net: add a noref bit on skb dst
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 /*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
177
178 /*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 /**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389 void dev_add_pack(struct packet_type *pt)
390 {
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762 {
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773 }
774 EXPORT_SYMBOL(dev_getbyhwaddr);
775
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777 {
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786 }
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802 }
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805 /**
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
815 */
816
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
819 {
820 struct net_device *dev, *ret;
821
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
829 }
830 }
831 rcu_read_unlock();
832 return ret;
833 }
834 EXPORT_SYMBOL(dev_get_by_flags);
835
836 /**
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
839 *
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
843 */
844 int dev_valid_name(const char *name)
845 {
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
852
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
857 }
858 return 1;
859 }
860 EXPORT_SYMBOL(dev_valid_name);
861
862 /**
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
867 *
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
875 */
876
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878 {
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
884
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
887 /*
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
891 */
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
894
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
899
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
905
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
910 }
911
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
914 }
915
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
920
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
924 */
925 return -ENFILE;
926 }
927
928 /**
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
932 *
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
940 */
941
942 int dev_alloc_name(struct net_device *dev, const char *name)
943 {
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
947
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
954 }
955 EXPORT_SYMBOL(dev_alloc_name);
956
957 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
958 bool fmt)
959 {
960 if (!dev_valid_name(name))
961 return -EINVAL;
962
963 if (fmt && strchr(name, '%'))
964 return __dev_alloc_name(net, name, buf);
965 else if (__dev_get_by_name(net, name))
966 return -EEXIST;
967 else if (buf != name)
968 strlcpy(buf, name, IFNAMSIZ);
969
970 return 0;
971 }
972
973 /**
974 * dev_change_name - change name of a device
975 * @dev: device
976 * @newname: name (or format string) must be at least IFNAMSIZ
977 *
978 * Change name of a device, can pass format strings "eth%d".
979 * for wildcarding.
980 */
981 int dev_change_name(struct net_device *dev, const char *newname)
982 {
983 char oldname[IFNAMSIZ];
984 int err = 0;
985 int ret;
986 struct net *net;
987
988 ASSERT_RTNL();
989 BUG_ON(!dev_net(dev));
990
991 net = dev_net(dev);
992 if (dev->flags & IFF_UP)
993 return -EBUSY;
994
995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
996 return 0;
997
998 memcpy(oldname, dev->name, IFNAMSIZ);
999
1000 err = dev_get_valid_name(net, newname, dev->name, 1);
1001 if (err < 0)
1002 return err;
1003
1004 rollback:
1005 /* For now only devices in the initial network namespace
1006 * are in sysfs.
1007 */
1008 if (net_eq(net, &init_net)) {
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1013 }
1014 }
1015
1016 write_lock_bh(&dev_base_lock);
1017 hlist_del(&dev->name_hlist);
1018 write_unlock_bh(&dev_base_lock);
1019
1020 synchronize_rcu();
1021
1022 write_lock_bh(&dev_base_lock);
1023 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1024 write_unlock_bh(&dev_base_lock);
1025
1026 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1027 ret = notifier_to_errno(ret);
1028
1029 if (ret) {
1030 /* err >= 0 after dev_alloc_name() or stores the first errno */
1031 if (err >= 0) {
1032 err = ret;
1033 memcpy(dev->name, oldname, IFNAMSIZ);
1034 goto rollback;
1035 } else {
1036 printk(KERN_ERR
1037 "%s: name change rollback failed: %d.\n",
1038 dev->name, ret);
1039 }
1040 }
1041
1042 return err;
1043 }
1044
1045 /**
1046 * dev_set_alias - change ifalias of a device
1047 * @dev: device
1048 * @alias: name up to IFALIASZ
1049 * @len: limit of bytes to copy from info
1050 *
1051 * Set ifalias for a device,
1052 */
1053 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1054 {
1055 ASSERT_RTNL();
1056
1057 if (len >= IFALIASZ)
1058 return -EINVAL;
1059
1060 if (!len) {
1061 if (dev->ifalias) {
1062 kfree(dev->ifalias);
1063 dev->ifalias = NULL;
1064 }
1065 return 0;
1066 }
1067
1068 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1069 if (!dev->ifalias)
1070 return -ENOMEM;
1071
1072 strlcpy(dev->ifalias, alias, len+1);
1073 return len;
1074 }
1075
1076
1077 /**
1078 * netdev_features_change - device changes features
1079 * @dev: device to cause notification
1080 *
1081 * Called to indicate a device has changed features.
1082 */
1083 void netdev_features_change(struct net_device *dev)
1084 {
1085 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1086 }
1087 EXPORT_SYMBOL(netdev_features_change);
1088
1089 /**
1090 * netdev_state_change - device changes state
1091 * @dev: device to cause notification
1092 *
1093 * Called to indicate a device has changed state. This function calls
1094 * the notifier chains for netdev_chain and sends a NEWLINK message
1095 * to the routing socket.
1096 */
1097 void netdev_state_change(struct net_device *dev)
1098 {
1099 if (dev->flags & IFF_UP) {
1100 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1101 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1102 }
1103 }
1104 EXPORT_SYMBOL(netdev_state_change);
1105
1106 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1107 {
1108 return call_netdevice_notifiers(event, dev);
1109 }
1110 EXPORT_SYMBOL(netdev_bonding_change);
1111
1112 /**
1113 * dev_load - load a network module
1114 * @net: the applicable net namespace
1115 * @name: name of interface
1116 *
1117 * If a network interface is not present and the process has suitable
1118 * privileges this function loads the module. If module loading is not
1119 * available in this kernel then it becomes a nop.
1120 */
1121
1122 void dev_load(struct net *net, const char *name)
1123 {
1124 struct net_device *dev;
1125
1126 rcu_read_lock();
1127 dev = dev_get_by_name_rcu(net, name);
1128 rcu_read_unlock();
1129
1130 if (!dev && capable(CAP_NET_ADMIN))
1131 request_module("%s", name);
1132 }
1133 EXPORT_SYMBOL(dev_load);
1134
1135 static int __dev_open(struct net_device *dev)
1136 {
1137 const struct net_device_ops *ops = dev->netdev_ops;
1138 int ret;
1139
1140 ASSERT_RTNL();
1141
1142 /*
1143 * Is it even present?
1144 */
1145 if (!netif_device_present(dev))
1146 return -ENODEV;
1147
1148 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1149 ret = notifier_to_errno(ret);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Call device private open method
1155 */
1156 set_bit(__LINK_STATE_START, &dev->state);
1157
1158 if (ops->ndo_validate_addr)
1159 ret = ops->ndo_validate_addr(dev);
1160
1161 if (!ret && ops->ndo_open)
1162 ret = ops->ndo_open(dev);
1163
1164 /*
1165 * If it went open OK then:
1166 */
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 /*
1172 * Set the flags.
1173 */
1174 dev->flags |= IFF_UP;
1175
1176 /*
1177 * Enable NET_DMA
1178 */
1179 net_dmaengine_get();
1180
1181 /*
1182 * Initialize multicasting status
1183 */
1184 dev_set_rx_mode(dev);
1185
1186 /*
1187 * Wakeup transmit queue engine
1188 */
1189 dev_activate(dev);
1190 }
1191
1192 return ret;
1193 }
1194
1195 /**
1196 * dev_open - prepare an interface for use.
1197 * @dev: device to open
1198 *
1199 * Takes a device from down to up state. The device's private open
1200 * function is invoked and then the multicast lists are loaded. Finally
1201 * the device is moved into the up state and a %NETDEV_UP message is
1202 * sent to the netdev notifier chain.
1203 *
1204 * Calling this function on an active interface is a nop. On a failure
1205 * a negative errno code is returned.
1206 */
1207 int dev_open(struct net_device *dev)
1208 {
1209 int ret;
1210
1211 /*
1212 * Is it already up?
1213 */
1214 if (dev->flags & IFF_UP)
1215 return 0;
1216
1217 /*
1218 * Open device
1219 */
1220 ret = __dev_open(dev);
1221 if (ret < 0)
1222 return ret;
1223
1224 /*
1225 * ... and announce new interface.
1226 */
1227 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1228 call_netdevice_notifiers(NETDEV_UP, dev);
1229
1230 return ret;
1231 }
1232 EXPORT_SYMBOL(dev_open);
1233
1234 static int __dev_close(struct net_device *dev)
1235 {
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237
1238 ASSERT_RTNL();
1239 might_sleep();
1240
1241 /*
1242 * Tell people we are going down, so that they can
1243 * prepare to death, when device is still operating.
1244 */
1245 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1246
1247 clear_bit(__LINK_STATE_START, &dev->state);
1248
1249 /* Synchronize to scheduled poll. We cannot touch poll list,
1250 * it can be even on different cpu. So just clear netif_running().
1251 *
1252 * dev->stop() will invoke napi_disable() on all of it's
1253 * napi_struct instances on this device.
1254 */
1255 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1256
1257 dev_deactivate(dev);
1258
1259 /*
1260 * Call the device specific close. This cannot fail.
1261 * Only if device is UP
1262 *
1263 * We allow it to be called even after a DETACH hot-plug
1264 * event.
1265 */
1266 if (ops->ndo_stop)
1267 ops->ndo_stop(dev);
1268
1269 /*
1270 * Device is now down.
1271 */
1272
1273 dev->flags &= ~IFF_UP;
1274
1275 /*
1276 * Shutdown NET_DMA
1277 */
1278 net_dmaengine_put();
1279
1280 return 0;
1281 }
1282
1283 /**
1284 * dev_close - shutdown an interface.
1285 * @dev: device to shutdown
1286 *
1287 * This function moves an active device into down state. A
1288 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1289 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1290 * chain.
1291 */
1292 int dev_close(struct net_device *dev)
1293 {
1294 if (!(dev->flags & IFF_UP))
1295 return 0;
1296
1297 __dev_close(dev);
1298
1299 /*
1300 * Tell people we are down
1301 */
1302 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1303 call_netdevice_notifiers(NETDEV_DOWN, dev);
1304
1305 return 0;
1306 }
1307 EXPORT_SYMBOL(dev_close);
1308
1309
1310 /**
1311 * dev_disable_lro - disable Large Receive Offload on a device
1312 * @dev: device
1313 *
1314 * Disable Large Receive Offload (LRO) on a net device. Must be
1315 * called under RTNL. This is needed if received packets may be
1316 * forwarded to another interface.
1317 */
1318 void dev_disable_lro(struct net_device *dev)
1319 {
1320 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1321 dev->ethtool_ops->set_flags) {
1322 u32 flags = dev->ethtool_ops->get_flags(dev);
1323 if (flags & ETH_FLAG_LRO) {
1324 flags &= ~ETH_FLAG_LRO;
1325 dev->ethtool_ops->set_flags(dev, flags);
1326 }
1327 }
1328 WARN_ON(dev->features & NETIF_F_LRO);
1329 }
1330 EXPORT_SYMBOL(dev_disable_lro);
1331
1332
1333 static int dev_boot_phase = 1;
1334
1335 /*
1336 * Device change register/unregister. These are not inline or static
1337 * as we export them to the world.
1338 */
1339
1340 /**
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1343 *
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1348 *
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1352 */
1353
1354 int register_netdevice_notifier(struct notifier_block *nb)
1355 {
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1360
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1373
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1376
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1378 }
1379 }
1380
1381 unlock:
1382 rtnl_unlock();
1383 return err;
1384
1385 rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 break;
1391
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 }
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 }
1399 }
1400
1401 raw_notifier_chain_unregister(&netdev_chain, nb);
1402 goto unlock;
1403 }
1404 EXPORT_SYMBOL(register_netdevice_notifier);
1405
1406 /**
1407 * unregister_netdevice_notifier - unregister a network notifier block
1408 * @nb: notifier
1409 *
1410 * Unregister a notifier previously registered by
1411 * register_netdevice_notifier(). The notifier is unlinked into the
1412 * kernel structures and may then be reused. A negative errno code
1413 * is returned on a failure.
1414 */
1415
1416 int unregister_netdevice_notifier(struct notifier_block *nb)
1417 {
1418 int err;
1419
1420 rtnl_lock();
1421 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1422 rtnl_unlock();
1423 return err;
1424 }
1425 EXPORT_SYMBOL(unregister_netdevice_notifier);
1426
1427 /**
1428 * call_netdevice_notifiers - call all network notifier blocks
1429 * @val: value passed unmodified to notifier function
1430 * @dev: net_device pointer passed unmodified to notifier function
1431 *
1432 * Call all network notifier blocks. Parameters and return value
1433 * are as for raw_notifier_call_chain().
1434 */
1435
1436 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1437 {
1438 ASSERT_RTNL();
1439 return raw_notifier_call_chain(&netdev_chain, val, dev);
1440 }
1441
1442 /* When > 0 there are consumers of rx skb time stamps */
1443 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1444
1445 void net_enable_timestamp(void)
1446 {
1447 atomic_inc(&netstamp_needed);
1448 }
1449 EXPORT_SYMBOL(net_enable_timestamp);
1450
1451 void net_disable_timestamp(void)
1452 {
1453 atomic_dec(&netstamp_needed);
1454 }
1455 EXPORT_SYMBOL(net_disable_timestamp);
1456
1457 static inline void net_timestamp_set(struct sk_buff *skb)
1458 {
1459 if (atomic_read(&netstamp_needed))
1460 __net_timestamp(skb);
1461 else
1462 skb->tstamp.tv64 = 0;
1463 }
1464
1465 static inline void net_timestamp_check(struct sk_buff *skb)
1466 {
1467 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1468 __net_timestamp(skb);
1469 }
1470
1471 /**
1472 * dev_forward_skb - loopback an skb to another netif
1473 *
1474 * @dev: destination network device
1475 * @skb: buffer to forward
1476 *
1477 * return values:
1478 * NET_RX_SUCCESS (no congestion)
1479 * NET_RX_DROP (packet was dropped, but freed)
1480 *
1481 * dev_forward_skb can be used for injecting an skb from the
1482 * start_xmit function of one device into the receive queue
1483 * of another device.
1484 *
1485 * The receiving device may be in another namespace, so
1486 * we have to clear all information in the skb that could
1487 * impact namespace isolation.
1488 */
1489 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1490 {
1491 skb_orphan(skb);
1492
1493 if (!(dev->flags & IFF_UP) ||
1494 (skb->len > (dev->mtu + dev->hard_header_len))) {
1495 kfree_skb(skb);
1496 return NET_RX_DROP;
1497 }
1498 skb_set_dev(skb, dev);
1499 skb->tstamp.tv64 = 0;
1500 skb->pkt_type = PACKET_HOST;
1501 skb->protocol = eth_type_trans(skb, dev);
1502 return netif_rx(skb);
1503 }
1504 EXPORT_SYMBOL_GPL(dev_forward_skb);
1505
1506 /*
1507 * Support routine. Sends outgoing frames to any network
1508 * taps currently in use.
1509 */
1510
1511 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1512 {
1513 struct packet_type *ptype;
1514
1515 #ifdef CONFIG_NET_CLS_ACT
1516 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1517 net_timestamp_set(skb);
1518 #else
1519 net_timestamp_set(skb);
1520 #endif
1521
1522 rcu_read_lock();
1523 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1524 /* Never send packets back to the socket
1525 * they originated from - MvS (miquels@drinkel.ow.org)
1526 */
1527 if ((ptype->dev == dev || !ptype->dev) &&
1528 (ptype->af_packet_priv == NULL ||
1529 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1530 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1531 if (!skb2)
1532 break;
1533
1534 /* skb->nh should be correctly
1535 set by sender, so that the second statement is
1536 just protection against buggy protocols.
1537 */
1538 skb_reset_mac_header(skb2);
1539
1540 if (skb_network_header(skb2) < skb2->data ||
1541 skb2->network_header > skb2->tail) {
1542 if (net_ratelimit())
1543 printk(KERN_CRIT "protocol %04x is "
1544 "buggy, dev %s\n",
1545 skb2->protocol, dev->name);
1546 skb_reset_network_header(skb2);
1547 }
1548
1549 skb2->transport_header = skb2->network_header;
1550 skb2->pkt_type = PACKET_OUTGOING;
1551 ptype->func(skb2, skb->dev, ptype, skb->dev);
1552 }
1553 }
1554 rcu_read_unlock();
1555 }
1556
1557
1558 static inline void __netif_reschedule(struct Qdisc *q)
1559 {
1560 struct softnet_data *sd;
1561 unsigned long flags;
1562
1563 local_irq_save(flags);
1564 sd = &__get_cpu_var(softnet_data);
1565 q->next_sched = NULL;
1566 *sd->output_queue_tailp = q;
1567 sd->output_queue_tailp = &q->next_sched;
1568 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1569 local_irq_restore(flags);
1570 }
1571
1572 void __netif_schedule(struct Qdisc *q)
1573 {
1574 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1575 __netif_reschedule(q);
1576 }
1577 EXPORT_SYMBOL(__netif_schedule);
1578
1579 void dev_kfree_skb_irq(struct sk_buff *skb)
1580 {
1581 if (atomic_dec_and_test(&skb->users)) {
1582 struct softnet_data *sd;
1583 unsigned long flags;
1584
1585 local_irq_save(flags);
1586 sd = &__get_cpu_var(softnet_data);
1587 skb->next = sd->completion_queue;
1588 sd->completion_queue = skb;
1589 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1590 local_irq_restore(flags);
1591 }
1592 }
1593 EXPORT_SYMBOL(dev_kfree_skb_irq);
1594
1595 void dev_kfree_skb_any(struct sk_buff *skb)
1596 {
1597 if (in_irq() || irqs_disabled())
1598 dev_kfree_skb_irq(skb);
1599 else
1600 dev_kfree_skb(skb);
1601 }
1602 EXPORT_SYMBOL(dev_kfree_skb_any);
1603
1604
1605 /**
1606 * netif_device_detach - mark device as removed
1607 * @dev: network device
1608 *
1609 * Mark device as removed from system and therefore no longer available.
1610 */
1611 void netif_device_detach(struct net_device *dev)
1612 {
1613 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1614 netif_running(dev)) {
1615 netif_tx_stop_all_queues(dev);
1616 }
1617 }
1618 EXPORT_SYMBOL(netif_device_detach);
1619
1620 /**
1621 * netif_device_attach - mark device as attached
1622 * @dev: network device
1623 *
1624 * Mark device as attached from system and restart if needed.
1625 */
1626 void netif_device_attach(struct net_device *dev)
1627 {
1628 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1629 netif_running(dev)) {
1630 netif_tx_wake_all_queues(dev);
1631 __netdev_watchdog_up(dev);
1632 }
1633 }
1634 EXPORT_SYMBOL(netif_device_attach);
1635
1636 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1637 {
1638 return ((features & NETIF_F_GEN_CSUM) ||
1639 ((features & NETIF_F_IP_CSUM) &&
1640 protocol == htons(ETH_P_IP)) ||
1641 ((features & NETIF_F_IPV6_CSUM) &&
1642 protocol == htons(ETH_P_IPV6)) ||
1643 ((features & NETIF_F_FCOE_CRC) &&
1644 protocol == htons(ETH_P_FCOE)));
1645 }
1646
1647 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1648 {
1649 if (can_checksum_protocol(dev->features, skb->protocol))
1650 return true;
1651
1652 if (skb->protocol == htons(ETH_P_8021Q)) {
1653 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1654 if (can_checksum_protocol(dev->features & dev->vlan_features,
1655 veh->h_vlan_encapsulated_proto))
1656 return true;
1657 }
1658
1659 return false;
1660 }
1661
1662 /**
1663 * skb_dev_set -- assign a new device to a buffer
1664 * @skb: buffer for the new device
1665 * @dev: network device
1666 *
1667 * If an skb is owned by a device already, we have to reset
1668 * all data private to the namespace a device belongs to
1669 * before assigning it a new device.
1670 */
1671 #ifdef CONFIG_NET_NS
1672 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1673 {
1674 skb_dst_drop(skb);
1675 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1676 secpath_reset(skb);
1677 nf_reset(skb);
1678 skb_init_secmark(skb);
1679 skb->mark = 0;
1680 skb->priority = 0;
1681 skb->nf_trace = 0;
1682 skb->ipvs_property = 0;
1683 #ifdef CONFIG_NET_SCHED
1684 skb->tc_index = 0;
1685 #endif
1686 }
1687 skb->dev = dev;
1688 }
1689 EXPORT_SYMBOL(skb_set_dev);
1690 #endif /* CONFIG_NET_NS */
1691
1692 /*
1693 * Invalidate hardware checksum when packet is to be mangled, and
1694 * complete checksum manually on outgoing path.
1695 */
1696 int skb_checksum_help(struct sk_buff *skb)
1697 {
1698 __wsum csum;
1699 int ret = 0, offset;
1700
1701 if (skb->ip_summed == CHECKSUM_COMPLETE)
1702 goto out_set_summed;
1703
1704 if (unlikely(skb_shinfo(skb)->gso_size)) {
1705 /* Let GSO fix up the checksum. */
1706 goto out_set_summed;
1707 }
1708
1709 offset = skb->csum_start - skb_headroom(skb);
1710 BUG_ON(offset >= skb_headlen(skb));
1711 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1712
1713 offset += skb->csum_offset;
1714 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1715
1716 if (skb_cloned(skb) &&
1717 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1718 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1719 if (ret)
1720 goto out;
1721 }
1722
1723 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1724 out_set_summed:
1725 skb->ip_summed = CHECKSUM_NONE;
1726 out:
1727 return ret;
1728 }
1729 EXPORT_SYMBOL(skb_checksum_help);
1730
1731 /**
1732 * skb_gso_segment - Perform segmentation on skb.
1733 * @skb: buffer to segment
1734 * @features: features for the output path (see dev->features)
1735 *
1736 * This function segments the given skb and returns a list of segments.
1737 *
1738 * It may return NULL if the skb requires no segmentation. This is
1739 * only possible when GSO is used for verifying header integrity.
1740 */
1741 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1742 {
1743 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1744 struct packet_type *ptype;
1745 __be16 type = skb->protocol;
1746 int err;
1747
1748 skb_reset_mac_header(skb);
1749 skb->mac_len = skb->network_header - skb->mac_header;
1750 __skb_pull(skb, skb->mac_len);
1751
1752 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1753 struct net_device *dev = skb->dev;
1754 struct ethtool_drvinfo info = {};
1755
1756 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1757 dev->ethtool_ops->get_drvinfo(dev, &info);
1758
1759 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1760 "ip_summed=%d",
1761 info.driver, dev ? dev->features : 0L,
1762 skb->sk ? skb->sk->sk_route_caps : 0L,
1763 skb->len, skb->data_len, skb->ip_summed);
1764
1765 if (skb_header_cloned(skb) &&
1766 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1767 return ERR_PTR(err);
1768 }
1769
1770 rcu_read_lock();
1771 list_for_each_entry_rcu(ptype,
1772 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1773 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1774 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1775 err = ptype->gso_send_check(skb);
1776 segs = ERR_PTR(err);
1777 if (err || skb_gso_ok(skb, features))
1778 break;
1779 __skb_push(skb, (skb->data -
1780 skb_network_header(skb)));
1781 }
1782 segs = ptype->gso_segment(skb, features);
1783 break;
1784 }
1785 }
1786 rcu_read_unlock();
1787
1788 __skb_push(skb, skb->data - skb_mac_header(skb));
1789
1790 return segs;
1791 }
1792 EXPORT_SYMBOL(skb_gso_segment);
1793
1794 /* Take action when hardware reception checksum errors are detected. */
1795 #ifdef CONFIG_BUG
1796 void netdev_rx_csum_fault(struct net_device *dev)
1797 {
1798 if (net_ratelimit()) {
1799 printk(KERN_ERR "%s: hw csum failure.\n",
1800 dev ? dev->name : "<unknown>");
1801 dump_stack();
1802 }
1803 }
1804 EXPORT_SYMBOL(netdev_rx_csum_fault);
1805 #endif
1806
1807 /* Actually, we should eliminate this check as soon as we know, that:
1808 * 1. IOMMU is present and allows to map all the memory.
1809 * 2. No high memory really exists on this machine.
1810 */
1811
1812 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1813 {
1814 #ifdef CONFIG_HIGHMEM
1815 int i;
1816 if (!(dev->features & NETIF_F_HIGHDMA)) {
1817 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1818 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1819 return 1;
1820 }
1821
1822 if (PCI_DMA_BUS_IS_PHYS) {
1823 struct device *pdev = dev->dev.parent;
1824
1825 if (!pdev)
1826 return 0;
1827 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1828 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1829 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1830 return 1;
1831 }
1832 }
1833 #endif
1834 return 0;
1835 }
1836
1837 struct dev_gso_cb {
1838 void (*destructor)(struct sk_buff *skb);
1839 };
1840
1841 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1842
1843 static void dev_gso_skb_destructor(struct sk_buff *skb)
1844 {
1845 struct dev_gso_cb *cb;
1846
1847 do {
1848 struct sk_buff *nskb = skb->next;
1849
1850 skb->next = nskb->next;
1851 nskb->next = NULL;
1852 kfree_skb(nskb);
1853 } while (skb->next);
1854
1855 cb = DEV_GSO_CB(skb);
1856 if (cb->destructor)
1857 cb->destructor(skb);
1858 }
1859
1860 /**
1861 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1862 * @skb: buffer to segment
1863 *
1864 * This function segments the given skb and stores the list of segments
1865 * in skb->next.
1866 */
1867 static int dev_gso_segment(struct sk_buff *skb)
1868 {
1869 struct net_device *dev = skb->dev;
1870 struct sk_buff *segs;
1871 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1872 NETIF_F_SG : 0);
1873
1874 segs = skb_gso_segment(skb, features);
1875
1876 /* Verifying header integrity only. */
1877 if (!segs)
1878 return 0;
1879
1880 if (IS_ERR(segs))
1881 return PTR_ERR(segs);
1882
1883 skb->next = segs;
1884 DEV_GSO_CB(skb)->destructor = skb->destructor;
1885 skb->destructor = dev_gso_skb_destructor;
1886
1887 return 0;
1888 }
1889
1890 /*
1891 * Try to orphan skb early, right before transmission by the device.
1892 * We cannot orphan skb if tx timestamp is requested, since
1893 * drivers need to call skb_tstamp_tx() to send the timestamp.
1894 */
1895 static inline void skb_orphan_try(struct sk_buff *skb)
1896 {
1897 if (!skb_tx(skb)->flags)
1898 skb_orphan(skb);
1899 }
1900
1901 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1902 struct netdev_queue *txq)
1903 {
1904 const struct net_device_ops *ops = dev->netdev_ops;
1905 int rc = NETDEV_TX_OK;
1906
1907 if (likely(!skb->next)) {
1908 if (!list_empty(&ptype_all))
1909 dev_queue_xmit_nit(skb, dev);
1910
1911 /*
1912 * If device doesnt need skb->dst, release it right now while
1913 * its hot in this cpu cache
1914 */
1915 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1916 skb_dst_drop(skb);
1917
1918 skb_orphan_try(skb);
1919
1920 if (netif_needs_gso(dev, skb)) {
1921 if (unlikely(dev_gso_segment(skb)))
1922 goto out_kfree_skb;
1923 if (skb->next)
1924 goto gso;
1925 }
1926
1927 rc = ops->ndo_start_xmit(skb, dev);
1928 if (rc == NETDEV_TX_OK)
1929 txq_trans_update(txq);
1930 return rc;
1931 }
1932
1933 gso:
1934 do {
1935 struct sk_buff *nskb = skb->next;
1936
1937 skb->next = nskb->next;
1938 nskb->next = NULL;
1939
1940 /*
1941 * If device doesnt need nskb->dst, release it right now while
1942 * its hot in this cpu cache
1943 */
1944 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1945 skb_dst_drop(nskb);
1946
1947 rc = ops->ndo_start_xmit(nskb, dev);
1948 if (unlikely(rc != NETDEV_TX_OK)) {
1949 if (rc & ~NETDEV_TX_MASK)
1950 goto out_kfree_gso_skb;
1951 nskb->next = skb->next;
1952 skb->next = nskb;
1953 return rc;
1954 }
1955 txq_trans_update(txq);
1956 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1957 return NETDEV_TX_BUSY;
1958 } while (skb->next);
1959
1960 out_kfree_gso_skb:
1961 if (likely(skb->next == NULL))
1962 skb->destructor = DEV_GSO_CB(skb)->destructor;
1963 out_kfree_skb:
1964 kfree_skb(skb);
1965 return rc;
1966 }
1967
1968 static u32 hashrnd __read_mostly;
1969
1970 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1971 {
1972 u32 hash;
1973
1974 if (skb_rx_queue_recorded(skb)) {
1975 hash = skb_get_rx_queue(skb);
1976 while (unlikely(hash >= dev->real_num_tx_queues))
1977 hash -= dev->real_num_tx_queues;
1978 return hash;
1979 }
1980
1981 if (skb->sk && skb->sk->sk_hash)
1982 hash = skb->sk->sk_hash;
1983 else
1984 hash = (__force u16) skb->protocol;
1985
1986 hash = jhash_1word(hash, hashrnd);
1987
1988 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1989 }
1990 EXPORT_SYMBOL(skb_tx_hash);
1991
1992 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1993 {
1994 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1995 if (net_ratelimit()) {
1996 pr_warning("%s selects TX queue %d, but "
1997 "real number of TX queues is %d\n",
1998 dev->name, queue_index, dev->real_num_tx_queues);
1999 }
2000 return 0;
2001 }
2002 return queue_index;
2003 }
2004
2005 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2006 struct sk_buff *skb)
2007 {
2008 u16 queue_index;
2009 struct sock *sk = skb->sk;
2010
2011 if (sk_tx_queue_recorded(sk)) {
2012 queue_index = sk_tx_queue_get(sk);
2013 } else {
2014 const struct net_device_ops *ops = dev->netdev_ops;
2015
2016 if (ops->ndo_select_queue) {
2017 queue_index = ops->ndo_select_queue(dev, skb);
2018 queue_index = dev_cap_txqueue(dev, queue_index);
2019 } else {
2020 queue_index = 0;
2021 if (dev->real_num_tx_queues > 1)
2022 queue_index = skb_tx_hash(dev, skb);
2023
2024 if (sk) {
2025 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2026
2027 if (dst && skb_dst(skb) == dst)
2028 sk_tx_queue_set(sk, queue_index);
2029 }
2030 }
2031 }
2032
2033 skb_set_queue_mapping(skb, queue_index);
2034 return netdev_get_tx_queue(dev, queue_index);
2035 }
2036
2037 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2038 struct net_device *dev,
2039 struct netdev_queue *txq)
2040 {
2041 spinlock_t *root_lock = qdisc_lock(q);
2042 int rc;
2043
2044 spin_lock(root_lock);
2045 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2046 kfree_skb(skb);
2047 rc = NET_XMIT_DROP;
2048 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2049 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2050 /*
2051 * This is a work-conserving queue; there are no old skbs
2052 * waiting to be sent out; and the qdisc is not running -
2053 * xmit the skb directly.
2054 */
2055 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2056 skb_dst_force(skb);
2057 __qdisc_update_bstats(q, skb->len);
2058 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2059 __qdisc_run(q);
2060 else
2061 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2062
2063 rc = NET_XMIT_SUCCESS;
2064 } else {
2065 skb_dst_force(skb);
2066 rc = qdisc_enqueue_root(skb, q);
2067 qdisc_run(q);
2068 }
2069 spin_unlock(root_lock);
2070
2071 return rc;
2072 }
2073
2074 /*
2075 * Returns true if either:
2076 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2077 * 2. skb is fragmented and the device does not support SG, or if
2078 * at least one of fragments is in highmem and device does not
2079 * support DMA from it.
2080 */
2081 static inline int skb_needs_linearize(struct sk_buff *skb,
2082 struct net_device *dev)
2083 {
2084 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2085 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2086 illegal_highdma(dev, skb)));
2087 }
2088
2089 /**
2090 * dev_queue_xmit - transmit a buffer
2091 * @skb: buffer to transmit
2092 *
2093 * Queue a buffer for transmission to a network device. The caller must
2094 * have set the device and priority and built the buffer before calling
2095 * this function. The function can be called from an interrupt.
2096 *
2097 * A negative errno code is returned on a failure. A success does not
2098 * guarantee the frame will be transmitted as it may be dropped due
2099 * to congestion or traffic shaping.
2100 *
2101 * -----------------------------------------------------------------------------------
2102 * I notice this method can also return errors from the queue disciplines,
2103 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2104 * be positive.
2105 *
2106 * Regardless of the return value, the skb is consumed, so it is currently
2107 * difficult to retry a send to this method. (You can bump the ref count
2108 * before sending to hold a reference for retry if you are careful.)
2109 *
2110 * When calling this method, interrupts MUST be enabled. This is because
2111 * the BH enable code must have IRQs enabled so that it will not deadlock.
2112 * --BLG
2113 */
2114 int dev_queue_xmit(struct sk_buff *skb)
2115 {
2116 struct net_device *dev = skb->dev;
2117 struct netdev_queue *txq;
2118 struct Qdisc *q;
2119 int rc = -ENOMEM;
2120
2121 /* GSO will handle the following emulations directly. */
2122 if (netif_needs_gso(dev, skb))
2123 goto gso;
2124
2125 /* Convert a paged skb to linear, if required */
2126 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2127 goto out_kfree_skb;
2128
2129 /* If packet is not checksummed and device does not support
2130 * checksumming for this protocol, complete checksumming here.
2131 */
2132 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2133 skb_set_transport_header(skb, skb->csum_start -
2134 skb_headroom(skb));
2135 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2136 goto out_kfree_skb;
2137 }
2138
2139 gso:
2140 /* Disable soft irqs for various locks below. Also
2141 * stops preemption for RCU.
2142 */
2143 rcu_read_lock_bh();
2144
2145 txq = dev_pick_tx(dev, skb);
2146 q = rcu_dereference_bh(txq->qdisc);
2147
2148 #ifdef CONFIG_NET_CLS_ACT
2149 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2150 #endif
2151 if (q->enqueue) {
2152 rc = __dev_xmit_skb(skb, q, dev, txq);
2153 goto out;
2154 }
2155
2156 /* The device has no queue. Common case for software devices:
2157 loopback, all the sorts of tunnels...
2158
2159 Really, it is unlikely that netif_tx_lock protection is necessary
2160 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2161 counters.)
2162 However, it is possible, that they rely on protection
2163 made by us here.
2164
2165 Check this and shot the lock. It is not prone from deadlocks.
2166 Either shot noqueue qdisc, it is even simpler 8)
2167 */
2168 if (dev->flags & IFF_UP) {
2169 int cpu = smp_processor_id(); /* ok because BHs are off */
2170
2171 if (txq->xmit_lock_owner != cpu) {
2172
2173 HARD_TX_LOCK(dev, txq, cpu);
2174
2175 if (!netif_tx_queue_stopped(txq)) {
2176 rc = dev_hard_start_xmit(skb, dev, txq);
2177 if (dev_xmit_complete(rc)) {
2178 HARD_TX_UNLOCK(dev, txq);
2179 goto out;
2180 }
2181 }
2182 HARD_TX_UNLOCK(dev, txq);
2183 if (net_ratelimit())
2184 printk(KERN_CRIT "Virtual device %s asks to "
2185 "queue packet!\n", dev->name);
2186 } else {
2187 /* Recursion is detected! It is possible,
2188 * unfortunately */
2189 if (net_ratelimit())
2190 printk(KERN_CRIT "Dead loop on virtual device "
2191 "%s, fix it urgently!\n", dev->name);
2192 }
2193 }
2194
2195 rc = -ENETDOWN;
2196 rcu_read_unlock_bh();
2197
2198 out_kfree_skb:
2199 kfree_skb(skb);
2200 return rc;
2201 out:
2202 rcu_read_unlock_bh();
2203 return rc;
2204 }
2205 EXPORT_SYMBOL(dev_queue_xmit);
2206
2207
2208 /*=======================================================================
2209 Receiver routines
2210 =======================================================================*/
2211
2212 int netdev_max_backlog __read_mostly = 1000;
2213 int netdev_tstamp_prequeue __read_mostly = 1;
2214 int netdev_budget __read_mostly = 300;
2215 int weight_p __read_mostly = 64; /* old backlog weight */
2216
2217 /* Called with irq disabled */
2218 static inline void ____napi_schedule(struct softnet_data *sd,
2219 struct napi_struct *napi)
2220 {
2221 list_add_tail(&napi->poll_list, &sd->poll_list);
2222 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2223 }
2224
2225 #ifdef CONFIG_RPS
2226
2227 /* One global table that all flow-based protocols share. */
2228 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2229 EXPORT_SYMBOL(rps_sock_flow_table);
2230
2231 /*
2232 * get_rps_cpu is called from netif_receive_skb and returns the target
2233 * CPU from the RPS map of the receiving queue for a given skb.
2234 * rcu_read_lock must be held on entry.
2235 */
2236 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2237 struct rps_dev_flow **rflowp)
2238 {
2239 struct ipv6hdr *ip6;
2240 struct iphdr *ip;
2241 struct netdev_rx_queue *rxqueue;
2242 struct rps_map *map;
2243 struct rps_dev_flow_table *flow_table;
2244 struct rps_sock_flow_table *sock_flow_table;
2245 int cpu = -1;
2246 u8 ip_proto;
2247 u16 tcpu;
2248 u32 addr1, addr2, ihl;
2249 union {
2250 u32 v32;
2251 u16 v16[2];
2252 } ports;
2253
2254 if (skb_rx_queue_recorded(skb)) {
2255 u16 index = skb_get_rx_queue(skb);
2256 if (unlikely(index >= dev->num_rx_queues)) {
2257 if (net_ratelimit()) {
2258 pr_warning("%s received packet on queue "
2259 "%u, but number of RX queues is %u\n",
2260 dev->name, index, dev->num_rx_queues);
2261 }
2262 goto done;
2263 }
2264 rxqueue = dev->_rx + index;
2265 } else
2266 rxqueue = dev->_rx;
2267
2268 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2269 goto done;
2270
2271 if (skb->rxhash)
2272 goto got_hash; /* Skip hash computation on packet header */
2273
2274 switch (skb->protocol) {
2275 case __constant_htons(ETH_P_IP):
2276 if (!pskb_may_pull(skb, sizeof(*ip)))
2277 goto done;
2278
2279 ip = (struct iphdr *) skb->data;
2280 ip_proto = ip->protocol;
2281 addr1 = (__force u32) ip->saddr;
2282 addr2 = (__force u32) ip->daddr;
2283 ihl = ip->ihl;
2284 break;
2285 case __constant_htons(ETH_P_IPV6):
2286 if (!pskb_may_pull(skb, sizeof(*ip6)))
2287 goto done;
2288
2289 ip6 = (struct ipv6hdr *) skb->data;
2290 ip_proto = ip6->nexthdr;
2291 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2292 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2293 ihl = (40 >> 2);
2294 break;
2295 default:
2296 goto done;
2297 }
2298 switch (ip_proto) {
2299 case IPPROTO_TCP:
2300 case IPPROTO_UDP:
2301 case IPPROTO_DCCP:
2302 case IPPROTO_ESP:
2303 case IPPROTO_AH:
2304 case IPPROTO_SCTP:
2305 case IPPROTO_UDPLITE:
2306 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2307 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2308 if (ports.v16[1] < ports.v16[0])
2309 swap(ports.v16[0], ports.v16[1]);
2310 break;
2311 }
2312 default:
2313 ports.v32 = 0;
2314 break;
2315 }
2316
2317 /* get a consistent hash (same value on both flow directions) */
2318 if (addr2 < addr1)
2319 swap(addr1, addr2);
2320 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2321 if (!skb->rxhash)
2322 skb->rxhash = 1;
2323
2324 got_hash:
2325 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2326 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2327 if (flow_table && sock_flow_table) {
2328 u16 next_cpu;
2329 struct rps_dev_flow *rflow;
2330
2331 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2332 tcpu = rflow->cpu;
2333
2334 next_cpu = sock_flow_table->ents[skb->rxhash &
2335 sock_flow_table->mask];
2336
2337 /*
2338 * If the desired CPU (where last recvmsg was done) is
2339 * different from current CPU (one in the rx-queue flow
2340 * table entry), switch if one of the following holds:
2341 * - Current CPU is unset (equal to RPS_NO_CPU).
2342 * - Current CPU is offline.
2343 * - The current CPU's queue tail has advanced beyond the
2344 * last packet that was enqueued using this table entry.
2345 * This guarantees that all previous packets for the flow
2346 * have been dequeued, thus preserving in order delivery.
2347 */
2348 if (unlikely(tcpu != next_cpu) &&
2349 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2350 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2351 rflow->last_qtail)) >= 0)) {
2352 tcpu = rflow->cpu = next_cpu;
2353 if (tcpu != RPS_NO_CPU)
2354 rflow->last_qtail = per_cpu(softnet_data,
2355 tcpu).input_queue_head;
2356 }
2357 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2358 *rflowp = rflow;
2359 cpu = tcpu;
2360 goto done;
2361 }
2362 }
2363
2364 map = rcu_dereference(rxqueue->rps_map);
2365 if (map) {
2366 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2367
2368 if (cpu_online(tcpu)) {
2369 cpu = tcpu;
2370 goto done;
2371 }
2372 }
2373
2374 done:
2375 return cpu;
2376 }
2377
2378 /* Called from hardirq (IPI) context */
2379 static void rps_trigger_softirq(void *data)
2380 {
2381 struct softnet_data *sd = data;
2382
2383 ____napi_schedule(sd, &sd->backlog);
2384 sd->received_rps++;
2385 }
2386
2387 #endif /* CONFIG_RPS */
2388
2389 /*
2390 * Check if this softnet_data structure is another cpu one
2391 * If yes, queue it to our IPI list and return 1
2392 * If no, return 0
2393 */
2394 static int rps_ipi_queued(struct softnet_data *sd)
2395 {
2396 #ifdef CONFIG_RPS
2397 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2398
2399 if (sd != mysd) {
2400 sd->rps_ipi_next = mysd->rps_ipi_list;
2401 mysd->rps_ipi_list = sd;
2402
2403 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2404 return 1;
2405 }
2406 #endif /* CONFIG_RPS */
2407 return 0;
2408 }
2409
2410 /*
2411 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2412 * queue (may be a remote CPU queue).
2413 */
2414 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2415 unsigned int *qtail)
2416 {
2417 struct softnet_data *sd;
2418 unsigned long flags;
2419
2420 sd = &per_cpu(softnet_data, cpu);
2421
2422 local_irq_save(flags);
2423
2424 rps_lock(sd);
2425 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2426 if (skb_queue_len(&sd->input_pkt_queue)) {
2427 enqueue:
2428 __skb_queue_tail(&sd->input_pkt_queue, skb);
2429 #ifdef CONFIG_RPS
2430 *qtail = sd->input_queue_head +
2431 skb_queue_len(&sd->input_pkt_queue);
2432 #endif
2433 rps_unlock(sd);
2434 local_irq_restore(flags);
2435 return NET_RX_SUCCESS;
2436 }
2437
2438 /* Schedule NAPI for backlog device
2439 * We can use non atomic operation since we own the queue lock
2440 */
2441 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2442 if (!rps_ipi_queued(sd))
2443 ____napi_schedule(sd, &sd->backlog);
2444 }
2445 goto enqueue;
2446 }
2447
2448 sd->dropped++;
2449 rps_unlock(sd);
2450
2451 local_irq_restore(flags);
2452
2453 kfree_skb(skb);
2454 return NET_RX_DROP;
2455 }
2456
2457 /**
2458 * netif_rx - post buffer to the network code
2459 * @skb: buffer to post
2460 *
2461 * This function receives a packet from a device driver and queues it for
2462 * the upper (protocol) levels to process. It always succeeds. The buffer
2463 * may be dropped during processing for congestion control or by the
2464 * protocol layers.
2465 *
2466 * return values:
2467 * NET_RX_SUCCESS (no congestion)
2468 * NET_RX_DROP (packet was dropped)
2469 *
2470 */
2471
2472 int netif_rx(struct sk_buff *skb)
2473 {
2474 int ret;
2475
2476 /* if netpoll wants it, pretend we never saw it */
2477 if (netpoll_rx(skb))
2478 return NET_RX_DROP;
2479
2480 if (netdev_tstamp_prequeue)
2481 net_timestamp_check(skb);
2482
2483 #ifdef CONFIG_RPS
2484 {
2485 struct rps_dev_flow voidflow, *rflow = &voidflow;
2486 int cpu;
2487
2488 rcu_read_lock();
2489
2490 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2491 if (cpu < 0)
2492 cpu = smp_processor_id();
2493
2494 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2495
2496 rcu_read_unlock();
2497 }
2498 #else
2499 {
2500 unsigned int qtail;
2501 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2502 put_cpu();
2503 }
2504 #endif
2505 return ret;
2506 }
2507 EXPORT_SYMBOL(netif_rx);
2508
2509 int netif_rx_ni(struct sk_buff *skb)
2510 {
2511 int err;
2512
2513 preempt_disable();
2514 err = netif_rx(skb);
2515 if (local_softirq_pending())
2516 do_softirq();
2517 preempt_enable();
2518
2519 return err;
2520 }
2521 EXPORT_SYMBOL(netif_rx_ni);
2522
2523 static void net_tx_action(struct softirq_action *h)
2524 {
2525 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2526
2527 if (sd->completion_queue) {
2528 struct sk_buff *clist;
2529
2530 local_irq_disable();
2531 clist = sd->completion_queue;
2532 sd->completion_queue = NULL;
2533 local_irq_enable();
2534
2535 while (clist) {
2536 struct sk_buff *skb = clist;
2537 clist = clist->next;
2538
2539 WARN_ON(atomic_read(&skb->users));
2540 __kfree_skb(skb);
2541 }
2542 }
2543
2544 if (sd->output_queue) {
2545 struct Qdisc *head;
2546
2547 local_irq_disable();
2548 head = sd->output_queue;
2549 sd->output_queue = NULL;
2550 sd->output_queue_tailp = &sd->output_queue;
2551 local_irq_enable();
2552
2553 while (head) {
2554 struct Qdisc *q = head;
2555 spinlock_t *root_lock;
2556
2557 head = head->next_sched;
2558
2559 root_lock = qdisc_lock(q);
2560 if (spin_trylock(root_lock)) {
2561 smp_mb__before_clear_bit();
2562 clear_bit(__QDISC_STATE_SCHED,
2563 &q->state);
2564 qdisc_run(q);
2565 spin_unlock(root_lock);
2566 } else {
2567 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2568 &q->state)) {
2569 __netif_reschedule(q);
2570 } else {
2571 smp_mb__before_clear_bit();
2572 clear_bit(__QDISC_STATE_SCHED,
2573 &q->state);
2574 }
2575 }
2576 }
2577 }
2578 }
2579
2580 static inline int deliver_skb(struct sk_buff *skb,
2581 struct packet_type *pt_prev,
2582 struct net_device *orig_dev)
2583 {
2584 atomic_inc(&skb->users);
2585 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2586 }
2587
2588 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2589
2590 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2591 /* This hook is defined here for ATM LANE */
2592 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2593 unsigned char *addr) __read_mostly;
2594 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2595 #endif
2596
2597 /*
2598 * If bridge module is loaded call bridging hook.
2599 * returns NULL if packet was consumed.
2600 */
2601 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2602 struct sk_buff *skb) __read_mostly;
2603 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2604
2605 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2606 struct packet_type **pt_prev, int *ret,
2607 struct net_device *orig_dev)
2608 {
2609 struct net_bridge_port *port;
2610
2611 if (skb->pkt_type == PACKET_LOOPBACK ||
2612 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2613 return skb;
2614
2615 if (*pt_prev) {
2616 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2617 *pt_prev = NULL;
2618 }
2619
2620 return br_handle_frame_hook(port, skb);
2621 }
2622 #else
2623 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2624 #endif
2625
2626 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2627 struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p,
2628 struct sk_buff *skb) __read_mostly;
2629 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2630
2631 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2632 struct packet_type **pt_prev,
2633 int *ret,
2634 struct net_device *orig_dev)
2635 {
2636 struct macvlan_port *port;
2637
2638 port = rcu_dereference(skb->dev->macvlan_port);
2639 if (!port)
2640 return skb;
2641
2642 if (*pt_prev) {
2643 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2644 *pt_prev = NULL;
2645 }
2646 return macvlan_handle_frame_hook(port, skb);
2647 }
2648 #else
2649 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2650 #endif
2651
2652 #ifdef CONFIG_NET_CLS_ACT
2653 /* TODO: Maybe we should just force sch_ingress to be compiled in
2654 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2655 * a compare and 2 stores extra right now if we dont have it on
2656 * but have CONFIG_NET_CLS_ACT
2657 * NOTE: This doesnt stop any functionality; if you dont have
2658 * the ingress scheduler, you just cant add policies on ingress.
2659 *
2660 */
2661 static int ing_filter(struct sk_buff *skb)
2662 {
2663 struct net_device *dev = skb->dev;
2664 u32 ttl = G_TC_RTTL(skb->tc_verd);
2665 struct netdev_queue *rxq;
2666 int result = TC_ACT_OK;
2667 struct Qdisc *q;
2668
2669 if (MAX_RED_LOOP < ttl++) {
2670 printk(KERN_WARNING
2671 "Redir loop detected Dropping packet (%d->%d)\n",
2672 skb->skb_iif, dev->ifindex);
2673 return TC_ACT_SHOT;
2674 }
2675
2676 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2677 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2678
2679 rxq = &dev->rx_queue;
2680
2681 q = rxq->qdisc;
2682 if (q != &noop_qdisc) {
2683 spin_lock(qdisc_lock(q));
2684 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2685 result = qdisc_enqueue_root(skb, q);
2686 spin_unlock(qdisc_lock(q));
2687 }
2688
2689 return result;
2690 }
2691
2692 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2693 struct packet_type **pt_prev,
2694 int *ret, struct net_device *orig_dev)
2695 {
2696 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2697 goto out;
2698
2699 if (*pt_prev) {
2700 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2701 *pt_prev = NULL;
2702 } else {
2703 /* Huh? Why does turning on AF_PACKET affect this? */
2704 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2705 }
2706
2707 switch (ing_filter(skb)) {
2708 case TC_ACT_SHOT:
2709 case TC_ACT_STOLEN:
2710 kfree_skb(skb);
2711 return NULL;
2712 }
2713
2714 out:
2715 skb->tc_verd = 0;
2716 return skb;
2717 }
2718 #endif
2719
2720 /*
2721 * netif_nit_deliver - deliver received packets to network taps
2722 * @skb: buffer
2723 *
2724 * This function is used to deliver incoming packets to network
2725 * taps. It should be used when the normal netif_receive_skb path
2726 * is bypassed, for example because of VLAN acceleration.
2727 */
2728 void netif_nit_deliver(struct sk_buff *skb)
2729 {
2730 struct packet_type *ptype;
2731
2732 if (list_empty(&ptype_all))
2733 return;
2734
2735 skb_reset_network_header(skb);
2736 skb_reset_transport_header(skb);
2737 skb->mac_len = skb->network_header - skb->mac_header;
2738
2739 rcu_read_lock();
2740 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2741 if (!ptype->dev || ptype->dev == skb->dev)
2742 deliver_skb(skb, ptype, skb->dev);
2743 }
2744 rcu_read_unlock();
2745 }
2746
2747 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2748 struct net_device *master)
2749 {
2750 if (skb->pkt_type == PACKET_HOST) {
2751 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2752
2753 memcpy(dest, master->dev_addr, ETH_ALEN);
2754 }
2755 }
2756
2757 /* On bonding slaves other than the currently active slave, suppress
2758 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2759 * ARP on active-backup slaves with arp_validate enabled.
2760 */
2761 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2762 {
2763 struct net_device *dev = skb->dev;
2764
2765 if (master->priv_flags & IFF_MASTER_ARPMON)
2766 dev->last_rx = jiffies;
2767
2768 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2769 /* Do address unmangle. The local destination address
2770 * will be always the one master has. Provides the right
2771 * functionality in a bridge.
2772 */
2773 skb_bond_set_mac_by_master(skb, master);
2774 }
2775
2776 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2777 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2778 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2779 return 0;
2780
2781 if (master->priv_flags & IFF_MASTER_ALB) {
2782 if (skb->pkt_type != PACKET_BROADCAST &&
2783 skb->pkt_type != PACKET_MULTICAST)
2784 return 0;
2785 }
2786 if (master->priv_flags & IFF_MASTER_8023AD &&
2787 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2788 return 0;
2789
2790 return 1;
2791 }
2792 return 0;
2793 }
2794 EXPORT_SYMBOL(__skb_bond_should_drop);
2795
2796 static int __netif_receive_skb(struct sk_buff *skb)
2797 {
2798 struct packet_type *ptype, *pt_prev;
2799 struct net_device *orig_dev;
2800 struct net_device *master;
2801 struct net_device *null_or_orig;
2802 struct net_device *null_or_bond;
2803 int ret = NET_RX_DROP;
2804 __be16 type;
2805
2806 if (!netdev_tstamp_prequeue)
2807 net_timestamp_check(skb);
2808
2809 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2810 return NET_RX_SUCCESS;
2811
2812 /* if we've gotten here through NAPI, check netpoll */
2813 if (netpoll_receive_skb(skb))
2814 return NET_RX_DROP;
2815
2816 if (!skb->skb_iif)
2817 skb->skb_iif = skb->dev->ifindex;
2818
2819 null_or_orig = NULL;
2820 orig_dev = skb->dev;
2821 master = ACCESS_ONCE(orig_dev->master);
2822 if (master) {
2823 if (skb_bond_should_drop(skb, master))
2824 null_or_orig = orig_dev; /* deliver only exact match */
2825 else
2826 skb->dev = master;
2827 }
2828
2829 __get_cpu_var(softnet_data).processed++;
2830
2831 skb_reset_network_header(skb);
2832 skb_reset_transport_header(skb);
2833 skb->mac_len = skb->network_header - skb->mac_header;
2834
2835 pt_prev = NULL;
2836
2837 rcu_read_lock();
2838
2839 #ifdef CONFIG_NET_CLS_ACT
2840 if (skb->tc_verd & TC_NCLS) {
2841 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2842 goto ncls;
2843 }
2844 #endif
2845
2846 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2847 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2848 ptype->dev == orig_dev) {
2849 if (pt_prev)
2850 ret = deliver_skb(skb, pt_prev, orig_dev);
2851 pt_prev = ptype;
2852 }
2853 }
2854
2855 #ifdef CONFIG_NET_CLS_ACT
2856 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2857 if (!skb)
2858 goto out;
2859 ncls:
2860 #endif
2861
2862 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2863 if (!skb)
2864 goto out;
2865 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2866 if (!skb)
2867 goto out;
2868
2869 /*
2870 * Make sure frames received on VLAN interfaces stacked on
2871 * bonding interfaces still make their way to any base bonding
2872 * device that may have registered for a specific ptype. The
2873 * handler may have to adjust skb->dev and orig_dev.
2874 */
2875 null_or_bond = NULL;
2876 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2877 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2878 null_or_bond = vlan_dev_real_dev(skb->dev);
2879 }
2880
2881 type = skb->protocol;
2882 list_for_each_entry_rcu(ptype,
2883 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2884 if (ptype->type == type && (ptype->dev == null_or_orig ||
2885 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2886 ptype->dev == null_or_bond)) {
2887 if (pt_prev)
2888 ret = deliver_skb(skb, pt_prev, orig_dev);
2889 pt_prev = ptype;
2890 }
2891 }
2892
2893 if (pt_prev) {
2894 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2895 } else {
2896 kfree_skb(skb);
2897 /* Jamal, now you will not able to escape explaining
2898 * me how you were going to use this. :-)
2899 */
2900 ret = NET_RX_DROP;
2901 }
2902
2903 out:
2904 rcu_read_unlock();
2905 return ret;
2906 }
2907
2908 /**
2909 * netif_receive_skb - process receive buffer from network
2910 * @skb: buffer to process
2911 *
2912 * netif_receive_skb() is the main receive data processing function.
2913 * It always succeeds. The buffer may be dropped during processing
2914 * for congestion control or by the protocol layers.
2915 *
2916 * This function may only be called from softirq context and interrupts
2917 * should be enabled.
2918 *
2919 * Return values (usually ignored):
2920 * NET_RX_SUCCESS: no congestion
2921 * NET_RX_DROP: packet was dropped
2922 */
2923 int netif_receive_skb(struct sk_buff *skb)
2924 {
2925 if (netdev_tstamp_prequeue)
2926 net_timestamp_check(skb);
2927
2928 #ifdef CONFIG_RPS
2929 {
2930 struct rps_dev_flow voidflow, *rflow = &voidflow;
2931 int cpu, ret;
2932
2933 rcu_read_lock();
2934
2935 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2936
2937 if (cpu >= 0) {
2938 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2939 rcu_read_unlock();
2940 } else {
2941 rcu_read_unlock();
2942 ret = __netif_receive_skb(skb);
2943 }
2944
2945 return ret;
2946 }
2947 #else
2948 return __netif_receive_skb(skb);
2949 #endif
2950 }
2951 EXPORT_SYMBOL(netif_receive_skb);
2952
2953 /* Network device is going away, flush any packets still pending
2954 * Called with irqs disabled.
2955 */
2956 static void flush_backlog(void *arg)
2957 {
2958 struct net_device *dev = arg;
2959 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2960 struct sk_buff *skb, *tmp;
2961
2962 rps_lock(sd);
2963 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
2964 if (skb->dev == dev) {
2965 __skb_unlink(skb, &sd->input_pkt_queue);
2966 kfree_skb(skb);
2967 input_queue_head_add(sd, 1);
2968 }
2969 }
2970 rps_unlock(sd);
2971
2972 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
2973 if (skb->dev == dev) {
2974 __skb_unlink(skb, &sd->process_queue);
2975 kfree_skb(skb);
2976 }
2977 }
2978 }
2979
2980 static int napi_gro_complete(struct sk_buff *skb)
2981 {
2982 struct packet_type *ptype;
2983 __be16 type = skb->protocol;
2984 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2985 int err = -ENOENT;
2986
2987 if (NAPI_GRO_CB(skb)->count == 1) {
2988 skb_shinfo(skb)->gso_size = 0;
2989 goto out;
2990 }
2991
2992 rcu_read_lock();
2993 list_for_each_entry_rcu(ptype, head, list) {
2994 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2995 continue;
2996
2997 err = ptype->gro_complete(skb);
2998 break;
2999 }
3000 rcu_read_unlock();
3001
3002 if (err) {
3003 WARN_ON(&ptype->list == head);
3004 kfree_skb(skb);
3005 return NET_RX_SUCCESS;
3006 }
3007
3008 out:
3009 return netif_receive_skb(skb);
3010 }
3011
3012 static void napi_gro_flush(struct napi_struct *napi)
3013 {
3014 struct sk_buff *skb, *next;
3015
3016 for (skb = napi->gro_list; skb; skb = next) {
3017 next = skb->next;
3018 skb->next = NULL;
3019 napi_gro_complete(skb);
3020 }
3021
3022 napi->gro_count = 0;
3023 napi->gro_list = NULL;
3024 }
3025
3026 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3027 {
3028 struct sk_buff **pp = NULL;
3029 struct packet_type *ptype;
3030 __be16 type = skb->protocol;
3031 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3032 int same_flow;
3033 int mac_len;
3034 enum gro_result ret;
3035
3036 if (!(skb->dev->features & NETIF_F_GRO))
3037 goto normal;
3038
3039 if (skb_is_gso(skb) || skb_has_frags(skb))
3040 goto normal;
3041
3042 rcu_read_lock();
3043 list_for_each_entry_rcu(ptype, head, list) {
3044 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3045 continue;
3046
3047 skb_set_network_header(skb, skb_gro_offset(skb));
3048 mac_len = skb->network_header - skb->mac_header;
3049 skb->mac_len = mac_len;
3050 NAPI_GRO_CB(skb)->same_flow = 0;
3051 NAPI_GRO_CB(skb)->flush = 0;
3052 NAPI_GRO_CB(skb)->free = 0;
3053
3054 pp = ptype->gro_receive(&napi->gro_list, skb);
3055 break;
3056 }
3057 rcu_read_unlock();
3058
3059 if (&ptype->list == head)
3060 goto normal;
3061
3062 same_flow = NAPI_GRO_CB(skb)->same_flow;
3063 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3064
3065 if (pp) {
3066 struct sk_buff *nskb = *pp;
3067
3068 *pp = nskb->next;
3069 nskb->next = NULL;
3070 napi_gro_complete(nskb);
3071 napi->gro_count--;
3072 }
3073
3074 if (same_flow)
3075 goto ok;
3076
3077 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3078 goto normal;
3079
3080 napi->gro_count++;
3081 NAPI_GRO_CB(skb)->count = 1;
3082 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3083 skb->next = napi->gro_list;
3084 napi->gro_list = skb;
3085 ret = GRO_HELD;
3086
3087 pull:
3088 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3089 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3090
3091 BUG_ON(skb->end - skb->tail < grow);
3092
3093 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3094
3095 skb->tail += grow;
3096 skb->data_len -= grow;
3097
3098 skb_shinfo(skb)->frags[0].page_offset += grow;
3099 skb_shinfo(skb)->frags[0].size -= grow;
3100
3101 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3102 put_page(skb_shinfo(skb)->frags[0].page);
3103 memmove(skb_shinfo(skb)->frags,
3104 skb_shinfo(skb)->frags + 1,
3105 --skb_shinfo(skb)->nr_frags);
3106 }
3107 }
3108
3109 ok:
3110 return ret;
3111
3112 normal:
3113 ret = GRO_NORMAL;
3114 goto pull;
3115 }
3116 EXPORT_SYMBOL(dev_gro_receive);
3117
3118 static gro_result_t
3119 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3120 {
3121 struct sk_buff *p;
3122
3123 if (netpoll_rx_on(skb))
3124 return GRO_NORMAL;
3125
3126 for (p = napi->gro_list; p; p = p->next) {
3127 NAPI_GRO_CB(p)->same_flow =
3128 (p->dev == skb->dev) &&
3129 !compare_ether_header(skb_mac_header(p),
3130 skb_gro_mac_header(skb));
3131 NAPI_GRO_CB(p)->flush = 0;
3132 }
3133
3134 return dev_gro_receive(napi, skb);
3135 }
3136
3137 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3138 {
3139 switch (ret) {
3140 case GRO_NORMAL:
3141 if (netif_receive_skb(skb))
3142 ret = GRO_DROP;
3143 break;
3144
3145 case GRO_DROP:
3146 case GRO_MERGED_FREE:
3147 kfree_skb(skb);
3148 break;
3149
3150 case GRO_HELD:
3151 case GRO_MERGED:
3152 break;
3153 }
3154
3155 return ret;
3156 }
3157 EXPORT_SYMBOL(napi_skb_finish);
3158
3159 void skb_gro_reset_offset(struct sk_buff *skb)
3160 {
3161 NAPI_GRO_CB(skb)->data_offset = 0;
3162 NAPI_GRO_CB(skb)->frag0 = NULL;
3163 NAPI_GRO_CB(skb)->frag0_len = 0;
3164
3165 if (skb->mac_header == skb->tail &&
3166 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3167 NAPI_GRO_CB(skb)->frag0 =
3168 page_address(skb_shinfo(skb)->frags[0].page) +
3169 skb_shinfo(skb)->frags[0].page_offset;
3170 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3171 }
3172 }
3173 EXPORT_SYMBOL(skb_gro_reset_offset);
3174
3175 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3176 {
3177 skb_gro_reset_offset(skb);
3178
3179 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3180 }
3181 EXPORT_SYMBOL(napi_gro_receive);
3182
3183 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3184 {
3185 __skb_pull(skb, skb_headlen(skb));
3186 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3187
3188 napi->skb = skb;
3189 }
3190 EXPORT_SYMBOL(napi_reuse_skb);
3191
3192 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3193 {
3194 struct sk_buff *skb = napi->skb;
3195
3196 if (!skb) {
3197 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3198 if (skb)
3199 napi->skb = skb;
3200 }
3201 return skb;
3202 }
3203 EXPORT_SYMBOL(napi_get_frags);
3204
3205 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3206 gro_result_t ret)
3207 {
3208 switch (ret) {
3209 case GRO_NORMAL:
3210 case GRO_HELD:
3211 skb->protocol = eth_type_trans(skb, skb->dev);
3212
3213 if (ret == GRO_HELD)
3214 skb_gro_pull(skb, -ETH_HLEN);
3215 else if (netif_receive_skb(skb))
3216 ret = GRO_DROP;
3217 break;
3218
3219 case GRO_DROP:
3220 case GRO_MERGED_FREE:
3221 napi_reuse_skb(napi, skb);
3222 break;
3223
3224 case GRO_MERGED:
3225 break;
3226 }
3227
3228 return ret;
3229 }
3230 EXPORT_SYMBOL(napi_frags_finish);
3231
3232 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3233 {
3234 struct sk_buff *skb = napi->skb;
3235 struct ethhdr *eth;
3236 unsigned int hlen;
3237 unsigned int off;
3238
3239 napi->skb = NULL;
3240
3241 skb_reset_mac_header(skb);
3242 skb_gro_reset_offset(skb);
3243
3244 off = skb_gro_offset(skb);
3245 hlen = off + sizeof(*eth);
3246 eth = skb_gro_header_fast(skb, off);
3247 if (skb_gro_header_hard(skb, hlen)) {
3248 eth = skb_gro_header_slow(skb, hlen, off);
3249 if (unlikely(!eth)) {
3250 napi_reuse_skb(napi, skb);
3251 skb = NULL;
3252 goto out;
3253 }
3254 }
3255
3256 skb_gro_pull(skb, sizeof(*eth));
3257
3258 /*
3259 * This works because the only protocols we care about don't require
3260 * special handling. We'll fix it up properly at the end.
3261 */
3262 skb->protocol = eth->h_proto;
3263
3264 out:
3265 return skb;
3266 }
3267 EXPORT_SYMBOL(napi_frags_skb);
3268
3269 gro_result_t napi_gro_frags(struct napi_struct *napi)
3270 {
3271 struct sk_buff *skb = napi_frags_skb(napi);
3272
3273 if (!skb)
3274 return GRO_DROP;
3275
3276 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3277 }
3278 EXPORT_SYMBOL(napi_gro_frags);
3279
3280 /*
3281 * net_rps_action sends any pending IPI's for rps.
3282 * Note: called with local irq disabled, but exits with local irq enabled.
3283 */
3284 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3285 {
3286 #ifdef CONFIG_RPS
3287 struct softnet_data *remsd = sd->rps_ipi_list;
3288
3289 if (remsd) {
3290 sd->rps_ipi_list = NULL;
3291
3292 local_irq_enable();
3293
3294 /* Send pending IPI's to kick RPS processing on remote cpus. */
3295 while (remsd) {
3296 struct softnet_data *next = remsd->rps_ipi_next;
3297
3298 if (cpu_online(remsd->cpu))
3299 __smp_call_function_single(remsd->cpu,
3300 &remsd->csd, 0);
3301 remsd = next;
3302 }
3303 } else
3304 #endif
3305 local_irq_enable();
3306 }
3307
3308 static int process_backlog(struct napi_struct *napi, int quota)
3309 {
3310 int work = 0;
3311 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3312
3313 #ifdef CONFIG_RPS
3314 /* Check if we have pending ipi, its better to send them now,
3315 * not waiting net_rx_action() end.
3316 */
3317 if (sd->rps_ipi_list) {
3318 local_irq_disable();
3319 net_rps_action_and_irq_enable(sd);
3320 }
3321 #endif
3322 napi->weight = weight_p;
3323 local_irq_disable();
3324 while (work < quota) {
3325 struct sk_buff *skb;
3326 unsigned int qlen;
3327
3328 while ((skb = __skb_dequeue(&sd->process_queue))) {
3329 local_irq_enable();
3330 __netif_receive_skb(skb);
3331 if (++work >= quota)
3332 return work;
3333 local_irq_disable();
3334 }
3335
3336 rps_lock(sd);
3337 qlen = skb_queue_len(&sd->input_pkt_queue);
3338 if (qlen) {
3339 input_queue_head_add(sd, qlen);
3340 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3341 &sd->process_queue);
3342 }
3343 if (qlen < quota - work) {
3344 /*
3345 * Inline a custom version of __napi_complete().
3346 * only current cpu owns and manipulates this napi,
3347 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3348 * we can use a plain write instead of clear_bit(),
3349 * and we dont need an smp_mb() memory barrier.
3350 */
3351 list_del(&napi->poll_list);
3352 napi->state = 0;
3353
3354 quota = work + qlen;
3355 }
3356 rps_unlock(sd);
3357 }
3358 local_irq_enable();
3359
3360 return work;
3361 }
3362
3363 /**
3364 * __napi_schedule - schedule for receive
3365 * @n: entry to schedule
3366 *
3367 * The entry's receive function will be scheduled to run
3368 */
3369 void __napi_schedule(struct napi_struct *n)
3370 {
3371 unsigned long flags;
3372
3373 local_irq_save(flags);
3374 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3375 local_irq_restore(flags);
3376 }
3377 EXPORT_SYMBOL(__napi_schedule);
3378
3379 void __napi_complete(struct napi_struct *n)
3380 {
3381 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3382 BUG_ON(n->gro_list);
3383
3384 list_del(&n->poll_list);
3385 smp_mb__before_clear_bit();
3386 clear_bit(NAPI_STATE_SCHED, &n->state);
3387 }
3388 EXPORT_SYMBOL(__napi_complete);
3389
3390 void napi_complete(struct napi_struct *n)
3391 {
3392 unsigned long flags;
3393
3394 /*
3395 * don't let napi dequeue from the cpu poll list
3396 * just in case its running on a different cpu
3397 */
3398 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3399 return;
3400
3401 napi_gro_flush(n);
3402 local_irq_save(flags);
3403 __napi_complete(n);
3404 local_irq_restore(flags);
3405 }
3406 EXPORT_SYMBOL(napi_complete);
3407
3408 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3409 int (*poll)(struct napi_struct *, int), int weight)
3410 {
3411 INIT_LIST_HEAD(&napi->poll_list);
3412 napi->gro_count = 0;
3413 napi->gro_list = NULL;
3414 napi->skb = NULL;
3415 napi->poll = poll;
3416 napi->weight = weight;
3417 list_add(&napi->dev_list, &dev->napi_list);
3418 napi->dev = dev;
3419 #ifdef CONFIG_NETPOLL
3420 spin_lock_init(&napi->poll_lock);
3421 napi->poll_owner = -1;
3422 #endif
3423 set_bit(NAPI_STATE_SCHED, &napi->state);
3424 }
3425 EXPORT_SYMBOL(netif_napi_add);
3426
3427 void netif_napi_del(struct napi_struct *napi)
3428 {
3429 struct sk_buff *skb, *next;
3430
3431 list_del_init(&napi->dev_list);
3432 napi_free_frags(napi);
3433
3434 for (skb = napi->gro_list; skb; skb = next) {
3435 next = skb->next;
3436 skb->next = NULL;
3437 kfree_skb(skb);
3438 }
3439
3440 napi->gro_list = NULL;
3441 napi->gro_count = 0;
3442 }
3443 EXPORT_SYMBOL(netif_napi_del);
3444
3445 static void net_rx_action(struct softirq_action *h)
3446 {
3447 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3448 unsigned long time_limit = jiffies + 2;
3449 int budget = netdev_budget;
3450 void *have;
3451
3452 local_irq_disable();
3453
3454 while (!list_empty(&sd->poll_list)) {
3455 struct napi_struct *n;
3456 int work, weight;
3457
3458 /* If softirq window is exhuasted then punt.
3459 * Allow this to run for 2 jiffies since which will allow
3460 * an average latency of 1.5/HZ.
3461 */
3462 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3463 goto softnet_break;
3464
3465 local_irq_enable();
3466
3467 /* Even though interrupts have been re-enabled, this
3468 * access is safe because interrupts can only add new
3469 * entries to the tail of this list, and only ->poll()
3470 * calls can remove this head entry from the list.
3471 */
3472 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3473
3474 have = netpoll_poll_lock(n);
3475
3476 weight = n->weight;
3477
3478 /* This NAPI_STATE_SCHED test is for avoiding a race
3479 * with netpoll's poll_napi(). Only the entity which
3480 * obtains the lock and sees NAPI_STATE_SCHED set will
3481 * actually make the ->poll() call. Therefore we avoid
3482 * accidently calling ->poll() when NAPI is not scheduled.
3483 */
3484 work = 0;
3485 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3486 work = n->poll(n, weight);
3487 trace_napi_poll(n);
3488 }
3489
3490 WARN_ON_ONCE(work > weight);
3491
3492 budget -= work;
3493
3494 local_irq_disable();
3495
3496 /* Drivers must not modify the NAPI state if they
3497 * consume the entire weight. In such cases this code
3498 * still "owns" the NAPI instance and therefore can
3499 * move the instance around on the list at-will.
3500 */
3501 if (unlikely(work == weight)) {
3502 if (unlikely(napi_disable_pending(n))) {
3503 local_irq_enable();
3504 napi_complete(n);
3505 local_irq_disable();
3506 } else
3507 list_move_tail(&n->poll_list, &sd->poll_list);
3508 }
3509
3510 netpoll_poll_unlock(have);
3511 }
3512 out:
3513 net_rps_action_and_irq_enable(sd);
3514
3515 #ifdef CONFIG_NET_DMA
3516 /*
3517 * There may not be any more sk_buffs coming right now, so push
3518 * any pending DMA copies to hardware
3519 */
3520 dma_issue_pending_all();
3521 #endif
3522
3523 return;
3524
3525 softnet_break:
3526 sd->time_squeeze++;
3527 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3528 goto out;
3529 }
3530
3531 static gifconf_func_t *gifconf_list[NPROTO];
3532
3533 /**
3534 * register_gifconf - register a SIOCGIF handler
3535 * @family: Address family
3536 * @gifconf: Function handler
3537 *
3538 * Register protocol dependent address dumping routines. The handler
3539 * that is passed must not be freed or reused until it has been replaced
3540 * by another handler.
3541 */
3542 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3543 {
3544 if (family >= NPROTO)
3545 return -EINVAL;
3546 gifconf_list[family] = gifconf;
3547 return 0;
3548 }
3549 EXPORT_SYMBOL(register_gifconf);
3550
3551
3552 /*
3553 * Map an interface index to its name (SIOCGIFNAME)
3554 */
3555
3556 /*
3557 * We need this ioctl for efficient implementation of the
3558 * if_indextoname() function required by the IPv6 API. Without
3559 * it, we would have to search all the interfaces to find a
3560 * match. --pb
3561 */
3562
3563 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3564 {
3565 struct net_device *dev;
3566 struct ifreq ifr;
3567
3568 /*
3569 * Fetch the caller's info block.
3570 */
3571
3572 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3573 return -EFAULT;
3574
3575 rcu_read_lock();
3576 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3577 if (!dev) {
3578 rcu_read_unlock();
3579 return -ENODEV;
3580 }
3581
3582 strcpy(ifr.ifr_name, dev->name);
3583 rcu_read_unlock();
3584
3585 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3586 return -EFAULT;
3587 return 0;
3588 }
3589
3590 /*
3591 * Perform a SIOCGIFCONF call. This structure will change
3592 * size eventually, and there is nothing I can do about it.
3593 * Thus we will need a 'compatibility mode'.
3594 */
3595
3596 static int dev_ifconf(struct net *net, char __user *arg)
3597 {
3598 struct ifconf ifc;
3599 struct net_device *dev;
3600 char __user *pos;
3601 int len;
3602 int total;
3603 int i;
3604
3605 /*
3606 * Fetch the caller's info block.
3607 */
3608
3609 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3610 return -EFAULT;
3611
3612 pos = ifc.ifc_buf;
3613 len = ifc.ifc_len;
3614
3615 /*
3616 * Loop over the interfaces, and write an info block for each.
3617 */
3618
3619 total = 0;
3620 for_each_netdev(net, dev) {
3621 for (i = 0; i < NPROTO; i++) {
3622 if (gifconf_list[i]) {
3623 int done;
3624 if (!pos)
3625 done = gifconf_list[i](dev, NULL, 0);
3626 else
3627 done = gifconf_list[i](dev, pos + total,
3628 len - total);
3629 if (done < 0)
3630 return -EFAULT;
3631 total += done;
3632 }
3633 }
3634 }
3635
3636 /*
3637 * All done. Write the updated control block back to the caller.
3638 */
3639 ifc.ifc_len = total;
3640
3641 /*
3642 * Both BSD and Solaris return 0 here, so we do too.
3643 */
3644 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3645 }
3646
3647 #ifdef CONFIG_PROC_FS
3648 /*
3649 * This is invoked by the /proc filesystem handler to display a device
3650 * in detail.
3651 */
3652 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3653 __acquires(RCU)
3654 {
3655 struct net *net = seq_file_net(seq);
3656 loff_t off;
3657 struct net_device *dev;
3658
3659 rcu_read_lock();
3660 if (!*pos)
3661 return SEQ_START_TOKEN;
3662
3663 off = 1;
3664 for_each_netdev_rcu(net, dev)
3665 if (off++ == *pos)
3666 return dev;
3667
3668 return NULL;
3669 }
3670
3671 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3672 {
3673 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3674 first_net_device(seq_file_net(seq)) :
3675 next_net_device((struct net_device *)v);
3676
3677 ++*pos;
3678 return rcu_dereference(dev);
3679 }
3680
3681 void dev_seq_stop(struct seq_file *seq, void *v)
3682 __releases(RCU)
3683 {
3684 rcu_read_unlock();
3685 }
3686
3687 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3688 {
3689 const struct net_device_stats *stats = dev_get_stats(dev);
3690
3691 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3692 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3693 dev->name, stats->rx_bytes, stats->rx_packets,
3694 stats->rx_errors,
3695 stats->rx_dropped + stats->rx_missed_errors,
3696 stats->rx_fifo_errors,
3697 stats->rx_length_errors + stats->rx_over_errors +
3698 stats->rx_crc_errors + stats->rx_frame_errors,
3699 stats->rx_compressed, stats->multicast,
3700 stats->tx_bytes, stats->tx_packets,
3701 stats->tx_errors, stats->tx_dropped,
3702 stats->tx_fifo_errors, stats->collisions,
3703 stats->tx_carrier_errors +
3704 stats->tx_aborted_errors +
3705 stats->tx_window_errors +
3706 stats->tx_heartbeat_errors,
3707 stats->tx_compressed);
3708 }
3709
3710 /*
3711 * Called from the PROCfs module. This now uses the new arbitrary sized
3712 * /proc/net interface to create /proc/net/dev
3713 */
3714 static int dev_seq_show(struct seq_file *seq, void *v)
3715 {
3716 if (v == SEQ_START_TOKEN)
3717 seq_puts(seq, "Inter-| Receive "
3718 " | Transmit\n"
3719 " face |bytes packets errs drop fifo frame "
3720 "compressed multicast|bytes packets errs "
3721 "drop fifo colls carrier compressed\n");
3722 else
3723 dev_seq_printf_stats(seq, v);
3724 return 0;
3725 }
3726
3727 static struct softnet_data *softnet_get_online(loff_t *pos)
3728 {
3729 struct softnet_data *sd = NULL;
3730
3731 while (*pos < nr_cpu_ids)
3732 if (cpu_online(*pos)) {
3733 sd = &per_cpu(softnet_data, *pos);
3734 break;
3735 } else
3736 ++*pos;
3737 return sd;
3738 }
3739
3740 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3741 {
3742 return softnet_get_online(pos);
3743 }
3744
3745 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3746 {
3747 ++*pos;
3748 return softnet_get_online(pos);
3749 }
3750
3751 static void softnet_seq_stop(struct seq_file *seq, void *v)
3752 {
3753 }
3754
3755 static int softnet_seq_show(struct seq_file *seq, void *v)
3756 {
3757 struct softnet_data *sd = v;
3758
3759 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3760 sd->processed, sd->dropped, sd->time_squeeze, 0,
3761 0, 0, 0, 0, /* was fastroute */
3762 sd->cpu_collision, sd->received_rps);
3763 return 0;
3764 }
3765
3766 static const struct seq_operations dev_seq_ops = {
3767 .start = dev_seq_start,
3768 .next = dev_seq_next,
3769 .stop = dev_seq_stop,
3770 .show = dev_seq_show,
3771 };
3772
3773 static int dev_seq_open(struct inode *inode, struct file *file)
3774 {
3775 return seq_open_net(inode, file, &dev_seq_ops,
3776 sizeof(struct seq_net_private));
3777 }
3778
3779 static const struct file_operations dev_seq_fops = {
3780 .owner = THIS_MODULE,
3781 .open = dev_seq_open,
3782 .read = seq_read,
3783 .llseek = seq_lseek,
3784 .release = seq_release_net,
3785 };
3786
3787 static const struct seq_operations softnet_seq_ops = {
3788 .start = softnet_seq_start,
3789 .next = softnet_seq_next,
3790 .stop = softnet_seq_stop,
3791 .show = softnet_seq_show,
3792 };
3793
3794 static int softnet_seq_open(struct inode *inode, struct file *file)
3795 {
3796 return seq_open(file, &softnet_seq_ops);
3797 }
3798
3799 static const struct file_operations softnet_seq_fops = {
3800 .owner = THIS_MODULE,
3801 .open = softnet_seq_open,
3802 .read = seq_read,
3803 .llseek = seq_lseek,
3804 .release = seq_release,
3805 };
3806
3807 static void *ptype_get_idx(loff_t pos)
3808 {
3809 struct packet_type *pt = NULL;
3810 loff_t i = 0;
3811 int t;
3812
3813 list_for_each_entry_rcu(pt, &ptype_all, list) {
3814 if (i == pos)
3815 return pt;
3816 ++i;
3817 }
3818
3819 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3820 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3821 if (i == pos)
3822 return pt;
3823 ++i;
3824 }
3825 }
3826 return NULL;
3827 }
3828
3829 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3830 __acquires(RCU)
3831 {
3832 rcu_read_lock();
3833 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3834 }
3835
3836 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3837 {
3838 struct packet_type *pt;
3839 struct list_head *nxt;
3840 int hash;
3841
3842 ++*pos;
3843 if (v == SEQ_START_TOKEN)
3844 return ptype_get_idx(0);
3845
3846 pt = v;
3847 nxt = pt->list.next;
3848 if (pt->type == htons(ETH_P_ALL)) {
3849 if (nxt != &ptype_all)
3850 goto found;
3851 hash = 0;
3852 nxt = ptype_base[0].next;
3853 } else
3854 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3855
3856 while (nxt == &ptype_base[hash]) {
3857 if (++hash >= PTYPE_HASH_SIZE)
3858 return NULL;
3859 nxt = ptype_base[hash].next;
3860 }
3861 found:
3862 return list_entry(nxt, struct packet_type, list);
3863 }
3864
3865 static void ptype_seq_stop(struct seq_file *seq, void *v)
3866 __releases(RCU)
3867 {
3868 rcu_read_unlock();
3869 }
3870
3871 static int ptype_seq_show(struct seq_file *seq, void *v)
3872 {
3873 struct packet_type *pt = v;
3874
3875 if (v == SEQ_START_TOKEN)
3876 seq_puts(seq, "Type Device Function\n");
3877 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3878 if (pt->type == htons(ETH_P_ALL))
3879 seq_puts(seq, "ALL ");
3880 else
3881 seq_printf(seq, "%04x", ntohs(pt->type));
3882
3883 seq_printf(seq, " %-8s %pF\n",
3884 pt->dev ? pt->dev->name : "", pt->func);
3885 }
3886
3887 return 0;
3888 }
3889
3890 static const struct seq_operations ptype_seq_ops = {
3891 .start = ptype_seq_start,
3892 .next = ptype_seq_next,
3893 .stop = ptype_seq_stop,
3894 .show = ptype_seq_show,
3895 };
3896
3897 static int ptype_seq_open(struct inode *inode, struct file *file)
3898 {
3899 return seq_open_net(inode, file, &ptype_seq_ops,
3900 sizeof(struct seq_net_private));
3901 }
3902
3903 static const struct file_operations ptype_seq_fops = {
3904 .owner = THIS_MODULE,
3905 .open = ptype_seq_open,
3906 .read = seq_read,
3907 .llseek = seq_lseek,
3908 .release = seq_release_net,
3909 };
3910
3911
3912 static int __net_init dev_proc_net_init(struct net *net)
3913 {
3914 int rc = -ENOMEM;
3915
3916 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3917 goto out;
3918 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3919 goto out_dev;
3920 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3921 goto out_softnet;
3922
3923 if (wext_proc_init(net))
3924 goto out_ptype;
3925 rc = 0;
3926 out:
3927 return rc;
3928 out_ptype:
3929 proc_net_remove(net, "ptype");
3930 out_softnet:
3931 proc_net_remove(net, "softnet_stat");
3932 out_dev:
3933 proc_net_remove(net, "dev");
3934 goto out;
3935 }
3936
3937 static void __net_exit dev_proc_net_exit(struct net *net)
3938 {
3939 wext_proc_exit(net);
3940
3941 proc_net_remove(net, "ptype");
3942 proc_net_remove(net, "softnet_stat");
3943 proc_net_remove(net, "dev");
3944 }
3945
3946 static struct pernet_operations __net_initdata dev_proc_ops = {
3947 .init = dev_proc_net_init,
3948 .exit = dev_proc_net_exit,
3949 };
3950
3951 static int __init dev_proc_init(void)
3952 {
3953 return register_pernet_subsys(&dev_proc_ops);
3954 }
3955 #else
3956 #define dev_proc_init() 0
3957 #endif /* CONFIG_PROC_FS */
3958
3959
3960 /**
3961 * netdev_set_master - set up master/slave pair
3962 * @slave: slave device
3963 * @master: new master device
3964 *
3965 * Changes the master device of the slave. Pass %NULL to break the
3966 * bonding. The caller must hold the RTNL semaphore. On a failure
3967 * a negative errno code is returned. On success the reference counts
3968 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3969 * function returns zero.
3970 */
3971 int netdev_set_master(struct net_device *slave, struct net_device *master)
3972 {
3973 struct net_device *old = slave->master;
3974
3975 ASSERT_RTNL();
3976
3977 if (master) {
3978 if (old)
3979 return -EBUSY;
3980 dev_hold(master);
3981 }
3982
3983 slave->master = master;
3984
3985 if (old) {
3986 synchronize_net();
3987 dev_put(old);
3988 }
3989 if (master)
3990 slave->flags |= IFF_SLAVE;
3991 else
3992 slave->flags &= ~IFF_SLAVE;
3993
3994 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3995 return 0;
3996 }
3997 EXPORT_SYMBOL(netdev_set_master);
3998
3999 static void dev_change_rx_flags(struct net_device *dev, int flags)
4000 {
4001 const struct net_device_ops *ops = dev->netdev_ops;
4002
4003 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4004 ops->ndo_change_rx_flags(dev, flags);
4005 }
4006
4007 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4008 {
4009 unsigned short old_flags = dev->flags;
4010 uid_t uid;
4011 gid_t gid;
4012
4013 ASSERT_RTNL();
4014
4015 dev->flags |= IFF_PROMISC;
4016 dev->promiscuity += inc;
4017 if (dev->promiscuity == 0) {
4018 /*
4019 * Avoid overflow.
4020 * If inc causes overflow, untouch promisc and return error.
4021 */
4022 if (inc < 0)
4023 dev->flags &= ~IFF_PROMISC;
4024 else {
4025 dev->promiscuity -= inc;
4026 printk(KERN_WARNING "%s: promiscuity touches roof, "
4027 "set promiscuity failed, promiscuity feature "
4028 "of device might be broken.\n", dev->name);
4029 return -EOVERFLOW;
4030 }
4031 }
4032 if (dev->flags != old_flags) {
4033 printk(KERN_INFO "device %s %s promiscuous mode\n",
4034 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4035 "left");
4036 if (audit_enabled) {
4037 current_uid_gid(&uid, &gid);
4038 audit_log(current->audit_context, GFP_ATOMIC,
4039 AUDIT_ANOM_PROMISCUOUS,
4040 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4041 dev->name, (dev->flags & IFF_PROMISC),
4042 (old_flags & IFF_PROMISC),
4043 audit_get_loginuid(current),
4044 uid, gid,
4045 audit_get_sessionid(current));
4046 }
4047
4048 dev_change_rx_flags(dev, IFF_PROMISC);
4049 }
4050 return 0;
4051 }
4052
4053 /**
4054 * dev_set_promiscuity - update promiscuity count on a device
4055 * @dev: device
4056 * @inc: modifier
4057 *
4058 * Add or remove promiscuity from a device. While the count in the device
4059 * remains above zero the interface remains promiscuous. Once it hits zero
4060 * the device reverts back to normal filtering operation. A negative inc
4061 * value is used to drop promiscuity on the device.
4062 * Return 0 if successful or a negative errno code on error.
4063 */
4064 int dev_set_promiscuity(struct net_device *dev, int inc)
4065 {
4066 unsigned short old_flags = dev->flags;
4067 int err;
4068
4069 err = __dev_set_promiscuity(dev, inc);
4070 if (err < 0)
4071 return err;
4072 if (dev->flags != old_flags)
4073 dev_set_rx_mode(dev);
4074 return err;
4075 }
4076 EXPORT_SYMBOL(dev_set_promiscuity);
4077
4078 /**
4079 * dev_set_allmulti - update allmulti count on a device
4080 * @dev: device
4081 * @inc: modifier
4082 *
4083 * Add or remove reception of all multicast frames to a device. While the
4084 * count in the device remains above zero the interface remains listening
4085 * to all interfaces. Once it hits zero the device reverts back to normal
4086 * filtering operation. A negative @inc value is used to drop the counter
4087 * when releasing a resource needing all multicasts.
4088 * Return 0 if successful or a negative errno code on error.
4089 */
4090
4091 int dev_set_allmulti(struct net_device *dev, int inc)
4092 {
4093 unsigned short old_flags = dev->flags;
4094
4095 ASSERT_RTNL();
4096
4097 dev->flags |= IFF_ALLMULTI;
4098 dev->allmulti += inc;
4099 if (dev->allmulti == 0) {
4100 /*
4101 * Avoid overflow.
4102 * If inc causes overflow, untouch allmulti and return error.
4103 */
4104 if (inc < 0)
4105 dev->flags &= ~IFF_ALLMULTI;
4106 else {
4107 dev->allmulti -= inc;
4108 printk(KERN_WARNING "%s: allmulti touches roof, "
4109 "set allmulti failed, allmulti feature of "
4110 "device might be broken.\n", dev->name);
4111 return -EOVERFLOW;
4112 }
4113 }
4114 if (dev->flags ^ old_flags) {
4115 dev_change_rx_flags(dev, IFF_ALLMULTI);
4116 dev_set_rx_mode(dev);
4117 }
4118 return 0;
4119 }
4120 EXPORT_SYMBOL(dev_set_allmulti);
4121
4122 /*
4123 * Upload unicast and multicast address lists to device and
4124 * configure RX filtering. When the device doesn't support unicast
4125 * filtering it is put in promiscuous mode while unicast addresses
4126 * are present.
4127 */
4128 void __dev_set_rx_mode(struct net_device *dev)
4129 {
4130 const struct net_device_ops *ops = dev->netdev_ops;
4131
4132 /* dev_open will call this function so the list will stay sane. */
4133 if (!(dev->flags&IFF_UP))
4134 return;
4135
4136 if (!netif_device_present(dev))
4137 return;
4138
4139 if (ops->ndo_set_rx_mode)
4140 ops->ndo_set_rx_mode(dev);
4141 else {
4142 /* Unicast addresses changes may only happen under the rtnl,
4143 * therefore calling __dev_set_promiscuity here is safe.
4144 */
4145 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4146 __dev_set_promiscuity(dev, 1);
4147 dev->uc_promisc = 1;
4148 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4149 __dev_set_promiscuity(dev, -1);
4150 dev->uc_promisc = 0;
4151 }
4152
4153 if (ops->ndo_set_multicast_list)
4154 ops->ndo_set_multicast_list(dev);
4155 }
4156 }
4157
4158 void dev_set_rx_mode(struct net_device *dev)
4159 {
4160 netif_addr_lock_bh(dev);
4161 __dev_set_rx_mode(dev);
4162 netif_addr_unlock_bh(dev);
4163 }
4164
4165 /**
4166 * dev_get_flags - get flags reported to userspace
4167 * @dev: device
4168 *
4169 * Get the combination of flag bits exported through APIs to userspace.
4170 */
4171 unsigned dev_get_flags(const struct net_device *dev)
4172 {
4173 unsigned flags;
4174
4175 flags = (dev->flags & ~(IFF_PROMISC |
4176 IFF_ALLMULTI |
4177 IFF_RUNNING |
4178 IFF_LOWER_UP |
4179 IFF_DORMANT)) |
4180 (dev->gflags & (IFF_PROMISC |
4181 IFF_ALLMULTI));
4182
4183 if (netif_running(dev)) {
4184 if (netif_oper_up(dev))
4185 flags |= IFF_RUNNING;
4186 if (netif_carrier_ok(dev))
4187 flags |= IFF_LOWER_UP;
4188 if (netif_dormant(dev))
4189 flags |= IFF_DORMANT;
4190 }
4191
4192 return flags;
4193 }
4194 EXPORT_SYMBOL(dev_get_flags);
4195
4196 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4197 {
4198 int old_flags = dev->flags;
4199 int ret;
4200
4201 ASSERT_RTNL();
4202
4203 /*
4204 * Set the flags on our device.
4205 */
4206
4207 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4208 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4209 IFF_AUTOMEDIA)) |
4210 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4211 IFF_ALLMULTI));
4212
4213 /*
4214 * Load in the correct multicast list now the flags have changed.
4215 */
4216
4217 if ((old_flags ^ flags) & IFF_MULTICAST)
4218 dev_change_rx_flags(dev, IFF_MULTICAST);
4219
4220 dev_set_rx_mode(dev);
4221
4222 /*
4223 * Have we downed the interface. We handle IFF_UP ourselves
4224 * according to user attempts to set it, rather than blindly
4225 * setting it.
4226 */
4227
4228 ret = 0;
4229 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4230 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4231
4232 if (!ret)
4233 dev_set_rx_mode(dev);
4234 }
4235
4236 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4237 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4238
4239 dev->gflags ^= IFF_PROMISC;
4240 dev_set_promiscuity(dev, inc);
4241 }
4242
4243 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4244 is important. Some (broken) drivers set IFF_PROMISC, when
4245 IFF_ALLMULTI is requested not asking us and not reporting.
4246 */
4247 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4248 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4249
4250 dev->gflags ^= IFF_ALLMULTI;
4251 dev_set_allmulti(dev, inc);
4252 }
4253
4254 return ret;
4255 }
4256
4257 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4258 {
4259 unsigned int changes = dev->flags ^ old_flags;
4260
4261 if (changes & IFF_UP) {
4262 if (dev->flags & IFF_UP)
4263 call_netdevice_notifiers(NETDEV_UP, dev);
4264 else
4265 call_netdevice_notifiers(NETDEV_DOWN, dev);
4266 }
4267
4268 if (dev->flags & IFF_UP &&
4269 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4270 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4271 }
4272
4273 /**
4274 * dev_change_flags - change device settings
4275 * @dev: device
4276 * @flags: device state flags
4277 *
4278 * Change settings on device based state flags. The flags are
4279 * in the userspace exported format.
4280 */
4281 int dev_change_flags(struct net_device *dev, unsigned flags)
4282 {
4283 int ret, changes;
4284 int old_flags = dev->flags;
4285
4286 ret = __dev_change_flags(dev, flags);
4287 if (ret < 0)
4288 return ret;
4289
4290 changes = old_flags ^ dev->flags;
4291 if (changes)
4292 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4293
4294 __dev_notify_flags(dev, old_flags);
4295 return ret;
4296 }
4297 EXPORT_SYMBOL(dev_change_flags);
4298
4299 /**
4300 * dev_set_mtu - Change maximum transfer unit
4301 * @dev: device
4302 * @new_mtu: new transfer unit
4303 *
4304 * Change the maximum transfer size of the network device.
4305 */
4306 int dev_set_mtu(struct net_device *dev, int new_mtu)
4307 {
4308 const struct net_device_ops *ops = dev->netdev_ops;
4309 int err;
4310
4311 if (new_mtu == dev->mtu)
4312 return 0;
4313
4314 /* MTU must be positive. */
4315 if (new_mtu < 0)
4316 return -EINVAL;
4317
4318 if (!netif_device_present(dev))
4319 return -ENODEV;
4320
4321 err = 0;
4322 if (ops->ndo_change_mtu)
4323 err = ops->ndo_change_mtu(dev, new_mtu);
4324 else
4325 dev->mtu = new_mtu;
4326
4327 if (!err && dev->flags & IFF_UP)
4328 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4329 return err;
4330 }
4331 EXPORT_SYMBOL(dev_set_mtu);
4332
4333 /**
4334 * dev_set_mac_address - Change Media Access Control Address
4335 * @dev: device
4336 * @sa: new address
4337 *
4338 * Change the hardware (MAC) address of the device
4339 */
4340 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4341 {
4342 const struct net_device_ops *ops = dev->netdev_ops;
4343 int err;
4344
4345 if (!ops->ndo_set_mac_address)
4346 return -EOPNOTSUPP;
4347 if (sa->sa_family != dev->type)
4348 return -EINVAL;
4349 if (!netif_device_present(dev))
4350 return -ENODEV;
4351 err = ops->ndo_set_mac_address(dev, sa);
4352 if (!err)
4353 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4354 return err;
4355 }
4356 EXPORT_SYMBOL(dev_set_mac_address);
4357
4358 /*
4359 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4360 */
4361 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4362 {
4363 int err;
4364 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4365
4366 if (!dev)
4367 return -ENODEV;
4368
4369 switch (cmd) {
4370 case SIOCGIFFLAGS: /* Get interface flags */
4371 ifr->ifr_flags = (short) dev_get_flags(dev);
4372 return 0;
4373
4374 case SIOCGIFMETRIC: /* Get the metric on the interface
4375 (currently unused) */
4376 ifr->ifr_metric = 0;
4377 return 0;
4378
4379 case SIOCGIFMTU: /* Get the MTU of a device */
4380 ifr->ifr_mtu = dev->mtu;
4381 return 0;
4382
4383 case SIOCGIFHWADDR:
4384 if (!dev->addr_len)
4385 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4386 else
4387 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4388 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4389 ifr->ifr_hwaddr.sa_family = dev->type;
4390 return 0;
4391
4392 case SIOCGIFSLAVE:
4393 err = -EINVAL;
4394 break;
4395
4396 case SIOCGIFMAP:
4397 ifr->ifr_map.mem_start = dev->mem_start;
4398 ifr->ifr_map.mem_end = dev->mem_end;
4399 ifr->ifr_map.base_addr = dev->base_addr;
4400 ifr->ifr_map.irq = dev->irq;
4401 ifr->ifr_map.dma = dev->dma;
4402 ifr->ifr_map.port = dev->if_port;
4403 return 0;
4404
4405 case SIOCGIFINDEX:
4406 ifr->ifr_ifindex = dev->ifindex;
4407 return 0;
4408
4409 case SIOCGIFTXQLEN:
4410 ifr->ifr_qlen = dev->tx_queue_len;
4411 return 0;
4412
4413 default:
4414 /* dev_ioctl() should ensure this case
4415 * is never reached
4416 */
4417 WARN_ON(1);
4418 err = -EINVAL;
4419 break;
4420
4421 }
4422 return err;
4423 }
4424
4425 /*
4426 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4427 */
4428 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4429 {
4430 int err;
4431 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4432 const struct net_device_ops *ops;
4433
4434 if (!dev)
4435 return -ENODEV;
4436
4437 ops = dev->netdev_ops;
4438
4439 switch (cmd) {
4440 case SIOCSIFFLAGS: /* Set interface flags */
4441 return dev_change_flags(dev, ifr->ifr_flags);
4442
4443 case SIOCSIFMETRIC: /* Set the metric on the interface
4444 (currently unused) */
4445 return -EOPNOTSUPP;
4446
4447 case SIOCSIFMTU: /* Set the MTU of a device */
4448 return dev_set_mtu(dev, ifr->ifr_mtu);
4449
4450 case SIOCSIFHWADDR:
4451 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4452
4453 case SIOCSIFHWBROADCAST:
4454 if (ifr->ifr_hwaddr.sa_family != dev->type)
4455 return -EINVAL;
4456 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4457 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4458 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4459 return 0;
4460
4461 case SIOCSIFMAP:
4462 if (ops->ndo_set_config) {
4463 if (!netif_device_present(dev))
4464 return -ENODEV;
4465 return ops->ndo_set_config(dev, &ifr->ifr_map);
4466 }
4467 return -EOPNOTSUPP;
4468
4469 case SIOCADDMULTI:
4470 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4471 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4472 return -EINVAL;
4473 if (!netif_device_present(dev))
4474 return -ENODEV;
4475 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4476
4477 case SIOCDELMULTI:
4478 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4479 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4480 return -EINVAL;
4481 if (!netif_device_present(dev))
4482 return -ENODEV;
4483 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4484
4485 case SIOCSIFTXQLEN:
4486 if (ifr->ifr_qlen < 0)
4487 return -EINVAL;
4488 dev->tx_queue_len = ifr->ifr_qlen;
4489 return 0;
4490
4491 case SIOCSIFNAME:
4492 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4493 return dev_change_name(dev, ifr->ifr_newname);
4494
4495 /*
4496 * Unknown or private ioctl
4497 */
4498 default:
4499 if ((cmd >= SIOCDEVPRIVATE &&
4500 cmd <= SIOCDEVPRIVATE + 15) ||
4501 cmd == SIOCBONDENSLAVE ||
4502 cmd == SIOCBONDRELEASE ||
4503 cmd == SIOCBONDSETHWADDR ||
4504 cmd == SIOCBONDSLAVEINFOQUERY ||
4505 cmd == SIOCBONDINFOQUERY ||
4506 cmd == SIOCBONDCHANGEACTIVE ||
4507 cmd == SIOCGMIIPHY ||
4508 cmd == SIOCGMIIREG ||
4509 cmd == SIOCSMIIREG ||
4510 cmd == SIOCBRADDIF ||
4511 cmd == SIOCBRDELIF ||
4512 cmd == SIOCSHWTSTAMP ||
4513 cmd == SIOCWANDEV) {
4514 err = -EOPNOTSUPP;
4515 if (ops->ndo_do_ioctl) {
4516 if (netif_device_present(dev))
4517 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4518 else
4519 err = -ENODEV;
4520 }
4521 } else
4522 err = -EINVAL;
4523
4524 }
4525 return err;
4526 }
4527
4528 /*
4529 * This function handles all "interface"-type I/O control requests. The actual
4530 * 'doing' part of this is dev_ifsioc above.
4531 */
4532
4533 /**
4534 * dev_ioctl - network device ioctl
4535 * @net: the applicable net namespace
4536 * @cmd: command to issue
4537 * @arg: pointer to a struct ifreq in user space
4538 *
4539 * Issue ioctl functions to devices. This is normally called by the
4540 * user space syscall interfaces but can sometimes be useful for
4541 * other purposes. The return value is the return from the syscall if
4542 * positive or a negative errno code on error.
4543 */
4544
4545 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4546 {
4547 struct ifreq ifr;
4548 int ret;
4549 char *colon;
4550
4551 /* One special case: SIOCGIFCONF takes ifconf argument
4552 and requires shared lock, because it sleeps writing
4553 to user space.
4554 */
4555
4556 if (cmd == SIOCGIFCONF) {
4557 rtnl_lock();
4558 ret = dev_ifconf(net, (char __user *) arg);
4559 rtnl_unlock();
4560 return ret;
4561 }
4562 if (cmd == SIOCGIFNAME)
4563 return dev_ifname(net, (struct ifreq __user *)arg);
4564
4565 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4566 return -EFAULT;
4567
4568 ifr.ifr_name[IFNAMSIZ-1] = 0;
4569
4570 colon = strchr(ifr.ifr_name, ':');
4571 if (colon)
4572 *colon = 0;
4573
4574 /*
4575 * See which interface the caller is talking about.
4576 */
4577
4578 switch (cmd) {
4579 /*
4580 * These ioctl calls:
4581 * - can be done by all.
4582 * - atomic and do not require locking.
4583 * - return a value
4584 */
4585 case SIOCGIFFLAGS:
4586 case SIOCGIFMETRIC:
4587 case SIOCGIFMTU:
4588 case SIOCGIFHWADDR:
4589 case SIOCGIFSLAVE:
4590 case SIOCGIFMAP:
4591 case SIOCGIFINDEX:
4592 case SIOCGIFTXQLEN:
4593 dev_load(net, ifr.ifr_name);
4594 rcu_read_lock();
4595 ret = dev_ifsioc_locked(net, &ifr, cmd);
4596 rcu_read_unlock();
4597 if (!ret) {
4598 if (colon)
4599 *colon = ':';
4600 if (copy_to_user(arg, &ifr,
4601 sizeof(struct ifreq)))
4602 ret = -EFAULT;
4603 }
4604 return ret;
4605
4606 case SIOCETHTOOL:
4607 dev_load(net, ifr.ifr_name);
4608 rtnl_lock();
4609 ret = dev_ethtool(net, &ifr);
4610 rtnl_unlock();
4611 if (!ret) {
4612 if (colon)
4613 *colon = ':';
4614 if (copy_to_user(arg, &ifr,
4615 sizeof(struct ifreq)))
4616 ret = -EFAULT;
4617 }
4618 return ret;
4619
4620 /*
4621 * These ioctl calls:
4622 * - require superuser power.
4623 * - require strict serialization.
4624 * - return a value
4625 */
4626 case SIOCGMIIPHY:
4627 case SIOCGMIIREG:
4628 case SIOCSIFNAME:
4629 if (!capable(CAP_NET_ADMIN))
4630 return -EPERM;
4631 dev_load(net, ifr.ifr_name);
4632 rtnl_lock();
4633 ret = dev_ifsioc(net, &ifr, cmd);
4634 rtnl_unlock();
4635 if (!ret) {
4636 if (colon)
4637 *colon = ':';
4638 if (copy_to_user(arg, &ifr,
4639 sizeof(struct ifreq)))
4640 ret = -EFAULT;
4641 }
4642 return ret;
4643
4644 /*
4645 * These ioctl calls:
4646 * - require superuser power.
4647 * - require strict serialization.
4648 * - do not return a value
4649 */
4650 case SIOCSIFFLAGS:
4651 case SIOCSIFMETRIC:
4652 case SIOCSIFMTU:
4653 case SIOCSIFMAP:
4654 case SIOCSIFHWADDR:
4655 case SIOCSIFSLAVE:
4656 case SIOCADDMULTI:
4657 case SIOCDELMULTI:
4658 case SIOCSIFHWBROADCAST:
4659 case SIOCSIFTXQLEN:
4660 case SIOCSMIIREG:
4661 case SIOCBONDENSLAVE:
4662 case SIOCBONDRELEASE:
4663 case SIOCBONDSETHWADDR:
4664 case SIOCBONDCHANGEACTIVE:
4665 case SIOCBRADDIF:
4666 case SIOCBRDELIF:
4667 case SIOCSHWTSTAMP:
4668 if (!capable(CAP_NET_ADMIN))
4669 return -EPERM;
4670 /* fall through */
4671 case SIOCBONDSLAVEINFOQUERY:
4672 case SIOCBONDINFOQUERY:
4673 dev_load(net, ifr.ifr_name);
4674 rtnl_lock();
4675 ret = dev_ifsioc(net, &ifr, cmd);
4676 rtnl_unlock();
4677 return ret;
4678
4679 case SIOCGIFMEM:
4680 /* Get the per device memory space. We can add this but
4681 * currently do not support it */
4682 case SIOCSIFMEM:
4683 /* Set the per device memory buffer space.
4684 * Not applicable in our case */
4685 case SIOCSIFLINK:
4686 return -EINVAL;
4687
4688 /*
4689 * Unknown or private ioctl.
4690 */
4691 default:
4692 if (cmd == SIOCWANDEV ||
4693 (cmd >= SIOCDEVPRIVATE &&
4694 cmd <= SIOCDEVPRIVATE + 15)) {
4695 dev_load(net, ifr.ifr_name);
4696 rtnl_lock();
4697 ret = dev_ifsioc(net, &ifr, cmd);
4698 rtnl_unlock();
4699 if (!ret && copy_to_user(arg, &ifr,
4700 sizeof(struct ifreq)))
4701 ret = -EFAULT;
4702 return ret;
4703 }
4704 /* Take care of Wireless Extensions */
4705 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4706 return wext_handle_ioctl(net, &ifr, cmd, arg);
4707 return -EINVAL;
4708 }
4709 }
4710
4711
4712 /**
4713 * dev_new_index - allocate an ifindex
4714 * @net: the applicable net namespace
4715 *
4716 * Returns a suitable unique value for a new device interface
4717 * number. The caller must hold the rtnl semaphore or the
4718 * dev_base_lock to be sure it remains unique.
4719 */
4720 static int dev_new_index(struct net *net)
4721 {
4722 static int ifindex;
4723 for (;;) {
4724 if (++ifindex <= 0)
4725 ifindex = 1;
4726 if (!__dev_get_by_index(net, ifindex))
4727 return ifindex;
4728 }
4729 }
4730
4731 /* Delayed registration/unregisteration */
4732 static LIST_HEAD(net_todo_list);
4733
4734 static void net_set_todo(struct net_device *dev)
4735 {
4736 list_add_tail(&dev->todo_list, &net_todo_list);
4737 }
4738
4739 static void rollback_registered_many(struct list_head *head)
4740 {
4741 struct net_device *dev, *tmp;
4742
4743 BUG_ON(dev_boot_phase);
4744 ASSERT_RTNL();
4745
4746 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4747 /* Some devices call without registering
4748 * for initialization unwind. Remove those
4749 * devices and proceed with the remaining.
4750 */
4751 if (dev->reg_state == NETREG_UNINITIALIZED) {
4752 pr_debug("unregister_netdevice: device %s/%p never "
4753 "was registered\n", dev->name, dev);
4754
4755 WARN_ON(1);
4756 list_del(&dev->unreg_list);
4757 continue;
4758 }
4759
4760 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4761
4762 /* If device is running, close it first. */
4763 dev_close(dev);
4764
4765 /* And unlink it from device chain. */
4766 unlist_netdevice(dev);
4767
4768 dev->reg_state = NETREG_UNREGISTERING;
4769 }
4770
4771 synchronize_net();
4772
4773 list_for_each_entry(dev, head, unreg_list) {
4774 /* Shutdown queueing discipline. */
4775 dev_shutdown(dev);
4776
4777
4778 /* Notify protocols, that we are about to destroy
4779 this device. They should clean all the things.
4780 */
4781 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4782
4783 if (!dev->rtnl_link_ops ||
4784 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4785 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4786
4787 /*
4788 * Flush the unicast and multicast chains
4789 */
4790 dev_uc_flush(dev);
4791 dev_mc_flush(dev);
4792
4793 if (dev->netdev_ops->ndo_uninit)
4794 dev->netdev_ops->ndo_uninit(dev);
4795
4796 /* Notifier chain MUST detach us from master device. */
4797 WARN_ON(dev->master);
4798
4799 /* Remove entries from kobject tree */
4800 netdev_unregister_kobject(dev);
4801 }
4802
4803 /* Process any work delayed until the end of the batch */
4804 dev = list_first_entry(head, struct net_device, unreg_list);
4805 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4806
4807 synchronize_net();
4808
4809 list_for_each_entry(dev, head, unreg_list)
4810 dev_put(dev);
4811 }
4812
4813 static void rollback_registered(struct net_device *dev)
4814 {
4815 LIST_HEAD(single);
4816
4817 list_add(&dev->unreg_list, &single);
4818 rollback_registered_many(&single);
4819 }
4820
4821 static void __netdev_init_queue_locks_one(struct net_device *dev,
4822 struct netdev_queue *dev_queue,
4823 void *_unused)
4824 {
4825 spin_lock_init(&dev_queue->_xmit_lock);
4826 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4827 dev_queue->xmit_lock_owner = -1;
4828 }
4829
4830 static void netdev_init_queue_locks(struct net_device *dev)
4831 {
4832 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4833 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4834 }
4835
4836 unsigned long netdev_fix_features(unsigned long features, const char *name)
4837 {
4838 /* Fix illegal SG+CSUM combinations. */
4839 if ((features & NETIF_F_SG) &&
4840 !(features & NETIF_F_ALL_CSUM)) {
4841 if (name)
4842 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4843 "checksum feature.\n", name);
4844 features &= ~NETIF_F_SG;
4845 }
4846
4847 /* TSO requires that SG is present as well. */
4848 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4849 if (name)
4850 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4851 "SG feature.\n", name);
4852 features &= ~NETIF_F_TSO;
4853 }
4854
4855 if (features & NETIF_F_UFO) {
4856 if (!(features & NETIF_F_GEN_CSUM)) {
4857 if (name)
4858 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4859 "since no NETIF_F_HW_CSUM feature.\n",
4860 name);
4861 features &= ~NETIF_F_UFO;
4862 }
4863
4864 if (!(features & NETIF_F_SG)) {
4865 if (name)
4866 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4867 "since no NETIF_F_SG feature.\n", name);
4868 features &= ~NETIF_F_UFO;
4869 }
4870 }
4871
4872 return features;
4873 }
4874 EXPORT_SYMBOL(netdev_fix_features);
4875
4876 /**
4877 * netif_stacked_transfer_operstate - transfer operstate
4878 * @rootdev: the root or lower level device to transfer state from
4879 * @dev: the device to transfer operstate to
4880 *
4881 * Transfer operational state from root to device. This is normally
4882 * called when a stacking relationship exists between the root
4883 * device and the device(a leaf device).
4884 */
4885 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4886 struct net_device *dev)
4887 {
4888 if (rootdev->operstate == IF_OPER_DORMANT)
4889 netif_dormant_on(dev);
4890 else
4891 netif_dormant_off(dev);
4892
4893 if (netif_carrier_ok(rootdev)) {
4894 if (!netif_carrier_ok(dev))
4895 netif_carrier_on(dev);
4896 } else {
4897 if (netif_carrier_ok(dev))
4898 netif_carrier_off(dev);
4899 }
4900 }
4901 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4902
4903 /**
4904 * register_netdevice - register a network device
4905 * @dev: device to register
4906 *
4907 * Take a completed network device structure and add it to the kernel
4908 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4909 * chain. 0 is returned on success. A negative errno code is returned
4910 * on a failure to set up the device, or if the name is a duplicate.
4911 *
4912 * Callers must hold the rtnl semaphore. You may want
4913 * register_netdev() instead of this.
4914 *
4915 * BUGS:
4916 * The locking appears insufficient to guarantee two parallel registers
4917 * will not get the same name.
4918 */
4919
4920 int register_netdevice(struct net_device *dev)
4921 {
4922 int ret;
4923 struct net *net = dev_net(dev);
4924
4925 BUG_ON(dev_boot_phase);
4926 ASSERT_RTNL();
4927
4928 might_sleep();
4929
4930 /* When net_device's are persistent, this will be fatal. */
4931 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4932 BUG_ON(!net);
4933
4934 spin_lock_init(&dev->addr_list_lock);
4935 netdev_set_addr_lockdep_class(dev);
4936 netdev_init_queue_locks(dev);
4937
4938 dev->iflink = -1;
4939
4940 #ifdef CONFIG_RPS
4941 if (!dev->num_rx_queues) {
4942 /*
4943 * Allocate a single RX queue if driver never called
4944 * alloc_netdev_mq
4945 */
4946
4947 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4948 if (!dev->_rx) {
4949 ret = -ENOMEM;
4950 goto out;
4951 }
4952
4953 dev->_rx->first = dev->_rx;
4954 atomic_set(&dev->_rx->count, 1);
4955 dev->num_rx_queues = 1;
4956 }
4957 #endif
4958 /* Init, if this function is available */
4959 if (dev->netdev_ops->ndo_init) {
4960 ret = dev->netdev_ops->ndo_init(dev);
4961 if (ret) {
4962 if (ret > 0)
4963 ret = -EIO;
4964 goto out;
4965 }
4966 }
4967
4968 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
4969 if (ret)
4970 goto err_uninit;
4971
4972 dev->ifindex = dev_new_index(net);
4973 if (dev->iflink == -1)
4974 dev->iflink = dev->ifindex;
4975
4976 /* Fix illegal checksum combinations */
4977 if ((dev->features & NETIF_F_HW_CSUM) &&
4978 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4979 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4980 dev->name);
4981 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4982 }
4983
4984 if ((dev->features & NETIF_F_NO_CSUM) &&
4985 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4986 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4987 dev->name);
4988 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4989 }
4990
4991 dev->features = netdev_fix_features(dev->features, dev->name);
4992
4993 /* Enable software GSO if SG is supported. */
4994 if (dev->features & NETIF_F_SG)
4995 dev->features |= NETIF_F_GSO;
4996
4997 netdev_initialize_kobject(dev);
4998
4999 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5000 ret = notifier_to_errno(ret);
5001 if (ret)
5002 goto err_uninit;
5003
5004 ret = netdev_register_kobject(dev);
5005 if (ret)
5006 goto err_uninit;
5007 dev->reg_state = NETREG_REGISTERED;
5008
5009 /*
5010 * Default initial state at registry is that the
5011 * device is present.
5012 */
5013
5014 set_bit(__LINK_STATE_PRESENT, &dev->state);
5015
5016 dev_init_scheduler(dev);
5017 dev_hold(dev);
5018 list_netdevice(dev);
5019
5020 /* Notify protocols, that a new device appeared. */
5021 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5022 ret = notifier_to_errno(ret);
5023 if (ret) {
5024 rollback_registered(dev);
5025 dev->reg_state = NETREG_UNREGISTERED;
5026 }
5027 /*
5028 * Prevent userspace races by waiting until the network
5029 * device is fully setup before sending notifications.
5030 */
5031 if (!dev->rtnl_link_ops ||
5032 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5033 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5034
5035 out:
5036 return ret;
5037
5038 err_uninit:
5039 if (dev->netdev_ops->ndo_uninit)
5040 dev->netdev_ops->ndo_uninit(dev);
5041 goto out;
5042 }
5043 EXPORT_SYMBOL(register_netdevice);
5044
5045 /**
5046 * init_dummy_netdev - init a dummy network device for NAPI
5047 * @dev: device to init
5048 *
5049 * This takes a network device structure and initialize the minimum
5050 * amount of fields so it can be used to schedule NAPI polls without
5051 * registering a full blown interface. This is to be used by drivers
5052 * that need to tie several hardware interfaces to a single NAPI
5053 * poll scheduler due to HW limitations.
5054 */
5055 int init_dummy_netdev(struct net_device *dev)
5056 {
5057 /* Clear everything. Note we don't initialize spinlocks
5058 * are they aren't supposed to be taken by any of the
5059 * NAPI code and this dummy netdev is supposed to be
5060 * only ever used for NAPI polls
5061 */
5062 memset(dev, 0, sizeof(struct net_device));
5063
5064 /* make sure we BUG if trying to hit standard
5065 * register/unregister code path
5066 */
5067 dev->reg_state = NETREG_DUMMY;
5068
5069 /* initialize the ref count */
5070 atomic_set(&dev->refcnt, 1);
5071
5072 /* NAPI wants this */
5073 INIT_LIST_HEAD(&dev->napi_list);
5074
5075 /* a dummy interface is started by default */
5076 set_bit(__LINK_STATE_PRESENT, &dev->state);
5077 set_bit(__LINK_STATE_START, &dev->state);
5078
5079 return 0;
5080 }
5081 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5082
5083
5084 /**
5085 * register_netdev - register a network device
5086 * @dev: device to register
5087 *
5088 * Take a completed network device structure and add it to the kernel
5089 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5090 * chain. 0 is returned on success. A negative errno code is returned
5091 * on a failure to set up the device, or if the name is a duplicate.
5092 *
5093 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5094 * and expands the device name if you passed a format string to
5095 * alloc_netdev.
5096 */
5097 int register_netdev(struct net_device *dev)
5098 {
5099 int err;
5100
5101 rtnl_lock();
5102
5103 /*
5104 * If the name is a format string the caller wants us to do a
5105 * name allocation.
5106 */
5107 if (strchr(dev->name, '%')) {
5108 err = dev_alloc_name(dev, dev->name);
5109 if (err < 0)
5110 goto out;
5111 }
5112
5113 err = register_netdevice(dev);
5114 out:
5115 rtnl_unlock();
5116 return err;
5117 }
5118 EXPORT_SYMBOL(register_netdev);
5119
5120 /*
5121 * netdev_wait_allrefs - wait until all references are gone.
5122 *
5123 * This is called when unregistering network devices.
5124 *
5125 * Any protocol or device that holds a reference should register
5126 * for netdevice notification, and cleanup and put back the
5127 * reference if they receive an UNREGISTER event.
5128 * We can get stuck here if buggy protocols don't correctly
5129 * call dev_put.
5130 */
5131 static void netdev_wait_allrefs(struct net_device *dev)
5132 {
5133 unsigned long rebroadcast_time, warning_time;
5134
5135 linkwatch_forget_dev(dev);
5136
5137 rebroadcast_time = warning_time = jiffies;
5138 while (atomic_read(&dev->refcnt) != 0) {
5139 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5140 rtnl_lock();
5141
5142 /* Rebroadcast unregister notification */
5143 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5144 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5145 * should have already handle it the first time */
5146
5147 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5148 &dev->state)) {
5149 /* We must not have linkwatch events
5150 * pending on unregister. If this
5151 * happens, we simply run the queue
5152 * unscheduled, resulting in a noop
5153 * for this device.
5154 */
5155 linkwatch_run_queue();
5156 }
5157
5158 __rtnl_unlock();
5159
5160 rebroadcast_time = jiffies;
5161 }
5162
5163 msleep(250);
5164
5165 if (time_after(jiffies, warning_time + 10 * HZ)) {
5166 printk(KERN_EMERG "unregister_netdevice: "
5167 "waiting for %s to become free. Usage "
5168 "count = %d\n",
5169 dev->name, atomic_read(&dev->refcnt));
5170 warning_time = jiffies;
5171 }
5172 }
5173 }
5174
5175 /* The sequence is:
5176 *
5177 * rtnl_lock();
5178 * ...
5179 * register_netdevice(x1);
5180 * register_netdevice(x2);
5181 * ...
5182 * unregister_netdevice(y1);
5183 * unregister_netdevice(y2);
5184 * ...
5185 * rtnl_unlock();
5186 * free_netdev(y1);
5187 * free_netdev(y2);
5188 *
5189 * We are invoked by rtnl_unlock().
5190 * This allows us to deal with problems:
5191 * 1) We can delete sysfs objects which invoke hotplug
5192 * without deadlocking with linkwatch via keventd.
5193 * 2) Since we run with the RTNL semaphore not held, we can sleep
5194 * safely in order to wait for the netdev refcnt to drop to zero.
5195 *
5196 * We must not return until all unregister events added during
5197 * the interval the lock was held have been completed.
5198 */
5199 void netdev_run_todo(void)
5200 {
5201 struct list_head list;
5202
5203 /* Snapshot list, allow later requests */
5204 list_replace_init(&net_todo_list, &list);
5205
5206 __rtnl_unlock();
5207
5208 while (!list_empty(&list)) {
5209 struct net_device *dev
5210 = list_first_entry(&list, struct net_device, todo_list);
5211 list_del(&dev->todo_list);
5212
5213 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5214 printk(KERN_ERR "network todo '%s' but state %d\n",
5215 dev->name, dev->reg_state);
5216 dump_stack();
5217 continue;
5218 }
5219
5220 dev->reg_state = NETREG_UNREGISTERED;
5221
5222 on_each_cpu(flush_backlog, dev, 1);
5223
5224 netdev_wait_allrefs(dev);
5225
5226 /* paranoia */
5227 BUG_ON(atomic_read(&dev->refcnt));
5228 WARN_ON(dev->ip_ptr);
5229 WARN_ON(dev->ip6_ptr);
5230 WARN_ON(dev->dn_ptr);
5231
5232 if (dev->destructor)
5233 dev->destructor(dev);
5234
5235 /* Free network device */
5236 kobject_put(&dev->dev.kobj);
5237 }
5238 }
5239
5240 /**
5241 * dev_txq_stats_fold - fold tx_queues stats
5242 * @dev: device to get statistics from
5243 * @stats: struct net_device_stats to hold results
5244 */
5245 void dev_txq_stats_fold(const struct net_device *dev,
5246 struct net_device_stats *stats)
5247 {
5248 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5249 unsigned int i;
5250 struct netdev_queue *txq;
5251
5252 for (i = 0; i < dev->num_tx_queues; i++) {
5253 txq = netdev_get_tx_queue(dev, i);
5254 tx_bytes += txq->tx_bytes;
5255 tx_packets += txq->tx_packets;
5256 tx_dropped += txq->tx_dropped;
5257 }
5258 if (tx_bytes || tx_packets || tx_dropped) {
5259 stats->tx_bytes = tx_bytes;
5260 stats->tx_packets = tx_packets;
5261 stats->tx_dropped = tx_dropped;
5262 }
5263 }
5264 EXPORT_SYMBOL(dev_txq_stats_fold);
5265
5266 /**
5267 * dev_get_stats - get network device statistics
5268 * @dev: device to get statistics from
5269 *
5270 * Get network statistics from device. The device driver may provide
5271 * its own method by setting dev->netdev_ops->get_stats; otherwise
5272 * the internal statistics structure is used.
5273 */
5274 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5275 {
5276 const struct net_device_ops *ops = dev->netdev_ops;
5277
5278 if (ops->ndo_get_stats)
5279 return ops->ndo_get_stats(dev);
5280
5281 dev_txq_stats_fold(dev, &dev->stats);
5282 return &dev->stats;
5283 }
5284 EXPORT_SYMBOL(dev_get_stats);
5285
5286 static void netdev_init_one_queue(struct net_device *dev,
5287 struct netdev_queue *queue,
5288 void *_unused)
5289 {
5290 queue->dev = dev;
5291 }
5292
5293 static void netdev_init_queues(struct net_device *dev)
5294 {
5295 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5296 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5297 spin_lock_init(&dev->tx_global_lock);
5298 }
5299
5300 /**
5301 * alloc_netdev_mq - allocate network device
5302 * @sizeof_priv: size of private data to allocate space for
5303 * @name: device name format string
5304 * @setup: callback to initialize device
5305 * @queue_count: the number of subqueues to allocate
5306 *
5307 * Allocates a struct net_device with private data area for driver use
5308 * and performs basic initialization. Also allocates subquue structs
5309 * for each queue on the device at the end of the netdevice.
5310 */
5311 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5312 void (*setup)(struct net_device *), unsigned int queue_count)
5313 {
5314 struct netdev_queue *tx;
5315 struct net_device *dev;
5316 size_t alloc_size;
5317 struct net_device *p;
5318 #ifdef CONFIG_RPS
5319 struct netdev_rx_queue *rx;
5320 int i;
5321 #endif
5322
5323 BUG_ON(strlen(name) >= sizeof(dev->name));
5324
5325 alloc_size = sizeof(struct net_device);
5326 if (sizeof_priv) {
5327 /* ensure 32-byte alignment of private area */
5328 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5329 alloc_size += sizeof_priv;
5330 }
5331 /* ensure 32-byte alignment of whole construct */
5332 alloc_size += NETDEV_ALIGN - 1;
5333
5334 p = kzalloc(alloc_size, GFP_KERNEL);
5335 if (!p) {
5336 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5337 return NULL;
5338 }
5339
5340 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5341 if (!tx) {
5342 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5343 "tx qdiscs.\n");
5344 goto free_p;
5345 }
5346
5347 #ifdef CONFIG_RPS
5348 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5349 if (!rx) {
5350 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5351 "rx queues.\n");
5352 goto free_tx;
5353 }
5354
5355 atomic_set(&rx->count, queue_count);
5356
5357 /*
5358 * Set a pointer to first element in the array which holds the
5359 * reference count.
5360 */
5361 for (i = 0; i < queue_count; i++)
5362 rx[i].first = rx;
5363 #endif
5364
5365 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5366 dev->padded = (char *)dev - (char *)p;
5367
5368 if (dev_addr_init(dev))
5369 goto free_rx;
5370
5371 dev_mc_init(dev);
5372 dev_uc_init(dev);
5373
5374 dev_net_set(dev, &init_net);
5375
5376 dev->_tx = tx;
5377 dev->num_tx_queues = queue_count;
5378 dev->real_num_tx_queues = queue_count;
5379
5380 #ifdef CONFIG_RPS
5381 dev->_rx = rx;
5382 dev->num_rx_queues = queue_count;
5383 #endif
5384
5385 dev->gso_max_size = GSO_MAX_SIZE;
5386
5387 netdev_init_queues(dev);
5388
5389 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5390 dev->ethtool_ntuple_list.count = 0;
5391 INIT_LIST_HEAD(&dev->napi_list);
5392 INIT_LIST_HEAD(&dev->unreg_list);
5393 INIT_LIST_HEAD(&dev->link_watch_list);
5394 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5395 setup(dev);
5396 strcpy(dev->name, name);
5397 return dev;
5398
5399 free_rx:
5400 #ifdef CONFIG_RPS
5401 kfree(rx);
5402 free_tx:
5403 #endif
5404 kfree(tx);
5405 free_p:
5406 kfree(p);
5407 return NULL;
5408 }
5409 EXPORT_SYMBOL(alloc_netdev_mq);
5410
5411 /**
5412 * free_netdev - free network device
5413 * @dev: device
5414 *
5415 * This function does the last stage of destroying an allocated device
5416 * interface. The reference to the device object is released.
5417 * If this is the last reference then it will be freed.
5418 */
5419 void free_netdev(struct net_device *dev)
5420 {
5421 struct napi_struct *p, *n;
5422
5423 release_net(dev_net(dev));
5424
5425 kfree(dev->_tx);
5426
5427 /* Flush device addresses */
5428 dev_addr_flush(dev);
5429
5430 /* Clear ethtool n-tuple list */
5431 ethtool_ntuple_flush(dev);
5432
5433 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5434 netif_napi_del(p);
5435
5436 /* Compatibility with error handling in drivers */
5437 if (dev->reg_state == NETREG_UNINITIALIZED) {
5438 kfree((char *)dev - dev->padded);
5439 return;
5440 }
5441
5442 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5443 dev->reg_state = NETREG_RELEASED;
5444
5445 /* will free via device release */
5446 put_device(&dev->dev);
5447 }
5448 EXPORT_SYMBOL(free_netdev);
5449
5450 /**
5451 * synchronize_net - Synchronize with packet receive processing
5452 *
5453 * Wait for packets currently being received to be done.
5454 * Does not block later packets from starting.
5455 */
5456 void synchronize_net(void)
5457 {
5458 might_sleep();
5459 synchronize_rcu();
5460 }
5461 EXPORT_SYMBOL(synchronize_net);
5462
5463 /**
5464 * unregister_netdevice_queue - remove device from the kernel
5465 * @dev: device
5466 * @head: list
5467 *
5468 * This function shuts down a device interface and removes it
5469 * from the kernel tables.
5470 * If head not NULL, device is queued to be unregistered later.
5471 *
5472 * Callers must hold the rtnl semaphore. You may want
5473 * unregister_netdev() instead of this.
5474 */
5475
5476 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5477 {
5478 ASSERT_RTNL();
5479
5480 if (head) {
5481 list_move_tail(&dev->unreg_list, head);
5482 } else {
5483 rollback_registered(dev);
5484 /* Finish processing unregister after unlock */
5485 net_set_todo(dev);
5486 }
5487 }
5488 EXPORT_SYMBOL(unregister_netdevice_queue);
5489
5490 /**
5491 * unregister_netdevice_many - unregister many devices
5492 * @head: list of devices
5493 */
5494 void unregister_netdevice_many(struct list_head *head)
5495 {
5496 struct net_device *dev;
5497
5498 if (!list_empty(head)) {
5499 rollback_registered_many(head);
5500 list_for_each_entry(dev, head, unreg_list)
5501 net_set_todo(dev);
5502 }
5503 }
5504 EXPORT_SYMBOL(unregister_netdevice_many);
5505
5506 /**
5507 * unregister_netdev - remove device from the kernel
5508 * @dev: device
5509 *
5510 * This function shuts down a device interface and removes it
5511 * from the kernel tables.
5512 *
5513 * This is just a wrapper for unregister_netdevice that takes
5514 * the rtnl semaphore. In general you want to use this and not
5515 * unregister_netdevice.
5516 */
5517 void unregister_netdev(struct net_device *dev)
5518 {
5519 rtnl_lock();
5520 unregister_netdevice(dev);
5521 rtnl_unlock();
5522 }
5523 EXPORT_SYMBOL(unregister_netdev);
5524
5525 /**
5526 * dev_change_net_namespace - move device to different nethost namespace
5527 * @dev: device
5528 * @net: network namespace
5529 * @pat: If not NULL name pattern to try if the current device name
5530 * is already taken in the destination network namespace.
5531 *
5532 * This function shuts down a device interface and moves it
5533 * to a new network namespace. On success 0 is returned, on
5534 * a failure a netagive errno code is returned.
5535 *
5536 * Callers must hold the rtnl semaphore.
5537 */
5538
5539 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5540 {
5541 int err;
5542
5543 ASSERT_RTNL();
5544
5545 /* Don't allow namespace local devices to be moved. */
5546 err = -EINVAL;
5547 if (dev->features & NETIF_F_NETNS_LOCAL)
5548 goto out;
5549
5550 #ifdef CONFIG_SYSFS
5551 /* Don't allow real devices to be moved when sysfs
5552 * is enabled.
5553 */
5554 err = -EINVAL;
5555 if (dev->dev.parent)
5556 goto out;
5557 #endif
5558
5559 /* Ensure the device has been registrered */
5560 err = -EINVAL;
5561 if (dev->reg_state != NETREG_REGISTERED)
5562 goto out;
5563
5564 /* Get out if there is nothing todo */
5565 err = 0;
5566 if (net_eq(dev_net(dev), net))
5567 goto out;
5568
5569 /* Pick the destination device name, and ensure
5570 * we can use it in the destination network namespace.
5571 */
5572 err = -EEXIST;
5573 if (__dev_get_by_name(net, dev->name)) {
5574 /* We get here if we can't use the current device name */
5575 if (!pat)
5576 goto out;
5577 if (dev_get_valid_name(net, pat, dev->name, 1))
5578 goto out;
5579 }
5580
5581 /*
5582 * And now a mini version of register_netdevice unregister_netdevice.
5583 */
5584
5585 /* If device is running close it first. */
5586 dev_close(dev);
5587
5588 /* And unlink it from device chain */
5589 err = -ENODEV;
5590 unlist_netdevice(dev);
5591
5592 synchronize_net();
5593
5594 /* Shutdown queueing discipline. */
5595 dev_shutdown(dev);
5596
5597 /* Notify protocols, that we are about to destroy
5598 this device. They should clean all the things.
5599 */
5600 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5601 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5602
5603 /*
5604 * Flush the unicast and multicast chains
5605 */
5606 dev_uc_flush(dev);
5607 dev_mc_flush(dev);
5608
5609 netdev_unregister_kobject(dev);
5610
5611 /* Actually switch the network namespace */
5612 dev_net_set(dev, net);
5613
5614 /* If there is an ifindex conflict assign a new one */
5615 if (__dev_get_by_index(net, dev->ifindex)) {
5616 int iflink = (dev->iflink == dev->ifindex);
5617 dev->ifindex = dev_new_index(net);
5618 if (iflink)
5619 dev->iflink = dev->ifindex;
5620 }
5621
5622 /* Fixup kobjects */
5623 err = netdev_register_kobject(dev);
5624 WARN_ON(err);
5625
5626 /* Add the device back in the hashes */
5627 list_netdevice(dev);
5628
5629 /* Notify protocols, that a new device appeared. */
5630 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5631
5632 /*
5633 * Prevent userspace races by waiting until the network
5634 * device is fully setup before sending notifications.
5635 */
5636 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5637
5638 synchronize_net();
5639 err = 0;
5640 out:
5641 return err;
5642 }
5643 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5644
5645 static int dev_cpu_callback(struct notifier_block *nfb,
5646 unsigned long action,
5647 void *ocpu)
5648 {
5649 struct sk_buff **list_skb;
5650 struct sk_buff *skb;
5651 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5652 struct softnet_data *sd, *oldsd;
5653
5654 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5655 return NOTIFY_OK;
5656
5657 local_irq_disable();
5658 cpu = smp_processor_id();
5659 sd = &per_cpu(softnet_data, cpu);
5660 oldsd = &per_cpu(softnet_data, oldcpu);
5661
5662 /* Find end of our completion_queue. */
5663 list_skb = &sd->completion_queue;
5664 while (*list_skb)
5665 list_skb = &(*list_skb)->next;
5666 /* Append completion queue from offline CPU. */
5667 *list_skb = oldsd->completion_queue;
5668 oldsd->completion_queue = NULL;
5669
5670 /* Append output queue from offline CPU. */
5671 if (oldsd->output_queue) {
5672 *sd->output_queue_tailp = oldsd->output_queue;
5673 sd->output_queue_tailp = oldsd->output_queue_tailp;
5674 oldsd->output_queue = NULL;
5675 oldsd->output_queue_tailp = &oldsd->output_queue;
5676 }
5677
5678 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5679 local_irq_enable();
5680
5681 /* Process offline CPU's input_pkt_queue */
5682 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5683 netif_rx(skb);
5684 input_queue_head_add(oldsd, 1);
5685 }
5686 while ((skb = __skb_dequeue(&oldsd->process_queue)))
5687 netif_rx(skb);
5688
5689 return NOTIFY_OK;
5690 }
5691
5692
5693 /**
5694 * netdev_increment_features - increment feature set by one
5695 * @all: current feature set
5696 * @one: new feature set
5697 * @mask: mask feature set
5698 *
5699 * Computes a new feature set after adding a device with feature set
5700 * @one to the master device with current feature set @all. Will not
5701 * enable anything that is off in @mask. Returns the new feature set.
5702 */
5703 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5704 unsigned long mask)
5705 {
5706 /* If device needs checksumming, downgrade to it. */
5707 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5708 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5709 else if (mask & NETIF_F_ALL_CSUM) {
5710 /* If one device supports v4/v6 checksumming, set for all. */
5711 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5712 !(all & NETIF_F_GEN_CSUM)) {
5713 all &= ~NETIF_F_ALL_CSUM;
5714 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5715 }
5716
5717 /* If one device supports hw checksumming, set for all. */
5718 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5719 all &= ~NETIF_F_ALL_CSUM;
5720 all |= NETIF_F_HW_CSUM;
5721 }
5722 }
5723
5724 one |= NETIF_F_ALL_CSUM;
5725
5726 one |= all & NETIF_F_ONE_FOR_ALL;
5727 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5728 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5729
5730 return all;
5731 }
5732 EXPORT_SYMBOL(netdev_increment_features);
5733
5734 static struct hlist_head *netdev_create_hash(void)
5735 {
5736 int i;
5737 struct hlist_head *hash;
5738
5739 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5740 if (hash != NULL)
5741 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5742 INIT_HLIST_HEAD(&hash[i]);
5743
5744 return hash;
5745 }
5746
5747 /* Initialize per network namespace state */
5748 static int __net_init netdev_init(struct net *net)
5749 {
5750 INIT_LIST_HEAD(&net->dev_base_head);
5751
5752 net->dev_name_head = netdev_create_hash();
5753 if (net->dev_name_head == NULL)
5754 goto err_name;
5755
5756 net->dev_index_head = netdev_create_hash();
5757 if (net->dev_index_head == NULL)
5758 goto err_idx;
5759
5760 return 0;
5761
5762 err_idx:
5763 kfree(net->dev_name_head);
5764 err_name:
5765 return -ENOMEM;
5766 }
5767
5768 /**
5769 * netdev_drivername - network driver for the device
5770 * @dev: network device
5771 * @buffer: buffer for resulting name
5772 * @len: size of buffer
5773 *
5774 * Determine network driver for device.
5775 */
5776 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5777 {
5778 const struct device_driver *driver;
5779 const struct device *parent;
5780
5781 if (len <= 0 || !buffer)
5782 return buffer;
5783 buffer[0] = 0;
5784
5785 parent = dev->dev.parent;
5786
5787 if (!parent)
5788 return buffer;
5789
5790 driver = parent->driver;
5791 if (driver && driver->name)
5792 strlcpy(buffer, driver->name, len);
5793 return buffer;
5794 }
5795
5796 static void __net_exit netdev_exit(struct net *net)
5797 {
5798 kfree(net->dev_name_head);
5799 kfree(net->dev_index_head);
5800 }
5801
5802 static struct pernet_operations __net_initdata netdev_net_ops = {
5803 .init = netdev_init,
5804 .exit = netdev_exit,
5805 };
5806
5807 static void __net_exit default_device_exit(struct net *net)
5808 {
5809 struct net_device *dev, *aux;
5810 /*
5811 * Push all migratable network devices back to the
5812 * initial network namespace
5813 */
5814 rtnl_lock();
5815 for_each_netdev_safe(net, dev, aux) {
5816 int err;
5817 char fb_name[IFNAMSIZ];
5818
5819 /* Ignore unmoveable devices (i.e. loopback) */
5820 if (dev->features & NETIF_F_NETNS_LOCAL)
5821 continue;
5822
5823 /* Leave virtual devices for the generic cleanup */
5824 if (dev->rtnl_link_ops)
5825 continue;
5826
5827 /* Push remaing network devices to init_net */
5828 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5829 err = dev_change_net_namespace(dev, &init_net, fb_name);
5830 if (err) {
5831 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5832 __func__, dev->name, err);
5833 BUG();
5834 }
5835 }
5836 rtnl_unlock();
5837 }
5838
5839 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5840 {
5841 /* At exit all network devices most be removed from a network
5842 * namespace. Do this in the reverse order of registeration.
5843 * Do this across as many network namespaces as possible to
5844 * improve batching efficiency.
5845 */
5846 struct net_device *dev;
5847 struct net *net;
5848 LIST_HEAD(dev_kill_list);
5849
5850 rtnl_lock();
5851 list_for_each_entry(net, net_list, exit_list) {
5852 for_each_netdev_reverse(net, dev) {
5853 if (dev->rtnl_link_ops)
5854 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5855 else
5856 unregister_netdevice_queue(dev, &dev_kill_list);
5857 }
5858 }
5859 unregister_netdevice_many(&dev_kill_list);
5860 rtnl_unlock();
5861 }
5862
5863 static struct pernet_operations __net_initdata default_device_ops = {
5864 .exit = default_device_exit,
5865 .exit_batch = default_device_exit_batch,
5866 };
5867
5868 /*
5869 * Initialize the DEV module. At boot time this walks the device list and
5870 * unhooks any devices that fail to initialise (normally hardware not
5871 * present) and leaves us with a valid list of present and active devices.
5872 *
5873 */
5874
5875 /*
5876 * This is called single threaded during boot, so no need
5877 * to take the rtnl semaphore.
5878 */
5879 static int __init net_dev_init(void)
5880 {
5881 int i, rc = -ENOMEM;
5882
5883 BUG_ON(!dev_boot_phase);
5884
5885 if (dev_proc_init())
5886 goto out;
5887
5888 if (netdev_kobject_init())
5889 goto out;
5890
5891 INIT_LIST_HEAD(&ptype_all);
5892 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5893 INIT_LIST_HEAD(&ptype_base[i]);
5894
5895 if (register_pernet_subsys(&netdev_net_ops))
5896 goto out;
5897
5898 /*
5899 * Initialise the packet receive queues.
5900 */
5901
5902 for_each_possible_cpu(i) {
5903 struct softnet_data *sd = &per_cpu(softnet_data, i);
5904
5905 memset(sd, 0, sizeof(*sd));
5906 skb_queue_head_init(&sd->input_pkt_queue);
5907 skb_queue_head_init(&sd->process_queue);
5908 sd->completion_queue = NULL;
5909 INIT_LIST_HEAD(&sd->poll_list);
5910 sd->output_queue = NULL;
5911 sd->output_queue_tailp = &sd->output_queue;
5912 #ifdef CONFIG_RPS
5913 sd->csd.func = rps_trigger_softirq;
5914 sd->csd.info = sd;
5915 sd->csd.flags = 0;
5916 sd->cpu = i;
5917 #endif
5918
5919 sd->backlog.poll = process_backlog;
5920 sd->backlog.weight = weight_p;
5921 sd->backlog.gro_list = NULL;
5922 sd->backlog.gro_count = 0;
5923 }
5924
5925 dev_boot_phase = 0;
5926
5927 /* The loopback device is special if any other network devices
5928 * is present in a network namespace the loopback device must
5929 * be present. Since we now dynamically allocate and free the
5930 * loopback device ensure this invariant is maintained by
5931 * keeping the loopback device as the first device on the
5932 * list of network devices. Ensuring the loopback devices
5933 * is the first device that appears and the last network device
5934 * that disappears.
5935 */
5936 if (register_pernet_device(&loopback_net_ops))
5937 goto out;
5938
5939 if (register_pernet_device(&default_device_ops))
5940 goto out;
5941
5942 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5943 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5944
5945 hotcpu_notifier(dev_cpu_callback, 0);
5946 dst_init();
5947 dev_mcast_init();
5948 rc = 0;
5949 out:
5950 return rc;
5951 }
5952
5953 subsys_initcall(net_dev_init);
5954
5955 static int __init initialize_hashrnd(void)
5956 {
5957 get_random_bytes(&hashrnd, sizeof(hashrnd));
5958 return 0;
5959 }
5960
5961 late_initcall_sync(initialize_hashrnd);
5962
This page took 0.167581 seconds and 5 git commands to generate.