Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133
134 #include "net-sysfs.h"
135
136 /* Instead of increasing this, you should create a hash table. */
137 #define MAX_GRO_SKBS 8
138
139 /* This should be increased if a protocol with a bigger head is added. */
140 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141
142 /*
143 * The list of packet types we will receive (as opposed to discard)
144 * and the routines to invoke.
145 *
146 * Why 16. Because with 16 the only overlap we get on a hash of the
147 * low nibble of the protocol value is RARP/SNAP/X.25.
148 *
149 * NOTE: That is no longer true with the addition of VLAN tags. Not
150 * sure which should go first, but I bet it won't make much
151 * difference if we are running VLANs. The good news is that
152 * this protocol won't be in the list unless compiled in, so
153 * the average user (w/out VLANs) will not be adversely affected.
154 * --BLG
155 *
156 * 0800 IP
157 * 8100 802.1Q VLAN
158 * 0001 802.3
159 * 0002 AX.25
160 * 0004 802.2
161 * 8035 RARP
162 * 0005 SNAP
163 * 0805 X.25
164 * 0806 ARP
165 * 8137 IPX
166 * 0009 Localtalk
167 * 86DD IPv6
168 */
169
170 #define PTYPE_HASH_SIZE (16)
171 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172
173 static DEFINE_SPINLOCK(ptype_lock);
174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
175 static struct list_head ptype_all __read_mostly; /* Taps */
176
177 /*
178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
179 * semaphore.
180 *
181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182 *
183 * Writers must hold the rtnl semaphore while they loop through the
184 * dev_base_head list, and hold dev_base_lock for writing when they do the
185 * actual updates. This allows pure readers to access the list even
186 * while a writer is preparing to update it.
187 *
188 * To put it another way, dev_base_lock is held for writing only to
189 * protect against pure readers; the rtnl semaphore provides the
190 * protection against other writers.
191 *
192 * See, for example usages, register_netdevice() and
193 * unregister_netdevice(), which must be called with the rtnl
194 * semaphore held.
195 */
196 DEFINE_RWLOCK(dev_base_lock);
197 EXPORT_SYMBOL(dev_base_lock);
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static int list_netdevice(struct net_device *dev)
226 {
227 struct net *net = dev_net(dev);
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
237 return 0;
238 }
239
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
253 }
254
255 /*
256 * Our notifier list
257 */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler.
264 */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272 * according to dev->type
273 */
274 static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
288 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
289 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
290 ARPHRD_VOID, ARPHRD_NONE};
291
292 static const char *const netdev_lock_name[] =
293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
306 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
307 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
308 "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 if (pt->type == htons(ETH_P_ALL))
378 return &ptype_all;
379 else
380 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 }
382
383 /**
384 * dev_add_pack - add packet handler
385 * @pt: packet type declaration
386 *
387 * Add a protocol handler to the networking stack. The passed &packet_type
388 * is linked into kernel lists and may not be freed until it has been
389 * removed from the kernel lists.
390 *
391 * This call does not sleep therefore it can not
392 * guarantee all CPU's that are in middle of receiving packets
393 * will see the new packet type (until the next received packet).
394 */
395
396 void dev_add_pack(struct packet_type *pt)
397 {
398 struct list_head *head = ptype_head(pt);
399
400 spin_lock(&ptype_lock);
401 list_add_rcu(&pt->list, head);
402 spin_unlock(&ptype_lock);
403 }
404 EXPORT_SYMBOL(dev_add_pack);
405
406 /**
407 * __dev_remove_pack - remove packet handler
408 * @pt: packet type declaration
409 *
410 * Remove a protocol handler that was previously added to the kernel
411 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
412 * from the kernel lists and can be freed or reused once this function
413 * returns.
414 *
415 * The packet type might still be in use by receivers
416 * and must not be freed until after all the CPU's have gone
417 * through a quiescent state.
418 */
419 void __dev_remove_pack(struct packet_type *pt)
420 {
421 struct list_head *head = ptype_head(pt);
422 struct packet_type *pt1;
423
424 spin_lock(&ptype_lock);
425
426 list_for_each_entry(pt1, head, list) {
427 if (pt == pt1) {
428 list_del_rcu(&pt->list);
429 goto out;
430 }
431 }
432
433 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
434 out:
435 spin_unlock(&ptype_lock);
436 }
437 EXPORT_SYMBOL(__dev_remove_pack);
438
439 /**
440 * dev_remove_pack - remove packet handler
441 * @pt: packet type declaration
442 *
443 * Remove a protocol handler that was previously added to the kernel
444 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
445 * from the kernel lists and can be freed or reused once this function
446 * returns.
447 *
448 * This call sleeps to guarantee that no CPU is looking at the packet
449 * type after return.
450 */
451 void dev_remove_pack(struct packet_type *pt)
452 {
453 __dev_remove_pack(pt);
454
455 synchronize_net();
456 }
457 EXPORT_SYMBOL(dev_remove_pack);
458
459 /******************************************************************************
460
461 Device Boot-time Settings Routines
462
463 *******************************************************************************/
464
465 /* Boot time configuration table */
466 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
467
468 /**
469 * netdev_boot_setup_add - add new setup entry
470 * @name: name of the device
471 * @map: configured settings for the device
472 *
473 * Adds new setup entry to the dev_boot_setup list. The function
474 * returns 0 on error and 1 on success. This is a generic routine to
475 * all netdevices.
476 */
477 static int netdev_boot_setup_add(char *name, struct ifmap *map)
478 {
479 struct netdev_boot_setup *s;
480 int i;
481
482 s = dev_boot_setup;
483 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
484 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
485 memset(s[i].name, 0, sizeof(s[i].name));
486 strlcpy(s[i].name, name, IFNAMSIZ);
487 memcpy(&s[i].map, map, sizeof(s[i].map));
488 break;
489 }
490 }
491
492 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
493 }
494
495 /**
496 * netdev_boot_setup_check - check boot time settings
497 * @dev: the netdevice
498 *
499 * Check boot time settings for the device.
500 * The found settings are set for the device to be used
501 * later in the device probing.
502 * Returns 0 if no settings found, 1 if they are.
503 */
504 int netdev_boot_setup_check(struct net_device *dev)
505 {
506 struct netdev_boot_setup *s = dev_boot_setup;
507 int i;
508
509 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
510 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
511 !strcmp(dev->name, s[i].name)) {
512 dev->irq = s[i].map.irq;
513 dev->base_addr = s[i].map.base_addr;
514 dev->mem_start = s[i].map.mem_start;
515 dev->mem_end = s[i].map.mem_end;
516 return 1;
517 }
518 }
519 return 0;
520 }
521 EXPORT_SYMBOL(netdev_boot_setup_check);
522
523
524 /**
525 * netdev_boot_base - get address from boot time settings
526 * @prefix: prefix for network device
527 * @unit: id for network device
528 *
529 * Check boot time settings for the base address of device.
530 * The found settings are set for the device to be used
531 * later in the device probing.
532 * Returns 0 if no settings found.
533 */
534 unsigned long netdev_boot_base(const char *prefix, int unit)
535 {
536 const struct netdev_boot_setup *s = dev_boot_setup;
537 char name[IFNAMSIZ];
538 int i;
539
540 sprintf(name, "%s%d", prefix, unit);
541
542 /*
543 * If device already registered then return base of 1
544 * to indicate not to probe for this interface
545 */
546 if (__dev_get_by_name(&init_net, name))
547 return 1;
548
549 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
550 if (!strcmp(name, s[i].name))
551 return s[i].map.base_addr;
552 return 0;
553 }
554
555 /*
556 * Saves at boot time configured settings for any netdevice.
557 */
558 int __init netdev_boot_setup(char *str)
559 {
560 int ints[5];
561 struct ifmap map;
562
563 str = get_options(str, ARRAY_SIZE(ints), ints);
564 if (!str || !*str)
565 return 0;
566
567 /* Save settings */
568 memset(&map, 0, sizeof(map));
569 if (ints[0] > 0)
570 map.irq = ints[1];
571 if (ints[0] > 1)
572 map.base_addr = ints[2];
573 if (ints[0] > 2)
574 map.mem_start = ints[3];
575 if (ints[0] > 3)
576 map.mem_end = ints[4];
577
578 /* Add new entry to the list */
579 return netdev_boot_setup_add(str, &map);
580 }
581
582 __setup("netdev=", netdev_boot_setup);
583
584 /*******************************************************************************
585
586 Device Interface Subroutines
587
588 *******************************************************************************/
589
590 /**
591 * __dev_get_by_name - find a device by its name
592 * @net: the applicable net namespace
593 * @name: name to find
594 *
595 * Find an interface by name. Must be called under RTNL semaphore
596 * or @dev_base_lock. If the name is found a pointer to the device
597 * is returned. If the name is not found then %NULL is returned. The
598 * reference counters are not incremented so the caller must be
599 * careful with locks.
600 */
601
602 struct net_device *__dev_get_by_name(struct net *net, const char *name)
603 {
604 struct hlist_node *p;
605 struct net_device *dev;
606 struct hlist_head *head = dev_name_hash(net, name);
607
608 hlist_for_each_entry(dev, p, head, name_hlist)
609 if (!strncmp(dev->name, name, IFNAMSIZ))
610 return dev;
611
612 return NULL;
613 }
614 EXPORT_SYMBOL(__dev_get_by_name);
615
616 /**
617 * dev_get_by_name_rcu - find a device by its name
618 * @net: the applicable net namespace
619 * @name: name to find
620 *
621 * Find an interface by name.
622 * If the name is found a pointer to the device is returned.
623 * If the name is not found then %NULL is returned.
624 * The reference counters are not incremented so the caller must be
625 * careful with locks. The caller must hold RCU lock.
626 */
627
628 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
629 {
630 struct hlist_node *p;
631 struct net_device *dev;
632 struct hlist_head *head = dev_name_hash(net, name);
633
634 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
635 if (!strncmp(dev->name, name, IFNAMSIZ))
636 return dev;
637
638 return NULL;
639 }
640 EXPORT_SYMBOL(dev_get_by_name_rcu);
641
642 /**
643 * dev_get_by_name - find a device by its name
644 * @net: the applicable net namespace
645 * @name: name to find
646 *
647 * Find an interface by name. This can be called from any
648 * context and does its own locking. The returned handle has
649 * the usage count incremented and the caller must use dev_put() to
650 * release it when it is no longer needed. %NULL is returned if no
651 * matching device is found.
652 */
653
654 struct net_device *dev_get_by_name(struct net *net, const char *name)
655 {
656 struct net_device *dev;
657
658 rcu_read_lock();
659 dev = dev_get_by_name_rcu(net, name);
660 if (dev)
661 dev_hold(dev);
662 rcu_read_unlock();
663 return dev;
664 }
665 EXPORT_SYMBOL(dev_get_by_name);
666
667 /**
668 * __dev_get_by_index - find a device by its ifindex
669 * @net: the applicable net namespace
670 * @ifindex: index of device
671 *
672 * Search for an interface by index. Returns %NULL if the device
673 * is not found or a pointer to the device. The device has not
674 * had its reference counter increased so the caller must be careful
675 * about locking. The caller must hold either the RTNL semaphore
676 * or @dev_base_lock.
677 */
678
679 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
680 {
681 struct hlist_node *p;
682 struct net_device *dev;
683 struct hlist_head *head = dev_index_hash(net, ifindex);
684
685 hlist_for_each_entry(dev, p, head, index_hlist)
686 if (dev->ifindex == ifindex)
687 return dev;
688
689 return NULL;
690 }
691 EXPORT_SYMBOL(__dev_get_by_index);
692
693 /**
694 * dev_get_by_index_rcu - find a device by its ifindex
695 * @net: the applicable net namespace
696 * @ifindex: index of device
697 *
698 * Search for an interface by index. Returns %NULL if the device
699 * is not found or a pointer to the device. The device has not
700 * had its reference counter increased so the caller must be careful
701 * about locking. The caller must hold RCU lock.
702 */
703
704 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
705 {
706 struct hlist_node *p;
707 struct net_device *dev;
708 struct hlist_head *head = dev_index_hash(net, ifindex);
709
710 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
711 if (dev->ifindex == ifindex)
712 return dev;
713
714 return NULL;
715 }
716 EXPORT_SYMBOL(dev_get_by_index_rcu);
717
718
719 /**
720 * dev_get_by_index - find a device by its ifindex
721 * @net: the applicable net namespace
722 * @ifindex: index of device
723 *
724 * Search for an interface by index. Returns NULL if the device
725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
728 */
729
730 struct net_device *dev_get_by_index(struct net *net, int ifindex)
731 {
732 struct net_device *dev;
733
734 rcu_read_lock();
735 dev = dev_get_by_index_rcu(net, ifindex);
736 if (dev)
737 dev_hold(dev);
738 rcu_read_unlock();
739 return dev;
740 }
741 EXPORT_SYMBOL(dev_get_by_index);
742
743 /**
744 * dev_getbyhwaddr - find a device by its hardware address
745 * @net: the applicable net namespace
746 * @type: media type of device
747 * @ha: hardware address
748 *
749 * Search for an interface by MAC address. Returns NULL if the device
750 * is not found or a pointer to the device. The caller must hold the
751 * rtnl semaphore. The returned device has not had its ref count increased
752 * and the caller must therefore be careful about locking
753 *
754 * BUGS:
755 * If the API was consistent this would be __dev_get_by_hwaddr
756 */
757
758 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
759 {
760 struct net_device *dev;
761
762 ASSERT_RTNL();
763
764 for_each_netdev(net, dev)
765 if (dev->type == type &&
766 !memcmp(dev->dev_addr, ha, dev->addr_len))
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(dev_getbyhwaddr);
772
773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev;
776
777 ASSERT_RTNL();
778 for_each_netdev(net, dev)
779 if (dev->type == type)
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
785
786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 struct net_device *dev, *ret = NULL;
789
790 rcu_read_lock();
791 for_each_netdev_rcu(net, dev)
792 if (dev->type == type) {
793 dev_hold(dev);
794 ret = dev;
795 break;
796 }
797 rcu_read_unlock();
798 return ret;
799 }
800 EXPORT_SYMBOL(dev_getfirstbyhwtype);
801
802 /**
803 * dev_get_by_flags_rcu - find any device with given flags
804 * @net: the applicable net namespace
805 * @if_flags: IFF_* values
806 * @mask: bitmask of bits in if_flags to check
807 *
808 * Search for any interface with the given flags. Returns NULL if a device
809 * is not found or a pointer to the device. Must be called inside
810 * rcu_read_lock(), and result refcount is unchanged.
811 */
812
813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
814 unsigned short mask)
815 {
816 struct net_device *dev, *ret;
817
818 ret = NULL;
819 for_each_netdev_rcu(net, dev) {
820 if (((dev->flags ^ if_flags) & mask) == 0) {
821 ret = dev;
822 break;
823 }
824 }
825 return ret;
826 }
827 EXPORT_SYMBOL(dev_get_by_flags_rcu);
828
829 /**
830 * dev_valid_name - check if name is okay for network device
831 * @name: name string
832 *
833 * Network device names need to be valid file names to
834 * to allow sysfs to work. We also disallow any kind of
835 * whitespace.
836 */
837 int dev_valid_name(const char *name)
838 {
839 if (*name == '\0')
840 return 0;
841 if (strlen(name) >= IFNAMSIZ)
842 return 0;
843 if (!strcmp(name, ".") || !strcmp(name, ".."))
844 return 0;
845
846 while (*name) {
847 if (*name == '/' || isspace(*name))
848 return 0;
849 name++;
850 }
851 return 1;
852 }
853 EXPORT_SYMBOL(dev_valid_name);
854
855 /**
856 * __dev_alloc_name - allocate a name for a device
857 * @net: network namespace to allocate the device name in
858 * @name: name format string
859 * @buf: scratch buffer and result name string
860 *
861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid
865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code.
868 */
869
870 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
871 {
872 int i = 0;
873 const char *p;
874 const int max_netdevices = 8*PAGE_SIZE;
875 unsigned long *inuse;
876 struct net_device *d;
877
878 p = strnchr(name, IFNAMSIZ-1, '%');
879 if (p) {
880 /*
881 * Verify the string as this thing may have come from
882 * the user. There must be either one "%d" and no other "%"
883 * characters.
884 */
885 if (p[1] != 'd' || strchr(p + 2, '%'))
886 return -EINVAL;
887
888 /* Use one page as a bit array of possible slots */
889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
890 if (!inuse)
891 return -ENOMEM;
892
893 for_each_netdev(net, d) {
894 if (!sscanf(d->name, name, &i))
895 continue;
896 if (i < 0 || i >= max_netdevices)
897 continue;
898
899 /* avoid cases where sscanf is not exact inverse of printf */
900 snprintf(buf, IFNAMSIZ, name, i);
901 if (!strncmp(buf, d->name, IFNAMSIZ))
902 set_bit(i, inuse);
903 }
904
905 i = find_first_zero_bit(inuse, max_netdevices);
906 free_page((unsigned long) inuse);
907 }
908
909 if (buf != name)
910 snprintf(buf, IFNAMSIZ, name, i);
911 if (!__dev_get_by_name(net, buf))
912 return i;
913
914 /* It is possible to run out of possible slots
915 * when the name is long and there isn't enough space left
916 * for the digits, or if all bits are used.
917 */
918 return -ENFILE;
919 }
920
921 /**
922 * dev_alloc_name - allocate a name for a device
923 * @dev: device
924 * @name: name format string
925 *
926 * Passed a format string - eg "lt%d" it will try and find a suitable
927 * id. It scans list of devices to build up a free map, then chooses
928 * the first empty slot. The caller must hold the dev_base or rtnl lock
929 * while allocating the name and adding the device in order to avoid
930 * duplicates.
931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
932 * Returns the number of the unit assigned or a negative errno code.
933 */
934
935 int dev_alloc_name(struct net_device *dev, const char *name)
936 {
937 char buf[IFNAMSIZ];
938 struct net *net;
939 int ret;
940
941 BUG_ON(!dev_net(dev));
942 net = dev_net(dev);
943 ret = __dev_alloc_name(net, name, buf);
944 if (ret >= 0)
945 strlcpy(dev->name, buf, IFNAMSIZ);
946 return ret;
947 }
948 EXPORT_SYMBOL(dev_alloc_name);
949
950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
951 {
952 struct net *net;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956
957 if (!dev_valid_name(name))
958 return -EINVAL;
959
960 if (fmt && strchr(name, '%'))
961 return dev_alloc_name(dev, name);
962 else if (__dev_get_by_name(net, name))
963 return -EEXIST;
964 else if (dev->name != name)
965 strlcpy(dev->name, name, IFNAMSIZ);
966
967 return 0;
968 }
969
970 /**
971 * dev_change_name - change name of a device
972 * @dev: device
973 * @newname: name (or format string) must be at least IFNAMSIZ
974 *
975 * Change name of a device, can pass format strings "eth%d".
976 * for wildcarding.
977 */
978 int dev_change_name(struct net_device *dev, const char *newname)
979 {
980 char oldname[IFNAMSIZ];
981 int err = 0;
982 int ret;
983 struct net *net;
984
985 ASSERT_RTNL();
986 BUG_ON(!dev_net(dev));
987
988 net = dev_net(dev);
989 if (dev->flags & IFF_UP)
990 return -EBUSY;
991
992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
993 return 0;
994
995 memcpy(oldname, dev->name, IFNAMSIZ);
996
997 err = dev_get_valid_name(dev, newname, 1);
998 if (err < 0)
999 return err;
1000
1001 rollback:
1002 ret = device_rename(&dev->dev, dev->name);
1003 if (ret) {
1004 memcpy(dev->name, oldname, IFNAMSIZ);
1005 return ret;
1006 }
1007
1008 write_lock_bh(&dev_base_lock);
1009 hlist_del(&dev->name_hlist);
1010 write_unlock_bh(&dev_base_lock);
1011
1012 synchronize_rcu();
1013
1014 write_lock_bh(&dev_base_lock);
1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1016 write_unlock_bh(&dev_base_lock);
1017
1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1019 ret = notifier_to_errno(ret);
1020
1021 if (ret) {
1022 /* err >= 0 after dev_alloc_name() or stores the first errno */
1023 if (err >= 0) {
1024 err = ret;
1025 memcpy(dev->name, oldname, IFNAMSIZ);
1026 goto rollback;
1027 } else {
1028 printk(KERN_ERR
1029 "%s: name change rollback failed: %d.\n",
1030 dev->name, ret);
1031 }
1032 }
1033
1034 return err;
1035 }
1036
1037 /**
1038 * dev_set_alias - change ifalias of a device
1039 * @dev: device
1040 * @alias: name up to IFALIASZ
1041 * @len: limit of bytes to copy from info
1042 *
1043 * Set ifalias for a device,
1044 */
1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1046 {
1047 ASSERT_RTNL();
1048
1049 if (len >= IFALIASZ)
1050 return -EINVAL;
1051
1052 if (!len) {
1053 if (dev->ifalias) {
1054 kfree(dev->ifalias);
1055 dev->ifalias = NULL;
1056 }
1057 return 0;
1058 }
1059
1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1061 if (!dev->ifalias)
1062 return -ENOMEM;
1063
1064 strlcpy(dev->ifalias, alias, len+1);
1065 return len;
1066 }
1067
1068
1069 /**
1070 * netdev_features_change - device changes features
1071 * @dev: device to cause notification
1072 *
1073 * Called to indicate a device has changed features.
1074 */
1075 void netdev_features_change(struct net_device *dev)
1076 {
1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1078 }
1079 EXPORT_SYMBOL(netdev_features_change);
1080
1081 /**
1082 * netdev_state_change - device changes state
1083 * @dev: device to cause notification
1084 *
1085 * Called to indicate a device has changed state. This function calls
1086 * the notifier chains for netdev_chain and sends a NEWLINK message
1087 * to the routing socket.
1088 */
1089 void netdev_state_change(struct net_device *dev)
1090 {
1091 if (dev->flags & IFF_UP) {
1092 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1094 }
1095 }
1096 EXPORT_SYMBOL(netdev_state_change);
1097
1098 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1099 {
1100 return call_netdevice_notifiers(event, dev);
1101 }
1102 EXPORT_SYMBOL(netdev_bonding_change);
1103
1104 /**
1105 * dev_load - load a network module
1106 * @net: the applicable net namespace
1107 * @name: name of interface
1108 *
1109 * If a network interface is not present and the process has suitable
1110 * privileges this function loads the module. If module loading is not
1111 * available in this kernel then it becomes a nop.
1112 */
1113
1114 void dev_load(struct net *net, const char *name)
1115 {
1116 struct net_device *dev;
1117
1118 rcu_read_lock();
1119 dev = dev_get_by_name_rcu(net, name);
1120 rcu_read_unlock();
1121
1122 if (!dev && capable(CAP_NET_ADMIN))
1123 request_module("%s", name);
1124 }
1125 EXPORT_SYMBOL(dev_load);
1126
1127 static int __dev_open(struct net_device *dev)
1128 {
1129 const struct net_device_ops *ops = dev->netdev_ops;
1130 int ret;
1131
1132 ASSERT_RTNL();
1133
1134 /*
1135 * Is it even present?
1136 */
1137 if (!netif_device_present(dev))
1138 return -ENODEV;
1139
1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1141 ret = notifier_to_errno(ret);
1142 if (ret)
1143 return ret;
1144
1145 /*
1146 * Call device private open method
1147 */
1148 set_bit(__LINK_STATE_START, &dev->state);
1149
1150 if (ops->ndo_validate_addr)
1151 ret = ops->ndo_validate_addr(dev);
1152
1153 if (!ret && ops->ndo_open)
1154 ret = ops->ndo_open(dev);
1155
1156 /*
1157 * If it went open OK then:
1158 */
1159
1160 if (ret)
1161 clear_bit(__LINK_STATE_START, &dev->state);
1162 else {
1163 /*
1164 * Set the flags.
1165 */
1166 dev->flags |= IFF_UP;
1167
1168 /*
1169 * Enable NET_DMA
1170 */
1171 net_dmaengine_get();
1172
1173 /*
1174 * Initialize multicasting status
1175 */
1176 dev_set_rx_mode(dev);
1177
1178 /*
1179 * Wakeup transmit queue engine
1180 */
1181 dev_activate(dev);
1182 }
1183
1184 return ret;
1185 }
1186
1187 /**
1188 * dev_open - prepare an interface for use.
1189 * @dev: device to open
1190 *
1191 * Takes a device from down to up state. The device's private open
1192 * function is invoked and then the multicast lists are loaded. Finally
1193 * the device is moved into the up state and a %NETDEV_UP message is
1194 * sent to the netdev notifier chain.
1195 *
1196 * Calling this function on an active interface is a nop. On a failure
1197 * a negative errno code is returned.
1198 */
1199 int dev_open(struct net_device *dev)
1200 {
1201 int ret;
1202
1203 /*
1204 * Is it already up?
1205 */
1206 if (dev->flags & IFF_UP)
1207 return 0;
1208
1209 /*
1210 * Open device
1211 */
1212 ret = __dev_open(dev);
1213 if (ret < 0)
1214 return ret;
1215
1216 /*
1217 * ... and announce new interface.
1218 */
1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1220 call_netdevice_notifiers(NETDEV_UP, dev);
1221
1222 return ret;
1223 }
1224 EXPORT_SYMBOL(dev_open);
1225
1226 static int __dev_close(struct net_device *dev)
1227 {
1228 const struct net_device_ops *ops = dev->netdev_ops;
1229
1230 ASSERT_RTNL();
1231 might_sleep();
1232
1233 /*
1234 * Tell people we are going down, so that they can
1235 * prepare to death, when device is still operating.
1236 */
1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1238
1239 clear_bit(__LINK_STATE_START, &dev->state);
1240
1241 /* Synchronize to scheduled poll. We cannot touch poll list,
1242 * it can be even on different cpu. So just clear netif_running().
1243 *
1244 * dev->stop() will invoke napi_disable() on all of it's
1245 * napi_struct instances on this device.
1246 */
1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1248
1249 dev_deactivate(dev);
1250
1251 /*
1252 * Call the device specific close. This cannot fail.
1253 * Only if device is UP
1254 *
1255 * We allow it to be called even after a DETACH hot-plug
1256 * event.
1257 */
1258 if (ops->ndo_stop)
1259 ops->ndo_stop(dev);
1260
1261 /*
1262 * Device is now down.
1263 */
1264
1265 dev->flags &= ~IFF_UP;
1266
1267 /*
1268 * Shutdown NET_DMA
1269 */
1270 net_dmaengine_put();
1271
1272 return 0;
1273 }
1274
1275 /**
1276 * dev_close - shutdown an interface.
1277 * @dev: device to shutdown
1278 *
1279 * This function moves an active device into down state. A
1280 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1281 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1282 * chain.
1283 */
1284 int dev_close(struct net_device *dev)
1285 {
1286 if (!(dev->flags & IFF_UP))
1287 return 0;
1288
1289 __dev_close(dev);
1290
1291 /*
1292 * Tell people we are down
1293 */
1294 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1295 call_netdevice_notifiers(NETDEV_DOWN, dev);
1296
1297 return 0;
1298 }
1299 EXPORT_SYMBOL(dev_close);
1300
1301
1302 /**
1303 * dev_disable_lro - disable Large Receive Offload on a device
1304 * @dev: device
1305 *
1306 * Disable Large Receive Offload (LRO) on a net device. Must be
1307 * called under RTNL. This is needed if received packets may be
1308 * forwarded to another interface.
1309 */
1310 void dev_disable_lro(struct net_device *dev)
1311 {
1312 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1313 dev->ethtool_ops->set_flags) {
1314 u32 flags = dev->ethtool_ops->get_flags(dev);
1315 if (flags & ETH_FLAG_LRO) {
1316 flags &= ~ETH_FLAG_LRO;
1317 dev->ethtool_ops->set_flags(dev, flags);
1318 }
1319 }
1320 WARN_ON(dev->features & NETIF_F_LRO);
1321 }
1322 EXPORT_SYMBOL(dev_disable_lro);
1323
1324
1325 static int dev_boot_phase = 1;
1326
1327 /*
1328 * Device change register/unregister. These are not inline or static
1329 * as we export them to the world.
1330 */
1331
1332 /**
1333 * register_netdevice_notifier - register a network notifier block
1334 * @nb: notifier
1335 *
1336 * Register a notifier to be called when network device events occur.
1337 * The notifier passed is linked into the kernel structures and must
1338 * not be reused until it has been unregistered. A negative errno code
1339 * is returned on a failure.
1340 *
1341 * When registered all registration and up events are replayed
1342 * to the new notifier to allow device to have a race free
1343 * view of the network device list.
1344 */
1345
1346 int register_netdevice_notifier(struct notifier_block *nb)
1347 {
1348 struct net_device *dev;
1349 struct net_device *last;
1350 struct net *net;
1351 int err;
1352
1353 rtnl_lock();
1354 err = raw_notifier_chain_register(&netdev_chain, nb);
1355 if (err)
1356 goto unlock;
1357 if (dev_boot_phase)
1358 goto unlock;
1359 for_each_net(net) {
1360 for_each_netdev(net, dev) {
1361 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1362 err = notifier_to_errno(err);
1363 if (err)
1364 goto rollback;
1365
1366 if (!(dev->flags & IFF_UP))
1367 continue;
1368
1369 nb->notifier_call(nb, NETDEV_UP, dev);
1370 }
1371 }
1372
1373 unlock:
1374 rtnl_unlock();
1375 return err;
1376
1377 rollback:
1378 last = dev;
1379 for_each_net(net) {
1380 for_each_netdev(net, dev) {
1381 if (dev == last)
1382 break;
1383
1384 if (dev->flags & IFF_UP) {
1385 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1386 nb->notifier_call(nb, NETDEV_DOWN, dev);
1387 }
1388 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1389 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1390 }
1391 }
1392
1393 raw_notifier_chain_unregister(&netdev_chain, nb);
1394 goto unlock;
1395 }
1396 EXPORT_SYMBOL(register_netdevice_notifier);
1397
1398 /**
1399 * unregister_netdevice_notifier - unregister a network notifier block
1400 * @nb: notifier
1401 *
1402 * Unregister a notifier previously registered by
1403 * register_netdevice_notifier(). The notifier is unlinked into the
1404 * kernel structures and may then be reused. A negative errno code
1405 * is returned on a failure.
1406 */
1407
1408 int unregister_netdevice_notifier(struct notifier_block *nb)
1409 {
1410 int err;
1411
1412 rtnl_lock();
1413 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1414 rtnl_unlock();
1415 return err;
1416 }
1417 EXPORT_SYMBOL(unregister_netdevice_notifier);
1418
1419 /**
1420 * call_netdevice_notifiers - call all network notifier blocks
1421 * @val: value passed unmodified to notifier function
1422 * @dev: net_device pointer passed unmodified to notifier function
1423 *
1424 * Call all network notifier blocks. Parameters and return value
1425 * are as for raw_notifier_call_chain().
1426 */
1427
1428 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1429 {
1430 ASSERT_RTNL();
1431 return raw_notifier_call_chain(&netdev_chain, val, dev);
1432 }
1433
1434 /* When > 0 there are consumers of rx skb time stamps */
1435 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1436
1437 void net_enable_timestamp(void)
1438 {
1439 atomic_inc(&netstamp_needed);
1440 }
1441 EXPORT_SYMBOL(net_enable_timestamp);
1442
1443 void net_disable_timestamp(void)
1444 {
1445 atomic_dec(&netstamp_needed);
1446 }
1447 EXPORT_SYMBOL(net_disable_timestamp);
1448
1449 static inline void net_timestamp_set(struct sk_buff *skb)
1450 {
1451 if (atomic_read(&netstamp_needed))
1452 __net_timestamp(skb);
1453 else
1454 skb->tstamp.tv64 = 0;
1455 }
1456
1457 static inline void net_timestamp_check(struct sk_buff *skb)
1458 {
1459 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1460 __net_timestamp(skb);
1461 }
1462
1463 /**
1464 * dev_forward_skb - loopback an skb to another netif
1465 *
1466 * @dev: destination network device
1467 * @skb: buffer to forward
1468 *
1469 * return values:
1470 * NET_RX_SUCCESS (no congestion)
1471 * NET_RX_DROP (packet was dropped, but freed)
1472 *
1473 * dev_forward_skb can be used for injecting an skb from the
1474 * start_xmit function of one device into the receive queue
1475 * of another device.
1476 *
1477 * The receiving device may be in another namespace, so
1478 * we have to clear all information in the skb that could
1479 * impact namespace isolation.
1480 */
1481 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1482 {
1483 skb_orphan(skb);
1484 nf_reset(skb);
1485
1486 if (unlikely(!(dev->flags & IFF_UP) ||
1487 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1488 atomic_long_inc(&dev->rx_dropped);
1489 kfree_skb(skb);
1490 return NET_RX_DROP;
1491 }
1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb);
1497 }
1498 EXPORT_SYMBOL_GPL(dev_forward_skb);
1499
1500 /*
1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use.
1503 */
1504
1505 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1506 {
1507 struct packet_type *ptype;
1508
1509 #ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp_set(skb);
1512 #else
1513 net_timestamp_set(skb);
1514 #endif
1515
1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org)
1520 */
1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2)
1526 break;
1527
1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is
1530 just protection against buggy protocols.
1531 */
1532 skb_reset_mac_header(skb2);
1533
1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n",
1539 ntohs(skb2->protocol),
1540 dev->name);
1541 skb_reset_network_header(skb2);
1542 }
1543
1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1547 }
1548 }
1549 rcu_read_unlock();
1550 }
1551
1552 /*
1553 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1554 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1555 */
1556 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1557 {
1558 if (txq < 1 || txq > dev->num_tx_queues)
1559 return -EINVAL;
1560
1561 if (dev->reg_state == NETREG_REGISTERED) {
1562 ASSERT_RTNL();
1563
1564 if (txq < dev->real_num_tx_queues)
1565 qdisc_reset_all_tx_gt(dev, txq);
1566 }
1567
1568 dev->real_num_tx_queues = txq;
1569 return 0;
1570 }
1571 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1572
1573 #ifdef CONFIG_RPS
1574 /**
1575 * netif_set_real_num_rx_queues - set actual number of RX queues used
1576 * @dev: Network device
1577 * @rxq: Actual number of RX queues
1578 *
1579 * This must be called either with the rtnl_lock held or before
1580 * registration of the net device. Returns 0 on success, or a
1581 * negative error code. If called before registration, it always
1582 * succeeds.
1583 */
1584 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1585 {
1586 int rc;
1587
1588 if (rxq < 1 || rxq > dev->num_rx_queues)
1589 return -EINVAL;
1590
1591 if (dev->reg_state == NETREG_REGISTERED) {
1592 ASSERT_RTNL();
1593
1594 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1595 rxq);
1596 if (rc)
1597 return rc;
1598 }
1599
1600 dev->real_num_rx_queues = rxq;
1601 return 0;
1602 }
1603 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1604 #endif
1605
1606 static inline void __netif_reschedule(struct Qdisc *q)
1607 {
1608 struct softnet_data *sd;
1609 unsigned long flags;
1610
1611 local_irq_save(flags);
1612 sd = &__get_cpu_var(softnet_data);
1613 q->next_sched = NULL;
1614 *sd->output_queue_tailp = q;
1615 sd->output_queue_tailp = &q->next_sched;
1616 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1617 local_irq_restore(flags);
1618 }
1619
1620 void __netif_schedule(struct Qdisc *q)
1621 {
1622 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1623 __netif_reschedule(q);
1624 }
1625 EXPORT_SYMBOL(__netif_schedule);
1626
1627 void dev_kfree_skb_irq(struct sk_buff *skb)
1628 {
1629 if (atomic_dec_and_test(&skb->users)) {
1630 struct softnet_data *sd;
1631 unsigned long flags;
1632
1633 local_irq_save(flags);
1634 sd = &__get_cpu_var(softnet_data);
1635 skb->next = sd->completion_queue;
1636 sd->completion_queue = skb;
1637 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1638 local_irq_restore(flags);
1639 }
1640 }
1641 EXPORT_SYMBOL(dev_kfree_skb_irq);
1642
1643 void dev_kfree_skb_any(struct sk_buff *skb)
1644 {
1645 if (in_irq() || irqs_disabled())
1646 dev_kfree_skb_irq(skb);
1647 else
1648 dev_kfree_skb(skb);
1649 }
1650 EXPORT_SYMBOL(dev_kfree_skb_any);
1651
1652
1653 /**
1654 * netif_device_detach - mark device as removed
1655 * @dev: network device
1656 *
1657 * Mark device as removed from system and therefore no longer available.
1658 */
1659 void netif_device_detach(struct net_device *dev)
1660 {
1661 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1662 netif_running(dev)) {
1663 netif_tx_stop_all_queues(dev);
1664 }
1665 }
1666 EXPORT_SYMBOL(netif_device_detach);
1667
1668 /**
1669 * netif_device_attach - mark device as attached
1670 * @dev: network device
1671 *
1672 * Mark device as attached from system and restart if needed.
1673 */
1674 void netif_device_attach(struct net_device *dev)
1675 {
1676 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1677 netif_running(dev)) {
1678 netif_tx_wake_all_queues(dev);
1679 __netdev_watchdog_up(dev);
1680 }
1681 }
1682 EXPORT_SYMBOL(netif_device_attach);
1683
1684 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1685 {
1686 return ((features & NETIF_F_GEN_CSUM) ||
1687 ((features & NETIF_F_IP_CSUM) &&
1688 protocol == htons(ETH_P_IP)) ||
1689 ((features & NETIF_F_IPV6_CSUM) &&
1690 protocol == htons(ETH_P_IPV6)) ||
1691 ((features & NETIF_F_FCOE_CRC) &&
1692 protocol == htons(ETH_P_FCOE)));
1693 }
1694
1695 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1696 {
1697 int features = dev->features;
1698
1699 if (vlan_tx_tag_present(skb))
1700 features &= dev->vlan_features;
1701
1702 if (can_checksum_protocol(features, skb->protocol))
1703 return true;
1704
1705 if (skb->protocol == htons(ETH_P_8021Q)) {
1706 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1707 if (can_checksum_protocol(dev->features & dev->vlan_features,
1708 veh->h_vlan_encapsulated_proto))
1709 return true;
1710 }
1711
1712 return false;
1713 }
1714
1715 /**
1716 * skb_dev_set -- assign a new device to a buffer
1717 * @skb: buffer for the new device
1718 * @dev: network device
1719 *
1720 * If an skb is owned by a device already, we have to reset
1721 * all data private to the namespace a device belongs to
1722 * before assigning it a new device.
1723 */
1724 #ifdef CONFIG_NET_NS
1725 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1726 {
1727 skb_dst_drop(skb);
1728 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1729 secpath_reset(skb);
1730 nf_reset(skb);
1731 skb_init_secmark(skb);
1732 skb->mark = 0;
1733 skb->priority = 0;
1734 skb->nf_trace = 0;
1735 skb->ipvs_property = 0;
1736 #ifdef CONFIG_NET_SCHED
1737 skb->tc_index = 0;
1738 #endif
1739 }
1740 skb->dev = dev;
1741 }
1742 EXPORT_SYMBOL(skb_set_dev);
1743 #endif /* CONFIG_NET_NS */
1744
1745 /*
1746 * Invalidate hardware checksum when packet is to be mangled, and
1747 * complete checksum manually on outgoing path.
1748 */
1749 int skb_checksum_help(struct sk_buff *skb)
1750 {
1751 __wsum csum;
1752 int ret = 0, offset;
1753
1754 if (skb->ip_summed == CHECKSUM_COMPLETE)
1755 goto out_set_summed;
1756
1757 if (unlikely(skb_shinfo(skb)->gso_size)) {
1758 /* Let GSO fix up the checksum. */
1759 goto out_set_summed;
1760 }
1761
1762 offset = skb->csum_start - skb_headroom(skb);
1763 BUG_ON(offset >= skb_headlen(skb));
1764 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1765
1766 offset += skb->csum_offset;
1767 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1768
1769 if (skb_cloned(skb) &&
1770 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1771 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1772 if (ret)
1773 goto out;
1774 }
1775
1776 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1777 out_set_summed:
1778 skb->ip_summed = CHECKSUM_NONE;
1779 out:
1780 return ret;
1781 }
1782 EXPORT_SYMBOL(skb_checksum_help);
1783
1784 /**
1785 * skb_gso_segment - Perform segmentation on skb.
1786 * @skb: buffer to segment
1787 * @features: features for the output path (see dev->features)
1788 *
1789 * This function segments the given skb and returns a list of segments.
1790 *
1791 * It may return NULL if the skb requires no segmentation. This is
1792 * only possible when GSO is used for verifying header integrity.
1793 */
1794 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1795 {
1796 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1797 struct packet_type *ptype;
1798 __be16 type = skb->protocol;
1799 int err;
1800
1801 if (type == htons(ETH_P_8021Q)) {
1802 struct vlan_ethhdr *veh;
1803
1804 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
1805 return ERR_PTR(-EINVAL);
1806
1807 veh = (struct vlan_ethhdr *)skb->data;
1808 type = veh->h_vlan_encapsulated_proto;
1809 }
1810
1811 skb_reset_mac_header(skb);
1812 skb->mac_len = skb->network_header - skb->mac_header;
1813 __skb_pull(skb, skb->mac_len);
1814
1815 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1816 struct net_device *dev = skb->dev;
1817 struct ethtool_drvinfo info = {};
1818
1819 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1820 dev->ethtool_ops->get_drvinfo(dev, &info);
1821
1822 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1823 "ip_summed=%d",
1824 info.driver, dev ? dev->features : 0L,
1825 skb->sk ? skb->sk->sk_route_caps : 0L,
1826 skb->len, skb->data_len, skb->ip_summed);
1827
1828 if (skb_header_cloned(skb) &&
1829 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1830 return ERR_PTR(err);
1831 }
1832
1833 rcu_read_lock();
1834 list_for_each_entry_rcu(ptype,
1835 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1836 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1837 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1838 err = ptype->gso_send_check(skb);
1839 segs = ERR_PTR(err);
1840 if (err || skb_gso_ok(skb, features))
1841 break;
1842 __skb_push(skb, (skb->data -
1843 skb_network_header(skb)));
1844 }
1845 segs = ptype->gso_segment(skb, features);
1846 break;
1847 }
1848 }
1849 rcu_read_unlock();
1850
1851 __skb_push(skb, skb->data - skb_mac_header(skb));
1852
1853 return segs;
1854 }
1855 EXPORT_SYMBOL(skb_gso_segment);
1856
1857 /* Take action when hardware reception checksum errors are detected. */
1858 #ifdef CONFIG_BUG
1859 void netdev_rx_csum_fault(struct net_device *dev)
1860 {
1861 if (net_ratelimit()) {
1862 printk(KERN_ERR "%s: hw csum failure.\n",
1863 dev ? dev->name : "<unknown>");
1864 dump_stack();
1865 }
1866 }
1867 EXPORT_SYMBOL(netdev_rx_csum_fault);
1868 #endif
1869
1870 /* Actually, we should eliminate this check as soon as we know, that:
1871 * 1. IOMMU is present and allows to map all the memory.
1872 * 2. No high memory really exists on this machine.
1873 */
1874
1875 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1876 {
1877 #ifdef CONFIG_HIGHMEM
1878 int i;
1879 if (!(dev->features & NETIF_F_HIGHDMA)) {
1880 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1881 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1882 return 1;
1883 }
1884
1885 if (PCI_DMA_BUS_IS_PHYS) {
1886 struct device *pdev = dev->dev.parent;
1887
1888 if (!pdev)
1889 return 0;
1890 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1891 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1892 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1893 return 1;
1894 }
1895 }
1896 #endif
1897 return 0;
1898 }
1899
1900 struct dev_gso_cb {
1901 void (*destructor)(struct sk_buff *skb);
1902 };
1903
1904 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1905
1906 static void dev_gso_skb_destructor(struct sk_buff *skb)
1907 {
1908 struct dev_gso_cb *cb;
1909
1910 do {
1911 struct sk_buff *nskb = skb->next;
1912
1913 skb->next = nskb->next;
1914 nskb->next = NULL;
1915 kfree_skb(nskb);
1916 } while (skb->next);
1917
1918 cb = DEV_GSO_CB(skb);
1919 if (cb->destructor)
1920 cb->destructor(skb);
1921 }
1922
1923 /**
1924 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1925 * @skb: buffer to segment
1926 *
1927 * This function segments the given skb and stores the list of segments
1928 * in skb->next.
1929 */
1930 static int dev_gso_segment(struct sk_buff *skb)
1931 {
1932 struct net_device *dev = skb->dev;
1933 struct sk_buff *segs;
1934 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1935 NETIF_F_SG : 0);
1936
1937 segs = skb_gso_segment(skb, features);
1938
1939 /* Verifying header integrity only. */
1940 if (!segs)
1941 return 0;
1942
1943 if (IS_ERR(segs))
1944 return PTR_ERR(segs);
1945
1946 skb->next = segs;
1947 DEV_GSO_CB(skb)->destructor = skb->destructor;
1948 skb->destructor = dev_gso_skb_destructor;
1949
1950 return 0;
1951 }
1952
1953 /*
1954 * Try to orphan skb early, right before transmission by the device.
1955 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1956 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1957 */
1958 static inline void skb_orphan_try(struct sk_buff *skb)
1959 {
1960 struct sock *sk = skb->sk;
1961
1962 if (sk && !skb_shinfo(skb)->tx_flags) {
1963 /* skb_tx_hash() wont be able to get sk.
1964 * We copy sk_hash into skb->rxhash
1965 */
1966 if (!skb->rxhash)
1967 skb->rxhash = sk->sk_hash;
1968 skb_orphan(skb);
1969 }
1970 }
1971
1972 /*
1973 * Returns true if either:
1974 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1975 * 2. skb is fragmented and the device does not support SG, or if
1976 * at least one of fragments is in highmem and device does not
1977 * support DMA from it.
1978 */
1979 static inline int skb_needs_linearize(struct sk_buff *skb,
1980 struct net_device *dev)
1981 {
1982 int features = dev->features;
1983
1984 if (skb->protocol == htons(ETH_P_8021Q) || vlan_tx_tag_present(skb))
1985 features &= dev->vlan_features;
1986
1987 return skb_is_nonlinear(skb) &&
1988 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
1989 (skb_shinfo(skb)->nr_frags && (!(features & NETIF_F_SG) ||
1990 illegal_highdma(dev, skb))));
1991 }
1992
1993 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1994 struct netdev_queue *txq)
1995 {
1996 const struct net_device_ops *ops = dev->netdev_ops;
1997 int rc = NETDEV_TX_OK;
1998
1999 if (likely(!skb->next)) {
2000 if (!list_empty(&ptype_all))
2001 dev_queue_xmit_nit(skb, dev);
2002
2003 /*
2004 * If device doesnt need skb->dst, release it right now while
2005 * its hot in this cpu cache
2006 */
2007 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2008 skb_dst_drop(skb);
2009
2010 skb_orphan_try(skb);
2011
2012 if (vlan_tx_tag_present(skb) &&
2013 !(dev->features & NETIF_F_HW_VLAN_TX)) {
2014 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2015 if (unlikely(!skb))
2016 goto out;
2017
2018 skb->vlan_tci = 0;
2019 }
2020
2021 if (netif_needs_gso(dev, skb)) {
2022 if (unlikely(dev_gso_segment(skb)))
2023 goto out_kfree_skb;
2024 if (skb->next)
2025 goto gso;
2026 } else {
2027 if (skb_needs_linearize(skb, dev) &&
2028 __skb_linearize(skb))
2029 goto out_kfree_skb;
2030
2031 /* If packet is not checksummed and device does not
2032 * support checksumming for this protocol, complete
2033 * checksumming here.
2034 */
2035 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2036 skb_set_transport_header(skb, skb->csum_start -
2037 skb_headroom(skb));
2038 if (!dev_can_checksum(dev, skb) &&
2039 skb_checksum_help(skb))
2040 goto out_kfree_skb;
2041 }
2042 }
2043
2044 rc = ops->ndo_start_xmit(skb, dev);
2045 if (rc == NETDEV_TX_OK)
2046 txq_trans_update(txq);
2047 return rc;
2048 }
2049
2050 gso:
2051 do {
2052 struct sk_buff *nskb = skb->next;
2053
2054 skb->next = nskb->next;
2055 nskb->next = NULL;
2056
2057 /*
2058 * If device doesnt need nskb->dst, release it right now while
2059 * its hot in this cpu cache
2060 */
2061 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2062 skb_dst_drop(nskb);
2063
2064 rc = ops->ndo_start_xmit(nskb, dev);
2065 if (unlikely(rc != NETDEV_TX_OK)) {
2066 if (rc & ~NETDEV_TX_MASK)
2067 goto out_kfree_gso_skb;
2068 nskb->next = skb->next;
2069 skb->next = nskb;
2070 return rc;
2071 }
2072 txq_trans_update(txq);
2073 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2074 return NETDEV_TX_BUSY;
2075 } while (skb->next);
2076
2077 out_kfree_gso_skb:
2078 if (likely(skb->next == NULL))
2079 skb->destructor = DEV_GSO_CB(skb)->destructor;
2080 out_kfree_skb:
2081 kfree_skb(skb);
2082 out:
2083 return rc;
2084 }
2085
2086 static u32 hashrnd __read_mostly;
2087
2088 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2089 {
2090 u32 hash;
2091
2092 if (skb_rx_queue_recorded(skb)) {
2093 hash = skb_get_rx_queue(skb);
2094 while (unlikely(hash >= dev->real_num_tx_queues))
2095 hash -= dev->real_num_tx_queues;
2096 return hash;
2097 }
2098
2099 if (skb->sk && skb->sk->sk_hash)
2100 hash = skb->sk->sk_hash;
2101 else
2102 hash = (__force u16) skb->protocol ^ skb->rxhash;
2103 hash = jhash_1word(hash, hashrnd);
2104
2105 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2106 }
2107 EXPORT_SYMBOL(skb_tx_hash);
2108
2109 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2110 {
2111 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2112 if (net_ratelimit()) {
2113 pr_warning("%s selects TX queue %d, but "
2114 "real number of TX queues is %d\n",
2115 dev->name, queue_index, dev->real_num_tx_queues);
2116 }
2117 return 0;
2118 }
2119 return queue_index;
2120 }
2121
2122 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2123 struct sk_buff *skb)
2124 {
2125 int queue_index;
2126 const struct net_device_ops *ops = dev->netdev_ops;
2127
2128 if (ops->ndo_select_queue) {
2129 queue_index = ops->ndo_select_queue(dev, skb);
2130 queue_index = dev_cap_txqueue(dev, queue_index);
2131 } else {
2132 struct sock *sk = skb->sk;
2133 queue_index = sk_tx_queue_get(sk);
2134 if (queue_index < 0) {
2135
2136 queue_index = 0;
2137 if (dev->real_num_tx_queues > 1)
2138 queue_index = skb_tx_hash(dev, skb);
2139
2140 if (sk) {
2141 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2142
2143 if (dst && skb_dst(skb) == dst)
2144 sk_tx_queue_set(sk, queue_index);
2145 }
2146 }
2147 }
2148
2149 skb_set_queue_mapping(skb, queue_index);
2150 return netdev_get_tx_queue(dev, queue_index);
2151 }
2152
2153 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2154 struct net_device *dev,
2155 struct netdev_queue *txq)
2156 {
2157 spinlock_t *root_lock = qdisc_lock(q);
2158 bool contended = qdisc_is_running(q);
2159 int rc;
2160
2161 /*
2162 * Heuristic to force contended enqueues to serialize on a
2163 * separate lock before trying to get qdisc main lock.
2164 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2165 * and dequeue packets faster.
2166 */
2167 if (unlikely(contended))
2168 spin_lock(&q->busylock);
2169
2170 spin_lock(root_lock);
2171 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2172 kfree_skb(skb);
2173 rc = NET_XMIT_DROP;
2174 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2175 qdisc_run_begin(q)) {
2176 /*
2177 * This is a work-conserving queue; there are no old skbs
2178 * waiting to be sent out; and the qdisc is not running -
2179 * xmit the skb directly.
2180 */
2181 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2182 skb_dst_force(skb);
2183 __qdisc_update_bstats(q, skb->len);
2184 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2185 if (unlikely(contended)) {
2186 spin_unlock(&q->busylock);
2187 contended = false;
2188 }
2189 __qdisc_run(q);
2190 } else
2191 qdisc_run_end(q);
2192
2193 rc = NET_XMIT_SUCCESS;
2194 } else {
2195 skb_dst_force(skb);
2196 rc = qdisc_enqueue_root(skb, q);
2197 if (qdisc_run_begin(q)) {
2198 if (unlikely(contended)) {
2199 spin_unlock(&q->busylock);
2200 contended = false;
2201 }
2202 __qdisc_run(q);
2203 }
2204 }
2205 spin_unlock(root_lock);
2206 if (unlikely(contended))
2207 spin_unlock(&q->busylock);
2208 return rc;
2209 }
2210
2211 static DEFINE_PER_CPU(int, xmit_recursion);
2212 #define RECURSION_LIMIT 3
2213
2214 /**
2215 * dev_queue_xmit - transmit a buffer
2216 * @skb: buffer to transmit
2217 *
2218 * Queue a buffer for transmission to a network device. The caller must
2219 * have set the device and priority and built the buffer before calling
2220 * this function. The function can be called from an interrupt.
2221 *
2222 * A negative errno code is returned on a failure. A success does not
2223 * guarantee the frame will be transmitted as it may be dropped due
2224 * to congestion or traffic shaping.
2225 *
2226 * -----------------------------------------------------------------------------------
2227 * I notice this method can also return errors from the queue disciplines,
2228 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2229 * be positive.
2230 *
2231 * Regardless of the return value, the skb is consumed, so it is currently
2232 * difficult to retry a send to this method. (You can bump the ref count
2233 * before sending to hold a reference for retry if you are careful.)
2234 *
2235 * When calling this method, interrupts MUST be enabled. This is because
2236 * the BH enable code must have IRQs enabled so that it will not deadlock.
2237 * --BLG
2238 */
2239 int dev_queue_xmit(struct sk_buff *skb)
2240 {
2241 struct net_device *dev = skb->dev;
2242 struct netdev_queue *txq;
2243 struct Qdisc *q;
2244 int rc = -ENOMEM;
2245
2246 /* Disable soft irqs for various locks below. Also
2247 * stops preemption for RCU.
2248 */
2249 rcu_read_lock_bh();
2250
2251 txq = dev_pick_tx(dev, skb);
2252 q = rcu_dereference_bh(txq->qdisc);
2253
2254 #ifdef CONFIG_NET_CLS_ACT
2255 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2256 #endif
2257 if (q->enqueue) {
2258 rc = __dev_xmit_skb(skb, q, dev, txq);
2259 goto out;
2260 }
2261
2262 /* The device has no queue. Common case for software devices:
2263 loopback, all the sorts of tunnels...
2264
2265 Really, it is unlikely that netif_tx_lock protection is necessary
2266 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2267 counters.)
2268 However, it is possible, that they rely on protection
2269 made by us here.
2270
2271 Check this and shot the lock. It is not prone from deadlocks.
2272 Either shot noqueue qdisc, it is even simpler 8)
2273 */
2274 if (dev->flags & IFF_UP) {
2275 int cpu = smp_processor_id(); /* ok because BHs are off */
2276
2277 if (txq->xmit_lock_owner != cpu) {
2278
2279 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2280 goto recursion_alert;
2281
2282 HARD_TX_LOCK(dev, txq, cpu);
2283
2284 if (!netif_tx_queue_stopped(txq)) {
2285 __this_cpu_inc(xmit_recursion);
2286 rc = dev_hard_start_xmit(skb, dev, txq);
2287 __this_cpu_dec(xmit_recursion);
2288 if (dev_xmit_complete(rc)) {
2289 HARD_TX_UNLOCK(dev, txq);
2290 goto out;
2291 }
2292 }
2293 HARD_TX_UNLOCK(dev, txq);
2294 if (net_ratelimit())
2295 printk(KERN_CRIT "Virtual device %s asks to "
2296 "queue packet!\n", dev->name);
2297 } else {
2298 /* Recursion is detected! It is possible,
2299 * unfortunately
2300 */
2301 recursion_alert:
2302 if (net_ratelimit())
2303 printk(KERN_CRIT "Dead loop on virtual device "
2304 "%s, fix it urgently!\n", dev->name);
2305 }
2306 }
2307
2308 rc = -ENETDOWN;
2309 rcu_read_unlock_bh();
2310
2311 kfree_skb(skb);
2312 return rc;
2313 out:
2314 rcu_read_unlock_bh();
2315 return rc;
2316 }
2317 EXPORT_SYMBOL(dev_queue_xmit);
2318
2319
2320 /*=======================================================================
2321 Receiver routines
2322 =======================================================================*/
2323
2324 int netdev_max_backlog __read_mostly = 1000;
2325 int netdev_tstamp_prequeue __read_mostly = 1;
2326 int netdev_budget __read_mostly = 300;
2327 int weight_p __read_mostly = 64; /* old backlog weight */
2328
2329 /* Called with irq disabled */
2330 static inline void ____napi_schedule(struct softnet_data *sd,
2331 struct napi_struct *napi)
2332 {
2333 list_add_tail(&napi->poll_list, &sd->poll_list);
2334 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2335 }
2336
2337 /*
2338 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2339 * and src/dst port numbers. Returns a non-zero hash number on success
2340 * and 0 on failure.
2341 */
2342 __u32 __skb_get_rxhash(struct sk_buff *skb)
2343 {
2344 int nhoff, hash = 0, poff;
2345 struct ipv6hdr *ip6;
2346 struct iphdr *ip;
2347 u8 ip_proto;
2348 u32 addr1, addr2, ihl;
2349 union {
2350 u32 v32;
2351 u16 v16[2];
2352 } ports;
2353
2354 nhoff = skb_network_offset(skb);
2355
2356 switch (skb->protocol) {
2357 case __constant_htons(ETH_P_IP):
2358 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2359 goto done;
2360
2361 ip = (struct iphdr *) (skb->data + nhoff);
2362 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2363 ip_proto = 0;
2364 else
2365 ip_proto = ip->protocol;
2366 addr1 = (__force u32) ip->saddr;
2367 addr2 = (__force u32) ip->daddr;
2368 ihl = ip->ihl;
2369 break;
2370 case __constant_htons(ETH_P_IPV6):
2371 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2372 goto done;
2373
2374 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2375 ip_proto = ip6->nexthdr;
2376 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2377 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2378 ihl = (40 >> 2);
2379 break;
2380 default:
2381 goto done;
2382 }
2383
2384 ports.v32 = 0;
2385 poff = proto_ports_offset(ip_proto);
2386 if (poff >= 0) {
2387 nhoff += ihl * 4 + poff;
2388 if (pskb_may_pull(skb, nhoff + 4)) {
2389 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2390 if (ports.v16[1] < ports.v16[0])
2391 swap(ports.v16[0], ports.v16[1]);
2392 }
2393 }
2394
2395 /* get a consistent hash (same value on both flow directions) */
2396 if (addr2 < addr1)
2397 swap(addr1, addr2);
2398
2399 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2400 if (!hash)
2401 hash = 1;
2402
2403 done:
2404 return hash;
2405 }
2406 EXPORT_SYMBOL(__skb_get_rxhash);
2407
2408 #ifdef CONFIG_RPS
2409
2410 /* One global table that all flow-based protocols share. */
2411 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2412 EXPORT_SYMBOL(rps_sock_flow_table);
2413
2414 /*
2415 * get_rps_cpu is called from netif_receive_skb and returns the target
2416 * CPU from the RPS map of the receiving queue for a given skb.
2417 * rcu_read_lock must be held on entry.
2418 */
2419 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2420 struct rps_dev_flow **rflowp)
2421 {
2422 struct netdev_rx_queue *rxqueue;
2423 struct rps_map *map = NULL;
2424 struct rps_dev_flow_table *flow_table;
2425 struct rps_sock_flow_table *sock_flow_table;
2426 int cpu = -1;
2427 u16 tcpu;
2428
2429 if (skb_rx_queue_recorded(skb)) {
2430 u16 index = skb_get_rx_queue(skb);
2431 if (unlikely(index >= dev->real_num_rx_queues)) {
2432 WARN_ONCE(dev->real_num_rx_queues > 1,
2433 "%s received packet on queue %u, but number "
2434 "of RX queues is %u\n",
2435 dev->name, index, dev->real_num_rx_queues);
2436 goto done;
2437 }
2438 rxqueue = dev->_rx + index;
2439 } else
2440 rxqueue = dev->_rx;
2441
2442 if (rxqueue->rps_map) {
2443 map = rcu_dereference(rxqueue->rps_map);
2444 if (map && map->len == 1) {
2445 tcpu = map->cpus[0];
2446 if (cpu_online(tcpu))
2447 cpu = tcpu;
2448 goto done;
2449 }
2450 } else if (!rxqueue->rps_flow_table) {
2451 goto done;
2452 }
2453
2454 skb_reset_network_header(skb);
2455 if (!skb_get_rxhash(skb))
2456 goto done;
2457
2458 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2459 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2460 if (flow_table && sock_flow_table) {
2461 u16 next_cpu;
2462 struct rps_dev_flow *rflow;
2463
2464 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2465 tcpu = rflow->cpu;
2466
2467 next_cpu = sock_flow_table->ents[skb->rxhash &
2468 sock_flow_table->mask];
2469
2470 /*
2471 * If the desired CPU (where last recvmsg was done) is
2472 * different from current CPU (one in the rx-queue flow
2473 * table entry), switch if one of the following holds:
2474 * - Current CPU is unset (equal to RPS_NO_CPU).
2475 * - Current CPU is offline.
2476 * - The current CPU's queue tail has advanced beyond the
2477 * last packet that was enqueued using this table entry.
2478 * This guarantees that all previous packets for the flow
2479 * have been dequeued, thus preserving in order delivery.
2480 */
2481 if (unlikely(tcpu != next_cpu) &&
2482 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2483 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2484 rflow->last_qtail)) >= 0)) {
2485 tcpu = rflow->cpu = next_cpu;
2486 if (tcpu != RPS_NO_CPU)
2487 rflow->last_qtail = per_cpu(softnet_data,
2488 tcpu).input_queue_head;
2489 }
2490 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2491 *rflowp = rflow;
2492 cpu = tcpu;
2493 goto done;
2494 }
2495 }
2496
2497 if (map) {
2498 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2499
2500 if (cpu_online(tcpu)) {
2501 cpu = tcpu;
2502 goto done;
2503 }
2504 }
2505
2506 done:
2507 return cpu;
2508 }
2509
2510 /* Called from hardirq (IPI) context */
2511 static void rps_trigger_softirq(void *data)
2512 {
2513 struct softnet_data *sd = data;
2514
2515 ____napi_schedule(sd, &sd->backlog);
2516 sd->received_rps++;
2517 }
2518
2519 #endif /* CONFIG_RPS */
2520
2521 /*
2522 * Check if this softnet_data structure is another cpu one
2523 * If yes, queue it to our IPI list and return 1
2524 * If no, return 0
2525 */
2526 static int rps_ipi_queued(struct softnet_data *sd)
2527 {
2528 #ifdef CONFIG_RPS
2529 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2530
2531 if (sd != mysd) {
2532 sd->rps_ipi_next = mysd->rps_ipi_list;
2533 mysd->rps_ipi_list = sd;
2534
2535 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2536 return 1;
2537 }
2538 #endif /* CONFIG_RPS */
2539 return 0;
2540 }
2541
2542 /*
2543 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2544 * queue (may be a remote CPU queue).
2545 */
2546 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2547 unsigned int *qtail)
2548 {
2549 struct softnet_data *sd;
2550 unsigned long flags;
2551
2552 sd = &per_cpu(softnet_data, cpu);
2553
2554 local_irq_save(flags);
2555
2556 rps_lock(sd);
2557 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2558 if (skb_queue_len(&sd->input_pkt_queue)) {
2559 enqueue:
2560 __skb_queue_tail(&sd->input_pkt_queue, skb);
2561 input_queue_tail_incr_save(sd, qtail);
2562 rps_unlock(sd);
2563 local_irq_restore(flags);
2564 return NET_RX_SUCCESS;
2565 }
2566
2567 /* Schedule NAPI for backlog device
2568 * We can use non atomic operation since we own the queue lock
2569 */
2570 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2571 if (!rps_ipi_queued(sd))
2572 ____napi_schedule(sd, &sd->backlog);
2573 }
2574 goto enqueue;
2575 }
2576
2577 sd->dropped++;
2578 rps_unlock(sd);
2579
2580 local_irq_restore(flags);
2581
2582 atomic_long_inc(&skb->dev->rx_dropped);
2583 kfree_skb(skb);
2584 return NET_RX_DROP;
2585 }
2586
2587 /**
2588 * netif_rx - post buffer to the network code
2589 * @skb: buffer to post
2590 *
2591 * This function receives a packet from a device driver and queues it for
2592 * the upper (protocol) levels to process. It always succeeds. The buffer
2593 * may be dropped during processing for congestion control or by the
2594 * protocol layers.
2595 *
2596 * return values:
2597 * NET_RX_SUCCESS (no congestion)
2598 * NET_RX_DROP (packet was dropped)
2599 *
2600 */
2601
2602 int netif_rx(struct sk_buff *skb)
2603 {
2604 int ret;
2605
2606 /* if netpoll wants it, pretend we never saw it */
2607 if (netpoll_rx(skb))
2608 return NET_RX_DROP;
2609
2610 if (netdev_tstamp_prequeue)
2611 net_timestamp_check(skb);
2612
2613 #ifdef CONFIG_RPS
2614 {
2615 struct rps_dev_flow voidflow, *rflow = &voidflow;
2616 int cpu;
2617
2618 preempt_disable();
2619 rcu_read_lock();
2620
2621 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2622 if (cpu < 0)
2623 cpu = smp_processor_id();
2624
2625 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2626
2627 rcu_read_unlock();
2628 preempt_enable();
2629 }
2630 #else
2631 {
2632 unsigned int qtail;
2633 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2634 put_cpu();
2635 }
2636 #endif
2637 return ret;
2638 }
2639 EXPORT_SYMBOL(netif_rx);
2640
2641 int netif_rx_ni(struct sk_buff *skb)
2642 {
2643 int err;
2644
2645 preempt_disable();
2646 err = netif_rx(skb);
2647 if (local_softirq_pending())
2648 do_softirq();
2649 preempt_enable();
2650
2651 return err;
2652 }
2653 EXPORT_SYMBOL(netif_rx_ni);
2654
2655 static void net_tx_action(struct softirq_action *h)
2656 {
2657 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2658
2659 if (sd->completion_queue) {
2660 struct sk_buff *clist;
2661
2662 local_irq_disable();
2663 clist = sd->completion_queue;
2664 sd->completion_queue = NULL;
2665 local_irq_enable();
2666
2667 while (clist) {
2668 struct sk_buff *skb = clist;
2669 clist = clist->next;
2670
2671 WARN_ON(atomic_read(&skb->users));
2672 __kfree_skb(skb);
2673 }
2674 }
2675
2676 if (sd->output_queue) {
2677 struct Qdisc *head;
2678
2679 local_irq_disable();
2680 head = sd->output_queue;
2681 sd->output_queue = NULL;
2682 sd->output_queue_tailp = &sd->output_queue;
2683 local_irq_enable();
2684
2685 while (head) {
2686 struct Qdisc *q = head;
2687 spinlock_t *root_lock;
2688
2689 head = head->next_sched;
2690
2691 root_lock = qdisc_lock(q);
2692 if (spin_trylock(root_lock)) {
2693 smp_mb__before_clear_bit();
2694 clear_bit(__QDISC_STATE_SCHED,
2695 &q->state);
2696 qdisc_run(q);
2697 spin_unlock(root_lock);
2698 } else {
2699 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2700 &q->state)) {
2701 __netif_reschedule(q);
2702 } else {
2703 smp_mb__before_clear_bit();
2704 clear_bit(__QDISC_STATE_SCHED,
2705 &q->state);
2706 }
2707 }
2708 }
2709 }
2710 }
2711
2712 static inline int deliver_skb(struct sk_buff *skb,
2713 struct packet_type *pt_prev,
2714 struct net_device *orig_dev)
2715 {
2716 atomic_inc(&skb->users);
2717 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2718 }
2719
2720 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2721 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2722 /* This hook is defined here for ATM LANE */
2723 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2724 unsigned char *addr) __read_mostly;
2725 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2726 #endif
2727
2728 #ifdef CONFIG_NET_CLS_ACT
2729 /* TODO: Maybe we should just force sch_ingress to be compiled in
2730 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2731 * a compare and 2 stores extra right now if we dont have it on
2732 * but have CONFIG_NET_CLS_ACT
2733 * NOTE: This doesnt stop any functionality; if you dont have
2734 * the ingress scheduler, you just cant add policies on ingress.
2735 *
2736 */
2737 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2738 {
2739 struct net_device *dev = skb->dev;
2740 u32 ttl = G_TC_RTTL(skb->tc_verd);
2741 int result = TC_ACT_OK;
2742 struct Qdisc *q;
2743
2744 if (unlikely(MAX_RED_LOOP < ttl++)) {
2745 if (net_ratelimit())
2746 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2747 skb->skb_iif, dev->ifindex);
2748 return TC_ACT_SHOT;
2749 }
2750
2751 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2752 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2753
2754 q = rxq->qdisc;
2755 if (q != &noop_qdisc) {
2756 spin_lock(qdisc_lock(q));
2757 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2758 result = qdisc_enqueue_root(skb, q);
2759 spin_unlock(qdisc_lock(q));
2760 }
2761
2762 return result;
2763 }
2764
2765 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2766 struct packet_type **pt_prev,
2767 int *ret, struct net_device *orig_dev)
2768 {
2769 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2770
2771 if (!rxq || rxq->qdisc == &noop_qdisc)
2772 goto out;
2773
2774 if (*pt_prev) {
2775 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2776 *pt_prev = NULL;
2777 }
2778
2779 switch (ing_filter(skb, rxq)) {
2780 case TC_ACT_SHOT:
2781 case TC_ACT_STOLEN:
2782 kfree_skb(skb);
2783 return NULL;
2784 }
2785
2786 out:
2787 skb->tc_verd = 0;
2788 return skb;
2789 }
2790 #endif
2791
2792 /**
2793 * netdev_rx_handler_register - register receive handler
2794 * @dev: device to register a handler for
2795 * @rx_handler: receive handler to register
2796 * @rx_handler_data: data pointer that is used by rx handler
2797 *
2798 * Register a receive hander for a device. This handler will then be
2799 * called from __netif_receive_skb. A negative errno code is returned
2800 * on a failure.
2801 *
2802 * The caller must hold the rtnl_mutex.
2803 */
2804 int netdev_rx_handler_register(struct net_device *dev,
2805 rx_handler_func_t *rx_handler,
2806 void *rx_handler_data)
2807 {
2808 ASSERT_RTNL();
2809
2810 if (dev->rx_handler)
2811 return -EBUSY;
2812
2813 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2814 rcu_assign_pointer(dev->rx_handler, rx_handler);
2815
2816 return 0;
2817 }
2818 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2819
2820 /**
2821 * netdev_rx_handler_unregister - unregister receive handler
2822 * @dev: device to unregister a handler from
2823 *
2824 * Unregister a receive hander from a device.
2825 *
2826 * The caller must hold the rtnl_mutex.
2827 */
2828 void netdev_rx_handler_unregister(struct net_device *dev)
2829 {
2830
2831 ASSERT_RTNL();
2832 rcu_assign_pointer(dev->rx_handler, NULL);
2833 rcu_assign_pointer(dev->rx_handler_data, NULL);
2834 }
2835 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2836
2837 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2838 struct net_device *master)
2839 {
2840 if (skb->pkt_type == PACKET_HOST) {
2841 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2842
2843 memcpy(dest, master->dev_addr, ETH_ALEN);
2844 }
2845 }
2846
2847 /* On bonding slaves other than the currently active slave, suppress
2848 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2849 * ARP on active-backup slaves with arp_validate enabled.
2850 */
2851 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2852 {
2853 struct net_device *dev = skb->dev;
2854
2855 if (master->priv_flags & IFF_MASTER_ARPMON)
2856 dev->last_rx = jiffies;
2857
2858 if ((master->priv_flags & IFF_MASTER_ALB) &&
2859 (master->priv_flags & IFF_BRIDGE_PORT)) {
2860 /* Do address unmangle. The local destination address
2861 * will be always the one master has. Provides the right
2862 * functionality in a bridge.
2863 */
2864 skb_bond_set_mac_by_master(skb, master);
2865 }
2866
2867 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2868 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2869 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2870 return 0;
2871
2872 if (master->priv_flags & IFF_MASTER_ALB) {
2873 if (skb->pkt_type != PACKET_BROADCAST &&
2874 skb->pkt_type != PACKET_MULTICAST)
2875 return 0;
2876 }
2877 if (master->priv_flags & IFF_MASTER_8023AD &&
2878 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2879 return 0;
2880
2881 return 1;
2882 }
2883 return 0;
2884 }
2885 EXPORT_SYMBOL(__skb_bond_should_drop);
2886
2887 static int __netif_receive_skb(struct sk_buff *skb)
2888 {
2889 struct packet_type *ptype, *pt_prev;
2890 rx_handler_func_t *rx_handler;
2891 struct net_device *orig_dev;
2892 struct net_device *master;
2893 struct net_device *null_or_orig;
2894 struct net_device *orig_or_bond;
2895 int ret = NET_RX_DROP;
2896 __be16 type;
2897
2898 if (!netdev_tstamp_prequeue)
2899 net_timestamp_check(skb);
2900
2901 /* if we've gotten here through NAPI, check netpoll */
2902 if (netpoll_receive_skb(skb))
2903 return NET_RX_DROP;
2904
2905 if (!skb->skb_iif)
2906 skb->skb_iif = skb->dev->ifindex;
2907
2908 /*
2909 * bonding note: skbs received on inactive slaves should only
2910 * be delivered to pkt handlers that are exact matches. Also
2911 * the deliver_no_wcard flag will be set. If packet handlers
2912 * are sensitive to duplicate packets these skbs will need to
2913 * be dropped at the handler.
2914 */
2915 null_or_orig = NULL;
2916 orig_dev = skb->dev;
2917 master = ACCESS_ONCE(orig_dev->master);
2918 if (skb->deliver_no_wcard)
2919 null_or_orig = orig_dev;
2920 else if (master) {
2921 if (skb_bond_should_drop(skb, master)) {
2922 skb->deliver_no_wcard = 1;
2923 null_or_orig = orig_dev; /* deliver only exact match */
2924 } else
2925 skb->dev = master;
2926 }
2927
2928 __this_cpu_inc(softnet_data.processed);
2929 skb_reset_network_header(skb);
2930 skb_reset_transport_header(skb);
2931 skb->mac_len = skb->network_header - skb->mac_header;
2932
2933 pt_prev = NULL;
2934
2935 rcu_read_lock();
2936
2937 #ifdef CONFIG_NET_CLS_ACT
2938 if (skb->tc_verd & TC_NCLS) {
2939 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2940 goto ncls;
2941 }
2942 #endif
2943
2944 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2945 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2946 ptype->dev == orig_dev) {
2947 if (pt_prev)
2948 ret = deliver_skb(skb, pt_prev, orig_dev);
2949 pt_prev = ptype;
2950 }
2951 }
2952
2953 #ifdef CONFIG_NET_CLS_ACT
2954 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2955 if (!skb)
2956 goto out;
2957 ncls:
2958 #endif
2959
2960 /* Handle special case of bridge or macvlan */
2961 rx_handler = rcu_dereference(skb->dev->rx_handler);
2962 if (rx_handler) {
2963 if (pt_prev) {
2964 ret = deliver_skb(skb, pt_prev, orig_dev);
2965 pt_prev = NULL;
2966 }
2967 skb = rx_handler(skb);
2968 if (!skb)
2969 goto out;
2970 }
2971
2972 if (vlan_tx_tag_present(skb)) {
2973 if (pt_prev) {
2974 ret = deliver_skb(skb, pt_prev, orig_dev);
2975 pt_prev = NULL;
2976 }
2977 if (vlan_hwaccel_do_receive(&skb)) {
2978 ret = __netif_receive_skb(skb);
2979 goto out;
2980 } else if (unlikely(!skb))
2981 goto out;
2982 }
2983
2984 /*
2985 * Make sure frames received on VLAN interfaces stacked on
2986 * bonding interfaces still make their way to any base bonding
2987 * device that may have registered for a specific ptype. The
2988 * handler may have to adjust skb->dev and orig_dev.
2989 */
2990 orig_or_bond = orig_dev;
2991 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2992 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2993 orig_or_bond = vlan_dev_real_dev(skb->dev);
2994 }
2995
2996 type = skb->protocol;
2997 list_for_each_entry_rcu(ptype,
2998 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2999 if (ptype->type == type && (ptype->dev == null_or_orig ||
3000 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3001 ptype->dev == orig_or_bond)) {
3002 if (pt_prev)
3003 ret = deliver_skb(skb, pt_prev, orig_dev);
3004 pt_prev = ptype;
3005 }
3006 }
3007
3008 if (pt_prev) {
3009 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3010 } else {
3011 atomic_long_inc(&skb->dev->rx_dropped);
3012 kfree_skb(skb);
3013 /* Jamal, now you will not able to escape explaining
3014 * me how you were going to use this. :-)
3015 */
3016 ret = NET_RX_DROP;
3017 }
3018
3019 out:
3020 rcu_read_unlock();
3021 return ret;
3022 }
3023
3024 /**
3025 * netif_receive_skb - process receive buffer from network
3026 * @skb: buffer to process
3027 *
3028 * netif_receive_skb() is the main receive data processing function.
3029 * It always succeeds. The buffer may be dropped during processing
3030 * for congestion control or by the protocol layers.
3031 *
3032 * This function may only be called from softirq context and interrupts
3033 * should be enabled.
3034 *
3035 * Return values (usually ignored):
3036 * NET_RX_SUCCESS: no congestion
3037 * NET_RX_DROP: packet was dropped
3038 */
3039 int netif_receive_skb(struct sk_buff *skb)
3040 {
3041 if (netdev_tstamp_prequeue)
3042 net_timestamp_check(skb);
3043
3044 if (skb_defer_rx_timestamp(skb))
3045 return NET_RX_SUCCESS;
3046
3047 #ifdef CONFIG_RPS
3048 {
3049 struct rps_dev_flow voidflow, *rflow = &voidflow;
3050 int cpu, ret;
3051
3052 rcu_read_lock();
3053
3054 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3055
3056 if (cpu >= 0) {
3057 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3058 rcu_read_unlock();
3059 } else {
3060 rcu_read_unlock();
3061 ret = __netif_receive_skb(skb);
3062 }
3063
3064 return ret;
3065 }
3066 #else
3067 return __netif_receive_skb(skb);
3068 #endif
3069 }
3070 EXPORT_SYMBOL(netif_receive_skb);
3071
3072 /* Network device is going away, flush any packets still pending
3073 * Called with irqs disabled.
3074 */
3075 static void flush_backlog(void *arg)
3076 {
3077 struct net_device *dev = arg;
3078 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3079 struct sk_buff *skb, *tmp;
3080
3081 rps_lock(sd);
3082 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3083 if (skb->dev == dev) {
3084 __skb_unlink(skb, &sd->input_pkt_queue);
3085 kfree_skb(skb);
3086 input_queue_head_incr(sd);
3087 }
3088 }
3089 rps_unlock(sd);
3090
3091 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3092 if (skb->dev == dev) {
3093 __skb_unlink(skb, &sd->process_queue);
3094 kfree_skb(skb);
3095 input_queue_head_incr(sd);
3096 }
3097 }
3098 }
3099
3100 static int napi_gro_complete(struct sk_buff *skb)
3101 {
3102 struct packet_type *ptype;
3103 __be16 type = skb->protocol;
3104 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3105 int err = -ENOENT;
3106
3107 if (NAPI_GRO_CB(skb)->count == 1) {
3108 skb_shinfo(skb)->gso_size = 0;
3109 goto out;
3110 }
3111
3112 rcu_read_lock();
3113 list_for_each_entry_rcu(ptype, head, list) {
3114 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3115 continue;
3116
3117 err = ptype->gro_complete(skb);
3118 break;
3119 }
3120 rcu_read_unlock();
3121
3122 if (err) {
3123 WARN_ON(&ptype->list == head);
3124 kfree_skb(skb);
3125 return NET_RX_SUCCESS;
3126 }
3127
3128 out:
3129 return netif_receive_skb(skb);
3130 }
3131
3132 inline void napi_gro_flush(struct napi_struct *napi)
3133 {
3134 struct sk_buff *skb, *next;
3135
3136 for (skb = napi->gro_list; skb; skb = next) {
3137 next = skb->next;
3138 skb->next = NULL;
3139 napi_gro_complete(skb);
3140 }
3141
3142 napi->gro_count = 0;
3143 napi->gro_list = NULL;
3144 }
3145 EXPORT_SYMBOL(napi_gro_flush);
3146
3147 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3148 {
3149 struct sk_buff **pp = NULL;
3150 struct packet_type *ptype;
3151 __be16 type = skb->protocol;
3152 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3153 int same_flow;
3154 int mac_len;
3155 enum gro_result ret;
3156
3157 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3158 goto normal;
3159
3160 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3161 goto normal;
3162
3163 rcu_read_lock();
3164 list_for_each_entry_rcu(ptype, head, list) {
3165 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3166 continue;
3167
3168 skb_set_network_header(skb, skb_gro_offset(skb));
3169 mac_len = skb->network_header - skb->mac_header;
3170 skb->mac_len = mac_len;
3171 NAPI_GRO_CB(skb)->same_flow = 0;
3172 NAPI_GRO_CB(skb)->flush = 0;
3173 NAPI_GRO_CB(skb)->free = 0;
3174
3175 pp = ptype->gro_receive(&napi->gro_list, skb);
3176 break;
3177 }
3178 rcu_read_unlock();
3179
3180 if (&ptype->list == head)
3181 goto normal;
3182
3183 same_flow = NAPI_GRO_CB(skb)->same_flow;
3184 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3185
3186 if (pp) {
3187 struct sk_buff *nskb = *pp;
3188
3189 *pp = nskb->next;
3190 nskb->next = NULL;
3191 napi_gro_complete(nskb);
3192 napi->gro_count--;
3193 }
3194
3195 if (same_flow)
3196 goto ok;
3197
3198 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3199 goto normal;
3200
3201 napi->gro_count++;
3202 NAPI_GRO_CB(skb)->count = 1;
3203 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3204 skb->next = napi->gro_list;
3205 napi->gro_list = skb;
3206 ret = GRO_HELD;
3207
3208 pull:
3209 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3210 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3211
3212 BUG_ON(skb->end - skb->tail < grow);
3213
3214 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3215
3216 skb->tail += grow;
3217 skb->data_len -= grow;
3218
3219 skb_shinfo(skb)->frags[0].page_offset += grow;
3220 skb_shinfo(skb)->frags[0].size -= grow;
3221
3222 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3223 put_page(skb_shinfo(skb)->frags[0].page);
3224 memmove(skb_shinfo(skb)->frags,
3225 skb_shinfo(skb)->frags + 1,
3226 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3227 }
3228 }
3229
3230 ok:
3231 return ret;
3232
3233 normal:
3234 ret = GRO_NORMAL;
3235 goto pull;
3236 }
3237 EXPORT_SYMBOL(dev_gro_receive);
3238
3239 static inline gro_result_t
3240 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3241 {
3242 struct sk_buff *p;
3243
3244 for (p = napi->gro_list; p; p = p->next) {
3245 unsigned long diffs;
3246
3247 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3248 diffs |= p->vlan_tci ^ skb->vlan_tci;
3249 diffs |= compare_ether_header(skb_mac_header(p),
3250 skb_gro_mac_header(skb));
3251 NAPI_GRO_CB(p)->same_flow = !diffs;
3252 NAPI_GRO_CB(p)->flush = 0;
3253 }
3254
3255 return dev_gro_receive(napi, skb);
3256 }
3257
3258 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3259 {
3260 switch (ret) {
3261 case GRO_NORMAL:
3262 if (netif_receive_skb(skb))
3263 ret = GRO_DROP;
3264 break;
3265
3266 case GRO_DROP:
3267 case GRO_MERGED_FREE:
3268 kfree_skb(skb);
3269 break;
3270
3271 case GRO_HELD:
3272 case GRO_MERGED:
3273 break;
3274 }
3275
3276 return ret;
3277 }
3278 EXPORT_SYMBOL(napi_skb_finish);
3279
3280 void skb_gro_reset_offset(struct sk_buff *skb)
3281 {
3282 NAPI_GRO_CB(skb)->data_offset = 0;
3283 NAPI_GRO_CB(skb)->frag0 = NULL;
3284 NAPI_GRO_CB(skb)->frag0_len = 0;
3285
3286 if (skb->mac_header == skb->tail &&
3287 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3288 NAPI_GRO_CB(skb)->frag0 =
3289 page_address(skb_shinfo(skb)->frags[0].page) +
3290 skb_shinfo(skb)->frags[0].page_offset;
3291 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3292 }
3293 }
3294 EXPORT_SYMBOL(skb_gro_reset_offset);
3295
3296 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3297 {
3298 skb_gro_reset_offset(skb);
3299
3300 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3301 }
3302 EXPORT_SYMBOL(napi_gro_receive);
3303
3304 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3305 {
3306 __skb_pull(skb, skb_headlen(skb));
3307 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3308 skb->vlan_tci = 0;
3309
3310 napi->skb = skb;
3311 }
3312
3313 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3314 {
3315 struct sk_buff *skb = napi->skb;
3316
3317 if (!skb) {
3318 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3319 if (skb)
3320 napi->skb = skb;
3321 }
3322 return skb;
3323 }
3324 EXPORT_SYMBOL(napi_get_frags);
3325
3326 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3327 gro_result_t ret)
3328 {
3329 switch (ret) {
3330 case GRO_NORMAL:
3331 case GRO_HELD:
3332 skb->protocol = eth_type_trans(skb, skb->dev);
3333
3334 if (ret == GRO_HELD)
3335 skb_gro_pull(skb, -ETH_HLEN);
3336 else if (netif_receive_skb(skb))
3337 ret = GRO_DROP;
3338 break;
3339
3340 case GRO_DROP:
3341 case GRO_MERGED_FREE:
3342 napi_reuse_skb(napi, skb);
3343 break;
3344
3345 case GRO_MERGED:
3346 break;
3347 }
3348
3349 return ret;
3350 }
3351 EXPORT_SYMBOL(napi_frags_finish);
3352
3353 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3354 {
3355 struct sk_buff *skb = napi->skb;
3356 struct ethhdr *eth;
3357 unsigned int hlen;
3358 unsigned int off;
3359
3360 napi->skb = NULL;
3361
3362 skb_reset_mac_header(skb);
3363 skb_gro_reset_offset(skb);
3364
3365 off = skb_gro_offset(skb);
3366 hlen = off + sizeof(*eth);
3367 eth = skb_gro_header_fast(skb, off);
3368 if (skb_gro_header_hard(skb, hlen)) {
3369 eth = skb_gro_header_slow(skb, hlen, off);
3370 if (unlikely(!eth)) {
3371 napi_reuse_skb(napi, skb);
3372 skb = NULL;
3373 goto out;
3374 }
3375 }
3376
3377 skb_gro_pull(skb, sizeof(*eth));
3378
3379 /*
3380 * This works because the only protocols we care about don't require
3381 * special handling. We'll fix it up properly at the end.
3382 */
3383 skb->protocol = eth->h_proto;
3384
3385 out:
3386 return skb;
3387 }
3388 EXPORT_SYMBOL(napi_frags_skb);
3389
3390 gro_result_t napi_gro_frags(struct napi_struct *napi)
3391 {
3392 struct sk_buff *skb = napi_frags_skb(napi);
3393
3394 if (!skb)
3395 return GRO_DROP;
3396
3397 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3398 }
3399 EXPORT_SYMBOL(napi_gro_frags);
3400
3401 /*
3402 * net_rps_action sends any pending IPI's for rps.
3403 * Note: called with local irq disabled, but exits with local irq enabled.
3404 */
3405 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3406 {
3407 #ifdef CONFIG_RPS
3408 struct softnet_data *remsd = sd->rps_ipi_list;
3409
3410 if (remsd) {
3411 sd->rps_ipi_list = NULL;
3412
3413 local_irq_enable();
3414
3415 /* Send pending IPI's to kick RPS processing on remote cpus. */
3416 while (remsd) {
3417 struct softnet_data *next = remsd->rps_ipi_next;
3418
3419 if (cpu_online(remsd->cpu))
3420 __smp_call_function_single(remsd->cpu,
3421 &remsd->csd, 0);
3422 remsd = next;
3423 }
3424 } else
3425 #endif
3426 local_irq_enable();
3427 }
3428
3429 static int process_backlog(struct napi_struct *napi, int quota)
3430 {
3431 int work = 0;
3432 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3433
3434 #ifdef CONFIG_RPS
3435 /* Check if we have pending ipi, its better to send them now,
3436 * not waiting net_rx_action() end.
3437 */
3438 if (sd->rps_ipi_list) {
3439 local_irq_disable();
3440 net_rps_action_and_irq_enable(sd);
3441 }
3442 #endif
3443 napi->weight = weight_p;
3444 local_irq_disable();
3445 while (work < quota) {
3446 struct sk_buff *skb;
3447 unsigned int qlen;
3448
3449 while ((skb = __skb_dequeue(&sd->process_queue))) {
3450 local_irq_enable();
3451 __netif_receive_skb(skb);
3452 local_irq_disable();
3453 input_queue_head_incr(sd);
3454 if (++work >= quota) {
3455 local_irq_enable();
3456 return work;
3457 }
3458 }
3459
3460 rps_lock(sd);
3461 qlen = skb_queue_len(&sd->input_pkt_queue);
3462 if (qlen)
3463 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3464 &sd->process_queue);
3465
3466 if (qlen < quota - work) {
3467 /*
3468 * Inline a custom version of __napi_complete().
3469 * only current cpu owns and manipulates this napi,
3470 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3471 * we can use a plain write instead of clear_bit(),
3472 * and we dont need an smp_mb() memory barrier.
3473 */
3474 list_del(&napi->poll_list);
3475 napi->state = 0;
3476
3477 quota = work + qlen;
3478 }
3479 rps_unlock(sd);
3480 }
3481 local_irq_enable();
3482
3483 return work;
3484 }
3485
3486 /**
3487 * __napi_schedule - schedule for receive
3488 * @n: entry to schedule
3489 *
3490 * The entry's receive function will be scheduled to run
3491 */
3492 void __napi_schedule(struct napi_struct *n)
3493 {
3494 unsigned long flags;
3495
3496 local_irq_save(flags);
3497 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3498 local_irq_restore(flags);
3499 }
3500 EXPORT_SYMBOL(__napi_schedule);
3501
3502 void __napi_complete(struct napi_struct *n)
3503 {
3504 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3505 BUG_ON(n->gro_list);
3506
3507 list_del(&n->poll_list);
3508 smp_mb__before_clear_bit();
3509 clear_bit(NAPI_STATE_SCHED, &n->state);
3510 }
3511 EXPORT_SYMBOL(__napi_complete);
3512
3513 void napi_complete(struct napi_struct *n)
3514 {
3515 unsigned long flags;
3516
3517 /*
3518 * don't let napi dequeue from the cpu poll list
3519 * just in case its running on a different cpu
3520 */
3521 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3522 return;
3523
3524 napi_gro_flush(n);
3525 local_irq_save(flags);
3526 __napi_complete(n);
3527 local_irq_restore(flags);
3528 }
3529 EXPORT_SYMBOL(napi_complete);
3530
3531 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3532 int (*poll)(struct napi_struct *, int), int weight)
3533 {
3534 INIT_LIST_HEAD(&napi->poll_list);
3535 napi->gro_count = 0;
3536 napi->gro_list = NULL;
3537 napi->skb = NULL;
3538 napi->poll = poll;
3539 napi->weight = weight;
3540 list_add(&napi->dev_list, &dev->napi_list);
3541 napi->dev = dev;
3542 #ifdef CONFIG_NETPOLL
3543 spin_lock_init(&napi->poll_lock);
3544 napi->poll_owner = -1;
3545 #endif
3546 set_bit(NAPI_STATE_SCHED, &napi->state);
3547 }
3548 EXPORT_SYMBOL(netif_napi_add);
3549
3550 void netif_napi_del(struct napi_struct *napi)
3551 {
3552 struct sk_buff *skb, *next;
3553
3554 list_del_init(&napi->dev_list);
3555 napi_free_frags(napi);
3556
3557 for (skb = napi->gro_list; skb; skb = next) {
3558 next = skb->next;
3559 skb->next = NULL;
3560 kfree_skb(skb);
3561 }
3562
3563 napi->gro_list = NULL;
3564 napi->gro_count = 0;
3565 }
3566 EXPORT_SYMBOL(netif_napi_del);
3567
3568 static void net_rx_action(struct softirq_action *h)
3569 {
3570 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3571 unsigned long time_limit = jiffies + 2;
3572 int budget = netdev_budget;
3573 void *have;
3574
3575 local_irq_disable();
3576
3577 while (!list_empty(&sd->poll_list)) {
3578 struct napi_struct *n;
3579 int work, weight;
3580
3581 /* If softirq window is exhuasted then punt.
3582 * Allow this to run for 2 jiffies since which will allow
3583 * an average latency of 1.5/HZ.
3584 */
3585 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3586 goto softnet_break;
3587
3588 local_irq_enable();
3589
3590 /* Even though interrupts have been re-enabled, this
3591 * access is safe because interrupts can only add new
3592 * entries to the tail of this list, and only ->poll()
3593 * calls can remove this head entry from the list.
3594 */
3595 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3596
3597 have = netpoll_poll_lock(n);
3598
3599 weight = n->weight;
3600
3601 /* This NAPI_STATE_SCHED test is for avoiding a race
3602 * with netpoll's poll_napi(). Only the entity which
3603 * obtains the lock and sees NAPI_STATE_SCHED set will
3604 * actually make the ->poll() call. Therefore we avoid
3605 * accidently calling ->poll() when NAPI is not scheduled.
3606 */
3607 work = 0;
3608 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3609 work = n->poll(n, weight);
3610 trace_napi_poll(n);
3611 }
3612
3613 WARN_ON_ONCE(work > weight);
3614
3615 budget -= work;
3616
3617 local_irq_disable();
3618
3619 /* Drivers must not modify the NAPI state if they
3620 * consume the entire weight. In such cases this code
3621 * still "owns" the NAPI instance and therefore can
3622 * move the instance around on the list at-will.
3623 */
3624 if (unlikely(work == weight)) {
3625 if (unlikely(napi_disable_pending(n))) {
3626 local_irq_enable();
3627 napi_complete(n);
3628 local_irq_disable();
3629 } else
3630 list_move_tail(&n->poll_list, &sd->poll_list);
3631 }
3632
3633 netpoll_poll_unlock(have);
3634 }
3635 out:
3636 net_rps_action_and_irq_enable(sd);
3637
3638 #ifdef CONFIG_NET_DMA
3639 /*
3640 * There may not be any more sk_buffs coming right now, so push
3641 * any pending DMA copies to hardware
3642 */
3643 dma_issue_pending_all();
3644 #endif
3645
3646 return;
3647
3648 softnet_break:
3649 sd->time_squeeze++;
3650 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3651 goto out;
3652 }
3653
3654 static gifconf_func_t *gifconf_list[NPROTO];
3655
3656 /**
3657 * register_gifconf - register a SIOCGIF handler
3658 * @family: Address family
3659 * @gifconf: Function handler
3660 *
3661 * Register protocol dependent address dumping routines. The handler
3662 * that is passed must not be freed or reused until it has been replaced
3663 * by another handler.
3664 */
3665 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3666 {
3667 if (family >= NPROTO)
3668 return -EINVAL;
3669 gifconf_list[family] = gifconf;
3670 return 0;
3671 }
3672 EXPORT_SYMBOL(register_gifconf);
3673
3674
3675 /*
3676 * Map an interface index to its name (SIOCGIFNAME)
3677 */
3678
3679 /*
3680 * We need this ioctl for efficient implementation of the
3681 * if_indextoname() function required by the IPv6 API. Without
3682 * it, we would have to search all the interfaces to find a
3683 * match. --pb
3684 */
3685
3686 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3687 {
3688 struct net_device *dev;
3689 struct ifreq ifr;
3690
3691 /*
3692 * Fetch the caller's info block.
3693 */
3694
3695 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3696 return -EFAULT;
3697
3698 rcu_read_lock();
3699 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3700 if (!dev) {
3701 rcu_read_unlock();
3702 return -ENODEV;
3703 }
3704
3705 strcpy(ifr.ifr_name, dev->name);
3706 rcu_read_unlock();
3707
3708 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3709 return -EFAULT;
3710 return 0;
3711 }
3712
3713 /*
3714 * Perform a SIOCGIFCONF call. This structure will change
3715 * size eventually, and there is nothing I can do about it.
3716 * Thus we will need a 'compatibility mode'.
3717 */
3718
3719 static int dev_ifconf(struct net *net, char __user *arg)
3720 {
3721 struct ifconf ifc;
3722 struct net_device *dev;
3723 char __user *pos;
3724 int len;
3725 int total;
3726 int i;
3727
3728 /*
3729 * Fetch the caller's info block.
3730 */
3731
3732 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3733 return -EFAULT;
3734
3735 pos = ifc.ifc_buf;
3736 len = ifc.ifc_len;
3737
3738 /*
3739 * Loop over the interfaces, and write an info block for each.
3740 */
3741
3742 total = 0;
3743 for_each_netdev(net, dev) {
3744 for (i = 0; i < NPROTO; i++) {
3745 if (gifconf_list[i]) {
3746 int done;
3747 if (!pos)
3748 done = gifconf_list[i](dev, NULL, 0);
3749 else
3750 done = gifconf_list[i](dev, pos + total,
3751 len - total);
3752 if (done < 0)
3753 return -EFAULT;
3754 total += done;
3755 }
3756 }
3757 }
3758
3759 /*
3760 * All done. Write the updated control block back to the caller.
3761 */
3762 ifc.ifc_len = total;
3763
3764 /*
3765 * Both BSD and Solaris return 0 here, so we do too.
3766 */
3767 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3768 }
3769
3770 #ifdef CONFIG_PROC_FS
3771 /*
3772 * This is invoked by the /proc filesystem handler to display a device
3773 * in detail.
3774 */
3775 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3776 __acquires(RCU)
3777 {
3778 struct net *net = seq_file_net(seq);
3779 loff_t off;
3780 struct net_device *dev;
3781
3782 rcu_read_lock();
3783 if (!*pos)
3784 return SEQ_START_TOKEN;
3785
3786 off = 1;
3787 for_each_netdev_rcu(net, dev)
3788 if (off++ == *pos)
3789 return dev;
3790
3791 return NULL;
3792 }
3793
3794 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3795 {
3796 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3797 first_net_device(seq_file_net(seq)) :
3798 next_net_device((struct net_device *)v);
3799
3800 ++*pos;
3801 return rcu_dereference(dev);
3802 }
3803
3804 void dev_seq_stop(struct seq_file *seq, void *v)
3805 __releases(RCU)
3806 {
3807 rcu_read_unlock();
3808 }
3809
3810 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3811 {
3812 struct rtnl_link_stats64 temp;
3813 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3814
3815 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3816 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3817 dev->name, stats->rx_bytes, stats->rx_packets,
3818 stats->rx_errors,
3819 stats->rx_dropped + stats->rx_missed_errors,
3820 stats->rx_fifo_errors,
3821 stats->rx_length_errors + stats->rx_over_errors +
3822 stats->rx_crc_errors + stats->rx_frame_errors,
3823 stats->rx_compressed, stats->multicast,
3824 stats->tx_bytes, stats->tx_packets,
3825 stats->tx_errors, stats->tx_dropped,
3826 stats->tx_fifo_errors, stats->collisions,
3827 stats->tx_carrier_errors +
3828 stats->tx_aborted_errors +
3829 stats->tx_window_errors +
3830 stats->tx_heartbeat_errors,
3831 stats->tx_compressed);
3832 }
3833
3834 /*
3835 * Called from the PROCfs module. This now uses the new arbitrary sized
3836 * /proc/net interface to create /proc/net/dev
3837 */
3838 static int dev_seq_show(struct seq_file *seq, void *v)
3839 {
3840 if (v == SEQ_START_TOKEN)
3841 seq_puts(seq, "Inter-| Receive "
3842 " | Transmit\n"
3843 " face |bytes packets errs drop fifo frame "
3844 "compressed multicast|bytes packets errs "
3845 "drop fifo colls carrier compressed\n");
3846 else
3847 dev_seq_printf_stats(seq, v);
3848 return 0;
3849 }
3850
3851 static struct softnet_data *softnet_get_online(loff_t *pos)
3852 {
3853 struct softnet_data *sd = NULL;
3854
3855 while (*pos < nr_cpu_ids)
3856 if (cpu_online(*pos)) {
3857 sd = &per_cpu(softnet_data, *pos);
3858 break;
3859 } else
3860 ++*pos;
3861 return sd;
3862 }
3863
3864 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3865 {
3866 return softnet_get_online(pos);
3867 }
3868
3869 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3870 {
3871 ++*pos;
3872 return softnet_get_online(pos);
3873 }
3874
3875 static void softnet_seq_stop(struct seq_file *seq, void *v)
3876 {
3877 }
3878
3879 static int softnet_seq_show(struct seq_file *seq, void *v)
3880 {
3881 struct softnet_data *sd = v;
3882
3883 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3884 sd->processed, sd->dropped, sd->time_squeeze, 0,
3885 0, 0, 0, 0, /* was fastroute */
3886 sd->cpu_collision, sd->received_rps);
3887 return 0;
3888 }
3889
3890 static const struct seq_operations dev_seq_ops = {
3891 .start = dev_seq_start,
3892 .next = dev_seq_next,
3893 .stop = dev_seq_stop,
3894 .show = dev_seq_show,
3895 };
3896
3897 static int dev_seq_open(struct inode *inode, struct file *file)
3898 {
3899 return seq_open_net(inode, file, &dev_seq_ops,
3900 sizeof(struct seq_net_private));
3901 }
3902
3903 static const struct file_operations dev_seq_fops = {
3904 .owner = THIS_MODULE,
3905 .open = dev_seq_open,
3906 .read = seq_read,
3907 .llseek = seq_lseek,
3908 .release = seq_release_net,
3909 };
3910
3911 static const struct seq_operations softnet_seq_ops = {
3912 .start = softnet_seq_start,
3913 .next = softnet_seq_next,
3914 .stop = softnet_seq_stop,
3915 .show = softnet_seq_show,
3916 };
3917
3918 static int softnet_seq_open(struct inode *inode, struct file *file)
3919 {
3920 return seq_open(file, &softnet_seq_ops);
3921 }
3922
3923 static const struct file_operations softnet_seq_fops = {
3924 .owner = THIS_MODULE,
3925 .open = softnet_seq_open,
3926 .read = seq_read,
3927 .llseek = seq_lseek,
3928 .release = seq_release,
3929 };
3930
3931 static void *ptype_get_idx(loff_t pos)
3932 {
3933 struct packet_type *pt = NULL;
3934 loff_t i = 0;
3935 int t;
3936
3937 list_for_each_entry_rcu(pt, &ptype_all, list) {
3938 if (i == pos)
3939 return pt;
3940 ++i;
3941 }
3942
3943 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3944 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3945 if (i == pos)
3946 return pt;
3947 ++i;
3948 }
3949 }
3950 return NULL;
3951 }
3952
3953 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3954 __acquires(RCU)
3955 {
3956 rcu_read_lock();
3957 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3958 }
3959
3960 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3961 {
3962 struct packet_type *pt;
3963 struct list_head *nxt;
3964 int hash;
3965
3966 ++*pos;
3967 if (v == SEQ_START_TOKEN)
3968 return ptype_get_idx(0);
3969
3970 pt = v;
3971 nxt = pt->list.next;
3972 if (pt->type == htons(ETH_P_ALL)) {
3973 if (nxt != &ptype_all)
3974 goto found;
3975 hash = 0;
3976 nxt = ptype_base[0].next;
3977 } else
3978 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3979
3980 while (nxt == &ptype_base[hash]) {
3981 if (++hash >= PTYPE_HASH_SIZE)
3982 return NULL;
3983 nxt = ptype_base[hash].next;
3984 }
3985 found:
3986 return list_entry(nxt, struct packet_type, list);
3987 }
3988
3989 static void ptype_seq_stop(struct seq_file *seq, void *v)
3990 __releases(RCU)
3991 {
3992 rcu_read_unlock();
3993 }
3994
3995 static int ptype_seq_show(struct seq_file *seq, void *v)
3996 {
3997 struct packet_type *pt = v;
3998
3999 if (v == SEQ_START_TOKEN)
4000 seq_puts(seq, "Type Device Function\n");
4001 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4002 if (pt->type == htons(ETH_P_ALL))
4003 seq_puts(seq, "ALL ");
4004 else
4005 seq_printf(seq, "%04x", ntohs(pt->type));
4006
4007 seq_printf(seq, " %-8s %pF\n",
4008 pt->dev ? pt->dev->name : "", pt->func);
4009 }
4010
4011 return 0;
4012 }
4013
4014 static const struct seq_operations ptype_seq_ops = {
4015 .start = ptype_seq_start,
4016 .next = ptype_seq_next,
4017 .stop = ptype_seq_stop,
4018 .show = ptype_seq_show,
4019 };
4020
4021 static int ptype_seq_open(struct inode *inode, struct file *file)
4022 {
4023 return seq_open_net(inode, file, &ptype_seq_ops,
4024 sizeof(struct seq_net_private));
4025 }
4026
4027 static const struct file_operations ptype_seq_fops = {
4028 .owner = THIS_MODULE,
4029 .open = ptype_seq_open,
4030 .read = seq_read,
4031 .llseek = seq_lseek,
4032 .release = seq_release_net,
4033 };
4034
4035
4036 static int __net_init dev_proc_net_init(struct net *net)
4037 {
4038 int rc = -ENOMEM;
4039
4040 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4041 goto out;
4042 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4043 goto out_dev;
4044 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4045 goto out_softnet;
4046
4047 if (wext_proc_init(net))
4048 goto out_ptype;
4049 rc = 0;
4050 out:
4051 return rc;
4052 out_ptype:
4053 proc_net_remove(net, "ptype");
4054 out_softnet:
4055 proc_net_remove(net, "softnet_stat");
4056 out_dev:
4057 proc_net_remove(net, "dev");
4058 goto out;
4059 }
4060
4061 static void __net_exit dev_proc_net_exit(struct net *net)
4062 {
4063 wext_proc_exit(net);
4064
4065 proc_net_remove(net, "ptype");
4066 proc_net_remove(net, "softnet_stat");
4067 proc_net_remove(net, "dev");
4068 }
4069
4070 static struct pernet_operations __net_initdata dev_proc_ops = {
4071 .init = dev_proc_net_init,
4072 .exit = dev_proc_net_exit,
4073 };
4074
4075 static int __init dev_proc_init(void)
4076 {
4077 return register_pernet_subsys(&dev_proc_ops);
4078 }
4079 #else
4080 #define dev_proc_init() 0
4081 #endif /* CONFIG_PROC_FS */
4082
4083
4084 /**
4085 * netdev_set_master - set up master/slave pair
4086 * @slave: slave device
4087 * @master: new master device
4088 *
4089 * Changes the master device of the slave. Pass %NULL to break the
4090 * bonding. The caller must hold the RTNL semaphore. On a failure
4091 * a negative errno code is returned. On success the reference counts
4092 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4093 * function returns zero.
4094 */
4095 int netdev_set_master(struct net_device *slave, struct net_device *master)
4096 {
4097 struct net_device *old = slave->master;
4098
4099 ASSERT_RTNL();
4100
4101 if (master) {
4102 if (old)
4103 return -EBUSY;
4104 dev_hold(master);
4105 }
4106
4107 slave->master = master;
4108
4109 if (old) {
4110 synchronize_net();
4111 dev_put(old);
4112 }
4113 if (master)
4114 slave->flags |= IFF_SLAVE;
4115 else
4116 slave->flags &= ~IFF_SLAVE;
4117
4118 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4119 return 0;
4120 }
4121 EXPORT_SYMBOL(netdev_set_master);
4122
4123 static void dev_change_rx_flags(struct net_device *dev, int flags)
4124 {
4125 const struct net_device_ops *ops = dev->netdev_ops;
4126
4127 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4128 ops->ndo_change_rx_flags(dev, flags);
4129 }
4130
4131 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4132 {
4133 unsigned short old_flags = dev->flags;
4134 uid_t uid;
4135 gid_t gid;
4136
4137 ASSERT_RTNL();
4138
4139 dev->flags |= IFF_PROMISC;
4140 dev->promiscuity += inc;
4141 if (dev->promiscuity == 0) {
4142 /*
4143 * Avoid overflow.
4144 * If inc causes overflow, untouch promisc and return error.
4145 */
4146 if (inc < 0)
4147 dev->flags &= ~IFF_PROMISC;
4148 else {
4149 dev->promiscuity -= inc;
4150 printk(KERN_WARNING "%s: promiscuity touches roof, "
4151 "set promiscuity failed, promiscuity feature "
4152 "of device might be broken.\n", dev->name);
4153 return -EOVERFLOW;
4154 }
4155 }
4156 if (dev->flags != old_flags) {
4157 printk(KERN_INFO "device %s %s promiscuous mode\n",
4158 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4159 "left");
4160 if (audit_enabled) {
4161 current_uid_gid(&uid, &gid);
4162 audit_log(current->audit_context, GFP_ATOMIC,
4163 AUDIT_ANOM_PROMISCUOUS,
4164 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4165 dev->name, (dev->flags & IFF_PROMISC),
4166 (old_flags & IFF_PROMISC),
4167 audit_get_loginuid(current),
4168 uid, gid,
4169 audit_get_sessionid(current));
4170 }
4171
4172 dev_change_rx_flags(dev, IFF_PROMISC);
4173 }
4174 return 0;
4175 }
4176
4177 /**
4178 * dev_set_promiscuity - update promiscuity count on a device
4179 * @dev: device
4180 * @inc: modifier
4181 *
4182 * Add or remove promiscuity from a device. While the count in the device
4183 * remains above zero the interface remains promiscuous. Once it hits zero
4184 * the device reverts back to normal filtering operation. A negative inc
4185 * value is used to drop promiscuity on the device.
4186 * Return 0 if successful or a negative errno code on error.
4187 */
4188 int dev_set_promiscuity(struct net_device *dev, int inc)
4189 {
4190 unsigned short old_flags = dev->flags;
4191 int err;
4192
4193 err = __dev_set_promiscuity(dev, inc);
4194 if (err < 0)
4195 return err;
4196 if (dev->flags != old_flags)
4197 dev_set_rx_mode(dev);
4198 return err;
4199 }
4200 EXPORT_SYMBOL(dev_set_promiscuity);
4201
4202 /**
4203 * dev_set_allmulti - update allmulti count on a device
4204 * @dev: device
4205 * @inc: modifier
4206 *
4207 * Add or remove reception of all multicast frames to a device. While the
4208 * count in the device remains above zero the interface remains listening
4209 * to all interfaces. Once it hits zero the device reverts back to normal
4210 * filtering operation. A negative @inc value is used to drop the counter
4211 * when releasing a resource needing all multicasts.
4212 * Return 0 if successful or a negative errno code on error.
4213 */
4214
4215 int dev_set_allmulti(struct net_device *dev, int inc)
4216 {
4217 unsigned short old_flags = dev->flags;
4218
4219 ASSERT_RTNL();
4220
4221 dev->flags |= IFF_ALLMULTI;
4222 dev->allmulti += inc;
4223 if (dev->allmulti == 0) {
4224 /*
4225 * Avoid overflow.
4226 * If inc causes overflow, untouch allmulti and return error.
4227 */
4228 if (inc < 0)
4229 dev->flags &= ~IFF_ALLMULTI;
4230 else {
4231 dev->allmulti -= inc;
4232 printk(KERN_WARNING "%s: allmulti touches roof, "
4233 "set allmulti failed, allmulti feature of "
4234 "device might be broken.\n", dev->name);
4235 return -EOVERFLOW;
4236 }
4237 }
4238 if (dev->flags ^ old_flags) {
4239 dev_change_rx_flags(dev, IFF_ALLMULTI);
4240 dev_set_rx_mode(dev);
4241 }
4242 return 0;
4243 }
4244 EXPORT_SYMBOL(dev_set_allmulti);
4245
4246 /*
4247 * Upload unicast and multicast address lists to device and
4248 * configure RX filtering. When the device doesn't support unicast
4249 * filtering it is put in promiscuous mode while unicast addresses
4250 * are present.
4251 */
4252 void __dev_set_rx_mode(struct net_device *dev)
4253 {
4254 const struct net_device_ops *ops = dev->netdev_ops;
4255
4256 /* dev_open will call this function so the list will stay sane. */
4257 if (!(dev->flags&IFF_UP))
4258 return;
4259
4260 if (!netif_device_present(dev))
4261 return;
4262
4263 if (ops->ndo_set_rx_mode)
4264 ops->ndo_set_rx_mode(dev);
4265 else {
4266 /* Unicast addresses changes may only happen under the rtnl,
4267 * therefore calling __dev_set_promiscuity here is safe.
4268 */
4269 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4270 __dev_set_promiscuity(dev, 1);
4271 dev->uc_promisc = 1;
4272 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4273 __dev_set_promiscuity(dev, -1);
4274 dev->uc_promisc = 0;
4275 }
4276
4277 if (ops->ndo_set_multicast_list)
4278 ops->ndo_set_multicast_list(dev);
4279 }
4280 }
4281
4282 void dev_set_rx_mode(struct net_device *dev)
4283 {
4284 netif_addr_lock_bh(dev);
4285 __dev_set_rx_mode(dev);
4286 netif_addr_unlock_bh(dev);
4287 }
4288
4289 /**
4290 * dev_get_flags - get flags reported to userspace
4291 * @dev: device
4292 *
4293 * Get the combination of flag bits exported through APIs to userspace.
4294 */
4295 unsigned dev_get_flags(const struct net_device *dev)
4296 {
4297 unsigned flags;
4298
4299 flags = (dev->flags & ~(IFF_PROMISC |
4300 IFF_ALLMULTI |
4301 IFF_RUNNING |
4302 IFF_LOWER_UP |
4303 IFF_DORMANT)) |
4304 (dev->gflags & (IFF_PROMISC |
4305 IFF_ALLMULTI));
4306
4307 if (netif_running(dev)) {
4308 if (netif_oper_up(dev))
4309 flags |= IFF_RUNNING;
4310 if (netif_carrier_ok(dev))
4311 flags |= IFF_LOWER_UP;
4312 if (netif_dormant(dev))
4313 flags |= IFF_DORMANT;
4314 }
4315
4316 return flags;
4317 }
4318 EXPORT_SYMBOL(dev_get_flags);
4319
4320 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4321 {
4322 int old_flags = dev->flags;
4323 int ret;
4324
4325 ASSERT_RTNL();
4326
4327 /*
4328 * Set the flags on our device.
4329 */
4330
4331 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4332 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4333 IFF_AUTOMEDIA)) |
4334 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4335 IFF_ALLMULTI));
4336
4337 /*
4338 * Load in the correct multicast list now the flags have changed.
4339 */
4340
4341 if ((old_flags ^ flags) & IFF_MULTICAST)
4342 dev_change_rx_flags(dev, IFF_MULTICAST);
4343
4344 dev_set_rx_mode(dev);
4345
4346 /*
4347 * Have we downed the interface. We handle IFF_UP ourselves
4348 * according to user attempts to set it, rather than blindly
4349 * setting it.
4350 */
4351
4352 ret = 0;
4353 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4354 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4355
4356 if (!ret)
4357 dev_set_rx_mode(dev);
4358 }
4359
4360 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4361 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4362
4363 dev->gflags ^= IFF_PROMISC;
4364 dev_set_promiscuity(dev, inc);
4365 }
4366
4367 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4368 is important. Some (broken) drivers set IFF_PROMISC, when
4369 IFF_ALLMULTI is requested not asking us and not reporting.
4370 */
4371 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4372 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4373
4374 dev->gflags ^= IFF_ALLMULTI;
4375 dev_set_allmulti(dev, inc);
4376 }
4377
4378 return ret;
4379 }
4380
4381 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4382 {
4383 unsigned int changes = dev->flags ^ old_flags;
4384
4385 if (changes & IFF_UP) {
4386 if (dev->flags & IFF_UP)
4387 call_netdevice_notifiers(NETDEV_UP, dev);
4388 else
4389 call_netdevice_notifiers(NETDEV_DOWN, dev);
4390 }
4391
4392 if (dev->flags & IFF_UP &&
4393 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4394 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4395 }
4396
4397 /**
4398 * dev_change_flags - change device settings
4399 * @dev: device
4400 * @flags: device state flags
4401 *
4402 * Change settings on device based state flags. The flags are
4403 * in the userspace exported format.
4404 */
4405 int dev_change_flags(struct net_device *dev, unsigned flags)
4406 {
4407 int ret, changes;
4408 int old_flags = dev->flags;
4409
4410 ret = __dev_change_flags(dev, flags);
4411 if (ret < 0)
4412 return ret;
4413
4414 changes = old_flags ^ dev->flags;
4415 if (changes)
4416 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4417
4418 __dev_notify_flags(dev, old_flags);
4419 return ret;
4420 }
4421 EXPORT_SYMBOL(dev_change_flags);
4422
4423 /**
4424 * dev_set_mtu - Change maximum transfer unit
4425 * @dev: device
4426 * @new_mtu: new transfer unit
4427 *
4428 * Change the maximum transfer size of the network device.
4429 */
4430 int dev_set_mtu(struct net_device *dev, int new_mtu)
4431 {
4432 const struct net_device_ops *ops = dev->netdev_ops;
4433 int err;
4434
4435 if (new_mtu == dev->mtu)
4436 return 0;
4437
4438 /* MTU must be positive. */
4439 if (new_mtu < 0)
4440 return -EINVAL;
4441
4442 if (!netif_device_present(dev))
4443 return -ENODEV;
4444
4445 err = 0;
4446 if (ops->ndo_change_mtu)
4447 err = ops->ndo_change_mtu(dev, new_mtu);
4448 else
4449 dev->mtu = new_mtu;
4450
4451 if (!err && dev->flags & IFF_UP)
4452 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4453 return err;
4454 }
4455 EXPORT_SYMBOL(dev_set_mtu);
4456
4457 /**
4458 * dev_set_mac_address - Change Media Access Control Address
4459 * @dev: device
4460 * @sa: new address
4461 *
4462 * Change the hardware (MAC) address of the device
4463 */
4464 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4465 {
4466 const struct net_device_ops *ops = dev->netdev_ops;
4467 int err;
4468
4469 if (!ops->ndo_set_mac_address)
4470 return -EOPNOTSUPP;
4471 if (sa->sa_family != dev->type)
4472 return -EINVAL;
4473 if (!netif_device_present(dev))
4474 return -ENODEV;
4475 err = ops->ndo_set_mac_address(dev, sa);
4476 if (!err)
4477 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4478 return err;
4479 }
4480 EXPORT_SYMBOL(dev_set_mac_address);
4481
4482 /*
4483 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4484 */
4485 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4486 {
4487 int err;
4488 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4489
4490 if (!dev)
4491 return -ENODEV;
4492
4493 switch (cmd) {
4494 case SIOCGIFFLAGS: /* Get interface flags */
4495 ifr->ifr_flags = (short) dev_get_flags(dev);
4496 return 0;
4497
4498 case SIOCGIFMETRIC: /* Get the metric on the interface
4499 (currently unused) */
4500 ifr->ifr_metric = 0;
4501 return 0;
4502
4503 case SIOCGIFMTU: /* Get the MTU of a device */
4504 ifr->ifr_mtu = dev->mtu;
4505 return 0;
4506
4507 case SIOCGIFHWADDR:
4508 if (!dev->addr_len)
4509 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4510 else
4511 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4512 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4513 ifr->ifr_hwaddr.sa_family = dev->type;
4514 return 0;
4515
4516 case SIOCGIFSLAVE:
4517 err = -EINVAL;
4518 break;
4519
4520 case SIOCGIFMAP:
4521 ifr->ifr_map.mem_start = dev->mem_start;
4522 ifr->ifr_map.mem_end = dev->mem_end;
4523 ifr->ifr_map.base_addr = dev->base_addr;
4524 ifr->ifr_map.irq = dev->irq;
4525 ifr->ifr_map.dma = dev->dma;
4526 ifr->ifr_map.port = dev->if_port;
4527 return 0;
4528
4529 case SIOCGIFINDEX:
4530 ifr->ifr_ifindex = dev->ifindex;
4531 return 0;
4532
4533 case SIOCGIFTXQLEN:
4534 ifr->ifr_qlen = dev->tx_queue_len;
4535 return 0;
4536
4537 default:
4538 /* dev_ioctl() should ensure this case
4539 * is never reached
4540 */
4541 WARN_ON(1);
4542 err = -EINVAL;
4543 break;
4544
4545 }
4546 return err;
4547 }
4548
4549 /*
4550 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4551 */
4552 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4553 {
4554 int err;
4555 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4556 const struct net_device_ops *ops;
4557
4558 if (!dev)
4559 return -ENODEV;
4560
4561 ops = dev->netdev_ops;
4562
4563 switch (cmd) {
4564 case SIOCSIFFLAGS: /* Set interface flags */
4565 return dev_change_flags(dev, ifr->ifr_flags);
4566
4567 case SIOCSIFMETRIC: /* Set the metric on the interface
4568 (currently unused) */
4569 return -EOPNOTSUPP;
4570
4571 case SIOCSIFMTU: /* Set the MTU of a device */
4572 return dev_set_mtu(dev, ifr->ifr_mtu);
4573
4574 case SIOCSIFHWADDR:
4575 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4576
4577 case SIOCSIFHWBROADCAST:
4578 if (ifr->ifr_hwaddr.sa_family != dev->type)
4579 return -EINVAL;
4580 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4581 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4582 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4583 return 0;
4584
4585 case SIOCSIFMAP:
4586 if (ops->ndo_set_config) {
4587 if (!netif_device_present(dev))
4588 return -ENODEV;
4589 return ops->ndo_set_config(dev, &ifr->ifr_map);
4590 }
4591 return -EOPNOTSUPP;
4592
4593 case SIOCADDMULTI:
4594 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4595 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4596 return -EINVAL;
4597 if (!netif_device_present(dev))
4598 return -ENODEV;
4599 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4600
4601 case SIOCDELMULTI:
4602 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4603 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4604 return -EINVAL;
4605 if (!netif_device_present(dev))
4606 return -ENODEV;
4607 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4608
4609 case SIOCSIFTXQLEN:
4610 if (ifr->ifr_qlen < 0)
4611 return -EINVAL;
4612 dev->tx_queue_len = ifr->ifr_qlen;
4613 return 0;
4614
4615 case SIOCSIFNAME:
4616 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4617 return dev_change_name(dev, ifr->ifr_newname);
4618
4619 /*
4620 * Unknown or private ioctl
4621 */
4622 default:
4623 if ((cmd >= SIOCDEVPRIVATE &&
4624 cmd <= SIOCDEVPRIVATE + 15) ||
4625 cmd == SIOCBONDENSLAVE ||
4626 cmd == SIOCBONDRELEASE ||
4627 cmd == SIOCBONDSETHWADDR ||
4628 cmd == SIOCBONDSLAVEINFOQUERY ||
4629 cmd == SIOCBONDINFOQUERY ||
4630 cmd == SIOCBONDCHANGEACTIVE ||
4631 cmd == SIOCGMIIPHY ||
4632 cmd == SIOCGMIIREG ||
4633 cmd == SIOCSMIIREG ||
4634 cmd == SIOCBRADDIF ||
4635 cmd == SIOCBRDELIF ||
4636 cmd == SIOCSHWTSTAMP ||
4637 cmd == SIOCWANDEV) {
4638 err = -EOPNOTSUPP;
4639 if (ops->ndo_do_ioctl) {
4640 if (netif_device_present(dev))
4641 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4642 else
4643 err = -ENODEV;
4644 }
4645 } else
4646 err = -EINVAL;
4647
4648 }
4649 return err;
4650 }
4651
4652 /*
4653 * This function handles all "interface"-type I/O control requests. The actual
4654 * 'doing' part of this is dev_ifsioc above.
4655 */
4656
4657 /**
4658 * dev_ioctl - network device ioctl
4659 * @net: the applicable net namespace
4660 * @cmd: command to issue
4661 * @arg: pointer to a struct ifreq in user space
4662 *
4663 * Issue ioctl functions to devices. This is normally called by the
4664 * user space syscall interfaces but can sometimes be useful for
4665 * other purposes. The return value is the return from the syscall if
4666 * positive or a negative errno code on error.
4667 */
4668
4669 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4670 {
4671 struct ifreq ifr;
4672 int ret;
4673 char *colon;
4674
4675 /* One special case: SIOCGIFCONF takes ifconf argument
4676 and requires shared lock, because it sleeps writing
4677 to user space.
4678 */
4679
4680 if (cmd == SIOCGIFCONF) {
4681 rtnl_lock();
4682 ret = dev_ifconf(net, (char __user *) arg);
4683 rtnl_unlock();
4684 return ret;
4685 }
4686 if (cmd == SIOCGIFNAME)
4687 return dev_ifname(net, (struct ifreq __user *)arg);
4688
4689 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4690 return -EFAULT;
4691
4692 ifr.ifr_name[IFNAMSIZ-1] = 0;
4693
4694 colon = strchr(ifr.ifr_name, ':');
4695 if (colon)
4696 *colon = 0;
4697
4698 /*
4699 * See which interface the caller is talking about.
4700 */
4701
4702 switch (cmd) {
4703 /*
4704 * These ioctl calls:
4705 * - can be done by all.
4706 * - atomic and do not require locking.
4707 * - return a value
4708 */
4709 case SIOCGIFFLAGS:
4710 case SIOCGIFMETRIC:
4711 case SIOCGIFMTU:
4712 case SIOCGIFHWADDR:
4713 case SIOCGIFSLAVE:
4714 case SIOCGIFMAP:
4715 case SIOCGIFINDEX:
4716 case SIOCGIFTXQLEN:
4717 dev_load(net, ifr.ifr_name);
4718 rcu_read_lock();
4719 ret = dev_ifsioc_locked(net, &ifr, cmd);
4720 rcu_read_unlock();
4721 if (!ret) {
4722 if (colon)
4723 *colon = ':';
4724 if (copy_to_user(arg, &ifr,
4725 sizeof(struct ifreq)))
4726 ret = -EFAULT;
4727 }
4728 return ret;
4729
4730 case SIOCETHTOOL:
4731 dev_load(net, ifr.ifr_name);
4732 rtnl_lock();
4733 ret = dev_ethtool(net, &ifr);
4734 rtnl_unlock();
4735 if (!ret) {
4736 if (colon)
4737 *colon = ':';
4738 if (copy_to_user(arg, &ifr,
4739 sizeof(struct ifreq)))
4740 ret = -EFAULT;
4741 }
4742 return ret;
4743
4744 /*
4745 * These ioctl calls:
4746 * - require superuser power.
4747 * - require strict serialization.
4748 * - return a value
4749 */
4750 case SIOCGMIIPHY:
4751 case SIOCGMIIREG:
4752 case SIOCSIFNAME:
4753 if (!capable(CAP_NET_ADMIN))
4754 return -EPERM;
4755 dev_load(net, ifr.ifr_name);
4756 rtnl_lock();
4757 ret = dev_ifsioc(net, &ifr, cmd);
4758 rtnl_unlock();
4759 if (!ret) {
4760 if (colon)
4761 *colon = ':';
4762 if (copy_to_user(arg, &ifr,
4763 sizeof(struct ifreq)))
4764 ret = -EFAULT;
4765 }
4766 return ret;
4767
4768 /*
4769 * These ioctl calls:
4770 * - require superuser power.
4771 * - require strict serialization.
4772 * - do not return a value
4773 */
4774 case SIOCSIFFLAGS:
4775 case SIOCSIFMETRIC:
4776 case SIOCSIFMTU:
4777 case SIOCSIFMAP:
4778 case SIOCSIFHWADDR:
4779 case SIOCSIFSLAVE:
4780 case SIOCADDMULTI:
4781 case SIOCDELMULTI:
4782 case SIOCSIFHWBROADCAST:
4783 case SIOCSIFTXQLEN:
4784 case SIOCSMIIREG:
4785 case SIOCBONDENSLAVE:
4786 case SIOCBONDRELEASE:
4787 case SIOCBONDSETHWADDR:
4788 case SIOCBONDCHANGEACTIVE:
4789 case SIOCBRADDIF:
4790 case SIOCBRDELIF:
4791 case SIOCSHWTSTAMP:
4792 if (!capable(CAP_NET_ADMIN))
4793 return -EPERM;
4794 /* fall through */
4795 case SIOCBONDSLAVEINFOQUERY:
4796 case SIOCBONDINFOQUERY:
4797 dev_load(net, ifr.ifr_name);
4798 rtnl_lock();
4799 ret = dev_ifsioc(net, &ifr, cmd);
4800 rtnl_unlock();
4801 return ret;
4802
4803 case SIOCGIFMEM:
4804 /* Get the per device memory space. We can add this but
4805 * currently do not support it */
4806 case SIOCSIFMEM:
4807 /* Set the per device memory buffer space.
4808 * Not applicable in our case */
4809 case SIOCSIFLINK:
4810 return -EINVAL;
4811
4812 /*
4813 * Unknown or private ioctl.
4814 */
4815 default:
4816 if (cmd == SIOCWANDEV ||
4817 (cmd >= SIOCDEVPRIVATE &&
4818 cmd <= SIOCDEVPRIVATE + 15)) {
4819 dev_load(net, ifr.ifr_name);
4820 rtnl_lock();
4821 ret = dev_ifsioc(net, &ifr, cmd);
4822 rtnl_unlock();
4823 if (!ret && copy_to_user(arg, &ifr,
4824 sizeof(struct ifreq)))
4825 ret = -EFAULT;
4826 return ret;
4827 }
4828 /* Take care of Wireless Extensions */
4829 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4830 return wext_handle_ioctl(net, &ifr, cmd, arg);
4831 return -EINVAL;
4832 }
4833 }
4834
4835
4836 /**
4837 * dev_new_index - allocate an ifindex
4838 * @net: the applicable net namespace
4839 *
4840 * Returns a suitable unique value for a new device interface
4841 * number. The caller must hold the rtnl semaphore or the
4842 * dev_base_lock to be sure it remains unique.
4843 */
4844 static int dev_new_index(struct net *net)
4845 {
4846 static int ifindex;
4847 for (;;) {
4848 if (++ifindex <= 0)
4849 ifindex = 1;
4850 if (!__dev_get_by_index(net, ifindex))
4851 return ifindex;
4852 }
4853 }
4854
4855 /* Delayed registration/unregisteration */
4856 static LIST_HEAD(net_todo_list);
4857
4858 static void net_set_todo(struct net_device *dev)
4859 {
4860 list_add_tail(&dev->todo_list, &net_todo_list);
4861 }
4862
4863 static void rollback_registered_many(struct list_head *head)
4864 {
4865 struct net_device *dev, *tmp;
4866
4867 BUG_ON(dev_boot_phase);
4868 ASSERT_RTNL();
4869
4870 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4871 /* Some devices call without registering
4872 * for initialization unwind. Remove those
4873 * devices and proceed with the remaining.
4874 */
4875 if (dev->reg_state == NETREG_UNINITIALIZED) {
4876 pr_debug("unregister_netdevice: device %s/%p never "
4877 "was registered\n", dev->name, dev);
4878
4879 WARN_ON(1);
4880 list_del(&dev->unreg_list);
4881 continue;
4882 }
4883
4884 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4885
4886 /* If device is running, close it first. */
4887 dev_close(dev);
4888
4889 /* And unlink it from device chain. */
4890 unlist_netdevice(dev);
4891
4892 dev->reg_state = NETREG_UNREGISTERING;
4893 }
4894
4895 synchronize_net();
4896
4897 list_for_each_entry(dev, head, unreg_list) {
4898 /* Shutdown queueing discipline. */
4899 dev_shutdown(dev);
4900
4901
4902 /* Notify protocols, that we are about to destroy
4903 this device. They should clean all the things.
4904 */
4905 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4906
4907 if (!dev->rtnl_link_ops ||
4908 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4909 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4910
4911 /*
4912 * Flush the unicast and multicast chains
4913 */
4914 dev_uc_flush(dev);
4915 dev_mc_flush(dev);
4916
4917 if (dev->netdev_ops->ndo_uninit)
4918 dev->netdev_ops->ndo_uninit(dev);
4919
4920 /* Notifier chain MUST detach us from master device. */
4921 WARN_ON(dev->master);
4922
4923 /* Remove entries from kobject tree */
4924 netdev_unregister_kobject(dev);
4925 }
4926
4927 /* Process any work delayed until the end of the batch */
4928 dev = list_first_entry(head, struct net_device, unreg_list);
4929 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4930
4931 rcu_barrier();
4932
4933 list_for_each_entry(dev, head, unreg_list)
4934 dev_put(dev);
4935 }
4936
4937 static void rollback_registered(struct net_device *dev)
4938 {
4939 LIST_HEAD(single);
4940
4941 list_add(&dev->unreg_list, &single);
4942 rollback_registered_many(&single);
4943 }
4944
4945 unsigned long netdev_fix_features(unsigned long features, const char *name)
4946 {
4947 /* Fix illegal SG+CSUM combinations. */
4948 if ((features & NETIF_F_SG) &&
4949 !(features & NETIF_F_ALL_CSUM)) {
4950 if (name)
4951 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4952 "checksum feature.\n", name);
4953 features &= ~NETIF_F_SG;
4954 }
4955
4956 /* TSO requires that SG is present as well. */
4957 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4958 if (name)
4959 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4960 "SG feature.\n", name);
4961 features &= ~NETIF_F_TSO;
4962 }
4963
4964 if (features & NETIF_F_UFO) {
4965 if (!(features & NETIF_F_GEN_CSUM)) {
4966 if (name)
4967 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4968 "since no NETIF_F_HW_CSUM feature.\n",
4969 name);
4970 features &= ~NETIF_F_UFO;
4971 }
4972
4973 if (!(features & NETIF_F_SG)) {
4974 if (name)
4975 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4976 "since no NETIF_F_SG feature.\n", name);
4977 features &= ~NETIF_F_UFO;
4978 }
4979 }
4980
4981 return features;
4982 }
4983 EXPORT_SYMBOL(netdev_fix_features);
4984
4985 /**
4986 * netif_stacked_transfer_operstate - transfer operstate
4987 * @rootdev: the root or lower level device to transfer state from
4988 * @dev: the device to transfer operstate to
4989 *
4990 * Transfer operational state from root to device. This is normally
4991 * called when a stacking relationship exists between the root
4992 * device and the device(a leaf device).
4993 */
4994 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4995 struct net_device *dev)
4996 {
4997 if (rootdev->operstate == IF_OPER_DORMANT)
4998 netif_dormant_on(dev);
4999 else
5000 netif_dormant_off(dev);
5001
5002 if (netif_carrier_ok(rootdev)) {
5003 if (!netif_carrier_ok(dev))
5004 netif_carrier_on(dev);
5005 } else {
5006 if (netif_carrier_ok(dev))
5007 netif_carrier_off(dev);
5008 }
5009 }
5010 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5011
5012 static int netif_alloc_rx_queues(struct net_device *dev)
5013 {
5014 #ifdef CONFIG_RPS
5015 unsigned int i, count = dev->num_rx_queues;
5016 struct netdev_rx_queue *rx;
5017
5018 BUG_ON(count < 1);
5019
5020 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5021 if (!rx) {
5022 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5023 return -ENOMEM;
5024 }
5025 dev->_rx = rx;
5026
5027 /*
5028 * Set a pointer to first element in the array which holds the
5029 * reference count.
5030 */
5031 for (i = 0; i < count; i++)
5032 rx[i].first = rx;
5033 #endif
5034 return 0;
5035 }
5036
5037 static int netif_alloc_netdev_queues(struct net_device *dev)
5038 {
5039 unsigned int count = dev->num_tx_queues;
5040 struct netdev_queue *tx;
5041
5042 BUG_ON(count < 1);
5043
5044 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5045 if (!tx) {
5046 pr_err("netdev: Unable to allocate %u tx queues.\n",
5047 count);
5048 return -ENOMEM;
5049 }
5050 dev->_tx = tx;
5051 return 0;
5052 }
5053
5054 static void netdev_init_one_queue(struct net_device *dev,
5055 struct netdev_queue *queue,
5056 void *_unused)
5057 {
5058 queue->dev = dev;
5059
5060 /* Initialize queue lock */
5061 spin_lock_init(&queue->_xmit_lock);
5062 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5063 queue->xmit_lock_owner = -1;
5064 }
5065
5066 static void netdev_init_queues(struct net_device *dev)
5067 {
5068 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5069 spin_lock_init(&dev->tx_global_lock);
5070 }
5071
5072 /**
5073 * register_netdevice - register a network device
5074 * @dev: device to register
5075 *
5076 * Take a completed network device structure and add it to the kernel
5077 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5078 * chain. 0 is returned on success. A negative errno code is returned
5079 * on a failure to set up the device, or if the name is a duplicate.
5080 *
5081 * Callers must hold the rtnl semaphore. You may want
5082 * register_netdev() instead of this.
5083 *
5084 * BUGS:
5085 * The locking appears insufficient to guarantee two parallel registers
5086 * will not get the same name.
5087 */
5088
5089 int register_netdevice(struct net_device *dev)
5090 {
5091 int ret;
5092 struct net *net = dev_net(dev);
5093
5094 BUG_ON(dev_boot_phase);
5095 ASSERT_RTNL();
5096
5097 might_sleep();
5098
5099 /* When net_device's are persistent, this will be fatal. */
5100 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5101 BUG_ON(!net);
5102
5103 spin_lock_init(&dev->addr_list_lock);
5104 netdev_set_addr_lockdep_class(dev);
5105
5106 dev->iflink = -1;
5107
5108 ret = netif_alloc_rx_queues(dev);
5109 if (ret)
5110 goto out;
5111
5112 ret = netif_alloc_netdev_queues(dev);
5113 if (ret)
5114 goto out;
5115
5116 netdev_init_queues(dev);
5117
5118 /* Init, if this function is available */
5119 if (dev->netdev_ops->ndo_init) {
5120 ret = dev->netdev_ops->ndo_init(dev);
5121 if (ret) {
5122 if (ret > 0)
5123 ret = -EIO;
5124 goto out;
5125 }
5126 }
5127
5128 ret = dev_get_valid_name(dev, dev->name, 0);
5129 if (ret)
5130 goto err_uninit;
5131
5132 dev->ifindex = dev_new_index(net);
5133 if (dev->iflink == -1)
5134 dev->iflink = dev->ifindex;
5135
5136 /* Fix illegal checksum combinations */
5137 if ((dev->features & NETIF_F_HW_CSUM) &&
5138 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5139 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5140 dev->name);
5141 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5142 }
5143
5144 if ((dev->features & NETIF_F_NO_CSUM) &&
5145 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5146 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5147 dev->name);
5148 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5149 }
5150
5151 dev->features = netdev_fix_features(dev->features, dev->name);
5152
5153 /* Enable software GSO if SG is supported. */
5154 if (dev->features & NETIF_F_SG)
5155 dev->features |= NETIF_F_GSO;
5156
5157 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5158 * vlan_dev_init() will do the dev->features check, so these features
5159 * are enabled only if supported by underlying device.
5160 */
5161 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5162
5163 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5164 ret = notifier_to_errno(ret);
5165 if (ret)
5166 goto err_uninit;
5167
5168 ret = netdev_register_kobject(dev);
5169 if (ret)
5170 goto err_uninit;
5171 dev->reg_state = NETREG_REGISTERED;
5172
5173 /*
5174 * Default initial state at registry is that the
5175 * device is present.
5176 */
5177
5178 set_bit(__LINK_STATE_PRESENT, &dev->state);
5179
5180 dev_init_scheduler(dev);
5181 dev_hold(dev);
5182 list_netdevice(dev);
5183
5184 /* Notify protocols, that a new device appeared. */
5185 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5186 ret = notifier_to_errno(ret);
5187 if (ret) {
5188 rollback_registered(dev);
5189 dev->reg_state = NETREG_UNREGISTERED;
5190 }
5191 /*
5192 * Prevent userspace races by waiting until the network
5193 * device is fully setup before sending notifications.
5194 */
5195 if (!dev->rtnl_link_ops ||
5196 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5197 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5198
5199 out:
5200 return ret;
5201
5202 err_uninit:
5203 if (dev->netdev_ops->ndo_uninit)
5204 dev->netdev_ops->ndo_uninit(dev);
5205 goto out;
5206 }
5207 EXPORT_SYMBOL(register_netdevice);
5208
5209 /**
5210 * init_dummy_netdev - init a dummy network device for NAPI
5211 * @dev: device to init
5212 *
5213 * This takes a network device structure and initialize the minimum
5214 * amount of fields so it can be used to schedule NAPI polls without
5215 * registering a full blown interface. This is to be used by drivers
5216 * that need to tie several hardware interfaces to a single NAPI
5217 * poll scheduler due to HW limitations.
5218 */
5219 int init_dummy_netdev(struct net_device *dev)
5220 {
5221 /* Clear everything. Note we don't initialize spinlocks
5222 * are they aren't supposed to be taken by any of the
5223 * NAPI code and this dummy netdev is supposed to be
5224 * only ever used for NAPI polls
5225 */
5226 memset(dev, 0, sizeof(struct net_device));
5227
5228 /* make sure we BUG if trying to hit standard
5229 * register/unregister code path
5230 */
5231 dev->reg_state = NETREG_DUMMY;
5232
5233 /* NAPI wants this */
5234 INIT_LIST_HEAD(&dev->napi_list);
5235
5236 /* a dummy interface is started by default */
5237 set_bit(__LINK_STATE_PRESENT, &dev->state);
5238 set_bit(__LINK_STATE_START, &dev->state);
5239
5240 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5241 * because users of this 'device' dont need to change
5242 * its refcount.
5243 */
5244
5245 return 0;
5246 }
5247 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5248
5249
5250 /**
5251 * register_netdev - register a network device
5252 * @dev: device to register
5253 *
5254 * Take a completed network device structure and add it to the kernel
5255 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5256 * chain. 0 is returned on success. A negative errno code is returned
5257 * on a failure to set up the device, or if the name is a duplicate.
5258 *
5259 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5260 * and expands the device name if you passed a format string to
5261 * alloc_netdev.
5262 */
5263 int register_netdev(struct net_device *dev)
5264 {
5265 int err;
5266
5267 rtnl_lock();
5268
5269 /*
5270 * If the name is a format string the caller wants us to do a
5271 * name allocation.
5272 */
5273 if (strchr(dev->name, '%')) {
5274 err = dev_alloc_name(dev, dev->name);
5275 if (err < 0)
5276 goto out;
5277 }
5278
5279 err = register_netdevice(dev);
5280 out:
5281 rtnl_unlock();
5282 return err;
5283 }
5284 EXPORT_SYMBOL(register_netdev);
5285
5286 int netdev_refcnt_read(const struct net_device *dev)
5287 {
5288 int i, refcnt = 0;
5289
5290 for_each_possible_cpu(i)
5291 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5292 return refcnt;
5293 }
5294 EXPORT_SYMBOL(netdev_refcnt_read);
5295
5296 /*
5297 * netdev_wait_allrefs - wait until all references are gone.
5298 *
5299 * This is called when unregistering network devices.
5300 *
5301 * Any protocol or device that holds a reference should register
5302 * for netdevice notification, and cleanup and put back the
5303 * reference if they receive an UNREGISTER event.
5304 * We can get stuck here if buggy protocols don't correctly
5305 * call dev_put.
5306 */
5307 static void netdev_wait_allrefs(struct net_device *dev)
5308 {
5309 unsigned long rebroadcast_time, warning_time;
5310 int refcnt;
5311
5312 linkwatch_forget_dev(dev);
5313
5314 rebroadcast_time = warning_time = jiffies;
5315 refcnt = netdev_refcnt_read(dev);
5316
5317 while (refcnt != 0) {
5318 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5319 rtnl_lock();
5320
5321 /* Rebroadcast unregister notification */
5322 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5323 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5324 * should have already handle it the first time */
5325
5326 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5327 &dev->state)) {
5328 /* We must not have linkwatch events
5329 * pending on unregister. If this
5330 * happens, we simply run the queue
5331 * unscheduled, resulting in a noop
5332 * for this device.
5333 */
5334 linkwatch_run_queue();
5335 }
5336
5337 __rtnl_unlock();
5338
5339 rebroadcast_time = jiffies;
5340 }
5341
5342 msleep(250);
5343
5344 refcnt = netdev_refcnt_read(dev);
5345
5346 if (time_after(jiffies, warning_time + 10 * HZ)) {
5347 printk(KERN_EMERG "unregister_netdevice: "
5348 "waiting for %s to become free. Usage "
5349 "count = %d\n",
5350 dev->name, refcnt);
5351 warning_time = jiffies;
5352 }
5353 }
5354 }
5355
5356 /* The sequence is:
5357 *
5358 * rtnl_lock();
5359 * ...
5360 * register_netdevice(x1);
5361 * register_netdevice(x2);
5362 * ...
5363 * unregister_netdevice(y1);
5364 * unregister_netdevice(y2);
5365 * ...
5366 * rtnl_unlock();
5367 * free_netdev(y1);
5368 * free_netdev(y2);
5369 *
5370 * We are invoked by rtnl_unlock().
5371 * This allows us to deal with problems:
5372 * 1) We can delete sysfs objects which invoke hotplug
5373 * without deadlocking with linkwatch via keventd.
5374 * 2) Since we run with the RTNL semaphore not held, we can sleep
5375 * safely in order to wait for the netdev refcnt to drop to zero.
5376 *
5377 * We must not return until all unregister events added during
5378 * the interval the lock was held have been completed.
5379 */
5380 void netdev_run_todo(void)
5381 {
5382 struct list_head list;
5383
5384 /* Snapshot list, allow later requests */
5385 list_replace_init(&net_todo_list, &list);
5386
5387 __rtnl_unlock();
5388
5389 while (!list_empty(&list)) {
5390 struct net_device *dev
5391 = list_first_entry(&list, struct net_device, todo_list);
5392 list_del(&dev->todo_list);
5393
5394 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5395 printk(KERN_ERR "network todo '%s' but state %d\n",
5396 dev->name, dev->reg_state);
5397 dump_stack();
5398 continue;
5399 }
5400
5401 dev->reg_state = NETREG_UNREGISTERED;
5402
5403 on_each_cpu(flush_backlog, dev, 1);
5404
5405 netdev_wait_allrefs(dev);
5406
5407 /* paranoia */
5408 BUG_ON(netdev_refcnt_read(dev));
5409 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5410 WARN_ON(dev->ip6_ptr);
5411 WARN_ON(dev->dn_ptr);
5412
5413 if (dev->destructor)
5414 dev->destructor(dev);
5415
5416 /* Free network device */
5417 kobject_put(&dev->dev.kobj);
5418 }
5419 }
5420
5421 /**
5422 * dev_txq_stats_fold - fold tx_queues stats
5423 * @dev: device to get statistics from
5424 * @stats: struct rtnl_link_stats64 to hold results
5425 */
5426 void dev_txq_stats_fold(const struct net_device *dev,
5427 struct rtnl_link_stats64 *stats)
5428 {
5429 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5430 unsigned int i;
5431 struct netdev_queue *txq;
5432
5433 for (i = 0; i < dev->num_tx_queues; i++) {
5434 txq = netdev_get_tx_queue(dev, i);
5435 spin_lock_bh(&txq->_xmit_lock);
5436 tx_bytes += txq->tx_bytes;
5437 tx_packets += txq->tx_packets;
5438 tx_dropped += txq->tx_dropped;
5439 spin_unlock_bh(&txq->_xmit_lock);
5440 }
5441 if (tx_bytes || tx_packets || tx_dropped) {
5442 stats->tx_bytes = tx_bytes;
5443 stats->tx_packets = tx_packets;
5444 stats->tx_dropped = tx_dropped;
5445 }
5446 }
5447 EXPORT_SYMBOL(dev_txq_stats_fold);
5448
5449 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5450 * fields in the same order, with only the type differing.
5451 */
5452 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5453 const struct net_device_stats *netdev_stats)
5454 {
5455 #if BITS_PER_LONG == 64
5456 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5457 memcpy(stats64, netdev_stats, sizeof(*stats64));
5458 #else
5459 size_t i, n = sizeof(*stats64) / sizeof(u64);
5460 const unsigned long *src = (const unsigned long *)netdev_stats;
5461 u64 *dst = (u64 *)stats64;
5462
5463 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5464 sizeof(*stats64) / sizeof(u64));
5465 for (i = 0; i < n; i++)
5466 dst[i] = src[i];
5467 #endif
5468 }
5469
5470 /**
5471 * dev_get_stats - get network device statistics
5472 * @dev: device to get statistics from
5473 * @storage: place to store stats
5474 *
5475 * Get network statistics from device. Return @storage.
5476 * The device driver may provide its own method by setting
5477 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5478 * otherwise the internal statistics structure is used.
5479 */
5480 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5481 struct rtnl_link_stats64 *storage)
5482 {
5483 const struct net_device_ops *ops = dev->netdev_ops;
5484
5485 if (ops->ndo_get_stats64) {
5486 memset(storage, 0, sizeof(*storage));
5487 ops->ndo_get_stats64(dev, storage);
5488 } else if (ops->ndo_get_stats) {
5489 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5490 } else {
5491 netdev_stats_to_stats64(storage, &dev->stats);
5492 dev_txq_stats_fold(dev, storage);
5493 }
5494 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5495 return storage;
5496 }
5497 EXPORT_SYMBOL(dev_get_stats);
5498
5499 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5500 {
5501 struct netdev_queue *queue = dev_ingress_queue(dev);
5502
5503 #ifdef CONFIG_NET_CLS_ACT
5504 if (queue)
5505 return queue;
5506 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5507 if (!queue)
5508 return NULL;
5509 netdev_init_one_queue(dev, queue, NULL);
5510 queue->qdisc = &noop_qdisc;
5511 queue->qdisc_sleeping = &noop_qdisc;
5512 rcu_assign_pointer(dev->ingress_queue, queue);
5513 #endif
5514 return queue;
5515 }
5516
5517 /**
5518 * alloc_netdev_mq - allocate network device
5519 * @sizeof_priv: size of private data to allocate space for
5520 * @name: device name format string
5521 * @setup: callback to initialize device
5522 * @queue_count: the number of subqueues to allocate
5523 *
5524 * Allocates a struct net_device with private data area for driver use
5525 * and performs basic initialization. Also allocates subquue structs
5526 * for each queue on the device at the end of the netdevice.
5527 */
5528 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5529 void (*setup)(struct net_device *), unsigned int queue_count)
5530 {
5531 struct net_device *dev;
5532 size_t alloc_size;
5533 struct net_device *p;
5534
5535 BUG_ON(strlen(name) >= sizeof(dev->name));
5536
5537 if (queue_count < 1) {
5538 pr_err("alloc_netdev: Unable to allocate device "
5539 "with zero queues.\n");
5540 return NULL;
5541 }
5542
5543 alloc_size = sizeof(struct net_device);
5544 if (sizeof_priv) {
5545 /* ensure 32-byte alignment of private area */
5546 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5547 alloc_size += sizeof_priv;
5548 }
5549 /* ensure 32-byte alignment of whole construct */
5550 alloc_size += NETDEV_ALIGN - 1;
5551
5552 p = kzalloc(alloc_size, GFP_KERNEL);
5553 if (!p) {
5554 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5555 return NULL;
5556 }
5557
5558 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5559 dev->padded = (char *)dev - (char *)p;
5560
5561 dev->pcpu_refcnt = alloc_percpu(int);
5562 if (!dev->pcpu_refcnt)
5563 goto free_p;
5564
5565 if (dev_addr_init(dev))
5566 goto free_pcpu;
5567
5568 dev_mc_init(dev);
5569 dev_uc_init(dev);
5570
5571 dev_net_set(dev, &init_net);
5572
5573 dev->num_tx_queues = queue_count;
5574 dev->real_num_tx_queues = queue_count;
5575
5576 #ifdef CONFIG_RPS
5577 dev->num_rx_queues = queue_count;
5578 dev->real_num_rx_queues = queue_count;
5579 #endif
5580
5581 dev->gso_max_size = GSO_MAX_SIZE;
5582
5583 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5584 dev->ethtool_ntuple_list.count = 0;
5585 INIT_LIST_HEAD(&dev->napi_list);
5586 INIT_LIST_HEAD(&dev->unreg_list);
5587 INIT_LIST_HEAD(&dev->link_watch_list);
5588 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5589 setup(dev);
5590 strcpy(dev->name, name);
5591 return dev;
5592
5593 free_pcpu:
5594 free_percpu(dev->pcpu_refcnt);
5595 free_p:
5596 kfree(p);
5597 return NULL;
5598 }
5599 EXPORT_SYMBOL(alloc_netdev_mq);
5600
5601 /**
5602 * free_netdev - free network device
5603 * @dev: device
5604 *
5605 * This function does the last stage of destroying an allocated device
5606 * interface. The reference to the device object is released.
5607 * If this is the last reference then it will be freed.
5608 */
5609 void free_netdev(struct net_device *dev)
5610 {
5611 struct napi_struct *p, *n;
5612
5613 release_net(dev_net(dev));
5614
5615 kfree(dev->_tx);
5616
5617 kfree(rcu_dereference_raw(dev->ingress_queue));
5618
5619 /* Flush device addresses */
5620 dev_addr_flush(dev);
5621
5622 /* Clear ethtool n-tuple list */
5623 ethtool_ntuple_flush(dev);
5624
5625 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5626 netif_napi_del(p);
5627
5628 free_percpu(dev->pcpu_refcnt);
5629 dev->pcpu_refcnt = NULL;
5630
5631 /* Compatibility with error handling in drivers */
5632 if (dev->reg_state == NETREG_UNINITIALIZED) {
5633 kfree((char *)dev - dev->padded);
5634 return;
5635 }
5636
5637 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5638 dev->reg_state = NETREG_RELEASED;
5639
5640 /* will free via device release */
5641 put_device(&dev->dev);
5642 }
5643 EXPORT_SYMBOL(free_netdev);
5644
5645 /**
5646 * synchronize_net - Synchronize with packet receive processing
5647 *
5648 * Wait for packets currently being received to be done.
5649 * Does not block later packets from starting.
5650 */
5651 void synchronize_net(void)
5652 {
5653 might_sleep();
5654 synchronize_rcu();
5655 }
5656 EXPORT_SYMBOL(synchronize_net);
5657
5658 /**
5659 * unregister_netdevice_queue - remove device from the kernel
5660 * @dev: device
5661 * @head: list
5662 *
5663 * This function shuts down a device interface and removes it
5664 * from the kernel tables.
5665 * If head not NULL, device is queued to be unregistered later.
5666 *
5667 * Callers must hold the rtnl semaphore. You may want
5668 * unregister_netdev() instead of this.
5669 */
5670
5671 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5672 {
5673 ASSERT_RTNL();
5674
5675 if (head) {
5676 list_move_tail(&dev->unreg_list, head);
5677 } else {
5678 rollback_registered(dev);
5679 /* Finish processing unregister after unlock */
5680 net_set_todo(dev);
5681 }
5682 }
5683 EXPORT_SYMBOL(unregister_netdevice_queue);
5684
5685 /**
5686 * unregister_netdevice_many - unregister many devices
5687 * @head: list of devices
5688 */
5689 void unregister_netdevice_many(struct list_head *head)
5690 {
5691 struct net_device *dev;
5692
5693 if (!list_empty(head)) {
5694 rollback_registered_many(head);
5695 list_for_each_entry(dev, head, unreg_list)
5696 net_set_todo(dev);
5697 }
5698 }
5699 EXPORT_SYMBOL(unregister_netdevice_many);
5700
5701 /**
5702 * unregister_netdev - remove device from the kernel
5703 * @dev: device
5704 *
5705 * This function shuts down a device interface and removes it
5706 * from the kernel tables.
5707 *
5708 * This is just a wrapper for unregister_netdevice that takes
5709 * the rtnl semaphore. In general you want to use this and not
5710 * unregister_netdevice.
5711 */
5712 void unregister_netdev(struct net_device *dev)
5713 {
5714 rtnl_lock();
5715 unregister_netdevice(dev);
5716 rtnl_unlock();
5717 }
5718 EXPORT_SYMBOL(unregister_netdev);
5719
5720 /**
5721 * dev_change_net_namespace - move device to different nethost namespace
5722 * @dev: device
5723 * @net: network namespace
5724 * @pat: If not NULL name pattern to try if the current device name
5725 * is already taken in the destination network namespace.
5726 *
5727 * This function shuts down a device interface and moves it
5728 * to a new network namespace. On success 0 is returned, on
5729 * a failure a netagive errno code is returned.
5730 *
5731 * Callers must hold the rtnl semaphore.
5732 */
5733
5734 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5735 {
5736 int err;
5737
5738 ASSERT_RTNL();
5739
5740 /* Don't allow namespace local devices to be moved. */
5741 err = -EINVAL;
5742 if (dev->features & NETIF_F_NETNS_LOCAL)
5743 goto out;
5744
5745 /* Ensure the device has been registrered */
5746 err = -EINVAL;
5747 if (dev->reg_state != NETREG_REGISTERED)
5748 goto out;
5749
5750 /* Get out if there is nothing todo */
5751 err = 0;
5752 if (net_eq(dev_net(dev), net))
5753 goto out;
5754
5755 /* Pick the destination device name, and ensure
5756 * we can use it in the destination network namespace.
5757 */
5758 err = -EEXIST;
5759 if (__dev_get_by_name(net, dev->name)) {
5760 /* We get here if we can't use the current device name */
5761 if (!pat)
5762 goto out;
5763 if (dev_get_valid_name(dev, pat, 1))
5764 goto out;
5765 }
5766
5767 /*
5768 * And now a mini version of register_netdevice unregister_netdevice.
5769 */
5770
5771 /* If device is running close it first. */
5772 dev_close(dev);
5773
5774 /* And unlink it from device chain */
5775 err = -ENODEV;
5776 unlist_netdevice(dev);
5777
5778 synchronize_net();
5779
5780 /* Shutdown queueing discipline. */
5781 dev_shutdown(dev);
5782
5783 /* Notify protocols, that we are about to destroy
5784 this device. They should clean all the things.
5785
5786 Note that dev->reg_state stays at NETREG_REGISTERED.
5787 This is wanted because this way 8021q and macvlan know
5788 the device is just moving and can keep their slaves up.
5789 */
5790 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5791 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5792
5793 /*
5794 * Flush the unicast and multicast chains
5795 */
5796 dev_uc_flush(dev);
5797 dev_mc_flush(dev);
5798
5799 /* Actually switch the network namespace */
5800 dev_net_set(dev, net);
5801
5802 /* If there is an ifindex conflict assign a new one */
5803 if (__dev_get_by_index(net, dev->ifindex)) {
5804 int iflink = (dev->iflink == dev->ifindex);
5805 dev->ifindex = dev_new_index(net);
5806 if (iflink)
5807 dev->iflink = dev->ifindex;
5808 }
5809
5810 /* Fixup kobjects */
5811 err = device_rename(&dev->dev, dev->name);
5812 WARN_ON(err);
5813
5814 /* Add the device back in the hashes */
5815 list_netdevice(dev);
5816
5817 /* Notify protocols, that a new device appeared. */
5818 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5819
5820 /*
5821 * Prevent userspace races by waiting until the network
5822 * device is fully setup before sending notifications.
5823 */
5824 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5825
5826 synchronize_net();
5827 err = 0;
5828 out:
5829 return err;
5830 }
5831 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5832
5833 static int dev_cpu_callback(struct notifier_block *nfb,
5834 unsigned long action,
5835 void *ocpu)
5836 {
5837 struct sk_buff **list_skb;
5838 struct sk_buff *skb;
5839 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5840 struct softnet_data *sd, *oldsd;
5841
5842 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5843 return NOTIFY_OK;
5844
5845 local_irq_disable();
5846 cpu = smp_processor_id();
5847 sd = &per_cpu(softnet_data, cpu);
5848 oldsd = &per_cpu(softnet_data, oldcpu);
5849
5850 /* Find end of our completion_queue. */
5851 list_skb = &sd->completion_queue;
5852 while (*list_skb)
5853 list_skb = &(*list_skb)->next;
5854 /* Append completion queue from offline CPU. */
5855 *list_skb = oldsd->completion_queue;
5856 oldsd->completion_queue = NULL;
5857
5858 /* Append output queue from offline CPU. */
5859 if (oldsd->output_queue) {
5860 *sd->output_queue_tailp = oldsd->output_queue;
5861 sd->output_queue_tailp = oldsd->output_queue_tailp;
5862 oldsd->output_queue = NULL;
5863 oldsd->output_queue_tailp = &oldsd->output_queue;
5864 }
5865
5866 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5867 local_irq_enable();
5868
5869 /* Process offline CPU's input_pkt_queue */
5870 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5871 netif_rx(skb);
5872 input_queue_head_incr(oldsd);
5873 }
5874 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5875 netif_rx(skb);
5876 input_queue_head_incr(oldsd);
5877 }
5878
5879 return NOTIFY_OK;
5880 }
5881
5882
5883 /**
5884 * netdev_increment_features - increment feature set by one
5885 * @all: current feature set
5886 * @one: new feature set
5887 * @mask: mask feature set
5888 *
5889 * Computes a new feature set after adding a device with feature set
5890 * @one to the master device with current feature set @all. Will not
5891 * enable anything that is off in @mask. Returns the new feature set.
5892 */
5893 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5894 unsigned long mask)
5895 {
5896 /* If device needs checksumming, downgrade to it. */
5897 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5898 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5899 else if (mask & NETIF_F_ALL_CSUM) {
5900 /* If one device supports v4/v6 checksumming, set for all. */
5901 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5902 !(all & NETIF_F_GEN_CSUM)) {
5903 all &= ~NETIF_F_ALL_CSUM;
5904 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5905 }
5906
5907 /* If one device supports hw checksumming, set for all. */
5908 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5909 all &= ~NETIF_F_ALL_CSUM;
5910 all |= NETIF_F_HW_CSUM;
5911 }
5912 }
5913
5914 one |= NETIF_F_ALL_CSUM;
5915
5916 one |= all & NETIF_F_ONE_FOR_ALL;
5917 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5918 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5919
5920 return all;
5921 }
5922 EXPORT_SYMBOL(netdev_increment_features);
5923
5924 static struct hlist_head *netdev_create_hash(void)
5925 {
5926 int i;
5927 struct hlist_head *hash;
5928
5929 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5930 if (hash != NULL)
5931 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5932 INIT_HLIST_HEAD(&hash[i]);
5933
5934 return hash;
5935 }
5936
5937 /* Initialize per network namespace state */
5938 static int __net_init netdev_init(struct net *net)
5939 {
5940 INIT_LIST_HEAD(&net->dev_base_head);
5941
5942 net->dev_name_head = netdev_create_hash();
5943 if (net->dev_name_head == NULL)
5944 goto err_name;
5945
5946 net->dev_index_head = netdev_create_hash();
5947 if (net->dev_index_head == NULL)
5948 goto err_idx;
5949
5950 return 0;
5951
5952 err_idx:
5953 kfree(net->dev_name_head);
5954 err_name:
5955 return -ENOMEM;
5956 }
5957
5958 /**
5959 * netdev_drivername - network driver for the device
5960 * @dev: network device
5961 * @buffer: buffer for resulting name
5962 * @len: size of buffer
5963 *
5964 * Determine network driver for device.
5965 */
5966 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5967 {
5968 const struct device_driver *driver;
5969 const struct device *parent;
5970
5971 if (len <= 0 || !buffer)
5972 return buffer;
5973 buffer[0] = 0;
5974
5975 parent = dev->dev.parent;
5976
5977 if (!parent)
5978 return buffer;
5979
5980 driver = parent->driver;
5981 if (driver && driver->name)
5982 strlcpy(buffer, driver->name, len);
5983 return buffer;
5984 }
5985
5986 static int __netdev_printk(const char *level, const struct net_device *dev,
5987 struct va_format *vaf)
5988 {
5989 int r;
5990
5991 if (dev && dev->dev.parent)
5992 r = dev_printk(level, dev->dev.parent, "%s: %pV",
5993 netdev_name(dev), vaf);
5994 else if (dev)
5995 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5996 else
5997 r = printk("%s(NULL net_device): %pV", level, vaf);
5998
5999 return r;
6000 }
6001
6002 int netdev_printk(const char *level, const struct net_device *dev,
6003 const char *format, ...)
6004 {
6005 struct va_format vaf;
6006 va_list args;
6007 int r;
6008
6009 va_start(args, format);
6010
6011 vaf.fmt = format;
6012 vaf.va = &args;
6013
6014 r = __netdev_printk(level, dev, &vaf);
6015 va_end(args);
6016
6017 return r;
6018 }
6019 EXPORT_SYMBOL(netdev_printk);
6020
6021 #define define_netdev_printk_level(func, level) \
6022 int func(const struct net_device *dev, const char *fmt, ...) \
6023 { \
6024 int r; \
6025 struct va_format vaf; \
6026 va_list args; \
6027 \
6028 va_start(args, fmt); \
6029 \
6030 vaf.fmt = fmt; \
6031 vaf.va = &args; \
6032 \
6033 r = __netdev_printk(level, dev, &vaf); \
6034 va_end(args); \
6035 \
6036 return r; \
6037 } \
6038 EXPORT_SYMBOL(func);
6039
6040 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6041 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6042 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6043 define_netdev_printk_level(netdev_err, KERN_ERR);
6044 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6045 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6046 define_netdev_printk_level(netdev_info, KERN_INFO);
6047
6048 static void __net_exit netdev_exit(struct net *net)
6049 {
6050 kfree(net->dev_name_head);
6051 kfree(net->dev_index_head);
6052 }
6053
6054 static struct pernet_operations __net_initdata netdev_net_ops = {
6055 .init = netdev_init,
6056 .exit = netdev_exit,
6057 };
6058
6059 static void __net_exit default_device_exit(struct net *net)
6060 {
6061 struct net_device *dev, *aux;
6062 /*
6063 * Push all migratable network devices back to the
6064 * initial network namespace
6065 */
6066 rtnl_lock();
6067 for_each_netdev_safe(net, dev, aux) {
6068 int err;
6069 char fb_name[IFNAMSIZ];
6070
6071 /* Ignore unmoveable devices (i.e. loopback) */
6072 if (dev->features & NETIF_F_NETNS_LOCAL)
6073 continue;
6074
6075 /* Leave virtual devices for the generic cleanup */
6076 if (dev->rtnl_link_ops)
6077 continue;
6078
6079 /* Push remaing network devices to init_net */
6080 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6081 err = dev_change_net_namespace(dev, &init_net, fb_name);
6082 if (err) {
6083 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6084 __func__, dev->name, err);
6085 BUG();
6086 }
6087 }
6088 rtnl_unlock();
6089 }
6090
6091 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6092 {
6093 /* At exit all network devices most be removed from a network
6094 * namespace. Do this in the reverse order of registeration.
6095 * Do this across as many network namespaces as possible to
6096 * improve batching efficiency.
6097 */
6098 struct net_device *dev;
6099 struct net *net;
6100 LIST_HEAD(dev_kill_list);
6101
6102 rtnl_lock();
6103 list_for_each_entry(net, net_list, exit_list) {
6104 for_each_netdev_reverse(net, dev) {
6105 if (dev->rtnl_link_ops)
6106 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6107 else
6108 unregister_netdevice_queue(dev, &dev_kill_list);
6109 }
6110 }
6111 unregister_netdevice_many(&dev_kill_list);
6112 rtnl_unlock();
6113 }
6114
6115 static struct pernet_operations __net_initdata default_device_ops = {
6116 .exit = default_device_exit,
6117 .exit_batch = default_device_exit_batch,
6118 };
6119
6120 /*
6121 * Initialize the DEV module. At boot time this walks the device list and
6122 * unhooks any devices that fail to initialise (normally hardware not
6123 * present) and leaves us with a valid list of present and active devices.
6124 *
6125 */
6126
6127 /*
6128 * This is called single threaded during boot, so no need
6129 * to take the rtnl semaphore.
6130 */
6131 static int __init net_dev_init(void)
6132 {
6133 int i, rc = -ENOMEM;
6134
6135 BUG_ON(!dev_boot_phase);
6136
6137 if (dev_proc_init())
6138 goto out;
6139
6140 if (netdev_kobject_init())
6141 goto out;
6142
6143 INIT_LIST_HEAD(&ptype_all);
6144 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6145 INIT_LIST_HEAD(&ptype_base[i]);
6146
6147 if (register_pernet_subsys(&netdev_net_ops))
6148 goto out;
6149
6150 /*
6151 * Initialise the packet receive queues.
6152 */
6153
6154 for_each_possible_cpu(i) {
6155 struct softnet_data *sd = &per_cpu(softnet_data, i);
6156
6157 memset(sd, 0, sizeof(*sd));
6158 skb_queue_head_init(&sd->input_pkt_queue);
6159 skb_queue_head_init(&sd->process_queue);
6160 sd->completion_queue = NULL;
6161 INIT_LIST_HEAD(&sd->poll_list);
6162 sd->output_queue = NULL;
6163 sd->output_queue_tailp = &sd->output_queue;
6164 #ifdef CONFIG_RPS
6165 sd->csd.func = rps_trigger_softirq;
6166 sd->csd.info = sd;
6167 sd->csd.flags = 0;
6168 sd->cpu = i;
6169 #endif
6170
6171 sd->backlog.poll = process_backlog;
6172 sd->backlog.weight = weight_p;
6173 sd->backlog.gro_list = NULL;
6174 sd->backlog.gro_count = 0;
6175 }
6176
6177 dev_boot_phase = 0;
6178
6179 /* The loopback device is special if any other network devices
6180 * is present in a network namespace the loopback device must
6181 * be present. Since we now dynamically allocate and free the
6182 * loopback device ensure this invariant is maintained by
6183 * keeping the loopback device as the first device on the
6184 * list of network devices. Ensuring the loopback devices
6185 * is the first device that appears and the last network device
6186 * that disappears.
6187 */
6188 if (register_pernet_device(&loopback_net_ops))
6189 goto out;
6190
6191 if (register_pernet_device(&default_device_ops))
6192 goto out;
6193
6194 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6195 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6196
6197 hotcpu_notifier(dev_cpu_callback, 0);
6198 dst_init();
6199 dev_mcast_init();
6200 rc = 0;
6201 out:
6202 return rc;
6203 }
6204
6205 subsys_initcall(net_dev_init);
6206
6207 static int __init initialize_hashrnd(void)
6208 {
6209 get_random_bytes(&hashrnd, sizeof(hashrnd));
6210 return 0;
6211 }
6212
6213 late_initcall_sync(initialize_hashrnd);
6214
This page took 0.177368 seconds and 5 git commands to generate.