net: use netif_rx_ni() from process context
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly; /* Taps */
151 static struct list_head offload_base __read_mostly;
152
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
157
158 /*
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185
186 static seqcount_t devnet_rename_seq;
187
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 while (++net->dev_base_seq == 0);
191 }
192
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 struct net *net = dev_net(dev);
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
232
233 dev_base_seq_inc(net);
234 }
235
236 /* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
249
250 dev_base_seq_inc(dev_net(dev));
251 }
252
253 /*
254 * Our notifier list
255 */
256
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258
259 /*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
263
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 if (pt->type == htons(ETH_P_ALL))
374 return &ptype_all;
375 else
376 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
377 }
378
379 /**
380 * dev_add_pack - add packet handler
381 * @pt: packet type declaration
382 *
383 * Add a protocol handler to the networking stack. The passed &packet_type
384 * is linked into kernel lists and may not be freed until it has been
385 * removed from the kernel lists.
386 *
387 * This call does not sleep therefore it can not
388 * guarantee all CPU's that are in middle of receiving packets
389 * will see the new packet type (until the next received packet).
390 */
391
392 void dev_add_pack(struct packet_type *pt)
393 {
394 struct list_head *head = ptype_head(pt);
395
396 spin_lock(&ptype_lock);
397 list_add_rcu(&pt->list, head);
398 spin_unlock(&ptype_lock);
399 }
400 EXPORT_SYMBOL(dev_add_pack);
401
402 /**
403 * __dev_remove_pack - remove packet handler
404 * @pt: packet type declaration
405 *
406 * Remove a protocol handler that was previously added to the kernel
407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
408 * from the kernel lists and can be freed or reused once this function
409 * returns.
410 *
411 * The packet type might still be in use by receivers
412 * and must not be freed until after all the CPU's have gone
413 * through a quiescent state.
414 */
415 void __dev_remove_pack(struct packet_type *pt)
416 {
417 struct list_head *head = ptype_head(pt);
418 struct packet_type *pt1;
419
420 spin_lock(&ptype_lock);
421
422 list_for_each_entry(pt1, head, list) {
423 if (pt == pt1) {
424 list_del_rcu(&pt->list);
425 goto out;
426 }
427 }
428
429 pr_warn("dev_remove_pack: %p not found\n", pt);
430 out:
431 spin_unlock(&ptype_lock);
432 }
433 EXPORT_SYMBOL(__dev_remove_pack);
434
435 /**
436 * dev_remove_pack - remove packet handler
437 * @pt: packet type declaration
438 *
439 * Remove a protocol handler that was previously added to the kernel
440 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
441 * from the kernel lists and can be freed or reused once this function
442 * returns.
443 *
444 * This call sleeps to guarantee that no CPU is looking at the packet
445 * type after return.
446 */
447 void dev_remove_pack(struct packet_type *pt)
448 {
449 __dev_remove_pack(pt);
450
451 synchronize_net();
452 }
453 EXPORT_SYMBOL(dev_remove_pack);
454
455
456 /**
457 * dev_add_offload - register offload handlers
458 * @po: protocol offload declaration
459 *
460 * Add protocol offload handlers to the networking stack. The passed
461 * &proto_offload is linked into kernel lists and may not be freed until
462 * it has been removed from the kernel lists.
463 *
464 * This call does not sleep therefore it can not
465 * guarantee all CPU's that are in middle of receiving packets
466 * will see the new offload handlers (until the next received packet).
467 */
468 void dev_add_offload(struct packet_offload *po)
469 {
470 struct list_head *head = &offload_base;
471
472 spin_lock(&offload_lock);
473 list_add_rcu(&po->list, head);
474 spin_unlock(&offload_lock);
475 }
476 EXPORT_SYMBOL(dev_add_offload);
477
478 /**
479 * __dev_remove_offload - remove offload handler
480 * @po: packet offload declaration
481 *
482 * Remove a protocol offload handler that was previously added to the
483 * kernel offload handlers by dev_add_offload(). The passed &offload_type
484 * is removed from the kernel lists and can be freed or reused once this
485 * function returns.
486 *
487 * The packet type might still be in use by receivers
488 * and must not be freed until after all the CPU's have gone
489 * through a quiescent state.
490 */
491 static void __dev_remove_offload(struct packet_offload *po)
492 {
493 struct list_head *head = &offload_base;
494 struct packet_offload *po1;
495
496 spin_lock(&offload_lock);
497
498 list_for_each_entry(po1, head, list) {
499 if (po == po1) {
500 list_del_rcu(&po->list);
501 goto out;
502 }
503 }
504
505 pr_warn("dev_remove_offload: %p not found\n", po);
506 out:
507 spin_unlock(&offload_lock);
508 }
509
510 /**
511 * dev_remove_offload - remove packet offload handler
512 * @po: packet offload declaration
513 *
514 * Remove a packet offload handler that was previously added to the kernel
515 * offload handlers by dev_add_offload(). The passed &offload_type is
516 * removed from the kernel lists and can be freed or reused once this
517 * function returns.
518 *
519 * This call sleeps to guarantee that no CPU is looking at the packet
520 * type after return.
521 */
522 void dev_remove_offload(struct packet_offload *po)
523 {
524 __dev_remove_offload(po);
525
526 synchronize_net();
527 }
528 EXPORT_SYMBOL(dev_remove_offload);
529
530 /******************************************************************************
531
532 Device Boot-time Settings Routines
533
534 *******************************************************************************/
535
536 /* Boot time configuration table */
537 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
538
539 /**
540 * netdev_boot_setup_add - add new setup entry
541 * @name: name of the device
542 * @map: configured settings for the device
543 *
544 * Adds new setup entry to the dev_boot_setup list. The function
545 * returns 0 on error and 1 on success. This is a generic routine to
546 * all netdevices.
547 */
548 static int netdev_boot_setup_add(char *name, struct ifmap *map)
549 {
550 struct netdev_boot_setup *s;
551 int i;
552
553 s = dev_boot_setup;
554 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
555 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
556 memset(s[i].name, 0, sizeof(s[i].name));
557 strlcpy(s[i].name, name, IFNAMSIZ);
558 memcpy(&s[i].map, map, sizeof(s[i].map));
559 break;
560 }
561 }
562
563 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
564 }
565
566 /**
567 * netdev_boot_setup_check - check boot time settings
568 * @dev: the netdevice
569 *
570 * Check boot time settings for the device.
571 * The found settings are set for the device to be used
572 * later in the device probing.
573 * Returns 0 if no settings found, 1 if they are.
574 */
575 int netdev_boot_setup_check(struct net_device *dev)
576 {
577 struct netdev_boot_setup *s = dev_boot_setup;
578 int i;
579
580 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
581 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
582 !strcmp(dev->name, s[i].name)) {
583 dev->irq = s[i].map.irq;
584 dev->base_addr = s[i].map.base_addr;
585 dev->mem_start = s[i].map.mem_start;
586 dev->mem_end = s[i].map.mem_end;
587 return 1;
588 }
589 }
590 return 0;
591 }
592 EXPORT_SYMBOL(netdev_boot_setup_check);
593
594
595 /**
596 * netdev_boot_base - get address from boot time settings
597 * @prefix: prefix for network device
598 * @unit: id for network device
599 *
600 * Check boot time settings for the base address of device.
601 * The found settings are set for the device to be used
602 * later in the device probing.
603 * Returns 0 if no settings found.
604 */
605 unsigned long netdev_boot_base(const char *prefix, int unit)
606 {
607 const struct netdev_boot_setup *s = dev_boot_setup;
608 char name[IFNAMSIZ];
609 int i;
610
611 sprintf(name, "%s%d", prefix, unit);
612
613 /*
614 * If device already registered then return base of 1
615 * to indicate not to probe for this interface
616 */
617 if (__dev_get_by_name(&init_net, name))
618 return 1;
619
620 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
621 if (!strcmp(name, s[i].name))
622 return s[i].map.base_addr;
623 return 0;
624 }
625
626 /*
627 * Saves at boot time configured settings for any netdevice.
628 */
629 int __init netdev_boot_setup(char *str)
630 {
631 int ints[5];
632 struct ifmap map;
633
634 str = get_options(str, ARRAY_SIZE(ints), ints);
635 if (!str || !*str)
636 return 0;
637
638 /* Save settings */
639 memset(&map, 0, sizeof(map));
640 if (ints[0] > 0)
641 map.irq = ints[1];
642 if (ints[0] > 1)
643 map.base_addr = ints[2];
644 if (ints[0] > 2)
645 map.mem_start = ints[3];
646 if (ints[0] > 3)
647 map.mem_end = ints[4];
648
649 /* Add new entry to the list */
650 return netdev_boot_setup_add(str, &map);
651 }
652
653 __setup("netdev=", netdev_boot_setup);
654
655 /*******************************************************************************
656
657 Device Interface Subroutines
658
659 *******************************************************************************/
660
661 /**
662 * __dev_get_by_name - find a device by its name
663 * @net: the applicable net namespace
664 * @name: name to find
665 *
666 * Find an interface by name. Must be called under RTNL semaphore
667 * or @dev_base_lock. If the name is found a pointer to the device
668 * is returned. If the name is not found then %NULL is returned. The
669 * reference counters are not incremented so the caller must be
670 * careful with locks.
671 */
672
673 struct net_device *__dev_get_by_name(struct net *net, const char *name)
674 {
675 struct net_device *dev;
676 struct hlist_head *head = dev_name_hash(net, name);
677
678 hlist_for_each_entry(dev, head, name_hlist)
679 if (!strncmp(dev->name, name, IFNAMSIZ))
680 return dev;
681
682 return NULL;
683 }
684 EXPORT_SYMBOL(__dev_get_by_name);
685
686 /**
687 * dev_get_by_name_rcu - find a device by its name
688 * @net: the applicable net namespace
689 * @name: name to find
690 *
691 * Find an interface by name.
692 * If the name is found a pointer to the device is returned.
693 * If the name is not found then %NULL is returned.
694 * The reference counters are not incremented so the caller must be
695 * careful with locks. The caller must hold RCU lock.
696 */
697
698 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
699 {
700 struct net_device *dev;
701 struct hlist_head *head = dev_name_hash(net, name);
702
703 hlist_for_each_entry_rcu(dev, head, name_hlist)
704 if (!strncmp(dev->name, name, IFNAMSIZ))
705 return dev;
706
707 return NULL;
708 }
709 EXPORT_SYMBOL(dev_get_by_name_rcu);
710
711 /**
712 * dev_get_by_name - find a device by its name
713 * @net: the applicable net namespace
714 * @name: name to find
715 *
716 * Find an interface by name. This can be called from any
717 * context and does its own locking. The returned handle has
718 * the usage count incremented and the caller must use dev_put() to
719 * release it when it is no longer needed. %NULL is returned if no
720 * matching device is found.
721 */
722
723 struct net_device *dev_get_by_name(struct net *net, const char *name)
724 {
725 struct net_device *dev;
726
727 rcu_read_lock();
728 dev = dev_get_by_name_rcu(net, name);
729 if (dev)
730 dev_hold(dev);
731 rcu_read_unlock();
732 return dev;
733 }
734 EXPORT_SYMBOL(dev_get_by_name);
735
736 /**
737 * __dev_get_by_index - find a device by its ifindex
738 * @net: the applicable net namespace
739 * @ifindex: index of device
740 *
741 * Search for an interface by index. Returns %NULL if the device
742 * is not found or a pointer to the device. The device has not
743 * had its reference counter increased so the caller must be careful
744 * about locking. The caller must hold either the RTNL semaphore
745 * or @dev_base_lock.
746 */
747
748 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
749 {
750 struct net_device *dev;
751 struct hlist_head *head = dev_index_hash(net, ifindex);
752
753 hlist_for_each_entry(dev, head, index_hlist)
754 if (dev->ifindex == ifindex)
755 return dev;
756
757 return NULL;
758 }
759 EXPORT_SYMBOL(__dev_get_by_index);
760
761 /**
762 * dev_get_by_index_rcu - find a device by its ifindex
763 * @net: the applicable net namespace
764 * @ifindex: index of device
765 *
766 * Search for an interface by index. Returns %NULL if the device
767 * is not found or a pointer to the device. The device has not
768 * had its reference counter increased so the caller must be careful
769 * about locking. The caller must hold RCU lock.
770 */
771
772 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
773 {
774 struct net_device *dev;
775 struct hlist_head *head = dev_index_hash(net, ifindex);
776
777 hlist_for_each_entry_rcu(dev, head, index_hlist)
778 if (dev->ifindex == ifindex)
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_get_by_index_rcu);
784
785
786 /**
787 * dev_get_by_index - find a device by its ifindex
788 * @net: the applicable net namespace
789 * @ifindex: index of device
790 *
791 * Search for an interface by index. Returns NULL if the device
792 * is not found or a pointer to the device. The device returned has
793 * had a reference added and the pointer is safe until the user calls
794 * dev_put to indicate they have finished with it.
795 */
796
797 struct net_device *dev_get_by_index(struct net *net, int ifindex)
798 {
799 struct net_device *dev;
800
801 rcu_read_lock();
802 dev = dev_get_by_index_rcu(net, ifindex);
803 if (dev)
804 dev_hold(dev);
805 rcu_read_unlock();
806 return dev;
807 }
808 EXPORT_SYMBOL(dev_get_by_index);
809
810 /**
811 * netdev_get_name - get a netdevice name, knowing its ifindex.
812 * @net: network namespace
813 * @name: a pointer to the buffer where the name will be stored.
814 * @ifindex: the ifindex of the interface to get the name from.
815 *
816 * The use of raw_seqcount_begin() and cond_resched() before
817 * retrying is required as we want to give the writers a chance
818 * to complete when CONFIG_PREEMPT is not set.
819 */
820 int netdev_get_name(struct net *net, char *name, int ifindex)
821 {
822 struct net_device *dev;
823 unsigned int seq;
824
825 retry:
826 seq = raw_seqcount_begin(&devnet_rename_seq);
827 rcu_read_lock();
828 dev = dev_get_by_index_rcu(net, ifindex);
829 if (!dev) {
830 rcu_read_unlock();
831 return -ENODEV;
832 }
833
834 strcpy(name, dev->name);
835 rcu_read_unlock();
836 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
837 cond_resched();
838 goto retry;
839 }
840
841 return 0;
842 }
843
844 /**
845 * dev_getbyhwaddr_rcu - find a device by its hardware address
846 * @net: the applicable net namespace
847 * @type: media type of device
848 * @ha: hardware address
849 *
850 * Search for an interface by MAC address. Returns NULL if the device
851 * is not found or a pointer to the device.
852 * The caller must hold RCU or RTNL.
853 * The returned device has not had its ref count increased
854 * and the caller must therefore be careful about locking
855 *
856 */
857
858 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
859 const char *ha)
860 {
861 struct net_device *dev;
862
863 for_each_netdev_rcu(net, dev)
864 if (dev->type == type &&
865 !memcmp(dev->dev_addr, ha, dev->addr_len))
866 return dev;
867
868 return NULL;
869 }
870 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
871
872 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
873 {
874 struct net_device *dev;
875
876 ASSERT_RTNL();
877 for_each_netdev(net, dev)
878 if (dev->type == type)
879 return dev;
880
881 return NULL;
882 }
883 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
884
885 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
886 {
887 struct net_device *dev, *ret = NULL;
888
889 rcu_read_lock();
890 for_each_netdev_rcu(net, dev)
891 if (dev->type == type) {
892 dev_hold(dev);
893 ret = dev;
894 break;
895 }
896 rcu_read_unlock();
897 return ret;
898 }
899 EXPORT_SYMBOL(dev_getfirstbyhwtype);
900
901 /**
902 * __dev_get_by_flags - find any device with given flags
903 * @net: the applicable net namespace
904 * @if_flags: IFF_* values
905 * @mask: bitmask of bits in if_flags to check
906 *
907 * Search for any interface with the given flags. Returns NULL if a device
908 * is not found or a pointer to the device. Must be called inside
909 * rtnl_lock(), and result refcount is unchanged.
910 */
911
912 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
913 unsigned short mask)
914 {
915 struct net_device *dev, *ret;
916
917 ASSERT_RTNL();
918
919 ret = NULL;
920 for_each_netdev(net, dev) {
921 if (((dev->flags ^ if_flags) & mask) == 0) {
922 ret = dev;
923 break;
924 }
925 }
926 return ret;
927 }
928 EXPORT_SYMBOL(__dev_get_by_flags);
929
930 /**
931 * dev_valid_name - check if name is okay for network device
932 * @name: name string
933 *
934 * Network device names need to be valid file names to
935 * to allow sysfs to work. We also disallow any kind of
936 * whitespace.
937 */
938 bool dev_valid_name(const char *name)
939 {
940 if (*name == '\0')
941 return false;
942 if (strlen(name) >= IFNAMSIZ)
943 return false;
944 if (!strcmp(name, ".") || !strcmp(name, ".."))
945 return false;
946
947 while (*name) {
948 if (*name == '/' || isspace(*name))
949 return false;
950 name++;
951 }
952 return true;
953 }
954 EXPORT_SYMBOL(dev_valid_name);
955
956 /**
957 * __dev_alloc_name - allocate a name for a device
958 * @net: network namespace to allocate the device name in
959 * @name: name format string
960 * @buf: scratch buffer and result name string
961 *
962 * Passed a format string - eg "lt%d" it will try and find a suitable
963 * id. It scans list of devices to build up a free map, then chooses
964 * the first empty slot. The caller must hold the dev_base or rtnl lock
965 * while allocating the name and adding the device in order to avoid
966 * duplicates.
967 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
968 * Returns the number of the unit assigned or a negative errno code.
969 */
970
971 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
972 {
973 int i = 0;
974 const char *p;
975 const int max_netdevices = 8*PAGE_SIZE;
976 unsigned long *inuse;
977 struct net_device *d;
978
979 p = strnchr(name, IFNAMSIZ-1, '%');
980 if (p) {
981 /*
982 * Verify the string as this thing may have come from
983 * the user. There must be either one "%d" and no other "%"
984 * characters.
985 */
986 if (p[1] != 'd' || strchr(p + 2, '%'))
987 return -EINVAL;
988
989 /* Use one page as a bit array of possible slots */
990 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
991 if (!inuse)
992 return -ENOMEM;
993
994 for_each_netdev(net, d) {
995 if (!sscanf(d->name, name, &i))
996 continue;
997 if (i < 0 || i >= max_netdevices)
998 continue;
999
1000 /* avoid cases where sscanf is not exact inverse of printf */
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!strncmp(buf, d->name, IFNAMSIZ))
1003 set_bit(i, inuse);
1004 }
1005
1006 i = find_first_zero_bit(inuse, max_netdevices);
1007 free_page((unsigned long) inuse);
1008 }
1009
1010 if (buf != name)
1011 snprintf(buf, IFNAMSIZ, name, i);
1012 if (!__dev_get_by_name(net, buf))
1013 return i;
1014
1015 /* It is possible to run out of possible slots
1016 * when the name is long and there isn't enough space left
1017 * for the digits, or if all bits are used.
1018 */
1019 return -ENFILE;
1020 }
1021
1022 /**
1023 * dev_alloc_name - allocate a name for a device
1024 * @dev: device
1025 * @name: name format string
1026 *
1027 * Passed a format string - eg "lt%d" it will try and find a suitable
1028 * id. It scans list of devices to build up a free map, then chooses
1029 * the first empty slot. The caller must hold the dev_base or rtnl lock
1030 * while allocating the name and adding the device in order to avoid
1031 * duplicates.
1032 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1033 * Returns the number of the unit assigned or a negative errno code.
1034 */
1035
1036 int dev_alloc_name(struct net_device *dev, const char *name)
1037 {
1038 char buf[IFNAMSIZ];
1039 struct net *net;
1040 int ret;
1041
1042 BUG_ON(!dev_net(dev));
1043 net = dev_net(dev);
1044 ret = __dev_alloc_name(net, name, buf);
1045 if (ret >= 0)
1046 strlcpy(dev->name, buf, IFNAMSIZ);
1047 return ret;
1048 }
1049 EXPORT_SYMBOL(dev_alloc_name);
1050
1051 static int dev_alloc_name_ns(struct net *net,
1052 struct net_device *dev,
1053 const char *name)
1054 {
1055 char buf[IFNAMSIZ];
1056 int ret;
1057
1058 ret = __dev_alloc_name(net, name, buf);
1059 if (ret >= 0)
1060 strlcpy(dev->name, buf, IFNAMSIZ);
1061 return ret;
1062 }
1063
1064 static int dev_get_valid_name(struct net *net,
1065 struct net_device *dev,
1066 const char *name)
1067 {
1068 BUG_ON(!net);
1069
1070 if (!dev_valid_name(name))
1071 return -EINVAL;
1072
1073 if (strchr(name, '%'))
1074 return dev_alloc_name_ns(net, dev, name);
1075 else if (__dev_get_by_name(net, name))
1076 return -EEXIST;
1077 else if (dev->name != name)
1078 strlcpy(dev->name, name, IFNAMSIZ);
1079
1080 return 0;
1081 }
1082
1083 /**
1084 * dev_change_name - change name of a device
1085 * @dev: device
1086 * @newname: name (or format string) must be at least IFNAMSIZ
1087 *
1088 * Change name of a device, can pass format strings "eth%d".
1089 * for wildcarding.
1090 */
1091 int dev_change_name(struct net_device *dev, const char *newname)
1092 {
1093 unsigned char old_assign_type;
1094 char oldname[IFNAMSIZ];
1095 int err = 0;
1096 int ret;
1097 struct net *net;
1098
1099 ASSERT_RTNL();
1100 BUG_ON(!dev_net(dev));
1101
1102 net = dev_net(dev);
1103 if (dev->flags & IFF_UP)
1104 return -EBUSY;
1105
1106 write_seqcount_begin(&devnet_rename_seq);
1107
1108 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1109 write_seqcount_end(&devnet_rename_seq);
1110 return 0;
1111 }
1112
1113 memcpy(oldname, dev->name, IFNAMSIZ);
1114
1115 err = dev_get_valid_name(net, dev, newname);
1116 if (err < 0) {
1117 write_seqcount_end(&devnet_rename_seq);
1118 return err;
1119 }
1120
1121 if (oldname[0] && !strchr(oldname, '%'))
1122 netdev_info(dev, "renamed from %s\n", oldname);
1123
1124 old_assign_type = dev->name_assign_type;
1125 dev->name_assign_type = NET_NAME_RENAMED;
1126
1127 rollback:
1128 ret = device_rename(&dev->dev, dev->name);
1129 if (ret) {
1130 memcpy(dev->name, oldname, IFNAMSIZ);
1131 dev->name_assign_type = old_assign_type;
1132 write_seqcount_end(&devnet_rename_seq);
1133 return ret;
1134 }
1135
1136 write_seqcount_end(&devnet_rename_seq);
1137
1138 netdev_adjacent_rename_links(dev, oldname);
1139
1140 write_lock_bh(&dev_base_lock);
1141 hlist_del_rcu(&dev->name_hlist);
1142 write_unlock_bh(&dev_base_lock);
1143
1144 synchronize_rcu();
1145
1146 write_lock_bh(&dev_base_lock);
1147 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1148 write_unlock_bh(&dev_base_lock);
1149
1150 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1151 ret = notifier_to_errno(ret);
1152
1153 if (ret) {
1154 /* err >= 0 after dev_alloc_name() or stores the first errno */
1155 if (err >= 0) {
1156 err = ret;
1157 write_seqcount_begin(&devnet_rename_seq);
1158 memcpy(dev->name, oldname, IFNAMSIZ);
1159 memcpy(oldname, newname, IFNAMSIZ);
1160 dev->name_assign_type = old_assign_type;
1161 old_assign_type = NET_NAME_RENAMED;
1162 goto rollback;
1163 } else {
1164 pr_err("%s: name change rollback failed: %d\n",
1165 dev->name, ret);
1166 }
1167 }
1168
1169 return err;
1170 }
1171
1172 /**
1173 * dev_set_alias - change ifalias of a device
1174 * @dev: device
1175 * @alias: name up to IFALIASZ
1176 * @len: limit of bytes to copy from info
1177 *
1178 * Set ifalias for a device,
1179 */
1180 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1181 {
1182 char *new_ifalias;
1183
1184 ASSERT_RTNL();
1185
1186 if (len >= IFALIASZ)
1187 return -EINVAL;
1188
1189 if (!len) {
1190 kfree(dev->ifalias);
1191 dev->ifalias = NULL;
1192 return 0;
1193 }
1194
1195 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1196 if (!new_ifalias)
1197 return -ENOMEM;
1198 dev->ifalias = new_ifalias;
1199
1200 strlcpy(dev->ifalias, alias, len+1);
1201 return len;
1202 }
1203
1204
1205 /**
1206 * netdev_features_change - device changes features
1207 * @dev: device to cause notification
1208 *
1209 * Called to indicate a device has changed features.
1210 */
1211 void netdev_features_change(struct net_device *dev)
1212 {
1213 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1214 }
1215 EXPORT_SYMBOL(netdev_features_change);
1216
1217 /**
1218 * netdev_state_change - device changes state
1219 * @dev: device to cause notification
1220 *
1221 * Called to indicate a device has changed state. This function calls
1222 * the notifier chains for netdev_chain and sends a NEWLINK message
1223 * to the routing socket.
1224 */
1225 void netdev_state_change(struct net_device *dev)
1226 {
1227 if (dev->flags & IFF_UP) {
1228 struct netdev_notifier_change_info change_info;
1229
1230 change_info.flags_changed = 0;
1231 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1232 &change_info.info);
1233 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1234 }
1235 }
1236 EXPORT_SYMBOL(netdev_state_change);
1237
1238 /**
1239 * netdev_notify_peers - notify network peers about existence of @dev
1240 * @dev: network device
1241 *
1242 * Generate traffic such that interested network peers are aware of
1243 * @dev, such as by generating a gratuitous ARP. This may be used when
1244 * a device wants to inform the rest of the network about some sort of
1245 * reconfiguration such as a failover event or virtual machine
1246 * migration.
1247 */
1248 void netdev_notify_peers(struct net_device *dev)
1249 {
1250 rtnl_lock();
1251 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1252 rtnl_unlock();
1253 }
1254 EXPORT_SYMBOL(netdev_notify_peers);
1255
1256 static int __dev_open(struct net_device *dev)
1257 {
1258 const struct net_device_ops *ops = dev->netdev_ops;
1259 int ret;
1260
1261 ASSERT_RTNL();
1262
1263 if (!netif_device_present(dev))
1264 return -ENODEV;
1265
1266 /* Block netpoll from trying to do any rx path servicing.
1267 * If we don't do this there is a chance ndo_poll_controller
1268 * or ndo_poll may be running while we open the device
1269 */
1270 netpoll_poll_disable(dev);
1271
1272 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1273 ret = notifier_to_errno(ret);
1274 if (ret)
1275 return ret;
1276
1277 set_bit(__LINK_STATE_START, &dev->state);
1278
1279 if (ops->ndo_validate_addr)
1280 ret = ops->ndo_validate_addr(dev);
1281
1282 if (!ret && ops->ndo_open)
1283 ret = ops->ndo_open(dev);
1284
1285 netpoll_poll_enable(dev);
1286
1287 if (ret)
1288 clear_bit(__LINK_STATE_START, &dev->state);
1289 else {
1290 dev->flags |= IFF_UP;
1291 dev_set_rx_mode(dev);
1292 dev_activate(dev);
1293 add_device_randomness(dev->dev_addr, dev->addr_len);
1294 }
1295
1296 return ret;
1297 }
1298
1299 /**
1300 * dev_open - prepare an interface for use.
1301 * @dev: device to open
1302 *
1303 * Takes a device from down to up state. The device's private open
1304 * function is invoked and then the multicast lists are loaded. Finally
1305 * the device is moved into the up state and a %NETDEV_UP message is
1306 * sent to the netdev notifier chain.
1307 *
1308 * Calling this function on an active interface is a nop. On a failure
1309 * a negative errno code is returned.
1310 */
1311 int dev_open(struct net_device *dev)
1312 {
1313 int ret;
1314
1315 if (dev->flags & IFF_UP)
1316 return 0;
1317
1318 ret = __dev_open(dev);
1319 if (ret < 0)
1320 return ret;
1321
1322 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1323 call_netdevice_notifiers(NETDEV_UP, dev);
1324
1325 return ret;
1326 }
1327 EXPORT_SYMBOL(dev_open);
1328
1329 static int __dev_close_many(struct list_head *head)
1330 {
1331 struct net_device *dev;
1332
1333 ASSERT_RTNL();
1334 might_sleep();
1335
1336 list_for_each_entry(dev, head, close_list) {
1337 /* Temporarily disable netpoll until the interface is down */
1338 netpoll_poll_disable(dev);
1339
1340 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1341
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343
1344 /* Synchronize to scheduled poll. We cannot touch poll list, it
1345 * can be even on different cpu. So just clear netif_running().
1346 *
1347 * dev->stop() will invoke napi_disable() on all of it's
1348 * napi_struct instances on this device.
1349 */
1350 smp_mb__after_atomic(); /* Commit netif_running(). */
1351 }
1352
1353 dev_deactivate_many(head);
1354
1355 list_for_each_entry(dev, head, close_list) {
1356 const struct net_device_ops *ops = dev->netdev_ops;
1357
1358 /*
1359 * Call the device specific close. This cannot fail.
1360 * Only if device is UP
1361 *
1362 * We allow it to be called even after a DETACH hot-plug
1363 * event.
1364 */
1365 if (ops->ndo_stop)
1366 ops->ndo_stop(dev);
1367
1368 dev->flags &= ~IFF_UP;
1369 netpoll_poll_enable(dev);
1370 }
1371
1372 return 0;
1373 }
1374
1375 static int __dev_close(struct net_device *dev)
1376 {
1377 int retval;
1378 LIST_HEAD(single);
1379
1380 list_add(&dev->close_list, &single);
1381 retval = __dev_close_many(&single);
1382 list_del(&single);
1383
1384 return retval;
1385 }
1386
1387 static int dev_close_many(struct list_head *head)
1388 {
1389 struct net_device *dev, *tmp;
1390
1391 /* Remove the devices that don't need to be closed */
1392 list_for_each_entry_safe(dev, tmp, head, close_list)
1393 if (!(dev->flags & IFF_UP))
1394 list_del_init(&dev->close_list);
1395
1396 __dev_close_many(head);
1397
1398 list_for_each_entry_safe(dev, tmp, head, close_list) {
1399 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1400 call_netdevice_notifiers(NETDEV_DOWN, dev);
1401 list_del_init(&dev->close_list);
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * dev_close - shutdown an interface.
1409 * @dev: device to shutdown
1410 *
1411 * This function moves an active device into down state. A
1412 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414 * chain.
1415 */
1416 int dev_close(struct net_device *dev)
1417 {
1418 if (dev->flags & IFF_UP) {
1419 LIST_HEAD(single);
1420
1421 list_add(&dev->close_list, &single);
1422 dev_close_many(&single);
1423 list_del(&single);
1424 }
1425 return 0;
1426 }
1427 EXPORT_SYMBOL(dev_close);
1428
1429
1430 /**
1431 * dev_disable_lro - disable Large Receive Offload on a device
1432 * @dev: device
1433 *
1434 * Disable Large Receive Offload (LRO) on a net device. Must be
1435 * called under RTNL. This is needed if received packets may be
1436 * forwarded to another interface.
1437 */
1438 void dev_disable_lro(struct net_device *dev)
1439 {
1440 struct net_device *lower_dev;
1441 struct list_head *iter;
1442
1443 dev->wanted_features &= ~NETIF_F_LRO;
1444 netdev_update_features(dev);
1445
1446 if (unlikely(dev->features & NETIF_F_LRO))
1447 netdev_WARN(dev, "failed to disable LRO!\n");
1448
1449 netdev_for_each_lower_dev(dev, lower_dev, iter)
1450 dev_disable_lro(lower_dev);
1451 }
1452 EXPORT_SYMBOL(dev_disable_lro);
1453
1454 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1455 struct net_device *dev)
1456 {
1457 struct netdev_notifier_info info;
1458
1459 netdev_notifier_info_init(&info, dev);
1460 return nb->notifier_call(nb, val, &info);
1461 }
1462
1463 static int dev_boot_phase = 1;
1464
1465 /**
1466 * register_netdevice_notifier - register a network notifier block
1467 * @nb: notifier
1468 *
1469 * Register a notifier to be called when network device events occur.
1470 * The notifier passed is linked into the kernel structures and must
1471 * not be reused until it has been unregistered. A negative errno code
1472 * is returned on a failure.
1473 *
1474 * When registered all registration and up events are replayed
1475 * to the new notifier to allow device to have a race free
1476 * view of the network device list.
1477 */
1478
1479 int register_netdevice_notifier(struct notifier_block *nb)
1480 {
1481 struct net_device *dev;
1482 struct net_device *last;
1483 struct net *net;
1484 int err;
1485
1486 rtnl_lock();
1487 err = raw_notifier_chain_register(&netdev_chain, nb);
1488 if (err)
1489 goto unlock;
1490 if (dev_boot_phase)
1491 goto unlock;
1492 for_each_net(net) {
1493 for_each_netdev(net, dev) {
1494 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1495 err = notifier_to_errno(err);
1496 if (err)
1497 goto rollback;
1498
1499 if (!(dev->flags & IFF_UP))
1500 continue;
1501
1502 call_netdevice_notifier(nb, NETDEV_UP, dev);
1503 }
1504 }
1505
1506 unlock:
1507 rtnl_unlock();
1508 return err;
1509
1510 rollback:
1511 last = dev;
1512 for_each_net(net) {
1513 for_each_netdev(net, dev) {
1514 if (dev == last)
1515 goto outroll;
1516
1517 if (dev->flags & IFF_UP) {
1518 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1519 dev);
1520 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1521 }
1522 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1523 }
1524 }
1525
1526 outroll:
1527 raw_notifier_chain_unregister(&netdev_chain, nb);
1528 goto unlock;
1529 }
1530 EXPORT_SYMBOL(register_netdevice_notifier);
1531
1532 /**
1533 * unregister_netdevice_notifier - unregister a network notifier block
1534 * @nb: notifier
1535 *
1536 * Unregister a notifier previously registered by
1537 * register_netdevice_notifier(). The notifier is unlinked into the
1538 * kernel structures and may then be reused. A negative errno code
1539 * is returned on a failure.
1540 *
1541 * After unregistering unregister and down device events are synthesized
1542 * for all devices on the device list to the removed notifier to remove
1543 * the need for special case cleanup code.
1544 */
1545
1546 int unregister_netdevice_notifier(struct notifier_block *nb)
1547 {
1548 struct net_device *dev;
1549 struct net *net;
1550 int err;
1551
1552 rtnl_lock();
1553 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1554 if (err)
1555 goto unlock;
1556
1557 for_each_net(net) {
1558 for_each_netdev(net, dev) {
1559 if (dev->flags & IFF_UP) {
1560 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1561 dev);
1562 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1563 }
1564 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1565 }
1566 }
1567 unlock:
1568 rtnl_unlock();
1569 return err;
1570 }
1571 EXPORT_SYMBOL(unregister_netdevice_notifier);
1572
1573 /**
1574 * call_netdevice_notifiers_info - call all network notifier blocks
1575 * @val: value passed unmodified to notifier function
1576 * @dev: net_device pointer passed unmodified to notifier function
1577 * @info: notifier information data
1578 *
1579 * Call all network notifier blocks. Parameters and return value
1580 * are as for raw_notifier_call_chain().
1581 */
1582
1583 static int call_netdevice_notifiers_info(unsigned long val,
1584 struct net_device *dev,
1585 struct netdev_notifier_info *info)
1586 {
1587 ASSERT_RTNL();
1588 netdev_notifier_info_init(info, dev);
1589 return raw_notifier_call_chain(&netdev_chain, val, info);
1590 }
1591
1592 /**
1593 * call_netdevice_notifiers - call all network notifier blocks
1594 * @val: value passed unmodified to notifier function
1595 * @dev: net_device pointer passed unmodified to notifier function
1596 *
1597 * Call all network notifier blocks. Parameters and return value
1598 * are as for raw_notifier_call_chain().
1599 */
1600
1601 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1602 {
1603 struct netdev_notifier_info info;
1604
1605 return call_netdevice_notifiers_info(val, dev, &info);
1606 }
1607 EXPORT_SYMBOL(call_netdevice_notifiers);
1608
1609 static struct static_key netstamp_needed __read_mostly;
1610 #ifdef HAVE_JUMP_LABEL
1611 /* We are not allowed to call static_key_slow_dec() from irq context
1612 * If net_disable_timestamp() is called from irq context, defer the
1613 * static_key_slow_dec() calls.
1614 */
1615 static atomic_t netstamp_needed_deferred;
1616 #endif
1617
1618 void net_enable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1622
1623 if (deferred) {
1624 while (--deferred)
1625 static_key_slow_dec(&netstamp_needed);
1626 return;
1627 }
1628 #endif
1629 static_key_slow_inc(&netstamp_needed);
1630 }
1631 EXPORT_SYMBOL(net_enable_timestamp);
1632
1633 void net_disable_timestamp(void)
1634 {
1635 #ifdef HAVE_JUMP_LABEL
1636 if (in_interrupt()) {
1637 atomic_inc(&netstamp_needed_deferred);
1638 return;
1639 }
1640 #endif
1641 static_key_slow_dec(&netstamp_needed);
1642 }
1643 EXPORT_SYMBOL(net_disable_timestamp);
1644
1645 static inline void net_timestamp_set(struct sk_buff *skb)
1646 {
1647 skb->tstamp.tv64 = 0;
1648 if (static_key_false(&netstamp_needed))
1649 __net_timestamp(skb);
1650 }
1651
1652 #define net_timestamp_check(COND, SKB) \
1653 if (static_key_false(&netstamp_needed)) { \
1654 if ((COND) && !(SKB)->tstamp.tv64) \
1655 __net_timestamp(SKB); \
1656 } \
1657
1658 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1659 {
1660 unsigned int len;
1661
1662 if (!(dev->flags & IFF_UP))
1663 return false;
1664
1665 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1666 if (skb->len <= len)
1667 return true;
1668
1669 /* if TSO is enabled, we don't care about the length as the packet
1670 * could be forwarded without being segmented before
1671 */
1672 if (skb_is_gso(skb))
1673 return true;
1674
1675 return false;
1676 }
1677 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1678
1679 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680 {
1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683 atomic_long_inc(&dev->rx_dropped);
1684 kfree_skb(skb);
1685 return NET_RX_DROP;
1686 }
1687 }
1688
1689 if (unlikely(!is_skb_forwardable(dev, skb))) {
1690 atomic_long_inc(&dev->rx_dropped);
1691 kfree_skb(skb);
1692 return NET_RX_DROP;
1693 }
1694
1695 skb_scrub_packet(skb, true);
1696 skb->protocol = eth_type_trans(skb, dev);
1697 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1698
1699 return 0;
1700 }
1701 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1702
1703 /**
1704 * dev_forward_skb - loopback an skb to another netif
1705 *
1706 * @dev: destination network device
1707 * @skb: buffer to forward
1708 *
1709 * return values:
1710 * NET_RX_SUCCESS (no congestion)
1711 * NET_RX_DROP (packet was dropped, but freed)
1712 *
1713 * dev_forward_skb can be used for injecting an skb from the
1714 * start_xmit function of one device into the receive queue
1715 * of another device.
1716 *
1717 * The receiving device may be in another namespace, so
1718 * we have to clear all information in the skb that could
1719 * impact namespace isolation.
1720 */
1721 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1722 {
1723 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1724 }
1725 EXPORT_SYMBOL_GPL(dev_forward_skb);
1726
1727 static inline int deliver_skb(struct sk_buff *skb,
1728 struct packet_type *pt_prev,
1729 struct net_device *orig_dev)
1730 {
1731 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1732 return -ENOMEM;
1733 atomic_inc(&skb->users);
1734 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1735 }
1736
1737 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1738 {
1739 if (!ptype->af_packet_priv || !skb->sk)
1740 return false;
1741
1742 if (ptype->id_match)
1743 return ptype->id_match(ptype, skb->sk);
1744 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1745 return true;
1746
1747 return false;
1748 }
1749
1750 /*
1751 * Support routine. Sends outgoing frames to any network
1752 * taps currently in use.
1753 */
1754
1755 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1756 {
1757 struct packet_type *ptype;
1758 struct sk_buff *skb2 = NULL;
1759 struct packet_type *pt_prev = NULL;
1760
1761 rcu_read_lock();
1762 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1763 /* Never send packets back to the socket
1764 * they originated from - MvS (miquels@drinkel.ow.org)
1765 */
1766 if ((ptype->dev == dev || !ptype->dev) &&
1767 (!skb_loop_sk(ptype, skb))) {
1768 if (pt_prev) {
1769 deliver_skb(skb2, pt_prev, skb->dev);
1770 pt_prev = ptype;
1771 continue;
1772 }
1773
1774 skb2 = skb_clone(skb, GFP_ATOMIC);
1775 if (!skb2)
1776 break;
1777
1778 net_timestamp_set(skb2);
1779
1780 /* skb->nh should be correctly
1781 set by sender, so that the second statement is
1782 just protection against buggy protocols.
1783 */
1784 skb_reset_mac_header(skb2);
1785
1786 if (skb_network_header(skb2) < skb2->data ||
1787 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1788 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1789 ntohs(skb2->protocol),
1790 dev->name);
1791 skb_reset_network_header(skb2);
1792 }
1793
1794 skb2->transport_header = skb2->network_header;
1795 skb2->pkt_type = PACKET_OUTGOING;
1796 pt_prev = ptype;
1797 }
1798 }
1799 if (pt_prev)
1800 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1801 rcu_read_unlock();
1802 }
1803
1804 /**
1805 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1806 * @dev: Network device
1807 * @txq: number of queues available
1808 *
1809 * If real_num_tx_queues is changed the tc mappings may no longer be
1810 * valid. To resolve this verify the tc mapping remains valid and if
1811 * not NULL the mapping. With no priorities mapping to this
1812 * offset/count pair it will no longer be used. In the worst case TC0
1813 * is invalid nothing can be done so disable priority mappings. If is
1814 * expected that drivers will fix this mapping if they can before
1815 * calling netif_set_real_num_tx_queues.
1816 */
1817 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1818 {
1819 int i;
1820 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1821
1822 /* If TC0 is invalidated disable TC mapping */
1823 if (tc->offset + tc->count > txq) {
1824 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1825 dev->num_tc = 0;
1826 return;
1827 }
1828
1829 /* Invalidated prio to tc mappings set to TC0 */
1830 for (i = 1; i < TC_BITMASK + 1; i++) {
1831 int q = netdev_get_prio_tc_map(dev, i);
1832
1833 tc = &dev->tc_to_txq[q];
1834 if (tc->offset + tc->count > txq) {
1835 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1836 i, q);
1837 netdev_set_prio_tc_map(dev, i, 0);
1838 }
1839 }
1840 }
1841
1842 #ifdef CONFIG_XPS
1843 static DEFINE_MUTEX(xps_map_mutex);
1844 #define xmap_dereference(P) \
1845 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1846
1847 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1848 int cpu, u16 index)
1849 {
1850 struct xps_map *map = NULL;
1851 int pos;
1852
1853 if (dev_maps)
1854 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1855
1856 for (pos = 0; map && pos < map->len; pos++) {
1857 if (map->queues[pos] == index) {
1858 if (map->len > 1) {
1859 map->queues[pos] = map->queues[--map->len];
1860 } else {
1861 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1862 kfree_rcu(map, rcu);
1863 map = NULL;
1864 }
1865 break;
1866 }
1867 }
1868
1869 return map;
1870 }
1871
1872 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1873 {
1874 struct xps_dev_maps *dev_maps;
1875 int cpu, i;
1876 bool active = false;
1877
1878 mutex_lock(&xps_map_mutex);
1879 dev_maps = xmap_dereference(dev->xps_maps);
1880
1881 if (!dev_maps)
1882 goto out_no_maps;
1883
1884 for_each_possible_cpu(cpu) {
1885 for (i = index; i < dev->num_tx_queues; i++) {
1886 if (!remove_xps_queue(dev_maps, cpu, i))
1887 break;
1888 }
1889 if (i == dev->num_tx_queues)
1890 active = true;
1891 }
1892
1893 if (!active) {
1894 RCU_INIT_POINTER(dev->xps_maps, NULL);
1895 kfree_rcu(dev_maps, rcu);
1896 }
1897
1898 for (i = index; i < dev->num_tx_queues; i++)
1899 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1900 NUMA_NO_NODE);
1901
1902 out_no_maps:
1903 mutex_unlock(&xps_map_mutex);
1904 }
1905
1906 static struct xps_map *expand_xps_map(struct xps_map *map,
1907 int cpu, u16 index)
1908 {
1909 struct xps_map *new_map;
1910 int alloc_len = XPS_MIN_MAP_ALLOC;
1911 int i, pos;
1912
1913 for (pos = 0; map && pos < map->len; pos++) {
1914 if (map->queues[pos] != index)
1915 continue;
1916 return map;
1917 }
1918
1919 /* Need to add queue to this CPU's existing map */
1920 if (map) {
1921 if (pos < map->alloc_len)
1922 return map;
1923
1924 alloc_len = map->alloc_len * 2;
1925 }
1926
1927 /* Need to allocate new map to store queue on this CPU's map */
1928 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1929 cpu_to_node(cpu));
1930 if (!new_map)
1931 return NULL;
1932
1933 for (i = 0; i < pos; i++)
1934 new_map->queues[i] = map->queues[i];
1935 new_map->alloc_len = alloc_len;
1936 new_map->len = pos;
1937
1938 return new_map;
1939 }
1940
1941 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1942 u16 index)
1943 {
1944 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1945 struct xps_map *map, *new_map;
1946 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1947 int cpu, numa_node_id = -2;
1948 bool active = false;
1949
1950 mutex_lock(&xps_map_mutex);
1951
1952 dev_maps = xmap_dereference(dev->xps_maps);
1953
1954 /* allocate memory for queue storage */
1955 for_each_online_cpu(cpu) {
1956 if (!cpumask_test_cpu(cpu, mask))
1957 continue;
1958
1959 if (!new_dev_maps)
1960 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1961 if (!new_dev_maps) {
1962 mutex_unlock(&xps_map_mutex);
1963 return -ENOMEM;
1964 }
1965
1966 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1967 NULL;
1968
1969 map = expand_xps_map(map, cpu, index);
1970 if (!map)
1971 goto error;
1972
1973 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1974 }
1975
1976 if (!new_dev_maps)
1977 goto out_no_new_maps;
1978
1979 for_each_possible_cpu(cpu) {
1980 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1981 /* add queue to CPU maps */
1982 int pos = 0;
1983
1984 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1985 while ((pos < map->len) && (map->queues[pos] != index))
1986 pos++;
1987
1988 if (pos == map->len)
1989 map->queues[map->len++] = index;
1990 #ifdef CONFIG_NUMA
1991 if (numa_node_id == -2)
1992 numa_node_id = cpu_to_node(cpu);
1993 else if (numa_node_id != cpu_to_node(cpu))
1994 numa_node_id = -1;
1995 #endif
1996 } else if (dev_maps) {
1997 /* fill in the new device map from the old device map */
1998 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1999 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2000 }
2001
2002 }
2003
2004 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2005
2006 /* Cleanup old maps */
2007 if (dev_maps) {
2008 for_each_possible_cpu(cpu) {
2009 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2010 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2011 if (map && map != new_map)
2012 kfree_rcu(map, rcu);
2013 }
2014
2015 kfree_rcu(dev_maps, rcu);
2016 }
2017
2018 dev_maps = new_dev_maps;
2019 active = true;
2020
2021 out_no_new_maps:
2022 /* update Tx queue numa node */
2023 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2024 (numa_node_id >= 0) ? numa_node_id :
2025 NUMA_NO_NODE);
2026
2027 if (!dev_maps)
2028 goto out_no_maps;
2029
2030 /* removes queue from unused CPUs */
2031 for_each_possible_cpu(cpu) {
2032 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2033 continue;
2034
2035 if (remove_xps_queue(dev_maps, cpu, index))
2036 active = true;
2037 }
2038
2039 /* free map if not active */
2040 if (!active) {
2041 RCU_INIT_POINTER(dev->xps_maps, NULL);
2042 kfree_rcu(dev_maps, rcu);
2043 }
2044
2045 out_no_maps:
2046 mutex_unlock(&xps_map_mutex);
2047
2048 return 0;
2049 error:
2050 /* remove any maps that we added */
2051 for_each_possible_cpu(cpu) {
2052 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2053 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2054 NULL;
2055 if (new_map && new_map != map)
2056 kfree(new_map);
2057 }
2058
2059 mutex_unlock(&xps_map_mutex);
2060
2061 kfree(new_dev_maps);
2062 return -ENOMEM;
2063 }
2064 EXPORT_SYMBOL(netif_set_xps_queue);
2065
2066 #endif
2067 /*
2068 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2069 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2070 */
2071 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2072 {
2073 int rc;
2074
2075 if (txq < 1 || txq > dev->num_tx_queues)
2076 return -EINVAL;
2077
2078 if (dev->reg_state == NETREG_REGISTERED ||
2079 dev->reg_state == NETREG_UNREGISTERING) {
2080 ASSERT_RTNL();
2081
2082 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2083 txq);
2084 if (rc)
2085 return rc;
2086
2087 if (dev->num_tc)
2088 netif_setup_tc(dev, txq);
2089
2090 if (txq < dev->real_num_tx_queues) {
2091 qdisc_reset_all_tx_gt(dev, txq);
2092 #ifdef CONFIG_XPS
2093 netif_reset_xps_queues_gt(dev, txq);
2094 #endif
2095 }
2096 }
2097
2098 dev->real_num_tx_queues = txq;
2099 return 0;
2100 }
2101 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2102
2103 #ifdef CONFIG_SYSFS
2104 /**
2105 * netif_set_real_num_rx_queues - set actual number of RX queues used
2106 * @dev: Network device
2107 * @rxq: Actual number of RX queues
2108 *
2109 * This must be called either with the rtnl_lock held or before
2110 * registration of the net device. Returns 0 on success, or a
2111 * negative error code. If called before registration, it always
2112 * succeeds.
2113 */
2114 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2115 {
2116 int rc;
2117
2118 if (rxq < 1 || rxq > dev->num_rx_queues)
2119 return -EINVAL;
2120
2121 if (dev->reg_state == NETREG_REGISTERED) {
2122 ASSERT_RTNL();
2123
2124 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2125 rxq);
2126 if (rc)
2127 return rc;
2128 }
2129
2130 dev->real_num_rx_queues = rxq;
2131 return 0;
2132 }
2133 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2134 #endif
2135
2136 /**
2137 * netif_get_num_default_rss_queues - default number of RSS queues
2138 *
2139 * This routine should set an upper limit on the number of RSS queues
2140 * used by default by multiqueue devices.
2141 */
2142 int netif_get_num_default_rss_queues(void)
2143 {
2144 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2145 }
2146 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2147
2148 static inline void __netif_reschedule(struct Qdisc *q)
2149 {
2150 struct softnet_data *sd;
2151 unsigned long flags;
2152
2153 local_irq_save(flags);
2154 sd = this_cpu_ptr(&softnet_data);
2155 q->next_sched = NULL;
2156 *sd->output_queue_tailp = q;
2157 sd->output_queue_tailp = &q->next_sched;
2158 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2159 local_irq_restore(flags);
2160 }
2161
2162 void __netif_schedule(struct Qdisc *q)
2163 {
2164 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2165 __netif_reschedule(q);
2166 }
2167 EXPORT_SYMBOL(__netif_schedule);
2168
2169 struct dev_kfree_skb_cb {
2170 enum skb_free_reason reason;
2171 };
2172
2173 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2174 {
2175 return (struct dev_kfree_skb_cb *)skb->cb;
2176 }
2177
2178 void netif_schedule_queue(struct netdev_queue *txq)
2179 {
2180 rcu_read_lock();
2181 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2182 struct Qdisc *q = rcu_dereference(txq->qdisc);
2183
2184 __netif_schedule(q);
2185 }
2186 rcu_read_unlock();
2187 }
2188 EXPORT_SYMBOL(netif_schedule_queue);
2189
2190 /**
2191 * netif_wake_subqueue - allow sending packets on subqueue
2192 * @dev: network device
2193 * @queue_index: sub queue index
2194 *
2195 * Resume individual transmit queue of a device with multiple transmit queues.
2196 */
2197 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2198 {
2199 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2200
2201 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2202 struct Qdisc *q;
2203
2204 rcu_read_lock();
2205 q = rcu_dereference(txq->qdisc);
2206 __netif_schedule(q);
2207 rcu_read_unlock();
2208 }
2209 }
2210 EXPORT_SYMBOL(netif_wake_subqueue);
2211
2212 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2213 {
2214 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2215 struct Qdisc *q;
2216
2217 rcu_read_lock();
2218 q = rcu_dereference(dev_queue->qdisc);
2219 __netif_schedule(q);
2220 rcu_read_unlock();
2221 }
2222 }
2223 EXPORT_SYMBOL(netif_tx_wake_queue);
2224
2225 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2226 {
2227 unsigned long flags;
2228
2229 if (likely(atomic_read(&skb->users) == 1)) {
2230 smp_rmb();
2231 atomic_set(&skb->users, 0);
2232 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2233 return;
2234 }
2235 get_kfree_skb_cb(skb)->reason = reason;
2236 local_irq_save(flags);
2237 skb->next = __this_cpu_read(softnet_data.completion_queue);
2238 __this_cpu_write(softnet_data.completion_queue, skb);
2239 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2240 local_irq_restore(flags);
2241 }
2242 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2243
2244 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2245 {
2246 if (in_irq() || irqs_disabled())
2247 __dev_kfree_skb_irq(skb, reason);
2248 else
2249 dev_kfree_skb(skb);
2250 }
2251 EXPORT_SYMBOL(__dev_kfree_skb_any);
2252
2253
2254 /**
2255 * netif_device_detach - mark device as removed
2256 * @dev: network device
2257 *
2258 * Mark device as removed from system and therefore no longer available.
2259 */
2260 void netif_device_detach(struct net_device *dev)
2261 {
2262 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2263 netif_running(dev)) {
2264 netif_tx_stop_all_queues(dev);
2265 }
2266 }
2267 EXPORT_SYMBOL(netif_device_detach);
2268
2269 /**
2270 * netif_device_attach - mark device as attached
2271 * @dev: network device
2272 *
2273 * Mark device as attached from system and restart if needed.
2274 */
2275 void netif_device_attach(struct net_device *dev)
2276 {
2277 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2278 netif_running(dev)) {
2279 netif_tx_wake_all_queues(dev);
2280 __netdev_watchdog_up(dev);
2281 }
2282 }
2283 EXPORT_SYMBOL(netif_device_attach);
2284
2285 static void skb_warn_bad_offload(const struct sk_buff *skb)
2286 {
2287 static const netdev_features_t null_features = 0;
2288 struct net_device *dev = skb->dev;
2289 const char *driver = "";
2290
2291 if (!net_ratelimit())
2292 return;
2293
2294 if (dev && dev->dev.parent)
2295 driver = dev_driver_string(dev->dev.parent);
2296
2297 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2298 "gso_type=%d ip_summed=%d\n",
2299 driver, dev ? &dev->features : &null_features,
2300 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2301 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2302 skb_shinfo(skb)->gso_type, skb->ip_summed);
2303 }
2304
2305 /*
2306 * Invalidate hardware checksum when packet is to be mangled, and
2307 * complete checksum manually on outgoing path.
2308 */
2309 int skb_checksum_help(struct sk_buff *skb)
2310 {
2311 __wsum csum;
2312 int ret = 0, offset;
2313
2314 if (skb->ip_summed == CHECKSUM_COMPLETE)
2315 goto out_set_summed;
2316
2317 if (unlikely(skb_shinfo(skb)->gso_size)) {
2318 skb_warn_bad_offload(skb);
2319 return -EINVAL;
2320 }
2321
2322 /* Before computing a checksum, we should make sure no frag could
2323 * be modified by an external entity : checksum could be wrong.
2324 */
2325 if (skb_has_shared_frag(skb)) {
2326 ret = __skb_linearize(skb);
2327 if (ret)
2328 goto out;
2329 }
2330
2331 offset = skb_checksum_start_offset(skb);
2332 BUG_ON(offset >= skb_headlen(skb));
2333 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2334
2335 offset += skb->csum_offset;
2336 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2337
2338 if (skb_cloned(skb) &&
2339 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2340 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2341 if (ret)
2342 goto out;
2343 }
2344
2345 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2346 out_set_summed:
2347 skb->ip_summed = CHECKSUM_NONE;
2348 out:
2349 return ret;
2350 }
2351 EXPORT_SYMBOL(skb_checksum_help);
2352
2353 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2354 {
2355 __be16 type = skb->protocol;
2356
2357 /* Tunnel gso handlers can set protocol to ethernet. */
2358 if (type == htons(ETH_P_TEB)) {
2359 struct ethhdr *eth;
2360
2361 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2362 return 0;
2363
2364 eth = (struct ethhdr *)skb_mac_header(skb);
2365 type = eth->h_proto;
2366 }
2367
2368 return __vlan_get_protocol(skb, type, depth);
2369 }
2370
2371 /**
2372 * skb_mac_gso_segment - mac layer segmentation handler.
2373 * @skb: buffer to segment
2374 * @features: features for the output path (see dev->features)
2375 */
2376 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2377 netdev_features_t features)
2378 {
2379 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2380 struct packet_offload *ptype;
2381 int vlan_depth = skb->mac_len;
2382 __be16 type = skb_network_protocol(skb, &vlan_depth);
2383
2384 if (unlikely(!type))
2385 return ERR_PTR(-EINVAL);
2386
2387 __skb_pull(skb, vlan_depth);
2388
2389 rcu_read_lock();
2390 list_for_each_entry_rcu(ptype, &offload_base, list) {
2391 if (ptype->type == type && ptype->callbacks.gso_segment) {
2392 segs = ptype->callbacks.gso_segment(skb, features);
2393 break;
2394 }
2395 }
2396 rcu_read_unlock();
2397
2398 __skb_push(skb, skb->data - skb_mac_header(skb));
2399
2400 return segs;
2401 }
2402 EXPORT_SYMBOL(skb_mac_gso_segment);
2403
2404
2405 /* openvswitch calls this on rx path, so we need a different check.
2406 */
2407 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2408 {
2409 if (tx_path)
2410 return skb->ip_summed != CHECKSUM_PARTIAL;
2411 else
2412 return skb->ip_summed == CHECKSUM_NONE;
2413 }
2414
2415 /**
2416 * __skb_gso_segment - Perform segmentation on skb.
2417 * @skb: buffer to segment
2418 * @features: features for the output path (see dev->features)
2419 * @tx_path: whether it is called in TX path
2420 *
2421 * This function segments the given skb and returns a list of segments.
2422 *
2423 * It may return NULL if the skb requires no segmentation. This is
2424 * only possible when GSO is used for verifying header integrity.
2425 */
2426 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2427 netdev_features_t features, bool tx_path)
2428 {
2429 if (unlikely(skb_needs_check(skb, tx_path))) {
2430 int err;
2431
2432 skb_warn_bad_offload(skb);
2433
2434 err = skb_cow_head(skb, 0);
2435 if (err < 0)
2436 return ERR_PTR(err);
2437 }
2438
2439 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2440 SKB_GSO_CB(skb)->encap_level = 0;
2441
2442 skb_reset_mac_header(skb);
2443 skb_reset_mac_len(skb);
2444
2445 return skb_mac_gso_segment(skb, features);
2446 }
2447 EXPORT_SYMBOL(__skb_gso_segment);
2448
2449 /* Take action when hardware reception checksum errors are detected. */
2450 #ifdef CONFIG_BUG
2451 void netdev_rx_csum_fault(struct net_device *dev)
2452 {
2453 if (net_ratelimit()) {
2454 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2455 dump_stack();
2456 }
2457 }
2458 EXPORT_SYMBOL(netdev_rx_csum_fault);
2459 #endif
2460
2461 /* Actually, we should eliminate this check as soon as we know, that:
2462 * 1. IOMMU is present and allows to map all the memory.
2463 * 2. No high memory really exists on this machine.
2464 */
2465
2466 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2467 {
2468 #ifdef CONFIG_HIGHMEM
2469 int i;
2470 if (!(dev->features & NETIF_F_HIGHDMA)) {
2471 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2472 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2473 if (PageHighMem(skb_frag_page(frag)))
2474 return 1;
2475 }
2476 }
2477
2478 if (PCI_DMA_BUS_IS_PHYS) {
2479 struct device *pdev = dev->dev.parent;
2480
2481 if (!pdev)
2482 return 0;
2483 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2484 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2485 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2486 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2487 return 1;
2488 }
2489 }
2490 #endif
2491 return 0;
2492 }
2493
2494 /* If MPLS offload request, verify we are testing hardware MPLS features
2495 * instead of standard features for the netdev.
2496 */
2497 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2498 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2499 netdev_features_t features,
2500 __be16 type)
2501 {
2502 if (eth_p_mpls(type))
2503 features &= skb->dev->mpls_features;
2504
2505 return features;
2506 }
2507 #else
2508 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2509 netdev_features_t features,
2510 __be16 type)
2511 {
2512 return features;
2513 }
2514 #endif
2515
2516 static netdev_features_t harmonize_features(struct sk_buff *skb,
2517 netdev_features_t features)
2518 {
2519 int tmp;
2520 __be16 type;
2521
2522 type = skb_network_protocol(skb, &tmp);
2523 features = net_mpls_features(skb, features, type);
2524
2525 if (skb->ip_summed != CHECKSUM_NONE &&
2526 !can_checksum_protocol(features, type)) {
2527 features &= ~NETIF_F_ALL_CSUM;
2528 } else if (illegal_highdma(skb->dev, skb)) {
2529 features &= ~NETIF_F_SG;
2530 }
2531
2532 return features;
2533 }
2534
2535 netdev_features_t netif_skb_features(struct sk_buff *skb)
2536 {
2537 struct net_device *dev = skb->dev;
2538 netdev_features_t features = dev->features;
2539 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2540 __be16 protocol = skb->protocol;
2541
2542 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2543 features &= ~NETIF_F_GSO_MASK;
2544
2545 /* If encapsulation offload request, verify we are testing
2546 * hardware encapsulation features instead of standard
2547 * features for the netdev
2548 */
2549 if (skb->encapsulation)
2550 features &= dev->hw_enc_features;
2551
2552 if (!vlan_tx_tag_present(skb)) {
2553 if (unlikely(protocol == htons(ETH_P_8021Q) ||
2554 protocol == htons(ETH_P_8021AD))) {
2555 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2556 protocol = veh->h_vlan_encapsulated_proto;
2557 } else {
2558 goto finalize;
2559 }
2560 }
2561
2562 features = netdev_intersect_features(features,
2563 dev->vlan_features |
2564 NETIF_F_HW_VLAN_CTAG_TX |
2565 NETIF_F_HW_VLAN_STAG_TX);
2566
2567 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2568 features = netdev_intersect_features(features,
2569 NETIF_F_SG |
2570 NETIF_F_HIGHDMA |
2571 NETIF_F_FRAGLIST |
2572 NETIF_F_GEN_CSUM |
2573 NETIF_F_HW_VLAN_CTAG_TX |
2574 NETIF_F_HW_VLAN_STAG_TX);
2575
2576 finalize:
2577 if (dev->netdev_ops->ndo_features_check)
2578 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2579 features);
2580
2581 return harmonize_features(skb, features);
2582 }
2583 EXPORT_SYMBOL(netif_skb_features);
2584
2585 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2586 struct netdev_queue *txq, bool more)
2587 {
2588 unsigned int len;
2589 int rc;
2590
2591 if (!list_empty(&ptype_all))
2592 dev_queue_xmit_nit(skb, dev);
2593
2594 len = skb->len;
2595 trace_net_dev_start_xmit(skb, dev);
2596 rc = netdev_start_xmit(skb, dev, txq, more);
2597 trace_net_dev_xmit(skb, rc, dev, len);
2598
2599 return rc;
2600 }
2601
2602 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2603 struct netdev_queue *txq, int *ret)
2604 {
2605 struct sk_buff *skb = first;
2606 int rc = NETDEV_TX_OK;
2607
2608 while (skb) {
2609 struct sk_buff *next = skb->next;
2610
2611 skb->next = NULL;
2612 rc = xmit_one(skb, dev, txq, next != NULL);
2613 if (unlikely(!dev_xmit_complete(rc))) {
2614 skb->next = next;
2615 goto out;
2616 }
2617
2618 skb = next;
2619 if (netif_xmit_stopped(txq) && skb) {
2620 rc = NETDEV_TX_BUSY;
2621 break;
2622 }
2623 }
2624
2625 out:
2626 *ret = rc;
2627 return skb;
2628 }
2629
2630 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2631 netdev_features_t features)
2632 {
2633 if (vlan_tx_tag_present(skb) &&
2634 !vlan_hw_offload_capable(features, skb->vlan_proto))
2635 skb = __vlan_hwaccel_push_inside(skb);
2636 return skb;
2637 }
2638
2639 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2640 {
2641 netdev_features_t features;
2642
2643 if (skb->next)
2644 return skb;
2645
2646 features = netif_skb_features(skb);
2647 skb = validate_xmit_vlan(skb, features);
2648 if (unlikely(!skb))
2649 goto out_null;
2650
2651 if (netif_needs_gso(dev, skb, features)) {
2652 struct sk_buff *segs;
2653
2654 segs = skb_gso_segment(skb, features);
2655 if (IS_ERR(segs)) {
2656 goto out_kfree_skb;
2657 } else if (segs) {
2658 consume_skb(skb);
2659 skb = segs;
2660 }
2661 } else {
2662 if (skb_needs_linearize(skb, features) &&
2663 __skb_linearize(skb))
2664 goto out_kfree_skb;
2665
2666 /* If packet is not checksummed and device does not
2667 * support checksumming for this protocol, complete
2668 * checksumming here.
2669 */
2670 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2671 if (skb->encapsulation)
2672 skb_set_inner_transport_header(skb,
2673 skb_checksum_start_offset(skb));
2674 else
2675 skb_set_transport_header(skb,
2676 skb_checksum_start_offset(skb));
2677 if (!(features & NETIF_F_ALL_CSUM) &&
2678 skb_checksum_help(skb))
2679 goto out_kfree_skb;
2680 }
2681 }
2682
2683 return skb;
2684
2685 out_kfree_skb:
2686 kfree_skb(skb);
2687 out_null:
2688 return NULL;
2689 }
2690
2691 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2692 {
2693 struct sk_buff *next, *head = NULL, *tail;
2694
2695 for (; skb != NULL; skb = next) {
2696 next = skb->next;
2697 skb->next = NULL;
2698
2699 /* in case skb wont be segmented, point to itself */
2700 skb->prev = skb;
2701
2702 skb = validate_xmit_skb(skb, dev);
2703 if (!skb)
2704 continue;
2705
2706 if (!head)
2707 head = skb;
2708 else
2709 tail->next = skb;
2710 /* If skb was segmented, skb->prev points to
2711 * the last segment. If not, it still contains skb.
2712 */
2713 tail = skb->prev;
2714 }
2715 return head;
2716 }
2717
2718 static void qdisc_pkt_len_init(struct sk_buff *skb)
2719 {
2720 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2721
2722 qdisc_skb_cb(skb)->pkt_len = skb->len;
2723
2724 /* To get more precise estimation of bytes sent on wire,
2725 * we add to pkt_len the headers size of all segments
2726 */
2727 if (shinfo->gso_size) {
2728 unsigned int hdr_len;
2729 u16 gso_segs = shinfo->gso_segs;
2730
2731 /* mac layer + network layer */
2732 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2733
2734 /* + transport layer */
2735 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2736 hdr_len += tcp_hdrlen(skb);
2737 else
2738 hdr_len += sizeof(struct udphdr);
2739
2740 if (shinfo->gso_type & SKB_GSO_DODGY)
2741 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2742 shinfo->gso_size);
2743
2744 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2745 }
2746 }
2747
2748 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2749 struct net_device *dev,
2750 struct netdev_queue *txq)
2751 {
2752 spinlock_t *root_lock = qdisc_lock(q);
2753 bool contended;
2754 int rc;
2755
2756 qdisc_pkt_len_init(skb);
2757 qdisc_calculate_pkt_len(skb, q);
2758 /*
2759 * Heuristic to force contended enqueues to serialize on a
2760 * separate lock before trying to get qdisc main lock.
2761 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2762 * often and dequeue packets faster.
2763 */
2764 contended = qdisc_is_running(q);
2765 if (unlikely(contended))
2766 spin_lock(&q->busylock);
2767
2768 spin_lock(root_lock);
2769 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2770 kfree_skb(skb);
2771 rc = NET_XMIT_DROP;
2772 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2773 qdisc_run_begin(q)) {
2774 /*
2775 * This is a work-conserving queue; there are no old skbs
2776 * waiting to be sent out; and the qdisc is not running -
2777 * xmit the skb directly.
2778 */
2779
2780 qdisc_bstats_update(q, skb);
2781
2782 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2783 if (unlikely(contended)) {
2784 spin_unlock(&q->busylock);
2785 contended = false;
2786 }
2787 __qdisc_run(q);
2788 } else
2789 qdisc_run_end(q);
2790
2791 rc = NET_XMIT_SUCCESS;
2792 } else {
2793 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2794 if (qdisc_run_begin(q)) {
2795 if (unlikely(contended)) {
2796 spin_unlock(&q->busylock);
2797 contended = false;
2798 }
2799 __qdisc_run(q);
2800 }
2801 }
2802 spin_unlock(root_lock);
2803 if (unlikely(contended))
2804 spin_unlock(&q->busylock);
2805 return rc;
2806 }
2807
2808 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2809 static void skb_update_prio(struct sk_buff *skb)
2810 {
2811 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2812
2813 if (!skb->priority && skb->sk && map) {
2814 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2815
2816 if (prioidx < map->priomap_len)
2817 skb->priority = map->priomap[prioidx];
2818 }
2819 }
2820 #else
2821 #define skb_update_prio(skb)
2822 #endif
2823
2824 static DEFINE_PER_CPU(int, xmit_recursion);
2825 #define RECURSION_LIMIT 10
2826
2827 /**
2828 * dev_loopback_xmit - loop back @skb
2829 * @skb: buffer to transmit
2830 */
2831 int dev_loopback_xmit(struct sk_buff *skb)
2832 {
2833 skb_reset_mac_header(skb);
2834 __skb_pull(skb, skb_network_offset(skb));
2835 skb->pkt_type = PACKET_LOOPBACK;
2836 skb->ip_summed = CHECKSUM_UNNECESSARY;
2837 WARN_ON(!skb_dst(skb));
2838 skb_dst_force(skb);
2839 netif_rx_ni(skb);
2840 return 0;
2841 }
2842 EXPORT_SYMBOL(dev_loopback_xmit);
2843
2844 /**
2845 * __dev_queue_xmit - transmit a buffer
2846 * @skb: buffer to transmit
2847 * @accel_priv: private data used for L2 forwarding offload
2848 *
2849 * Queue a buffer for transmission to a network device. The caller must
2850 * have set the device and priority and built the buffer before calling
2851 * this function. The function can be called from an interrupt.
2852 *
2853 * A negative errno code is returned on a failure. A success does not
2854 * guarantee the frame will be transmitted as it may be dropped due
2855 * to congestion or traffic shaping.
2856 *
2857 * -----------------------------------------------------------------------------------
2858 * I notice this method can also return errors from the queue disciplines,
2859 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2860 * be positive.
2861 *
2862 * Regardless of the return value, the skb is consumed, so it is currently
2863 * difficult to retry a send to this method. (You can bump the ref count
2864 * before sending to hold a reference for retry if you are careful.)
2865 *
2866 * When calling this method, interrupts MUST be enabled. This is because
2867 * the BH enable code must have IRQs enabled so that it will not deadlock.
2868 * --BLG
2869 */
2870 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2871 {
2872 struct net_device *dev = skb->dev;
2873 struct netdev_queue *txq;
2874 struct Qdisc *q;
2875 int rc = -ENOMEM;
2876
2877 skb_reset_mac_header(skb);
2878
2879 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2880 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2881
2882 /* Disable soft irqs for various locks below. Also
2883 * stops preemption for RCU.
2884 */
2885 rcu_read_lock_bh();
2886
2887 skb_update_prio(skb);
2888
2889 /* If device/qdisc don't need skb->dst, release it right now while
2890 * its hot in this cpu cache.
2891 */
2892 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2893 skb_dst_drop(skb);
2894 else
2895 skb_dst_force(skb);
2896
2897 txq = netdev_pick_tx(dev, skb, accel_priv);
2898 q = rcu_dereference_bh(txq->qdisc);
2899
2900 #ifdef CONFIG_NET_CLS_ACT
2901 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2902 #endif
2903 trace_net_dev_queue(skb);
2904 if (q->enqueue) {
2905 rc = __dev_xmit_skb(skb, q, dev, txq);
2906 goto out;
2907 }
2908
2909 /* The device has no queue. Common case for software devices:
2910 loopback, all the sorts of tunnels...
2911
2912 Really, it is unlikely that netif_tx_lock protection is necessary
2913 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2914 counters.)
2915 However, it is possible, that they rely on protection
2916 made by us here.
2917
2918 Check this and shot the lock. It is not prone from deadlocks.
2919 Either shot noqueue qdisc, it is even simpler 8)
2920 */
2921 if (dev->flags & IFF_UP) {
2922 int cpu = smp_processor_id(); /* ok because BHs are off */
2923
2924 if (txq->xmit_lock_owner != cpu) {
2925
2926 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2927 goto recursion_alert;
2928
2929 skb = validate_xmit_skb(skb, dev);
2930 if (!skb)
2931 goto drop;
2932
2933 HARD_TX_LOCK(dev, txq, cpu);
2934
2935 if (!netif_xmit_stopped(txq)) {
2936 __this_cpu_inc(xmit_recursion);
2937 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2938 __this_cpu_dec(xmit_recursion);
2939 if (dev_xmit_complete(rc)) {
2940 HARD_TX_UNLOCK(dev, txq);
2941 goto out;
2942 }
2943 }
2944 HARD_TX_UNLOCK(dev, txq);
2945 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2946 dev->name);
2947 } else {
2948 /* Recursion is detected! It is possible,
2949 * unfortunately
2950 */
2951 recursion_alert:
2952 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2953 dev->name);
2954 }
2955 }
2956
2957 rc = -ENETDOWN;
2958 drop:
2959 rcu_read_unlock_bh();
2960
2961 atomic_long_inc(&dev->tx_dropped);
2962 kfree_skb_list(skb);
2963 return rc;
2964 out:
2965 rcu_read_unlock_bh();
2966 return rc;
2967 }
2968
2969 int dev_queue_xmit(struct sk_buff *skb)
2970 {
2971 return __dev_queue_xmit(skb, NULL);
2972 }
2973 EXPORT_SYMBOL(dev_queue_xmit);
2974
2975 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2976 {
2977 return __dev_queue_xmit(skb, accel_priv);
2978 }
2979 EXPORT_SYMBOL(dev_queue_xmit_accel);
2980
2981
2982 /*=======================================================================
2983 Receiver routines
2984 =======================================================================*/
2985
2986 int netdev_max_backlog __read_mostly = 1000;
2987 EXPORT_SYMBOL(netdev_max_backlog);
2988
2989 int netdev_tstamp_prequeue __read_mostly = 1;
2990 int netdev_budget __read_mostly = 300;
2991 int weight_p __read_mostly = 64; /* old backlog weight */
2992
2993 /* Called with irq disabled */
2994 static inline void ____napi_schedule(struct softnet_data *sd,
2995 struct napi_struct *napi)
2996 {
2997 list_add_tail(&napi->poll_list, &sd->poll_list);
2998 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2999 }
3000
3001 #ifdef CONFIG_RPS
3002
3003 /* One global table that all flow-based protocols share. */
3004 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3005 EXPORT_SYMBOL(rps_sock_flow_table);
3006
3007 struct static_key rps_needed __read_mostly;
3008
3009 static struct rps_dev_flow *
3010 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3011 struct rps_dev_flow *rflow, u16 next_cpu)
3012 {
3013 if (next_cpu != RPS_NO_CPU) {
3014 #ifdef CONFIG_RFS_ACCEL
3015 struct netdev_rx_queue *rxqueue;
3016 struct rps_dev_flow_table *flow_table;
3017 struct rps_dev_flow *old_rflow;
3018 u32 flow_id;
3019 u16 rxq_index;
3020 int rc;
3021
3022 /* Should we steer this flow to a different hardware queue? */
3023 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3024 !(dev->features & NETIF_F_NTUPLE))
3025 goto out;
3026 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3027 if (rxq_index == skb_get_rx_queue(skb))
3028 goto out;
3029
3030 rxqueue = dev->_rx + rxq_index;
3031 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3032 if (!flow_table)
3033 goto out;
3034 flow_id = skb_get_hash(skb) & flow_table->mask;
3035 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3036 rxq_index, flow_id);
3037 if (rc < 0)
3038 goto out;
3039 old_rflow = rflow;
3040 rflow = &flow_table->flows[flow_id];
3041 rflow->filter = rc;
3042 if (old_rflow->filter == rflow->filter)
3043 old_rflow->filter = RPS_NO_FILTER;
3044 out:
3045 #endif
3046 rflow->last_qtail =
3047 per_cpu(softnet_data, next_cpu).input_queue_head;
3048 }
3049
3050 rflow->cpu = next_cpu;
3051 return rflow;
3052 }
3053
3054 /*
3055 * get_rps_cpu is called from netif_receive_skb and returns the target
3056 * CPU from the RPS map of the receiving queue for a given skb.
3057 * rcu_read_lock must be held on entry.
3058 */
3059 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3060 struct rps_dev_flow **rflowp)
3061 {
3062 struct netdev_rx_queue *rxqueue;
3063 struct rps_map *map;
3064 struct rps_dev_flow_table *flow_table;
3065 struct rps_sock_flow_table *sock_flow_table;
3066 int cpu = -1;
3067 u16 tcpu;
3068 u32 hash;
3069
3070 if (skb_rx_queue_recorded(skb)) {
3071 u16 index = skb_get_rx_queue(skb);
3072 if (unlikely(index >= dev->real_num_rx_queues)) {
3073 WARN_ONCE(dev->real_num_rx_queues > 1,
3074 "%s received packet on queue %u, but number "
3075 "of RX queues is %u\n",
3076 dev->name, index, dev->real_num_rx_queues);
3077 goto done;
3078 }
3079 rxqueue = dev->_rx + index;
3080 } else
3081 rxqueue = dev->_rx;
3082
3083 map = rcu_dereference(rxqueue->rps_map);
3084 if (map) {
3085 if (map->len == 1 &&
3086 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3087 tcpu = map->cpus[0];
3088 if (cpu_online(tcpu))
3089 cpu = tcpu;
3090 goto done;
3091 }
3092 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3093 goto done;
3094 }
3095
3096 skb_reset_network_header(skb);
3097 hash = skb_get_hash(skb);
3098 if (!hash)
3099 goto done;
3100
3101 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3102 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3103 if (flow_table && sock_flow_table) {
3104 u16 next_cpu;
3105 struct rps_dev_flow *rflow;
3106
3107 rflow = &flow_table->flows[hash & flow_table->mask];
3108 tcpu = rflow->cpu;
3109
3110 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3111
3112 /*
3113 * If the desired CPU (where last recvmsg was done) is
3114 * different from current CPU (one in the rx-queue flow
3115 * table entry), switch if one of the following holds:
3116 * - Current CPU is unset (equal to RPS_NO_CPU).
3117 * - Current CPU is offline.
3118 * - The current CPU's queue tail has advanced beyond the
3119 * last packet that was enqueued using this table entry.
3120 * This guarantees that all previous packets for the flow
3121 * have been dequeued, thus preserving in order delivery.
3122 */
3123 if (unlikely(tcpu != next_cpu) &&
3124 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3125 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3126 rflow->last_qtail)) >= 0)) {
3127 tcpu = next_cpu;
3128 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3129 }
3130
3131 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3132 *rflowp = rflow;
3133 cpu = tcpu;
3134 goto done;
3135 }
3136 }
3137
3138 if (map) {
3139 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3140 if (cpu_online(tcpu)) {
3141 cpu = tcpu;
3142 goto done;
3143 }
3144 }
3145
3146 done:
3147 return cpu;
3148 }
3149
3150 #ifdef CONFIG_RFS_ACCEL
3151
3152 /**
3153 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3154 * @dev: Device on which the filter was set
3155 * @rxq_index: RX queue index
3156 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3157 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3158 *
3159 * Drivers that implement ndo_rx_flow_steer() should periodically call
3160 * this function for each installed filter and remove the filters for
3161 * which it returns %true.
3162 */
3163 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3164 u32 flow_id, u16 filter_id)
3165 {
3166 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3167 struct rps_dev_flow_table *flow_table;
3168 struct rps_dev_flow *rflow;
3169 bool expire = true;
3170 int cpu;
3171
3172 rcu_read_lock();
3173 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3174 if (flow_table && flow_id <= flow_table->mask) {
3175 rflow = &flow_table->flows[flow_id];
3176 cpu = ACCESS_ONCE(rflow->cpu);
3177 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3178 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3179 rflow->last_qtail) <
3180 (int)(10 * flow_table->mask)))
3181 expire = false;
3182 }
3183 rcu_read_unlock();
3184 return expire;
3185 }
3186 EXPORT_SYMBOL(rps_may_expire_flow);
3187
3188 #endif /* CONFIG_RFS_ACCEL */
3189
3190 /* Called from hardirq (IPI) context */
3191 static void rps_trigger_softirq(void *data)
3192 {
3193 struct softnet_data *sd = data;
3194
3195 ____napi_schedule(sd, &sd->backlog);
3196 sd->received_rps++;
3197 }
3198
3199 #endif /* CONFIG_RPS */
3200
3201 /*
3202 * Check if this softnet_data structure is another cpu one
3203 * If yes, queue it to our IPI list and return 1
3204 * If no, return 0
3205 */
3206 static int rps_ipi_queued(struct softnet_data *sd)
3207 {
3208 #ifdef CONFIG_RPS
3209 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3210
3211 if (sd != mysd) {
3212 sd->rps_ipi_next = mysd->rps_ipi_list;
3213 mysd->rps_ipi_list = sd;
3214
3215 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3216 return 1;
3217 }
3218 #endif /* CONFIG_RPS */
3219 return 0;
3220 }
3221
3222 #ifdef CONFIG_NET_FLOW_LIMIT
3223 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3224 #endif
3225
3226 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3227 {
3228 #ifdef CONFIG_NET_FLOW_LIMIT
3229 struct sd_flow_limit *fl;
3230 struct softnet_data *sd;
3231 unsigned int old_flow, new_flow;
3232
3233 if (qlen < (netdev_max_backlog >> 1))
3234 return false;
3235
3236 sd = this_cpu_ptr(&softnet_data);
3237
3238 rcu_read_lock();
3239 fl = rcu_dereference(sd->flow_limit);
3240 if (fl) {
3241 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3242 old_flow = fl->history[fl->history_head];
3243 fl->history[fl->history_head] = new_flow;
3244
3245 fl->history_head++;
3246 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3247
3248 if (likely(fl->buckets[old_flow]))
3249 fl->buckets[old_flow]--;
3250
3251 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3252 fl->count++;
3253 rcu_read_unlock();
3254 return true;
3255 }
3256 }
3257 rcu_read_unlock();
3258 #endif
3259 return false;
3260 }
3261
3262 /*
3263 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3264 * queue (may be a remote CPU queue).
3265 */
3266 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3267 unsigned int *qtail)
3268 {
3269 struct softnet_data *sd;
3270 unsigned long flags;
3271 unsigned int qlen;
3272
3273 sd = &per_cpu(softnet_data, cpu);
3274
3275 local_irq_save(flags);
3276
3277 rps_lock(sd);
3278 qlen = skb_queue_len(&sd->input_pkt_queue);
3279 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3280 if (qlen) {
3281 enqueue:
3282 __skb_queue_tail(&sd->input_pkt_queue, skb);
3283 input_queue_tail_incr_save(sd, qtail);
3284 rps_unlock(sd);
3285 local_irq_restore(flags);
3286 return NET_RX_SUCCESS;
3287 }
3288
3289 /* Schedule NAPI for backlog device
3290 * We can use non atomic operation since we own the queue lock
3291 */
3292 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3293 if (!rps_ipi_queued(sd))
3294 ____napi_schedule(sd, &sd->backlog);
3295 }
3296 goto enqueue;
3297 }
3298
3299 sd->dropped++;
3300 rps_unlock(sd);
3301
3302 local_irq_restore(flags);
3303
3304 atomic_long_inc(&skb->dev->rx_dropped);
3305 kfree_skb(skb);
3306 return NET_RX_DROP;
3307 }
3308
3309 static int netif_rx_internal(struct sk_buff *skb)
3310 {
3311 int ret;
3312
3313 net_timestamp_check(netdev_tstamp_prequeue, skb);
3314
3315 trace_netif_rx(skb);
3316 #ifdef CONFIG_RPS
3317 if (static_key_false(&rps_needed)) {
3318 struct rps_dev_flow voidflow, *rflow = &voidflow;
3319 int cpu;
3320
3321 preempt_disable();
3322 rcu_read_lock();
3323
3324 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3325 if (cpu < 0)
3326 cpu = smp_processor_id();
3327
3328 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3329
3330 rcu_read_unlock();
3331 preempt_enable();
3332 } else
3333 #endif
3334 {
3335 unsigned int qtail;
3336 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3337 put_cpu();
3338 }
3339 return ret;
3340 }
3341
3342 /**
3343 * netif_rx - post buffer to the network code
3344 * @skb: buffer to post
3345 *
3346 * This function receives a packet from a device driver and queues it for
3347 * the upper (protocol) levels to process. It always succeeds. The buffer
3348 * may be dropped during processing for congestion control or by the
3349 * protocol layers.
3350 *
3351 * return values:
3352 * NET_RX_SUCCESS (no congestion)
3353 * NET_RX_DROP (packet was dropped)
3354 *
3355 */
3356
3357 int netif_rx(struct sk_buff *skb)
3358 {
3359 trace_netif_rx_entry(skb);
3360
3361 return netif_rx_internal(skb);
3362 }
3363 EXPORT_SYMBOL(netif_rx);
3364
3365 int netif_rx_ni(struct sk_buff *skb)
3366 {
3367 int err;
3368
3369 trace_netif_rx_ni_entry(skb);
3370
3371 preempt_disable();
3372 err = netif_rx_internal(skb);
3373 if (local_softirq_pending())
3374 do_softirq();
3375 preempt_enable();
3376
3377 return err;
3378 }
3379 EXPORT_SYMBOL(netif_rx_ni);
3380
3381 static void net_tx_action(struct softirq_action *h)
3382 {
3383 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3384
3385 if (sd->completion_queue) {
3386 struct sk_buff *clist;
3387
3388 local_irq_disable();
3389 clist = sd->completion_queue;
3390 sd->completion_queue = NULL;
3391 local_irq_enable();
3392
3393 while (clist) {
3394 struct sk_buff *skb = clist;
3395 clist = clist->next;
3396
3397 WARN_ON(atomic_read(&skb->users));
3398 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3399 trace_consume_skb(skb);
3400 else
3401 trace_kfree_skb(skb, net_tx_action);
3402 __kfree_skb(skb);
3403 }
3404 }
3405
3406 if (sd->output_queue) {
3407 struct Qdisc *head;
3408
3409 local_irq_disable();
3410 head = sd->output_queue;
3411 sd->output_queue = NULL;
3412 sd->output_queue_tailp = &sd->output_queue;
3413 local_irq_enable();
3414
3415 while (head) {
3416 struct Qdisc *q = head;
3417 spinlock_t *root_lock;
3418
3419 head = head->next_sched;
3420
3421 root_lock = qdisc_lock(q);
3422 if (spin_trylock(root_lock)) {
3423 smp_mb__before_atomic();
3424 clear_bit(__QDISC_STATE_SCHED,
3425 &q->state);
3426 qdisc_run(q);
3427 spin_unlock(root_lock);
3428 } else {
3429 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3430 &q->state)) {
3431 __netif_reschedule(q);
3432 } else {
3433 smp_mb__before_atomic();
3434 clear_bit(__QDISC_STATE_SCHED,
3435 &q->state);
3436 }
3437 }
3438 }
3439 }
3440 }
3441
3442 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3443 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3444 /* This hook is defined here for ATM LANE */
3445 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3446 unsigned char *addr) __read_mostly;
3447 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3448 #endif
3449
3450 #ifdef CONFIG_NET_CLS_ACT
3451 /* TODO: Maybe we should just force sch_ingress to be compiled in
3452 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3453 * a compare and 2 stores extra right now if we dont have it on
3454 * but have CONFIG_NET_CLS_ACT
3455 * NOTE: This doesn't stop any functionality; if you dont have
3456 * the ingress scheduler, you just can't add policies on ingress.
3457 *
3458 */
3459 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3460 {
3461 struct net_device *dev = skb->dev;
3462 u32 ttl = G_TC_RTTL(skb->tc_verd);
3463 int result = TC_ACT_OK;
3464 struct Qdisc *q;
3465
3466 if (unlikely(MAX_RED_LOOP < ttl++)) {
3467 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3468 skb->skb_iif, dev->ifindex);
3469 return TC_ACT_SHOT;
3470 }
3471
3472 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3473 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3474
3475 q = rcu_dereference(rxq->qdisc);
3476 if (q != &noop_qdisc) {
3477 spin_lock(qdisc_lock(q));
3478 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3479 result = qdisc_enqueue_root(skb, q);
3480 spin_unlock(qdisc_lock(q));
3481 }
3482
3483 return result;
3484 }
3485
3486 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3487 struct packet_type **pt_prev,
3488 int *ret, struct net_device *orig_dev)
3489 {
3490 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3491
3492 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3493 goto out;
3494
3495 if (*pt_prev) {
3496 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3497 *pt_prev = NULL;
3498 }
3499
3500 switch (ing_filter(skb, rxq)) {
3501 case TC_ACT_SHOT:
3502 case TC_ACT_STOLEN:
3503 kfree_skb(skb);
3504 return NULL;
3505 }
3506
3507 out:
3508 skb->tc_verd = 0;
3509 return skb;
3510 }
3511 #endif
3512
3513 /**
3514 * netdev_rx_handler_register - register receive handler
3515 * @dev: device to register a handler for
3516 * @rx_handler: receive handler to register
3517 * @rx_handler_data: data pointer that is used by rx handler
3518 *
3519 * Register a receive handler for a device. This handler will then be
3520 * called from __netif_receive_skb. A negative errno code is returned
3521 * on a failure.
3522 *
3523 * The caller must hold the rtnl_mutex.
3524 *
3525 * For a general description of rx_handler, see enum rx_handler_result.
3526 */
3527 int netdev_rx_handler_register(struct net_device *dev,
3528 rx_handler_func_t *rx_handler,
3529 void *rx_handler_data)
3530 {
3531 ASSERT_RTNL();
3532
3533 if (dev->rx_handler)
3534 return -EBUSY;
3535
3536 /* Note: rx_handler_data must be set before rx_handler */
3537 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3538 rcu_assign_pointer(dev->rx_handler, rx_handler);
3539
3540 return 0;
3541 }
3542 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3543
3544 /**
3545 * netdev_rx_handler_unregister - unregister receive handler
3546 * @dev: device to unregister a handler from
3547 *
3548 * Unregister a receive handler from a device.
3549 *
3550 * The caller must hold the rtnl_mutex.
3551 */
3552 void netdev_rx_handler_unregister(struct net_device *dev)
3553 {
3554
3555 ASSERT_RTNL();
3556 RCU_INIT_POINTER(dev->rx_handler, NULL);
3557 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3558 * section has a guarantee to see a non NULL rx_handler_data
3559 * as well.
3560 */
3561 synchronize_net();
3562 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3563 }
3564 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3565
3566 /*
3567 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3568 * the special handling of PFMEMALLOC skbs.
3569 */
3570 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3571 {
3572 switch (skb->protocol) {
3573 case htons(ETH_P_ARP):
3574 case htons(ETH_P_IP):
3575 case htons(ETH_P_IPV6):
3576 case htons(ETH_P_8021Q):
3577 case htons(ETH_P_8021AD):
3578 return true;
3579 default:
3580 return false;
3581 }
3582 }
3583
3584 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3585 {
3586 struct packet_type *ptype, *pt_prev;
3587 rx_handler_func_t *rx_handler;
3588 struct net_device *orig_dev;
3589 struct net_device *null_or_dev;
3590 bool deliver_exact = false;
3591 int ret = NET_RX_DROP;
3592 __be16 type;
3593
3594 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3595
3596 trace_netif_receive_skb(skb);
3597
3598 orig_dev = skb->dev;
3599
3600 skb_reset_network_header(skb);
3601 if (!skb_transport_header_was_set(skb))
3602 skb_reset_transport_header(skb);
3603 skb_reset_mac_len(skb);
3604
3605 pt_prev = NULL;
3606
3607 rcu_read_lock();
3608
3609 another_round:
3610 skb->skb_iif = skb->dev->ifindex;
3611
3612 __this_cpu_inc(softnet_data.processed);
3613
3614 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3615 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3616 skb = skb_vlan_untag(skb);
3617 if (unlikely(!skb))
3618 goto unlock;
3619 }
3620
3621 #ifdef CONFIG_NET_CLS_ACT
3622 if (skb->tc_verd & TC_NCLS) {
3623 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3624 goto ncls;
3625 }
3626 #endif
3627
3628 if (pfmemalloc)
3629 goto skip_taps;
3630
3631 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3632 if (!ptype->dev || ptype->dev == skb->dev) {
3633 if (pt_prev)
3634 ret = deliver_skb(skb, pt_prev, orig_dev);
3635 pt_prev = ptype;
3636 }
3637 }
3638
3639 skip_taps:
3640 #ifdef CONFIG_NET_CLS_ACT
3641 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3642 if (!skb)
3643 goto unlock;
3644 ncls:
3645 #endif
3646
3647 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3648 goto drop;
3649
3650 if (vlan_tx_tag_present(skb)) {
3651 if (pt_prev) {
3652 ret = deliver_skb(skb, pt_prev, orig_dev);
3653 pt_prev = NULL;
3654 }
3655 if (vlan_do_receive(&skb))
3656 goto another_round;
3657 else if (unlikely(!skb))
3658 goto unlock;
3659 }
3660
3661 rx_handler = rcu_dereference(skb->dev->rx_handler);
3662 if (rx_handler) {
3663 if (pt_prev) {
3664 ret = deliver_skb(skb, pt_prev, orig_dev);
3665 pt_prev = NULL;
3666 }
3667 switch (rx_handler(&skb)) {
3668 case RX_HANDLER_CONSUMED:
3669 ret = NET_RX_SUCCESS;
3670 goto unlock;
3671 case RX_HANDLER_ANOTHER:
3672 goto another_round;
3673 case RX_HANDLER_EXACT:
3674 deliver_exact = true;
3675 case RX_HANDLER_PASS:
3676 break;
3677 default:
3678 BUG();
3679 }
3680 }
3681
3682 if (unlikely(vlan_tx_tag_present(skb))) {
3683 if (vlan_tx_tag_get_id(skb))
3684 skb->pkt_type = PACKET_OTHERHOST;
3685 /* Note: we might in the future use prio bits
3686 * and set skb->priority like in vlan_do_receive()
3687 * For the time being, just ignore Priority Code Point
3688 */
3689 skb->vlan_tci = 0;
3690 }
3691
3692 /* deliver only exact match when indicated */
3693 null_or_dev = deliver_exact ? skb->dev : NULL;
3694
3695 type = skb->protocol;
3696 list_for_each_entry_rcu(ptype,
3697 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3698 if (ptype->type == type &&
3699 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3700 ptype->dev == orig_dev)) {
3701 if (pt_prev)
3702 ret = deliver_skb(skb, pt_prev, orig_dev);
3703 pt_prev = ptype;
3704 }
3705 }
3706
3707 if (pt_prev) {
3708 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3709 goto drop;
3710 else
3711 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3712 } else {
3713 drop:
3714 atomic_long_inc(&skb->dev->rx_dropped);
3715 kfree_skb(skb);
3716 /* Jamal, now you will not able to escape explaining
3717 * me how you were going to use this. :-)
3718 */
3719 ret = NET_RX_DROP;
3720 }
3721
3722 unlock:
3723 rcu_read_unlock();
3724 return ret;
3725 }
3726
3727 static int __netif_receive_skb(struct sk_buff *skb)
3728 {
3729 int ret;
3730
3731 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3732 unsigned long pflags = current->flags;
3733
3734 /*
3735 * PFMEMALLOC skbs are special, they should
3736 * - be delivered to SOCK_MEMALLOC sockets only
3737 * - stay away from userspace
3738 * - have bounded memory usage
3739 *
3740 * Use PF_MEMALLOC as this saves us from propagating the allocation
3741 * context down to all allocation sites.
3742 */
3743 current->flags |= PF_MEMALLOC;
3744 ret = __netif_receive_skb_core(skb, true);
3745 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3746 } else
3747 ret = __netif_receive_skb_core(skb, false);
3748
3749 return ret;
3750 }
3751
3752 static int netif_receive_skb_internal(struct sk_buff *skb)
3753 {
3754 net_timestamp_check(netdev_tstamp_prequeue, skb);
3755
3756 if (skb_defer_rx_timestamp(skb))
3757 return NET_RX_SUCCESS;
3758
3759 #ifdef CONFIG_RPS
3760 if (static_key_false(&rps_needed)) {
3761 struct rps_dev_flow voidflow, *rflow = &voidflow;
3762 int cpu, ret;
3763
3764 rcu_read_lock();
3765
3766 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3767
3768 if (cpu >= 0) {
3769 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3770 rcu_read_unlock();
3771 return ret;
3772 }
3773 rcu_read_unlock();
3774 }
3775 #endif
3776 return __netif_receive_skb(skb);
3777 }
3778
3779 /**
3780 * netif_receive_skb - process receive buffer from network
3781 * @skb: buffer to process
3782 *
3783 * netif_receive_skb() is the main receive data processing function.
3784 * It always succeeds. The buffer may be dropped during processing
3785 * for congestion control or by the protocol layers.
3786 *
3787 * This function may only be called from softirq context and interrupts
3788 * should be enabled.
3789 *
3790 * Return values (usually ignored):
3791 * NET_RX_SUCCESS: no congestion
3792 * NET_RX_DROP: packet was dropped
3793 */
3794 int netif_receive_skb(struct sk_buff *skb)
3795 {
3796 trace_netif_receive_skb_entry(skb);
3797
3798 return netif_receive_skb_internal(skb);
3799 }
3800 EXPORT_SYMBOL(netif_receive_skb);
3801
3802 /* Network device is going away, flush any packets still pending
3803 * Called with irqs disabled.
3804 */
3805 static void flush_backlog(void *arg)
3806 {
3807 struct net_device *dev = arg;
3808 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3809 struct sk_buff *skb, *tmp;
3810
3811 rps_lock(sd);
3812 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3813 if (skb->dev == dev) {
3814 __skb_unlink(skb, &sd->input_pkt_queue);
3815 kfree_skb(skb);
3816 input_queue_head_incr(sd);
3817 }
3818 }
3819 rps_unlock(sd);
3820
3821 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3822 if (skb->dev == dev) {
3823 __skb_unlink(skb, &sd->process_queue);
3824 kfree_skb(skb);
3825 input_queue_head_incr(sd);
3826 }
3827 }
3828 }
3829
3830 static int napi_gro_complete(struct sk_buff *skb)
3831 {
3832 struct packet_offload *ptype;
3833 __be16 type = skb->protocol;
3834 struct list_head *head = &offload_base;
3835 int err = -ENOENT;
3836
3837 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3838
3839 if (NAPI_GRO_CB(skb)->count == 1) {
3840 skb_shinfo(skb)->gso_size = 0;
3841 goto out;
3842 }
3843
3844 rcu_read_lock();
3845 list_for_each_entry_rcu(ptype, head, list) {
3846 if (ptype->type != type || !ptype->callbacks.gro_complete)
3847 continue;
3848
3849 err = ptype->callbacks.gro_complete(skb, 0);
3850 break;
3851 }
3852 rcu_read_unlock();
3853
3854 if (err) {
3855 WARN_ON(&ptype->list == head);
3856 kfree_skb(skb);
3857 return NET_RX_SUCCESS;
3858 }
3859
3860 out:
3861 return netif_receive_skb_internal(skb);
3862 }
3863
3864 /* napi->gro_list contains packets ordered by age.
3865 * youngest packets at the head of it.
3866 * Complete skbs in reverse order to reduce latencies.
3867 */
3868 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3869 {
3870 struct sk_buff *skb, *prev = NULL;
3871
3872 /* scan list and build reverse chain */
3873 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3874 skb->prev = prev;
3875 prev = skb;
3876 }
3877
3878 for (skb = prev; skb; skb = prev) {
3879 skb->next = NULL;
3880
3881 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3882 return;
3883
3884 prev = skb->prev;
3885 napi_gro_complete(skb);
3886 napi->gro_count--;
3887 }
3888
3889 napi->gro_list = NULL;
3890 }
3891 EXPORT_SYMBOL(napi_gro_flush);
3892
3893 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3894 {
3895 struct sk_buff *p;
3896 unsigned int maclen = skb->dev->hard_header_len;
3897 u32 hash = skb_get_hash_raw(skb);
3898
3899 for (p = napi->gro_list; p; p = p->next) {
3900 unsigned long diffs;
3901
3902 NAPI_GRO_CB(p)->flush = 0;
3903
3904 if (hash != skb_get_hash_raw(p)) {
3905 NAPI_GRO_CB(p)->same_flow = 0;
3906 continue;
3907 }
3908
3909 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3910 diffs |= p->vlan_tci ^ skb->vlan_tci;
3911 if (maclen == ETH_HLEN)
3912 diffs |= compare_ether_header(skb_mac_header(p),
3913 skb_mac_header(skb));
3914 else if (!diffs)
3915 diffs = memcmp(skb_mac_header(p),
3916 skb_mac_header(skb),
3917 maclen);
3918 NAPI_GRO_CB(p)->same_flow = !diffs;
3919 }
3920 }
3921
3922 static void skb_gro_reset_offset(struct sk_buff *skb)
3923 {
3924 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3925 const skb_frag_t *frag0 = &pinfo->frags[0];
3926
3927 NAPI_GRO_CB(skb)->data_offset = 0;
3928 NAPI_GRO_CB(skb)->frag0 = NULL;
3929 NAPI_GRO_CB(skb)->frag0_len = 0;
3930
3931 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3932 pinfo->nr_frags &&
3933 !PageHighMem(skb_frag_page(frag0))) {
3934 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3935 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3936 }
3937 }
3938
3939 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3940 {
3941 struct skb_shared_info *pinfo = skb_shinfo(skb);
3942
3943 BUG_ON(skb->end - skb->tail < grow);
3944
3945 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3946
3947 skb->data_len -= grow;
3948 skb->tail += grow;
3949
3950 pinfo->frags[0].page_offset += grow;
3951 skb_frag_size_sub(&pinfo->frags[0], grow);
3952
3953 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3954 skb_frag_unref(skb, 0);
3955 memmove(pinfo->frags, pinfo->frags + 1,
3956 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3957 }
3958 }
3959
3960 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3961 {
3962 struct sk_buff **pp = NULL;
3963 struct packet_offload *ptype;
3964 __be16 type = skb->protocol;
3965 struct list_head *head = &offload_base;
3966 int same_flow;
3967 enum gro_result ret;
3968 int grow;
3969
3970 if (!(skb->dev->features & NETIF_F_GRO))
3971 goto normal;
3972
3973 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
3974 goto normal;
3975
3976 gro_list_prepare(napi, skb);
3977
3978 rcu_read_lock();
3979 list_for_each_entry_rcu(ptype, head, list) {
3980 if (ptype->type != type || !ptype->callbacks.gro_receive)
3981 continue;
3982
3983 skb_set_network_header(skb, skb_gro_offset(skb));
3984 skb_reset_mac_len(skb);
3985 NAPI_GRO_CB(skb)->same_flow = 0;
3986 NAPI_GRO_CB(skb)->flush = 0;
3987 NAPI_GRO_CB(skb)->free = 0;
3988 NAPI_GRO_CB(skb)->udp_mark = 0;
3989
3990 /* Setup for GRO checksum validation */
3991 switch (skb->ip_summed) {
3992 case CHECKSUM_COMPLETE:
3993 NAPI_GRO_CB(skb)->csum = skb->csum;
3994 NAPI_GRO_CB(skb)->csum_valid = 1;
3995 NAPI_GRO_CB(skb)->csum_cnt = 0;
3996 break;
3997 case CHECKSUM_UNNECESSARY:
3998 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
3999 NAPI_GRO_CB(skb)->csum_valid = 0;
4000 break;
4001 default:
4002 NAPI_GRO_CB(skb)->csum_cnt = 0;
4003 NAPI_GRO_CB(skb)->csum_valid = 0;
4004 }
4005
4006 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4007 break;
4008 }
4009 rcu_read_unlock();
4010
4011 if (&ptype->list == head)
4012 goto normal;
4013
4014 same_flow = NAPI_GRO_CB(skb)->same_flow;
4015 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4016
4017 if (pp) {
4018 struct sk_buff *nskb = *pp;
4019
4020 *pp = nskb->next;
4021 nskb->next = NULL;
4022 napi_gro_complete(nskb);
4023 napi->gro_count--;
4024 }
4025
4026 if (same_flow)
4027 goto ok;
4028
4029 if (NAPI_GRO_CB(skb)->flush)
4030 goto normal;
4031
4032 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4033 struct sk_buff *nskb = napi->gro_list;
4034
4035 /* locate the end of the list to select the 'oldest' flow */
4036 while (nskb->next) {
4037 pp = &nskb->next;
4038 nskb = *pp;
4039 }
4040 *pp = NULL;
4041 nskb->next = NULL;
4042 napi_gro_complete(nskb);
4043 } else {
4044 napi->gro_count++;
4045 }
4046 NAPI_GRO_CB(skb)->count = 1;
4047 NAPI_GRO_CB(skb)->age = jiffies;
4048 NAPI_GRO_CB(skb)->last = skb;
4049 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4050 skb->next = napi->gro_list;
4051 napi->gro_list = skb;
4052 ret = GRO_HELD;
4053
4054 pull:
4055 grow = skb_gro_offset(skb) - skb_headlen(skb);
4056 if (grow > 0)
4057 gro_pull_from_frag0(skb, grow);
4058 ok:
4059 return ret;
4060
4061 normal:
4062 ret = GRO_NORMAL;
4063 goto pull;
4064 }
4065
4066 struct packet_offload *gro_find_receive_by_type(__be16 type)
4067 {
4068 struct list_head *offload_head = &offload_base;
4069 struct packet_offload *ptype;
4070
4071 list_for_each_entry_rcu(ptype, offload_head, list) {
4072 if (ptype->type != type || !ptype->callbacks.gro_receive)
4073 continue;
4074 return ptype;
4075 }
4076 return NULL;
4077 }
4078 EXPORT_SYMBOL(gro_find_receive_by_type);
4079
4080 struct packet_offload *gro_find_complete_by_type(__be16 type)
4081 {
4082 struct list_head *offload_head = &offload_base;
4083 struct packet_offload *ptype;
4084
4085 list_for_each_entry_rcu(ptype, offload_head, list) {
4086 if (ptype->type != type || !ptype->callbacks.gro_complete)
4087 continue;
4088 return ptype;
4089 }
4090 return NULL;
4091 }
4092 EXPORT_SYMBOL(gro_find_complete_by_type);
4093
4094 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4095 {
4096 switch (ret) {
4097 case GRO_NORMAL:
4098 if (netif_receive_skb_internal(skb))
4099 ret = GRO_DROP;
4100 break;
4101
4102 case GRO_DROP:
4103 kfree_skb(skb);
4104 break;
4105
4106 case GRO_MERGED_FREE:
4107 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4108 kmem_cache_free(skbuff_head_cache, skb);
4109 else
4110 __kfree_skb(skb);
4111 break;
4112
4113 case GRO_HELD:
4114 case GRO_MERGED:
4115 break;
4116 }
4117
4118 return ret;
4119 }
4120
4121 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4122 {
4123 trace_napi_gro_receive_entry(skb);
4124
4125 skb_gro_reset_offset(skb);
4126
4127 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4128 }
4129 EXPORT_SYMBOL(napi_gro_receive);
4130
4131 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4132 {
4133 if (unlikely(skb->pfmemalloc)) {
4134 consume_skb(skb);
4135 return;
4136 }
4137 __skb_pull(skb, skb_headlen(skb));
4138 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4139 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4140 skb->vlan_tci = 0;
4141 skb->dev = napi->dev;
4142 skb->skb_iif = 0;
4143 skb->encapsulation = 0;
4144 skb_shinfo(skb)->gso_type = 0;
4145 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4146
4147 napi->skb = skb;
4148 }
4149
4150 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4151 {
4152 struct sk_buff *skb = napi->skb;
4153
4154 if (!skb) {
4155 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4156 napi->skb = skb;
4157 }
4158 return skb;
4159 }
4160 EXPORT_SYMBOL(napi_get_frags);
4161
4162 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4163 struct sk_buff *skb,
4164 gro_result_t ret)
4165 {
4166 switch (ret) {
4167 case GRO_NORMAL:
4168 case GRO_HELD:
4169 __skb_push(skb, ETH_HLEN);
4170 skb->protocol = eth_type_trans(skb, skb->dev);
4171 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4172 ret = GRO_DROP;
4173 break;
4174
4175 case GRO_DROP:
4176 case GRO_MERGED_FREE:
4177 napi_reuse_skb(napi, skb);
4178 break;
4179
4180 case GRO_MERGED:
4181 break;
4182 }
4183
4184 return ret;
4185 }
4186
4187 /* Upper GRO stack assumes network header starts at gro_offset=0
4188 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4189 * We copy ethernet header into skb->data to have a common layout.
4190 */
4191 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4192 {
4193 struct sk_buff *skb = napi->skb;
4194 const struct ethhdr *eth;
4195 unsigned int hlen = sizeof(*eth);
4196
4197 napi->skb = NULL;
4198
4199 skb_reset_mac_header(skb);
4200 skb_gro_reset_offset(skb);
4201
4202 eth = skb_gro_header_fast(skb, 0);
4203 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4204 eth = skb_gro_header_slow(skb, hlen, 0);
4205 if (unlikely(!eth)) {
4206 napi_reuse_skb(napi, skb);
4207 return NULL;
4208 }
4209 } else {
4210 gro_pull_from_frag0(skb, hlen);
4211 NAPI_GRO_CB(skb)->frag0 += hlen;
4212 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4213 }
4214 __skb_pull(skb, hlen);
4215
4216 /*
4217 * This works because the only protocols we care about don't require
4218 * special handling.
4219 * We'll fix it up properly in napi_frags_finish()
4220 */
4221 skb->protocol = eth->h_proto;
4222
4223 return skb;
4224 }
4225
4226 gro_result_t napi_gro_frags(struct napi_struct *napi)
4227 {
4228 struct sk_buff *skb = napi_frags_skb(napi);
4229
4230 if (!skb)
4231 return GRO_DROP;
4232
4233 trace_napi_gro_frags_entry(skb);
4234
4235 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4236 }
4237 EXPORT_SYMBOL(napi_gro_frags);
4238
4239 /* Compute the checksum from gro_offset and return the folded value
4240 * after adding in any pseudo checksum.
4241 */
4242 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4243 {
4244 __wsum wsum;
4245 __sum16 sum;
4246
4247 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4248
4249 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4250 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4251 if (likely(!sum)) {
4252 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4253 !skb->csum_complete_sw)
4254 netdev_rx_csum_fault(skb->dev);
4255 }
4256
4257 NAPI_GRO_CB(skb)->csum = wsum;
4258 NAPI_GRO_CB(skb)->csum_valid = 1;
4259
4260 return sum;
4261 }
4262 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4263
4264 /*
4265 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4266 * Note: called with local irq disabled, but exits with local irq enabled.
4267 */
4268 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4269 {
4270 #ifdef CONFIG_RPS
4271 struct softnet_data *remsd = sd->rps_ipi_list;
4272
4273 if (remsd) {
4274 sd->rps_ipi_list = NULL;
4275
4276 local_irq_enable();
4277
4278 /* Send pending IPI's to kick RPS processing on remote cpus. */
4279 while (remsd) {
4280 struct softnet_data *next = remsd->rps_ipi_next;
4281
4282 if (cpu_online(remsd->cpu))
4283 smp_call_function_single_async(remsd->cpu,
4284 &remsd->csd);
4285 remsd = next;
4286 }
4287 } else
4288 #endif
4289 local_irq_enable();
4290 }
4291
4292 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4293 {
4294 #ifdef CONFIG_RPS
4295 return sd->rps_ipi_list != NULL;
4296 #else
4297 return false;
4298 #endif
4299 }
4300
4301 static int process_backlog(struct napi_struct *napi, int quota)
4302 {
4303 int work = 0;
4304 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4305
4306 /* Check if we have pending ipi, its better to send them now,
4307 * not waiting net_rx_action() end.
4308 */
4309 if (sd_has_rps_ipi_waiting(sd)) {
4310 local_irq_disable();
4311 net_rps_action_and_irq_enable(sd);
4312 }
4313
4314 napi->weight = weight_p;
4315 local_irq_disable();
4316 while (1) {
4317 struct sk_buff *skb;
4318
4319 while ((skb = __skb_dequeue(&sd->process_queue))) {
4320 local_irq_enable();
4321 __netif_receive_skb(skb);
4322 local_irq_disable();
4323 input_queue_head_incr(sd);
4324 if (++work >= quota) {
4325 local_irq_enable();
4326 return work;
4327 }
4328 }
4329
4330 rps_lock(sd);
4331 if (skb_queue_empty(&sd->input_pkt_queue)) {
4332 /*
4333 * Inline a custom version of __napi_complete().
4334 * only current cpu owns and manipulates this napi,
4335 * and NAPI_STATE_SCHED is the only possible flag set
4336 * on backlog.
4337 * We can use a plain write instead of clear_bit(),
4338 * and we dont need an smp_mb() memory barrier.
4339 */
4340 napi->state = 0;
4341 rps_unlock(sd);
4342
4343 break;
4344 }
4345
4346 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4347 &sd->process_queue);
4348 rps_unlock(sd);
4349 }
4350 local_irq_enable();
4351
4352 return work;
4353 }
4354
4355 /**
4356 * __napi_schedule - schedule for receive
4357 * @n: entry to schedule
4358 *
4359 * The entry's receive function will be scheduled to run.
4360 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4361 */
4362 void __napi_schedule(struct napi_struct *n)
4363 {
4364 unsigned long flags;
4365
4366 local_irq_save(flags);
4367 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4368 local_irq_restore(flags);
4369 }
4370 EXPORT_SYMBOL(__napi_schedule);
4371
4372 /**
4373 * __napi_schedule_irqoff - schedule for receive
4374 * @n: entry to schedule
4375 *
4376 * Variant of __napi_schedule() assuming hard irqs are masked
4377 */
4378 void __napi_schedule_irqoff(struct napi_struct *n)
4379 {
4380 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4381 }
4382 EXPORT_SYMBOL(__napi_schedule_irqoff);
4383
4384 void __napi_complete(struct napi_struct *n)
4385 {
4386 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4387
4388 list_del_init(&n->poll_list);
4389 smp_mb__before_atomic();
4390 clear_bit(NAPI_STATE_SCHED, &n->state);
4391 }
4392 EXPORT_SYMBOL(__napi_complete);
4393
4394 void napi_complete_done(struct napi_struct *n, int work_done)
4395 {
4396 unsigned long flags;
4397
4398 /*
4399 * don't let napi dequeue from the cpu poll list
4400 * just in case its running on a different cpu
4401 */
4402 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4403 return;
4404
4405 if (n->gro_list) {
4406 unsigned long timeout = 0;
4407
4408 if (work_done)
4409 timeout = n->dev->gro_flush_timeout;
4410
4411 if (timeout)
4412 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4413 HRTIMER_MODE_REL_PINNED);
4414 else
4415 napi_gro_flush(n, false);
4416 }
4417 if (likely(list_empty(&n->poll_list))) {
4418 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4419 } else {
4420 /* If n->poll_list is not empty, we need to mask irqs */
4421 local_irq_save(flags);
4422 __napi_complete(n);
4423 local_irq_restore(flags);
4424 }
4425 }
4426 EXPORT_SYMBOL(napi_complete_done);
4427
4428 /* must be called under rcu_read_lock(), as we dont take a reference */
4429 struct napi_struct *napi_by_id(unsigned int napi_id)
4430 {
4431 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4432 struct napi_struct *napi;
4433
4434 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4435 if (napi->napi_id == napi_id)
4436 return napi;
4437
4438 return NULL;
4439 }
4440 EXPORT_SYMBOL_GPL(napi_by_id);
4441
4442 void napi_hash_add(struct napi_struct *napi)
4443 {
4444 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4445
4446 spin_lock(&napi_hash_lock);
4447
4448 /* 0 is not a valid id, we also skip an id that is taken
4449 * we expect both events to be extremely rare
4450 */
4451 napi->napi_id = 0;
4452 while (!napi->napi_id) {
4453 napi->napi_id = ++napi_gen_id;
4454 if (napi_by_id(napi->napi_id))
4455 napi->napi_id = 0;
4456 }
4457
4458 hlist_add_head_rcu(&napi->napi_hash_node,
4459 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4460
4461 spin_unlock(&napi_hash_lock);
4462 }
4463 }
4464 EXPORT_SYMBOL_GPL(napi_hash_add);
4465
4466 /* Warning : caller is responsible to make sure rcu grace period
4467 * is respected before freeing memory containing @napi
4468 */
4469 void napi_hash_del(struct napi_struct *napi)
4470 {
4471 spin_lock(&napi_hash_lock);
4472
4473 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4474 hlist_del_rcu(&napi->napi_hash_node);
4475
4476 spin_unlock(&napi_hash_lock);
4477 }
4478 EXPORT_SYMBOL_GPL(napi_hash_del);
4479
4480 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4481 {
4482 struct napi_struct *napi;
4483
4484 napi = container_of(timer, struct napi_struct, timer);
4485 if (napi->gro_list)
4486 napi_schedule(napi);
4487
4488 return HRTIMER_NORESTART;
4489 }
4490
4491 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4492 int (*poll)(struct napi_struct *, int), int weight)
4493 {
4494 INIT_LIST_HEAD(&napi->poll_list);
4495 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4496 napi->timer.function = napi_watchdog;
4497 napi->gro_count = 0;
4498 napi->gro_list = NULL;
4499 napi->skb = NULL;
4500 napi->poll = poll;
4501 if (weight > NAPI_POLL_WEIGHT)
4502 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4503 weight, dev->name);
4504 napi->weight = weight;
4505 list_add(&napi->dev_list, &dev->napi_list);
4506 napi->dev = dev;
4507 #ifdef CONFIG_NETPOLL
4508 spin_lock_init(&napi->poll_lock);
4509 napi->poll_owner = -1;
4510 #endif
4511 set_bit(NAPI_STATE_SCHED, &napi->state);
4512 }
4513 EXPORT_SYMBOL(netif_napi_add);
4514
4515 void napi_disable(struct napi_struct *n)
4516 {
4517 might_sleep();
4518 set_bit(NAPI_STATE_DISABLE, &n->state);
4519
4520 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4521 msleep(1);
4522
4523 hrtimer_cancel(&n->timer);
4524
4525 clear_bit(NAPI_STATE_DISABLE, &n->state);
4526 }
4527 EXPORT_SYMBOL(napi_disable);
4528
4529 void netif_napi_del(struct napi_struct *napi)
4530 {
4531 list_del_init(&napi->dev_list);
4532 napi_free_frags(napi);
4533
4534 kfree_skb_list(napi->gro_list);
4535 napi->gro_list = NULL;
4536 napi->gro_count = 0;
4537 }
4538 EXPORT_SYMBOL(netif_napi_del);
4539
4540 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4541 {
4542 void *have;
4543 int work, weight;
4544
4545 list_del_init(&n->poll_list);
4546
4547 have = netpoll_poll_lock(n);
4548
4549 weight = n->weight;
4550
4551 /* This NAPI_STATE_SCHED test is for avoiding a race
4552 * with netpoll's poll_napi(). Only the entity which
4553 * obtains the lock and sees NAPI_STATE_SCHED set will
4554 * actually make the ->poll() call. Therefore we avoid
4555 * accidentally calling ->poll() when NAPI is not scheduled.
4556 */
4557 work = 0;
4558 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4559 work = n->poll(n, weight);
4560 trace_napi_poll(n);
4561 }
4562
4563 WARN_ON_ONCE(work > weight);
4564
4565 if (likely(work < weight))
4566 goto out_unlock;
4567
4568 /* Drivers must not modify the NAPI state if they
4569 * consume the entire weight. In such cases this code
4570 * still "owns" the NAPI instance and therefore can
4571 * move the instance around on the list at-will.
4572 */
4573 if (unlikely(napi_disable_pending(n))) {
4574 napi_complete(n);
4575 goto out_unlock;
4576 }
4577
4578 if (n->gro_list) {
4579 /* flush too old packets
4580 * If HZ < 1000, flush all packets.
4581 */
4582 napi_gro_flush(n, HZ >= 1000);
4583 }
4584
4585 /* Some drivers may have called napi_schedule
4586 * prior to exhausting their budget.
4587 */
4588 if (unlikely(!list_empty(&n->poll_list))) {
4589 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4590 n->dev ? n->dev->name : "backlog");
4591 goto out_unlock;
4592 }
4593
4594 list_add_tail(&n->poll_list, repoll);
4595
4596 out_unlock:
4597 netpoll_poll_unlock(have);
4598
4599 return work;
4600 }
4601
4602 static void net_rx_action(struct softirq_action *h)
4603 {
4604 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4605 unsigned long time_limit = jiffies + 2;
4606 int budget = netdev_budget;
4607 LIST_HEAD(list);
4608 LIST_HEAD(repoll);
4609
4610 local_irq_disable();
4611 list_splice_init(&sd->poll_list, &list);
4612 local_irq_enable();
4613
4614 for (;;) {
4615 struct napi_struct *n;
4616
4617 if (list_empty(&list)) {
4618 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4619 return;
4620 break;
4621 }
4622
4623 n = list_first_entry(&list, struct napi_struct, poll_list);
4624 budget -= napi_poll(n, &repoll);
4625
4626 /* If softirq window is exhausted then punt.
4627 * Allow this to run for 2 jiffies since which will allow
4628 * an average latency of 1.5/HZ.
4629 */
4630 if (unlikely(budget <= 0 ||
4631 time_after_eq(jiffies, time_limit))) {
4632 sd->time_squeeze++;
4633 break;
4634 }
4635 }
4636
4637 local_irq_disable();
4638
4639 list_splice_tail_init(&sd->poll_list, &list);
4640 list_splice_tail(&repoll, &list);
4641 list_splice(&list, &sd->poll_list);
4642 if (!list_empty(&sd->poll_list))
4643 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4644
4645 net_rps_action_and_irq_enable(sd);
4646 }
4647
4648 struct netdev_adjacent {
4649 struct net_device *dev;
4650
4651 /* upper master flag, there can only be one master device per list */
4652 bool master;
4653
4654 /* counter for the number of times this device was added to us */
4655 u16 ref_nr;
4656
4657 /* private field for the users */
4658 void *private;
4659
4660 struct list_head list;
4661 struct rcu_head rcu;
4662 };
4663
4664 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4665 struct net_device *adj_dev,
4666 struct list_head *adj_list)
4667 {
4668 struct netdev_adjacent *adj;
4669
4670 list_for_each_entry(adj, adj_list, list) {
4671 if (adj->dev == adj_dev)
4672 return adj;
4673 }
4674 return NULL;
4675 }
4676
4677 /**
4678 * netdev_has_upper_dev - Check if device is linked to an upper device
4679 * @dev: device
4680 * @upper_dev: upper device to check
4681 *
4682 * Find out if a device is linked to specified upper device and return true
4683 * in case it is. Note that this checks only immediate upper device,
4684 * not through a complete stack of devices. The caller must hold the RTNL lock.
4685 */
4686 bool netdev_has_upper_dev(struct net_device *dev,
4687 struct net_device *upper_dev)
4688 {
4689 ASSERT_RTNL();
4690
4691 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4692 }
4693 EXPORT_SYMBOL(netdev_has_upper_dev);
4694
4695 /**
4696 * netdev_has_any_upper_dev - Check if device is linked to some device
4697 * @dev: device
4698 *
4699 * Find out if a device is linked to an upper device and return true in case
4700 * it is. The caller must hold the RTNL lock.
4701 */
4702 static bool netdev_has_any_upper_dev(struct net_device *dev)
4703 {
4704 ASSERT_RTNL();
4705
4706 return !list_empty(&dev->all_adj_list.upper);
4707 }
4708
4709 /**
4710 * netdev_master_upper_dev_get - Get master upper device
4711 * @dev: device
4712 *
4713 * Find a master upper device and return pointer to it or NULL in case
4714 * it's not there. The caller must hold the RTNL lock.
4715 */
4716 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4717 {
4718 struct netdev_adjacent *upper;
4719
4720 ASSERT_RTNL();
4721
4722 if (list_empty(&dev->adj_list.upper))
4723 return NULL;
4724
4725 upper = list_first_entry(&dev->adj_list.upper,
4726 struct netdev_adjacent, list);
4727 if (likely(upper->master))
4728 return upper->dev;
4729 return NULL;
4730 }
4731 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4732
4733 void *netdev_adjacent_get_private(struct list_head *adj_list)
4734 {
4735 struct netdev_adjacent *adj;
4736
4737 adj = list_entry(adj_list, struct netdev_adjacent, list);
4738
4739 return adj->private;
4740 }
4741 EXPORT_SYMBOL(netdev_adjacent_get_private);
4742
4743 /**
4744 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4745 * @dev: device
4746 * @iter: list_head ** of the current position
4747 *
4748 * Gets the next device from the dev's upper list, starting from iter
4749 * position. The caller must hold RCU read lock.
4750 */
4751 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4752 struct list_head **iter)
4753 {
4754 struct netdev_adjacent *upper;
4755
4756 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4757
4758 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4759
4760 if (&upper->list == &dev->adj_list.upper)
4761 return NULL;
4762
4763 *iter = &upper->list;
4764
4765 return upper->dev;
4766 }
4767 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4768
4769 /**
4770 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4771 * @dev: device
4772 * @iter: list_head ** of the current position
4773 *
4774 * Gets the next device from the dev's upper list, starting from iter
4775 * position. The caller must hold RCU read lock.
4776 */
4777 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4778 struct list_head **iter)
4779 {
4780 struct netdev_adjacent *upper;
4781
4782 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4783
4784 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4785
4786 if (&upper->list == &dev->all_adj_list.upper)
4787 return NULL;
4788
4789 *iter = &upper->list;
4790
4791 return upper->dev;
4792 }
4793 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4794
4795 /**
4796 * netdev_lower_get_next_private - Get the next ->private from the
4797 * lower neighbour list
4798 * @dev: device
4799 * @iter: list_head ** of the current position
4800 *
4801 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4802 * list, starting from iter position. The caller must hold either hold the
4803 * RTNL lock or its own locking that guarantees that the neighbour lower
4804 * list will remain unchainged.
4805 */
4806 void *netdev_lower_get_next_private(struct net_device *dev,
4807 struct list_head **iter)
4808 {
4809 struct netdev_adjacent *lower;
4810
4811 lower = list_entry(*iter, struct netdev_adjacent, list);
4812
4813 if (&lower->list == &dev->adj_list.lower)
4814 return NULL;
4815
4816 *iter = lower->list.next;
4817
4818 return lower->private;
4819 }
4820 EXPORT_SYMBOL(netdev_lower_get_next_private);
4821
4822 /**
4823 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4824 * lower neighbour list, RCU
4825 * variant
4826 * @dev: device
4827 * @iter: list_head ** of the current position
4828 *
4829 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4830 * list, starting from iter position. The caller must hold RCU read lock.
4831 */
4832 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4833 struct list_head **iter)
4834 {
4835 struct netdev_adjacent *lower;
4836
4837 WARN_ON_ONCE(!rcu_read_lock_held());
4838
4839 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4840
4841 if (&lower->list == &dev->adj_list.lower)
4842 return NULL;
4843
4844 *iter = &lower->list;
4845
4846 return lower->private;
4847 }
4848 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4849
4850 /**
4851 * netdev_lower_get_next - Get the next device from the lower neighbour
4852 * list
4853 * @dev: device
4854 * @iter: list_head ** of the current position
4855 *
4856 * Gets the next netdev_adjacent from the dev's lower neighbour
4857 * list, starting from iter position. The caller must hold RTNL lock or
4858 * its own locking that guarantees that the neighbour lower
4859 * list will remain unchainged.
4860 */
4861 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4862 {
4863 struct netdev_adjacent *lower;
4864
4865 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4866
4867 if (&lower->list == &dev->adj_list.lower)
4868 return NULL;
4869
4870 *iter = &lower->list;
4871
4872 return lower->dev;
4873 }
4874 EXPORT_SYMBOL(netdev_lower_get_next);
4875
4876 /**
4877 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4878 * lower neighbour list, RCU
4879 * variant
4880 * @dev: device
4881 *
4882 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4883 * list. The caller must hold RCU read lock.
4884 */
4885 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4886 {
4887 struct netdev_adjacent *lower;
4888
4889 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4890 struct netdev_adjacent, list);
4891 if (lower)
4892 return lower->private;
4893 return NULL;
4894 }
4895 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4896
4897 /**
4898 * netdev_master_upper_dev_get_rcu - Get master upper device
4899 * @dev: device
4900 *
4901 * Find a master upper device and return pointer to it or NULL in case
4902 * it's not there. The caller must hold the RCU read lock.
4903 */
4904 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4905 {
4906 struct netdev_adjacent *upper;
4907
4908 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4909 struct netdev_adjacent, list);
4910 if (upper && likely(upper->master))
4911 return upper->dev;
4912 return NULL;
4913 }
4914 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4915
4916 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4917 struct net_device *adj_dev,
4918 struct list_head *dev_list)
4919 {
4920 char linkname[IFNAMSIZ+7];
4921 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4922 "upper_%s" : "lower_%s", adj_dev->name);
4923 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4924 linkname);
4925 }
4926 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4927 char *name,
4928 struct list_head *dev_list)
4929 {
4930 char linkname[IFNAMSIZ+7];
4931 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4932 "upper_%s" : "lower_%s", name);
4933 sysfs_remove_link(&(dev->dev.kobj), linkname);
4934 }
4935
4936 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4937 struct net_device *adj_dev,
4938 struct list_head *dev_list)
4939 {
4940 return (dev_list == &dev->adj_list.upper ||
4941 dev_list == &dev->adj_list.lower) &&
4942 net_eq(dev_net(dev), dev_net(adj_dev));
4943 }
4944
4945 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4946 struct net_device *adj_dev,
4947 struct list_head *dev_list,
4948 void *private, bool master)
4949 {
4950 struct netdev_adjacent *adj;
4951 int ret;
4952
4953 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4954
4955 if (adj) {
4956 adj->ref_nr++;
4957 return 0;
4958 }
4959
4960 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4961 if (!adj)
4962 return -ENOMEM;
4963
4964 adj->dev = adj_dev;
4965 adj->master = master;
4966 adj->ref_nr = 1;
4967 adj->private = private;
4968 dev_hold(adj_dev);
4969
4970 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4971 adj_dev->name, dev->name, adj_dev->name);
4972
4973 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4974 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4975 if (ret)
4976 goto free_adj;
4977 }
4978
4979 /* Ensure that master link is always the first item in list. */
4980 if (master) {
4981 ret = sysfs_create_link(&(dev->dev.kobj),
4982 &(adj_dev->dev.kobj), "master");
4983 if (ret)
4984 goto remove_symlinks;
4985
4986 list_add_rcu(&adj->list, dev_list);
4987 } else {
4988 list_add_tail_rcu(&adj->list, dev_list);
4989 }
4990
4991 return 0;
4992
4993 remove_symlinks:
4994 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4995 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4996 free_adj:
4997 kfree(adj);
4998 dev_put(adj_dev);
4999
5000 return ret;
5001 }
5002
5003 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5004 struct net_device *adj_dev,
5005 struct list_head *dev_list)
5006 {
5007 struct netdev_adjacent *adj;
5008
5009 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5010
5011 if (!adj) {
5012 pr_err("tried to remove device %s from %s\n",
5013 dev->name, adj_dev->name);
5014 BUG();
5015 }
5016
5017 if (adj->ref_nr > 1) {
5018 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5019 adj->ref_nr-1);
5020 adj->ref_nr--;
5021 return;
5022 }
5023
5024 if (adj->master)
5025 sysfs_remove_link(&(dev->dev.kobj), "master");
5026
5027 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5028 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5029
5030 list_del_rcu(&adj->list);
5031 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5032 adj_dev->name, dev->name, adj_dev->name);
5033 dev_put(adj_dev);
5034 kfree_rcu(adj, rcu);
5035 }
5036
5037 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5038 struct net_device *upper_dev,
5039 struct list_head *up_list,
5040 struct list_head *down_list,
5041 void *private, bool master)
5042 {
5043 int ret;
5044
5045 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5046 master);
5047 if (ret)
5048 return ret;
5049
5050 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5051 false);
5052 if (ret) {
5053 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5054 return ret;
5055 }
5056
5057 return 0;
5058 }
5059
5060 static int __netdev_adjacent_dev_link(struct net_device *dev,
5061 struct net_device *upper_dev)
5062 {
5063 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5064 &dev->all_adj_list.upper,
5065 &upper_dev->all_adj_list.lower,
5066 NULL, false);
5067 }
5068
5069 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5070 struct net_device *upper_dev,
5071 struct list_head *up_list,
5072 struct list_head *down_list)
5073 {
5074 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5075 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5076 }
5077
5078 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5079 struct net_device *upper_dev)
5080 {
5081 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5082 &dev->all_adj_list.upper,
5083 &upper_dev->all_adj_list.lower);
5084 }
5085
5086 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5087 struct net_device *upper_dev,
5088 void *private, bool master)
5089 {
5090 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5091
5092 if (ret)
5093 return ret;
5094
5095 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5096 &dev->adj_list.upper,
5097 &upper_dev->adj_list.lower,
5098 private, master);
5099 if (ret) {
5100 __netdev_adjacent_dev_unlink(dev, upper_dev);
5101 return ret;
5102 }
5103
5104 return 0;
5105 }
5106
5107 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5108 struct net_device *upper_dev)
5109 {
5110 __netdev_adjacent_dev_unlink(dev, upper_dev);
5111 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5112 &dev->adj_list.upper,
5113 &upper_dev->adj_list.lower);
5114 }
5115
5116 static int __netdev_upper_dev_link(struct net_device *dev,
5117 struct net_device *upper_dev, bool master,
5118 void *private)
5119 {
5120 struct netdev_adjacent *i, *j, *to_i, *to_j;
5121 int ret = 0;
5122
5123 ASSERT_RTNL();
5124
5125 if (dev == upper_dev)
5126 return -EBUSY;
5127
5128 /* To prevent loops, check if dev is not upper device to upper_dev. */
5129 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5130 return -EBUSY;
5131
5132 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5133 return -EEXIST;
5134
5135 if (master && netdev_master_upper_dev_get(dev))
5136 return -EBUSY;
5137
5138 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5139 master);
5140 if (ret)
5141 return ret;
5142
5143 /* Now that we linked these devs, make all the upper_dev's
5144 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5145 * versa, and don't forget the devices itself. All of these
5146 * links are non-neighbours.
5147 */
5148 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5149 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5150 pr_debug("Interlinking %s with %s, non-neighbour\n",
5151 i->dev->name, j->dev->name);
5152 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5153 if (ret)
5154 goto rollback_mesh;
5155 }
5156 }
5157
5158 /* add dev to every upper_dev's upper device */
5159 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5160 pr_debug("linking %s's upper device %s with %s\n",
5161 upper_dev->name, i->dev->name, dev->name);
5162 ret = __netdev_adjacent_dev_link(dev, i->dev);
5163 if (ret)
5164 goto rollback_upper_mesh;
5165 }
5166
5167 /* add upper_dev to every dev's lower device */
5168 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5169 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5170 i->dev->name, upper_dev->name);
5171 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5172 if (ret)
5173 goto rollback_lower_mesh;
5174 }
5175
5176 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5177 return 0;
5178
5179 rollback_lower_mesh:
5180 to_i = i;
5181 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5182 if (i == to_i)
5183 break;
5184 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5185 }
5186
5187 i = NULL;
5188
5189 rollback_upper_mesh:
5190 to_i = i;
5191 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5192 if (i == to_i)
5193 break;
5194 __netdev_adjacent_dev_unlink(dev, i->dev);
5195 }
5196
5197 i = j = NULL;
5198
5199 rollback_mesh:
5200 to_i = i;
5201 to_j = j;
5202 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5203 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5204 if (i == to_i && j == to_j)
5205 break;
5206 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5207 }
5208 if (i == to_i)
5209 break;
5210 }
5211
5212 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5213
5214 return ret;
5215 }
5216
5217 /**
5218 * netdev_upper_dev_link - Add a link to the upper device
5219 * @dev: device
5220 * @upper_dev: new upper device
5221 *
5222 * Adds a link to device which is upper to this one. The caller must hold
5223 * the RTNL lock. On a failure a negative errno code is returned.
5224 * On success the reference counts are adjusted and the function
5225 * returns zero.
5226 */
5227 int netdev_upper_dev_link(struct net_device *dev,
5228 struct net_device *upper_dev)
5229 {
5230 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5231 }
5232 EXPORT_SYMBOL(netdev_upper_dev_link);
5233
5234 /**
5235 * netdev_master_upper_dev_link - Add a master link to the upper device
5236 * @dev: device
5237 * @upper_dev: new upper device
5238 *
5239 * Adds a link to device which is upper to this one. In this case, only
5240 * one master upper device can be linked, although other non-master devices
5241 * might be linked as well. The caller must hold the RTNL lock.
5242 * On a failure a negative errno code is returned. On success the reference
5243 * counts are adjusted and the function returns zero.
5244 */
5245 int netdev_master_upper_dev_link(struct net_device *dev,
5246 struct net_device *upper_dev)
5247 {
5248 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5249 }
5250 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5251
5252 int netdev_master_upper_dev_link_private(struct net_device *dev,
5253 struct net_device *upper_dev,
5254 void *private)
5255 {
5256 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5257 }
5258 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5259
5260 /**
5261 * netdev_upper_dev_unlink - Removes a link to upper device
5262 * @dev: device
5263 * @upper_dev: new upper device
5264 *
5265 * Removes a link to device which is upper to this one. The caller must hold
5266 * the RTNL lock.
5267 */
5268 void netdev_upper_dev_unlink(struct net_device *dev,
5269 struct net_device *upper_dev)
5270 {
5271 struct netdev_adjacent *i, *j;
5272 ASSERT_RTNL();
5273
5274 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5275
5276 /* Here is the tricky part. We must remove all dev's lower
5277 * devices from all upper_dev's upper devices and vice
5278 * versa, to maintain the graph relationship.
5279 */
5280 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5281 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5282 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5283
5284 /* remove also the devices itself from lower/upper device
5285 * list
5286 */
5287 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5288 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5289
5290 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5291 __netdev_adjacent_dev_unlink(dev, i->dev);
5292
5293 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5294 }
5295 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5296
5297 static void netdev_adjacent_add_links(struct net_device *dev)
5298 {
5299 struct netdev_adjacent *iter;
5300
5301 struct net *net = dev_net(dev);
5302
5303 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5304 if (!net_eq(net,dev_net(iter->dev)))
5305 continue;
5306 netdev_adjacent_sysfs_add(iter->dev, dev,
5307 &iter->dev->adj_list.lower);
5308 netdev_adjacent_sysfs_add(dev, iter->dev,
5309 &dev->adj_list.upper);
5310 }
5311
5312 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5313 if (!net_eq(net,dev_net(iter->dev)))
5314 continue;
5315 netdev_adjacent_sysfs_add(iter->dev, dev,
5316 &iter->dev->adj_list.upper);
5317 netdev_adjacent_sysfs_add(dev, iter->dev,
5318 &dev->adj_list.lower);
5319 }
5320 }
5321
5322 static void netdev_adjacent_del_links(struct net_device *dev)
5323 {
5324 struct netdev_adjacent *iter;
5325
5326 struct net *net = dev_net(dev);
5327
5328 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5329 if (!net_eq(net,dev_net(iter->dev)))
5330 continue;
5331 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5332 &iter->dev->adj_list.lower);
5333 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5334 &dev->adj_list.upper);
5335 }
5336
5337 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5338 if (!net_eq(net,dev_net(iter->dev)))
5339 continue;
5340 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5341 &iter->dev->adj_list.upper);
5342 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5343 &dev->adj_list.lower);
5344 }
5345 }
5346
5347 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5348 {
5349 struct netdev_adjacent *iter;
5350
5351 struct net *net = dev_net(dev);
5352
5353 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5354 if (!net_eq(net,dev_net(iter->dev)))
5355 continue;
5356 netdev_adjacent_sysfs_del(iter->dev, oldname,
5357 &iter->dev->adj_list.lower);
5358 netdev_adjacent_sysfs_add(iter->dev, dev,
5359 &iter->dev->adj_list.lower);
5360 }
5361
5362 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5363 if (!net_eq(net,dev_net(iter->dev)))
5364 continue;
5365 netdev_adjacent_sysfs_del(iter->dev, oldname,
5366 &iter->dev->adj_list.upper);
5367 netdev_adjacent_sysfs_add(iter->dev, dev,
5368 &iter->dev->adj_list.upper);
5369 }
5370 }
5371
5372 void *netdev_lower_dev_get_private(struct net_device *dev,
5373 struct net_device *lower_dev)
5374 {
5375 struct netdev_adjacent *lower;
5376
5377 if (!lower_dev)
5378 return NULL;
5379 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5380 if (!lower)
5381 return NULL;
5382
5383 return lower->private;
5384 }
5385 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5386
5387
5388 int dev_get_nest_level(struct net_device *dev,
5389 bool (*type_check)(struct net_device *dev))
5390 {
5391 struct net_device *lower = NULL;
5392 struct list_head *iter;
5393 int max_nest = -1;
5394 int nest;
5395
5396 ASSERT_RTNL();
5397
5398 netdev_for_each_lower_dev(dev, lower, iter) {
5399 nest = dev_get_nest_level(lower, type_check);
5400 if (max_nest < nest)
5401 max_nest = nest;
5402 }
5403
5404 if (type_check(dev))
5405 max_nest++;
5406
5407 return max_nest;
5408 }
5409 EXPORT_SYMBOL(dev_get_nest_level);
5410
5411 static void dev_change_rx_flags(struct net_device *dev, int flags)
5412 {
5413 const struct net_device_ops *ops = dev->netdev_ops;
5414
5415 if (ops->ndo_change_rx_flags)
5416 ops->ndo_change_rx_flags(dev, flags);
5417 }
5418
5419 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5420 {
5421 unsigned int old_flags = dev->flags;
5422 kuid_t uid;
5423 kgid_t gid;
5424
5425 ASSERT_RTNL();
5426
5427 dev->flags |= IFF_PROMISC;
5428 dev->promiscuity += inc;
5429 if (dev->promiscuity == 0) {
5430 /*
5431 * Avoid overflow.
5432 * If inc causes overflow, untouch promisc and return error.
5433 */
5434 if (inc < 0)
5435 dev->flags &= ~IFF_PROMISC;
5436 else {
5437 dev->promiscuity -= inc;
5438 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5439 dev->name);
5440 return -EOVERFLOW;
5441 }
5442 }
5443 if (dev->flags != old_flags) {
5444 pr_info("device %s %s promiscuous mode\n",
5445 dev->name,
5446 dev->flags & IFF_PROMISC ? "entered" : "left");
5447 if (audit_enabled) {
5448 current_uid_gid(&uid, &gid);
5449 audit_log(current->audit_context, GFP_ATOMIC,
5450 AUDIT_ANOM_PROMISCUOUS,
5451 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5452 dev->name, (dev->flags & IFF_PROMISC),
5453 (old_flags & IFF_PROMISC),
5454 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5455 from_kuid(&init_user_ns, uid),
5456 from_kgid(&init_user_ns, gid),
5457 audit_get_sessionid(current));
5458 }
5459
5460 dev_change_rx_flags(dev, IFF_PROMISC);
5461 }
5462 if (notify)
5463 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5464 return 0;
5465 }
5466
5467 /**
5468 * dev_set_promiscuity - update promiscuity count on a device
5469 * @dev: device
5470 * @inc: modifier
5471 *
5472 * Add or remove promiscuity from a device. While the count in the device
5473 * remains above zero the interface remains promiscuous. Once it hits zero
5474 * the device reverts back to normal filtering operation. A negative inc
5475 * value is used to drop promiscuity on the device.
5476 * Return 0 if successful or a negative errno code on error.
5477 */
5478 int dev_set_promiscuity(struct net_device *dev, int inc)
5479 {
5480 unsigned int old_flags = dev->flags;
5481 int err;
5482
5483 err = __dev_set_promiscuity(dev, inc, true);
5484 if (err < 0)
5485 return err;
5486 if (dev->flags != old_flags)
5487 dev_set_rx_mode(dev);
5488 return err;
5489 }
5490 EXPORT_SYMBOL(dev_set_promiscuity);
5491
5492 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5493 {
5494 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5495
5496 ASSERT_RTNL();
5497
5498 dev->flags |= IFF_ALLMULTI;
5499 dev->allmulti += inc;
5500 if (dev->allmulti == 0) {
5501 /*
5502 * Avoid overflow.
5503 * If inc causes overflow, untouch allmulti and return error.
5504 */
5505 if (inc < 0)
5506 dev->flags &= ~IFF_ALLMULTI;
5507 else {
5508 dev->allmulti -= inc;
5509 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5510 dev->name);
5511 return -EOVERFLOW;
5512 }
5513 }
5514 if (dev->flags ^ old_flags) {
5515 dev_change_rx_flags(dev, IFF_ALLMULTI);
5516 dev_set_rx_mode(dev);
5517 if (notify)
5518 __dev_notify_flags(dev, old_flags,
5519 dev->gflags ^ old_gflags);
5520 }
5521 return 0;
5522 }
5523
5524 /**
5525 * dev_set_allmulti - update allmulti count on a device
5526 * @dev: device
5527 * @inc: modifier
5528 *
5529 * Add or remove reception of all multicast frames to a device. While the
5530 * count in the device remains above zero the interface remains listening
5531 * to all interfaces. Once it hits zero the device reverts back to normal
5532 * filtering operation. A negative @inc value is used to drop the counter
5533 * when releasing a resource needing all multicasts.
5534 * Return 0 if successful or a negative errno code on error.
5535 */
5536
5537 int dev_set_allmulti(struct net_device *dev, int inc)
5538 {
5539 return __dev_set_allmulti(dev, inc, true);
5540 }
5541 EXPORT_SYMBOL(dev_set_allmulti);
5542
5543 /*
5544 * Upload unicast and multicast address lists to device and
5545 * configure RX filtering. When the device doesn't support unicast
5546 * filtering it is put in promiscuous mode while unicast addresses
5547 * are present.
5548 */
5549 void __dev_set_rx_mode(struct net_device *dev)
5550 {
5551 const struct net_device_ops *ops = dev->netdev_ops;
5552
5553 /* dev_open will call this function so the list will stay sane. */
5554 if (!(dev->flags&IFF_UP))
5555 return;
5556
5557 if (!netif_device_present(dev))
5558 return;
5559
5560 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5561 /* Unicast addresses changes may only happen under the rtnl,
5562 * therefore calling __dev_set_promiscuity here is safe.
5563 */
5564 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5565 __dev_set_promiscuity(dev, 1, false);
5566 dev->uc_promisc = true;
5567 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5568 __dev_set_promiscuity(dev, -1, false);
5569 dev->uc_promisc = false;
5570 }
5571 }
5572
5573 if (ops->ndo_set_rx_mode)
5574 ops->ndo_set_rx_mode(dev);
5575 }
5576
5577 void dev_set_rx_mode(struct net_device *dev)
5578 {
5579 netif_addr_lock_bh(dev);
5580 __dev_set_rx_mode(dev);
5581 netif_addr_unlock_bh(dev);
5582 }
5583
5584 /**
5585 * dev_get_flags - get flags reported to userspace
5586 * @dev: device
5587 *
5588 * Get the combination of flag bits exported through APIs to userspace.
5589 */
5590 unsigned int dev_get_flags(const struct net_device *dev)
5591 {
5592 unsigned int flags;
5593
5594 flags = (dev->flags & ~(IFF_PROMISC |
5595 IFF_ALLMULTI |
5596 IFF_RUNNING |
5597 IFF_LOWER_UP |
5598 IFF_DORMANT)) |
5599 (dev->gflags & (IFF_PROMISC |
5600 IFF_ALLMULTI));
5601
5602 if (netif_running(dev)) {
5603 if (netif_oper_up(dev))
5604 flags |= IFF_RUNNING;
5605 if (netif_carrier_ok(dev))
5606 flags |= IFF_LOWER_UP;
5607 if (netif_dormant(dev))
5608 flags |= IFF_DORMANT;
5609 }
5610
5611 return flags;
5612 }
5613 EXPORT_SYMBOL(dev_get_flags);
5614
5615 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5616 {
5617 unsigned int old_flags = dev->flags;
5618 int ret;
5619
5620 ASSERT_RTNL();
5621
5622 /*
5623 * Set the flags on our device.
5624 */
5625
5626 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5627 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5628 IFF_AUTOMEDIA)) |
5629 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5630 IFF_ALLMULTI));
5631
5632 /*
5633 * Load in the correct multicast list now the flags have changed.
5634 */
5635
5636 if ((old_flags ^ flags) & IFF_MULTICAST)
5637 dev_change_rx_flags(dev, IFF_MULTICAST);
5638
5639 dev_set_rx_mode(dev);
5640
5641 /*
5642 * Have we downed the interface. We handle IFF_UP ourselves
5643 * according to user attempts to set it, rather than blindly
5644 * setting it.
5645 */
5646
5647 ret = 0;
5648 if ((old_flags ^ flags) & IFF_UP)
5649 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5650
5651 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5652 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5653 unsigned int old_flags = dev->flags;
5654
5655 dev->gflags ^= IFF_PROMISC;
5656
5657 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5658 if (dev->flags != old_flags)
5659 dev_set_rx_mode(dev);
5660 }
5661
5662 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5663 is important. Some (broken) drivers set IFF_PROMISC, when
5664 IFF_ALLMULTI is requested not asking us and not reporting.
5665 */
5666 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5667 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5668
5669 dev->gflags ^= IFF_ALLMULTI;
5670 __dev_set_allmulti(dev, inc, false);
5671 }
5672
5673 return ret;
5674 }
5675
5676 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5677 unsigned int gchanges)
5678 {
5679 unsigned int changes = dev->flags ^ old_flags;
5680
5681 if (gchanges)
5682 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5683
5684 if (changes & IFF_UP) {
5685 if (dev->flags & IFF_UP)
5686 call_netdevice_notifiers(NETDEV_UP, dev);
5687 else
5688 call_netdevice_notifiers(NETDEV_DOWN, dev);
5689 }
5690
5691 if (dev->flags & IFF_UP &&
5692 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5693 struct netdev_notifier_change_info change_info;
5694
5695 change_info.flags_changed = changes;
5696 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5697 &change_info.info);
5698 }
5699 }
5700
5701 /**
5702 * dev_change_flags - change device settings
5703 * @dev: device
5704 * @flags: device state flags
5705 *
5706 * Change settings on device based state flags. The flags are
5707 * in the userspace exported format.
5708 */
5709 int dev_change_flags(struct net_device *dev, unsigned int flags)
5710 {
5711 int ret;
5712 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5713
5714 ret = __dev_change_flags(dev, flags);
5715 if (ret < 0)
5716 return ret;
5717
5718 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5719 __dev_notify_flags(dev, old_flags, changes);
5720 return ret;
5721 }
5722 EXPORT_SYMBOL(dev_change_flags);
5723
5724 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5725 {
5726 const struct net_device_ops *ops = dev->netdev_ops;
5727
5728 if (ops->ndo_change_mtu)
5729 return ops->ndo_change_mtu(dev, new_mtu);
5730
5731 dev->mtu = new_mtu;
5732 return 0;
5733 }
5734
5735 /**
5736 * dev_set_mtu - Change maximum transfer unit
5737 * @dev: device
5738 * @new_mtu: new transfer unit
5739 *
5740 * Change the maximum transfer size of the network device.
5741 */
5742 int dev_set_mtu(struct net_device *dev, int new_mtu)
5743 {
5744 int err, orig_mtu;
5745
5746 if (new_mtu == dev->mtu)
5747 return 0;
5748
5749 /* MTU must be positive. */
5750 if (new_mtu < 0)
5751 return -EINVAL;
5752
5753 if (!netif_device_present(dev))
5754 return -ENODEV;
5755
5756 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5757 err = notifier_to_errno(err);
5758 if (err)
5759 return err;
5760
5761 orig_mtu = dev->mtu;
5762 err = __dev_set_mtu(dev, new_mtu);
5763
5764 if (!err) {
5765 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5766 err = notifier_to_errno(err);
5767 if (err) {
5768 /* setting mtu back and notifying everyone again,
5769 * so that they have a chance to revert changes.
5770 */
5771 __dev_set_mtu(dev, orig_mtu);
5772 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5773 }
5774 }
5775 return err;
5776 }
5777 EXPORT_SYMBOL(dev_set_mtu);
5778
5779 /**
5780 * dev_set_group - Change group this device belongs to
5781 * @dev: device
5782 * @new_group: group this device should belong to
5783 */
5784 void dev_set_group(struct net_device *dev, int new_group)
5785 {
5786 dev->group = new_group;
5787 }
5788 EXPORT_SYMBOL(dev_set_group);
5789
5790 /**
5791 * dev_set_mac_address - Change Media Access Control Address
5792 * @dev: device
5793 * @sa: new address
5794 *
5795 * Change the hardware (MAC) address of the device
5796 */
5797 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5798 {
5799 const struct net_device_ops *ops = dev->netdev_ops;
5800 int err;
5801
5802 if (!ops->ndo_set_mac_address)
5803 return -EOPNOTSUPP;
5804 if (sa->sa_family != dev->type)
5805 return -EINVAL;
5806 if (!netif_device_present(dev))
5807 return -ENODEV;
5808 err = ops->ndo_set_mac_address(dev, sa);
5809 if (err)
5810 return err;
5811 dev->addr_assign_type = NET_ADDR_SET;
5812 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5813 add_device_randomness(dev->dev_addr, dev->addr_len);
5814 return 0;
5815 }
5816 EXPORT_SYMBOL(dev_set_mac_address);
5817
5818 /**
5819 * dev_change_carrier - Change device carrier
5820 * @dev: device
5821 * @new_carrier: new value
5822 *
5823 * Change device carrier
5824 */
5825 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5826 {
5827 const struct net_device_ops *ops = dev->netdev_ops;
5828
5829 if (!ops->ndo_change_carrier)
5830 return -EOPNOTSUPP;
5831 if (!netif_device_present(dev))
5832 return -ENODEV;
5833 return ops->ndo_change_carrier(dev, new_carrier);
5834 }
5835 EXPORT_SYMBOL(dev_change_carrier);
5836
5837 /**
5838 * dev_get_phys_port_id - Get device physical port ID
5839 * @dev: device
5840 * @ppid: port ID
5841 *
5842 * Get device physical port ID
5843 */
5844 int dev_get_phys_port_id(struct net_device *dev,
5845 struct netdev_phys_item_id *ppid)
5846 {
5847 const struct net_device_ops *ops = dev->netdev_ops;
5848
5849 if (!ops->ndo_get_phys_port_id)
5850 return -EOPNOTSUPP;
5851 return ops->ndo_get_phys_port_id(dev, ppid);
5852 }
5853 EXPORT_SYMBOL(dev_get_phys_port_id);
5854
5855 /**
5856 * dev_new_index - allocate an ifindex
5857 * @net: the applicable net namespace
5858 *
5859 * Returns a suitable unique value for a new device interface
5860 * number. The caller must hold the rtnl semaphore or the
5861 * dev_base_lock to be sure it remains unique.
5862 */
5863 static int dev_new_index(struct net *net)
5864 {
5865 int ifindex = net->ifindex;
5866 for (;;) {
5867 if (++ifindex <= 0)
5868 ifindex = 1;
5869 if (!__dev_get_by_index(net, ifindex))
5870 return net->ifindex = ifindex;
5871 }
5872 }
5873
5874 /* Delayed registration/unregisteration */
5875 static LIST_HEAD(net_todo_list);
5876 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5877
5878 static void net_set_todo(struct net_device *dev)
5879 {
5880 list_add_tail(&dev->todo_list, &net_todo_list);
5881 dev_net(dev)->dev_unreg_count++;
5882 }
5883
5884 static void rollback_registered_many(struct list_head *head)
5885 {
5886 struct net_device *dev, *tmp;
5887 LIST_HEAD(close_head);
5888
5889 BUG_ON(dev_boot_phase);
5890 ASSERT_RTNL();
5891
5892 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5893 /* Some devices call without registering
5894 * for initialization unwind. Remove those
5895 * devices and proceed with the remaining.
5896 */
5897 if (dev->reg_state == NETREG_UNINITIALIZED) {
5898 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5899 dev->name, dev);
5900
5901 WARN_ON(1);
5902 list_del(&dev->unreg_list);
5903 continue;
5904 }
5905 dev->dismantle = true;
5906 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5907 }
5908
5909 /* If device is running, close it first. */
5910 list_for_each_entry(dev, head, unreg_list)
5911 list_add_tail(&dev->close_list, &close_head);
5912 dev_close_many(&close_head);
5913
5914 list_for_each_entry(dev, head, unreg_list) {
5915 /* And unlink it from device chain. */
5916 unlist_netdevice(dev);
5917
5918 dev->reg_state = NETREG_UNREGISTERING;
5919 }
5920
5921 synchronize_net();
5922
5923 list_for_each_entry(dev, head, unreg_list) {
5924 struct sk_buff *skb = NULL;
5925
5926 /* Shutdown queueing discipline. */
5927 dev_shutdown(dev);
5928
5929
5930 /* Notify protocols, that we are about to destroy
5931 this device. They should clean all the things.
5932 */
5933 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5934
5935 if (!dev->rtnl_link_ops ||
5936 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5937 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5938 GFP_KERNEL);
5939
5940 /*
5941 * Flush the unicast and multicast chains
5942 */
5943 dev_uc_flush(dev);
5944 dev_mc_flush(dev);
5945
5946 if (dev->netdev_ops->ndo_uninit)
5947 dev->netdev_ops->ndo_uninit(dev);
5948
5949 if (skb)
5950 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
5951
5952 /* Notifier chain MUST detach us all upper devices. */
5953 WARN_ON(netdev_has_any_upper_dev(dev));
5954
5955 /* Remove entries from kobject tree */
5956 netdev_unregister_kobject(dev);
5957 #ifdef CONFIG_XPS
5958 /* Remove XPS queueing entries */
5959 netif_reset_xps_queues_gt(dev, 0);
5960 #endif
5961 }
5962
5963 synchronize_net();
5964
5965 list_for_each_entry(dev, head, unreg_list)
5966 dev_put(dev);
5967 }
5968
5969 static void rollback_registered(struct net_device *dev)
5970 {
5971 LIST_HEAD(single);
5972
5973 list_add(&dev->unreg_list, &single);
5974 rollback_registered_many(&single);
5975 list_del(&single);
5976 }
5977
5978 static netdev_features_t netdev_fix_features(struct net_device *dev,
5979 netdev_features_t features)
5980 {
5981 /* Fix illegal checksum combinations */
5982 if ((features & NETIF_F_HW_CSUM) &&
5983 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5984 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5985 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5986 }
5987
5988 /* TSO requires that SG is present as well. */
5989 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5990 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5991 features &= ~NETIF_F_ALL_TSO;
5992 }
5993
5994 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5995 !(features & NETIF_F_IP_CSUM)) {
5996 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5997 features &= ~NETIF_F_TSO;
5998 features &= ~NETIF_F_TSO_ECN;
5999 }
6000
6001 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6002 !(features & NETIF_F_IPV6_CSUM)) {
6003 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6004 features &= ~NETIF_F_TSO6;
6005 }
6006
6007 /* TSO ECN requires that TSO is present as well. */
6008 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6009 features &= ~NETIF_F_TSO_ECN;
6010
6011 /* Software GSO depends on SG. */
6012 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6013 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6014 features &= ~NETIF_F_GSO;
6015 }
6016
6017 /* UFO needs SG and checksumming */
6018 if (features & NETIF_F_UFO) {
6019 /* maybe split UFO into V4 and V6? */
6020 if (!((features & NETIF_F_GEN_CSUM) ||
6021 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6022 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6023 netdev_dbg(dev,
6024 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6025 features &= ~NETIF_F_UFO;
6026 }
6027
6028 if (!(features & NETIF_F_SG)) {
6029 netdev_dbg(dev,
6030 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6031 features &= ~NETIF_F_UFO;
6032 }
6033 }
6034
6035 #ifdef CONFIG_NET_RX_BUSY_POLL
6036 if (dev->netdev_ops->ndo_busy_poll)
6037 features |= NETIF_F_BUSY_POLL;
6038 else
6039 #endif
6040 features &= ~NETIF_F_BUSY_POLL;
6041
6042 return features;
6043 }
6044
6045 int __netdev_update_features(struct net_device *dev)
6046 {
6047 netdev_features_t features;
6048 int err = 0;
6049
6050 ASSERT_RTNL();
6051
6052 features = netdev_get_wanted_features(dev);
6053
6054 if (dev->netdev_ops->ndo_fix_features)
6055 features = dev->netdev_ops->ndo_fix_features(dev, features);
6056
6057 /* driver might be less strict about feature dependencies */
6058 features = netdev_fix_features(dev, features);
6059
6060 if (dev->features == features)
6061 return 0;
6062
6063 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6064 &dev->features, &features);
6065
6066 if (dev->netdev_ops->ndo_set_features)
6067 err = dev->netdev_ops->ndo_set_features(dev, features);
6068
6069 if (unlikely(err < 0)) {
6070 netdev_err(dev,
6071 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6072 err, &features, &dev->features);
6073 return -1;
6074 }
6075
6076 if (!err)
6077 dev->features = features;
6078
6079 return 1;
6080 }
6081
6082 /**
6083 * netdev_update_features - recalculate device features
6084 * @dev: the device to check
6085 *
6086 * Recalculate dev->features set and send notifications if it
6087 * has changed. Should be called after driver or hardware dependent
6088 * conditions might have changed that influence the features.
6089 */
6090 void netdev_update_features(struct net_device *dev)
6091 {
6092 if (__netdev_update_features(dev))
6093 netdev_features_change(dev);
6094 }
6095 EXPORT_SYMBOL(netdev_update_features);
6096
6097 /**
6098 * netdev_change_features - recalculate device features
6099 * @dev: the device to check
6100 *
6101 * Recalculate dev->features set and send notifications even
6102 * if they have not changed. Should be called instead of
6103 * netdev_update_features() if also dev->vlan_features might
6104 * have changed to allow the changes to be propagated to stacked
6105 * VLAN devices.
6106 */
6107 void netdev_change_features(struct net_device *dev)
6108 {
6109 __netdev_update_features(dev);
6110 netdev_features_change(dev);
6111 }
6112 EXPORT_SYMBOL(netdev_change_features);
6113
6114 /**
6115 * netif_stacked_transfer_operstate - transfer operstate
6116 * @rootdev: the root or lower level device to transfer state from
6117 * @dev: the device to transfer operstate to
6118 *
6119 * Transfer operational state from root to device. This is normally
6120 * called when a stacking relationship exists between the root
6121 * device and the device(a leaf device).
6122 */
6123 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6124 struct net_device *dev)
6125 {
6126 if (rootdev->operstate == IF_OPER_DORMANT)
6127 netif_dormant_on(dev);
6128 else
6129 netif_dormant_off(dev);
6130
6131 if (netif_carrier_ok(rootdev)) {
6132 if (!netif_carrier_ok(dev))
6133 netif_carrier_on(dev);
6134 } else {
6135 if (netif_carrier_ok(dev))
6136 netif_carrier_off(dev);
6137 }
6138 }
6139 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6140
6141 #ifdef CONFIG_SYSFS
6142 static int netif_alloc_rx_queues(struct net_device *dev)
6143 {
6144 unsigned int i, count = dev->num_rx_queues;
6145 struct netdev_rx_queue *rx;
6146
6147 BUG_ON(count < 1);
6148
6149 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6150 if (!rx)
6151 return -ENOMEM;
6152
6153 dev->_rx = rx;
6154
6155 for (i = 0; i < count; i++)
6156 rx[i].dev = dev;
6157 return 0;
6158 }
6159 #endif
6160
6161 static void netdev_init_one_queue(struct net_device *dev,
6162 struct netdev_queue *queue, void *_unused)
6163 {
6164 /* Initialize queue lock */
6165 spin_lock_init(&queue->_xmit_lock);
6166 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6167 queue->xmit_lock_owner = -1;
6168 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6169 queue->dev = dev;
6170 #ifdef CONFIG_BQL
6171 dql_init(&queue->dql, HZ);
6172 #endif
6173 }
6174
6175 static void netif_free_tx_queues(struct net_device *dev)
6176 {
6177 kvfree(dev->_tx);
6178 }
6179
6180 static int netif_alloc_netdev_queues(struct net_device *dev)
6181 {
6182 unsigned int count = dev->num_tx_queues;
6183 struct netdev_queue *tx;
6184 size_t sz = count * sizeof(*tx);
6185
6186 BUG_ON(count < 1 || count > 0xffff);
6187
6188 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6189 if (!tx) {
6190 tx = vzalloc(sz);
6191 if (!tx)
6192 return -ENOMEM;
6193 }
6194 dev->_tx = tx;
6195
6196 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6197 spin_lock_init(&dev->tx_global_lock);
6198
6199 return 0;
6200 }
6201
6202 /**
6203 * register_netdevice - register a network device
6204 * @dev: device to register
6205 *
6206 * Take a completed network device structure and add it to the kernel
6207 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6208 * chain. 0 is returned on success. A negative errno code is returned
6209 * on a failure to set up the device, or if the name is a duplicate.
6210 *
6211 * Callers must hold the rtnl semaphore. You may want
6212 * register_netdev() instead of this.
6213 *
6214 * BUGS:
6215 * The locking appears insufficient to guarantee two parallel registers
6216 * will not get the same name.
6217 */
6218
6219 int register_netdevice(struct net_device *dev)
6220 {
6221 int ret;
6222 struct net *net = dev_net(dev);
6223
6224 BUG_ON(dev_boot_phase);
6225 ASSERT_RTNL();
6226
6227 might_sleep();
6228
6229 /* When net_device's are persistent, this will be fatal. */
6230 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6231 BUG_ON(!net);
6232
6233 spin_lock_init(&dev->addr_list_lock);
6234 netdev_set_addr_lockdep_class(dev);
6235
6236 dev->iflink = -1;
6237
6238 ret = dev_get_valid_name(net, dev, dev->name);
6239 if (ret < 0)
6240 goto out;
6241
6242 /* Init, if this function is available */
6243 if (dev->netdev_ops->ndo_init) {
6244 ret = dev->netdev_ops->ndo_init(dev);
6245 if (ret) {
6246 if (ret > 0)
6247 ret = -EIO;
6248 goto out;
6249 }
6250 }
6251
6252 if (((dev->hw_features | dev->features) &
6253 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6254 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6255 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6256 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6257 ret = -EINVAL;
6258 goto err_uninit;
6259 }
6260
6261 ret = -EBUSY;
6262 if (!dev->ifindex)
6263 dev->ifindex = dev_new_index(net);
6264 else if (__dev_get_by_index(net, dev->ifindex))
6265 goto err_uninit;
6266
6267 if (dev->iflink == -1)
6268 dev->iflink = dev->ifindex;
6269
6270 /* Transfer changeable features to wanted_features and enable
6271 * software offloads (GSO and GRO).
6272 */
6273 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6274 dev->features |= NETIF_F_SOFT_FEATURES;
6275 dev->wanted_features = dev->features & dev->hw_features;
6276
6277 if (!(dev->flags & IFF_LOOPBACK)) {
6278 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6279 }
6280
6281 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6282 */
6283 dev->vlan_features |= NETIF_F_HIGHDMA;
6284
6285 /* Make NETIF_F_SG inheritable to tunnel devices.
6286 */
6287 dev->hw_enc_features |= NETIF_F_SG;
6288
6289 /* Make NETIF_F_SG inheritable to MPLS.
6290 */
6291 dev->mpls_features |= NETIF_F_SG;
6292
6293 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6294 ret = notifier_to_errno(ret);
6295 if (ret)
6296 goto err_uninit;
6297
6298 ret = netdev_register_kobject(dev);
6299 if (ret)
6300 goto err_uninit;
6301 dev->reg_state = NETREG_REGISTERED;
6302
6303 __netdev_update_features(dev);
6304
6305 /*
6306 * Default initial state at registry is that the
6307 * device is present.
6308 */
6309
6310 set_bit(__LINK_STATE_PRESENT, &dev->state);
6311
6312 linkwatch_init_dev(dev);
6313
6314 dev_init_scheduler(dev);
6315 dev_hold(dev);
6316 list_netdevice(dev);
6317 add_device_randomness(dev->dev_addr, dev->addr_len);
6318
6319 /* If the device has permanent device address, driver should
6320 * set dev_addr and also addr_assign_type should be set to
6321 * NET_ADDR_PERM (default value).
6322 */
6323 if (dev->addr_assign_type == NET_ADDR_PERM)
6324 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6325
6326 /* Notify protocols, that a new device appeared. */
6327 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6328 ret = notifier_to_errno(ret);
6329 if (ret) {
6330 rollback_registered(dev);
6331 dev->reg_state = NETREG_UNREGISTERED;
6332 }
6333 /*
6334 * Prevent userspace races by waiting until the network
6335 * device is fully setup before sending notifications.
6336 */
6337 if (!dev->rtnl_link_ops ||
6338 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6339 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6340
6341 out:
6342 return ret;
6343
6344 err_uninit:
6345 if (dev->netdev_ops->ndo_uninit)
6346 dev->netdev_ops->ndo_uninit(dev);
6347 goto out;
6348 }
6349 EXPORT_SYMBOL(register_netdevice);
6350
6351 /**
6352 * init_dummy_netdev - init a dummy network device for NAPI
6353 * @dev: device to init
6354 *
6355 * This takes a network device structure and initialize the minimum
6356 * amount of fields so it can be used to schedule NAPI polls without
6357 * registering a full blown interface. This is to be used by drivers
6358 * that need to tie several hardware interfaces to a single NAPI
6359 * poll scheduler due to HW limitations.
6360 */
6361 int init_dummy_netdev(struct net_device *dev)
6362 {
6363 /* Clear everything. Note we don't initialize spinlocks
6364 * are they aren't supposed to be taken by any of the
6365 * NAPI code and this dummy netdev is supposed to be
6366 * only ever used for NAPI polls
6367 */
6368 memset(dev, 0, sizeof(struct net_device));
6369
6370 /* make sure we BUG if trying to hit standard
6371 * register/unregister code path
6372 */
6373 dev->reg_state = NETREG_DUMMY;
6374
6375 /* NAPI wants this */
6376 INIT_LIST_HEAD(&dev->napi_list);
6377
6378 /* a dummy interface is started by default */
6379 set_bit(__LINK_STATE_PRESENT, &dev->state);
6380 set_bit(__LINK_STATE_START, &dev->state);
6381
6382 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6383 * because users of this 'device' dont need to change
6384 * its refcount.
6385 */
6386
6387 return 0;
6388 }
6389 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6390
6391
6392 /**
6393 * register_netdev - register a network device
6394 * @dev: device to register
6395 *
6396 * Take a completed network device structure and add it to the kernel
6397 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6398 * chain. 0 is returned on success. A negative errno code is returned
6399 * on a failure to set up the device, or if the name is a duplicate.
6400 *
6401 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6402 * and expands the device name if you passed a format string to
6403 * alloc_netdev.
6404 */
6405 int register_netdev(struct net_device *dev)
6406 {
6407 int err;
6408
6409 rtnl_lock();
6410 err = register_netdevice(dev);
6411 rtnl_unlock();
6412 return err;
6413 }
6414 EXPORT_SYMBOL(register_netdev);
6415
6416 int netdev_refcnt_read(const struct net_device *dev)
6417 {
6418 int i, refcnt = 0;
6419
6420 for_each_possible_cpu(i)
6421 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6422 return refcnt;
6423 }
6424 EXPORT_SYMBOL(netdev_refcnt_read);
6425
6426 /**
6427 * netdev_wait_allrefs - wait until all references are gone.
6428 * @dev: target net_device
6429 *
6430 * This is called when unregistering network devices.
6431 *
6432 * Any protocol or device that holds a reference should register
6433 * for netdevice notification, and cleanup and put back the
6434 * reference if they receive an UNREGISTER event.
6435 * We can get stuck here if buggy protocols don't correctly
6436 * call dev_put.
6437 */
6438 static void netdev_wait_allrefs(struct net_device *dev)
6439 {
6440 unsigned long rebroadcast_time, warning_time;
6441 int refcnt;
6442
6443 linkwatch_forget_dev(dev);
6444
6445 rebroadcast_time = warning_time = jiffies;
6446 refcnt = netdev_refcnt_read(dev);
6447
6448 while (refcnt != 0) {
6449 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6450 rtnl_lock();
6451
6452 /* Rebroadcast unregister notification */
6453 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6454
6455 __rtnl_unlock();
6456 rcu_barrier();
6457 rtnl_lock();
6458
6459 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6460 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6461 &dev->state)) {
6462 /* We must not have linkwatch events
6463 * pending on unregister. If this
6464 * happens, we simply run the queue
6465 * unscheduled, resulting in a noop
6466 * for this device.
6467 */
6468 linkwatch_run_queue();
6469 }
6470
6471 __rtnl_unlock();
6472
6473 rebroadcast_time = jiffies;
6474 }
6475
6476 msleep(250);
6477
6478 refcnt = netdev_refcnt_read(dev);
6479
6480 if (time_after(jiffies, warning_time + 10 * HZ)) {
6481 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6482 dev->name, refcnt);
6483 warning_time = jiffies;
6484 }
6485 }
6486 }
6487
6488 /* The sequence is:
6489 *
6490 * rtnl_lock();
6491 * ...
6492 * register_netdevice(x1);
6493 * register_netdevice(x2);
6494 * ...
6495 * unregister_netdevice(y1);
6496 * unregister_netdevice(y2);
6497 * ...
6498 * rtnl_unlock();
6499 * free_netdev(y1);
6500 * free_netdev(y2);
6501 *
6502 * We are invoked by rtnl_unlock().
6503 * This allows us to deal with problems:
6504 * 1) We can delete sysfs objects which invoke hotplug
6505 * without deadlocking with linkwatch via keventd.
6506 * 2) Since we run with the RTNL semaphore not held, we can sleep
6507 * safely in order to wait for the netdev refcnt to drop to zero.
6508 *
6509 * We must not return until all unregister events added during
6510 * the interval the lock was held have been completed.
6511 */
6512 void netdev_run_todo(void)
6513 {
6514 struct list_head list;
6515
6516 /* Snapshot list, allow later requests */
6517 list_replace_init(&net_todo_list, &list);
6518
6519 __rtnl_unlock();
6520
6521
6522 /* Wait for rcu callbacks to finish before next phase */
6523 if (!list_empty(&list))
6524 rcu_barrier();
6525
6526 while (!list_empty(&list)) {
6527 struct net_device *dev
6528 = list_first_entry(&list, struct net_device, todo_list);
6529 list_del(&dev->todo_list);
6530
6531 rtnl_lock();
6532 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6533 __rtnl_unlock();
6534
6535 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6536 pr_err("network todo '%s' but state %d\n",
6537 dev->name, dev->reg_state);
6538 dump_stack();
6539 continue;
6540 }
6541
6542 dev->reg_state = NETREG_UNREGISTERED;
6543
6544 on_each_cpu(flush_backlog, dev, 1);
6545
6546 netdev_wait_allrefs(dev);
6547
6548 /* paranoia */
6549 BUG_ON(netdev_refcnt_read(dev));
6550 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6551 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6552 WARN_ON(dev->dn_ptr);
6553
6554 if (dev->destructor)
6555 dev->destructor(dev);
6556
6557 /* Report a network device has been unregistered */
6558 rtnl_lock();
6559 dev_net(dev)->dev_unreg_count--;
6560 __rtnl_unlock();
6561 wake_up(&netdev_unregistering_wq);
6562
6563 /* Free network device */
6564 kobject_put(&dev->dev.kobj);
6565 }
6566 }
6567
6568 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6569 * fields in the same order, with only the type differing.
6570 */
6571 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6572 const struct net_device_stats *netdev_stats)
6573 {
6574 #if BITS_PER_LONG == 64
6575 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6576 memcpy(stats64, netdev_stats, sizeof(*stats64));
6577 #else
6578 size_t i, n = sizeof(*stats64) / sizeof(u64);
6579 const unsigned long *src = (const unsigned long *)netdev_stats;
6580 u64 *dst = (u64 *)stats64;
6581
6582 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6583 sizeof(*stats64) / sizeof(u64));
6584 for (i = 0; i < n; i++)
6585 dst[i] = src[i];
6586 #endif
6587 }
6588 EXPORT_SYMBOL(netdev_stats_to_stats64);
6589
6590 /**
6591 * dev_get_stats - get network device statistics
6592 * @dev: device to get statistics from
6593 * @storage: place to store stats
6594 *
6595 * Get network statistics from device. Return @storage.
6596 * The device driver may provide its own method by setting
6597 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6598 * otherwise the internal statistics structure is used.
6599 */
6600 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6601 struct rtnl_link_stats64 *storage)
6602 {
6603 const struct net_device_ops *ops = dev->netdev_ops;
6604
6605 if (ops->ndo_get_stats64) {
6606 memset(storage, 0, sizeof(*storage));
6607 ops->ndo_get_stats64(dev, storage);
6608 } else if (ops->ndo_get_stats) {
6609 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6610 } else {
6611 netdev_stats_to_stats64(storage, &dev->stats);
6612 }
6613 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6614 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6615 return storage;
6616 }
6617 EXPORT_SYMBOL(dev_get_stats);
6618
6619 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6620 {
6621 struct netdev_queue *queue = dev_ingress_queue(dev);
6622
6623 #ifdef CONFIG_NET_CLS_ACT
6624 if (queue)
6625 return queue;
6626 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6627 if (!queue)
6628 return NULL;
6629 netdev_init_one_queue(dev, queue, NULL);
6630 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6631 queue->qdisc_sleeping = &noop_qdisc;
6632 rcu_assign_pointer(dev->ingress_queue, queue);
6633 #endif
6634 return queue;
6635 }
6636
6637 static const struct ethtool_ops default_ethtool_ops;
6638
6639 void netdev_set_default_ethtool_ops(struct net_device *dev,
6640 const struct ethtool_ops *ops)
6641 {
6642 if (dev->ethtool_ops == &default_ethtool_ops)
6643 dev->ethtool_ops = ops;
6644 }
6645 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6646
6647 void netdev_freemem(struct net_device *dev)
6648 {
6649 char *addr = (char *)dev - dev->padded;
6650
6651 kvfree(addr);
6652 }
6653
6654 /**
6655 * alloc_netdev_mqs - allocate network device
6656 * @sizeof_priv: size of private data to allocate space for
6657 * @name: device name format string
6658 * @name_assign_type: origin of device name
6659 * @setup: callback to initialize device
6660 * @txqs: the number of TX subqueues to allocate
6661 * @rxqs: the number of RX subqueues to allocate
6662 *
6663 * Allocates a struct net_device with private data area for driver use
6664 * and performs basic initialization. Also allocates subqueue structs
6665 * for each queue on the device.
6666 */
6667 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6668 unsigned char name_assign_type,
6669 void (*setup)(struct net_device *),
6670 unsigned int txqs, unsigned int rxqs)
6671 {
6672 struct net_device *dev;
6673 size_t alloc_size;
6674 struct net_device *p;
6675
6676 BUG_ON(strlen(name) >= sizeof(dev->name));
6677
6678 if (txqs < 1) {
6679 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6680 return NULL;
6681 }
6682
6683 #ifdef CONFIG_SYSFS
6684 if (rxqs < 1) {
6685 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6686 return NULL;
6687 }
6688 #endif
6689
6690 alloc_size = sizeof(struct net_device);
6691 if (sizeof_priv) {
6692 /* ensure 32-byte alignment of private area */
6693 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6694 alloc_size += sizeof_priv;
6695 }
6696 /* ensure 32-byte alignment of whole construct */
6697 alloc_size += NETDEV_ALIGN - 1;
6698
6699 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6700 if (!p)
6701 p = vzalloc(alloc_size);
6702 if (!p)
6703 return NULL;
6704
6705 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6706 dev->padded = (char *)dev - (char *)p;
6707
6708 dev->pcpu_refcnt = alloc_percpu(int);
6709 if (!dev->pcpu_refcnt)
6710 goto free_dev;
6711
6712 if (dev_addr_init(dev))
6713 goto free_pcpu;
6714
6715 dev_mc_init(dev);
6716 dev_uc_init(dev);
6717
6718 dev_net_set(dev, &init_net);
6719
6720 dev->gso_max_size = GSO_MAX_SIZE;
6721 dev->gso_max_segs = GSO_MAX_SEGS;
6722 dev->gso_min_segs = 0;
6723
6724 INIT_LIST_HEAD(&dev->napi_list);
6725 INIT_LIST_HEAD(&dev->unreg_list);
6726 INIT_LIST_HEAD(&dev->close_list);
6727 INIT_LIST_HEAD(&dev->link_watch_list);
6728 INIT_LIST_HEAD(&dev->adj_list.upper);
6729 INIT_LIST_HEAD(&dev->adj_list.lower);
6730 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6731 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6732 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6733 setup(dev);
6734
6735 dev->num_tx_queues = txqs;
6736 dev->real_num_tx_queues = txqs;
6737 if (netif_alloc_netdev_queues(dev))
6738 goto free_all;
6739
6740 #ifdef CONFIG_SYSFS
6741 dev->num_rx_queues = rxqs;
6742 dev->real_num_rx_queues = rxqs;
6743 if (netif_alloc_rx_queues(dev))
6744 goto free_all;
6745 #endif
6746
6747 strcpy(dev->name, name);
6748 dev->name_assign_type = name_assign_type;
6749 dev->group = INIT_NETDEV_GROUP;
6750 if (!dev->ethtool_ops)
6751 dev->ethtool_ops = &default_ethtool_ops;
6752 return dev;
6753
6754 free_all:
6755 free_netdev(dev);
6756 return NULL;
6757
6758 free_pcpu:
6759 free_percpu(dev->pcpu_refcnt);
6760 free_dev:
6761 netdev_freemem(dev);
6762 return NULL;
6763 }
6764 EXPORT_SYMBOL(alloc_netdev_mqs);
6765
6766 /**
6767 * free_netdev - free network device
6768 * @dev: device
6769 *
6770 * This function does the last stage of destroying an allocated device
6771 * interface. The reference to the device object is released.
6772 * If this is the last reference then it will be freed.
6773 */
6774 void free_netdev(struct net_device *dev)
6775 {
6776 struct napi_struct *p, *n;
6777
6778 release_net(dev_net(dev));
6779
6780 netif_free_tx_queues(dev);
6781 #ifdef CONFIG_SYSFS
6782 kfree(dev->_rx);
6783 #endif
6784
6785 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6786
6787 /* Flush device addresses */
6788 dev_addr_flush(dev);
6789
6790 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6791 netif_napi_del(p);
6792
6793 free_percpu(dev->pcpu_refcnt);
6794 dev->pcpu_refcnt = NULL;
6795
6796 /* Compatibility with error handling in drivers */
6797 if (dev->reg_state == NETREG_UNINITIALIZED) {
6798 netdev_freemem(dev);
6799 return;
6800 }
6801
6802 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6803 dev->reg_state = NETREG_RELEASED;
6804
6805 /* will free via device release */
6806 put_device(&dev->dev);
6807 }
6808 EXPORT_SYMBOL(free_netdev);
6809
6810 /**
6811 * synchronize_net - Synchronize with packet receive processing
6812 *
6813 * Wait for packets currently being received to be done.
6814 * Does not block later packets from starting.
6815 */
6816 void synchronize_net(void)
6817 {
6818 might_sleep();
6819 if (rtnl_is_locked())
6820 synchronize_rcu_expedited();
6821 else
6822 synchronize_rcu();
6823 }
6824 EXPORT_SYMBOL(synchronize_net);
6825
6826 /**
6827 * unregister_netdevice_queue - remove device from the kernel
6828 * @dev: device
6829 * @head: list
6830 *
6831 * This function shuts down a device interface and removes it
6832 * from the kernel tables.
6833 * If head not NULL, device is queued to be unregistered later.
6834 *
6835 * Callers must hold the rtnl semaphore. You may want
6836 * unregister_netdev() instead of this.
6837 */
6838
6839 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6840 {
6841 ASSERT_RTNL();
6842
6843 if (head) {
6844 list_move_tail(&dev->unreg_list, head);
6845 } else {
6846 rollback_registered(dev);
6847 /* Finish processing unregister after unlock */
6848 net_set_todo(dev);
6849 }
6850 }
6851 EXPORT_SYMBOL(unregister_netdevice_queue);
6852
6853 /**
6854 * unregister_netdevice_many - unregister many devices
6855 * @head: list of devices
6856 *
6857 * Note: As most callers use a stack allocated list_head,
6858 * we force a list_del() to make sure stack wont be corrupted later.
6859 */
6860 void unregister_netdevice_many(struct list_head *head)
6861 {
6862 struct net_device *dev;
6863
6864 if (!list_empty(head)) {
6865 rollback_registered_many(head);
6866 list_for_each_entry(dev, head, unreg_list)
6867 net_set_todo(dev);
6868 list_del(head);
6869 }
6870 }
6871 EXPORT_SYMBOL(unregister_netdevice_many);
6872
6873 /**
6874 * unregister_netdev - remove device from the kernel
6875 * @dev: device
6876 *
6877 * This function shuts down a device interface and removes it
6878 * from the kernel tables.
6879 *
6880 * This is just a wrapper for unregister_netdevice that takes
6881 * the rtnl semaphore. In general you want to use this and not
6882 * unregister_netdevice.
6883 */
6884 void unregister_netdev(struct net_device *dev)
6885 {
6886 rtnl_lock();
6887 unregister_netdevice(dev);
6888 rtnl_unlock();
6889 }
6890 EXPORT_SYMBOL(unregister_netdev);
6891
6892 /**
6893 * dev_change_net_namespace - move device to different nethost namespace
6894 * @dev: device
6895 * @net: network namespace
6896 * @pat: If not NULL name pattern to try if the current device name
6897 * is already taken in the destination network namespace.
6898 *
6899 * This function shuts down a device interface and moves it
6900 * to a new network namespace. On success 0 is returned, on
6901 * a failure a netagive errno code is returned.
6902 *
6903 * Callers must hold the rtnl semaphore.
6904 */
6905
6906 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6907 {
6908 int err;
6909
6910 ASSERT_RTNL();
6911
6912 /* Don't allow namespace local devices to be moved. */
6913 err = -EINVAL;
6914 if (dev->features & NETIF_F_NETNS_LOCAL)
6915 goto out;
6916
6917 /* Ensure the device has been registrered */
6918 if (dev->reg_state != NETREG_REGISTERED)
6919 goto out;
6920
6921 /* Get out if there is nothing todo */
6922 err = 0;
6923 if (net_eq(dev_net(dev), net))
6924 goto out;
6925
6926 /* Pick the destination device name, and ensure
6927 * we can use it in the destination network namespace.
6928 */
6929 err = -EEXIST;
6930 if (__dev_get_by_name(net, dev->name)) {
6931 /* We get here if we can't use the current device name */
6932 if (!pat)
6933 goto out;
6934 if (dev_get_valid_name(net, dev, pat) < 0)
6935 goto out;
6936 }
6937
6938 /*
6939 * And now a mini version of register_netdevice unregister_netdevice.
6940 */
6941
6942 /* If device is running close it first. */
6943 dev_close(dev);
6944
6945 /* And unlink it from device chain */
6946 err = -ENODEV;
6947 unlist_netdevice(dev);
6948
6949 synchronize_net();
6950
6951 /* Shutdown queueing discipline. */
6952 dev_shutdown(dev);
6953
6954 /* Notify protocols, that we are about to destroy
6955 this device. They should clean all the things.
6956
6957 Note that dev->reg_state stays at NETREG_REGISTERED.
6958 This is wanted because this way 8021q and macvlan know
6959 the device is just moving and can keep their slaves up.
6960 */
6961 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6962 rcu_barrier();
6963 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6964 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6965
6966 /*
6967 * Flush the unicast and multicast chains
6968 */
6969 dev_uc_flush(dev);
6970 dev_mc_flush(dev);
6971
6972 /* Send a netdev-removed uevent to the old namespace */
6973 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6974 netdev_adjacent_del_links(dev);
6975
6976 /* Actually switch the network namespace */
6977 dev_net_set(dev, net);
6978
6979 /* If there is an ifindex conflict assign a new one */
6980 if (__dev_get_by_index(net, dev->ifindex)) {
6981 int iflink = (dev->iflink == dev->ifindex);
6982 dev->ifindex = dev_new_index(net);
6983 if (iflink)
6984 dev->iflink = dev->ifindex;
6985 }
6986
6987 /* Send a netdev-add uevent to the new namespace */
6988 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6989 netdev_adjacent_add_links(dev);
6990
6991 /* Fixup kobjects */
6992 err = device_rename(&dev->dev, dev->name);
6993 WARN_ON(err);
6994
6995 /* Add the device back in the hashes */
6996 list_netdevice(dev);
6997
6998 /* Notify protocols, that a new device appeared. */
6999 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7000
7001 /*
7002 * Prevent userspace races by waiting until the network
7003 * device is fully setup before sending notifications.
7004 */
7005 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7006
7007 synchronize_net();
7008 err = 0;
7009 out:
7010 return err;
7011 }
7012 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7013
7014 static int dev_cpu_callback(struct notifier_block *nfb,
7015 unsigned long action,
7016 void *ocpu)
7017 {
7018 struct sk_buff **list_skb;
7019 struct sk_buff *skb;
7020 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7021 struct softnet_data *sd, *oldsd;
7022
7023 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7024 return NOTIFY_OK;
7025
7026 local_irq_disable();
7027 cpu = smp_processor_id();
7028 sd = &per_cpu(softnet_data, cpu);
7029 oldsd = &per_cpu(softnet_data, oldcpu);
7030
7031 /* Find end of our completion_queue. */
7032 list_skb = &sd->completion_queue;
7033 while (*list_skb)
7034 list_skb = &(*list_skb)->next;
7035 /* Append completion queue from offline CPU. */
7036 *list_skb = oldsd->completion_queue;
7037 oldsd->completion_queue = NULL;
7038
7039 /* Append output queue from offline CPU. */
7040 if (oldsd->output_queue) {
7041 *sd->output_queue_tailp = oldsd->output_queue;
7042 sd->output_queue_tailp = oldsd->output_queue_tailp;
7043 oldsd->output_queue = NULL;
7044 oldsd->output_queue_tailp = &oldsd->output_queue;
7045 }
7046 /* Append NAPI poll list from offline CPU, with one exception :
7047 * process_backlog() must be called by cpu owning percpu backlog.
7048 * We properly handle process_queue & input_pkt_queue later.
7049 */
7050 while (!list_empty(&oldsd->poll_list)) {
7051 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7052 struct napi_struct,
7053 poll_list);
7054
7055 list_del_init(&napi->poll_list);
7056 if (napi->poll == process_backlog)
7057 napi->state = 0;
7058 else
7059 ____napi_schedule(sd, napi);
7060 }
7061
7062 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7063 local_irq_enable();
7064
7065 /* Process offline CPU's input_pkt_queue */
7066 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7067 netif_rx_ni(skb);
7068 input_queue_head_incr(oldsd);
7069 }
7070 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7071 netif_rx_ni(skb);
7072 input_queue_head_incr(oldsd);
7073 }
7074
7075 return NOTIFY_OK;
7076 }
7077
7078
7079 /**
7080 * netdev_increment_features - increment feature set by one
7081 * @all: current feature set
7082 * @one: new feature set
7083 * @mask: mask feature set
7084 *
7085 * Computes a new feature set after adding a device with feature set
7086 * @one to the master device with current feature set @all. Will not
7087 * enable anything that is off in @mask. Returns the new feature set.
7088 */
7089 netdev_features_t netdev_increment_features(netdev_features_t all,
7090 netdev_features_t one, netdev_features_t mask)
7091 {
7092 if (mask & NETIF_F_GEN_CSUM)
7093 mask |= NETIF_F_ALL_CSUM;
7094 mask |= NETIF_F_VLAN_CHALLENGED;
7095
7096 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7097 all &= one | ~NETIF_F_ALL_FOR_ALL;
7098
7099 /* If one device supports hw checksumming, set for all. */
7100 if (all & NETIF_F_GEN_CSUM)
7101 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7102
7103 return all;
7104 }
7105 EXPORT_SYMBOL(netdev_increment_features);
7106
7107 static struct hlist_head * __net_init netdev_create_hash(void)
7108 {
7109 int i;
7110 struct hlist_head *hash;
7111
7112 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7113 if (hash != NULL)
7114 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7115 INIT_HLIST_HEAD(&hash[i]);
7116
7117 return hash;
7118 }
7119
7120 /* Initialize per network namespace state */
7121 static int __net_init netdev_init(struct net *net)
7122 {
7123 if (net != &init_net)
7124 INIT_LIST_HEAD(&net->dev_base_head);
7125
7126 net->dev_name_head = netdev_create_hash();
7127 if (net->dev_name_head == NULL)
7128 goto err_name;
7129
7130 net->dev_index_head = netdev_create_hash();
7131 if (net->dev_index_head == NULL)
7132 goto err_idx;
7133
7134 return 0;
7135
7136 err_idx:
7137 kfree(net->dev_name_head);
7138 err_name:
7139 return -ENOMEM;
7140 }
7141
7142 /**
7143 * netdev_drivername - network driver for the device
7144 * @dev: network device
7145 *
7146 * Determine network driver for device.
7147 */
7148 const char *netdev_drivername(const struct net_device *dev)
7149 {
7150 const struct device_driver *driver;
7151 const struct device *parent;
7152 const char *empty = "";
7153
7154 parent = dev->dev.parent;
7155 if (!parent)
7156 return empty;
7157
7158 driver = parent->driver;
7159 if (driver && driver->name)
7160 return driver->name;
7161 return empty;
7162 }
7163
7164 static void __netdev_printk(const char *level, const struct net_device *dev,
7165 struct va_format *vaf)
7166 {
7167 if (dev && dev->dev.parent) {
7168 dev_printk_emit(level[1] - '0',
7169 dev->dev.parent,
7170 "%s %s %s%s: %pV",
7171 dev_driver_string(dev->dev.parent),
7172 dev_name(dev->dev.parent),
7173 netdev_name(dev), netdev_reg_state(dev),
7174 vaf);
7175 } else if (dev) {
7176 printk("%s%s%s: %pV",
7177 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7178 } else {
7179 printk("%s(NULL net_device): %pV", level, vaf);
7180 }
7181 }
7182
7183 void netdev_printk(const char *level, const struct net_device *dev,
7184 const char *format, ...)
7185 {
7186 struct va_format vaf;
7187 va_list args;
7188
7189 va_start(args, format);
7190
7191 vaf.fmt = format;
7192 vaf.va = &args;
7193
7194 __netdev_printk(level, dev, &vaf);
7195
7196 va_end(args);
7197 }
7198 EXPORT_SYMBOL(netdev_printk);
7199
7200 #define define_netdev_printk_level(func, level) \
7201 void func(const struct net_device *dev, const char *fmt, ...) \
7202 { \
7203 struct va_format vaf; \
7204 va_list args; \
7205 \
7206 va_start(args, fmt); \
7207 \
7208 vaf.fmt = fmt; \
7209 vaf.va = &args; \
7210 \
7211 __netdev_printk(level, dev, &vaf); \
7212 \
7213 va_end(args); \
7214 } \
7215 EXPORT_SYMBOL(func);
7216
7217 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7218 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7219 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7220 define_netdev_printk_level(netdev_err, KERN_ERR);
7221 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7222 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7223 define_netdev_printk_level(netdev_info, KERN_INFO);
7224
7225 static void __net_exit netdev_exit(struct net *net)
7226 {
7227 kfree(net->dev_name_head);
7228 kfree(net->dev_index_head);
7229 }
7230
7231 static struct pernet_operations __net_initdata netdev_net_ops = {
7232 .init = netdev_init,
7233 .exit = netdev_exit,
7234 };
7235
7236 static void __net_exit default_device_exit(struct net *net)
7237 {
7238 struct net_device *dev, *aux;
7239 /*
7240 * Push all migratable network devices back to the
7241 * initial network namespace
7242 */
7243 rtnl_lock();
7244 for_each_netdev_safe(net, dev, aux) {
7245 int err;
7246 char fb_name[IFNAMSIZ];
7247
7248 /* Ignore unmoveable devices (i.e. loopback) */
7249 if (dev->features & NETIF_F_NETNS_LOCAL)
7250 continue;
7251
7252 /* Leave virtual devices for the generic cleanup */
7253 if (dev->rtnl_link_ops)
7254 continue;
7255
7256 /* Push remaining network devices to init_net */
7257 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7258 err = dev_change_net_namespace(dev, &init_net, fb_name);
7259 if (err) {
7260 pr_emerg("%s: failed to move %s to init_net: %d\n",
7261 __func__, dev->name, err);
7262 BUG();
7263 }
7264 }
7265 rtnl_unlock();
7266 }
7267
7268 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7269 {
7270 /* Return with the rtnl_lock held when there are no network
7271 * devices unregistering in any network namespace in net_list.
7272 */
7273 struct net *net;
7274 bool unregistering;
7275 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7276
7277 add_wait_queue(&netdev_unregistering_wq, &wait);
7278 for (;;) {
7279 unregistering = false;
7280 rtnl_lock();
7281 list_for_each_entry(net, net_list, exit_list) {
7282 if (net->dev_unreg_count > 0) {
7283 unregistering = true;
7284 break;
7285 }
7286 }
7287 if (!unregistering)
7288 break;
7289 __rtnl_unlock();
7290
7291 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7292 }
7293 remove_wait_queue(&netdev_unregistering_wq, &wait);
7294 }
7295
7296 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7297 {
7298 /* At exit all network devices most be removed from a network
7299 * namespace. Do this in the reverse order of registration.
7300 * Do this across as many network namespaces as possible to
7301 * improve batching efficiency.
7302 */
7303 struct net_device *dev;
7304 struct net *net;
7305 LIST_HEAD(dev_kill_list);
7306
7307 /* To prevent network device cleanup code from dereferencing
7308 * loopback devices or network devices that have been freed
7309 * wait here for all pending unregistrations to complete,
7310 * before unregistring the loopback device and allowing the
7311 * network namespace be freed.
7312 *
7313 * The netdev todo list containing all network devices
7314 * unregistrations that happen in default_device_exit_batch
7315 * will run in the rtnl_unlock() at the end of
7316 * default_device_exit_batch.
7317 */
7318 rtnl_lock_unregistering(net_list);
7319 list_for_each_entry(net, net_list, exit_list) {
7320 for_each_netdev_reverse(net, dev) {
7321 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7322 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7323 else
7324 unregister_netdevice_queue(dev, &dev_kill_list);
7325 }
7326 }
7327 unregister_netdevice_many(&dev_kill_list);
7328 rtnl_unlock();
7329 }
7330
7331 static struct pernet_operations __net_initdata default_device_ops = {
7332 .exit = default_device_exit,
7333 .exit_batch = default_device_exit_batch,
7334 };
7335
7336 /*
7337 * Initialize the DEV module. At boot time this walks the device list and
7338 * unhooks any devices that fail to initialise (normally hardware not
7339 * present) and leaves us with a valid list of present and active devices.
7340 *
7341 */
7342
7343 /*
7344 * This is called single threaded during boot, so no need
7345 * to take the rtnl semaphore.
7346 */
7347 static int __init net_dev_init(void)
7348 {
7349 int i, rc = -ENOMEM;
7350
7351 BUG_ON(!dev_boot_phase);
7352
7353 if (dev_proc_init())
7354 goto out;
7355
7356 if (netdev_kobject_init())
7357 goto out;
7358
7359 INIT_LIST_HEAD(&ptype_all);
7360 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7361 INIT_LIST_HEAD(&ptype_base[i]);
7362
7363 INIT_LIST_HEAD(&offload_base);
7364
7365 if (register_pernet_subsys(&netdev_net_ops))
7366 goto out;
7367
7368 /*
7369 * Initialise the packet receive queues.
7370 */
7371
7372 for_each_possible_cpu(i) {
7373 struct softnet_data *sd = &per_cpu(softnet_data, i);
7374
7375 skb_queue_head_init(&sd->input_pkt_queue);
7376 skb_queue_head_init(&sd->process_queue);
7377 INIT_LIST_HEAD(&sd->poll_list);
7378 sd->output_queue_tailp = &sd->output_queue;
7379 #ifdef CONFIG_RPS
7380 sd->csd.func = rps_trigger_softirq;
7381 sd->csd.info = sd;
7382 sd->cpu = i;
7383 #endif
7384
7385 sd->backlog.poll = process_backlog;
7386 sd->backlog.weight = weight_p;
7387 }
7388
7389 dev_boot_phase = 0;
7390
7391 /* The loopback device is special if any other network devices
7392 * is present in a network namespace the loopback device must
7393 * be present. Since we now dynamically allocate and free the
7394 * loopback device ensure this invariant is maintained by
7395 * keeping the loopback device as the first device on the
7396 * list of network devices. Ensuring the loopback devices
7397 * is the first device that appears and the last network device
7398 * that disappears.
7399 */
7400 if (register_pernet_device(&loopback_net_ops))
7401 goto out;
7402
7403 if (register_pernet_device(&default_device_ops))
7404 goto out;
7405
7406 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7407 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7408
7409 hotcpu_notifier(dev_cpu_callback, 0);
7410 dst_init();
7411 rc = 0;
7412 out:
7413 return rc;
7414 }
7415
7416 subsys_initcall(net_dev_init);
This page took 0.676748 seconds and 5 git commands to generate.