n);
4318 }
4319
4320 WARN_ON_ONCE(work > weight);
4321
4322 budget -= work;
4323
4324 local_irq_disable();
4325
4326 /* Drivers must not modify the NAPI state if they
4327 * consume the entire weight. In such cases this code
4328 * still "owns" the NAPI instance and therefore can
4329 * move the instance around on the list at-will.
4330 */
4331 if (unlikely(work == weight)) {
4332 if (unlikely(napi_disable_pending(n))) {
4333 local_irq_enable();
4334 napi_complete(n);
4335 local_irq_disable();
4336 } else {
4337 if (n->gro_list) {
4338 /* flush too old packets
4339 * If HZ < 1000, flush all packets.
4340 */
4341 local_irq_enable();
4342 napi_gro_flush(n, HZ >= 1000);
4343 local_irq_disable();
4344 }
4345 list_move_tail(&n->poll_list, &sd->poll_list);
4346 }
4347 }
4348
4349 netpoll_poll_unlock(have);
4350 }
4351 out:
4352 net_rps_action_and_irq_enable(sd);
4353
4354 #ifdef CONFIG_NET_DMA
4355 /*
4356 * There may not be any more sk_buffs coming right now, so push
4357 * any pending DMA copies to hardware
4358 */
4359 dma_issue_pending_all();
4360 #endif
4361
4362 return;
4363
4364 softnet_break:
4365 sd->time_squeeze++;
4366 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4367 goto out;
4368 }
4369
4370 struct netdev_adjacent {
4371 struct net_device *dev;
4372
4373 /* upper master flag, there can only be one master device per list */
4374 bool master;
4375
4376 /* indicates that this dev is our first-level lower/upper device */
4377 bool neighbour;
4378
4379 /* counter for the number of times this device was added to us */
4380 u16 ref_nr;
4381
4382 struct list_head list;
4383 struct rcu_head rcu;
4384 };
4385
4386 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4387 struct net_device *adj_dev,
4388 bool upper)
4389 {
4390 struct netdev_adjacent *adj;
4391 struct list_head *dev_list;
4392
4393 dev_list = upper ? &dev->upper_dev_list : &dev->lower_dev_list;
4394
4395 list_for_each_entry(adj, dev_list, list) {
4396 if (adj->dev == adj_dev)
4397 return adj;
4398 }
4399 return NULL;
4400 }
4401
4402 static inline struct netdev_adjacent *__netdev_find_upper(struct net_device *dev,
4403 struct net_device *udev)
4404 {
4405 return __netdev_find_adj(dev, udev, true);
4406 }
4407
4408 static inline struct netdev_adjacent *__netdev_find_lower(struct net_device *dev,
4409 struct net_device *ldev)
4410 {
4411 return __netdev_find_adj(dev, ldev, false);
4412 }
4413
4414 /**
4415 * netdev_has_upper_dev - Check if device is linked to an upper device
4416 * @dev: device
4417 * @upper_dev: upper device to check
4418 *
4419 * Find out if a device is linked to specified upper device and return true
4420 * in case it is. Note that this checks only immediate upper device,
4421 * not through a complete stack of devices. The caller must hold the RTNL lock.
4422 */
4423 bool netdev_has_upper_dev(struct net_device *dev,
4424 struct net_device *upper_dev)
4425 {
4426 ASSERT_RTNL();
4427
4428 return __netdev_find_upper(dev, upper_dev);
4429 }
4430 EXPORT_SYMBOL(netdev_has_upper_dev);
4431
4432 /**
4433 * netdev_has_any_upper_dev - Check if device is linked to some device
4434 * @dev: device
4435 *
4436 * Find out if a device is linked to an upper device and return true in case
4437 * it is. The caller must hold the RTNL lock.
4438 */
4439 bool netdev_has_any_upper_dev(struct net_device *dev)
4440 {
4441 ASSERT_RTNL();
4442
4443 return !list_empty(&dev->upper_dev_list);
4444 }
4445 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4446
4447 /**
4448 * netdev_master_upper_dev_get - Get master upper device
4449 * @dev: device
4450 *
4451 * Find a master upper device and return pointer to it or NULL in case
4452 * it's not there. The caller must hold the RTNL lock.
4453 */
4454 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4455 {
4456 struct netdev_adjacent *upper;
4457
4458 ASSERT_RTNL();
4459
4460 if (list_empty(&dev->upper_dev_list))
4461 return NULL;
4462
4463 upper = list_first_entry(&dev->upper_dev_list,
4464 struct netdev_adjacent, list);
4465 if (likely(upper->master))
4466 return upper->dev;
4467 return NULL;
4468 }
4469 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4470
4471 /* netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4472 * @dev: device
4473 * @iter: list_head ** of the current position
4474 *
4475 * Gets the next device from the dev's upper list, starting from iter
4476 * position. The caller must hold RCU read lock.
4477 */
4478 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4479 struct list_head **iter)
4480 {
4481 struct netdev_adjacent *upper;
4482
4483 WARN_ON_ONCE(!rcu_read_lock_held());
4484
4485 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4486
4487 if (&upper->list == &dev->upper_dev_list)
4488 return NULL;
4489
4490 *iter = &upper->list;
4491
4492 return upper->dev;
4493 }
4494 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4495
4496 /**
4497 * netdev_master_upper_dev_get_rcu - Get master upper device
4498 * @dev: device
4499 *
4500 * Find a master upper device and return pointer to it or NULL in case
4501 * it's not there. The caller must hold the RCU read lock.
4502 */
4503 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4504 {
4505 struct netdev_adjacent *upper;
4506
4507 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4508 struct netdev_adjacent, list);
4509 if (upper && likely(upper->master))
4510 return upper->dev;
4511 return NULL;
4512 }
4513 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4514
4515 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4516 struct net_device *adj_dev,
4517 bool neighbour, bool master,
4518 bool upper)
4519 {
4520 struct netdev_adjacent *adj;
4521
4522 adj = __netdev_find_adj(dev, adj_dev, upper);
4523
4524 if (adj) {
4525 BUG_ON(neighbour);
4526 adj->ref_nr++;
4527 return 0;
4528 }
4529
4530 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4531 if (!adj)
4532 return -ENOMEM;
4533
4534 adj->dev = adj_dev;
4535 adj->master = master;
4536 adj->neighbour = neighbour;
4537 adj->ref_nr = 1;
4538
4539 dev_hold(adj_dev);
4540 pr_debug("dev_hold for %s, because of %s link added from %s to %s\n",
4541 adj_dev->name, upper ? "upper" : "lower", dev->name,
4542 adj_dev->name);
4543
4544 if (!upper) {
4545 list_add_tail_rcu(&adj->list, &dev->lower_dev_list);
4546 return 0;
4547 }
4548
4549 /* Ensure that master upper link is always the first item in list. */
4550 if (master)
4551 list_add_rcu(&adj->list, &dev->upper_dev_list);
4552 else
4553 list_add_tail_rcu(&adj->list, &dev->upper_dev_list);
4554
4555 return 0;
4556 }
4557
4558 static inline int __netdev_upper_dev_insert(struct net_device *dev,
4559 struct net_device *udev,
4560 bool master, bool neighbour)
4561 {
4562 return __netdev_adjacent_dev_insert(dev, udev, neighbour, master,
4563 true);
4564 }
4565
4566 static inline int __netdev_lower_dev_insert(struct net_device *dev,
4567 struct net_device *ldev,
4568 bool neighbour)
4569 {
4570 return __netdev_adjacent_dev_insert(dev, ldev, neighbour, false,
4571 false);
4572 }
4573
4574 void __netdev_adjacent_dev_remove(struct net_device *dev,
4575 struct net_device *adj_dev, bool upper)
4576 {
4577 struct netdev_adjacent *adj;
4578
4579 if (upper)
4580 adj = __netdev_find_upper(dev, adj_dev);
4581 else
4582 adj = __netdev_find_lower(dev, adj_dev);
4583
4584 if (!adj)
4585 BUG();
4586
4587 if (adj->ref_nr > 1) {
4588 adj->ref_nr--;
4589 return;
4590 }
4591
4592 list_del_rcu(&adj->list);
4593 pr_debug("dev_put for %s, because of %s link removed from %s to %s\n",
4594 adj_dev->name, upper ? "upper" : "lower", dev->name,
4595 adj_dev->name);
4596 dev_put(adj_dev);
4597 kfree_rcu(adj, rcu);
4598 }
4599
4600 static inline void __netdev_upper_dev_remove(struct net_device *dev,
4601 struct net_device *udev)
4602 {
4603 return __netdev_adjacent_dev_remove(dev, udev, true);
4604 }
4605
4606 static inline void __netdev_lower_dev_remove(struct net_device *dev,
4607 struct net_device *ldev)
4608 {
4609 return __netdev_adjacent_dev_remove(dev, ldev, false);
4610 }
4611
4612 int __netdev_adjacent_dev_insert_link(struct net_device *dev,
4613 struct net_device *upper_dev,
4614 bool master, bool neighbour)
4615 {
4616 int ret;
4617
4618 ret = __netdev_upper_dev_insert(dev, upper_dev, master, neighbour);
4619 if (ret)
4620 return ret;
4621
4622 ret = __netdev_lower_dev_insert(upper_dev, dev, neighbour);
4623 if (ret) {
4624 __netdev_upper_dev_remove(dev, upper_dev);
4625 return ret;
4626 }
4627
4628 return 0;
4629 }
4630
4631 static inline int __netdev_adjacent_dev_link(struct net_device *dev,
4632 struct net_device *udev)
4633 {
4634 return __netdev_adjacent_dev_insert_link(dev, udev, false, false);
4635 }
4636
4637 static inline int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4638 struct net_device *udev,
4639 bool master)
4640 {
4641 return __netdev_adjacent_dev_insert_link(dev, udev, master, true);
4642 }
4643
4644 void __netdev_adjacent_dev_unlink(struct net_device *dev,
4645 struct net_device *upper_dev)
4646 {
4647 __netdev_upper_dev_remove(dev, upper_dev);
4648 __netdev_lower_dev_remove(upper_dev, dev);
4649 }
4650
4651
4652 static int __netdev_upper_dev_link(struct net_device *dev,
4653 struct net_device *upper_dev, bool master)
4654 {
4655 struct netdev_adjacent *i, *j, *to_i, *to_j;
4656 int ret = 0;
4657
4658 ASSERT_RTNL();
4659
4660 if (dev == upper_dev)
4661 return -EBUSY;
4662
4663 /* To prevent loops, check if dev is not upper device to upper_dev. */
4664 if (__netdev_find_upper(upper_dev, dev))
4665 return -EBUSY;
4666
4667 if (__netdev_find_upper(dev, upper_dev))
4668 return -EEXIST;
4669
4670 if (master && netdev_master_upper_dev_get(dev))
4671 return -EBUSY;
4672
4673 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, master);
4674 if (ret)
4675 return ret;
4676
4677 /* Now that we linked these devs, make all the upper_dev's
4678 * upper_dev_list visible to every dev's lower_dev_list and vice
4679 * versa, and don't forget the devices itself. All of these
4680 * links are non-neighbours.
4681 */
4682 list_for_each_entry(i, &dev->lower_dev_list, list) {
4683 list_for_each_entry(j, &upper_dev->upper_dev_list, list) {
4684 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4685 if (ret)
4686 goto rollback_mesh;
4687 }
4688 }
4689
4690 /* add dev to every upper_dev's upper device */
4691 list_for_each_entry(i, &upper_dev->upper_dev_list, list) {
4692 ret = __netdev_adjacent_dev_link(dev, i->dev);
4693 if (ret)
4694 goto rollback_upper_mesh;
4695 }
4696
4697 /* add upper_dev to every dev's lower device */
4698 list_for_each_entry(i, &dev->lower_dev_list, list) {
4699 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4700 if (ret)
4701 goto rollback_lower_mesh;
4702 }
4703
4704 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4705 return 0;
4706
4707 rollback_lower_mesh:
4708 to_i = i;
4709 list_for_each_entry(i, &dev->lower_dev_list, list) {
4710 if (i == to_i)
4711 break;
4712 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4713 }
4714
4715 i = NULL;
4716
4717 rollback_upper_mesh:
4718 to_i = i;
4719 list_for_each_entry(i, &upper_dev->upper_dev_list, list) {
4720 if (i == to_i)
4721 break;
4722 __netdev_adjacent_dev_unlink(dev, i->dev);
4723 }
4724
4725 i = j = NULL;
4726
4727 rollback_mesh:
4728 to_i = i;
4729 to_j = j;
4730 list_for_each_entry(i, &dev->lower_dev_list, list) {
4731 list_for_each_entry(j, &upper_dev->upper_dev_list, list) {
4732 if (i == to_i && j == to_j)
4733 break;
4734 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4735 }
4736 if (i == to_i)
4737 break;
4738 }
4739
4740 __netdev_adjacent_dev_unlink(dev, upper_dev);
4741
4742 return ret;
4743 }
4744
4745 /**
4746 * netdev_upper_dev_link - Add a link to the upper device
4747 * @dev: device
4748 * @upper_dev: new upper device
4749 *
4750 * Adds a link to device which is upper to this one. The caller must hold
4751 * the RTNL lock. On a failure a negative errno code is returned.
4752 * On success the reference counts are adjusted and the function
4753 * returns zero.
4754 */
4755 int netdev_upper_dev_link(struct net_device *dev,
4756 struct net_device *upper_dev)
4757 {
4758 return __netdev_upper_dev_link(dev, upper_dev, false);
4759 }
4760 EXPORT_SYMBOL(netdev_upper_dev_link);
4761
4762 /**
4763 * netdev_master_upper_dev_link - Add a master link to the upper device
4764 * @dev: device
4765 * @upper_dev: new upper device
4766 *
4767 * Adds a link to device which is upper to this one. In this case, only
4768 * one master upper device can be linked, although other non-master devices
4769 * might be linked as well. The caller must hold the RTNL lock.
4770 * On a failure a negative errno code is returned. On success the reference
4771 * counts are adjusted and the function returns zero.
4772 */
4773 int netdev_master_upper_dev_link(struct net_device *dev,
4774 struct net_device *upper_dev)
4775 {
4776 return __netdev_upper_dev_link(dev, upper_dev, true);
4777 }
4778 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4779
4780 /**
4781 * netdev_upper_dev_unlink - Removes a link to upper device
4782 * @dev: device
4783 * @upper_dev: new upper device
4784 *
4785 * Removes a link to device which is upper to this one. The caller must hold
4786 * the RTNL lock.
4787 */
4788 void netdev_upper_dev_unlink(struct net_device *dev,
4789 struct net_device *upper_dev)
4790 {
4791 struct netdev_adjacent *i, *j;
4792 ASSERT_RTNL();
4793
4794 __netdev_adjacent_dev_unlink(dev, upper_dev);
4795
4796 /* Here is the tricky part. We must remove all dev's lower
4797 * devices from all upper_dev's upper devices and vice
4798 * versa, to maintain the graph relationship.
4799 */
4800 list_for_each_entry(i, &dev->lower_dev_list, list)
4801 list_for_each_entry(j, &upper_dev->upper_dev_list, list)
4802 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4803
4804 /* remove also the devices itself from lower/upper device
4805 * list
4806 */
4807 list_for_each_entry(i, &dev->lower_dev_list, list)
4808 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4809
4810 list_for_each_entry(i, &upper_dev->upper_dev_list, list)
4811 __netdev_adjacent_dev_unlink(dev, i->dev);
4812
4813 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4814 }
4815 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4816
4817 static void dev_change_rx_flags(struct net_device *dev, int flags)
4818 {
4819 const struct net_device_ops *ops = dev->netdev_ops;
4820
4821 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4822 ops->ndo_change_rx_flags(dev, flags);
4823 }
4824
4825 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4826 {
4827 unsigned int old_flags = dev->flags;
4828 kuid_t uid;
4829 kgid_t gid;
4830
4831 ASSERT_RTNL();
4832
4833 dev->flags |= IFF_PROMISC;
4834 dev->promiscuity += inc;
4835 if (dev->promiscuity == 0) {
4836 /*
4837 * Avoid overflow.
4838 * If inc causes overflow, untouch promisc and return error.
4839 */
4840 if (inc < 0)
4841 dev->flags &= ~IFF_PROMISC;
4842 else {
4843 dev->promiscuity -= inc;
4844 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4845 dev->name);
4846 return -EOVERFLOW;
4847 }
4848 }
4849 if (dev->flags != old_flags) {
4850 pr_info("device %s %s promiscuous mode\n",
4851 dev->name,
4852 dev->flags & IFF_PROMISC ? "entered" : "left");
4853 if (audit_enabled) {
4854 current_uid_gid(&uid, &gid);
4855 audit_log(current->audit_context, GFP_ATOMIC,
4856 AUDIT_ANOM_PROMISCUOUS,
4857 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4858 dev->name, (dev->flags & IFF_PROMISC),
4859 (old_flags & IFF_PROMISC),
4860 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4861 from_kuid(&init_user_ns, uid),
4862 from_kgid(&init_user_ns, gid),
4863 audit_get_sessionid(current));
4864 }
4865
4866 dev_change_rx_flags(dev, IFF_PROMISC);
4867 }
4868 return 0;
4869 }
4870
4871 /**
4872 * dev_set_promiscuity - update promiscuity count on a device
4873 * @dev: device
4874 * @inc: modifier
4875 *
4876 * Add or remove promiscuity from a device. While the count in the device
4877 * remains above zero the interface remains promiscuous. Once it hits zero
4878 * the device reverts back to normal filtering operation. A negative inc
4879 * value is used to drop promiscuity on the device.
4880 * Return 0 if successful or a negative errno code on error.
4881 */
4882 int dev_set_promiscuity(struct net_device *dev, int inc)
4883 {
4884 unsigned int old_flags = dev->flags;
4885 int err;
4886
4887 err = __dev_set_promiscuity(dev, inc);
4888 if (err < 0)
4889 return err;
4890 if (dev->flags != old_flags)
4891 dev_set_rx_mode(dev);
4892 return err;
4893 }
4894 EXPORT_SYMBOL(dev_set_promiscuity);
4895
4896 /**
4897 * dev_set_allmulti - update allmulti count on a device
4898 * @dev: device
4899 * @inc: modifier
4900 *
4901 * Add or remove reception of all multicast frames to a device. While the
4902 * count in the device remains above zero the interface remains listening
4903 * to all interfaces. Once it hits zero the device reverts back to normal
4904 * filtering operation. A negative @inc value is used to drop the counter
4905 * when releasing a resource needing all multicasts.
4906 * Return 0 if successful or a negative errno code on error.
4907 */
4908
4909 int dev_set_allmulti(struct net_device *dev, int inc)
4910 {
4911 unsigned int old_flags = dev->flags;
4912
4913 ASSERT_RTNL();
4914
4915 dev->flags |= IFF_ALLMULTI;
4916 dev->allmulti += inc;
4917 if (dev->allmulti == 0) {
4918 /*
4919 * Avoid overflow.
4920 * If inc causes overflow, untouch allmulti and return error.
4921 */
4922 if (inc < 0)
4923 dev->flags &= ~IFF_ALLMULTI;
4924 else {
4925 dev->allmulti -= inc;
4926 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4927 dev->name);
4928 return -EOVERFLOW;
4929 }
4930 }
4931 if (dev->flags ^ old_flags) {
4932 dev_change_rx_flags(dev, IFF_ALLMULTI);
4933 dev_set_rx_mode(dev);
4934 }
4935 return 0;
4936 }
4937 EXPORT_SYMBOL(dev_set_allmulti);
4938
4939 /*
4940 * Upload unicast and multicast address lists to device and
4941 * configure RX filtering. When the device doesn't support unicast
4942 * filtering it is put in promiscuous mode while unicast addresses
4943 * are present.
4944 */
4945 void __dev_set_rx_mode(struct net_device *dev)
4946 {
4947 const struct net_device_ops *ops = dev->netdev_ops;
4948
4949 /* dev_open will call this function so the list will stay sane. */
4950 if (!(dev->flags&IFF_UP))
4951 return;
4952
4953 if (!netif_device_present(dev))
4954 return;
4955
4956 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4957 /* Unicast addresses changes may only happen under the rtnl,
4958 * therefore calling __dev_set_promiscuity here is safe.
4959 */
4960 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4961 __dev_set_promiscuity(dev, 1);
4962 dev->uc_promisc = true;
4963 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4964 __dev_set_promiscuity(dev, -1);
4965 dev->uc_promisc = false;
4966 }
4967 }
4968
4969 if (ops->ndo_set_rx_mode)
4970 ops->ndo_set_rx_mode(dev);
4971 }
4972
4973 void dev_set_rx_mode(struct net_device *dev)
4974 {
4975 netif_addr_lock_bh(dev);
4976 __dev_set_rx_mode(dev);
4977 netif_addr_unlock_bh(dev);
4978 }
4979
4980 /**
4981 * dev_get_flags - get flags reported to userspace
4982 * @dev: device
4983 *
4984 * Get the combination of flag bits exported through APIs to userspace.
4985 */
4986 unsigned int dev_get_flags(const struct net_device *dev)
4987 {
4988 unsigned int flags;
4989
4990 flags = (dev->flags & ~(IFF_PROMISC |
4991 IFF_ALLMULTI |
4992 IFF_RUNNING |
4993 IFF_LOWER_UP |
4994 IFF_DORMANT)) |
4995 (dev->gflags & (IFF_PROMISC |
4996 IFF_ALLMULTI));
4997
4998 if (netif_running(dev)) {
4999 if (netif_oper_up(dev))
5000 flags |= IFF_RUNNING;
5001 if (netif_carrier_ok(dev))
5002 flags |= IFF_LOWER_UP;
5003 if (netif_dormant(dev))
5004 flags |= IFF_DORMANT;
5005 }
5006
5007 return flags;
5008 }
5009 EXPORT_SYMBOL(dev_get_flags);
5010
5011 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5012 {
5013 unsigned int old_flags = dev->flags;
5014 int ret;
5015
5016 ASSERT_RTNL();
5017
5018 /*
5019 * Set the flags on our device.
5020 */
5021
5022 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5023 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5024 IFF_AUTOMEDIA)) |
5025 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5026 IFF_ALLMULTI));
5027
5028 /*
5029 * Load in the correct multicast list now the flags have changed.
5030 */
5031
5032 if ((old_flags ^ flags) & IFF_MULTICAST)
5033 dev_change_rx_flags(dev, IFF_MULTICAST);
5034
5035 dev_set_rx_mode(dev);
5036
5037 /*
5038 * Have we downed the interface. We handle IFF_UP ourselves
5039 * according to user attempts to set it, rather than blindly
5040 * setting it.
5041 */
5042
5043 ret = 0;
5044 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5045 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5046
5047 if (!ret)
5048 dev_set_rx_mode(dev);
5049 }
5050
5051 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5052 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5053
5054 dev->gflags ^= IFF_PROMISC;
5055 dev_set_promiscuity(dev, inc);
5056 }
5057
5058 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5059 is important. Some (broken) drivers set IFF_PROMISC, when
5060 IFF_ALLMULTI is requested not asking us and not reporting.
5061 */
5062 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5063 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5064
5065 dev->gflags ^= IFF_ALLMULTI;
5066 dev_set_allmulti(dev, inc);
5067 }
5068
5069 return ret;
5070 }
5071
5072 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
5073 {
5074 unsigned int changes = dev->flags ^ old_flags;
5075
5076 if (changes & IFF_UP) {
5077 if (dev->flags & IFF_UP)
5078 call_netdevice_notifiers(NETDEV_UP, dev);
5079 else
5080 call_netdevice_notifiers(NETDEV_DOWN, dev);
5081 }
5082
5083 if (dev->flags & IFF_UP &&
5084 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5085 struct netdev_notifier_change_info change_info;
5086
5087 change_info.flags_changed = changes;
5088 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5089 &change_info.info);
5090 }
5091 }
5092
5093 /**
5094 * dev_change_flags - change device settings
5095 * @dev: device
5096 * @flags: device state flags
5097 *
5098 * Change settings on device based state flags. The flags are
5099 * in the userspace exported format.
5100 */
5101 int dev_change_flags(struct net_device *dev, unsigned int flags)
5102 {
5103 int ret;
5104 unsigned int changes, old_flags = dev->flags;
5105
5106 ret = __dev_change_flags(dev, flags);
5107 if (ret < 0)
5108 return ret;
5109
5110 changes = old_flags ^ dev->flags;
5111 if (changes)
5112 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
5113
5114 __dev_notify_flags(dev, old_flags);
5115 return ret;
5116 }
5117 EXPORT_SYMBOL(dev_change_flags);
5118
5119 /**
5120 * dev_set_mtu - Change maximum transfer unit
5121 * @dev: device
5122 * @new_mtu: new transfer unit
5123 *
5124 * Change the maximum transfer size of the network device.
5125 */
5126 int dev_set_mtu(struct net_device *dev, int new_mtu)
5127 {
5128 const struct net_device_ops *ops = dev->netdev_ops;
5129 int err;
5130
5131 if (new_mtu == dev->mtu)
5132 return 0;
5133
5134 /* MTU must be positive. */
5135 if (new_mtu < 0)
5136 return -EINVAL;
5137
5138 if (!netif_device_present(dev))
5139 return -ENODEV;
5140
5141 err = 0;
5142 if (ops->ndo_change_mtu)
5143 err = ops->ndo_change_mtu(dev, new_mtu);
5144 else
5145 dev->mtu = new_mtu;
5146
5147 if (!err)
5148 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5149 return err;
5150 }
5151 EXPORT_SYMBOL(dev_set_mtu);
5152
5153 /**
5154 * dev_set_group - Change group this device belongs to
5155 * @dev: device
5156 * @new_group: group this device should belong to
5157 */
5158 void dev_set_group(struct net_device *dev, int new_group)
5159 {
5160 dev->group = new_group;
5161 }
5162 EXPORT_SYMBOL(dev_set_group);
5163
5164 /**
5165 * dev_set_mac_address - Change Media Access Control Address
5166 * @dev: device
5167 * @sa: new address
5168 *
5169 * Change the hardware (MAC) address of the device
5170 */
5171 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5172 {
5173 const struct net_device_ops *ops = dev->netdev_ops;
5174 int err;
5175
5176 if (!ops->ndo_set_mac_address)
5177 return -EOPNOTSUPP;
5178 if (sa->sa_family != dev->type)
5179 return -EINVAL;
5180 if (!netif_device_present(dev))
5181 return -ENODEV;
5182 err = ops->ndo_set_mac_address(dev, sa);
5183 if (err)
5184 return err;
5185 dev->addr_assign_type = NET_ADDR_SET;
5186 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5187 add_device_randomness(dev->dev_addr, dev->addr_len);
5188 return 0;
5189 }
5190 EXPORT_SYMBOL(dev_set_mac_address);
5191
5192 /**
5193 * dev_change_carrier - Change device carrier
5194 * @dev: device
5195 * @new_carrier: new value
5196 *
5197 * Change device carrier
5198 */
5199 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5200 {
5201 const struct net_device_ops *ops = dev->netdev_ops;
5202
5203 if (!ops->ndo_change_carrier)
5204 return -EOPNOTSUPP;
5205 if (!netif_device_present(dev))
5206 return -ENODEV;
5207 return ops->ndo_change_carrier(dev, new_carrier);
5208 }
5209 EXPORT_SYMBOL(dev_change_carrier);
5210
5211 /**
5212 * dev_get_phys_port_id - Get device physical port ID
5213 * @dev: device
5214 * @ppid: port ID
5215 *
5216 * Get device physical port ID
5217 */
5218 int dev_get_phys_port_id(struct net_device *dev,
5219 struct netdev_phys_port_id *ppid)
5220 {
5221 const struct net_device_ops *ops = dev->netdev_ops;
5222
5223 if (!ops->ndo_get_phys_port_id)
5224 return -EOPNOTSUPP;
5225 return ops->ndo_get_phys_port_id(dev, ppid);
5226 }
5227 EXPORT_SYMBOL(dev_get_phys_port_id);
5228
5229 /**
5230 * dev_new_index - allocate an ifindex
5231 * @net: the applicable net namespace
5232 *
5233 * Returns a suitable unique value for a new device interface
5234 * number. The caller must hold the rtnl semaphore or the
5235 * dev_base_lock to be sure it remains unique.
5236 */
5237 static int dev_new_index(struct net *net)
5238 {
5239 int ifindex = net->ifindex;
5240 for (;;) {
5241 if (++ifindex <= 0)
5242 ifindex = 1;
5243 if (!__dev_get_by_index(net, ifindex))
5244 return net->ifindex = ifindex;
5245 }
5246 }
5247
5248 /* Delayed registration/unregisteration */
5249 static LIST_HEAD(net_todo_list);
5250 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5251
5252 static void net_set_todo(struct net_device *dev)
5253 {
5254 list_add_tail(&dev->todo_list, &net_todo_list);
5255 dev_net(dev)->dev_unreg_count++;
5256 }
5257
5258 static void rollback_registered_many(struct list_head *head)
5259 {
5260 struct net_device *dev, *tmp;
5261
5262 BUG_ON(dev_boot_phase);
5263 ASSERT_RTNL();
5264
5265 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5266 /* Some devices call without registering
5267 * for initialization unwind. Remove those
5268 * devices and proceed with the remaining.
5269 */
5270 if (dev->reg_state == NETREG_UNINITIALIZED) {
5271 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5272 dev->name, dev);
5273
5274 WARN_ON(1);
5275 list_del(&dev->unreg_list);
5276 continue;
5277 }
5278 dev->dismantle = true;
5279 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5280 }
5281
5282 /* If device is running, close it first. */
5283 dev_close_many(head);
5284
5285 list_for_each_entry(dev, head, unreg_list) {
5286 /* And unlink it from device chain. */
5287 unlist_netdevice(dev);
5288
5289 dev->reg_state = NETREG_UNREGISTERING;
5290 }
5291
5292 synchronize_net();
5293
5294 list_for_each_entry(dev, head, unreg_list) {
5295 /* Shutdown queueing discipline. */
5296 dev_shutdown(dev);
5297
5298
5299 /* Notify protocols, that we are about to destroy
5300 this device. They should clean all the things.
5301 */
5302 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5303
5304 if (!dev->rtnl_link_ops ||
5305 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5306 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5307
5308 /*
5309 * Flush the unicast and multicast chains
5310 */
5311 dev_uc_flush(dev);
5312 dev_mc_flush(dev);
5313
5314 if (dev->netdev_ops->ndo_uninit)
5315 dev->netdev_ops->ndo_uninit(dev);
5316
5317 /* Notifier chain MUST detach us all upper devices. */
5318 WARN_ON(netdev_has_any_upper_dev(dev));
5319
5320 /* Remove entries from kobject tree */
5321 netdev_unregister_kobject(dev);
5322 #ifdef CONFIG_XPS
5323 /* Remove XPS queueing entries */
5324 netif_reset_xps_queues_gt(dev, 0);
5325 #endif
5326 }
5327
5328 synchronize_net();
5329
5330 list_for_each_entry(dev, head, unreg_list)
5331 dev_put(dev);
5332 }
5333
5334 static void rollback_registered(struct net_device *dev)
5335 {
5336 LIST_HEAD(single);
5337
5338 list_add(&dev->unreg_list, &single);
5339 rollback_registered_many(&single);
5340 list_del(&single);
5341 }
5342
5343 static netdev_features_t netdev_fix_features(struct net_device *dev,
5344 netdev_features_t features)
5345 {
5346 /* Fix illegal checksum combinations */
5347 if ((features & NETIF_F_HW_CSUM) &&
5348 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5349 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5350 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5351 }
5352
5353 /* TSO requires that SG is present as well. */
5354 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5355 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5356 features &= ~NETIF_F_ALL_TSO;
5357 }
5358
5359 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5360 !(features & NETIF_F_IP_CSUM)) {
5361 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5362 features &= ~NETIF_F_TSO;
5363 features &= ~NETIF_F_TSO_ECN;
5364 }
5365
5366 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5367 !(features & NETIF_F_IPV6_CSUM)) {
5368 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5369 features &= ~NETIF_F_TSO6;
5370 }
5371
5372 /* TSO ECN requires that TSO is present as well. */
5373 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5374 features &= ~NETIF_F_TSO_ECN;
5375
5376 /* Software GSO depends on SG. */
5377 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5378 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5379 features &= ~NETIF_F_GSO;
5380 }
5381
5382 /* UFO needs SG and checksumming */
5383 if (features & NETIF_F_UFO) {
5384 /* maybe split UFO into V4 and V6? */
5385 if (!((features & NETIF_F_GEN_CSUM) ||
5386 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5387 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5388 netdev_dbg(dev,
5389 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5390 features &= ~NETIF_F_UFO;
5391 }
5392
5393 if (!(features & NETIF_F_SG)) {
5394 netdev_dbg(dev,
5395 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5396 features &= ~NETIF_F_UFO;
5397 }
5398 }
5399
5400 return features;
5401 }
5402
5403 int __netdev_update_features(struct net_device *dev)
5404 {
5405 netdev_features_t features;
5406 int err = 0;
5407
5408 ASSERT_RTNL();
5409
5410 features = netdev_get_wanted_features(dev);
5411
5412 if (dev->netdev_ops->ndo_fix_features)
5413 features = dev->netdev_ops->ndo_fix_features(dev, features);
5414
5415 /* driver might be less strict about feature dependencies */
5416 features = netdev_fix_features(dev, features);
5417
5418 if (dev->features == features)
5419 return 0;
5420
5421 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5422 &dev->features, &features);
5423
5424 if (dev->netdev_ops->ndo_set_features)
5425 err = dev->netdev_ops->ndo_set_features(dev, features);
5426
5427 if (unlikely(err < 0)) {
5428 netdev_err(dev,
5429 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5430 err, &features, &dev->features);
5431 return -1;
5432 }
5433
5434 if (!err)
5435 dev->features = features;
5436
5437 return 1;
5438 }
5439
5440 /**
5441 * netdev_update_features - recalculate device features
5442 * @dev: the device to check
5443 *
5444 * Recalculate dev->features set and send notifications if it
5445 * has changed. Should be called after driver or hardware dependent
5446 * conditions might have changed that influence the features.
5447 */
5448 void netdev_update_features(struct net_device *dev)
5449 {
5450 if (__netdev_update_features(dev))
5451 netdev_features_change(dev);
5452 }
5453 EXPORT_SYMBOL(netdev_update_features);
5454
5455 /**
5456 * netdev_change_features - recalculate device features
5457 * @dev: the device to check
5458 *
5459 * Recalculate dev->features set and send notifications even
5460 * if they have not changed. Should be called instead of
5461 * netdev_update_features() if also dev->vlan_features might
5462 * have changed to allow the changes to be propagated to stacked
5463 * VLAN devices.
5464 */
5465 void netdev_change_features(struct net_device *dev)
5466 {
5467 __netdev_update_features(dev);
5468 netdev_features_change(dev);
5469 }
5470 EXPORT_SYMBOL(netdev_change_features);
5471
5472 /**
5473 * netif_stacked_transfer_operstate - transfer operstate
5474 * @rootdev: the root or lower level device to transfer state from
5475 * @dev: the device to transfer operstate to
5476 *
5477 * Transfer operational state from root to device. This is normally
5478 * called when a stacking relationship exists between the root
5479 * device and the device(a leaf device).
5480 */
5481 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5482 struct net_device *dev)
5483 {
5484 if (rootdev->operstate == IF_OPER_DORMANT)
5485 netif_dormant_on(dev);
5486 else
5487 netif_dormant_off(dev);
5488
5489 if (netif_carrier_ok(rootdev)) {
5490 if (!netif_carrier_ok(dev))
5491 netif_carrier_on(dev);
5492 } else {
5493 if (netif_carrier_ok(dev))
5494 netif_carrier_off(dev);
5495 }
5496 }
5497 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5498
5499 #ifdef CONFIG_RPS
5500 static int netif_alloc_rx_queues(struct net_device *dev)
5501 {
5502 unsigned int i, count = dev->num_rx_queues;
5503 struct netdev_rx_queue *rx;
5504
5505 BUG_ON(count < 1);
5506
5507 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5508 if (!rx)
5509 return -ENOMEM;
5510
5511 dev->_rx = rx;
5512
5513 for (i = 0; i < count; i++)
5514 rx[i].dev = dev;
5515 return 0;
5516 }
5517 #endif
5518
5519 static void netdev_init_one_queue(struct net_device *dev,
5520 struct netdev_queue *queue, void *_unused)
5521 {
5522 /* Initialize queue lock */
5523 spin_lock_init(&queue->_xmit_lock);
5524 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5525 queue->xmit_lock_owner = -1;
5526 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5527 queue->dev = dev;
5528 #ifdef CONFIG_BQL
5529 dql_init(&queue->dql, HZ);
5530 #endif
5531 }
5532
5533 static void netif_free_tx_queues(struct net_device *dev)
5534 {
5535 if (is_vmalloc_addr(dev->_tx))
5536 vfree(dev->_tx);
5537 else
5538 kfree(dev->_tx);
5539 }
5540
5541 static int netif_alloc_netdev_queues(struct net_device *dev)
5542 {
5543 unsigned int count = dev->num_tx_queues;
5544 struct netdev_queue *tx;
5545 size_t sz = count * sizeof(*tx);
5546
5547 BUG_ON(count < 1 || count > 0xffff);
5548
5549 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5550 if (!tx) {
5551 tx = vzalloc(sz);
5552 if (!tx)
5553 return -ENOMEM;
5554 }
5555 dev->_tx = tx;
5556
5557 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5558 spin_lock_init(&dev->tx_global_lock);
5559
5560 return 0;
5561 }
5562
5563 /**
5564 * register_netdevice - register a network device
5565 * @dev: device to register
5566 *
5567 * Take a completed network device structure and add it to the kernel
5568 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5569 * chain. 0 is returned on success. A negative errno code is returned
5570 * on a failure to set up the device, or if the name is a duplicate.
5571 *
5572 * Callers must hold the rtnl semaphore. You may want
5573 * register_netdev() instead of this.
5574 *
5575 * BUGS:
5576 * The locking appears insufficient to guarantee two parallel registers
5577 * will not get the same name.
5578 */
5579
5580 int register_netdevice(struct net_device *dev)
5581 {
5582 int ret;
5583 struct net *net = dev_net(dev);
5584
5585 BUG_ON(dev_boot_phase);
5586 ASSERT_RTNL();
5587
5588 might_sleep();
5589
5590 /* When net_device's are persistent, this will be fatal. */
5591 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5592 BUG_ON(!net);
5593
5594 spin_lock_init(&dev->addr_list_lock);
5595 netdev_set_addr_lockdep_class(dev);
5596
5597 dev->iflink = -1;
5598
5599 ret = dev_get_valid_name(net, dev, dev->name);
5600 if (ret < 0)
5601 goto out;
5602
5603 /* Init, if this function is available */
5604 if (dev->netdev_ops->ndo_init) {
5605 ret = dev->netdev_ops->ndo_init(dev);
5606 if (ret) {
5607 if (ret > 0)
5608 ret = -EIO;
5609 goto out;
5610 }
5611 }
5612
5613 if (((dev->hw_features | dev->features) &
5614 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5615 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5616 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5617 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5618 ret = -EINVAL;
5619 goto err_uninit;
5620 }
5621
5622 ret = -EBUSY;
5623 if (!dev->ifindex)
5624 dev->ifindex = dev_new_index(net);
5625 else if (__dev_get_by_index(net, dev->ifindex))
5626 goto err_uninit;
5627
5628 if (dev->iflink == -1)
5629 dev->iflink = dev->ifindex;
5630
5631 /* Transfer changeable features to wanted_features and enable
5632 * software offloads (GSO and GRO).
5633 */
5634 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5635 dev->features |= NETIF_F_SOFT_FEATURES;
5636 dev->wanted_features = dev->features & dev->hw_features;
5637
5638 /* Turn on no cache copy if HW is doing checksum */
5639 if (!(dev->flags & IFF_LOOPBACK)) {
5640 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5641 if (dev->features & NETIF_F_ALL_CSUM) {
5642 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5643 dev->features |= NETIF_F_NOCACHE_COPY;
5644 }
5645 }
5646
5647 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5648 */
5649 dev->vlan_features |= NETIF_F_HIGHDMA;
5650
5651 /* Make NETIF_F_SG inheritable to tunnel devices.
5652 */
5653 dev->hw_enc_features |= NETIF_F_SG;
5654
5655 /* Make NETIF_F_SG inheritable to MPLS.
5656 */
5657 dev->mpls_features |= NETIF_F_SG;
5658
5659 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5660 ret = notifier_to_errno(ret);
5661 if (ret)
5662 goto err_uninit;
5663
5664 ret = netdev_register_kobject(dev);
5665 if (ret)
5666 goto err_uninit;
5667 dev->reg_state = NETREG_REGISTERED;
5668
5669 __netdev_update_features(dev);
5670
5671 /*
5672 * Default initial state at registry is that the
5673 * device is present.
5674 */
5675
5676 set_bit(__LINK_STATE_PRESENT, &dev->state);
5677
5678 linkwatch_init_dev(dev);
5679
5680 dev_init_scheduler(dev);
5681 dev_hold(dev);
5682 list_netdevice(dev);
5683 add_device_randomness(dev->dev_addr, dev->addr_len);
5684
5685 /* If the device has permanent device address, driver should
5686 * set dev_addr and also addr_assign_type should be set to
5687 * NET_ADDR_PERM (default value).
5688 */
5689 if (dev->addr_assign_type == NET_ADDR_PERM)
5690 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5691
5692 /* Notify protocols, that a new device appeared. */
5693 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5694 ret = notifier_to_errno(ret);
5695 if (ret) {
5696 rollback_registered(dev);
5697 dev->reg_state = NETREG_UNREGISTERED;
5698 }
5699 /*
5700 * Prevent userspace races by waiting until the network
5701 * device is fully setup before sending notifications.
5702 */
5703 if (!dev->rtnl_link_ops ||
5704 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5705 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5706
5707 out:
5708 return ret;
5709
5710 err_uninit:
5711 if (dev->netdev_ops->ndo_uninit)
5712 dev->netdev_ops->ndo_uninit(dev);
5713 goto out;
5714 }
5715 EXPORT_SYMBOL(register_netdevice);
5716
5717 /**
5718 * init_dummy_netdev - init a dummy network device for NAPI
5719 * @dev: device to init
5720 *
5721 * This takes a network device structure and initialize the minimum
5722 * amount of fields so it can be used to schedule NAPI polls without
5723 * registering a full blown interface. This is to be used by drivers
5724 * that need to tie several hardware interfaces to a single NAPI
5725 * poll scheduler due to HW limitations.
5726 */
5727 int init_dummy_netdev(struct net_device *dev)
5728 {
5729 /* Clear everything. Note we don't initialize spinlocks
5730 * are they aren't supposed to be taken by any of the
5731 * NAPI code and this dummy netdev is supposed to be
5732 * only ever used for NAPI polls
5733 */
5734 memset(dev, 0, sizeof(struct net_device));
5735
5736 /* make sure we BUG if trying to hit standard
5737 * register/unregister code path
5738 */
5739 dev->reg_state = NETREG_DUMMY;
5740
5741 /* NAPI wants this */
5742 INIT_LIST_HEAD(&dev->napi_list);
5743
5744 /* a dummy interface is started by default */
5745 set_bit(__LINK_STATE_PRESENT, &dev->state);
5746 set_bit(__LINK_STATE_START, &dev->state);
5747
5748 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5749 * because users of this 'device' dont need to change
5750 * its refcount.
5751 */
5752
5753 return 0;
5754 }
5755 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5756
5757
5758 /**
5759 * register_netdev - register a network device
5760 * @dev: device to register
5761 *
5762 * Take a completed network device structure and add it to the kernel
5763 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5764 * chain. 0 is returned on success. A negative errno code is returned
5765 * on a failure to set up the device, or if the name is a duplicate.
5766 *
5767 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5768 * and expands the device name if you passed a format string to
5769 * alloc_netdev.
5770 */
5771 int register_netdev(struct net_device *dev)
5772 {
5773 int err;
5774
5775 rtnl_lock();
5776 err = register_netdevice(dev);
5777 rtnl_unlock();
5778 return err;
5779 }
5780 EXPORT_SYMBOL(register_netdev);
5781
5782 int netdev_refcnt_read(const struct net_device *dev)
5783 {
5784 int i, refcnt = 0;
5785
5786 for_each_possible_cpu(i)
5787 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5788 return refcnt;
5789 }
5790 EXPORT_SYMBOL(netdev_refcnt_read);
5791
5792 /**
5793 * netdev_wait_allrefs - wait until all references are gone.
5794 * @dev: target net_device
5795 *
5796 * This is called when unregistering network devices.
5797 *
5798 * Any protocol or device that holds a reference should register
5799 * for netdevice notification, and cleanup and put back the
5800 * reference if they receive an UNREGISTER event.
5801 * We can get stuck here if buggy protocols don't correctly
5802 * call dev_put.
5803 */
5804 static void netdev_wait_allrefs(struct net_device *dev)
5805 {
5806 unsigned long rebroadcast_time, warning_time;
5807 int refcnt;
5808
5809 linkwatch_forget_dev(dev);
5810
5811 rebroadcast_time = warning_time = jiffies;
5812 refcnt = netdev_refcnt_read(dev);
5813
5814 while (refcnt != 0) {
5815 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5816 rtnl_lock();
5817
5818 /* Rebroadcast unregister notification */
5819 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5820
5821 __rtnl_unlock();
5822 rcu_barrier();
5823 rtnl_lock();
5824
5825 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5826 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5827 &dev->state)) {
5828 /* We must not have linkwatch events
5829 * pending on unregister. If this
5830 * happens, we simply run the queue
5831 * unscheduled, resulting in a noop
5832 * for this device.
5833 */
5834 linkwatch_run_queue();
5835 }
5836
5837 __rtnl_unlock();
5838
5839 rebroadcast_time = jiffies;
5840 }
5841
5842 msleep(250);
5843
5844 refcnt = netdev_refcnt_read(dev);
5845
5846 if (time_after(jiffies, warning_time + 10 * HZ)) {
5847 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5848 dev->name, refcnt);
5849 warning_time = jiffies;
5850 }
5851 }
5852 }
5853
5854 /* The sequence is:
5855 *
5856 * rtnl_lock();
5857 * ...
5858 * register_netdevice(x1);
5859 * register_netdevice(x2);
5860 * ...
5861 * unregister_netdevice(y1);
5862 * unregister_netdevice(y2);
5863 * ...
5864 * rtnl_unlock();
5865 * free_netdev(y1);
5866 * free_netdev(y2);
5867 *
5868 * We are invoked by rtnl_unlock().
5869 * This allows us to deal with problems:
5870 * 1) We can delete sysfs objects which invoke hotplug
5871 * without deadlocking with linkwatch via keventd.
5872 * 2) Since we run with the RTNL semaphore not held, we can sleep
5873 * safely in order to wait for the netdev refcnt to drop to zero.
5874 *
5875 * We must not return until all unregister events added during
5876 * the interval the lock was held have been completed.
5877 */
5878 void netdev_run_todo(void)
5879 {
5880 struct list_head list;
5881
5882 /* Snapshot list, allow later requests */
5883 list_replace_init(&net_todo_list, &list);
5884
5885 __rtnl_unlock();
5886
5887
5888 /* Wait for rcu callbacks to finish before next phase */
5889 if (!list_empty(&list))
5890 rcu_barrier();
5891
5892 while (!list_empty(&list)) {
5893 struct net_device *dev
5894 = list_first_entry(&list, struct net_device, todo_list);
5895 list_del(&dev->todo_list);
5896
5897 rtnl_lock();
5898 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5899 __rtnl_unlock();
5900
5901 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5902 pr_err("network todo '%s' but state %d\n",
5903 dev->name, dev->reg_state);
5904 dump_stack();
5905 continue;
5906 }
5907
5908 dev->reg_state = NETREG_UNREGISTERED;
5909
5910 on_each_cpu(flush_backlog, dev, 1);
5911
5912 netdev_wait_allrefs(dev);
5913
5914 /* paranoia */
5915 BUG_ON(netdev_refcnt_read(dev));
5916 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5917 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5918 WARN_ON(dev->dn_ptr);
5919
5920 if (dev->destructor)
5921 dev->destructor(dev);
5922
5923 /* Report a network device has been unregistered */
5924 rtnl_lock();
5925 dev_net(dev)->dev_unreg_count--;
5926 __rtnl_unlock();
5927 wake_up(&netdev_unregistering_wq);
5928
5929 /* Free network device */
5930 kobject_put(&dev->dev.kobj);
5931 }
5932 }
5933
5934 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5935 * fields in the same order, with only the type differing.
5936 */
5937 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5938 const struct net_device_stats *netdev_stats)
5939 {
5940 #if BITS_PER_LONG == 64
5941 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5942 memcpy(stats64, netdev_stats, sizeof(*stats64));
5943 #else
5944 size_t i, n = sizeof(*stats64) / sizeof(u64);
5945 const unsigned long *src = (const unsigned long *)netdev_stats;
5946 u64 *dst = (u64 *)stats64;
5947
5948 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5949 sizeof(*stats64) / sizeof(u64));
5950 for (i = 0; i < n; i++)
5951 dst[i] = src[i];
5952 #endif
5953 }
5954 EXPORT_SYMBOL(netdev_stats_to_stats64);
5955
5956 /**
5957 * dev_get_stats - get network device statistics
5958 * @dev: device to get statistics from
5959 * @storage: place to store stats
5960 *
5961 * Get network statistics from device. Return @storage.
5962 * The device driver may provide its own method by setting
5963 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5964 * otherwise the internal statistics structure is used.
5965 */
5966 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5967 struct rtnl_link_stats64 *storage)
5968 {
5969 const struct net_device_ops *ops = dev->netdev_ops;
5970
5971 if (ops->ndo_get_stats64) {
5972 memset(storage, 0, sizeof(*storage));
5973 ops->ndo_get_stats64(dev, storage);
5974 } else if (ops->ndo_get_stats) {
5975 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5976 } else {
5977 netdev_stats_to_stats64(storage, &dev->stats);
5978 }
5979 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5980 return storage;
5981 }
5982 EXPORT_SYMBOL(dev_get_stats);
5983
5984 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5985 {
5986 struct netdev_queue *queue = dev_ingress_queue(dev);
5987
5988 #ifdef CONFIG_NET_CLS_ACT
5989 if (queue)
5990 return queue;
5991 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5992 if (!queue)
5993 return NULL;
5994 netdev_init_one_queue(dev, queue, NULL);
5995 queue->qdisc = &noop_qdisc;
5996 queue->qdisc_sleeping = &noop_qdisc;
5997 rcu_assign_pointer(dev->ingress_queue, queue);
5998 #endif
5999 return queue;
6000 }
6001
6002 static const struct ethtool_ops default_ethtool_ops;
6003
6004 void netdev_set_default_ethtool_ops(struct net_device *dev,
6005 const struct ethtool_ops *ops)
6006 {
6007 if (dev->ethtool_ops == &default_ethtool_ops)
6008 dev->ethtool_ops = ops;
6009 }
6010 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6011
6012 /**
6013 * alloc_netdev_mqs - allocate network device
6014 * @sizeof_priv: size of private data to allocate space for
6015 * @name: device name format string
6016 * @setup: callback to initialize device
6017 * @txqs: the number of TX subqueues to allocate
6018 * @rxqs: the number of RX subqueues to allocate
6019 *
6020 * Allocates a struct net_device with private data area for driver use
6021 * and performs basic initialization. Also allocates subquue structs
6022 * for each queue on the device.
6023 */
6024 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6025 void (*setup)(struct net_device *),
6026 unsigned int txqs, unsigned int rxqs)
6027 {
6028 struct net_device *dev;
6029 size_t alloc_size;
6030 struct net_device *p;
6031
6032 BUG_ON(strlen(name) >= sizeof(dev->name));
6033
6034 if (txqs < 1) {
6035 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6036 return NULL;
6037 }
6038
6039 #ifdef CONFIG_RPS
6040 if (rxqs < 1) {
6041 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6042 return NULL;
6043 }
6044 #endif
6045
6046 alloc_size = sizeof(struct net_device);
6047 if (sizeof_priv) {
6048 /* ensure 32-byte alignment of private area */
6049 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6050 alloc_size += sizeof_priv;
6051 }
6052 /* ensure 32-byte alignment of whole construct */
6053 alloc_size += NETDEV_ALIGN - 1;
6054
6055 p = kzalloc(alloc_size, GFP_KERNEL);
6056 if (!p)
6057 return NULL;
6058
6059 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6060 dev->padded = (char *)dev - (char *)p;
6061
6062 dev->pcpu_refcnt = alloc_percpu(int);
6063 if (!dev->pcpu_refcnt)
6064 goto free_p;
6065
6066 if (dev_addr_init(dev))
6067 goto free_pcpu;
6068
6069 dev_mc_init(dev);
6070 dev_uc_init(dev);
6071
6072 dev_net_set(dev, &init_net);
6073
6074 dev->gso_max_size = GSO_MAX_SIZE;
6075 dev->gso_max_segs = GSO_MAX_SEGS;
6076
6077 INIT_LIST_HEAD(&dev->napi_list);
6078 INIT_LIST_HEAD(&dev->unreg_list);
6079 INIT_LIST_HEAD(&dev->link_watch_list);
6080 INIT_LIST_HEAD(&dev->upper_dev_list);
6081 INIT_LIST_HEAD(&dev->lower_dev_list);
6082 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6083 setup(dev);
6084
6085 dev->num_tx_queues = txqs;
6086 dev->real_num_tx_queues = txqs;
6087 if (netif_alloc_netdev_queues(dev))
6088 goto free_all;
6089
6090 #ifdef CONFIG_RPS
6091 dev->num_rx_queues = rxqs;
6092 dev->real_num_rx_queues = rxqs;
6093 if (netif_alloc_rx_queues(dev))
6094 goto free_all;
6095 #endif
6096
6097 strcpy(dev->name, name);
6098 dev->group = INIT_NETDEV_GROUP;
6099 if (!dev->ethtool_ops)
6100 dev->ethtool_ops = &default_ethtool_ops;
6101 return dev;
6102
6103 free_all:
6104 free_netdev(dev);
6105 return NULL;
6106
6107 free_pcpu:
6108 free_percpu(dev->pcpu_refcnt);
6109 netif_free_tx_queues(dev);
6110 #ifdef CONFIG_RPS
6111 kfree(dev->_rx);
6112 #endif
6113
6114 free_p:
6115 kfree(p);
6116 return NULL;
6117 }
6118 EXPORT_SYMBOL(alloc_netdev_mqs);
6119
6120 /**
6121 * free_netdev - free network device
6122 * @dev: device
6123 *
6124 * This function does the last stage of destroying an allocated device
6125 * interface. The reference to the device object is released.
6126 * If this is the last reference then it will be freed.
6127 */
6128 void free_netdev(struct net_device *dev)
6129 {
6130 struct napi_struct *p, *n;
6131
6132 release_net(dev_net(dev));
6133
6134 netif_free_tx_queues(dev);
6135 #ifdef CONFIG_RPS
6136 kfree(dev->_rx);
6137 #endif
6138
6139 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6140
6141 /* Flush device addresses */
6142 dev_addr_flush(dev);
6143
6144 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6145 netif_napi_del(p);
6146
6147 free_percpu(dev->pcpu_refcnt);
6148 dev->pcpu_refcnt = NULL;
6149
6150 /* Compatibility with error handling in drivers */
6151 if (dev->reg_state == NETREG_UNINITIALIZED) {
6152 kfree((char *)dev - dev->padded);
6153 return;
6154 }
6155
6156 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6157 dev->reg_state = NETREG_RELEASED;
6158
6159 /* will free via device release */
6160 put_device(&dev->dev);
6161 }
6162 EXPORT_SYMBOL(free_netdev);
6163
6164 /**
6165 * synchronize_net - Synchronize with packet receive processing
6166 *
6167 * Wait for packets currently being received to be done.
6168 * Does not block later packets from starting.
6169 */
6170 void synchronize_net(void)
6171 {
6172 might_sleep();
6173 if (rtnl_is_locked())
6174 synchronize_rcu_expedited();
6175 else
6176 synchronize_rcu();
6177 }
6178 EXPORT_SYMBOL(synchronize_net);
6179
6180 /**
6181 * unregister_netdevice_queue - remove device from the kernel
6182 * @dev: device
6183 * @head: list
6184 *
6185 * This function shuts down a device interface and removes it
6186 * from the kernel tables.
6187 * If head not NULL, device is queued to be unregistered later.
6188 *
6189 * Callers must hold the rtnl semaphore. You may want
6190 * unregister_netdev() instead of this.
6191 */
6192
6193 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6194 {
6195 ASSERT_RTNL();
6196
6197 if (head) {
6198 list_move_tail(&dev->unreg_list, head);
6199 } else {
6200 rollback_registered(dev);
6201 /* Finish processing unregister after unlock */
6202 net_set_todo(dev);
6203 }
6204 }
6205 EXPORT_SYMBOL(unregister_netdevice_queue);
6206
6207 /**
6208 * unregister_netdevice_many - unregister many devices
6209 * @head: list of devices
6210 */
6211 void unregister_netdevice_many(struct list_head *head)
6212 {
6213 struct net_device *dev;
6214
6215 if (!list_empty(head)) {
6216 rollback_registered_many(head);
6217 list_for_each_entry(dev, head, unreg_list)
6218 net_set_todo(dev);
6219 }
6220 }
6221 EXPORT_SYMBOL(unregister_netdevice_many);
6222
6223 /**
6224 * unregister_netdev - remove device from the kernel
6225 * @dev: device
6226 *
6227 * This function shuts down a device interface and removes it
6228 * from the kernel tables.
6229 *
6230 * This is just a wrapper for unregister_netdevice that takes
6231 * the rtnl semaphore. In general you want to use this and not
6232 * unregister_netdevice.
6233 */
6234 void unregister_netdev(struct net_device *dev)
6235 {
6236 rtnl_lock();
6237 unregister_netdevice(dev);
6238 rtnl_unlock();
6239 }
6240 EXPORT_SYMBOL(unregister_netdev);
6241
6242 /**
6243 * dev_change_net_namespace - move device to different nethost namespace
6244 * @dev: device
6245 * @net: network namespace
6246 * @pat: If not NULL name pattern to try if the current device name
6247 * is already taken in the destination network namespace.
6248 *
6249 * This function shuts down a device interface and moves it
6250 * to a new network namespace. On success 0 is returned, on
6251 * a failure a netagive errno code is returned.
6252 *
6253 * Callers must hold the rtnl semaphore.
6254 */
6255
6256 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6257 {
6258 int err;
6259
6260 ASSERT_RTNL();
6261
6262 /* Don't allow namespace local devices to be moved. */
6263 err = -EINVAL;
6264 if (dev->features & NETIF_F_NETNS_LOCAL)
6265 goto out;
6266
6267 /* Ensure the device has been registrered */
6268 if (dev->reg_state != NETREG_REGISTERED)
6269 goto out;
6270
6271 /* Get out if there is nothing todo */
6272 err = 0;
6273 if (net_eq(dev_net(dev), net))
6274 goto out;
6275
6276 /* Pick the destination device name, and ensure
6277 * we can use it in the destination network namespace.
6278 */
6279 err = -EEXIST;
6280 if (__dev_get_by_name(net, dev->name)) {
6281 /* We get here if we can't use the current device name */
6282 if (!pat)
6283 goto out;
6284 if (dev_get_valid_name(net, dev, pat) < 0)
6285 goto out;
6286 }
6287
6288 /*
6289 * And now a mini version of register_netdevice unregister_netdevice.
6290 */
6291
6292 /* If device is running close it first. */
6293 dev_close(dev);
6294
6295 /* And unlink it from device chain */
6296 err = -ENODEV;
6297 unlist_netdevice(dev);
6298
6299 synchronize_net();
6300
6301 /* Shutdown queueing discipline. */
6302 dev_shutdown(dev);
6303
6304 /* Notify protocols, that we are about to destroy
6305 this device. They should clean all the things.
6306
6307 Note that dev->reg_state stays at NETREG_REGISTERED.
6308 This is wanted because this way 8021q and macvlan know
6309 the device is just moving and can keep their slaves up.
6310 */
6311 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6312 rcu_barrier();
6313 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6314 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6315
6316 /*
6317 * Flush the unicast and multicast chains
6318 */
6319 dev_uc_flush(dev);
6320 dev_mc_flush(dev);
6321
6322 /* Send a netdev-removed uevent to the old namespace */
6323 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6324
6325 /* Actually switch the network namespace */
6326 dev_net_set(dev, net);
6327
6328 /* If there is an ifindex conflict assign a new one */
6329 if (__dev_get_by_index(net, dev->ifindex)) {
6330 int iflink = (dev->iflink == dev->ifindex);
6331 dev->ifindex = dev_new_index(net);
6332 if (iflink)
6333 dev->iflink = dev->ifindex;
6334 }
6335
6336 /* Send a netdev-add uevent to the new namespace */
6337 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6338
6339 /* Fixup kobjects */
6340 err = device_rename(&dev->dev, dev->name);
6341 WARN_ON(err);
6342
6343 /* Add the device back in the hashes */
6344 list_netdevice(dev);
6345
6346 /* Notify protocols, that a new device appeared. */
6347 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6348
6349 /*
6350 * Prevent userspace races by waiting until the network
6351 * device is fully setup before sending notifications.
6352 */
6353 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6354
6355 synchronize_net();
6356 err = 0;
6357 out:
6358 return err;
6359 }
6360 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6361
6362 static int dev_cpu_callback(struct notifier_block *nfb,
6363 unsigned long action,
6364 void *ocpu)
6365 {
6366 struct sk_buff **list_skb;
6367 struct sk_buff *skb;
6368 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6369 struct softnet_data *sd, *oldsd;
6370
6371 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6372 return NOTIFY_OK;
6373
6374 local_irq_disable();
6375 cpu = smp_processor_id();
6376 sd = &per_cpu(softnet_data, cpu);
6377 oldsd = &per_cpu(softnet_data, oldcpu);
6378
6379 /* Find end of our completion_queue. */
6380 list_skb = &sd->completion_queue;
6381 while (*list_skb)
6382 list_skb = &(*list_skb)->next;
6383 /* Append completion queue from offline CPU. */
6384 *list_skb = oldsd->completion_queue;
6385 oldsd->completion_queue = NULL;
6386
6387 /* Append output queue from offline CPU. */
6388 if (oldsd->output_queue) {
6389 *sd->output_queue_tailp = oldsd->output_queue;
6390 sd->output_queue_tailp = oldsd->output_queue_tailp;
6391 oldsd->output_queue = NULL;
6392 oldsd->output_queue_tailp = &oldsd->output_queue;
6393 }
6394 /* Append NAPI poll list from offline CPU. */
6395 if (!list_empty(&oldsd->poll_list)) {
6396 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6397 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6398 }
6399
6400 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6401 local_irq_enable();
6402
6403 /* Process offline CPU's input_pkt_queue */
6404 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6405 netif_rx(skb);
6406 input_queue_head_incr(oldsd);
6407 }
6408 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6409 netif_rx(skb);
6410 input_queue_head_incr(oldsd);
6411 }
6412
6413 return NOTIFY_OK;
6414 }
6415
6416
6417 /**
6418 * netdev_increment_features - increment feature set by one
6419 * @all: current feature set
6420 * @one: new feature set
6421 * @mask: mask feature set
6422 *
6423 * Computes a new feature set after adding a device with feature set
6424 * @one to the master device with current feature set @all. Will not
6425 * enable anything that is off in @mask. Returns the new feature set.
6426 */
6427 netdev_features_t netdev_increment_features(netdev_features_t all,
6428 netdev_features_t one, netdev_features_t mask)
6429 {
6430 if (mask & NETIF_F_GEN_CSUM)
6431 mask |= NETIF_F_ALL_CSUM;
6432 mask |= NETIF_F_VLAN_CHALLENGED;
6433
6434 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6435 all &= one | ~NETIF_F_ALL_FOR_ALL;
6436
6437 /* If one device supports hw checksumming, set for all. */
6438 if (all & NETIF_F_GEN_CSUM)
6439 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6440
6441 return all;
6442 }
6443 EXPORT_SYMBOL(netdev_increment_features);
6444
6445 static struct hlist_head * __net_init netdev_create_hash(void)
6446 {
6447 int i;
6448 struct hlist_head *hash;
6449
6450 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6451 if (hash != NULL)
6452 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6453 INIT_HLIST_HEAD(&hash[i]);
6454
6455 return hash;
6456 }
6457
6458 /* Initialize per network namespace state */
6459 static int __net_init netdev_init(struct net *net)
6460 {
6461 if (net != &init_net)
6462 INIT_LIST_HEAD(&net->dev_base_head);
6463
6464 net->dev_name_head = netdev_create_hash();
6465 if (net->dev_name_head == NULL)
6466 goto err_name;
6467
6468 net->dev_index_head = netdev_create_hash();
6469 if (net->dev_index_head == NULL)
6470 goto err_idx;
6471
6472 return 0;
6473
6474 err_idx:
6475 kfree(net->dev_name_head);
6476 err_name:
6477 return -ENOMEM;
6478 }
6479
6480 /**
6481 * netdev_drivername - network driver for the device
6482 * @dev: network device
6483 *
6484 * Determine network driver for device.
6485 */
6486 const char *netdev_drivername(const struct net_device *dev)
6487 {
6488 const struct device_driver *driver;
6489 const struct device *parent;
6490 const char *empty = "";
6491
6492 parent = dev->dev.parent;
6493 if (!parent)
6494 return empty;
6495
6496 driver = parent->driver;
6497 if (driver && driver->name)
6498 return driver->name;
6499 return empty;
6500 }
6501
6502 static int __netdev_printk(const char *level, const struct net_device *dev,
6503 struct va_format *vaf)
6504 {
6505 int r;
6506
6507 if (dev && dev->dev.parent) {
6508 r = dev_printk_emit(level[1] - '0',
6509 dev->dev.parent,
6510 "%s %s %s: %pV",
6511 dev_driver_string(dev->dev.parent),
6512 dev_name(dev->dev.parent),
6513 netdev_name(dev), vaf);
6514 } else if (dev) {
6515 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6516 } else {
6517 r = printk("%s(NULL net_device): %pV", level, vaf);
6518 }
6519
6520 return r;
6521 }
6522
6523 int netdev_printk(const char *level, const struct net_device *dev,
6524 const char *format, ...)
6525 {
6526 struct va_format vaf;
6527 va_list args;
6528 int r;
6529
6530 va_start(args, format);
6531
6532 vaf.fmt = format;
6533 vaf.va = &args;
6534
6535 r = __netdev_printk(level, dev, &vaf);
6536
6537 va_end(args);
6538
6539 return r;
6540 }
6541 EXPORT_SYMBOL(netdev_printk);
6542
6543 #define define_netdev_printk_level(func, level) \
6544 int func(const struct net_device *dev, const char *fmt, ...) \
6545 { \
6546 int r; \
6547 struct va_format vaf; \
6548 va_list args; \
6549 \
6550 va_start(args, fmt); \
6551 \
6552 vaf.fmt = fmt; \
6553 vaf.va = &args; \
6554 \
6555 r = __netdev_printk(level, dev, &vaf); \
6556 \
6557 va_end(args); \
6558 \
6559 return r; \
6560 } \
6561 EXPORT_SYMBOL(func);
6562
6563 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6564 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6565 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6566 define_netdev_printk_level(netdev_err, KERN_ERR);
6567 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6568 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6569 define_netdev_printk_level(netdev_info, KERN_INFO);
6570
6571 static void __net_exit netdev_exit(struct net *net)
6572 {
6573 kfree(net->dev_name_head);
6574 kfree(net->dev_index_head);
6575 }
6576
6577 static struct pernet_operations __net_initdata netdev_net_ops = {
6578 .init = netdev_init,
6579 .exit = netdev_exit,
6580 };
6581
6582 static void __net_exit default_device_exit(struct net *net)
6583 {
6584 struct net_device *dev, *aux;
6585 /*
6586 * Push all migratable network devices back to the
6587 * initial network namespace
6588 */
6589 rtnl_lock();
6590 for_each_netdev_safe(net, dev, aux) {
6591 int err;
6592 char fb_name[IFNAMSIZ];
6593
6594 /* Ignore unmoveable devices (i.e. loopback) */
6595 if (dev->features & NETIF_F_NETNS_LOCAL)
6596 continue;
6597
6598 /* Leave virtual devices for the generic cleanup */
6599 if (dev->rtnl_link_ops)
6600 continue;
6601
6602 /* Push remaining network devices to init_net */
6603 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6604 err = dev_change_net_namespace(dev, &init_net, fb_name);
6605 if (err) {
6606 pr_emerg("%s: failed to move %s to init_net: %d\n",
6607 __func__, dev->name, err);
6608 BUG();
6609 }
6610 }
6611 rtnl_unlock();
6612 }
6613
6614 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6615 {
6616 /* Return with the rtnl_lock held when there are no network
6617 * devices unregistering in any network namespace in net_list.
6618 */
6619 struct net *net;
6620 bool unregistering;
6621 DEFINE_WAIT(wait);
6622
6623 for (;;) {
6624 prepare_to_wait(&netdev_unregistering_wq, &wait,
6625 TASK_UNINTERRUPTIBLE);
6626 unregistering = false;
6627 rtnl_lock();
6628 list_for_each_entry(net, net_list, exit_list) {
6629 if (net->dev_unreg_count > 0) {
6630 unregistering = true;
6631 break;
6632 }
6633 }
6634 if (!unregistering)
6635 break;
6636 __rtnl_unlock();
6637 schedule();
6638 }
6639 finish_wait(&netdev_unregistering_wq, &wait);
6640 }
6641
6642 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6643 {
6644 /* At exit all network devices most be removed from a network
6645 * namespace. Do this in the reverse order of registration.
6646 * Do this across as many network namespaces as possible to
6647 * improve batching efficiency.
6648 */
6649 struct net_device *dev;
6650 struct net *net;
6651 LIST_HEAD(dev_kill_list);
6652
6653 /* To prevent network device cleanup code from dereferencing
6654 * loopback devices or network devices that have been freed
6655 * wait here for all pending unregistrations to complete,
6656 * before unregistring the loopback device and allowing the
6657 * network namespace be freed.
6658 *
6659 * The netdev todo list containing all network devices
6660 * unregistrations that happen in default_device_exit_batch
6661 * will run in the rtnl_unlock() at the end of
6662 * default_device_exit_batch.
6663 */
6664 rtnl_lock_unregistering(net_list);
6665 list_for_each_entry(net, net_list, exit_list) {
6666 for_each_netdev_reverse(net, dev) {
6667 if (dev->rtnl_link_ops)
6668 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6669 else
6670 unregister_netdevice_queue(dev, &dev_kill_list);
6671 }
6672 }
6673 unregister_netdevice_many(&dev_kill_list);
6674 list_del(&dev_kill_list);
6675 rtnl_unlock();
6676 }
6677
6678 static struct pernet_operations __net_initdata default_device_ops = {
6679 .exit = default_device_exit,
6680 .exit_batch = default_device_exit_batch,
6681 };
6682
6683 /*
6684 * Initialize the DEV module. At boot time this walks the device list and
6685 * unhooks any devices that fail to initialise (normally hardware not
6686 * present) and leaves us with a valid list of present and active devices.
6687 *
6688 */
6689
6690 /*
6691 * This is called single threaded during boot, so no need
6692 * to take the rtnl semaphore.
6693 */
6694 static int __init net_dev_init(void)
6695 {
6696 int i, rc = -ENOMEM;
6697
6698 BUG_ON(!dev_boot_phase);
6699
6700 if (dev_proc_init())
6701 goto out;
6702
6703 if (netdev_kobject_init())
6704 goto out;
6705
6706 INIT_LIST_HEAD(&ptype_all);
6707 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6708 INIT_LIST_HEAD(&ptype_base[i]);
6709
6710 INIT_LIST_HEAD(&offload_base);
6711
6712 if (register_pernet_subsys(&netdev_net_ops))
6713 goto out;
6714
6715 /*
6716 * Initialise the packet receive queues.
6717 */
6718
6719 for_each_possible_cpu(i) {
6720 struct softnet_data *sd = &per_cpu(softnet_data, i);
6721
6722 memset(sd, 0, sizeof(*sd));
6723 skb_queue_head_init(&sd->input_pkt_queue);
6724 skb_queue_head_init(&sd->process_queue);
6725 sd->completion_queue = NULL;
6726 INIT_LIST_HEAD(&sd->poll_list);
6727 sd->output_queue = NULL;
6728 sd->output_queue_tailp = &sd->output_queue;
6729 #ifdef CONFIG_RPS
6730 sd->csd.func = rps_trigger_softirq;
6731 sd->csd.info = sd;
6732 sd->csd.flags = 0;
6733 sd->cpu = i;
6734 #endif
6735
6736 sd->backlog.poll = process_backlog;
6737 sd->backlog.weight = weight_p;
6738 sd->backlog.gro_list = NULL;
6739 sd->backlog.gro_count = 0;
6740
6741 #ifdef CONFIG_NET_FLOW_LIMIT
6742 sd->flow_limit = NULL;
6743 #endif
6744 }
6745
6746 dev_boot_phase = 0;
6747
6748 /* The loopback device is special if any other network devices
6749 * is present in a network namespace the loopback device must
6750 * be present. Since we now dynamically allocate and free the
6751 * loopback device ensure this invariant is maintained by
6752 * keeping the loopback device as the first device on the
6753 * list of network devices. Ensuring the loopback devices
6754 * is the first device that appears and the last network device
6755 * that disappears.
6756 */
6757 if (register_pernet_device(&loopback_net_ops))
6758 goto out;
6759
6760 if (register_pernet_device(&default_device_ops))
6761 goto out;
6762
6763 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6764 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6765
6766 hotcpu_notifier(dev_cpu_callback, 0);
6767 dst_init();
6768 rc = 0;
6769 out:
6770 return rc;
6771 }
6772
6773 subsys_initcall(net_dev_init);
This page took 0.175905 seconds and 5 git commands to generate.