net: prevent of emerging cross-namespace symlinks
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly; /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
155
156 /*
157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158 * semaphore.
159 *
160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
163 * dev_base_head list, and hold dev_base_lock for writing when they do the
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183
184 static seqcount_t devnet_rename_seq;
185
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 while (++net->dev_base_seq == 0);
189 }
190
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220 struct net *net = dev_net(dev);
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230
231 dev_base_seq_inc(net);
232 }
233
234 /* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
243 list_del_rcu(&dev->dev_list);
244 hlist_del_rcu(&dev->name_hlist);
245 hlist_del_rcu(&dev->index_hlist);
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(dev_net(dev));
249 }
250
251 /*
252 * Our notifier list
253 */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
261
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270 static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287 static const char *const netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326 }
327
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376
377 /**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
385 * This call does not sleep therefore it can not
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390 void dev_add_pack(struct packet_type *pt)
391 {
392 struct list_head *head = ptype_head(pt);
393
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399
400 /**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
407 * returns.
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415 struct list_head *head = ptype_head(pt);
416 struct packet_type *pt1;
417
418 spin_lock(&ptype_lock);
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
427 pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429 spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432
433 /**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447 __dev_remove_pack(pt);
448
449 synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452
453
454 /**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466 void dev_add_offload(struct packet_offload *po)
467 {
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475
476 /**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
494 spin_lock(&offload_lock);
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505 spin_unlock(&offload_lock);
506 }
507
508 /**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522 __dev_remove_offload(po);
523
524 synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527
528 /******************************************************************************
529
530 Device Boot-time Settings Routines
531
532 *******************************************************************************/
533
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537 /**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
555 strlcpy(s[i].name, name, IFNAMSIZ);
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563
564 /**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 !strcmp(dev->name, s[i].name)) {
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593 /**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
615 if (__dev_get_by_name(&init_net, name))
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622 }
623
624 /*
625 * Saves at boot time configured settings for any netdevice.
626 */
627 int __init netdev_boot_setup(char *str)
628 {
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649 }
650
651 __setup("netdev=", netdev_boot_setup);
652
653 /*******************************************************************************
654
655 Device Interface Subroutines
656
657 *******************************************************************************/
658
659 /**
660 * __dev_get_by_name - find a device by its name
661 * @net: the applicable net namespace
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
675
676 hlist_for_each_entry(dev, head, name_hlist)
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
679
680 return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683
684 /**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry_rcu(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709 /**
710 * dev_get_by_name - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723 struct net_device *dev;
724
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
727 if (dev)
728 dev_hold(dev);
729 rcu_read_unlock();
730 return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733
734 /**
735 * __dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
750
751 hlist_for_each_entry(dev, head, index_hlist)
752 if (dev->ifindex == ifindex)
753 return dev;
754
755 return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758
759 /**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
775 hlist_for_each_entry_rcu(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784 /**
785 * dev_get_by_index - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797 struct net_device *dev;
798
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
801 if (dev)
802 dev_hold(dev);
803 rcu_read_unlock();
804 return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807
808 /**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820 struct net_device *dev;
821 unsigned int seq;
822
823 retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840 }
841
842 /**
843 * dev_getbyhwaddr_rcu - find a device by its hardware address
844 * @net: the applicable net namespace
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
851 * The returned device has not had its ref count increased
852 * and the caller must therefore be careful about locking
853 *
854 */
855
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
858 {
859 struct net_device *dev;
860
861 for_each_netdev_rcu(net, dev)
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
864 return dev;
865
866 return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872 struct net_device *dev;
873
874 ASSERT_RTNL();
875 for_each_netdev(net, dev)
876 if (dev->type == type)
877 return dev;
878
879 return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885 struct net_device *dev, *ret = NULL;
886
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899 /**
900 * dev_get_by_flags_rcu - find any device with given flags
901 * @net: the applicable net namespace
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
906 * is not found or a pointer to the device. Must be called inside
907 * rcu_read_lock(), and result refcount is unchanged.
908 */
909
910 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
911 unsigned short mask)
912 {
913 struct net_device *dev, *ret;
914
915 ret = NULL;
916 for_each_netdev_rcu(net, dev) {
917 if (((dev->flags ^ if_flags) & mask) == 0) {
918 ret = dev;
919 break;
920 }
921 }
922 return ret;
923 }
924 EXPORT_SYMBOL(dev_get_by_flags_rcu);
925
926 /**
927 * dev_valid_name - check if name is okay for network device
928 * @name: name string
929 *
930 * Network device names need to be valid file names to
931 * to allow sysfs to work. We also disallow any kind of
932 * whitespace.
933 */
934 bool dev_valid_name(const char *name)
935 {
936 if (*name == '\0')
937 return false;
938 if (strlen(name) >= IFNAMSIZ)
939 return false;
940 if (!strcmp(name, ".") || !strcmp(name, ".."))
941 return false;
942
943 while (*name) {
944 if (*name == '/' || isspace(*name))
945 return false;
946 name++;
947 }
948 return true;
949 }
950 EXPORT_SYMBOL(dev_valid_name);
951
952 /**
953 * __dev_alloc_name - allocate a name for a device
954 * @net: network namespace to allocate the device name in
955 * @name: name format string
956 * @buf: scratch buffer and result name string
957 *
958 * Passed a format string - eg "lt%d" it will try and find a suitable
959 * id. It scans list of devices to build up a free map, then chooses
960 * the first empty slot. The caller must hold the dev_base or rtnl lock
961 * while allocating the name and adding the device in order to avoid
962 * duplicates.
963 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
964 * Returns the number of the unit assigned or a negative errno code.
965 */
966
967 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
968 {
969 int i = 0;
970 const char *p;
971 const int max_netdevices = 8*PAGE_SIZE;
972 unsigned long *inuse;
973 struct net_device *d;
974
975 p = strnchr(name, IFNAMSIZ-1, '%');
976 if (p) {
977 /*
978 * Verify the string as this thing may have come from
979 * the user. There must be either one "%d" and no other "%"
980 * characters.
981 */
982 if (p[1] != 'd' || strchr(p + 2, '%'))
983 return -EINVAL;
984
985 /* Use one page as a bit array of possible slots */
986 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
987 if (!inuse)
988 return -ENOMEM;
989
990 for_each_netdev(net, d) {
991 if (!sscanf(d->name, name, &i))
992 continue;
993 if (i < 0 || i >= max_netdevices)
994 continue;
995
996 /* avoid cases where sscanf is not exact inverse of printf */
997 snprintf(buf, IFNAMSIZ, name, i);
998 if (!strncmp(buf, d->name, IFNAMSIZ))
999 set_bit(i, inuse);
1000 }
1001
1002 i = find_first_zero_bit(inuse, max_netdevices);
1003 free_page((unsigned long) inuse);
1004 }
1005
1006 if (buf != name)
1007 snprintf(buf, IFNAMSIZ, name, i);
1008 if (!__dev_get_by_name(net, buf))
1009 return i;
1010
1011 /* It is possible to run out of possible slots
1012 * when the name is long and there isn't enough space left
1013 * for the digits, or if all bits are used.
1014 */
1015 return -ENFILE;
1016 }
1017
1018 /**
1019 * dev_alloc_name - allocate a name for a device
1020 * @dev: device
1021 * @name: name format string
1022 *
1023 * Passed a format string - eg "lt%d" it will try and find a suitable
1024 * id. It scans list of devices to build up a free map, then chooses
1025 * the first empty slot. The caller must hold the dev_base or rtnl lock
1026 * while allocating the name and adding the device in order to avoid
1027 * duplicates.
1028 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1029 * Returns the number of the unit assigned or a negative errno code.
1030 */
1031
1032 int dev_alloc_name(struct net_device *dev, const char *name)
1033 {
1034 char buf[IFNAMSIZ];
1035 struct net *net;
1036 int ret;
1037
1038 BUG_ON(!dev_net(dev));
1039 net = dev_net(dev);
1040 ret = __dev_alloc_name(net, name, buf);
1041 if (ret >= 0)
1042 strlcpy(dev->name, buf, IFNAMSIZ);
1043 return ret;
1044 }
1045 EXPORT_SYMBOL(dev_alloc_name);
1046
1047 static int dev_alloc_name_ns(struct net *net,
1048 struct net_device *dev,
1049 const char *name)
1050 {
1051 char buf[IFNAMSIZ];
1052 int ret;
1053
1054 ret = __dev_alloc_name(net, name, buf);
1055 if (ret >= 0)
1056 strlcpy(dev->name, buf, IFNAMSIZ);
1057 return ret;
1058 }
1059
1060 static int dev_get_valid_name(struct net *net,
1061 struct net_device *dev,
1062 const char *name)
1063 {
1064 BUG_ON(!net);
1065
1066 if (!dev_valid_name(name))
1067 return -EINVAL;
1068
1069 if (strchr(name, '%'))
1070 return dev_alloc_name_ns(net, dev, name);
1071 else if (__dev_get_by_name(net, name))
1072 return -EEXIST;
1073 else if (dev->name != name)
1074 strlcpy(dev->name, name, IFNAMSIZ);
1075
1076 return 0;
1077 }
1078
1079 /**
1080 * dev_change_name - change name of a device
1081 * @dev: device
1082 * @newname: name (or format string) must be at least IFNAMSIZ
1083 *
1084 * Change name of a device, can pass format strings "eth%d".
1085 * for wildcarding.
1086 */
1087 int dev_change_name(struct net_device *dev, const char *newname)
1088 {
1089 unsigned char old_assign_type;
1090 char oldname[IFNAMSIZ];
1091 int err = 0;
1092 int ret;
1093 struct net *net;
1094
1095 ASSERT_RTNL();
1096 BUG_ON(!dev_net(dev));
1097
1098 net = dev_net(dev);
1099 if (dev->flags & IFF_UP)
1100 return -EBUSY;
1101
1102 write_seqcount_begin(&devnet_rename_seq);
1103
1104 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1105 write_seqcount_end(&devnet_rename_seq);
1106 return 0;
1107 }
1108
1109 memcpy(oldname, dev->name, IFNAMSIZ);
1110
1111 err = dev_get_valid_name(net, dev, newname);
1112 if (err < 0) {
1113 write_seqcount_end(&devnet_rename_seq);
1114 return err;
1115 }
1116
1117 if (oldname[0] && !strchr(oldname, '%'))
1118 netdev_info(dev, "renamed from %s\n", oldname);
1119
1120 old_assign_type = dev->name_assign_type;
1121 dev->name_assign_type = NET_NAME_RENAMED;
1122
1123 rollback:
1124 ret = device_rename(&dev->dev, dev->name);
1125 if (ret) {
1126 memcpy(dev->name, oldname, IFNAMSIZ);
1127 dev->name_assign_type = old_assign_type;
1128 write_seqcount_end(&devnet_rename_seq);
1129 return ret;
1130 }
1131
1132 write_seqcount_end(&devnet_rename_seq);
1133
1134 netdev_adjacent_rename_links(dev, oldname);
1135
1136 write_lock_bh(&dev_base_lock);
1137 hlist_del_rcu(&dev->name_hlist);
1138 write_unlock_bh(&dev_base_lock);
1139
1140 synchronize_rcu();
1141
1142 write_lock_bh(&dev_base_lock);
1143 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1144 write_unlock_bh(&dev_base_lock);
1145
1146 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1147 ret = notifier_to_errno(ret);
1148
1149 if (ret) {
1150 /* err >= 0 after dev_alloc_name() or stores the first errno */
1151 if (err >= 0) {
1152 err = ret;
1153 write_seqcount_begin(&devnet_rename_seq);
1154 memcpy(dev->name, oldname, IFNAMSIZ);
1155 memcpy(oldname, newname, IFNAMSIZ);
1156 dev->name_assign_type = old_assign_type;
1157 old_assign_type = NET_NAME_RENAMED;
1158 goto rollback;
1159 } else {
1160 pr_err("%s: name change rollback failed: %d\n",
1161 dev->name, ret);
1162 }
1163 }
1164
1165 return err;
1166 }
1167
1168 /**
1169 * dev_set_alias - change ifalias of a device
1170 * @dev: device
1171 * @alias: name up to IFALIASZ
1172 * @len: limit of bytes to copy from info
1173 *
1174 * Set ifalias for a device,
1175 */
1176 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1177 {
1178 char *new_ifalias;
1179
1180 ASSERT_RTNL();
1181
1182 if (len >= IFALIASZ)
1183 return -EINVAL;
1184
1185 if (!len) {
1186 kfree(dev->ifalias);
1187 dev->ifalias = NULL;
1188 return 0;
1189 }
1190
1191 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1192 if (!new_ifalias)
1193 return -ENOMEM;
1194 dev->ifalias = new_ifalias;
1195
1196 strlcpy(dev->ifalias, alias, len+1);
1197 return len;
1198 }
1199
1200
1201 /**
1202 * netdev_features_change - device changes features
1203 * @dev: device to cause notification
1204 *
1205 * Called to indicate a device has changed features.
1206 */
1207 void netdev_features_change(struct net_device *dev)
1208 {
1209 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1210 }
1211 EXPORT_SYMBOL(netdev_features_change);
1212
1213 /**
1214 * netdev_state_change - device changes state
1215 * @dev: device to cause notification
1216 *
1217 * Called to indicate a device has changed state. This function calls
1218 * the notifier chains for netdev_chain and sends a NEWLINK message
1219 * to the routing socket.
1220 */
1221 void netdev_state_change(struct net_device *dev)
1222 {
1223 if (dev->flags & IFF_UP) {
1224 struct netdev_notifier_change_info change_info;
1225
1226 change_info.flags_changed = 0;
1227 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1228 &change_info.info);
1229 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1230 }
1231 }
1232 EXPORT_SYMBOL(netdev_state_change);
1233
1234 /**
1235 * netdev_notify_peers - notify network peers about existence of @dev
1236 * @dev: network device
1237 *
1238 * Generate traffic such that interested network peers are aware of
1239 * @dev, such as by generating a gratuitous ARP. This may be used when
1240 * a device wants to inform the rest of the network about some sort of
1241 * reconfiguration such as a failover event or virtual machine
1242 * migration.
1243 */
1244 void netdev_notify_peers(struct net_device *dev)
1245 {
1246 rtnl_lock();
1247 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1248 rtnl_unlock();
1249 }
1250 EXPORT_SYMBOL(netdev_notify_peers);
1251
1252 static int __dev_open(struct net_device *dev)
1253 {
1254 const struct net_device_ops *ops = dev->netdev_ops;
1255 int ret;
1256
1257 ASSERT_RTNL();
1258
1259 if (!netif_device_present(dev))
1260 return -ENODEV;
1261
1262 /* Block netpoll from trying to do any rx path servicing.
1263 * If we don't do this there is a chance ndo_poll_controller
1264 * or ndo_poll may be running while we open the device
1265 */
1266 netpoll_poll_disable(dev);
1267
1268 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1269 ret = notifier_to_errno(ret);
1270 if (ret)
1271 return ret;
1272
1273 set_bit(__LINK_STATE_START, &dev->state);
1274
1275 if (ops->ndo_validate_addr)
1276 ret = ops->ndo_validate_addr(dev);
1277
1278 if (!ret && ops->ndo_open)
1279 ret = ops->ndo_open(dev);
1280
1281 netpoll_poll_enable(dev);
1282
1283 if (ret)
1284 clear_bit(__LINK_STATE_START, &dev->state);
1285 else {
1286 dev->flags |= IFF_UP;
1287 net_dmaengine_get();
1288 dev_set_rx_mode(dev);
1289 dev_activate(dev);
1290 add_device_randomness(dev->dev_addr, dev->addr_len);
1291 }
1292
1293 return ret;
1294 }
1295
1296 /**
1297 * dev_open - prepare an interface for use.
1298 * @dev: device to open
1299 *
1300 * Takes a device from down to up state. The device's private open
1301 * function is invoked and then the multicast lists are loaded. Finally
1302 * the device is moved into the up state and a %NETDEV_UP message is
1303 * sent to the netdev notifier chain.
1304 *
1305 * Calling this function on an active interface is a nop. On a failure
1306 * a negative errno code is returned.
1307 */
1308 int dev_open(struct net_device *dev)
1309 {
1310 int ret;
1311
1312 if (dev->flags & IFF_UP)
1313 return 0;
1314
1315 ret = __dev_open(dev);
1316 if (ret < 0)
1317 return ret;
1318
1319 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1320 call_netdevice_notifiers(NETDEV_UP, dev);
1321
1322 return ret;
1323 }
1324 EXPORT_SYMBOL(dev_open);
1325
1326 static int __dev_close_many(struct list_head *head)
1327 {
1328 struct net_device *dev;
1329
1330 ASSERT_RTNL();
1331 might_sleep();
1332
1333 list_for_each_entry(dev, head, close_list) {
1334 /* Temporarily disable netpoll until the interface is down */
1335 netpoll_poll_disable(dev);
1336
1337 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1338
1339 clear_bit(__LINK_STATE_START, &dev->state);
1340
1341 /* Synchronize to scheduled poll. We cannot touch poll list, it
1342 * can be even on different cpu. So just clear netif_running().
1343 *
1344 * dev->stop() will invoke napi_disable() on all of it's
1345 * napi_struct instances on this device.
1346 */
1347 smp_mb__after_atomic(); /* Commit netif_running(). */
1348 }
1349
1350 dev_deactivate_many(head);
1351
1352 list_for_each_entry(dev, head, close_list) {
1353 const struct net_device_ops *ops = dev->netdev_ops;
1354
1355 /*
1356 * Call the device specific close. This cannot fail.
1357 * Only if device is UP
1358 *
1359 * We allow it to be called even after a DETACH hot-plug
1360 * event.
1361 */
1362 if (ops->ndo_stop)
1363 ops->ndo_stop(dev);
1364
1365 dev->flags &= ~IFF_UP;
1366 net_dmaengine_put();
1367 netpoll_poll_enable(dev);
1368 }
1369
1370 return 0;
1371 }
1372
1373 static int __dev_close(struct net_device *dev)
1374 {
1375 int retval;
1376 LIST_HEAD(single);
1377
1378 list_add(&dev->close_list, &single);
1379 retval = __dev_close_many(&single);
1380 list_del(&single);
1381
1382 return retval;
1383 }
1384
1385 static int dev_close_many(struct list_head *head)
1386 {
1387 struct net_device *dev, *tmp;
1388
1389 /* Remove the devices that don't need to be closed */
1390 list_for_each_entry_safe(dev, tmp, head, close_list)
1391 if (!(dev->flags & IFF_UP))
1392 list_del_init(&dev->close_list);
1393
1394 __dev_close_many(head);
1395
1396 list_for_each_entry_safe(dev, tmp, head, close_list) {
1397 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1398 call_netdevice_notifiers(NETDEV_DOWN, dev);
1399 list_del_init(&dev->close_list);
1400 }
1401
1402 return 0;
1403 }
1404
1405 /**
1406 * dev_close - shutdown an interface.
1407 * @dev: device to shutdown
1408 *
1409 * This function moves an active device into down state. A
1410 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412 * chain.
1413 */
1414 int dev_close(struct net_device *dev)
1415 {
1416 if (dev->flags & IFF_UP) {
1417 LIST_HEAD(single);
1418
1419 list_add(&dev->close_list, &single);
1420 dev_close_many(&single);
1421 list_del(&single);
1422 }
1423 return 0;
1424 }
1425 EXPORT_SYMBOL(dev_close);
1426
1427
1428 /**
1429 * dev_disable_lro - disable Large Receive Offload on a device
1430 * @dev: device
1431 *
1432 * Disable Large Receive Offload (LRO) on a net device. Must be
1433 * called under RTNL. This is needed if received packets may be
1434 * forwarded to another interface.
1435 */
1436 void dev_disable_lro(struct net_device *dev)
1437 {
1438 /*
1439 * If we're trying to disable lro on a vlan device
1440 * use the underlying physical device instead
1441 */
1442 if (is_vlan_dev(dev))
1443 dev = vlan_dev_real_dev(dev);
1444
1445 /* the same for macvlan devices */
1446 if (netif_is_macvlan(dev))
1447 dev = macvlan_dev_real_dev(dev);
1448
1449 dev->wanted_features &= ~NETIF_F_LRO;
1450 netdev_update_features(dev);
1451
1452 if (unlikely(dev->features & NETIF_F_LRO))
1453 netdev_WARN(dev, "failed to disable LRO!\n");
1454 }
1455 EXPORT_SYMBOL(dev_disable_lro);
1456
1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 struct net_device *dev)
1459 {
1460 struct netdev_notifier_info info;
1461
1462 netdev_notifier_info_init(&info, dev);
1463 return nb->notifier_call(nb, val, &info);
1464 }
1465
1466 static int dev_boot_phase = 1;
1467
1468 /**
1469 * register_netdevice_notifier - register a network notifier block
1470 * @nb: notifier
1471 *
1472 * Register a notifier to be called when network device events occur.
1473 * The notifier passed is linked into the kernel structures and must
1474 * not be reused until it has been unregistered. A negative errno code
1475 * is returned on a failure.
1476 *
1477 * When registered all registration and up events are replayed
1478 * to the new notifier to allow device to have a race free
1479 * view of the network device list.
1480 */
1481
1482 int register_netdevice_notifier(struct notifier_block *nb)
1483 {
1484 struct net_device *dev;
1485 struct net_device *last;
1486 struct net *net;
1487 int err;
1488
1489 rtnl_lock();
1490 err = raw_notifier_chain_register(&netdev_chain, nb);
1491 if (err)
1492 goto unlock;
1493 if (dev_boot_phase)
1494 goto unlock;
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1498 err = notifier_to_errno(err);
1499 if (err)
1500 goto rollback;
1501
1502 if (!(dev->flags & IFF_UP))
1503 continue;
1504
1505 call_netdevice_notifier(nb, NETDEV_UP, dev);
1506 }
1507 }
1508
1509 unlock:
1510 rtnl_unlock();
1511 return err;
1512
1513 rollback:
1514 last = dev;
1515 for_each_net(net) {
1516 for_each_netdev(net, dev) {
1517 if (dev == last)
1518 goto outroll;
1519
1520 if (dev->flags & IFF_UP) {
1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 dev);
1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1524 }
1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1526 }
1527 }
1528
1529 outroll:
1530 raw_notifier_chain_unregister(&netdev_chain, nb);
1531 goto unlock;
1532 }
1533 EXPORT_SYMBOL(register_netdevice_notifier);
1534
1535 /**
1536 * unregister_netdevice_notifier - unregister a network notifier block
1537 * @nb: notifier
1538 *
1539 * Unregister a notifier previously registered by
1540 * register_netdevice_notifier(). The notifier is unlinked into the
1541 * kernel structures and may then be reused. A negative errno code
1542 * is returned on a failure.
1543 *
1544 * After unregistering unregister and down device events are synthesized
1545 * for all devices on the device list to the removed notifier to remove
1546 * the need for special case cleanup code.
1547 */
1548
1549 int unregister_netdevice_notifier(struct notifier_block *nb)
1550 {
1551 struct net_device *dev;
1552 struct net *net;
1553 int err;
1554
1555 rtnl_lock();
1556 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1557 if (err)
1558 goto unlock;
1559
1560 for_each_net(net) {
1561 for_each_netdev(net, dev) {
1562 if (dev->flags & IFF_UP) {
1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 dev);
1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1566 }
1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1568 }
1569 }
1570 unlock:
1571 rtnl_unlock();
1572 return err;
1573 }
1574 EXPORT_SYMBOL(unregister_netdevice_notifier);
1575
1576 /**
1577 * call_netdevice_notifiers_info - call all network notifier blocks
1578 * @val: value passed unmodified to notifier function
1579 * @dev: net_device pointer passed unmodified to notifier function
1580 * @info: notifier information data
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586 static int call_netdevice_notifiers_info(unsigned long val,
1587 struct net_device *dev,
1588 struct netdev_notifier_info *info)
1589 {
1590 ASSERT_RTNL();
1591 netdev_notifier_info_init(info, dev);
1592 return raw_notifier_call_chain(&netdev_chain, val, info);
1593 }
1594
1595 /**
1596 * call_netdevice_notifiers - call all network notifier blocks
1597 * @val: value passed unmodified to notifier function
1598 * @dev: net_device pointer passed unmodified to notifier function
1599 *
1600 * Call all network notifier blocks. Parameters and return value
1601 * are as for raw_notifier_call_chain().
1602 */
1603
1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1605 {
1606 struct netdev_notifier_info info;
1607
1608 return call_netdevice_notifiers_info(val, dev, &info);
1609 }
1610 EXPORT_SYMBOL(call_netdevice_notifiers);
1611
1612 static struct static_key netstamp_needed __read_mostly;
1613 #ifdef HAVE_JUMP_LABEL
1614 /* We are not allowed to call static_key_slow_dec() from irq context
1615 * If net_disable_timestamp() is called from irq context, defer the
1616 * static_key_slow_dec() calls.
1617 */
1618 static atomic_t netstamp_needed_deferred;
1619 #endif
1620
1621 void net_enable_timestamp(void)
1622 {
1623 #ifdef HAVE_JUMP_LABEL
1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626 if (deferred) {
1627 while (--deferred)
1628 static_key_slow_dec(&netstamp_needed);
1629 return;
1630 }
1631 #endif
1632 static_key_slow_inc(&netstamp_needed);
1633 }
1634 EXPORT_SYMBOL(net_enable_timestamp);
1635
1636 void net_disable_timestamp(void)
1637 {
1638 #ifdef HAVE_JUMP_LABEL
1639 if (in_interrupt()) {
1640 atomic_inc(&netstamp_needed_deferred);
1641 return;
1642 }
1643 #endif
1644 static_key_slow_dec(&netstamp_needed);
1645 }
1646 EXPORT_SYMBOL(net_disable_timestamp);
1647
1648 static inline void net_timestamp_set(struct sk_buff *skb)
1649 {
1650 skb->tstamp.tv64 = 0;
1651 if (static_key_false(&netstamp_needed))
1652 __net_timestamp(skb);
1653 }
1654
1655 #define net_timestamp_check(COND, SKB) \
1656 if (static_key_false(&netstamp_needed)) { \
1657 if ((COND) && !(SKB)->tstamp.tv64) \
1658 __net_timestamp(SKB); \
1659 } \
1660
1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662 {
1663 unsigned int len;
1664
1665 if (!(dev->flags & IFF_UP))
1666 return false;
1667
1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 if (skb->len <= len)
1670 return true;
1671
1672 /* if TSO is enabled, we don't care about the length as the packet
1673 * could be forwarded without being segmented before
1674 */
1675 if (skb_is_gso(skb))
1676 return true;
1677
1678 return false;
1679 }
1680 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1681
1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704
1705 /**
1706 * dev_forward_skb - loopback an skb to another netif
1707 *
1708 * @dev: destination network device
1709 * @skb: buffer to forward
1710 *
1711 * return values:
1712 * NET_RX_SUCCESS (no congestion)
1713 * NET_RX_DROP (packet was dropped, but freed)
1714 *
1715 * dev_forward_skb can be used for injecting an skb from the
1716 * start_xmit function of one device into the receive queue
1717 * of another device.
1718 *
1719 * The receiving device may be in another namespace, so
1720 * we have to clear all information in the skb that could
1721 * impact namespace isolation.
1722 */
1723 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724 {
1725 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1726 }
1727 EXPORT_SYMBOL_GPL(dev_forward_skb);
1728
1729 static inline int deliver_skb(struct sk_buff *skb,
1730 struct packet_type *pt_prev,
1731 struct net_device *orig_dev)
1732 {
1733 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734 return -ENOMEM;
1735 atomic_inc(&skb->users);
1736 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737 }
1738
1739 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740 {
1741 if (!ptype->af_packet_priv || !skb->sk)
1742 return false;
1743
1744 if (ptype->id_match)
1745 return ptype->id_match(ptype, skb->sk);
1746 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747 return true;
1748
1749 return false;
1750 }
1751
1752 /*
1753 * Support routine. Sends outgoing frames to any network
1754 * taps currently in use.
1755 */
1756
1757 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1758 {
1759 struct packet_type *ptype;
1760 struct sk_buff *skb2 = NULL;
1761 struct packet_type *pt_prev = NULL;
1762
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765 /* Never send packets back to the socket
1766 * they originated from - MvS (miquels@drinkel.ow.org)
1767 */
1768 if ((ptype->dev == dev || !ptype->dev) &&
1769 (!skb_loop_sk(ptype, skb))) {
1770 if (pt_prev) {
1771 deliver_skb(skb2, pt_prev, skb->dev);
1772 pt_prev = ptype;
1773 continue;
1774 }
1775
1776 skb2 = skb_clone(skb, GFP_ATOMIC);
1777 if (!skb2)
1778 break;
1779
1780 net_timestamp_set(skb2);
1781
1782 /* skb->nh should be correctly
1783 set by sender, so that the second statement is
1784 just protection against buggy protocols.
1785 */
1786 skb_reset_mac_header(skb2);
1787
1788 if (skb_network_header(skb2) < skb2->data ||
1789 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1790 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791 ntohs(skb2->protocol),
1792 dev->name);
1793 skb_reset_network_header(skb2);
1794 }
1795
1796 skb2->transport_header = skb2->network_header;
1797 skb2->pkt_type = PACKET_OUTGOING;
1798 pt_prev = ptype;
1799 }
1800 }
1801 if (pt_prev)
1802 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1803 rcu_read_unlock();
1804 }
1805
1806 /**
1807 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1808 * @dev: Network device
1809 * @txq: number of queues available
1810 *
1811 * If real_num_tx_queues is changed the tc mappings may no longer be
1812 * valid. To resolve this verify the tc mapping remains valid and if
1813 * not NULL the mapping. With no priorities mapping to this
1814 * offset/count pair it will no longer be used. In the worst case TC0
1815 * is invalid nothing can be done so disable priority mappings. If is
1816 * expected that drivers will fix this mapping if they can before
1817 * calling netif_set_real_num_tx_queues.
1818 */
1819 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1820 {
1821 int i;
1822 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823
1824 /* If TC0 is invalidated disable TC mapping */
1825 if (tc->offset + tc->count > txq) {
1826 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1827 dev->num_tc = 0;
1828 return;
1829 }
1830
1831 /* Invalidated prio to tc mappings set to TC0 */
1832 for (i = 1; i < TC_BITMASK + 1; i++) {
1833 int q = netdev_get_prio_tc_map(dev, i);
1834
1835 tc = &dev->tc_to_txq[q];
1836 if (tc->offset + tc->count > txq) {
1837 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838 i, q);
1839 netdev_set_prio_tc_map(dev, i, 0);
1840 }
1841 }
1842 }
1843
1844 #ifdef CONFIG_XPS
1845 static DEFINE_MUTEX(xps_map_mutex);
1846 #define xmap_dereference(P) \
1847 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848
1849 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 int cpu, u16 index)
1851 {
1852 struct xps_map *map = NULL;
1853 int pos;
1854
1855 if (dev_maps)
1856 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1857
1858 for (pos = 0; map && pos < map->len; pos++) {
1859 if (map->queues[pos] == index) {
1860 if (map->len > 1) {
1861 map->queues[pos] = map->queues[--map->len];
1862 } else {
1863 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1864 kfree_rcu(map, rcu);
1865 map = NULL;
1866 }
1867 break;
1868 }
1869 }
1870
1871 return map;
1872 }
1873
1874 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1875 {
1876 struct xps_dev_maps *dev_maps;
1877 int cpu, i;
1878 bool active = false;
1879
1880 mutex_lock(&xps_map_mutex);
1881 dev_maps = xmap_dereference(dev->xps_maps);
1882
1883 if (!dev_maps)
1884 goto out_no_maps;
1885
1886 for_each_possible_cpu(cpu) {
1887 for (i = index; i < dev->num_tx_queues; i++) {
1888 if (!remove_xps_queue(dev_maps, cpu, i))
1889 break;
1890 }
1891 if (i == dev->num_tx_queues)
1892 active = true;
1893 }
1894
1895 if (!active) {
1896 RCU_INIT_POINTER(dev->xps_maps, NULL);
1897 kfree_rcu(dev_maps, rcu);
1898 }
1899
1900 for (i = index; i < dev->num_tx_queues; i++)
1901 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902 NUMA_NO_NODE);
1903
1904 out_no_maps:
1905 mutex_unlock(&xps_map_mutex);
1906 }
1907
1908 static struct xps_map *expand_xps_map(struct xps_map *map,
1909 int cpu, u16 index)
1910 {
1911 struct xps_map *new_map;
1912 int alloc_len = XPS_MIN_MAP_ALLOC;
1913 int i, pos;
1914
1915 for (pos = 0; map && pos < map->len; pos++) {
1916 if (map->queues[pos] != index)
1917 continue;
1918 return map;
1919 }
1920
1921 /* Need to add queue to this CPU's existing map */
1922 if (map) {
1923 if (pos < map->alloc_len)
1924 return map;
1925
1926 alloc_len = map->alloc_len * 2;
1927 }
1928
1929 /* Need to allocate new map to store queue on this CPU's map */
1930 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931 cpu_to_node(cpu));
1932 if (!new_map)
1933 return NULL;
1934
1935 for (i = 0; i < pos; i++)
1936 new_map->queues[i] = map->queues[i];
1937 new_map->alloc_len = alloc_len;
1938 new_map->len = pos;
1939
1940 return new_map;
1941 }
1942
1943 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 u16 index)
1945 {
1946 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1947 struct xps_map *map, *new_map;
1948 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1949 int cpu, numa_node_id = -2;
1950 bool active = false;
1951
1952 mutex_lock(&xps_map_mutex);
1953
1954 dev_maps = xmap_dereference(dev->xps_maps);
1955
1956 /* allocate memory for queue storage */
1957 for_each_online_cpu(cpu) {
1958 if (!cpumask_test_cpu(cpu, mask))
1959 continue;
1960
1961 if (!new_dev_maps)
1962 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1963 if (!new_dev_maps) {
1964 mutex_unlock(&xps_map_mutex);
1965 return -ENOMEM;
1966 }
1967
1968 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 NULL;
1970
1971 map = expand_xps_map(map, cpu, index);
1972 if (!map)
1973 goto error;
1974
1975 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976 }
1977
1978 if (!new_dev_maps)
1979 goto out_no_new_maps;
1980
1981 for_each_possible_cpu(cpu) {
1982 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983 /* add queue to CPU maps */
1984 int pos = 0;
1985
1986 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987 while ((pos < map->len) && (map->queues[pos] != index))
1988 pos++;
1989
1990 if (pos == map->len)
1991 map->queues[map->len++] = index;
1992 #ifdef CONFIG_NUMA
1993 if (numa_node_id == -2)
1994 numa_node_id = cpu_to_node(cpu);
1995 else if (numa_node_id != cpu_to_node(cpu))
1996 numa_node_id = -1;
1997 #endif
1998 } else if (dev_maps) {
1999 /* fill in the new device map from the old device map */
2000 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2002 }
2003
2004 }
2005
2006 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007
2008 /* Cleanup old maps */
2009 if (dev_maps) {
2010 for_each_possible_cpu(cpu) {
2011 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 if (map && map != new_map)
2014 kfree_rcu(map, rcu);
2015 }
2016
2017 kfree_rcu(dev_maps, rcu);
2018 }
2019
2020 dev_maps = new_dev_maps;
2021 active = true;
2022
2023 out_no_new_maps:
2024 /* update Tx queue numa node */
2025 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026 (numa_node_id >= 0) ? numa_node_id :
2027 NUMA_NO_NODE);
2028
2029 if (!dev_maps)
2030 goto out_no_maps;
2031
2032 /* removes queue from unused CPUs */
2033 for_each_possible_cpu(cpu) {
2034 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 continue;
2036
2037 if (remove_xps_queue(dev_maps, cpu, index))
2038 active = true;
2039 }
2040
2041 /* free map if not active */
2042 if (!active) {
2043 RCU_INIT_POINTER(dev->xps_maps, NULL);
2044 kfree_rcu(dev_maps, rcu);
2045 }
2046
2047 out_no_maps:
2048 mutex_unlock(&xps_map_mutex);
2049
2050 return 0;
2051 error:
2052 /* remove any maps that we added */
2053 for_each_possible_cpu(cpu) {
2054 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057 if (new_map && new_map != map)
2058 kfree(new_map);
2059 }
2060
2061 mutex_unlock(&xps_map_mutex);
2062
2063 kfree(new_dev_maps);
2064 return -ENOMEM;
2065 }
2066 EXPORT_SYMBOL(netif_set_xps_queue);
2067
2068 #endif
2069 /*
2070 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072 */
2073 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2074 {
2075 int rc;
2076
2077 if (txq < 1 || txq > dev->num_tx_queues)
2078 return -EINVAL;
2079
2080 if (dev->reg_state == NETREG_REGISTERED ||
2081 dev->reg_state == NETREG_UNREGISTERING) {
2082 ASSERT_RTNL();
2083
2084 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085 txq);
2086 if (rc)
2087 return rc;
2088
2089 if (dev->num_tc)
2090 netif_setup_tc(dev, txq);
2091
2092 if (txq < dev->real_num_tx_queues) {
2093 qdisc_reset_all_tx_gt(dev, txq);
2094 #ifdef CONFIG_XPS
2095 netif_reset_xps_queues_gt(dev, txq);
2096 #endif
2097 }
2098 }
2099
2100 dev->real_num_tx_queues = txq;
2101 return 0;
2102 }
2103 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2104
2105 #ifdef CONFIG_SYSFS
2106 /**
2107 * netif_set_real_num_rx_queues - set actual number of RX queues used
2108 * @dev: Network device
2109 * @rxq: Actual number of RX queues
2110 *
2111 * This must be called either with the rtnl_lock held or before
2112 * registration of the net device. Returns 0 on success, or a
2113 * negative error code. If called before registration, it always
2114 * succeeds.
2115 */
2116 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117 {
2118 int rc;
2119
2120 if (rxq < 1 || rxq > dev->num_rx_queues)
2121 return -EINVAL;
2122
2123 if (dev->reg_state == NETREG_REGISTERED) {
2124 ASSERT_RTNL();
2125
2126 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127 rxq);
2128 if (rc)
2129 return rc;
2130 }
2131
2132 dev->real_num_rx_queues = rxq;
2133 return 0;
2134 }
2135 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136 #endif
2137
2138 /**
2139 * netif_get_num_default_rss_queues - default number of RSS queues
2140 *
2141 * This routine should set an upper limit on the number of RSS queues
2142 * used by default by multiqueue devices.
2143 */
2144 int netif_get_num_default_rss_queues(void)
2145 {
2146 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147 }
2148 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149
2150 static inline void __netif_reschedule(struct Qdisc *q)
2151 {
2152 struct softnet_data *sd;
2153 unsigned long flags;
2154
2155 local_irq_save(flags);
2156 sd = &__get_cpu_var(softnet_data);
2157 q->next_sched = NULL;
2158 *sd->output_queue_tailp = q;
2159 sd->output_queue_tailp = &q->next_sched;
2160 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161 local_irq_restore(flags);
2162 }
2163
2164 void __netif_schedule(struct Qdisc *q)
2165 {
2166 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167 __netif_reschedule(q);
2168 }
2169 EXPORT_SYMBOL(__netif_schedule);
2170
2171 struct dev_kfree_skb_cb {
2172 enum skb_free_reason reason;
2173 };
2174
2175 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2176 {
2177 return (struct dev_kfree_skb_cb *)skb->cb;
2178 }
2179
2180 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2181 {
2182 unsigned long flags;
2183
2184 if (likely(atomic_read(&skb->users) == 1)) {
2185 smp_rmb();
2186 atomic_set(&skb->users, 0);
2187 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2188 return;
2189 }
2190 get_kfree_skb_cb(skb)->reason = reason;
2191 local_irq_save(flags);
2192 skb->next = __this_cpu_read(softnet_data.completion_queue);
2193 __this_cpu_write(softnet_data.completion_queue, skb);
2194 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2195 local_irq_restore(flags);
2196 }
2197 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2198
2199 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2200 {
2201 if (in_irq() || irqs_disabled())
2202 __dev_kfree_skb_irq(skb, reason);
2203 else
2204 dev_kfree_skb(skb);
2205 }
2206 EXPORT_SYMBOL(__dev_kfree_skb_any);
2207
2208
2209 /**
2210 * netif_device_detach - mark device as removed
2211 * @dev: network device
2212 *
2213 * Mark device as removed from system and therefore no longer available.
2214 */
2215 void netif_device_detach(struct net_device *dev)
2216 {
2217 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2218 netif_running(dev)) {
2219 netif_tx_stop_all_queues(dev);
2220 }
2221 }
2222 EXPORT_SYMBOL(netif_device_detach);
2223
2224 /**
2225 * netif_device_attach - mark device as attached
2226 * @dev: network device
2227 *
2228 * Mark device as attached from system and restart if needed.
2229 */
2230 void netif_device_attach(struct net_device *dev)
2231 {
2232 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2233 netif_running(dev)) {
2234 netif_tx_wake_all_queues(dev);
2235 __netdev_watchdog_up(dev);
2236 }
2237 }
2238 EXPORT_SYMBOL(netif_device_attach);
2239
2240 static void skb_warn_bad_offload(const struct sk_buff *skb)
2241 {
2242 static const netdev_features_t null_features = 0;
2243 struct net_device *dev = skb->dev;
2244 const char *driver = "";
2245
2246 if (!net_ratelimit())
2247 return;
2248
2249 if (dev && dev->dev.parent)
2250 driver = dev_driver_string(dev->dev.parent);
2251
2252 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2253 "gso_type=%d ip_summed=%d\n",
2254 driver, dev ? &dev->features : &null_features,
2255 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2256 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2257 skb_shinfo(skb)->gso_type, skb->ip_summed);
2258 }
2259
2260 /*
2261 * Invalidate hardware checksum when packet is to be mangled, and
2262 * complete checksum manually on outgoing path.
2263 */
2264 int skb_checksum_help(struct sk_buff *skb)
2265 {
2266 __wsum csum;
2267 int ret = 0, offset;
2268
2269 if (skb->ip_summed == CHECKSUM_COMPLETE)
2270 goto out_set_summed;
2271
2272 if (unlikely(skb_shinfo(skb)->gso_size)) {
2273 skb_warn_bad_offload(skb);
2274 return -EINVAL;
2275 }
2276
2277 /* Before computing a checksum, we should make sure no frag could
2278 * be modified by an external entity : checksum could be wrong.
2279 */
2280 if (skb_has_shared_frag(skb)) {
2281 ret = __skb_linearize(skb);
2282 if (ret)
2283 goto out;
2284 }
2285
2286 offset = skb_checksum_start_offset(skb);
2287 BUG_ON(offset >= skb_headlen(skb));
2288 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2289
2290 offset += skb->csum_offset;
2291 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2292
2293 if (skb_cloned(skb) &&
2294 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2295 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2296 if (ret)
2297 goto out;
2298 }
2299
2300 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2301 out_set_summed:
2302 skb->ip_summed = CHECKSUM_NONE;
2303 out:
2304 return ret;
2305 }
2306 EXPORT_SYMBOL(skb_checksum_help);
2307
2308 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2309 {
2310 unsigned int vlan_depth = skb->mac_len;
2311 __be16 type = skb->protocol;
2312
2313 /* Tunnel gso handlers can set protocol to ethernet. */
2314 if (type == htons(ETH_P_TEB)) {
2315 struct ethhdr *eth;
2316
2317 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2318 return 0;
2319
2320 eth = (struct ethhdr *)skb_mac_header(skb);
2321 type = eth->h_proto;
2322 }
2323
2324 /* if skb->protocol is 802.1Q/AD then the header should already be
2325 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2326 * ETH_HLEN otherwise
2327 */
2328 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2329 if (vlan_depth) {
2330 if (WARN_ON(vlan_depth < VLAN_HLEN))
2331 return 0;
2332 vlan_depth -= VLAN_HLEN;
2333 } else {
2334 vlan_depth = ETH_HLEN;
2335 }
2336 do {
2337 struct vlan_hdr *vh;
2338
2339 if (unlikely(!pskb_may_pull(skb,
2340 vlan_depth + VLAN_HLEN)))
2341 return 0;
2342
2343 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2344 type = vh->h_vlan_encapsulated_proto;
2345 vlan_depth += VLAN_HLEN;
2346 } while (type == htons(ETH_P_8021Q) ||
2347 type == htons(ETH_P_8021AD));
2348 }
2349
2350 *depth = vlan_depth;
2351
2352 return type;
2353 }
2354
2355 /**
2356 * skb_mac_gso_segment - mac layer segmentation handler.
2357 * @skb: buffer to segment
2358 * @features: features for the output path (see dev->features)
2359 */
2360 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2361 netdev_features_t features)
2362 {
2363 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2364 struct packet_offload *ptype;
2365 int vlan_depth = skb->mac_len;
2366 __be16 type = skb_network_protocol(skb, &vlan_depth);
2367
2368 if (unlikely(!type))
2369 return ERR_PTR(-EINVAL);
2370
2371 __skb_pull(skb, vlan_depth);
2372
2373 rcu_read_lock();
2374 list_for_each_entry_rcu(ptype, &offload_base, list) {
2375 if (ptype->type == type && ptype->callbacks.gso_segment) {
2376 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2377 int err;
2378
2379 err = ptype->callbacks.gso_send_check(skb);
2380 segs = ERR_PTR(err);
2381 if (err || skb_gso_ok(skb, features))
2382 break;
2383 __skb_push(skb, (skb->data -
2384 skb_network_header(skb)));
2385 }
2386 segs = ptype->callbacks.gso_segment(skb, features);
2387 break;
2388 }
2389 }
2390 rcu_read_unlock();
2391
2392 __skb_push(skb, skb->data - skb_mac_header(skb));
2393
2394 return segs;
2395 }
2396 EXPORT_SYMBOL(skb_mac_gso_segment);
2397
2398
2399 /* openvswitch calls this on rx path, so we need a different check.
2400 */
2401 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2402 {
2403 if (tx_path)
2404 return skb->ip_summed != CHECKSUM_PARTIAL;
2405 else
2406 return skb->ip_summed == CHECKSUM_NONE;
2407 }
2408
2409 /**
2410 * __skb_gso_segment - Perform segmentation on skb.
2411 * @skb: buffer to segment
2412 * @features: features for the output path (see dev->features)
2413 * @tx_path: whether it is called in TX path
2414 *
2415 * This function segments the given skb and returns a list of segments.
2416 *
2417 * It may return NULL if the skb requires no segmentation. This is
2418 * only possible when GSO is used for verifying header integrity.
2419 */
2420 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2421 netdev_features_t features, bool tx_path)
2422 {
2423 if (unlikely(skb_needs_check(skb, tx_path))) {
2424 int err;
2425
2426 skb_warn_bad_offload(skb);
2427
2428 err = skb_cow_head(skb, 0);
2429 if (err < 0)
2430 return ERR_PTR(err);
2431 }
2432
2433 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2434 SKB_GSO_CB(skb)->encap_level = 0;
2435
2436 skb_reset_mac_header(skb);
2437 skb_reset_mac_len(skb);
2438
2439 return skb_mac_gso_segment(skb, features);
2440 }
2441 EXPORT_SYMBOL(__skb_gso_segment);
2442
2443 /* Take action when hardware reception checksum errors are detected. */
2444 #ifdef CONFIG_BUG
2445 void netdev_rx_csum_fault(struct net_device *dev)
2446 {
2447 if (net_ratelimit()) {
2448 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2449 dump_stack();
2450 }
2451 }
2452 EXPORT_SYMBOL(netdev_rx_csum_fault);
2453 #endif
2454
2455 /* Actually, we should eliminate this check as soon as we know, that:
2456 * 1. IOMMU is present and allows to map all the memory.
2457 * 2. No high memory really exists on this machine.
2458 */
2459
2460 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 #ifdef CONFIG_HIGHMEM
2463 int i;
2464 if (!(dev->features & NETIF_F_HIGHDMA)) {
2465 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2466 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2467 if (PageHighMem(skb_frag_page(frag)))
2468 return 1;
2469 }
2470 }
2471
2472 if (PCI_DMA_BUS_IS_PHYS) {
2473 struct device *pdev = dev->dev.parent;
2474
2475 if (!pdev)
2476 return 0;
2477 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2480 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2481 return 1;
2482 }
2483 }
2484 #endif
2485 return 0;
2486 }
2487
2488 struct dev_gso_cb {
2489 void (*destructor)(struct sk_buff *skb);
2490 };
2491
2492 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2493
2494 static void dev_gso_skb_destructor(struct sk_buff *skb)
2495 {
2496 struct dev_gso_cb *cb;
2497
2498 kfree_skb_list(skb->next);
2499 skb->next = NULL;
2500
2501 cb = DEV_GSO_CB(skb);
2502 if (cb->destructor)
2503 cb->destructor(skb);
2504 }
2505
2506 /**
2507 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2508 * @skb: buffer to segment
2509 * @features: device features as applicable to this skb
2510 *
2511 * This function segments the given skb and stores the list of segments
2512 * in skb->next.
2513 */
2514 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2515 {
2516 struct sk_buff *segs;
2517
2518 segs = skb_gso_segment(skb, features);
2519
2520 /* Verifying header integrity only. */
2521 if (!segs)
2522 return 0;
2523
2524 if (IS_ERR(segs))
2525 return PTR_ERR(segs);
2526
2527 skb->next = segs;
2528 DEV_GSO_CB(skb)->destructor = skb->destructor;
2529 skb->destructor = dev_gso_skb_destructor;
2530
2531 return 0;
2532 }
2533
2534 /* If MPLS offload request, verify we are testing hardware MPLS features
2535 * instead of standard features for the netdev.
2536 */
2537 #ifdef CONFIG_NET_MPLS_GSO
2538 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2539 netdev_features_t features,
2540 __be16 type)
2541 {
2542 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2543 features &= skb->dev->mpls_features;
2544
2545 return features;
2546 }
2547 #else
2548 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2549 netdev_features_t features,
2550 __be16 type)
2551 {
2552 return features;
2553 }
2554 #endif
2555
2556 static netdev_features_t harmonize_features(struct sk_buff *skb,
2557 netdev_features_t features)
2558 {
2559 int tmp;
2560 __be16 type;
2561
2562 type = skb_network_protocol(skb, &tmp);
2563 features = net_mpls_features(skb, features, type);
2564
2565 if (skb->ip_summed != CHECKSUM_NONE &&
2566 !can_checksum_protocol(features, type)) {
2567 features &= ~NETIF_F_ALL_CSUM;
2568 } else if (illegal_highdma(skb->dev, skb)) {
2569 features &= ~NETIF_F_SG;
2570 }
2571
2572 return features;
2573 }
2574
2575 netdev_features_t netif_skb_features(struct sk_buff *skb)
2576 {
2577 __be16 protocol = skb->protocol;
2578 netdev_features_t features = skb->dev->features;
2579
2580 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2581 features &= ~NETIF_F_GSO_MASK;
2582
2583 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2584 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2585 protocol = veh->h_vlan_encapsulated_proto;
2586 } else if (!vlan_tx_tag_present(skb)) {
2587 return harmonize_features(skb, features);
2588 }
2589
2590 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2591 NETIF_F_HW_VLAN_STAG_TX);
2592
2593 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2594 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2595 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2596 NETIF_F_HW_VLAN_STAG_TX;
2597
2598 return harmonize_features(skb, features);
2599 }
2600 EXPORT_SYMBOL(netif_skb_features);
2601
2602 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2603 struct netdev_queue *txq)
2604 {
2605 const struct net_device_ops *ops = dev->netdev_ops;
2606 int rc = NETDEV_TX_OK;
2607 unsigned int skb_len;
2608
2609 if (likely(!skb->next)) {
2610 netdev_features_t features;
2611
2612 /*
2613 * If device doesn't need skb->dst, release it right now while
2614 * its hot in this cpu cache
2615 */
2616 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2617 skb_dst_drop(skb);
2618
2619 features = netif_skb_features(skb);
2620
2621 if (vlan_tx_tag_present(skb) &&
2622 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2623 skb = __vlan_put_tag(skb, skb->vlan_proto,
2624 vlan_tx_tag_get(skb));
2625 if (unlikely(!skb))
2626 goto out;
2627
2628 skb->vlan_tci = 0;
2629 }
2630
2631 /* If encapsulation offload request, verify we are testing
2632 * hardware encapsulation features instead of standard
2633 * features for the netdev
2634 */
2635 if (skb->encapsulation)
2636 features &= dev->hw_enc_features;
2637
2638 if (netif_needs_gso(skb, features)) {
2639 if (unlikely(dev_gso_segment(skb, features)))
2640 goto out_kfree_skb;
2641 if (skb->next)
2642 goto gso;
2643 } else {
2644 if (skb_needs_linearize(skb, features) &&
2645 __skb_linearize(skb))
2646 goto out_kfree_skb;
2647
2648 /* If packet is not checksummed and device does not
2649 * support checksumming for this protocol, complete
2650 * checksumming here.
2651 */
2652 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2653 if (skb->encapsulation)
2654 skb_set_inner_transport_header(skb,
2655 skb_checksum_start_offset(skb));
2656 else
2657 skb_set_transport_header(skb,
2658 skb_checksum_start_offset(skb));
2659 if (!(features & NETIF_F_ALL_CSUM) &&
2660 skb_checksum_help(skb))
2661 goto out_kfree_skb;
2662 }
2663 }
2664
2665 if (!list_empty(&ptype_all))
2666 dev_queue_xmit_nit(skb, dev);
2667
2668 skb_len = skb->len;
2669 trace_net_dev_start_xmit(skb, dev);
2670 rc = ops->ndo_start_xmit(skb, dev);
2671 trace_net_dev_xmit(skb, rc, dev, skb_len);
2672 if (rc == NETDEV_TX_OK)
2673 txq_trans_update(txq);
2674 return rc;
2675 }
2676
2677 gso:
2678 do {
2679 struct sk_buff *nskb = skb->next;
2680
2681 skb->next = nskb->next;
2682 nskb->next = NULL;
2683
2684 if (!list_empty(&ptype_all))
2685 dev_queue_xmit_nit(nskb, dev);
2686
2687 skb_len = nskb->len;
2688 trace_net_dev_start_xmit(nskb, dev);
2689 rc = ops->ndo_start_xmit(nskb, dev);
2690 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2691 if (unlikely(rc != NETDEV_TX_OK)) {
2692 if (rc & ~NETDEV_TX_MASK)
2693 goto out_kfree_gso_skb;
2694 nskb->next = skb->next;
2695 skb->next = nskb;
2696 return rc;
2697 }
2698 txq_trans_update(txq);
2699 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2700 return NETDEV_TX_BUSY;
2701 } while (skb->next);
2702
2703 out_kfree_gso_skb:
2704 if (likely(skb->next == NULL)) {
2705 skb->destructor = DEV_GSO_CB(skb)->destructor;
2706 consume_skb(skb);
2707 return rc;
2708 }
2709 out_kfree_skb:
2710 kfree_skb(skb);
2711 out:
2712 return rc;
2713 }
2714 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2715
2716 static void qdisc_pkt_len_init(struct sk_buff *skb)
2717 {
2718 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2719
2720 qdisc_skb_cb(skb)->pkt_len = skb->len;
2721
2722 /* To get more precise estimation of bytes sent on wire,
2723 * we add to pkt_len the headers size of all segments
2724 */
2725 if (shinfo->gso_size) {
2726 unsigned int hdr_len;
2727 u16 gso_segs = shinfo->gso_segs;
2728
2729 /* mac layer + network layer */
2730 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2731
2732 /* + transport layer */
2733 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2734 hdr_len += tcp_hdrlen(skb);
2735 else
2736 hdr_len += sizeof(struct udphdr);
2737
2738 if (shinfo->gso_type & SKB_GSO_DODGY)
2739 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2740 shinfo->gso_size);
2741
2742 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2743 }
2744 }
2745
2746 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2747 struct net_device *dev,
2748 struct netdev_queue *txq)
2749 {
2750 spinlock_t *root_lock = qdisc_lock(q);
2751 bool contended;
2752 int rc;
2753
2754 qdisc_pkt_len_init(skb);
2755 qdisc_calculate_pkt_len(skb, q);
2756 /*
2757 * Heuristic to force contended enqueues to serialize on a
2758 * separate lock before trying to get qdisc main lock.
2759 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2760 * often and dequeue packets faster.
2761 */
2762 contended = qdisc_is_running(q);
2763 if (unlikely(contended))
2764 spin_lock(&q->busylock);
2765
2766 spin_lock(root_lock);
2767 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2768 kfree_skb(skb);
2769 rc = NET_XMIT_DROP;
2770 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2771 qdisc_run_begin(q)) {
2772 /*
2773 * This is a work-conserving queue; there are no old skbs
2774 * waiting to be sent out; and the qdisc is not running -
2775 * xmit the skb directly.
2776 */
2777 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2778 skb_dst_force(skb);
2779
2780 qdisc_bstats_update(q, skb);
2781
2782 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2783 if (unlikely(contended)) {
2784 spin_unlock(&q->busylock);
2785 contended = false;
2786 }
2787 __qdisc_run(q);
2788 } else
2789 qdisc_run_end(q);
2790
2791 rc = NET_XMIT_SUCCESS;
2792 } else {
2793 skb_dst_force(skb);
2794 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2795 if (qdisc_run_begin(q)) {
2796 if (unlikely(contended)) {
2797 spin_unlock(&q->busylock);
2798 contended = false;
2799 }
2800 __qdisc_run(q);
2801 }
2802 }
2803 spin_unlock(root_lock);
2804 if (unlikely(contended))
2805 spin_unlock(&q->busylock);
2806 return rc;
2807 }
2808
2809 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2810 static void skb_update_prio(struct sk_buff *skb)
2811 {
2812 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2813
2814 if (!skb->priority && skb->sk && map) {
2815 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2816
2817 if (prioidx < map->priomap_len)
2818 skb->priority = map->priomap[prioidx];
2819 }
2820 }
2821 #else
2822 #define skb_update_prio(skb)
2823 #endif
2824
2825 static DEFINE_PER_CPU(int, xmit_recursion);
2826 #define RECURSION_LIMIT 10
2827
2828 /**
2829 * dev_loopback_xmit - loop back @skb
2830 * @skb: buffer to transmit
2831 */
2832 int dev_loopback_xmit(struct sk_buff *skb)
2833 {
2834 skb_reset_mac_header(skb);
2835 __skb_pull(skb, skb_network_offset(skb));
2836 skb->pkt_type = PACKET_LOOPBACK;
2837 skb->ip_summed = CHECKSUM_UNNECESSARY;
2838 WARN_ON(!skb_dst(skb));
2839 skb_dst_force(skb);
2840 netif_rx_ni(skb);
2841 return 0;
2842 }
2843 EXPORT_SYMBOL(dev_loopback_xmit);
2844
2845 /**
2846 * __dev_queue_xmit - transmit a buffer
2847 * @skb: buffer to transmit
2848 * @accel_priv: private data used for L2 forwarding offload
2849 *
2850 * Queue a buffer for transmission to a network device. The caller must
2851 * have set the device and priority and built the buffer before calling
2852 * this function. The function can be called from an interrupt.
2853 *
2854 * A negative errno code is returned on a failure. A success does not
2855 * guarantee the frame will be transmitted as it may be dropped due
2856 * to congestion or traffic shaping.
2857 *
2858 * -----------------------------------------------------------------------------------
2859 * I notice this method can also return errors from the queue disciplines,
2860 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2861 * be positive.
2862 *
2863 * Regardless of the return value, the skb is consumed, so it is currently
2864 * difficult to retry a send to this method. (You can bump the ref count
2865 * before sending to hold a reference for retry if you are careful.)
2866 *
2867 * When calling this method, interrupts MUST be enabled. This is because
2868 * the BH enable code must have IRQs enabled so that it will not deadlock.
2869 * --BLG
2870 */
2871 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2872 {
2873 struct net_device *dev = skb->dev;
2874 struct netdev_queue *txq;
2875 struct Qdisc *q;
2876 int rc = -ENOMEM;
2877
2878 skb_reset_mac_header(skb);
2879
2880 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2881 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2882
2883 /* Disable soft irqs for various locks below. Also
2884 * stops preemption for RCU.
2885 */
2886 rcu_read_lock_bh();
2887
2888 skb_update_prio(skb);
2889
2890 txq = netdev_pick_tx(dev, skb, accel_priv);
2891 q = rcu_dereference_bh(txq->qdisc);
2892
2893 #ifdef CONFIG_NET_CLS_ACT
2894 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2895 #endif
2896 trace_net_dev_queue(skb);
2897 if (q->enqueue) {
2898 rc = __dev_xmit_skb(skb, q, dev, txq);
2899 goto out;
2900 }
2901
2902 /* The device has no queue. Common case for software devices:
2903 loopback, all the sorts of tunnels...
2904
2905 Really, it is unlikely that netif_tx_lock protection is necessary
2906 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2907 counters.)
2908 However, it is possible, that they rely on protection
2909 made by us here.
2910
2911 Check this and shot the lock. It is not prone from deadlocks.
2912 Either shot noqueue qdisc, it is even simpler 8)
2913 */
2914 if (dev->flags & IFF_UP) {
2915 int cpu = smp_processor_id(); /* ok because BHs are off */
2916
2917 if (txq->xmit_lock_owner != cpu) {
2918
2919 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2920 goto recursion_alert;
2921
2922 HARD_TX_LOCK(dev, txq, cpu);
2923
2924 if (!netif_xmit_stopped(txq)) {
2925 __this_cpu_inc(xmit_recursion);
2926 rc = dev_hard_start_xmit(skb, dev, txq);
2927 __this_cpu_dec(xmit_recursion);
2928 if (dev_xmit_complete(rc)) {
2929 HARD_TX_UNLOCK(dev, txq);
2930 goto out;
2931 }
2932 }
2933 HARD_TX_UNLOCK(dev, txq);
2934 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2935 dev->name);
2936 } else {
2937 /* Recursion is detected! It is possible,
2938 * unfortunately
2939 */
2940 recursion_alert:
2941 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2942 dev->name);
2943 }
2944 }
2945
2946 rc = -ENETDOWN;
2947 rcu_read_unlock_bh();
2948
2949 atomic_long_inc(&dev->tx_dropped);
2950 kfree_skb(skb);
2951 return rc;
2952 out:
2953 rcu_read_unlock_bh();
2954 return rc;
2955 }
2956
2957 int dev_queue_xmit(struct sk_buff *skb)
2958 {
2959 return __dev_queue_xmit(skb, NULL);
2960 }
2961 EXPORT_SYMBOL(dev_queue_xmit);
2962
2963 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2964 {
2965 return __dev_queue_xmit(skb, accel_priv);
2966 }
2967 EXPORT_SYMBOL(dev_queue_xmit_accel);
2968
2969
2970 /*=======================================================================
2971 Receiver routines
2972 =======================================================================*/
2973
2974 int netdev_max_backlog __read_mostly = 1000;
2975 EXPORT_SYMBOL(netdev_max_backlog);
2976
2977 int netdev_tstamp_prequeue __read_mostly = 1;
2978 int netdev_budget __read_mostly = 300;
2979 int weight_p __read_mostly = 64; /* old backlog weight */
2980
2981 /* Called with irq disabled */
2982 static inline void ____napi_schedule(struct softnet_data *sd,
2983 struct napi_struct *napi)
2984 {
2985 list_add_tail(&napi->poll_list, &sd->poll_list);
2986 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2987 }
2988
2989 #ifdef CONFIG_RPS
2990
2991 /* One global table that all flow-based protocols share. */
2992 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2993 EXPORT_SYMBOL(rps_sock_flow_table);
2994
2995 struct static_key rps_needed __read_mostly;
2996
2997 static struct rps_dev_flow *
2998 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2999 struct rps_dev_flow *rflow, u16 next_cpu)
3000 {
3001 if (next_cpu != RPS_NO_CPU) {
3002 #ifdef CONFIG_RFS_ACCEL
3003 struct netdev_rx_queue *rxqueue;
3004 struct rps_dev_flow_table *flow_table;
3005 struct rps_dev_flow *old_rflow;
3006 u32 flow_id;
3007 u16 rxq_index;
3008 int rc;
3009
3010 /* Should we steer this flow to a different hardware queue? */
3011 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3012 !(dev->features & NETIF_F_NTUPLE))
3013 goto out;
3014 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3015 if (rxq_index == skb_get_rx_queue(skb))
3016 goto out;
3017
3018 rxqueue = dev->_rx + rxq_index;
3019 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3020 if (!flow_table)
3021 goto out;
3022 flow_id = skb_get_hash(skb) & flow_table->mask;
3023 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3024 rxq_index, flow_id);
3025 if (rc < 0)
3026 goto out;
3027 old_rflow = rflow;
3028 rflow = &flow_table->flows[flow_id];
3029 rflow->filter = rc;
3030 if (old_rflow->filter == rflow->filter)
3031 old_rflow->filter = RPS_NO_FILTER;
3032 out:
3033 #endif
3034 rflow->last_qtail =
3035 per_cpu(softnet_data, next_cpu).input_queue_head;
3036 }
3037
3038 rflow->cpu = next_cpu;
3039 return rflow;
3040 }
3041
3042 /*
3043 * get_rps_cpu is called from netif_receive_skb and returns the target
3044 * CPU from the RPS map of the receiving queue for a given skb.
3045 * rcu_read_lock must be held on entry.
3046 */
3047 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3048 struct rps_dev_flow **rflowp)
3049 {
3050 struct netdev_rx_queue *rxqueue;
3051 struct rps_map *map;
3052 struct rps_dev_flow_table *flow_table;
3053 struct rps_sock_flow_table *sock_flow_table;
3054 int cpu = -1;
3055 u16 tcpu;
3056 u32 hash;
3057
3058 if (skb_rx_queue_recorded(skb)) {
3059 u16 index = skb_get_rx_queue(skb);
3060 if (unlikely(index >= dev->real_num_rx_queues)) {
3061 WARN_ONCE(dev->real_num_rx_queues > 1,
3062 "%s received packet on queue %u, but number "
3063 "of RX queues is %u\n",
3064 dev->name, index, dev->real_num_rx_queues);
3065 goto done;
3066 }
3067 rxqueue = dev->_rx + index;
3068 } else
3069 rxqueue = dev->_rx;
3070
3071 map = rcu_dereference(rxqueue->rps_map);
3072 if (map) {
3073 if (map->len == 1 &&
3074 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3075 tcpu = map->cpus[0];
3076 if (cpu_online(tcpu))
3077 cpu = tcpu;
3078 goto done;
3079 }
3080 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3081 goto done;
3082 }
3083
3084 skb_reset_network_header(skb);
3085 hash = skb_get_hash(skb);
3086 if (!hash)
3087 goto done;
3088
3089 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3090 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3091 if (flow_table && sock_flow_table) {
3092 u16 next_cpu;
3093 struct rps_dev_flow *rflow;
3094
3095 rflow = &flow_table->flows[hash & flow_table->mask];
3096 tcpu = rflow->cpu;
3097
3098 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3099
3100 /*
3101 * If the desired CPU (where last recvmsg was done) is
3102 * different from current CPU (one in the rx-queue flow
3103 * table entry), switch if one of the following holds:
3104 * - Current CPU is unset (equal to RPS_NO_CPU).
3105 * - Current CPU is offline.
3106 * - The current CPU's queue tail has advanced beyond the
3107 * last packet that was enqueued using this table entry.
3108 * This guarantees that all previous packets for the flow
3109 * have been dequeued, thus preserving in order delivery.
3110 */
3111 if (unlikely(tcpu != next_cpu) &&
3112 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3113 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3114 rflow->last_qtail)) >= 0)) {
3115 tcpu = next_cpu;
3116 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3117 }
3118
3119 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3120 *rflowp = rflow;
3121 cpu = tcpu;
3122 goto done;
3123 }
3124 }
3125
3126 if (map) {
3127 tcpu = map->cpus[((u64) hash * map->len) >> 32];
3128
3129 if (cpu_online(tcpu)) {
3130 cpu = tcpu;
3131 goto done;
3132 }
3133 }
3134
3135 done:
3136 return cpu;
3137 }
3138
3139 #ifdef CONFIG_RFS_ACCEL
3140
3141 /**
3142 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3143 * @dev: Device on which the filter was set
3144 * @rxq_index: RX queue index
3145 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3146 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3147 *
3148 * Drivers that implement ndo_rx_flow_steer() should periodically call
3149 * this function for each installed filter and remove the filters for
3150 * which it returns %true.
3151 */
3152 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3153 u32 flow_id, u16 filter_id)
3154 {
3155 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3156 struct rps_dev_flow_table *flow_table;
3157 struct rps_dev_flow *rflow;
3158 bool expire = true;
3159 int cpu;
3160
3161 rcu_read_lock();
3162 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3163 if (flow_table && flow_id <= flow_table->mask) {
3164 rflow = &flow_table->flows[flow_id];
3165 cpu = ACCESS_ONCE(rflow->cpu);
3166 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3167 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3168 rflow->last_qtail) <
3169 (int)(10 * flow_table->mask)))
3170 expire = false;
3171 }
3172 rcu_read_unlock();
3173 return expire;
3174 }
3175 EXPORT_SYMBOL(rps_may_expire_flow);
3176
3177 #endif /* CONFIG_RFS_ACCEL */
3178
3179 /* Called from hardirq (IPI) context */
3180 static void rps_trigger_softirq(void *data)
3181 {
3182 struct softnet_data *sd = data;
3183
3184 ____napi_schedule(sd, &sd->backlog);
3185 sd->received_rps++;
3186 }
3187
3188 #endif /* CONFIG_RPS */
3189
3190 /*
3191 * Check if this softnet_data structure is another cpu one
3192 * If yes, queue it to our IPI list and return 1
3193 * If no, return 0
3194 */
3195 static int rps_ipi_queued(struct softnet_data *sd)
3196 {
3197 #ifdef CONFIG_RPS
3198 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3199
3200 if (sd != mysd) {
3201 sd->rps_ipi_next = mysd->rps_ipi_list;
3202 mysd->rps_ipi_list = sd;
3203
3204 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3205 return 1;
3206 }
3207 #endif /* CONFIG_RPS */
3208 return 0;
3209 }
3210
3211 #ifdef CONFIG_NET_FLOW_LIMIT
3212 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3213 #endif
3214
3215 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3216 {
3217 #ifdef CONFIG_NET_FLOW_LIMIT
3218 struct sd_flow_limit *fl;
3219 struct softnet_data *sd;
3220 unsigned int old_flow, new_flow;
3221
3222 if (qlen < (netdev_max_backlog >> 1))
3223 return false;
3224
3225 sd = &__get_cpu_var(softnet_data);
3226
3227 rcu_read_lock();
3228 fl = rcu_dereference(sd->flow_limit);
3229 if (fl) {
3230 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3231 old_flow = fl->history[fl->history_head];
3232 fl->history[fl->history_head] = new_flow;
3233
3234 fl->history_head++;
3235 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3236
3237 if (likely(fl->buckets[old_flow]))
3238 fl->buckets[old_flow]--;
3239
3240 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3241 fl->count++;
3242 rcu_read_unlock();
3243 return true;
3244 }
3245 }
3246 rcu_read_unlock();
3247 #endif
3248 return false;
3249 }
3250
3251 /*
3252 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3253 * queue (may be a remote CPU queue).
3254 */
3255 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3256 unsigned int *qtail)
3257 {
3258 struct softnet_data *sd;
3259 unsigned long flags;
3260 unsigned int qlen;
3261
3262 sd = &per_cpu(softnet_data, cpu);
3263
3264 local_irq_save(flags);
3265
3266 rps_lock(sd);
3267 qlen = skb_queue_len(&sd->input_pkt_queue);
3268 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3269 if (skb_queue_len(&sd->input_pkt_queue)) {
3270 enqueue:
3271 __skb_queue_tail(&sd->input_pkt_queue, skb);
3272 input_queue_tail_incr_save(sd, qtail);
3273 rps_unlock(sd);
3274 local_irq_restore(flags);
3275 return NET_RX_SUCCESS;
3276 }
3277
3278 /* Schedule NAPI for backlog device
3279 * We can use non atomic operation since we own the queue lock
3280 */
3281 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3282 if (!rps_ipi_queued(sd))
3283 ____napi_schedule(sd, &sd->backlog);
3284 }
3285 goto enqueue;
3286 }
3287
3288 sd->dropped++;
3289 rps_unlock(sd);
3290
3291 local_irq_restore(flags);
3292
3293 atomic_long_inc(&skb->dev->rx_dropped);
3294 kfree_skb(skb);
3295 return NET_RX_DROP;
3296 }
3297
3298 static int netif_rx_internal(struct sk_buff *skb)
3299 {
3300 int ret;
3301
3302 net_timestamp_check(netdev_tstamp_prequeue, skb);
3303
3304 trace_netif_rx(skb);
3305 #ifdef CONFIG_RPS
3306 if (static_key_false(&rps_needed)) {
3307 struct rps_dev_flow voidflow, *rflow = &voidflow;
3308 int cpu;
3309
3310 preempt_disable();
3311 rcu_read_lock();
3312
3313 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3314 if (cpu < 0)
3315 cpu = smp_processor_id();
3316
3317 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3318
3319 rcu_read_unlock();
3320 preempt_enable();
3321 } else
3322 #endif
3323 {
3324 unsigned int qtail;
3325 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3326 put_cpu();
3327 }
3328 return ret;
3329 }
3330
3331 /**
3332 * netif_rx - post buffer to the network code
3333 * @skb: buffer to post
3334 *
3335 * This function receives a packet from a device driver and queues it for
3336 * the upper (protocol) levels to process. It always succeeds. The buffer
3337 * may be dropped during processing for congestion control or by the
3338 * protocol layers.
3339 *
3340 * return values:
3341 * NET_RX_SUCCESS (no congestion)
3342 * NET_RX_DROP (packet was dropped)
3343 *
3344 */
3345
3346 int netif_rx(struct sk_buff *skb)
3347 {
3348 trace_netif_rx_entry(skb);
3349
3350 return netif_rx_internal(skb);
3351 }
3352 EXPORT_SYMBOL(netif_rx);
3353
3354 int netif_rx_ni(struct sk_buff *skb)
3355 {
3356 int err;
3357
3358 trace_netif_rx_ni_entry(skb);
3359
3360 preempt_disable();
3361 err = netif_rx_internal(skb);
3362 if (local_softirq_pending())
3363 do_softirq();
3364 preempt_enable();
3365
3366 return err;
3367 }
3368 EXPORT_SYMBOL(netif_rx_ni);
3369
3370 static void net_tx_action(struct softirq_action *h)
3371 {
3372 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3373
3374 if (sd->completion_queue) {
3375 struct sk_buff *clist;
3376
3377 local_irq_disable();
3378 clist = sd->completion_queue;
3379 sd->completion_queue = NULL;
3380 local_irq_enable();
3381
3382 while (clist) {
3383 struct sk_buff *skb = clist;
3384 clist = clist->next;
3385
3386 WARN_ON(atomic_read(&skb->users));
3387 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3388 trace_consume_skb(skb);
3389 else
3390 trace_kfree_skb(skb, net_tx_action);
3391 __kfree_skb(skb);
3392 }
3393 }
3394
3395 if (sd->output_queue) {
3396 struct Qdisc *head;
3397
3398 local_irq_disable();
3399 head = sd->output_queue;
3400 sd->output_queue = NULL;
3401 sd->output_queue_tailp = &sd->output_queue;
3402 local_irq_enable();
3403
3404 while (head) {
3405 struct Qdisc *q = head;
3406 spinlock_t *root_lock;
3407
3408 head = head->next_sched;
3409
3410 root_lock = qdisc_lock(q);
3411 if (spin_trylock(root_lock)) {
3412 smp_mb__before_atomic();
3413 clear_bit(__QDISC_STATE_SCHED,
3414 &q->state);
3415 qdisc_run(q);
3416 spin_unlock(root_lock);
3417 } else {
3418 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3419 &q->state)) {
3420 __netif_reschedule(q);
3421 } else {
3422 smp_mb__before_atomic();
3423 clear_bit(__QDISC_STATE_SCHED,
3424 &q->state);
3425 }
3426 }
3427 }
3428 }
3429 }
3430
3431 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3432 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3433 /* This hook is defined here for ATM LANE */
3434 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3435 unsigned char *addr) __read_mostly;
3436 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3437 #endif
3438
3439 #ifdef CONFIG_NET_CLS_ACT
3440 /* TODO: Maybe we should just force sch_ingress to be compiled in
3441 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3442 * a compare and 2 stores extra right now if we dont have it on
3443 * but have CONFIG_NET_CLS_ACT
3444 * NOTE: This doesn't stop any functionality; if you dont have
3445 * the ingress scheduler, you just can't add policies on ingress.
3446 *
3447 */
3448 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3449 {
3450 struct net_device *dev = skb->dev;
3451 u32 ttl = G_TC_RTTL(skb->tc_verd);
3452 int result = TC_ACT_OK;
3453 struct Qdisc *q;
3454
3455 if (unlikely(MAX_RED_LOOP < ttl++)) {
3456 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3457 skb->skb_iif, dev->ifindex);
3458 return TC_ACT_SHOT;
3459 }
3460
3461 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3462 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3463
3464 q = rxq->qdisc;
3465 if (q != &noop_qdisc) {
3466 spin_lock(qdisc_lock(q));
3467 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3468 result = qdisc_enqueue_root(skb, q);
3469 spin_unlock(qdisc_lock(q));
3470 }
3471
3472 return result;
3473 }
3474
3475 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3476 struct packet_type **pt_prev,
3477 int *ret, struct net_device *orig_dev)
3478 {
3479 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3480
3481 if (!rxq || rxq->qdisc == &noop_qdisc)
3482 goto out;
3483
3484 if (*pt_prev) {
3485 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3486 *pt_prev = NULL;
3487 }
3488
3489 switch (ing_filter(skb, rxq)) {
3490 case TC_ACT_SHOT:
3491 case TC_ACT_STOLEN:
3492 kfree_skb(skb);
3493 return NULL;
3494 }
3495
3496 out:
3497 skb->tc_verd = 0;
3498 return skb;
3499 }
3500 #endif
3501
3502 /**
3503 * netdev_rx_handler_register - register receive handler
3504 * @dev: device to register a handler for
3505 * @rx_handler: receive handler to register
3506 * @rx_handler_data: data pointer that is used by rx handler
3507 *
3508 * Register a receive handler for a device. This handler will then be
3509 * called from __netif_receive_skb. A negative errno code is returned
3510 * on a failure.
3511 *
3512 * The caller must hold the rtnl_mutex.
3513 *
3514 * For a general description of rx_handler, see enum rx_handler_result.
3515 */
3516 int netdev_rx_handler_register(struct net_device *dev,
3517 rx_handler_func_t *rx_handler,
3518 void *rx_handler_data)
3519 {
3520 ASSERT_RTNL();
3521
3522 if (dev->rx_handler)
3523 return -EBUSY;
3524
3525 /* Note: rx_handler_data must be set before rx_handler */
3526 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3527 rcu_assign_pointer(dev->rx_handler, rx_handler);
3528
3529 return 0;
3530 }
3531 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3532
3533 /**
3534 * netdev_rx_handler_unregister - unregister receive handler
3535 * @dev: device to unregister a handler from
3536 *
3537 * Unregister a receive handler from a device.
3538 *
3539 * The caller must hold the rtnl_mutex.
3540 */
3541 void netdev_rx_handler_unregister(struct net_device *dev)
3542 {
3543
3544 ASSERT_RTNL();
3545 RCU_INIT_POINTER(dev->rx_handler, NULL);
3546 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3547 * section has a guarantee to see a non NULL rx_handler_data
3548 * as well.
3549 */
3550 synchronize_net();
3551 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3552 }
3553 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3554
3555 /*
3556 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3557 * the special handling of PFMEMALLOC skbs.
3558 */
3559 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3560 {
3561 switch (skb->protocol) {
3562 case htons(ETH_P_ARP):
3563 case htons(ETH_P_IP):
3564 case htons(ETH_P_IPV6):
3565 case htons(ETH_P_8021Q):
3566 case htons(ETH_P_8021AD):
3567 return true;
3568 default:
3569 return false;
3570 }
3571 }
3572
3573 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3574 {
3575 struct packet_type *ptype, *pt_prev;
3576 rx_handler_func_t *rx_handler;
3577 struct net_device *orig_dev;
3578 struct net_device *null_or_dev;
3579 bool deliver_exact = false;
3580 int ret = NET_RX_DROP;
3581 __be16 type;
3582
3583 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3584
3585 trace_netif_receive_skb(skb);
3586
3587 orig_dev = skb->dev;
3588
3589 skb_reset_network_header(skb);
3590 if (!skb_transport_header_was_set(skb))
3591 skb_reset_transport_header(skb);
3592 skb_reset_mac_len(skb);
3593
3594 pt_prev = NULL;
3595
3596 rcu_read_lock();
3597
3598 another_round:
3599 skb->skb_iif = skb->dev->ifindex;
3600
3601 __this_cpu_inc(softnet_data.processed);
3602
3603 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3604 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3605 skb = skb_vlan_untag(skb);
3606 if (unlikely(!skb))
3607 goto unlock;
3608 }
3609
3610 #ifdef CONFIG_NET_CLS_ACT
3611 if (skb->tc_verd & TC_NCLS) {
3612 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3613 goto ncls;
3614 }
3615 #endif
3616
3617 if (pfmemalloc)
3618 goto skip_taps;
3619
3620 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3621 if (!ptype->dev || ptype->dev == skb->dev) {
3622 if (pt_prev)
3623 ret = deliver_skb(skb, pt_prev, orig_dev);
3624 pt_prev = ptype;
3625 }
3626 }
3627
3628 skip_taps:
3629 #ifdef CONFIG_NET_CLS_ACT
3630 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3631 if (!skb)
3632 goto unlock;
3633 ncls:
3634 #endif
3635
3636 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3637 goto drop;
3638
3639 if (vlan_tx_tag_present(skb)) {
3640 if (pt_prev) {
3641 ret = deliver_skb(skb, pt_prev, orig_dev);
3642 pt_prev = NULL;
3643 }
3644 if (vlan_do_receive(&skb))
3645 goto another_round;
3646 else if (unlikely(!skb))
3647 goto unlock;
3648 }
3649
3650 rx_handler = rcu_dereference(skb->dev->rx_handler);
3651 if (rx_handler) {
3652 if (pt_prev) {
3653 ret = deliver_skb(skb, pt_prev, orig_dev);
3654 pt_prev = NULL;
3655 }
3656 switch (rx_handler(&skb)) {
3657 case RX_HANDLER_CONSUMED:
3658 ret = NET_RX_SUCCESS;
3659 goto unlock;
3660 case RX_HANDLER_ANOTHER:
3661 goto another_round;
3662 case RX_HANDLER_EXACT:
3663 deliver_exact = true;
3664 case RX_HANDLER_PASS:
3665 break;
3666 default:
3667 BUG();
3668 }
3669 }
3670
3671 if (unlikely(vlan_tx_tag_present(skb))) {
3672 if (vlan_tx_tag_get_id(skb))
3673 skb->pkt_type = PACKET_OTHERHOST;
3674 /* Note: we might in the future use prio bits
3675 * and set skb->priority like in vlan_do_receive()
3676 * For the time being, just ignore Priority Code Point
3677 */
3678 skb->vlan_tci = 0;
3679 }
3680
3681 /* deliver only exact match when indicated */
3682 null_or_dev = deliver_exact ? skb->dev : NULL;
3683
3684 type = skb->protocol;
3685 list_for_each_entry_rcu(ptype,
3686 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3687 if (ptype->type == type &&
3688 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3689 ptype->dev == orig_dev)) {
3690 if (pt_prev)
3691 ret = deliver_skb(skb, pt_prev, orig_dev);
3692 pt_prev = ptype;
3693 }
3694 }
3695
3696 if (pt_prev) {
3697 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3698 goto drop;
3699 else
3700 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3701 } else {
3702 drop:
3703 atomic_long_inc(&skb->dev->rx_dropped);
3704 kfree_skb(skb);
3705 /* Jamal, now you will not able to escape explaining
3706 * me how you were going to use this. :-)
3707 */
3708 ret = NET_RX_DROP;
3709 }
3710
3711 unlock:
3712 rcu_read_unlock();
3713 return ret;
3714 }
3715
3716 static int __netif_receive_skb(struct sk_buff *skb)
3717 {
3718 int ret;
3719
3720 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3721 unsigned long pflags = current->flags;
3722
3723 /*
3724 * PFMEMALLOC skbs are special, they should
3725 * - be delivered to SOCK_MEMALLOC sockets only
3726 * - stay away from userspace
3727 * - have bounded memory usage
3728 *
3729 * Use PF_MEMALLOC as this saves us from propagating the allocation
3730 * context down to all allocation sites.
3731 */
3732 current->flags |= PF_MEMALLOC;
3733 ret = __netif_receive_skb_core(skb, true);
3734 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3735 } else
3736 ret = __netif_receive_skb_core(skb, false);
3737
3738 return ret;
3739 }
3740
3741 static int netif_receive_skb_internal(struct sk_buff *skb)
3742 {
3743 net_timestamp_check(netdev_tstamp_prequeue, skb);
3744
3745 if (skb_defer_rx_timestamp(skb))
3746 return NET_RX_SUCCESS;
3747
3748 #ifdef CONFIG_RPS
3749 if (static_key_false(&rps_needed)) {
3750 struct rps_dev_flow voidflow, *rflow = &voidflow;
3751 int cpu, ret;
3752
3753 rcu_read_lock();
3754
3755 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3756
3757 if (cpu >= 0) {
3758 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3759 rcu_read_unlock();
3760 return ret;
3761 }
3762 rcu_read_unlock();
3763 }
3764 #endif
3765 return __netif_receive_skb(skb);
3766 }
3767
3768 /**
3769 * netif_receive_skb - process receive buffer from network
3770 * @skb: buffer to process
3771 *
3772 * netif_receive_skb() is the main receive data processing function.
3773 * It always succeeds. The buffer may be dropped during processing
3774 * for congestion control or by the protocol layers.
3775 *
3776 * This function may only be called from softirq context and interrupts
3777 * should be enabled.
3778 *
3779 * Return values (usually ignored):
3780 * NET_RX_SUCCESS: no congestion
3781 * NET_RX_DROP: packet was dropped
3782 */
3783 int netif_receive_skb(struct sk_buff *skb)
3784 {
3785 trace_netif_receive_skb_entry(skb);
3786
3787 return netif_receive_skb_internal(skb);
3788 }
3789 EXPORT_SYMBOL(netif_receive_skb);
3790
3791 /* Network device is going away, flush any packets still pending
3792 * Called with irqs disabled.
3793 */
3794 static void flush_backlog(void *arg)
3795 {
3796 struct net_device *dev = arg;
3797 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3798 struct sk_buff *skb, *tmp;
3799
3800 rps_lock(sd);
3801 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3802 if (skb->dev == dev) {
3803 __skb_unlink(skb, &sd->input_pkt_queue);
3804 kfree_skb(skb);
3805 input_queue_head_incr(sd);
3806 }
3807 }
3808 rps_unlock(sd);
3809
3810 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3811 if (skb->dev == dev) {
3812 __skb_unlink(skb, &sd->process_queue);
3813 kfree_skb(skb);
3814 input_queue_head_incr(sd);
3815 }
3816 }
3817 }
3818
3819 static int napi_gro_complete(struct sk_buff *skb)
3820 {
3821 struct packet_offload *ptype;
3822 __be16 type = skb->protocol;
3823 struct list_head *head = &offload_base;
3824 int err = -ENOENT;
3825
3826 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3827
3828 if (NAPI_GRO_CB(skb)->count == 1) {
3829 skb_shinfo(skb)->gso_size = 0;
3830 goto out;
3831 }
3832
3833 rcu_read_lock();
3834 list_for_each_entry_rcu(ptype, head, list) {
3835 if (ptype->type != type || !ptype->callbacks.gro_complete)
3836 continue;
3837
3838 err = ptype->callbacks.gro_complete(skb, 0);
3839 break;
3840 }
3841 rcu_read_unlock();
3842
3843 if (err) {
3844 WARN_ON(&ptype->list == head);
3845 kfree_skb(skb);
3846 return NET_RX_SUCCESS;
3847 }
3848
3849 out:
3850 return netif_receive_skb_internal(skb);
3851 }
3852
3853 /* napi->gro_list contains packets ordered by age.
3854 * youngest packets at the head of it.
3855 * Complete skbs in reverse order to reduce latencies.
3856 */
3857 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3858 {
3859 struct sk_buff *skb, *prev = NULL;
3860
3861 /* scan list and build reverse chain */
3862 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3863 skb->prev = prev;
3864 prev = skb;
3865 }
3866
3867 for (skb = prev; skb; skb = prev) {
3868 skb->next = NULL;
3869
3870 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3871 return;
3872
3873 prev = skb->prev;
3874 napi_gro_complete(skb);
3875 napi->gro_count--;
3876 }
3877
3878 napi->gro_list = NULL;
3879 }
3880 EXPORT_SYMBOL(napi_gro_flush);
3881
3882 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3883 {
3884 struct sk_buff *p;
3885 unsigned int maclen = skb->dev->hard_header_len;
3886 u32 hash = skb_get_hash_raw(skb);
3887
3888 for (p = napi->gro_list; p; p = p->next) {
3889 unsigned long diffs;
3890
3891 NAPI_GRO_CB(p)->flush = 0;
3892
3893 if (hash != skb_get_hash_raw(p)) {
3894 NAPI_GRO_CB(p)->same_flow = 0;
3895 continue;
3896 }
3897
3898 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3899 diffs |= p->vlan_tci ^ skb->vlan_tci;
3900 if (maclen == ETH_HLEN)
3901 diffs |= compare_ether_header(skb_mac_header(p),
3902 skb_mac_header(skb));
3903 else if (!diffs)
3904 diffs = memcmp(skb_mac_header(p),
3905 skb_mac_header(skb),
3906 maclen);
3907 NAPI_GRO_CB(p)->same_flow = !diffs;
3908 }
3909 }
3910
3911 static void skb_gro_reset_offset(struct sk_buff *skb)
3912 {
3913 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3914 const skb_frag_t *frag0 = &pinfo->frags[0];
3915
3916 NAPI_GRO_CB(skb)->data_offset = 0;
3917 NAPI_GRO_CB(skb)->frag0 = NULL;
3918 NAPI_GRO_CB(skb)->frag0_len = 0;
3919
3920 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3921 pinfo->nr_frags &&
3922 !PageHighMem(skb_frag_page(frag0))) {
3923 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3924 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3925 }
3926 }
3927
3928 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3929 {
3930 struct skb_shared_info *pinfo = skb_shinfo(skb);
3931
3932 BUG_ON(skb->end - skb->tail < grow);
3933
3934 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3935
3936 skb->data_len -= grow;
3937 skb->tail += grow;
3938
3939 pinfo->frags[0].page_offset += grow;
3940 skb_frag_size_sub(&pinfo->frags[0], grow);
3941
3942 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3943 skb_frag_unref(skb, 0);
3944 memmove(pinfo->frags, pinfo->frags + 1,
3945 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3946 }
3947 }
3948
3949 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3950 {
3951 struct sk_buff **pp = NULL;
3952 struct packet_offload *ptype;
3953 __be16 type = skb->protocol;
3954 struct list_head *head = &offload_base;
3955 int same_flow;
3956 enum gro_result ret;
3957 int grow;
3958
3959 if (!(skb->dev->features & NETIF_F_GRO))
3960 goto normal;
3961
3962 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3963 goto normal;
3964
3965 gro_list_prepare(napi, skb);
3966 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3967
3968 rcu_read_lock();
3969 list_for_each_entry_rcu(ptype, head, list) {
3970 if (ptype->type != type || !ptype->callbacks.gro_receive)
3971 continue;
3972
3973 skb_set_network_header(skb, skb_gro_offset(skb));
3974 skb_reset_mac_len(skb);
3975 NAPI_GRO_CB(skb)->same_flow = 0;
3976 NAPI_GRO_CB(skb)->flush = 0;
3977 NAPI_GRO_CB(skb)->free = 0;
3978 NAPI_GRO_CB(skb)->udp_mark = 0;
3979
3980 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3981 break;
3982 }
3983 rcu_read_unlock();
3984
3985 if (&ptype->list == head)
3986 goto normal;
3987
3988 same_flow = NAPI_GRO_CB(skb)->same_flow;
3989 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3990
3991 if (pp) {
3992 struct sk_buff *nskb = *pp;
3993
3994 *pp = nskb->next;
3995 nskb->next = NULL;
3996 napi_gro_complete(nskb);
3997 napi->gro_count--;
3998 }
3999
4000 if (same_flow)
4001 goto ok;
4002
4003 if (NAPI_GRO_CB(skb)->flush)
4004 goto normal;
4005
4006 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4007 struct sk_buff *nskb = napi->gro_list;
4008
4009 /* locate the end of the list to select the 'oldest' flow */
4010 while (nskb->next) {
4011 pp = &nskb->next;
4012 nskb = *pp;
4013 }
4014 *pp = NULL;
4015 nskb->next = NULL;
4016 napi_gro_complete(nskb);
4017 } else {
4018 napi->gro_count++;
4019 }
4020 NAPI_GRO_CB(skb)->count = 1;
4021 NAPI_GRO_CB(skb)->age = jiffies;
4022 NAPI_GRO_CB(skb)->last = skb;
4023 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4024 skb->next = napi->gro_list;
4025 napi->gro_list = skb;
4026 ret = GRO_HELD;
4027
4028 pull:
4029 grow = skb_gro_offset(skb) - skb_headlen(skb);
4030 if (grow > 0)
4031 gro_pull_from_frag0(skb, grow);
4032 ok:
4033 return ret;
4034
4035 normal:
4036 ret = GRO_NORMAL;
4037 goto pull;
4038 }
4039
4040 struct packet_offload *gro_find_receive_by_type(__be16 type)
4041 {
4042 struct list_head *offload_head = &offload_base;
4043 struct packet_offload *ptype;
4044
4045 list_for_each_entry_rcu(ptype, offload_head, list) {
4046 if (ptype->type != type || !ptype->callbacks.gro_receive)
4047 continue;
4048 return ptype;
4049 }
4050 return NULL;
4051 }
4052 EXPORT_SYMBOL(gro_find_receive_by_type);
4053
4054 struct packet_offload *gro_find_complete_by_type(__be16 type)
4055 {
4056 struct list_head *offload_head = &offload_base;
4057 struct packet_offload *ptype;
4058
4059 list_for_each_entry_rcu(ptype, offload_head, list) {
4060 if (ptype->type != type || !ptype->callbacks.gro_complete)
4061 continue;
4062 return ptype;
4063 }
4064 return NULL;
4065 }
4066 EXPORT_SYMBOL(gro_find_complete_by_type);
4067
4068 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4069 {
4070 switch (ret) {
4071 case GRO_NORMAL:
4072 if (netif_receive_skb_internal(skb))
4073 ret = GRO_DROP;
4074 break;
4075
4076 case GRO_DROP:
4077 kfree_skb(skb);
4078 break;
4079
4080 case GRO_MERGED_FREE:
4081 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4082 kmem_cache_free(skbuff_head_cache, skb);
4083 else
4084 __kfree_skb(skb);
4085 break;
4086
4087 case GRO_HELD:
4088 case GRO_MERGED:
4089 break;
4090 }
4091
4092 return ret;
4093 }
4094
4095 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4096 {
4097 trace_napi_gro_receive_entry(skb);
4098
4099 skb_gro_reset_offset(skb);
4100
4101 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4102 }
4103 EXPORT_SYMBOL(napi_gro_receive);
4104
4105 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4106 {
4107 __skb_pull(skb, skb_headlen(skb));
4108 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4109 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4110 skb->vlan_tci = 0;
4111 skb->dev = napi->dev;
4112 skb->skb_iif = 0;
4113 skb->encapsulation = 0;
4114 skb_shinfo(skb)->gso_type = 0;
4115 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4116
4117 napi->skb = skb;
4118 }
4119
4120 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4121 {
4122 struct sk_buff *skb = napi->skb;
4123
4124 if (!skb) {
4125 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4126 napi->skb = skb;
4127 }
4128 return skb;
4129 }
4130 EXPORT_SYMBOL(napi_get_frags);
4131
4132 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4133 struct sk_buff *skb,
4134 gro_result_t ret)
4135 {
4136 switch (ret) {
4137 case GRO_NORMAL:
4138 case GRO_HELD:
4139 __skb_push(skb, ETH_HLEN);
4140 skb->protocol = eth_type_trans(skb, skb->dev);
4141 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4142 ret = GRO_DROP;
4143 break;
4144
4145 case GRO_DROP:
4146 case GRO_MERGED_FREE:
4147 napi_reuse_skb(napi, skb);
4148 break;
4149
4150 case GRO_MERGED:
4151 break;
4152 }
4153
4154 return ret;
4155 }
4156
4157 /* Upper GRO stack assumes network header starts at gro_offset=0
4158 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4159 * We copy ethernet header into skb->data to have a common layout.
4160 */
4161 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4162 {
4163 struct sk_buff *skb = napi->skb;
4164 const struct ethhdr *eth;
4165 unsigned int hlen = sizeof(*eth);
4166
4167 napi->skb = NULL;
4168
4169 skb_reset_mac_header(skb);
4170 skb_gro_reset_offset(skb);
4171
4172 eth = skb_gro_header_fast(skb, 0);
4173 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4174 eth = skb_gro_header_slow(skb, hlen, 0);
4175 if (unlikely(!eth)) {
4176 napi_reuse_skb(napi, skb);
4177 return NULL;
4178 }
4179 } else {
4180 gro_pull_from_frag0(skb, hlen);
4181 NAPI_GRO_CB(skb)->frag0 += hlen;
4182 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4183 }
4184 __skb_pull(skb, hlen);
4185
4186 /*
4187 * This works because the only protocols we care about don't require
4188 * special handling.
4189 * We'll fix it up properly in napi_frags_finish()
4190 */
4191 skb->protocol = eth->h_proto;
4192
4193 return skb;
4194 }
4195
4196 gro_result_t napi_gro_frags(struct napi_struct *napi)
4197 {
4198 struct sk_buff *skb = napi_frags_skb(napi);
4199
4200 if (!skb)
4201 return GRO_DROP;
4202
4203 trace_napi_gro_frags_entry(skb);
4204
4205 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4206 }
4207 EXPORT_SYMBOL(napi_gro_frags);
4208
4209 /*
4210 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4211 * Note: called with local irq disabled, but exits with local irq enabled.
4212 */
4213 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4214 {
4215 #ifdef CONFIG_RPS
4216 struct softnet_data *remsd = sd->rps_ipi_list;
4217
4218 if (remsd) {
4219 sd->rps_ipi_list = NULL;
4220
4221 local_irq_enable();
4222
4223 /* Send pending IPI's to kick RPS processing on remote cpus. */
4224 while (remsd) {
4225 struct softnet_data *next = remsd->rps_ipi_next;
4226
4227 if (cpu_online(remsd->cpu))
4228 smp_call_function_single_async(remsd->cpu,
4229 &remsd->csd);
4230 remsd = next;
4231 }
4232 } else
4233 #endif
4234 local_irq_enable();
4235 }
4236
4237 static int process_backlog(struct napi_struct *napi, int quota)
4238 {
4239 int work = 0;
4240 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4241
4242 #ifdef CONFIG_RPS
4243 /* Check if we have pending ipi, its better to send them now,
4244 * not waiting net_rx_action() end.
4245 */
4246 if (sd->rps_ipi_list) {
4247 local_irq_disable();
4248 net_rps_action_and_irq_enable(sd);
4249 }
4250 #endif
4251 napi->weight = weight_p;
4252 local_irq_disable();
4253 while (1) {
4254 struct sk_buff *skb;
4255
4256 while ((skb = __skb_dequeue(&sd->process_queue))) {
4257 local_irq_enable();
4258 __netif_receive_skb(skb);
4259 local_irq_disable();
4260 input_queue_head_incr(sd);
4261 if (++work >= quota) {
4262 local_irq_enable();
4263 return work;
4264 }
4265 }
4266
4267 rps_lock(sd);
4268 if (skb_queue_empty(&sd->input_pkt_queue)) {
4269 /*
4270 * Inline a custom version of __napi_complete().
4271 * only current cpu owns and manipulates this napi,
4272 * and NAPI_STATE_SCHED is the only possible flag set
4273 * on backlog.
4274 * We can use a plain write instead of clear_bit(),
4275 * and we dont need an smp_mb() memory barrier.
4276 */
4277 list_del(&napi->poll_list);
4278 napi->state = 0;
4279 rps_unlock(sd);
4280
4281 break;
4282 }
4283
4284 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4285 &sd->process_queue);
4286 rps_unlock(sd);
4287 }
4288 local_irq_enable();
4289
4290 return work;
4291 }
4292
4293 /**
4294 * __napi_schedule - schedule for receive
4295 * @n: entry to schedule
4296 *
4297 * The entry's receive function will be scheduled to run
4298 */
4299 void __napi_schedule(struct napi_struct *n)
4300 {
4301 unsigned long flags;
4302
4303 local_irq_save(flags);
4304 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4305 local_irq_restore(flags);
4306 }
4307 EXPORT_SYMBOL(__napi_schedule);
4308
4309 void __napi_complete(struct napi_struct *n)
4310 {
4311 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4312 BUG_ON(n->gro_list);
4313
4314 list_del(&n->poll_list);
4315 smp_mb__before_atomic();
4316 clear_bit(NAPI_STATE_SCHED, &n->state);
4317 }
4318 EXPORT_SYMBOL(__napi_complete);
4319
4320 void napi_complete(struct napi_struct *n)
4321 {
4322 unsigned long flags;
4323
4324 /*
4325 * don't let napi dequeue from the cpu poll list
4326 * just in case its running on a different cpu
4327 */
4328 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4329 return;
4330
4331 napi_gro_flush(n, false);
4332 local_irq_save(flags);
4333 __napi_complete(n);
4334 local_irq_restore(flags);
4335 }
4336 EXPORT_SYMBOL(napi_complete);
4337
4338 /* must be called under rcu_read_lock(), as we dont take a reference */
4339 struct napi_struct *napi_by_id(unsigned int napi_id)
4340 {
4341 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4342 struct napi_struct *napi;
4343
4344 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4345 if (napi->napi_id == napi_id)
4346 return napi;
4347
4348 return NULL;
4349 }
4350 EXPORT_SYMBOL_GPL(napi_by_id);
4351
4352 void napi_hash_add(struct napi_struct *napi)
4353 {
4354 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4355
4356 spin_lock(&napi_hash_lock);
4357
4358 /* 0 is not a valid id, we also skip an id that is taken
4359 * we expect both events to be extremely rare
4360 */
4361 napi->napi_id = 0;
4362 while (!napi->napi_id) {
4363 napi->napi_id = ++napi_gen_id;
4364 if (napi_by_id(napi->napi_id))
4365 napi->napi_id = 0;
4366 }
4367
4368 hlist_add_head_rcu(&napi->napi_hash_node,
4369 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4370
4371 spin_unlock(&napi_hash_lock);
4372 }
4373 }
4374 EXPORT_SYMBOL_GPL(napi_hash_add);
4375
4376 /* Warning : caller is responsible to make sure rcu grace period
4377 * is respected before freeing memory containing @napi
4378 */
4379 void napi_hash_del(struct napi_struct *napi)
4380 {
4381 spin_lock(&napi_hash_lock);
4382
4383 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4384 hlist_del_rcu(&napi->napi_hash_node);
4385
4386 spin_unlock(&napi_hash_lock);
4387 }
4388 EXPORT_SYMBOL_GPL(napi_hash_del);
4389
4390 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4391 int (*poll)(struct napi_struct *, int), int weight)
4392 {
4393 INIT_LIST_HEAD(&napi->poll_list);
4394 napi->gro_count = 0;
4395 napi->gro_list = NULL;
4396 napi->skb = NULL;
4397 napi->poll = poll;
4398 if (weight > NAPI_POLL_WEIGHT)
4399 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4400 weight, dev->name);
4401 napi->weight = weight;
4402 list_add(&napi->dev_list, &dev->napi_list);
4403 napi->dev = dev;
4404 #ifdef CONFIG_NETPOLL
4405 spin_lock_init(&napi->poll_lock);
4406 napi->poll_owner = -1;
4407 #endif
4408 set_bit(NAPI_STATE_SCHED, &napi->state);
4409 }
4410 EXPORT_SYMBOL(netif_napi_add);
4411
4412 void netif_napi_del(struct napi_struct *napi)
4413 {
4414 list_del_init(&napi->dev_list);
4415 napi_free_frags(napi);
4416
4417 kfree_skb_list(napi->gro_list);
4418 napi->gro_list = NULL;
4419 napi->gro_count = 0;
4420 }
4421 EXPORT_SYMBOL(netif_napi_del);
4422
4423 static void net_rx_action(struct softirq_action *h)
4424 {
4425 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4426 unsigned long time_limit = jiffies + 2;
4427 int budget = netdev_budget;
4428 void *have;
4429
4430 local_irq_disable();
4431
4432 while (!list_empty(&sd->poll_list)) {
4433 struct napi_struct *n;
4434 int work, weight;
4435
4436 /* If softirq window is exhuasted then punt.
4437 * Allow this to run for 2 jiffies since which will allow
4438 * an average latency of 1.5/HZ.
4439 */
4440 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4441 goto softnet_break;
4442
4443 local_irq_enable();
4444
4445 /* Even though interrupts have been re-enabled, this
4446 * access is safe because interrupts can only add new
4447 * entries to the tail of this list, and only ->poll()
4448 * calls can remove this head entry from the list.
4449 */
4450 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4451
4452 have = netpoll_poll_lock(n);
4453
4454 weight = n->weight;
4455
4456 /* This NAPI_STATE_SCHED test is for avoiding a race
4457 * with netpoll's poll_napi(). Only the entity which
4458 * obtains the lock and sees NAPI_STATE_SCHED set will
4459 * actually make the ->poll() call. Therefore we avoid
4460 * accidentally calling ->poll() when NAPI is not scheduled.
4461 */
4462 work = 0;
4463 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4464 work = n->poll(n, weight);
4465 trace_napi_poll(n);
4466 }
4467
4468 WARN_ON_ONCE(work > weight);
4469
4470 budget -= work;
4471
4472 local_irq_disable();
4473
4474 /* Drivers must not modify the NAPI state if they
4475 * consume the entire weight. In such cases this code
4476 * still "owns" the NAPI instance and therefore can
4477 * move the instance around on the list at-will.
4478 */
4479 if (unlikely(work == weight)) {
4480 if (unlikely(napi_disable_pending(n))) {
4481 local_irq_enable();
4482 napi_complete(n);
4483 local_irq_disable();
4484 } else {
4485 if (n->gro_list) {
4486 /* flush too old packets
4487 * If HZ < 1000, flush all packets.
4488 */
4489 local_irq_enable();
4490 napi_gro_flush(n, HZ >= 1000);
4491 local_irq_disable();
4492 }
4493 list_move_tail(&n->poll_list, &sd->poll_list);
4494 }
4495 }
4496
4497 netpoll_poll_unlock(have);
4498 }
4499 out:
4500 net_rps_action_and_irq_enable(sd);
4501
4502 #ifdef CONFIG_NET_DMA
4503 /*
4504 * There may not be any more sk_buffs coming right now, so push
4505 * any pending DMA copies to hardware
4506 */
4507 dma_issue_pending_all();
4508 #endif
4509
4510 return;
4511
4512 softnet_break:
4513 sd->time_squeeze++;
4514 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4515 goto out;
4516 }
4517
4518 struct netdev_adjacent {
4519 struct net_device *dev;
4520
4521 /* upper master flag, there can only be one master device per list */
4522 bool master;
4523
4524 /* counter for the number of times this device was added to us */
4525 u16 ref_nr;
4526
4527 /* private field for the users */
4528 void *private;
4529
4530 struct list_head list;
4531 struct rcu_head rcu;
4532 };
4533
4534 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4535 struct net_device *adj_dev,
4536 struct list_head *adj_list)
4537 {
4538 struct netdev_adjacent *adj;
4539
4540 list_for_each_entry(adj, adj_list, list) {
4541 if (adj->dev == adj_dev)
4542 return adj;
4543 }
4544 return NULL;
4545 }
4546
4547 /**
4548 * netdev_has_upper_dev - Check if device is linked to an upper device
4549 * @dev: device
4550 * @upper_dev: upper device to check
4551 *
4552 * Find out if a device is linked to specified upper device and return true
4553 * in case it is. Note that this checks only immediate upper device,
4554 * not through a complete stack of devices. The caller must hold the RTNL lock.
4555 */
4556 bool netdev_has_upper_dev(struct net_device *dev,
4557 struct net_device *upper_dev)
4558 {
4559 ASSERT_RTNL();
4560
4561 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4562 }
4563 EXPORT_SYMBOL(netdev_has_upper_dev);
4564
4565 /**
4566 * netdev_has_any_upper_dev - Check if device is linked to some device
4567 * @dev: device
4568 *
4569 * Find out if a device is linked to an upper device and return true in case
4570 * it is. The caller must hold the RTNL lock.
4571 */
4572 static bool netdev_has_any_upper_dev(struct net_device *dev)
4573 {
4574 ASSERT_RTNL();
4575
4576 return !list_empty(&dev->all_adj_list.upper);
4577 }
4578
4579 /**
4580 * netdev_master_upper_dev_get - Get master upper device
4581 * @dev: device
4582 *
4583 * Find a master upper device and return pointer to it or NULL in case
4584 * it's not there. The caller must hold the RTNL lock.
4585 */
4586 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4587 {
4588 struct netdev_adjacent *upper;
4589
4590 ASSERT_RTNL();
4591
4592 if (list_empty(&dev->adj_list.upper))
4593 return NULL;
4594
4595 upper = list_first_entry(&dev->adj_list.upper,
4596 struct netdev_adjacent, list);
4597 if (likely(upper->master))
4598 return upper->dev;
4599 return NULL;
4600 }
4601 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4602
4603 void *netdev_adjacent_get_private(struct list_head *adj_list)
4604 {
4605 struct netdev_adjacent *adj;
4606
4607 adj = list_entry(adj_list, struct netdev_adjacent, list);
4608
4609 return adj->private;
4610 }
4611 EXPORT_SYMBOL(netdev_adjacent_get_private);
4612
4613 /**
4614 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4615 * @dev: device
4616 * @iter: list_head ** of the current position
4617 *
4618 * Gets the next device from the dev's upper list, starting from iter
4619 * position. The caller must hold RCU read lock.
4620 */
4621 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4622 struct list_head **iter)
4623 {
4624 struct netdev_adjacent *upper;
4625
4626 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4627
4628 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4629
4630 if (&upper->list == &dev->adj_list.upper)
4631 return NULL;
4632
4633 *iter = &upper->list;
4634
4635 return upper->dev;
4636 }
4637 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4638
4639 /**
4640 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4641 * @dev: device
4642 * @iter: list_head ** of the current position
4643 *
4644 * Gets the next device from the dev's upper list, starting from iter
4645 * position. The caller must hold RCU read lock.
4646 */
4647 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4648 struct list_head **iter)
4649 {
4650 struct netdev_adjacent *upper;
4651
4652 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4653
4654 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4655
4656 if (&upper->list == &dev->all_adj_list.upper)
4657 return NULL;
4658
4659 *iter = &upper->list;
4660
4661 return upper->dev;
4662 }
4663 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4664
4665 /**
4666 * netdev_lower_get_next_private - Get the next ->private from the
4667 * lower neighbour list
4668 * @dev: device
4669 * @iter: list_head ** of the current position
4670 *
4671 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4672 * list, starting from iter position. The caller must hold either hold the
4673 * RTNL lock or its own locking that guarantees that the neighbour lower
4674 * list will remain unchainged.
4675 */
4676 void *netdev_lower_get_next_private(struct net_device *dev,
4677 struct list_head **iter)
4678 {
4679 struct netdev_adjacent *lower;
4680
4681 lower = list_entry(*iter, struct netdev_adjacent, list);
4682
4683 if (&lower->list == &dev->adj_list.lower)
4684 return NULL;
4685
4686 *iter = lower->list.next;
4687
4688 return lower->private;
4689 }
4690 EXPORT_SYMBOL(netdev_lower_get_next_private);
4691
4692 /**
4693 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4694 * lower neighbour list, RCU
4695 * variant
4696 * @dev: device
4697 * @iter: list_head ** of the current position
4698 *
4699 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4700 * list, starting from iter position. The caller must hold RCU read lock.
4701 */
4702 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4703 struct list_head **iter)
4704 {
4705 struct netdev_adjacent *lower;
4706
4707 WARN_ON_ONCE(!rcu_read_lock_held());
4708
4709 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4710
4711 if (&lower->list == &dev->adj_list.lower)
4712 return NULL;
4713
4714 *iter = &lower->list;
4715
4716 return lower->private;
4717 }
4718 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4719
4720 /**
4721 * netdev_lower_get_next - Get the next device from the lower neighbour
4722 * list
4723 * @dev: device
4724 * @iter: list_head ** of the current position
4725 *
4726 * Gets the next netdev_adjacent from the dev's lower neighbour
4727 * list, starting from iter position. The caller must hold RTNL lock or
4728 * its own locking that guarantees that the neighbour lower
4729 * list will remain unchainged.
4730 */
4731 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4732 {
4733 struct netdev_adjacent *lower;
4734
4735 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4736
4737 if (&lower->list == &dev->adj_list.lower)
4738 return NULL;
4739
4740 *iter = &lower->list;
4741
4742 return lower->dev;
4743 }
4744 EXPORT_SYMBOL(netdev_lower_get_next);
4745
4746 /**
4747 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4748 * lower neighbour list, RCU
4749 * variant
4750 * @dev: device
4751 *
4752 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4753 * list. The caller must hold RCU read lock.
4754 */
4755 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4756 {
4757 struct netdev_adjacent *lower;
4758
4759 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4760 struct netdev_adjacent, list);
4761 if (lower)
4762 return lower->private;
4763 return NULL;
4764 }
4765 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4766
4767 /**
4768 * netdev_master_upper_dev_get_rcu - Get master upper device
4769 * @dev: device
4770 *
4771 * Find a master upper device and return pointer to it or NULL in case
4772 * it's not there. The caller must hold the RCU read lock.
4773 */
4774 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4775 {
4776 struct netdev_adjacent *upper;
4777
4778 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4779 struct netdev_adjacent, list);
4780 if (upper && likely(upper->master))
4781 return upper->dev;
4782 return NULL;
4783 }
4784 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4785
4786 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4787 struct net_device *adj_dev,
4788 struct list_head *dev_list)
4789 {
4790 char linkname[IFNAMSIZ+7];
4791 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4792 "upper_%s" : "lower_%s", adj_dev->name);
4793 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4794 linkname);
4795 }
4796 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4797 char *name,
4798 struct list_head *dev_list)
4799 {
4800 char linkname[IFNAMSIZ+7];
4801 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4802 "upper_%s" : "lower_%s", name);
4803 sysfs_remove_link(&(dev->dev.kobj), linkname);
4804 }
4805
4806 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4807 (dev_list == &dev->adj_list.upper || \
4808 dev_list == &dev->adj_list.lower)
4809
4810 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4811 struct net_device *adj_dev,
4812 struct list_head *dev_list,
4813 void *private, bool master)
4814 {
4815 struct netdev_adjacent *adj;
4816 int ret;
4817
4818 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4819
4820 if (adj) {
4821 adj->ref_nr++;
4822 return 0;
4823 }
4824
4825 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4826 if (!adj)
4827 return -ENOMEM;
4828
4829 adj->dev = adj_dev;
4830 adj->master = master;
4831 adj->ref_nr = 1;
4832 adj->private = private;
4833 dev_hold(adj_dev);
4834
4835 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4836 adj_dev->name, dev->name, adj_dev->name);
4837
4838 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4839 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4840 if (ret)
4841 goto free_adj;
4842 }
4843
4844 /* Ensure that master link is always the first item in list. */
4845 if (master) {
4846 ret = sysfs_create_link(&(dev->dev.kobj),
4847 &(adj_dev->dev.kobj), "master");
4848 if (ret)
4849 goto remove_symlinks;
4850
4851 list_add_rcu(&adj->list, dev_list);
4852 } else {
4853 list_add_tail_rcu(&adj->list, dev_list);
4854 }
4855
4856 return 0;
4857
4858 remove_symlinks:
4859 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4860 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4861 free_adj:
4862 kfree(adj);
4863 dev_put(adj_dev);
4864
4865 return ret;
4866 }
4867
4868 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4869 struct net_device *adj_dev,
4870 struct list_head *dev_list)
4871 {
4872 struct netdev_adjacent *adj;
4873
4874 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4875
4876 if (!adj) {
4877 pr_err("tried to remove device %s from %s\n",
4878 dev->name, adj_dev->name);
4879 BUG();
4880 }
4881
4882 if (adj->ref_nr > 1) {
4883 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4884 adj->ref_nr-1);
4885 adj->ref_nr--;
4886 return;
4887 }
4888
4889 if (adj->master)
4890 sysfs_remove_link(&(dev->dev.kobj), "master");
4891
4892 if (netdev_adjacent_is_neigh_list(dev, dev_list) &&
4893 net_eq(dev_net(dev),dev_net(adj_dev)))
4894 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4895
4896 list_del_rcu(&adj->list);
4897 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4898 adj_dev->name, dev->name, adj_dev->name);
4899 dev_put(adj_dev);
4900 kfree_rcu(adj, rcu);
4901 }
4902
4903 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4904 struct net_device *upper_dev,
4905 struct list_head *up_list,
4906 struct list_head *down_list,
4907 void *private, bool master)
4908 {
4909 int ret;
4910
4911 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4912 master);
4913 if (ret)
4914 return ret;
4915
4916 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4917 false);
4918 if (ret) {
4919 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4920 return ret;
4921 }
4922
4923 return 0;
4924 }
4925
4926 static int __netdev_adjacent_dev_link(struct net_device *dev,
4927 struct net_device *upper_dev)
4928 {
4929 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4930 &dev->all_adj_list.upper,
4931 &upper_dev->all_adj_list.lower,
4932 NULL, false);
4933 }
4934
4935 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4936 struct net_device *upper_dev,
4937 struct list_head *up_list,
4938 struct list_head *down_list)
4939 {
4940 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4941 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4942 }
4943
4944 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4945 struct net_device *upper_dev)
4946 {
4947 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4948 &dev->all_adj_list.upper,
4949 &upper_dev->all_adj_list.lower);
4950 }
4951
4952 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4953 struct net_device *upper_dev,
4954 void *private, bool master)
4955 {
4956 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4957
4958 if (ret)
4959 return ret;
4960
4961 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4962 &dev->adj_list.upper,
4963 &upper_dev->adj_list.lower,
4964 private, master);
4965 if (ret) {
4966 __netdev_adjacent_dev_unlink(dev, upper_dev);
4967 return ret;
4968 }
4969
4970 return 0;
4971 }
4972
4973 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4974 struct net_device *upper_dev)
4975 {
4976 __netdev_adjacent_dev_unlink(dev, upper_dev);
4977 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4978 &dev->adj_list.upper,
4979 &upper_dev->adj_list.lower);
4980 }
4981
4982 static int __netdev_upper_dev_link(struct net_device *dev,
4983 struct net_device *upper_dev, bool master,
4984 void *private)
4985 {
4986 struct netdev_adjacent *i, *j, *to_i, *to_j;
4987 int ret = 0;
4988
4989 ASSERT_RTNL();
4990
4991 if (dev == upper_dev)
4992 return -EBUSY;
4993
4994 /* To prevent loops, check if dev is not upper device to upper_dev. */
4995 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4996 return -EBUSY;
4997
4998 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4999 return -EEXIST;
5000
5001 if (master && netdev_master_upper_dev_get(dev))
5002 return -EBUSY;
5003
5004 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5005 master);
5006 if (ret)
5007 return ret;
5008
5009 /* Now that we linked these devs, make all the upper_dev's
5010 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5011 * versa, and don't forget the devices itself. All of these
5012 * links are non-neighbours.
5013 */
5014 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5015 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5016 pr_debug("Interlinking %s with %s, non-neighbour\n",
5017 i->dev->name, j->dev->name);
5018 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5019 if (ret)
5020 goto rollback_mesh;
5021 }
5022 }
5023
5024 /* add dev to every upper_dev's upper device */
5025 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5026 pr_debug("linking %s's upper device %s with %s\n",
5027 upper_dev->name, i->dev->name, dev->name);
5028 ret = __netdev_adjacent_dev_link(dev, i->dev);
5029 if (ret)
5030 goto rollback_upper_mesh;
5031 }
5032
5033 /* add upper_dev to every dev's lower device */
5034 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5035 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5036 i->dev->name, upper_dev->name);
5037 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5038 if (ret)
5039 goto rollback_lower_mesh;
5040 }
5041
5042 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5043 return 0;
5044
5045 rollback_lower_mesh:
5046 to_i = i;
5047 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5048 if (i == to_i)
5049 break;
5050 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5051 }
5052
5053 i = NULL;
5054
5055 rollback_upper_mesh:
5056 to_i = i;
5057 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5058 if (i == to_i)
5059 break;
5060 __netdev_adjacent_dev_unlink(dev, i->dev);
5061 }
5062
5063 i = j = NULL;
5064
5065 rollback_mesh:
5066 to_i = i;
5067 to_j = j;
5068 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5069 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5070 if (i == to_i && j == to_j)
5071 break;
5072 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5073 }
5074 if (i == to_i)
5075 break;
5076 }
5077
5078 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5079
5080 return ret;
5081 }
5082
5083 /**
5084 * netdev_upper_dev_link - Add a link to the upper device
5085 * @dev: device
5086 * @upper_dev: new upper device
5087 *
5088 * Adds a link to device which is upper to this one. The caller must hold
5089 * the RTNL lock. On a failure a negative errno code is returned.
5090 * On success the reference counts are adjusted and the function
5091 * returns zero.
5092 */
5093 int netdev_upper_dev_link(struct net_device *dev,
5094 struct net_device *upper_dev)
5095 {
5096 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5097 }
5098 EXPORT_SYMBOL(netdev_upper_dev_link);
5099
5100 /**
5101 * netdev_master_upper_dev_link - Add a master link to the upper device
5102 * @dev: device
5103 * @upper_dev: new upper device
5104 *
5105 * Adds a link to device which is upper to this one. In this case, only
5106 * one master upper device can be linked, although other non-master devices
5107 * might be linked as well. The caller must hold the RTNL lock.
5108 * On a failure a negative errno code is returned. On success the reference
5109 * counts are adjusted and the function returns zero.
5110 */
5111 int netdev_master_upper_dev_link(struct net_device *dev,
5112 struct net_device *upper_dev)
5113 {
5114 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5115 }
5116 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5117
5118 int netdev_master_upper_dev_link_private(struct net_device *dev,
5119 struct net_device *upper_dev,
5120 void *private)
5121 {
5122 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5123 }
5124 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5125
5126 /**
5127 * netdev_upper_dev_unlink - Removes a link to upper device
5128 * @dev: device
5129 * @upper_dev: new upper device
5130 *
5131 * Removes a link to device which is upper to this one. The caller must hold
5132 * the RTNL lock.
5133 */
5134 void netdev_upper_dev_unlink(struct net_device *dev,
5135 struct net_device *upper_dev)
5136 {
5137 struct netdev_adjacent *i, *j;
5138 ASSERT_RTNL();
5139
5140 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5141
5142 /* Here is the tricky part. We must remove all dev's lower
5143 * devices from all upper_dev's upper devices and vice
5144 * versa, to maintain the graph relationship.
5145 */
5146 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5147 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5148 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5149
5150 /* remove also the devices itself from lower/upper device
5151 * list
5152 */
5153 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5154 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5155
5156 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5157 __netdev_adjacent_dev_unlink(dev, i->dev);
5158
5159 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5160 }
5161 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5162
5163 void netdev_adjacent_add_links(struct net_device *dev)
5164 {
5165 struct netdev_adjacent *iter;
5166
5167 struct net *net = dev_net(dev);
5168
5169 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5170 if (!net_eq(net,dev_net(iter->dev)))
5171 continue;
5172 netdev_adjacent_sysfs_add(iter->dev, dev,
5173 &iter->dev->adj_list.lower);
5174 netdev_adjacent_sysfs_add(dev, iter->dev,
5175 &dev->adj_list.upper);
5176 }
5177
5178 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5179 if (!net_eq(net,dev_net(iter->dev)))
5180 continue;
5181 netdev_adjacent_sysfs_add(iter->dev, dev,
5182 &iter->dev->adj_list.upper);
5183 netdev_adjacent_sysfs_add(dev, iter->dev,
5184 &dev->adj_list.lower);
5185 }
5186 }
5187
5188 void netdev_adjacent_del_links(struct net_device *dev)
5189 {
5190 struct netdev_adjacent *iter;
5191
5192 struct net *net = dev_net(dev);
5193
5194 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5195 if (!net_eq(net,dev_net(iter->dev)))
5196 continue;
5197 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5198 &iter->dev->adj_list.lower);
5199 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5200 &dev->adj_list.upper);
5201 }
5202
5203 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5204 if (!net_eq(net,dev_net(iter->dev)))
5205 continue;
5206 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5207 &iter->dev->adj_list.upper);
5208 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5209 &dev->adj_list.lower);
5210 }
5211 }
5212
5213 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5214 {
5215 struct netdev_adjacent *iter;
5216
5217 struct net *net = dev_net(dev);
5218
5219 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5220 if (!net_eq(net,dev_net(iter->dev)))
5221 continue;
5222 netdev_adjacent_sysfs_del(iter->dev, oldname,
5223 &iter->dev->adj_list.lower);
5224 netdev_adjacent_sysfs_add(iter->dev, dev,
5225 &iter->dev->adj_list.lower);
5226 }
5227
5228 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5229 if (!net_eq(net,dev_net(iter->dev)))
5230 continue;
5231 netdev_adjacent_sysfs_del(iter->dev, oldname,
5232 &iter->dev->adj_list.upper);
5233 netdev_adjacent_sysfs_add(iter->dev, dev,
5234 &iter->dev->adj_list.upper);
5235 }
5236 }
5237
5238 void *netdev_lower_dev_get_private(struct net_device *dev,
5239 struct net_device *lower_dev)
5240 {
5241 struct netdev_adjacent *lower;
5242
5243 if (!lower_dev)
5244 return NULL;
5245 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5246 if (!lower)
5247 return NULL;
5248
5249 return lower->private;
5250 }
5251 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5252
5253
5254 int dev_get_nest_level(struct net_device *dev,
5255 bool (*type_check)(struct net_device *dev))
5256 {
5257 struct net_device *lower = NULL;
5258 struct list_head *iter;
5259 int max_nest = -1;
5260 int nest;
5261
5262 ASSERT_RTNL();
5263
5264 netdev_for_each_lower_dev(dev, lower, iter) {
5265 nest = dev_get_nest_level(lower, type_check);
5266 if (max_nest < nest)
5267 max_nest = nest;
5268 }
5269
5270 if (type_check(dev))
5271 max_nest++;
5272
5273 return max_nest;
5274 }
5275 EXPORT_SYMBOL(dev_get_nest_level);
5276
5277 static void dev_change_rx_flags(struct net_device *dev, int flags)
5278 {
5279 const struct net_device_ops *ops = dev->netdev_ops;
5280
5281 if (ops->ndo_change_rx_flags)
5282 ops->ndo_change_rx_flags(dev, flags);
5283 }
5284
5285 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5286 {
5287 unsigned int old_flags = dev->flags;
5288 kuid_t uid;
5289 kgid_t gid;
5290
5291 ASSERT_RTNL();
5292
5293 dev->flags |= IFF_PROMISC;
5294 dev->promiscuity += inc;
5295 if (dev->promiscuity == 0) {
5296 /*
5297 * Avoid overflow.
5298 * If inc causes overflow, untouch promisc and return error.
5299 */
5300 if (inc < 0)
5301 dev->flags &= ~IFF_PROMISC;
5302 else {
5303 dev->promiscuity -= inc;
5304 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5305 dev->name);
5306 return -EOVERFLOW;
5307 }
5308 }
5309 if (dev->flags != old_flags) {
5310 pr_info("device %s %s promiscuous mode\n",
5311 dev->name,
5312 dev->flags & IFF_PROMISC ? "entered" : "left");
5313 if (audit_enabled) {
5314 current_uid_gid(&uid, &gid);
5315 audit_log(current->audit_context, GFP_ATOMIC,
5316 AUDIT_ANOM_PROMISCUOUS,
5317 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5318 dev->name, (dev->flags & IFF_PROMISC),
5319 (old_flags & IFF_PROMISC),
5320 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5321 from_kuid(&init_user_ns, uid),
5322 from_kgid(&init_user_ns, gid),
5323 audit_get_sessionid(current));
5324 }
5325
5326 dev_change_rx_flags(dev, IFF_PROMISC);
5327 }
5328 if (notify)
5329 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5330 return 0;
5331 }
5332
5333 /**
5334 * dev_set_promiscuity - update promiscuity count on a device
5335 * @dev: device
5336 * @inc: modifier
5337 *
5338 * Add or remove promiscuity from a device. While the count in the device
5339 * remains above zero the interface remains promiscuous. Once it hits zero
5340 * the device reverts back to normal filtering operation. A negative inc
5341 * value is used to drop promiscuity on the device.
5342 * Return 0 if successful or a negative errno code on error.
5343 */
5344 int dev_set_promiscuity(struct net_device *dev, int inc)
5345 {
5346 unsigned int old_flags = dev->flags;
5347 int err;
5348
5349 err = __dev_set_promiscuity(dev, inc, true);
5350 if (err < 0)
5351 return err;
5352 if (dev->flags != old_flags)
5353 dev_set_rx_mode(dev);
5354 return err;
5355 }
5356 EXPORT_SYMBOL(dev_set_promiscuity);
5357
5358 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5359 {
5360 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5361
5362 ASSERT_RTNL();
5363
5364 dev->flags |= IFF_ALLMULTI;
5365 dev->allmulti += inc;
5366 if (dev->allmulti == 0) {
5367 /*
5368 * Avoid overflow.
5369 * If inc causes overflow, untouch allmulti and return error.
5370 */
5371 if (inc < 0)
5372 dev->flags &= ~IFF_ALLMULTI;
5373 else {
5374 dev->allmulti -= inc;
5375 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5376 dev->name);
5377 return -EOVERFLOW;
5378 }
5379 }
5380 if (dev->flags ^ old_flags) {
5381 dev_change_rx_flags(dev, IFF_ALLMULTI);
5382 dev_set_rx_mode(dev);
5383 if (notify)
5384 __dev_notify_flags(dev, old_flags,
5385 dev->gflags ^ old_gflags);
5386 }
5387 return 0;
5388 }
5389
5390 /**
5391 * dev_set_allmulti - update allmulti count on a device
5392 * @dev: device
5393 * @inc: modifier
5394 *
5395 * Add or remove reception of all multicast frames to a device. While the
5396 * count in the device remains above zero the interface remains listening
5397 * to all interfaces. Once it hits zero the device reverts back to normal
5398 * filtering operation. A negative @inc value is used to drop the counter
5399 * when releasing a resource needing all multicasts.
5400 * Return 0 if successful or a negative errno code on error.
5401 */
5402
5403 int dev_set_allmulti(struct net_device *dev, int inc)
5404 {
5405 return __dev_set_allmulti(dev, inc, true);
5406 }
5407 EXPORT_SYMBOL(dev_set_allmulti);
5408
5409 /*
5410 * Upload unicast and multicast address lists to device and
5411 * configure RX filtering. When the device doesn't support unicast
5412 * filtering it is put in promiscuous mode while unicast addresses
5413 * are present.
5414 */
5415 void __dev_set_rx_mode(struct net_device *dev)
5416 {
5417 const struct net_device_ops *ops = dev->netdev_ops;
5418
5419 /* dev_open will call this function so the list will stay sane. */
5420 if (!(dev->flags&IFF_UP))
5421 return;
5422
5423 if (!netif_device_present(dev))
5424 return;
5425
5426 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5427 /* Unicast addresses changes may only happen under the rtnl,
5428 * therefore calling __dev_set_promiscuity here is safe.
5429 */
5430 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5431 __dev_set_promiscuity(dev, 1, false);
5432 dev->uc_promisc = true;
5433 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5434 __dev_set_promiscuity(dev, -1, false);
5435 dev->uc_promisc = false;
5436 }
5437 }
5438
5439 if (ops->ndo_set_rx_mode)
5440 ops->ndo_set_rx_mode(dev);
5441 }
5442
5443 void dev_set_rx_mode(struct net_device *dev)
5444 {
5445 netif_addr_lock_bh(dev);
5446 __dev_set_rx_mode(dev);
5447 netif_addr_unlock_bh(dev);
5448 }
5449
5450 /**
5451 * dev_get_flags - get flags reported to userspace
5452 * @dev: device
5453 *
5454 * Get the combination of flag bits exported through APIs to userspace.
5455 */
5456 unsigned int dev_get_flags(const struct net_device *dev)
5457 {
5458 unsigned int flags;
5459
5460 flags = (dev->flags & ~(IFF_PROMISC |
5461 IFF_ALLMULTI |
5462 IFF_RUNNING |
5463 IFF_LOWER_UP |
5464 IFF_DORMANT)) |
5465 (dev->gflags & (IFF_PROMISC |
5466 IFF_ALLMULTI));
5467
5468 if (netif_running(dev)) {
5469 if (netif_oper_up(dev))
5470 flags |= IFF_RUNNING;
5471 if (netif_carrier_ok(dev))
5472 flags |= IFF_LOWER_UP;
5473 if (netif_dormant(dev))
5474 flags |= IFF_DORMANT;
5475 }
5476
5477 return flags;
5478 }
5479 EXPORT_SYMBOL(dev_get_flags);
5480
5481 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5482 {
5483 unsigned int old_flags = dev->flags;
5484 int ret;
5485
5486 ASSERT_RTNL();
5487
5488 /*
5489 * Set the flags on our device.
5490 */
5491
5492 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5493 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5494 IFF_AUTOMEDIA)) |
5495 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5496 IFF_ALLMULTI));
5497
5498 /*
5499 * Load in the correct multicast list now the flags have changed.
5500 */
5501
5502 if ((old_flags ^ flags) & IFF_MULTICAST)
5503 dev_change_rx_flags(dev, IFF_MULTICAST);
5504
5505 dev_set_rx_mode(dev);
5506
5507 /*
5508 * Have we downed the interface. We handle IFF_UP ourselves
5509 * according to user attempts to set it, rather than blindly
5510 * setting it.
5511 */
5512
5513 ret = 0;
5514 if ((old_flags ^ flags) & IFF_UP)
5515 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5516
5517 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5518 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5519 unsigned int old_flags = dev->flags;
5520
5521 dev->gflags ^= IFF_PROMISC;
5522
5523 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5524 if (dev->flags != old_flags)
5525 dev_set_rx_mode(dev);
5526 }
5527
5528 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5529 is important. Some (broken) drivers set IFF_PROMISC, when
5530 IFF_ALLMULTI is requested not asking us and not reporting.
5531 */
5532 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5533 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5534
5535 dev->gflags ^= IFF_ALLMULTI;
5536 __dev_set_allmulti(dev, inc, false);
5537 }
5538
5539 return ret;
5540 }
5541
5542 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5543 unsigned int gchanges)
5544 {
5545 unsigned int changes = dev->flags ^ old_flags;
5546
5547 if (gchanges)
5548 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5549
5550 if (changes & IFF_UP) {
5551 if (dev->flags & IFF_UP)
5552 call_netdevice_notifiers(NETDEV_UP, dev);
5553 else
5554 call_netdevice_notifiers(NETDEV_DOWN, dev);
5555 }
5556
5557 if (dev->flags & IFF_UP &&
5558 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5559 struct netdev_notifier_change_info change_info;
5560
5561 change_info.flags_changed = changes;
5562 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5563 &change_info.info);
5564 }
5565 }
5566
5567 /**
5568 * dev_change_flags - change device settings
5569 * @dev: device
5570 * @flags: device state flags
5571 *
5572 * Change settings on device based state flags. The flags are
5573 * in the userspace exported format.
5574 */
5575 int dev_change_flags(struct net_device *dev, unsigned int flags)
5576 {
5577 int ret;
5578 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5579
5580 ret = __dev_change_flags(dev, flags);
5581 if (ret < 0)
5582 return ret;
5583
5584 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5585 __dev_notify_flags(dev, old_flags, changes);
5586 return ret;
5587 }
5588 EXPORT_SYMBOL(dev_change_flags);
5589
5590 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5591 {
5592 const struct net_device_ops *ops = dev->netdev_ops;
5593
5594 if (ops->ndo_change_mtu)
5595 return ops->ndo_change_mtu(dev, new_mtu);
5596
5597 dev->mtu = new_mtu;
5598 return 0;
5599 }
5600
5601 /**
5602 * dev_set_mtu - Change maximum transfer unit
5603 * @dev: device
5604 * @new_mtu: new transfer unit
5605 *
5606 * Change the maximum transfer size of the network device.
5607 */
5608 int dev_set_mtu(struct net_device *dev, int new_mtu)
5609 {
5610 int err, orig_mtu;
5611
5612 if (new_mtu == dev->mtu)
5613 return 0;
5614
5615 /* MTU must be positive. */
5616 if (new_mtu < 0)
5617 return -EINVAL;
5618
5619 if (!netif_device_present(dev))
5620 return -ENODEV;
5621
5622 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5623 err = notifier_to_errno(err);
5624 if (err)
5625 return err;
5626
5627 orig_mtu = dev->mtu;
5628 err = __dev_set_mtu(dev, new_mtu);
5629
5630 if (!err) {
5631 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5632 err = notifier_to_errno(err);
5633 if (err) {
5634 /* setting mtu back and notifying everyone again,
5635 * so that they have a chance to revert changes.
5636 */
5637 __dev_set_mtu(dev, orig_mtu);
5638 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5639 }
5640 }
5641 return err;
5642 }
5643 EXPORT_SYMBOL(dev_set_mtu);
5644
5645 /**
5646 * dev_set_group - Change group this device belongs to
5647 * @dev: device
5648 * @new_group: group this device should belong to
5649 */
5650 void dev_set_group(struct net_device *dev, int new_group)
5651 {
5652 dev->group = new_group;
5653 }
5654 EXPORT_SYMBOL(dev_set_group);
5655
5656 /**
5657 * dev_set_mac_address - Change Media Access Control Address
5658 * @dev: device
5659 * @sa: new address
5660 *
5661 * Change the hardware (MAC) address of the device
5662 */
5663 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5664 {
5665 const struct net_device_ops *ops = dev->netdev_ops;
5666 int err;
5667
5668 if (!ops->ndo_set_mac_address)
5669 return -EOPNOTSUPP;
5670 if (sa->sa_family != dev->type)
5671 return -EINVAL;
5672 if (!netif_device_present(dev))
5673 return -ENODEV;
5674 err = ops->ndo_set_mac_address(dev, sa);
5675 if (err)
5676 return err;
5677 dev->addr_assign_type = NET_ADDR_SET;
5678 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5679 add_device_randomness(dev->dev_addr, dev->addr_len);
5680 return 0;
5681 }
5682 EXPORT_SYMBOL(dev_set_mac_address);
5683
5684 /**
5685 * dev_change_carrier - Change device carrier
5686 * @dev: device
5687 * @new_carrier: new value
5688 *
5689 * Change device carrier
5690 */
5691 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5692 {
5693 const struct net_device_ops *ops = dev->netdev_ops;
5694
5695 if (!ops->ndo_change_carrier)
5696 return -EOPNOTSUPP;
5697 if (!netif_device_present(dev))
5698 return -ENODEV;
5699 return ops->ndo_change_carrier(dev, new_carrier);
5700 }
5701 EXPORT_SYMBOL(dev_change_carrier);
5702
5703 /**
5704 * dev_get_phys_port_id - Get device physical port ID
5705 * @dev: device
5706 * @ppid: port ID
5707 *
5708 * Get device physical port ID
5709 */
5710 int dev_get_phys_port_id(struct net_device *dev,
5711 struct netdev_phys_port_id *ppid)
5712 {
5713 const struct net_device_ops *ops = dev->netdev_ops;
5714
5715 if (!ops->ndo_get_phys_port_id)
5716 return -EOPNOTSUPP;
5717 return ops->ndo_get_phys_port_id(dev, ppid);
5718 }
5719 EXPORT_SYMBOL(dev_get_phys_port_id);
5720
5721 /**
5722 * dev_new_index - allocate an ifindex
5723 * @net: the applicable net namespace
5724 *
5725 * Returns a suitable unique value for a new device interface
5726 * number. The caller must hold the rtnl semaphore or the
5727 * dev_base_lock to be sure it remains unique.
5728 */
5729 static int dev_new_index(struct net *net)
5730 {
5731 int ifindex = net->ifindex;
5732 for (;;) {
5733 if (++ifindex <= 0)
5734 ifindex = 1;
5735 if (!__dev_get_by_index(net, ifindex))
5736 return net->ifindex = ifindex;
5737 }
5738 }
5739
5740 /* Delayed registration/unregisteration */
5741 static LIST_HEAD(net_todo_list);
5742 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5743
5744 static void net_set_todo(struct net_device *dev)
5745 {
5746 list_add_tail(&dev->todo_list, &net_todo_list);
5747 dev_net(dev)->dev_unreg_count++;
5748 }
5749
5750 static void rollback_registered_many(struct list_head *head)
5751 {
5752 struct net_device *dev, *tmp;
5753 LIST_HEAD(close_head);
5754
5755 BUG_ON(dev_boot_phase);
5756 ASSERT_RTNL();
5757
5758 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5759 /* Some devices call without registering
5760 * for initialization unwind. Remove those
5761 * devices and proceed with the remaining.
5762 */
5763 if (dev->reg_state == NETREG_UNINITIALIZED) {
5764 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5765 dev->name, dev);
5766
5767 WARN_ON(1);
5768 list_del(&dev->unreg_list);
5769 continue;
5770 }
5771 dev->dismantle = true;
5772 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5773 }
5774
5775 /* If device is running, close it first. */
5776 list_for_each_entry(dev, head, unreg_list)
5777 list_add_tail(&dev->close_list, &close_head);
5778 dev_close_many(&close_head);
5779
5780 list_for_each_entry(dev, head, unreg_list) {
5781 /* And unlink it from device chain. */
5782 unlist_netdevice(dev);
5783
5784 dev->reg_state = NETREG_UNREGISTERING;
5785 }
5786
5787 synchronize_net();
5788
5789 list_for_each_entry(dev, head, unreg_list) {
5790 /* Shutdown queueing discipline. */
5791 dev_shutdown(dev);
5792
5793
5794 /* Notify protocols, that we are about to destroy
5795 this device. They should clean all the things.
5796 */
5797 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5798
5799 /*
5800 * Flush the unicast and multicast chains
5801 */
5802 dev_uc_flush(dev);
5803 dev_mc_flush(dev);
5804
5805 if (dev->netdev_ops->ndo_uninit)
5806 dev->netdev_ops->ndo_uninit(dev);
5807
5808 if (!dev->rtnl_link_ops ||
5809 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5810 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5811
5812 /* Notifier chain MUST detach us all upper devices. */
5813 WARN_ON(netdev_has_any_upper_dev(dev));
5814
5815 /* Remove entries from kobject tree */
5816 netdev_unregister_kobject(dev);
5817 #ifdef CONFIG_XPS
5818 /* Remove XPS queueing entries */
5819 netif_reset_xps_queues_gt(dev, 0);
5820 #endif
5821 }
5822
5823 synchronize_net();
5824
5825 list_for_each_entry(dev, head, unreg_list)
5826 dev_put(dev);
5827 }
5828
5829 static void rollback_registered(struct net_device *dev)
5830 {
5831 LIST_HEAD(single);
5832
5833 list_add(&dev->unreg_list, &single);
5834 rollback_registered_many(&single);
5835 list_del(&single);
5836 }
5837
5838 static netdev_features_t netdev_fix_features(struct net_device *dev,
5839 netdev_features_t features)
5840 {
5841 /* Fix illegal checksum combinations */
5842 if ((features & NETIF_F_HW_CSUM) &&
5843 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5844 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5845 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5846 }
5847
5848 /* TSO requires that SG is present as well. */
5849 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5850 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5851 features &= ~NETIF_F_ALL_TSO;
5852 }
5853
5854 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5855 !(features & NETIF_F_IP_CSUM)) {
5856 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5857 features &= ~NETIF_F_TSO;
5858 features &= ~NETIF_F_TSO_ECN;
5859 }
5860
5861 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5862 !(features & NETIF_F_IPV6_CSUM)) {
5863 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5864 features &= ~NETIF_F_TSO6;
5865 }
5866
5867 /* TSO ECN requires that TSO is present as well. */
5868 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5869 features &= ~NETIF_F_TSO_ECN;
5870
5871 /* Software GSO depends on SG. */
5872 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5873 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5874 features &= ~NETIF_F_GSO;
5875 }
5876
5877 /* UFO needs SG and checksumming */
5878 if (features & NETIF_F_UFO) {
5879 /* maybe split UFO into V4 and V6? */
5880 if (!((features & NETIF_F_GEN_CSUM) ||
5881 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5882 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5883 netdev_dbg(dev,
5884 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5885 features &= ~NETIF_F_UFO;
5886 }
5887
5888 if (!(features & NETIF_F_SG)) {
5889 netdev_dbg(dev,
5890 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5891 features &= ~NETIF_F_UFO;
5892 }
5893 }
5894
5895 #ifdef CONFIG_NET_RX_BUSY_POLL
5896 if (dev->netdev_ops->ndo_busy_poll)
5897 features |= NETIF_F_BUSY_POLL;
5898 else
5899 #endif
5900 features &= ~NETIF_F_BUSY_POLL;
5901
5902 return features;
5903 }
5904
5905 int __netdev_update_features(struct net_device *dev)
5906 {
5907 netdev_features_t features;
5908 int err = 0;
5909
5910 ASSERT_RTNL();
5911
5912 features = netdev_get_wanted_features(dev);
5913
5914 if (dev->netdev_ops->ndo_fix_features)
5915 features = dev->netdev_ops->ndo_fix_features(dev, features);
5916
5917 /* driver might be less strict about feature dependencies */
5918 features = netdev_fix_features(dev, features);
5919
5920 if (dev->features == features)
5921 return 0;
5922
5923 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5924 &dev->features, &features);
5925
5926 if (dev->netdev_ops->ndo_set_features)
5927 err = dev->netdev_ops->ndo_set_features(dev, features);
5928
5929 if (unlikely(err < 0)) {
5930 netdev_err(dev,
5931 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5932 err, &features, &dev->features);
5933 return -1;
5934 }
5935
5936 if (!err)
5937 dev->features = features;
5938
5939 return 1;
5940 }
5941
5942 /**
5943 * netdev_update_features - recalculate device features
5944 * @dev: the device to check
5945 *
5946 * Recalculate dev->features set and send notifications if it
5947 * has changed. Should be called after driver or hardware dependent
5948 * conditions might have changed that influence the features.
5949 */
5950 void netdev_update_features(struct net_device *dev)
5951 {
5952 if (__netdev_update_features(dev))
5953 netdev_features_change(dev);
5954 }
5955 EXPORT_SYMBOL(netdev_update_features);
5956
5957 /**
5958 * netdev_change_features - recalculate device features
5959 * @dev: the device to check
5960 *
5961 * Recalculate dev->features set and send notifications even
5962 * if they have not changed. Should be called instead of
5963 * netdev_update_features() if also dev->vlan_features might
5964 * have changed to allow the changes to be propagated to stacked
5965 * VLAN devices.
5966 */
5967 void netdev_change_features(struct net_device *dev)
5968 {
5969 __netdev_update_features(dev);
5970 netdev_features_change(dev);
5971 }
5972 EXPORT_SYMBOL(netdev_change_features);
5973
5974 /**
5975 * netif_stacked_transfer_operstate - transfer operstate
5976 * @rootdev: the root or lower level device to transfer state from
5977 * @dev: the device to transfer operstate to
5978 *
5979 * Transfer operational state from root to device. This is normally
5980 * called when a stacking relationship exists between the root
5981 * device and the device(a leaf device).
5982 */
5983 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5984 struct net_device *dev)
5985 {
5986 if (rootdev->operstate == IF_OPER_DORMANT)
5987 netif_dormant_on(dev);
5988 else
5989 netif_dormant_off(dev);
5990
5991 if (netif_carrier_ok(rootdev)) {
5992 if (!netif_carrier_ok(dev))
5993 netif_carrier_on(dev);
5994 } else {
5995 if (netif_carrier_ok(dev))
5996 netif_carrier_off(dev);
5997 }
5998 }
5999 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6000
6001 #ifdef CONFIG_SYSFS
6002 static int netif_alloc_rx_queues(struct net_device *dev)
6003 {
6004 unsigned int i, count = dev->num_rx_queues;
6005 struct netdev_rx_queue *rx;
6006
6007 BUG_ON(count < 1);
6008
6009 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6010 if (!rx)
6011 return -ENOMEM;
6012
6013 dev->_rx = rx;
6014
6015 for (i = 0; i < count; i++)
6016 rx[i].dev = dev;
6017 return 0;
6018 }
6019 #endif
6020
6021 static void netdev_init_one_queue(struct net_device *dev,
6022 struct netdev_queue *queue, void *_unused)
6023 {
6024 /* Initialize queue lock */
6025 spin_lock_init(&queue->_xmit_lock);
6026 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6027 queue->xmit_lock_owner = -1;
6028 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6029 queue->dev = dev;
6030 #ifdef CONFIG_BQL
6031 dql_init(&queue->dql, HZ);
6032 #endif
6033 }
6034
6035 static void netif_free_tx_queues(struct net_device *dev)
6036 {
6037 kvfree(dev->_tx);
6038 }
6039
6040 static int netif_alloc_netdev_queues(struct net_device *dev)
6041 {
6042 unsigned int count = dev->num_tx_queues;
6043 struct netdev_queue *tx;
6044 size_t sz = count * sizeof(*tx);
6045
6046 BUG_ON(count < 1 || count > 0xffff);
6047
6048 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6049 if (!tx) {
6050 tx = vzalloc(sz);
6051 if (!tx)
6052 return -ENOMEM;
6053 }
6054 dev->_tx = tx;
6055
6056 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6057 spin_lock_init(&dev->tx_global_lock);
6058
6059 return 0;
6060 }
6061
6062 /**
6063 * register_netdevice - register a network device
6064 * @dev: device to register
6065 *
6066 * Take a completed network device structure and add it to the kernel
6067 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6068 * chain. 0 is returned on success. A negative errno code is returned
6069 * on a failure to set up the device, or if the name is a duplicate.
6070 *
6071 * Callers must hold the rtnl semaphore. You may want
6072 * register_netdev() instead of this.
6073 *
6074 * BUGS:
6075 * The locking appears insufficient to guarantee two parallel registers
6076 * will not get the same name.
6077 */
6078
6079 int register_netdevice(struct net_device *dev)
6080 {
6081 int ret;
6082 struct net *net = dev_net(dev);
6083
6084 BUG_ON(dev_boot_phase);
6085 ASSERT_RTNL();
6086
6087 might_sleep();
6088
6089 /* When net_device's are persistent, this will be fatal. */
6090 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6091 BUG_ON(!net);
6092
6093 spin_lock_init(&dev->addr_list_lock);
6094 netdev_set_addr_lockdep_class(dev);
6095
6096 dev->iflink = -1;
6097
6098 ret = dev_get_valid_name(net, dev, dev->name);
6099 if (ret < 0)
6100 goto out;
6101
6102 /* Init, if this function is available */
6103 if (dev->netdev_ops->ndo_init) {
6104 ret = dev->netdev_ops->ndo_init(dev);
6105 if (ret) {
6106 if (ret > 0)
6107 ret = -EIO;
6108 goto out;
6109 }
6110 }
6111
6112 if (((dev->hw_features | dev->features) &
6113 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6114 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6115 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6116 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6117 ret = -EINVAL;
6118 goto err_uninit;
6119 }
6120
6121 ret = -EBUSY;
6122 if (!dev->ifindex)
6123 dev->ifindex = dev_new_index(net);
6124 else if (__dev_get_by_index(net, dev->ifindex))
6125 goto err_uninit;
6126
6127 if (dev->iflink == -1)
6128 dev->iflink = dev->ifindex;
6129
6130 /* Transfer changeable features to wanted_features and enable
6131 * software offloads (GSO and GRO).
6132 */
6133 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6134 dev->features |= NETIF_F_SOFT_FEATURES;
6135 dev->wanted_features = dev->features & dev->hw_features;
6136
6137 if (!(dev->flags & IFF_LOOPBACK)) {
6138 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6139 }
6140
6141 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6142 */
6143 dev->vlan_features |= NETIF_F_HIGHDMA;
6144
6145 /* Make NETIF_F_SG inheritable to tunnel devices.
6146 */
6147 dev->hw_enc_features |= NETIF_F_SG;
6148
6149 /* Make NETIF_F_SG inheritable to MPLS.
6150 */
6151 dev->mpls_features |= NETIF_F_SG;
6152
6153 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6154 ret = notifier_to_errno(ret);
6155 if (ret)
6156 goto err_uninit;
6157
6158 ret = netdev_register_kobject(dev);
6159 if (ret)
6160 goto err_uninit;
6161 dev->reg_state = NETREG_REGISTERED;
6162
6163 __netdev_update_features(dev);
6164
6165 /*
6166 * Default initial state at registry is that the
6167 * device is present.
6168 */
6169
6170 set_bit(__LINK_STATE_PRESENT, &dev->state);
6171
6172 linkwatch_init_dev(dev);
6173
6174 dev_init_scheduler(dev);
6175 dev_hold(dev);
6176 list_netdevice(dev);
6177 add_device_randomness(dev->dev_addr, dev->addr_len);
6178
6179 /* If the device has permanent device address, driver should
6180 * set dev_addr and also addr_assign_type should be set to
6181 * NET_ADDR_PERM (default value).
6182 */
6183 if (dev->addr_assign_type == NET_ADDR_PERM)
6184 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6185
6186 /* Notify protocols, that a new device appeared. */
6187 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6188 ret = notifier_to_errno(ret);
6189 if (ret) {
6190 rollback_registered(dev);
6191 dev->reg_state = NETREG_UNREGISTERED;
6192 }
6193 /*
6194 * Prevent userspace races by waiting until the network
6195 * device is fully setup before sending notifications.
6196 */
6197 if (!dev->rtnl_link_ops ||
6198 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6199 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6200
6201 out:
6202 return ret;
6203
6204 err_uninit:
6205 if (dev->netdev_ops->ndo_uninit)
6206 dev->netdev_ops->ndo_uninit(dev);
6207 goto out;
6208 }
6209 EXPORT_SYMBOL(register_netdevice);
6210
6211 /**
6212 * init_dummy_netdev - init a dummy network device for NAPI
6213 * @dev: device to init
6214 *
6215 * This takes a network device structure and initialize the minimum
6216 * amount of fields so it can be used to schedule NAPI polls without
6217 * registering a full blown interface. This is to be used by drivers
6218 * that need to tie several hardware interfaces to a single NAPI
6219 * poll scheduler due to HW limitations.
6220 */
6221 int init_dummy_netdev(struct net_device *dev)
6222 {
6223 /* Clear everything. Note we don't initialize spinlocks
6224 * are they aren't supposed to be taken by any of the
6225 * NAPI code and this dummy netdev is supposed to be
6226 * only ever used for NAPI polls
6227 */
6228 memset(dev, 0, sizeof(struct net_device));
6229
6230 /* make sure we BUG if trying to hit standard
6231 * register/unregister code path
6232 */
6233 dev->reg_state = NETREG_DUMMY;
6234
6235 /* NAPI wants this */
6236 INIT_LIST_HEAD(&dev->napi_list);
6237
6238 /* a dummy interface is started by default */
6239 set_bit(__LINK_STATE_PRESENT, &dev->state);
6240 set_bit(__LINK_STATE_START, &dev->state);
6241
6242 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6243 * because users of this 'device' dont need to change
6244 * its refcount.
6245 */
6246
6247 return 0;
6248 }
6249 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6250
6251
6252 /**
6253 * register_netdev - register a network device
6254 * @dev: device to register
6255 *
6256 * Take a completed network device structure and add it to the kernel
6257 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6258 * chain. 0 is returned on success. A negative errno code is returned
6259 * on a failure to set up the device, or if the name is a duplicate.
6260 *
6261 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6262 * and expands the device name if you passed a format string to
6263 * alloc_netdev.
6264 */
6265 int register_netdev(struct net_device *dev)
6266 {
6267 int err;
6268
6269 rtnl_lock();
6270 err = register_netdevice(dev);
6271 rtnl_unlock();
6272 return err;
6273 }
6274 EXPORT_SYMBOL(register_netdev);
6275
6276 int netdev_refcnt_read(const struct net_device *dev)
6277 {
6278 int i, refcnt = 0;
6279
6280 for_each_possible_cpu(i)
6281 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6282 return refcnt;
6283 }
6284 EXPORT_SYMBOL(netdev_refcnt_read);
6285
6286 /**
6287 * netdev_wait_allrefs - wait until all references are gone.
6288 * @dev: target net_device
6289 *
6290 * This is called when unregistering network devices.
6291 *
6292 * Any protocol or device that holds a reference should register
6293 * for netdevice notification, and cleanup and put back the
6294 * reference if they receive an UNREGISTER event.
6295 * We can get stuck here if buggy protocols don't correctly
6296 * call dev_put.
6297 */
6298 static void netdev_wait_allrefs(struct net_device *dev)
6299 {
6300 unsigned long rebroadcast_time, warning_time;
6301 int refcnt;
6302
6303 linkwatch_forget_dev(dev);
6304
6305 rebroadcast_time = warning_time = jiffies;
6306 refcnt = netdev_refcnt_read(dev);
6307
6308 while (refcnt != 0) {
6309 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6310 rtnl_lock();
6311
6312 /* Rebroadcast unregister notification */
6313 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6314
6315 __rtnl_unlock();
6316 rcu_barrier();
6317 rtnl_lock();
6318
6319 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6320 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6321 &dev->state)) {
6322 /* We must not have linkwatch events
6323 * pending on unregister. If this
6324 * happens, we simply run the queue
6325 * unscheduled, resulting in a noop
6326 * for this device.
6327 */
6328 linkwatch_run_queue();
6329 }
6330
6331 __rtnl_unlock();
6332
6333 rebroadcast_time = jiffies;
6334 }
6335
6336 msleep(250);
6337
6338 refcnt = netdev_refcnt_read(dev);
6339
6340 if (time_after(jiffies, warning_time + 10 * HZ)) {
6341 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6342 dev->name, refcnt);
6343 warning_time = jiffies;
6344 }
6345 }
6346 }
6347
6348 /* The sequence is:
6349 *
6350 * rtnl_lock();
6351 * ...
6352 * register_netdevice(x1);
6353 * register_netdevice(x2);
6354 * ...
6355 * unregister_netdevice(y1);
6356 * unregister_netdevice(y2);
6357 * ...
6358 * rtnl_unlock();
6359 * free_netdev(y1);
6360 * free_netdev(y2);
6361 *
6362 * We are invoked by rtnl_unlock().
6363 * This allows us to deal with problems:
6364 * 1) We can delete sysfs objects which invoke hotplug
6365 * without deadlocking with linkwatch via keventd.
6366 * 2) Since we run with the RTNL semaphore not held, we can sleep
6367 * safely in order to wait for the netdev refcnt to drop to zero.
6368 *
6369 * We must not return until all unregister events added during
6370 * the interval the lock was held have been completed.
6371 */
6372 void netdev_run_todo(void)
6373 {
6374 struct list_head list;
6375
6376 /* Snapshot list, allow later requests */
6377 list_replace_init(&net_todo_list, &list);
6378
6379 __rtnl_unlock();
6380
6381
6382 /* Wait for rcu callbacks to finish before next phase */
6383 if (!list_empty(&list))
6384 rcu_barrier();
6385
6386 while (!list_empty(&list)) {
6387 struct net_device *dev
6388 = list_first_entry(&list, struct net_device, todo_list);
6389 list_del(&dev->todo_list);
6390
6391 rtnl_lock();
6392 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6393 __rtnl_unlock();
6394
6395 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6396 pr_err("network todo '%s' but state %d\n",
6397 dev->name, dev->reg_state);
6398 dump_stack();
6399 continue;
6400 }
6401
6402 dev->reg_state = NETREG_UNREGISTERED;
6403
6404 on_each_cpu(flush_backlog, dev, 1);
6405
6406 netdev_wait_allrefs(dev);
6407
6408 /* paranoia */
6409 BUG_ON(netdev_refcnt_read(dev));
6410 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6411 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6412 WARN_ON(dev->dn_ptr);
6413
6414 if (dev->destructor)
6415 dev->destructor(dev);
6416
6417 /* Report a network device has been unregistered */
6418 rtnl_lock();
6419 dev_net(dev)->dev_unreg_count--;
6420 __rtnl_unlock();
6421 wake_up(&netdev_unregistering_wq);
6422
6423 /* Free network device */
6424 kobject_put(&dev->dev.kobj);
6425 }
6426 }
6427
6428 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6429 * fields in the same order, with only the type differing.
6430 */
6431 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6432 const struct net_device_stats *netdev_stats)
6433 {
6434 #if BITS_PER_LONG == 64
6435 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6436 memcpy(stats64, netdev_stats, sizeof(*stats64));
6437 #else
6438 size_t i, n = sizeof(*stats64) / sizeof(u64);
6439 const unsigned long *src = (const unsigned long *)netdev_stats;
6440 u64 *dst = (u64 *)stats64;
6441
6442 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6443 sizeof(*stats64) / sizeof(u64));
6444 for (i = 0; i < n; i++)
6445 dst[i] = src[i];
6446 #endif
6447 }
6448 EXPORT_SYMBOL(netdev_stats_to_stats64);
6449
6450 /**
6451 * dev_get_stats - get network device statistics
6452 * @dev: device to get statistics from
6453 * @storage: place to store stats
6454 *
6455 * Get network statistics from device. Return @storage.
6456 * The device driver may provide its own method by setting
6457 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6458 * otherwise the internal statistics structure is used.
6459 */
6460 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6461 struct rtnl_link_stats64 *storage)
6462 {
6463 const struct net_device_ops *ops = dev->netdev_ops;
6464
6465 if (ops->ndo_get_stats64) {
6466 memset(storage, 0, sizeof(*storage));
6467 ops->ndo_get_stats64(dev, storage);
6468 } else if (ops->ndo_get_stats) {
6469 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6470 } else {
6471 netdev_stats_to_stats64(storage, &dev->stats);
6472 }
6473 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6474 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6475 return storage;
6476 }
6477 EXPORT_SYMBOL(dev_get_stats);
6478
6479 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6480 {
6481 struct netdev_queue *queue = dev_ingress_queue(dev);
6482
6483 #ifdef CONFIG_NET_CLS_ACT
6484 if (queue)
6485 return queue;
6486 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6487 if (!queue)
6488 return NULL;
6489 netdev_init_one_queue(dev, queue, NULL);
6490 queue->qdisc = &noop_qdisc;
6491 queue->qdisc_sleeping = &noop_qdisc;
6492 rcu_assign_pointer(dev->ingress_queue, queue);
6493 #endif
6494 return queue;
6495 }
6496
6497 static const struct ethtool_ops default_ethtool_ops;
6498
6499 void netdev_set_default_ethtool_ops(struct net_device *dev,
6500 const struct ethtool_ops *ops)
6501 {
6502 if (dev->ethtool_ops == &default_ethtool_ops)
6503 dev->ethtool_ops = ops;
6504 }
6505 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6506
6507 void netdev_freemem(struct net_device *dev)
6508 {
6509 char *addr = (char *)dev - dev->padded;
6510
6511 kvfree(addr);
6512 }
6513
6514 /**
6515 * alloc_netdev_mqs - allocate network device
6516 * @sizeof_priv: size of private data to allocate space for
6517 * @name: device name format string
6518 * @name_assign_type: origin of device name
6519 * @setup: callback to initialize device
6520 * @txqs: the number of TX subqueues to allocate
6521 * @rxqs: the number of RX subqueues to allocate
6522 *
6523 * Allocates a struct net_device with private data area for driver use
6524 * and performs basic initialization. Also allocates subqueue structs
6525 * for each queue on the device.
6526 */
6527 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6528 unsigned char name_assign_type,
6529 void (*setup)(struct net_device *),
6530 unsigned int txqs, unsigned int rxqs)
6531 {
6532 struct net_device *dev;
6533 size_t alloc_size;
6534 struct net_device *p;
6535
6536 BUG_ON(strlen(name) >= sizeof(dev->name));
6537
6538 if (txqs < 1) {
6539 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6540 return NULL;
6541 }
6542
6543 #ifdef CONFIG_SYSFS
6544 if (rxqs < 1) {
6545 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6546 return NULL;
6547 }
6548 #endif
6549
6550 alloc_size = sizeof(struct net_device);
6551 if (sizeof_priv) {
6552 /* ensure 32-byte alignment of private area */
6553 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6554 alloc_size += sizeof_priv;
6555 }
6556 /* ensure 32-byte alignment of whole construct */
6557 alloc_size += NETDEV_ALIGN - 1;
6558
6559 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6560 if (!p)
6561 p = vzalloc(alloc_size);
6562 if (!p)
6563 return NULL;
6564
6565 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6566 dev->padded = (char *)dev - (char *)p;
6567
6568 dev->pcpu_refcnt = alloc_percpu(int);
6569 if (!dev->pcpu_refcnt)
6570 goto free_dev;
6571
6572 if (dev_addr_init(dev))
6573 goto free_pcpu;
6574
6575 dev_mc_init(dev);
6576 dev_uc_init(dev);
6577
6578 dev_net_set(dev, &init_net);
6579
6580 dev->gso_max_size = GSO_MAX_SIZE;
6581 dev->gso_max_segs = GSO_MAX_SEGS;
6582
6583 INIT_LIST_HEAD(&dev->napi_list);
6584 INIT_LIST_HEAD(&dev->unreg_list);
6585 INIT_LIST_HEAD(&dev->close_list);
6586 INIT_LIST_HEAD(&dev->link_watch_list);
6587 INIT_LIST_HEAD(&dev->adj_list.upper);
6588 INIT_LIST_HEAD(&dev->adj_list.lower);
6589 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6590 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6591 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6592 setup(dev);
6593
6594 dev->num_tx_queues = txqs;
6595 dev->real_num_tx_queues = txqs;
6596 if (netif_alloc_netdev_queues(dev))
6597 goto free_all;
6598
6599 #ifdef CONFIG_SYSFS
6600 dev->num_rx_queues = rxqs;
6601 dev->real_num_rx_queues = rxqs;
6602 if (netif_alloc_rx_queues(dev))
6603 goto free_all;
6604 #endif
6605
6606 strcpy(dev->name, name);
6607 dev->name_assign_type = name_assign_type;
6608 dev->group = INIT_NETDEV_GROUP;
6609 if (!dev->ethtool_ops)
6610 dev->ethtool_ops = &default_ethtool_ops;
6611 return dev;
6612
6613 free_all:
6614 free_netdev(dev);
6615 return NULL;
6616
6617 free_pcpu:
6618 free_percpu(dev->pcpu_refcnt);
6619 free_dev:
6620 netdev_freemem(dev);
6621 return NULL;
6622 }
6623 EXPORT_SYMBOL(alloc_netdev_mqs);
6624
6625 /**
6626 * free_netdev - free network device
6627 * @dev: device
6628 *
6629 * This function does the last stage of destroying an allocated device
6630 * interface. The reference to the device object is released.
6631 * If this is the last reference then it will be freed.
6632 */
6633 void free_netdev(struct net_device *dev)
6634 {
6635 struct napi_struct *p, *n;
6636
6637 release_net(dev_net(dev));
6638
6639 netif_free_tx_queues(dev);
6640 #ifdef CONFIG_SYSFS
6641 kfree(dev->_rx);
6642 #endif
6643
6644 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6645
6646 /* Flush device addresses */
6647 dev_addr_flush(dev);
6648
6649 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6650 netif_napi_del(p);
6651
6652 free_percpu(dev->pcpu_refcnt);
6653 dev->pcpu_refcnt = NULL;
6654
6655 /* Compatibility with error handling in drivers */
6656 if (dev->reg_state == NETREG_UNINITIALIZED) {
6657 netdev_freemem(dev);
6658 return;
6659 }
6660
6661 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6662 dev->reg_state = NETREG_RELEASED;
6663
6664 /* will free via device release */
6665 put_device(&dev->dev);
6666 }
6667 EXPORT_SYMBOL(free_netdev);
6668
6669 /**
6670 * synchronize_net - Synchronize with packet receive processing
6671 *
6672 * Wait for packets currently being received to be done.
6673 * Does not block later packets from starting.
6674 */
6675 void synchronize_net(void)
6676 {
6677 might_sleep();
6678 if (rtnl_is_locked())
6679 synchronize_rcu_expedited();
6680 else
6681 synchronize_rcu();
6682 }
6683 EXPORT_SYMBOL(synchronize_net);
6684
6685 /**
6686 * unregister_netdevice_queue - remove device from the kernel
6687 * @dev: device
6688 * @head: list
6689 *
6690 * This function shuts down a device interface and removes it
6691 * from the kernel tables.
6692 * If head not NULL, device is queued to be unregistered later.
6693 *
6694 * Callers must hold the rtnl semaphore. You may want
6695 * unregister_netdev() instead of this.
6696 */
6697
6698 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6699 {
6700 ASSERT_RTNL();
6701
6702 if (head) {
6703 list_move_tail(&dev->unreg_list, head);
6704 } else {
6705 rollback_registered(dev);
6706 /* Finish processing unregister after unlock */
6707 net_set_todo(dev);
6708 }
6709 }
6710 EXPORT_SYMBOL(unregister_netdevice_queue);
6711
6712 /**
6713 * unregister_netdevice_many - unregister many devices
6714 * @head: list of devices
6715 *
6716 * Note: As most callers use a stack allocated list_head,
6717 * we force a list_del() to make sure stack wont be corrupted later.
6718 */
6719 void unregister_netdevice_many(struct list_head *head)
6720 {
6721 struct net_device *dev;
6722
6723 if (!list_empty(head)) {
6724 rollback_registered_many(head);
6725 list_for_each_entry(dev, head, unreg_list)
6726 net_set_todo(dev);
6727 list_del(head);
6728 }
6729 }
6730 EXPORT_SYMBOL(unregister_netdevice_many);
6731
6732 /**
6733 * unregister_netdev - remove device from the kernel
6734 * @dev: device
6735 *
6736 * This function shuts down a device interface and removes it
6737 * from the kernel tables.
6738 *
6739 * This is just a wrapper for unregister_netdevice that takes
6740 * the rtnl semaphore. In general you want to use this and not
6741 * unregister_netdevice.
6742 */
6743 void unregister_netdev(struct net_device *dev)
6744 {
6745 rtnl_lock();
6746 unregister_netdevice(dev);
6747 rtnl_unlock();
6748 }
6749 EXPORT_SYMBOL(unregister_netdev);
6750
6751 /**
6752 * dev_change_net_namespace - move device to different nethost namespace
6753 * @dev: device
6754 * @net: network namespace
6755 * @pat: If not NULL name pattern to try if the current device name
6756 * is already taken in the destination network namespace.
6757 *
6758 * This function shuts down a device interface and moves it
6759 * to a new network namespace. On success 0 is returned, on
6760 * a failure a netagive errno code is returned.
6761 *
6762 * Callers must hold the rtnl semaphore.
6763 */
6764
6765 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6766 {
6767 int err;
6768
6769 ASSERT_RTNL();
6770
6771 /* Don't allow namespace local devices to be moved. */
6772 err = -EINVAL;
6773 if (dev->features & NETIF_F_NETNS_LOCAL)
6774 goto out;
6775
6776 /* Ensure the device has been registrered */
6777 if (dev->reg_state != NETREG_REGISTERED)
6778 goto out;
6779
6780 /* Get out if there is nothing todo */
6781 err = 0;
6782 if (net_eq(dev_net(dev), net))
6783 goto out;
6784
6785 /* Pick the destination device name, and ensure
6786 * we can use it in the destination network namespace.
6787 */
6788 err = -EEXIST;
6789 if (__dev_get_by_name(net, dev->name)) {
6790 /* We get here if we can't use the current device name */
6791 if (!pat)
6792 goto out;
6793 if (dev_get_valid_name(net, dev, pat) < 0)
6794 goto out;
6795 }
6796
6797 /*
6798 * And now a mini version of register_netdevice unregister_netdevice.
6799 */
6800
6801 /* If device is running close it first. */
6802 dev_close(dev);
6803
6804 /* And unlink it from device chain */
6805 err = -ENODEV;
6806 unlist_netdevice(dev);
6807
6808 synchronize_net();
6809
6810 /* Shutdown queueing discipline. */
6811 dev_shutdown(dev);
6812
6813 /* Notify protocols, that we are about to destroy
6814 this device. They should clean all the things.
6815
6816 Note that dev->reg_state stays at NETREG_REGISTERED.
6817 This is wanted because this way 8021q and macvlan know
6818 the device is just moving and can keep their slaves up.
6819 */
6820 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6821 rcu_barrier();
6822 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6823 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6824
6825 /*
6826 * Flush the unicast and multicast chains
6827 */
6828 dev_uc_flush(dev);
6829 dev_mc_flush(dev);
6830
6831 /* Send a netdev-removed uevent to the old namespace */
6832 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6833 netdev_adjacent_del_links(dev);
6834
6835 /* Actually switch the network namespace */
6836 dev_net_set(dev, net);
6837
6838 /* If there is an ifindex conflict assign a new one */
6839 if (__dev_get_by_index(net, dev->ifindex)) {
6840 int iflink = (dev->iflink == dev->ifindex);
6841 dev->ifindex = dev_new_index(net);
6842 if (iflink)
6843 dev->iflink = dev->ifindex;
6844 }
6845
6846 /* Send a netdev-add uevent to the new namespace */
6847 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6848 netdev_adjacent_add_links(dev);
6849
6850 /* Fixup kobjects */
6851 err = device_rename(&dev->dev, dev->name);
6852 WARN_ON(err);
6853
6854 /* Add the device back in the hashes */
6855 list_netdevice(dev);
6856
6857 /* Notify protocols, that a new device appeared. */
6858 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6859
6860 /*
6861 * Prevent userspace races by waiting until the network
6862 * device is fully setup before sending notifications.
6863 */
6864 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6865
6866 synchronize_net();
6867 err = 0;
6868 out:
6869 return err;
6870 }
6871 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6872
6873 static int dev_cpu_callback(struct notifier_block *nfb,
6874 unsigned long action,
6875 void *ocpu)
6876 {
6877 struct sk_buff **list_skb;
6878 struct sk_buff *skb;
6879 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6880 struct softnet_data *sd, *oldsd;
6881
6882 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6883 return NOTIFY_OK;
6884
6885 local_irq_disable();
6886 cpu = smp_processor_id();
6887 sd = &per_cpu(softnet_data, cpu);
6888 oldsd = &per_cpu(softnet_data, oldcpu);
6889
6890 /* Find end of our completion_queue. */
6891 list_skb = &sd->completion_queue;
6892 while (*list_skb)
6893 list_skb = &(*list_skb)->next;
6894 /* Append completion queue from offline CPU. */
6895 *list_skb = oldsd->completion_queue;
6896 oldsd->completion_queue = NULL;
6897
6898 /* Append output queue from offline CPU. */
6899 if (oldsd->output_queue) {
6900 *sd->output_queue_tailp = oldsd->output_queue;
6901 sd->output_queue_tailp = oldsd->output_queue_tailp;
6902 oldsd->output_queue = NULL;
6903 oldsd->output_queue_tailp = &oldsd->output_queue;
6904 }
6905 /* Append NAPI poll list from offline CPU. */
6906 if (!list_empty(&oldsd->poll_list)) {
6907 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6908 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6909 }
6910
6911 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6912 local_irq_enable();
6913
6914 /* Process offline CPU's input_pkt_queue */
6915 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6916 netif_rx_internal(skb);
6917 input_queue_head_incr(oldsd);
6918 }
6919 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6920 netif_rx_internal(skb);
6921 input_queue_head_incr(oldsd);
6922 }
6923
6924 return NOTIFY_OK;
6925 }
6926
6927
6928 /**
6929 * netdev_increment_features - increment feature set by one
6930 * @all: current feature set
6931 * @one: new feature set
6932 * @mask: mask feature set
6933 *
6934 * Computes a new feature set after adding a device with feature set
6935 * @one to the master device with current feature set @all. Will not
6936 * enable anything that is off in @mask. Returns the new feature set.
6937 */
6938 netdev_features_t netdev_increment_features(netdev_features_t all,
6939 netdev_features_t one, netdev_features_t mask)
6940 {
6941 if (mask & NETIF_F_GEN_CSUM)
6942 mask |= NETIF_F_ALL_CSUM;
6943 mask |= NETIF_F_VLAN_CHALLENGED;
6944
6945 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6946 all &= one | ~NETIF_F_ALL_FOR_ALL;
6947
6948 /* If one device supports hw checksumming, set for all. */
6949 if (all & NETIF_F_GEN_CSUM)
6950 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6951
6952 return all;
6953 }
6954 EXPORT_SYMBOL(netdev_increment_features);
6955
6956 static struct hlist_head * __net_init netdev_create_hash(void)
6957 {
6958 int i;
6959 struct hlist_head *hash;
6960
6961 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6962 if (hash != NULL)
6963 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6964 INIT_HLIST_HEAD(&hash[i]);
6965
6966 return hash;
6967 }
6968
6969 /* Initialize per network namespace state */
6970 static int __net_init netdev_init(struct net *net)
6971 {
6972 if (net != &init_net)
6973 INIT_LIST_HEAD(&net->dev_base_head);
6974
6975 net->dev_name_head = netdev_create_hash();
6976 if (net->dev_name_head == NULL)
6977 goto err_name;
6978
6979 net->dev_index_head = netdev_create_hash();
6980 if (net->dev_index_head == NULL)
6981 goto err_idx;
6982
6983 return 0;
6984
6985 err_idx:
6986 kfree(net->dev_name_head);
6987 err_name:
6988 return -ENOMEM;
6989 }
6990
6991 /**
6992 * netdev_drivername - network driver for the device
6993 * @dev: network device
6994 *
6995 * Determine network driver for device.
6996 */
6997 const char *netdev_drivername(const struct net_device *dev)
6998 {
6999 const struct device_driver *driver;
7000 const struct device *parent;
7001 const char *empty = "";
7002
7003 parent = dev->dev.parent;
7004 if (!parent)
7005 return empty;
7006
7007 driver = parent->driver;
7008 if (driver && driver->name)
7009 return driver->name;
7010 return empty;
7011 }
7012
7013 static int __netdev_printk(const char *level, const struct net_device *dev,
7014 struct va_format *vaf)
7015 {
7016 int r;
7017
7018 if (dev && dev->dev.parent) {
7019 r = dev_printk_emit(level[1] - '0',
7020 dev->dev.parent,
7021 "%s %s %s%s: %pV",
7022 dev_driver_string(dev->dev.parent),
7023 dev_name(dev->dev.parent),
7024 netdev_name(dev), netdev_reg_state(dev),
7025 vaf);
7026 } else if (dev) {
7027 r = printk("%s%s%s: %pV", level, netdev_name(dev),
7028 netdev_reg_state(dev), vaf);
7029 } else {
7030 r = printk("%s(NULL net_device): %pV", level, vaf);
7031 }
7032
7033 return r;
7034 }
7035
7036 int netdev_printk(const char *level, const struct net_device *dev,
7037 const char *format, ...)
7038 {
7039 struct va_format vaf;
7040 va_list args;
7041 int r;
7042
7043 va_start(args, format);
7044
7045 vaf.fmt = format;
7046 vaf.va = &args;
7047
7048 r = __netdev_printk(level, dev, &vaf);
7049
7050 va_end(args);
7051
7052 return r;
7053 }
7054 EXPORT_SYMBOL(netdev_printk);
7055
7056 #define define_netdev_printk_level(func, level) \
7057 int func(const struct net_device *dev, const char *fmt, ...) \
7058 { \
7059 int r; \
7060 struct va_format vaf; \
7061 va_list args; \
7062 \
7063 va_start(args, fmt); \
7064 \
7065 vaf.fmt = fmt; \
7066 vaf.va = &args; \
7067 \
7068 r = __netdev_printk(level, dev, &vaf); \
7069 \
7070 va_end(args); \
7071 \
7072 return r; \
7073 } \
7074 EXPORT_SYMBOL(func);
7075
7076 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7077 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7078 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7079 define_netdev_printk_level(netdev_err, KERN_ERR);
7080 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7081 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7082 define_netdev_printk_level(netdev_info, KERN_INFO);
7083
7084 static void __net_exit netdev_exit(struct net *net)
7085 {
7086 kfree(net->dev_name_head);
7087 kfree(net->dev_index_head);
7088 }
7089
7090 static struct pernet_operations __net_initdata netdev_net_ops = {
7091 .init = netdev_init,
7092 .exit = netdev_exit,
7093 };
7094
7095 static void __net_exit default_device_exit(struct net *net)
7096 {
7097 struct net_device *dev, *aux;
7098 /*
7099 * Push all migratable network devices back to the
7100 * initial network namespace
7101 */
7102 rtnl_lock();
7103 for_each_netdev_safe(net, dev, aux) {
7104 int err;
7105 char fb_name[IFNAMSIZ];
7106
7107 /* Ignore unmoveable devices (i.e. loopback) */
7108 if (dev->features & NETIF_F_NETNS_LOCAL)
7109 continue;
7110
7111 /* Leave virtual devices for the generic cleanup */
7112 if (dev->rtnl_link_ops)
7113 continue;
7114
7115 /* Push remaining network devices to init_net */
7116 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7117 err = dev_change_net_namespace(dev, &init_net, fb_name);
7118 if (err) {
7119 pr_emerg("%s: failed to move %s to init_net: %d\n",
7120 __func__, dev->name, err);
7121 BUG();
7122 }
7123 }
7124 rtnl_unlock();
7125 }
7126
7127 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7128 {
7129 /* Return with the rtnl_lock held when there are no network
7130 * devices unregistering in any network namespace in net_list.
7131 */
7132 struct net *net;
7133 bool unregistering;
7134 DEFINE_WAIT(wait);
7135
7136 for (;;) {
7137 prepare_to_wait(&netdev_unregistering_wq, &wait,
7138 TASK_UNINTERRUPTIBLE);
7139 unregistering = false;
7140 rtnl_lock();
7141 list_for_each_entry(net, net_list, exit_list) {
7142 if (net->dev_unreg_count > 0) {
7143 unregistering = true;
7144 break;
7145 }
7146 }
7147 if (!unregistering)
7148 break;
7149 __rtnl_unlock();
7150 schedule();
7151 }
7152 finish_wait(&netdev_unregistering_wq, &wait);
7153 }
7154
7155 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7156 {
7157 /* At exit all network devices most be removed from a network
7158 * namespace. Do this in the reverse order of registration.
7159 * Do this across as many network namespaces as possible to
7160 * improve batching efficiency.
7161 */
7162 struct net_device *dev;
7163 struct net *net;
7164 LIST_HEAD(dev_kill_list);
7165
7166 /* To prevent network device cleanup code from dereferencing
7167 * loopback devices or network devices that have been freed
7168 * wait here for all pending unregistrations to complete,
7169 * before unregistring the loopback device and allowing the
7170 * network namespace be freed.
7171 *
7172 * The netdev todo list containing all network devices
7173 * unregistrations that happen in default_device_exit_batch
7174 * will run in the rtnl_unlock() at the end of
7175 * default_device_exit_batch.
7176 */
7177 rtnl_lock_unregistering(net_list);
7178 list_for_each_entry(net, net_list, exit_list) {
7179 for_each_netdev_reverse(net, dev) {
7180 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7181 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7182 else
7183 unregister_netdevice_queue(dev, &dev_kill_list);
7184 }
7185 }
7186 unregister_netdevice_many(&dev_kill_list);
7187 rtnl_unlock();
7188 }
7189
7190 static struct pernet_operations __net_initdata default_device_ops = {
7191 .exit = default_device_exit,
7192 .exit_batch = default_device_exit_batch,
7193 };
7194
7195 /*
7196 * Initialize the DEV module. At boot time this walks the device list and
7197 * unhooks any devices that fail to initialise (normally hardware not
7198 * present) and leaves us with a valid list of present and active devices.
7199 *
7200 */
7201
7202 /*
7203 * This is called single threaded during boot, so no need
7204 * to take the rtnl semaphore.
7205 */
7206 static int __init net_dev_init(void)
7207 {
7208 int i, rc = -ENOMEM;
7209
7210 BUG_ON(!dev_boot_phase);
7211
7212 if (dev_proc_init())
7213 goto out;
7214
7215 if (netdev_kobject_init())
7216 goto out;
7217
7218 INIT_LIST_HEAD(&ptype_all);
7219 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7220 INIT_LIST_HEAD(&ptype_base[i]);
7221
7222 INIT_LIST_HEAD(&offload_base);
7223
7224 if (register_pernet_subsys(&netdev_net_ops))
7225 goto out;
7226
7227 /*
7228 * Initialise the packet receive queues.
7229 */
7230
7231 for_each_possible_cpu(i) {
7232 struct softnet_data *sd = &per_cpu(softnet_data, i);
7233
7234 skb_queue_head_init(&sd->input_pkt_queue);
7235 skb_queue_head_init(&sd->process_queue);
7236 INIT_LIST_HEAD(&sd->poll_list);
7237 sd->output_queue_tailp = &sd->output_queue;
7238 #ifdef CONFIG_RPS
7239 sd->csd.func = rps_trigger_softirq;
7240 sd->csd.info = sd;
7241 sd->cpu = i;
7242 #endif
7243
7244 sd->backlog.poll = process_backlog;
7245 sd->backlog.weight = weight_p;
7246 }
7247
7248 dev_boot_phase = 0;
7249
7250 /* The loopback device is special if any other network devices
7251 * is present in a network namespace the loopback device must
7252 * be present. Since we now dynamically allocate and free the
7253 * loopback device ensure this invariant is maintained by
7254 * keeping the loopback device as the first device on the
7255 * list of network devices. Ensuring the loopback devices
7256 * is the first device that appears and the last network device
7257 * that disappears.
7258 */
7259 if (register_pernet_device(&loopback_net_ops))
7260 goto out;
7261
7262 if (register_pernet_device(&default_device_ops))
7263 goto out;
7264
7265 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7266 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7267
7268 hotcpu_notifier(dev_cpu_callback, 0);
7269 dst_init();
7270 rc = 0;
7271 out:
7272 return rc;
7273 }
7274
7275 subsys_initcall(net_dev_init);
This page took 0.259774 seconds and 5 git commands to generate.