6e1b4370781cc433570a467822c6d7da66863aa2
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 /*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
177
178 /*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 /**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389 void dev_add_pack(struct packet_type *pt)
390 {
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762 {
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773 }
774 EXPORT_SYMBOL(dev_getbyhwaddr);
775
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777 {
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786 }
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802 }
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805 /**
806 * dev_get_by_flags_rcu - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. Must be called inside
813 * rcu_read_lock(), and result refcount is unchanged.
814 */
815
816 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
817 unsigned short mask)
818 {
819 struct net_device *dev, *ret;
820
821 ret = NULL;
822 for_each_netdev_rcu(net, dev) {
823 if (((dev->flags ^ if_flags) & mask) == 0) {
824 ret = dev;
825 break;
826 }
827 }
828 return ret;
829 }
830 EXPORT_SYMBOL(dev_get_by_flags_rcu);
831
832 /**
833 * dev_valid_name - check if name is okay for network device
834 * @name: name string
835 *
836 * Network device names need to be valid file names to
837 * to allow sysfs to work. We also disallow any kind of
838 * whitespace.
839 */
840 int dev_valid_name(const char *name)
841 {
842 if (*name == '\0')
843 return 0;
844 if (strlen(name) >= IFNAMSIZ)
845 return 0;
846 if (!strcmp(name, ".") || !strcmp(name, ".."))
847 return 0;
848
849 while (*name) {
850 if (*name == '/' || isspace(*name))
851 return 0;
852 name++;
853 }
854 return 1;
855 }
856 EXPORT_SYMBOL(dev_valid_name);
857
858 /**
859 * __dev_alloc_name - allocate a name for a device
860 * @net: network namespace to allocate the device name in
861 * @name: name format string
862 * @buf: scratch buffer and result name string
863 *
864 * Passed a format string - eg "lt%d" it will try and find a suitable
865 * id. It scans list of devices to build up a free map, then chooses
866 * the first empty slot. The caller must hold the dev_base or rtnl lock
867 * while allocating the name and adding the device in order to avoid
868 * duplicates.
869 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
870 * Returns the number of the unit assigned or a negative errno code.
871 */
872
873 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
874 {
875 int i = 0;
876 const char *p;
877 const int max_netdevices = 8*PAGE_SIZE;
878 unsigned long *inuse;
879 struct net_device *d;
880
881 p = strnchr(name, IFNAMSIZ-1, '%');
882 if (p) {
883 /*
884 * Verify the string as this thing may have come from
885 * the user. There must be either one "%d" and no other "%"
886 * characters.
887 */
888 if (p[1] != 'd' || strchr(p + 2, '%'))
889 return -EINVAL;
890
891 /* Use one page as a bit array of possible slots */
892 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
893 if (!inuse)
894 return -ENOMEM;
895
896 for_each_netdev(net, d) {
897 if (!sscanf(d->name, name, &i))
898 continue;
899 if (i < 0 || i >= max_netdevices)
900 continue;
901
902 /* avoid cases where sscanf is not exact inverse of printf */
903 snprintf(buf, IFNAMSIZ, name, i);
904 if (!strncmp(buf, d->name, IFNAMSIZ))
905 set_bit(i, inuse);
906 }
907
908 i = find_first_zero_bit(inuse, max_netdevices);
909 free_page((unsigned long) inuse);
910 }
911
912 if (buf != name)
913 snprintf(buf, IFNAMSIZ, name, i);
914 if (!__dev_get_by_name(net, buf))
915 return i;
916
917 /* It is possible to run out of possible slots
918 * when the name is long and there isn't enough space left
919 * for the digits, or if all bits are used.
920 */
921 return -ENFILE;
922 }
923
924 /**
925 * dev_alloc_name - allocate a name for a device
926 * @dev: device
927 * @name: name format string
928 *
929 * Passed a format string - eg "lt%d" it will try and find a suitable
930 * id. It scans list of devices to build up a free map, then chooses
931 * the first empty slot. The caller must hold the dev_base or rtnl lock
932 * while allocating the name and adding the device in order to avoid
933 * duplicates.
934 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
935 * Returns the number of the unit assigned or a negative errno code.
936 */
937
938 int dev_alloc_name(struct net_device *dev, const char *name)
939 {
940 char buf[IFNAMSIZ];
941 struct net *net;
942 int ret;
943
944 BUG_ON(!dev_net(dev));
945 net = dev_net(dev);
946 ret = __dev_alloc_name(net, name, buf);
947 if (ret >= 0)
948 strlcpy(dev->name, buf, IFNAMSIZ);
949 return ret;
950 }
951 EXPORT_SYMBOL(dev_alloc_name);
952
953 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
954 {
955 struct net *net;
956
957 BUG_ON(!dev_net(dev));
958 net = dev_net(dev);
959
960 if (!dev_valid_name(name))
961 return -EINVAL;
962
963 if (fmt && strchr(name, '%'))
964 return dev_alloc_name(dev, name);
965 else if (__dev_get_by_name(net, name))
966 return -EEXIST;
967 else if (dev->name != name)
968 strlcpy(dev->name, name, IFNAMSIZ);
969
970 return 0;
971 }
972
973 /**
974 * dev_change_name - change name of a device
975 * @dev: device
976 * @newname: name (or format string) must be at least IFNAMSIZ
977 *
978 * Change name of a device, can pass format strings "eth%d".
979 * for wildcarding.
980 */
981 int dev_change_name(struct net_device *dev, const char *newname)
982 {
983 char oldname[IFNAMSIZ];
984 int err = 0;
985 int ret;
986 struct net *net;
987
988 ASSERT_RTNL();
989 BUG_ON(!dev_net(dev));
990
991 net = dev_net(dev);
992 if (dev->flags & IFF_UP)
993 return -EBUSY;
994
995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
996 return 0;
997
998 memcpy(oldname, dev->name, IFNAMSIZ);
999
1000 err = dev_get_valid_name(dev, newname, 1);
1001 if (err < 0)
1002 return err;
1003
1004 rollback:
1005 ret = device_rename(&dev->dev, dev->name);
1006 if (ret) {
1007 memcpy(dev->name, oldname, IFNAMSIZ);
1008 return ret;
1009 }
1010
1011 write_lock_bh(&dev_base_lock);
1012 hlist_del(&dev->name_hlist);
1013 write_unlock_bh(&dev_base_lock);
1014
1015 synchronize_rcu();
1016
1017 write_lock_bh(&dev_base_lock);
1018 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1019 write_unlock_bh(&dev_base_lock);
1020
1021 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1022 ret = notifier_to_errno(ret);
1023
1024 if (ret) {
1025 /* err >= 0 after dev_alloc_name() or stores the first errno */
1026 if (err >= 0) {
1027 err = ret;
1028 memcpy(dev->name, oldname, IFNAMSIZ);
1029 goto rollback;
1030 } else {
1031 printk(KERN_ERR
1032 "%s: name change rollback failed: %d.\n",
1033 dev->name, ret);
1034 }
1035 }
1036
1037 return err;
1038 }
1039
1040 /**
1041 * dev_set_alias - change ifalias of a device
1042 * @dev: device
1043 * @alias: name up to IFALIASZ
1044 * @len: limit of bytes to copy from info
1045 *
1046 * Set ifalias for a device,
1047 */
1048 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1049 {
1050 ASSERT_RTNL();
1051
1052 if (len >= IFALIASZ)
1053 return -EINVAL;
1054
1055 if (!len) {
1056 if (dev->ifalias) {
1057 kfree(dev->ifalias);
1058 dev->ifalias = NULL;
1059 }
1060 return 0;
1061 }
1062
1063 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1064 if (!dev->ifalias)
1065 return -ENOMEM;
1066
1067 strlcpy(dev->ifalias, alias, len+1);
1068 return len;
1069 }
1070
1071
1072 /**
1073 * netdev_features_change - device changes features
1074 * @dev: device to cause notification
1075 *
1076 * Called to indicate a device has changed features.
1077 */
1078 void netdev_features_change(struct net_device *dev)
1079 {
1080 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1081 }
1082 EXPORT_SYMBOL(netdev_features_change);
1083
1084 /**
1085 * netdev_state_change - device changes state
1086 * @dev: device to cause notification
1087 *
1088 * Called to indicate a device has changed state. This function calls
1089 * the notifier chains for netdev_chain and sends a NEWLINK message
1090 * to the routing socket.
1091 */
1092 void netdev_state_change(struct net_device *dev)
1093 {
1094 if (dev->flags & IFF_UP) {
1095 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1096 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1097 }
1098 }
1099 EXPORT_SYMBOL(netdev_state_change);
1100
1101 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1102 {
1103 return call_netdevice_notifiers(event, dev);
1104 }
1105 EXPORT_SYMBOL(netdev_bonding_change);
1106
1107 /**
1108 * dev_load - load a network module
1109 * @net: the applicable net namespace
1110 * @name: name of interface
1111 *
1112 * If a network interface is not present and the process has suitable
1113 * privileges this function loads the module. If module loading is not
1114 * available in this kernel then it becomes a nop.
1115 */
1116
1117 void dev_load(struct net *net, const char *name)
1118 {
1119 struct net_device *dev;
1120
1121 rcu_read_lock();
1122 dev = dev_get_by_name_rcu(net, name);
1123 rcu_read_unlock();
1124
1125 if (!dev && capable(CAP_NET_ADMIN))
1126 request_module("%s", name);
1127 }
1128 EXPORT_SYMBOL(dev_load);
1129
1130 static int __dev_open(struct net_device *dev)
1131 {
1132 const struct net_device_ops *ops = dev->netdev_ops;
1133 int ret;
1134
1135 ASSERT_RTNL();
1136
1137 /*
1138 * Is it even present?
1139 */
1140 if (!netif_device_present(dev))
1141 return -ENODEV;
1142
1143 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1144 ret = notifier_to_errno(ret);
1145 if (ret)
1146 return ret;
1147
1148 /*
1149 * Call device private open method
1150 */
1151 set_bit(__LINK_STATE_START, &dev->state);
1152
1153 if (ops->ndo_validate_addr)
1154 ret = ops->ndo_validate_addr(dev);
1155
1156 if (!ret && ops->ndo_open)
1157 ret = ops->ndo_open(dev);
1158
1159 /*
1160 * If it went open OK then:
1161 */
1162
1163 if (ret)
1164 clear_bit(__LINK_STATE_START, &dev->state);
1165 else {
1166 /*
1167 * Set the flags.
1168 */
1169 dev->flags |= IFF_UP;
1170
1171 /*
1172 * Enable NET_DMA
1173 */
1174 net_dmaengine_get();
1175
1176 /*
1177 * Initialize multicasting status
1178 */
1179 dev_set_rx_mode(dev);
1180
1181 /*
1182 * Wakeup transmit queue engine
1183 */
1184 dev_activate(dev);
1185 }
1186
1187 return ret;
1188 }
1189
1190 /**
1191 * dev_open - prepare an interface for use.
1192 * @dev: device to open
1193 *
1194 * Takes a device from down to up state. The device's private open
1195 * function is invoked and then the multicast lists are loaded. Finally
1196 * the device is moved into the up state and a %NETDEV_UP message is
1197 * sent to the netdev notifier chain.
1198 *
1199 * Calling this function on an active interface is a nop. On a failure
1200 * a negative errno code is returned.
1201 */
1202 int dev_open(struct net_device *dev)
1203 {
1204 int ret;
1205
1206 /*
1207 * Is it already up?
1208 */
1209 if (dev->flags & IFF_UP)
1210 return 0;
1211
1212 /*
1213 * Open device
1214 */
1215 ret = __dev_open(dev);
1216 if (ret < 0)
1217 return ret;
1218
1219 /*
1220 * ... and announce new interface.
1221 */
1222 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1223 call_netdevice_notifiers(NETDEV_UP, dev);
1224
1225 return ret;
1226 }
1227 EXPORT_SYMBOL(dev_open);
1228
1229 static int __dev_close(struct net_device *dev)
1230 {
1231 const struct net_device_ops *ops = dev->netdev_ops;
1232
1233 ASSERT_RTNL();
1234 might_sleep();
1235
1236 /*
1237 * Tell people we are going down, so that they can
1238 * prepare to death, when device is still operating.
1239 */
1240 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1241
1242 clear_bit(__LINK_STATE_START, &dev->state);
1243
1244 /* Synchronize to scheduled poll. We cannot touch poll list,
1245 * it can be even on different cpu. So just clear netif_running().
1246 *
1247 * dev->stop() will invoke napi_disable() on all of it's
1248 * napi_struct instances on this device.
1249 */
1250 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1251
1252 dev_deactivate(dev);
1253
1254 /*
1255 * Call the device specific close. This cannot fail.
1256 * Only if device is UP
1257 *
1258 * We allow it to be called even after a DETACH hot-plug
1259 * event.
1260 */
1261 if (ops->ndo_stop)
1262 ops->ndo_stop(dev);
1263
1264 /*
1265 * Device is now down.
1266 */
1267
1268 dev->flags &= ~IFF_UP;
1269
1270 /*
1271 * Shutdown NET_DMA
1272 */
1273 net_dmaengine_put();
1274
1275 return 0;
1276 }
1277
1278 /**
1279 * dev_close - shutdown an interface.
1280 * @dev: device to shutdown
1281 *
1282 * This function moves an active device into down state. A
1283 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1284 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1285 * chain.
1286 */
1287 int dev_close(struct net_device *dev)
1288 {
1289 if (!(dev->flags & IFF_UP))
1290 return 0;
1291
1292 __dev_close(dev);
1293
1294 /*
1295 * Tell people we are down
1296 */
1297 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1298 call_netdevice_notifiers(NETDEV_DOWN, dev);
1299
1300 return 0;
1301 }
1302 EXPORT_SYMBOL(dev_close);
1303
1304
1305 /**
1306 * dev_disable_lro - disable Large Receive Offload on a device
1307 * @dev: device
1308 *
1309 * Disable Large Receive Offload (LRO) on a net device. Must be
1310 * called under RTNL. This is needed if received packets may be
1311 * forwarded to another interface.
1312 */
1313 void dev_disable_lro(struct net_device *dev)
1314 {
1315 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1316 dev->ethtool_ops->set_flags) {
1317 u32 flags = dev->ethtool_ops->get_flags(dev);
1318 if (flags & ETH_FLAG_LRO) {
1319 flags &= ~ETH_FLAG_LRO;
1320 dev->ethtool_ops->set_flags(dev, flags);
1321 }
1322 }
1323 WARN_ON(dev->features & NETIF_F_LRO);
1324 }
1325 EXPORT_SYMBOL(dev_disable_lro);
1326
1327
1328 static int dev_boot_phase = 1;
1329
1330 /*
1331 * Device change register/unregister. These are not inline or static
1332 * as we export them to the world.
1333 */
1334
1335 /**
1336 * register_netdevice_notifier - register a network notifier block
1337 * @nb: notifier
1338 *
1339 * Register a notifier to be called when network device events occur.
1340 * The notifier passed is linked into the kernel structures and must
1341 * not be reused until it has been unregistered. A negative errno code
1342 * is returned on a failure.
1343 *
1344 * When registered all registration and up events are replayed
1345 * to the new notifier to allow device to have a race free
1346 * view of the network device list.
1347 */
1348
1349 int register_netdevice_notifier(struct notifier_block *nb)
1350 {
1351 struct net_device *dev;
1352 struct net_device *last;
1353 struct net *net;
1354 int err;
1355
1356 rtnl_lock();
1357 err = raw_notifier_chain_register(&netdev_chain, nb);
1358 if (err)
1359 goto unlock;
1360 if (dev_boot_phase)
1361 goto unlock;
1362 for_each_net(net) {
1363 for_each_netdev(net, dev) {
1364 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1365 err = notifier_to_errno(err);
1366 if (err)
1367 goto rollback;
1368
1369 if (!(dev->flags & IFF_UP))
1370 continue;
1371
1372 nb->notifier_call(nb, NETDEV_UP, dev);
1373 }
1374 }
1375
1376 unlock:
1377 rtnl_unlock();
1378 return err;
1379
1380 rollback:
1381 last = dev;
1382 for_each_net(net) {
1383 for_each_netdev(net, dev) {
1384 if (dev == last)
1385 break;
1386
1387 if (dev->flags & IFF_UP) {
1388 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1389 nb->notifier_call(nb, NETDEV_DOWN, dev);
1390 }
1391 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1392 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1393 }
1394 }
1395
1396 raw_notifier_chain_unregister(&netdev_chain, nb);
1397 goto unlock;
1398 }
1399 EXPORT_SYMBOL(register_netdevice_notifier);
1400
1401 /**
1402 * unregister_netdevice_notifier - unregister a network notifier block
1403 * @nb: notifier
1404 *
1405 * Unregister a notifier previously registered by
1406 * register_netdevice_notifier(). The notifier is unlinked into the
1407 * kernel structures and may then be reused. A negative errno code
1408 * is returned on a failure.
1409 */
1410
1411 int unregister_netdevice_notifier(struct notifier_block *nb)
1412 {
1413 int err;
1414
1415 rtnl_lock();
1416 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1417 rtnl_unlock();
1418 return err;
1419 }
1420 EXPORT_SYMBOL(unregister_netdevice_notifier);
1421
1422 /**
1423 * call_netdevice_notifiers - call all network notifier blocks
1424 * @val: value passed unmodified to notifier function
1425 * @dev: net_device pointer passed unmodified to notifier function
1426 *
1427 * Call all network notifier blocks. Parameters and return value
1428 * are as for raw_notifier_call_chain().
1429 */
1430
1431 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1432 {
1433 ASSERT_RTNL();
1434 return raw_notifier_call_chain(&netdev_chain, val, dev);
1435 }
1436
1437 /* When > 0 there are consumers of rx skb time stamps */
1438 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1439
1440 void net_enable_timestamp(void)
1441 {
1442 atomic_inc(&netstamp_needed);
1443 }
1444 EXPORT_SYMBOL(net_enable_timestamp);
1445
1446 void net_disable_timestamp(void)
1447 {
1448 atomic_dec(&netstamp_needed);
1449 }
1450 EXPORT_SYMBOL(net_disable_timestamp);
1451
1452 static inline void net_timestamp_set(struct sk_buff *skb)
1453 {
1454 if (atomic_read(&netstamp_needed))
1455 __net_timestamp(skb);
1456 else
1457 skb->tstamp.tv64 = 0;
1458 }
1459
1460 static inline void net_timestamp_check(struct sk_buff *skb)
1461 {
1462 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1463 __net_timestamp(skb);
1464 }
1465
1466 /**
1467 * dev_forward_skb - loopback an skb to another netif
1468 *
1469 * @dev: destination network device
1470 * @skb: buffer to forward
1471 *
1472 * return values:
1473 * NET_RX_SUCCESS (no congestion)
1474 * NET_RX_DROP (packet was dropped, but freed)
1475 *
1476 * dev_forward_skb can be used for injecting an skb from the
1477 * start_xmit function of one device into the receive queue
1478 * of another device.
1479 *
1480 * The receiving device may be in another namespace, so
1481 * we have to clear all information in the skb that could
1482 * impact namespace isolation.
1483 */
1484 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1485 {
1486 skb_orphan(skb);
1487
1488 if (!(dev->flags & IFF_UP) ||
1489 (skb->len > (dev->mtu + dev->hard_header_len))) {
1490 kfree_skb(skb);
1491 return NET_RX_DROP;
1492 }
1493 skb_set_dev(skb, dev);
1494 skb->tstamp.tv64 = 0;
1495 skb->pkt_type = PACKET_HOST;
1496 skb->protocol = eth_type_trans(skb, dev);
1497 return netif_rx(skb);
1498 }
1499 EXPORT_SYMBOL_GPL(dev_forward_skb);
1500
1501 /*
1502 * Support routine. Sends outgoing frames to any network
1503 * taps currently in use.
1504 */
1505
1506 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1507 {
1508 struct packet_type *ptype;
1509
1510 #ifdef CONFIG_NET_CLS_ACT
1511 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1512 net_timestamp_set(skb);
1513 #else
1514 net_timestamp_set(skb);
1515 #endif
1516
1517 rcu_read_lock();
1518 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1519 /* Never send packets back to the socket
1520 * they originated from - MvS (miquels@drinkel.ow.org)
1521 */
1522 if ((ptype->dev == dev || !ptype->dev) &&
1523 (ptype->af_packet_priv == NULL ||
1524 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1525 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1526 if (!skb2)
1527 break;
1528
1529 /* skb->nh should be correctly
1530 set by sender, so that the second statement is
1531 just protection against buggy protocols.
1532 */
1533 skb_reset_mac_header(skb2);
1534
1535 if (skb_network_header(skb2) < skb2->data ||
1536 skb2->network_header > skb2->tail) {
1537 if (net_ratelimit())
1538 printk(KERN_CRIT "protocol %04x is "
1539 "buggy, dev %s\n",
1540 ntohs(skb2->protocol),
1541 dev->name);
1542 skb_reset_network_header(skb2);
1543 }
1544
1545 skb2->transport_header = skb2->network_header;
1546 skb2->pkt_type = PACKET_OUTGOING;
1547 ptype->func(skb2, skb->dev, ptype, skb->dev);
1548 }
1549 }
1550 rcu_read_unlock();
1551 }
1552
1553 /*
1554 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1555 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1556 */
1557 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1558 {
1559 unsigned int real_num = dev->real_num_tx_queues;
1560
1561 if (unlikely(txq > dev->num_tx_queues))
1562 ;
1563 else if (txq > real_num)
1564 dev->real_num_tx_queues = txq;
1565 else if (txq < real_num) {
1566 dev->real_num_tx_queues = txq;
1567 qdisc_reset_all_tx_gt(dev, txq);
1568 }
1569 }
1570 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1571
1572 static inline void __netif_reschedule(struct Qdisc *q)
1573 {
1574 struct softnet_data *sd;
1575 unsigned long flags;
1576
1577 local_irq_save(flags);
1578 sd = &__get_cpu_var(softnet_data);
1579 q->next_sched = NULL;
1580 *sd->output_queue_tailp = q;
1581 sd->output_queue_tailp = &q->next_sched;
1582 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1583 local_irq_restore(flags);
1584 }
1585
1586 void __netif_schedule(struct Qdisc *q)
1587 {
1588 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1589 __netif_reschedule(q);
1590 }
1591 EXPORT_SYMBOL(__netif_schedule);
1592
1593 void dev_kfree_skb_irq(struct sk_buff *skb)
1594 {
1595 if (!skb->destructor)
1596 dev_kfree_skb(skb);
1597 else if (atomic_dec_and_test(&skb->users)) {
1598 struct softnet_data *sd;
1599 unsigned long flags;
1600
1601 local_irq_save(flags);
1602 sd = &__get_cpu_var(softnet_data);
1603 skb->next = sd->completion_queue;
1604 sd->completion_queue = skb;
1605 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1606 local_irq_restore(flags);
1607 }
1608 }
1609 EXPORT_SYMBOL(dev_kfree_skb_irq);
1610
1611 void dev_kfree_skb_any(struct sk_buff *skb)
1612 {
1613 if (in_irq() || irqs_disabled())
1614 dev_kfree_skb_irq(skb);
1615 else
1616 dev_kfree_skb(skb);
1617 }
1618 EXPORT_SYMBOL(dev_kfree_skb_any);
1619
1620
1621 /**
1622 * netif_device_detach - mark device as removed
1623 * @dev: network device
1624 *
1625 * Mark device as removed from system and therefore no longer available.
1626 */
1627 void netif_device_detach(struct net_device *dev)
1628 {
1629 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1630 netif_running(dev)) {
1631 netif_tx_stop_all_queues(dev);
1632 }
1633 }
1634 EXPORT_SYMBOL(netif_device_detach);
1635
1636 /**
1637 * netif_device_attach - mark device as attached
1638 * @dev: network device
1639 *
1640 * Mark device as attached from system and restart if needed.
1641 */
1642 void netif_device_attach(struct net_device *dev)
1643 {
1644 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1645 netif_running(dev)) {
1646 netif_tx_wake_all_queues(dev);
1647 __netdev_watchdog_up(dev);
1648 }
1649 }
1650 EXPORT_SYMBOL(netif_device_attach);
1651
1652 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1653 {
1654 return ((features & NETIF_F_GEN_CSUM) ||
1655 ((features & NETIF_F_IP_CSUM) &&
1656 protocol == htons(ETH_P_IP)) ||
1657 ((features & NETIF_F_IPV6_CSUM) &&
1658 protocol == htons(ETH_P_IPV6)) ||
1659 ((features & NETIF_F_FCOE_CRC) &&
1660 protocol == htons(ETH_P_FCOE)));
1661 }
1662
1663 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1664 {
1665 if (can_checksum_protocol(dev->features, skb->protocol))
1666 return true;
1667
1668 if (skb->protocol == htons(ETH_P_8021Q)) {
1669 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1670 if (can_checksum_protocol(dev->features & dev->vlan_features,
1671 veh->h_vlan_encapsulated_proto))
1672 return true;
1673 }
1674
1675 return false;
1676 }
1677
1678 /**
1679 * skb_dev_set -- assign a new device to a buffer
1680 * @skb: buffer for the new device
1681 * @dev: network device
1682 *
1683 * If an skb is owned by a device already, we have to reset
1684 * all data private to the namespace a device belongs to
1685 * before assigning it a new device.
1686 */
1687 #ifdef CONFIG_NET_NS
1688 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1689 {
1690 skb_dst_drop(skb);
1691 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1692 secpath_reset(skb);
1693 nf_reset(skb);
1694 skb_init_secmark(skb);
1695 skb->mark = 0;
1696 skb->priority = 0;
1697 skb->nf_trace = 0;
1698 skb->ipvs_property = 0;
1699 #ifdef CONFIG_NET_SCHED
1700 skb->tc_index = 0;
1701 #endif
1702 }
1703 skb->dev = dev;
1704 }
1705 EXPORT_SYMBOL(skb_set_dev);
1706 #endif /* CONFIG_NET_NS */
1707
1708 /*
1709 * Invalidate hardware checksum when packet is to be mangled, and
1710 * complete checksum manually on outgoing path.
1711 */
1712 int skb_checksum_help(struct sk_buff *skb)
1713 {
1714 __wsum csum;
1715 int ret = 0, offset;
1716
1717 if (skb->ip_summed == CHECKSUM_COMPLETE)
1718 goto out_set_summed;
1719
1720 if (unlikely(skb_shinfo(skb)->gso_size)) {
1721 /* Let GSO fix up the checksum. */
1722 goto out_set_summed;
1723 }
1724
1725 offset = skb->csum_start - skb_headroom(skb);
1726 BUG_ON(offset >= skb_headlen(skb));
1727 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1728
1729 offset += skb->csum_offset;
1730 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1731
1732 if (skb_cloned(skb) &&
1733 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1734 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1735 if (ret)
1736 goto out;
1737 }
1738
1739 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1740 out_set_summed:
1741 skb->ip_summed = CHECKSUM_NONE;
1742 out:
1743 return ret;
1744 }
1745 EXPORT_SYMBOL(skb_checksum_help);
1746
1747 /**
1748 * skb_gso_segment - Perform segmentation on skb.
1749 * @skb: buffer to segment
1750 * @features: features for the output path (see dev->features)
1751 *
1752 * This function segments the given skb and returns a list of segments.
1753 *
1754 * It may return NULL if the skb requires no segmentation. This is
1755 * only possible when GSO is used for verifying header integrity.
1756 */
1757 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1758 {
1759 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1760 struct packet_type *ptype;
1761 __be16 type = skb->protocol;
1762 int err;
1763
1764 skb_reset_mac_header(skb);
1765 skb->mac_len = skb->network_header - skb->mac_header;
1766 __skb_pull(skb, skb->mac_len);
1767
1768 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1769 struct net_device *dev = skb->dev;
1770 struct ethtool_drvinfo info = {};
1771
1772 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1773 dev->ethtool_ops->get_drvinfo(dev, &info);
1774
1775 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1776 "ip_summed=%d",
1777 info.driver, dev ? dev->features : 0L,
1778 skb->sk ? skb->sk->sk_route_caps : 0L,
1779 skb->len, skb->data_len, skb->ip_summed);
1780
1781 if (skb_header_cloned(skb) &&
1782 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1783 return ERR_PTR(err);
1784 }
1785
1786 rcu_read_lock();
1787 list_for_each_entry_rcu(ptype,
1788 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1789 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1790 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1791 err = ptype->gso_send_check(skb);
1792 segs = ERR_PTR(err);
1793 if (err || skb_gso_ok(skb, features))
1794 break;
1795 __skb_push(skb, (skb->data -
1796 skb_network_header(skb)));
1797 }
1798 segs = ptype->gso_segment(skb, features);
1799 break;
1800 }
1801 }
1802 rcu_read_unlock();
1803
1804 __skb_push(skb, skb->data - skb_mac_header(skb));
1805
1806 return segs;
1807 }
1808 EXPORT_SYMBOL(skb_gso_segment);
1809
1810 /* Take action when hardware reception checksum errors are detected. */
1811 #ifdef CONFIG_BUG
1812 void netdev_rx_csum_fault(struct net_device *dev)
1813 {
1814 if (net_ratelimit()) {
1815 printk(KERN_ERR "%s: hw csum failure.\n",
1816 dev ? dev->name : "<unknown>");
1817 dump_stack();
1818 }
1819 }
1820 EXPORT_SYMBOL(netdev_rx_csum_fault);
1821 #endif
1822
1823 /* Actually, we should eliminate this check as soon as we know, that:
1824 * 1. IOMMU is present and allows to map all the memory.
1825 * 2. No high memory really exists on this machine.
1826 */
1827
1828 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1829 {
1830 #ifdef CONFIG_HIGHMEM
1831 int i;
1832 if (!(dev->features & NETIF_F_HIGHDMA)) {
1833 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1834 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1835 return 1;
1836 }
1837
1838 if (PCI_DMA_BUS_IS_PHYS) {
1839 struct device *pdev = dev->dev.parent;
1840
1841 if (!pdev)
1842 return 0;
1843 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1844 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1845 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1846 return 1;
1847 }
1848 }
1849 #endif
1850 return 0;
1851 }
1852
1853 struct dev_gso_cb {
1854 void (*destructor)(struct sk_buff *skb);
1855 };
1856
1857 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1858
1859 static void dev_gso_skb_destructor(struct sk_buff *skb)
1860 {
1861 struct dev_gso_cb *cb;
1862
1863 do {
1864 struct sk_buff *nskb = skb->next;
1865
1866 skb->next = nskb->next;
1867 nskb->next = NULL;
1868 kfree_skb(nskb);
1869 } while (skb->next);
1870
1871 cb = DEV_GSO_CB(skb);
1872 if (cb->destructor)
1873 cb->destructor(skb);
1874 }
1875
1876 /**
1877 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1878 * @skb: buffer to segment
1879 *
1880 * This function segments the given skb and stores the list of segments
1881 * in skb->next.
1882 */
1883 static int dev_gso_segment(struct sk_buff *skb)
1884 {
1885 struct net_device *dev = skb->dev;
1886 struct sk_buff *segs;
1887 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1888 NETIF_F_SG : 0);
1889
1890 segs = skb_gso_segment(skb, features);
1891
1892 /* Verifying header integrity only. */
1893 if (!segs)
1894 return 0;
1895
1896 if (IS_ERR(segs))
1897 return PTR_ERR(segs);
1898
1899 skb->next = segs;
1900 DEV_GSO_CB(skb)->destructor = skb->destructor;
1901 skb->destructor = dev_gso_skb_destructor;
1902
1903 return 0;
1904 }
1905
1906 /*
1907 * Try to orphan skb early, right before transmission by the device.
1908 * We cannot orphan skb if tx timestamp is requested, since
1909 * drivers need to call skb_tstamp_tx() to send the timestamp.
1910 */
1911 static inline void skb_orphan_try(struct sk_buff *skb)
1912 {
1913 struct sock *sk = skb->sk;
1914
1915 if (sk && !skb_tx(skb)->flags) {
1916 /* skb_tx_hash() wont be able to get sk.
1917 * We copy sk_hash into skb->rxhash
1918 */
1919 if (!skb->rxhash)
1920 skb->rxhash = sk->sk_hash;
1921 skb_orphan(skb);
1922 }
1923 }
1924
1925 /*
1926 * Returns true if either:
1927 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1928 * 2. skb is fragmented and the device does not support SG, or if
1929 * at least one of fragments is in highmem and device does not
1930 * support DMA from it.
1931 */
1932 static inline int skb_needs_linearize(struct sk_buff *skb,
1933 struct net_device *dev)
1934 {
1935 return skb_is_nonlinear(skb) &&
1936 ((skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1937 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1938 illegal_highdma(dev, skb))));
1939 }
1940
1941 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1942 struct netdev_queue *txq)
1943 {
1944 const struct net_device_ops *ops = dev->netdev_ops;
1945 int rc = NETDEV_TX_OK;
1946
1947 if (likely(!skb->next)) {
1948 if (!list_empty(&ptype_all))
1949 dev_queue_xmit_nit(skb, dev);
1950
1951 /*
1952 * If device doesnt need skb->dst, release it right now while
1953 * its hot in this cpu cache
1954 */
1955 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1956 skb_dst_drop(skb);
1957
1958 skb_orphan_try(skb);
1959
1960 if (netif_needs_gso(dev, skb)) {
1961 if (unlikely(dev_gso_segment(skb)))
1962 goto out_kfree_skb;
1963 if (skb->next)
1964 goto gso;
1965 } else {
1966 if (skb_needs_linearize(skb, dev) &&
1967 __skb_linearize(skb))
1968 goto out_kfree_skb;
1969
1970 /* If packet is not checksummed and device does not
1971 * support checksumming for this protocol, complete
1972 * checksumming here.
1973 */
1974 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1975 skb_set_transport_header(skb, skb->csum_start -
1976 skb_headroom(skb));
1977 if (!dev_can_checksum(dev, skb) &&
1978 skb_checksum_help(skb))
1979 goto out_kfree_skb;
1980 }
1981 }
1982
1983 rc = ops->ndo_start_xmit(skb, dev);
1984 if (rc == NETDEV_TX_OK)
1985 txq_trans_update(txq);
1986 return rc;
1987 }
1988
1989 gso:
1990 do {
1991 struct sk_buff *nskb = skb->next;
1992
1993 skb->next = nskb->next;
1994 nskb->next = NULL;
1995
1996 /*
1997 * If device doesnt need nskb->dst, release it right now while
1998 * its hot in this cpu cache
1999 */
2000 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2001 skb_dst_drop(nskb);
2002
2003 rc = ops->ndo_start_xmit(nskb, dev);
2004 if (unlikely(rc != NETDEV_TX_OK)) {
2005 if (rc & ~NETDEV_TX_MASK)
2006 goto out_kfree_gso_skb;
2007 nskb->next = skb->next;
2008 skb->next = nskb;
2009 return rc;
2010 }
2011 txq_trans_update(txq);
2012 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2013 return NETDEV_TX_BUSY;
2014 } while (skb->next);
2015
2016 out_kfree_gso_skb:
2017 if (likely(skb->next == NULL))
2018 skb->destructor = DEV_GSO_CB(skb)->destructor;
2019 out_kfree_skb:
2020 kfree_skb(skb);
2021 return rc;
2022 }
2023
2024 static u32 hashrnd __read_mostly;
2025
2026 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2027 {
2028 u32 hash;
2029
2030 if (skb_rx_queue_recorded(skb)) {
2031 hash = skb_get_rx_queue(skb);
2032 while (unlikely(hash >= dev->real_num_tx_queues))
2033 hash -= dev->real_num_tx_queues;
2034 return hash;
2035 }
2036
2037 if (skb->sk && skb->sk->sk_hash)
2038 hash = skb->sk->sk_hash;
2039 else
2040 hash = (__force u16) skb->protocol ^ skb->rxhash;
2041 hash = jhash_1word(hash, hashrnd);
2042
2043 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2044 }
2045 EXPORT_SYMBOL(skb_tx_hash);
2046
2047 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2048 {
2049 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2050 if (net_ratelimit()) {
2051 pr_warning("%s selects TX queue %d, but "
2052 "real number of TX queues is %d\n",
2053 dev->name, queue_index, dev->real_num_tx_queues);
2054 }
2055 return 0;
2056 }
2057 return queue_index;
2058 }
2059
2060 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2061 struct sk_buff *skb)
2062 {
2063 int queue_index;
2064 struct sock *sk = skb->sk;
2065
2066 queue_index = sk_tx_queue_get(sk);
2067 if (queue_index < 0) {
2068 const struct net_device_ops *ops = dev->netdev_ops;
2069
2070 if (ops->ndo_select_queue) {
2071 queue_index = ops->ndo_select_queue(dev, skb);
2072 queue_index = dev_cap_txqueue(dev, queue_index);
2073 } else {
2074 queue_index = 0;
2075 if (dev->real_num_tx_queues > 1)
2076 queue_index = skb_tx_hash(dev, skb);
2077
2078 if (sk) {
2079 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2080
2081 if (dst && skb_dst(skb) == dst)
2082 sk_tx_queue_set(sk, queue_index);
2083 }
2084 }
2085 }
2086
2087 skb_set_queue_mapping(skb, queue_index);
2088 return netdev_get_tx_queue(dev, queue_index);
2089 }
2090
2091 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2092 struct net_device *dev,
2093 struct netdev_queue *txq)
2094 {
2095 spinlock_t *root_lock = qdisc_lock(q);
2096 bool contended = qdisc_is_running(q);
2097 int rc;
2098
2099 /*
2100 * Heuristic to force contended enqueues to serialize on a
2101 * separate lock before trying to get qdisc main lock.
2102 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2103 * and dequeue packets faster.
2104 */
2105 if (unlikely(contended))
2106 spin_lock(&q->busylock);
2107
2108 spin_lock(root_lock);
2109 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2110 kfree_skb(skb);
2111 rc = NET_XMIT_DROP;
2112 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2113 qdisc_run_begin(q)) {
2114 /*
2115 * This is a work-conserving queue; there are no old skbs
2116 * waiting to be sent out; and the qdisc is not running -
2117 * xmit the skb directly.
2118 */
2119 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2120 skb_dst_force(skb);
2121 __qdisc_update_bstats(q, skb->len);
2122 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2123 if (unlikely(contended)) {
2124 spin_unlock(&q->busylock);
2125 contended = false;
2126 }
2127 __qdisc_run(q);
2128 } else
2129 qdisc_run_end(q);
2130
2131 rc = NET_XMIT_SUCCESS;
2132 } else {
2133 skb_dst_force(skb);
2134 rc = qdisc_enqueue_root(skb, q);
2135 if (qdisc_run_begin(q)) {
2136 if (unlikely(contended)) {
2137 spin_unlock(&q->busylock);
2138 contended = false;
2139 }
2140 __qdisc_run(q);
2141 }
2142 }
2143 spin_unlock(root_lock);
2144 if (unlikely(contended))
2145 spin_unlock(&q->busylock);
2146 return rc;
2147 }
2148
2149 /**
2150 * dev_queue_xmit - transmit a buffer
2151 * @skb: buffer to transmit
2152 *
2153 * Queue a buffer for transmission to a network device. The caller must
2154 * have set the device and priority and built the buffer before calling
2155 * this function. The function can be called from an interrupt.
2156 *
2157 * A negative errno code is returned on a failure. A success does not
2158 * guarantee the frame will be transmitted as it may be dropped due
2159 * to congestion or traffic shaping.
2160 *
2161 * -----------------------------------------------------------------------------------
2162 * I notice this method can also return errors from the queue disciplines,
2163 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2164 * be positive.
2165 *
2166 * Regardless of the return value, the skb is consumed, so it is currently
2167 * difficult to retry a send to this method. (You can bump the ref count
2168 * before sending to hold a reference for retry if you are careful.)
2169 *
2170 * When calling this method, interrupts MUST be enabled. This is because
2171 * the BH enable code must have IRQs enabled so that it will not deadlock.
2172 * --BLG
2173 */
2174 int dev_queue_xmit(struct sk_buff *skb)
2175 {
2176 struct net_device *dev = skb->dev;
2177 struct netdev_queue *txq;
2178 struct Qdisc *q;
2179 int rc = -ENOMEM;
2180
2181 /* Disable soft irqs for various locks below. Also
2182 * stops preemption for RCU.
2183 */
2184 rcu_read_lock_bh();
2185
2186 txq = dev_pick_tx(dev, skb);
2187 q = rcu_dereference_bh(txq->qdisc);
2188
2189 #ifdef CONFIG_NET_CLS_ACT
2190 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2191 #endif
2192 if (q->enqueue) {
2193 rc = __dev_xmit_skb(skb, q, dev, txq);
2194 goto out;
2195 }
2196
2197 /* The device has no queue. Common case for software devices:
2198 loopback, all the sorts of tunnels...
2199
2200 Really, it is unlikely that netif_tx_lock protection is necessary
2201 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2202 counters.)
2203 However, it is possible, that they rely on protection
2204 made by us here.
2205
2206 Check this and shot the lock. It is not prone from deadlocks.
2207 Either shot noqueue qdisc, it is even simpler 8)
2208 */
2209 if (dev->flags & IFF_UP) {
2210 int cpu = smp_processor_id(); /* ok because BHs are off */
2211
2212 if (txq->xmit_lock_owner != cpu) {
2213
2214 HARD_TX_LOCK(dev, txq, cpu);
2215
2216 if (!netif_tx_queue_stopped(txq)) {
2217 rc = dev_hard_start_xmit(skb, dev, txq);
2218 if (dev_xmit_complete(rc)) {
2219 HARD_TX_UNLOCK(dev, txq);
2220 goto out;
2221 }
2222 }
2223 HARD_TX_UNLOCK(dev, txq);
2224 if (net_ratelimit())
2225 printk(KERN_CRIT "Virtual device %s asks to "
2226 "queue packet!\n", dev->name);
2227 } else {
2228 /* Recursion is detected! It is possible,
2229 * unfortunately */
2230 if (net_ratelimit())
2231 printk(KERN_CRIT "Dead loop on virtual device "
2232 "%s, fix it urgently!\n", dev->name);
2233 }
2234 }
2235
2236 rc = -ENETDOWN;
2237 rcu_read_unlock_bh();
2238
2239 kfree_skb(skb);
2240 return rc;
2241 out:
2242 rcu_read_unlock_bh();
2243 return rc;
2244 }
2245 EXPORT_SYMBOL(dev_queue_xmit);
2246
2247
2248 /*=======================================================================
2249 Receiver routines
2250 =======================================================================*/
2251
2252 int netdev_max_backlog __read_mostly = 1000;
2253 int netdev_tstamp_prequeue __read_mostly = 1;
2254 int netdev_budget __read_mostly = 300;
2255 int weight_p __read_mostly = 64; /* old backlog weight */
2256
2257 /* Called with irq disabled */
2258 static inline void ____napi_schedule(struct softnet_data *sd,
2259 struct napi_struct *napi)
2260 {
2261 list_add_tail(&napi->poll_list, &sd->poll_list);
2262 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2263 }
2264
2265 #ifdef CONFIG_RPS
2266
2267 /* One global table that all flow-based protocols share. */
2268 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2269 EXPORT_SYMBOL(rps_sock_flow_table);
2270
2271 /*
2272 * get_rps_cpu is called from netif_receive_skb and returns the target
2273 * CPU from the RPS map of the receiving queue for a given skb.
2274 * rcu_read_lock must be held on entry.
2275 */
2276 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2277 struct rps_dev_flow **rflowp)
2278 {
2279 struct ipv6hdr *ip6;
2280 struct iphdr *ip;
2281 struct netdev_rx_queue *rxqueue;
2282 struct rps_map *map;
2283 struct rps_dev_flow_table *flow_table;
2284 struct rps_sock_flow_table *sock_flow_table;
2285 int cpu = -1;
2286 u8 ip_proto;
2287 u16 tcpu;
2288 u32 addr1, addr2, ihl;
2289 union {
2290 u32 v32;
2291 u16 v16[2];
2292 } ports;
2293
2294 if (skb_rx_queue_recorded(skb)) {
2295 u16 index = skb_get_rx_queue(skb);
2296 if (unlikely(index >= dev->num_rx_queues)) {
2297 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2298 "on queue %u, but number of RX queues is %u\n",
2299 dev->name, index, dev->num_rx_queues);
2300 goto done;
2301 }
2302 rxqueue = dev->_rx + index;
2303 } else
2304 rxqueue = dev->_rx;
2305
2306 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2307 goto done;
2308
2309 if (skb->rxhash)
2310 goto got_hash; /* Skip hash computation on packet header */
2311
2312 switch (skb->protocol) {
2313 case __constant_htons(ETH_P_IP):
2314 if (!pskb_may_pull(skb, sizeof(*ip)))
2315 goto done;
2316
2317 ip = (struct iphdr *) skb->data;
2318 ip_proto = ip->protocol;
2319 addr1 = (__force u32) ip->saddr;
2320 addr2 = (__force u32) ip->daddr;
2321 ihl = ip->ihl;
2322 break;
2323 case __constant_htons(ETH_P_IPV6):
2324 if (!pskb_may_pull(skb, sizeof(*ip6)))
2325 goto done;
2326
2327 ip6 = (struct ipv6hdr *) skb->data;
2328 ip_proto = ip6->nexthdr;
2329 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2330 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2331 ihl = (40 >> 2);
2332 break;
2333 default:
2334 goto done;
2335 }
2336 switch (ip_proto) {
2337 case IPPROTO_TCP:
2338 case IPPROTO_UDP:
2339 case IPPROTO_DCCP:
2340 case IPPROTO_ESP:
2341 case IPPROTO_AH:
2342 case IPPROTO_SCTP:
2343 case IPPROTO_UDPLITE:
2344 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2345 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2346 if (ports.v16[1] < ports.v16[0])
2347 swap(ports.v16[0], ports.v16[1]);
2348 break;
2349 }
2350 default:
2351 ports.v32 = 0;
2352 break;
2353 }
2354
2355 /* get a consistent hash (same value on both flow directions) */
2356 if (addr2 < addr1)
2357 swap(addr1, addr2);
2358 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2359 if (!skb->rxhash)
2360 skb->rxhash = 1;
2361
2362 got_hash:
2363 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2364 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2365 if (flow_table && sock_flow_table) {
2366 u16 next_cpu;
2367 struct rps_dev_flow *rflow;
2368
2369 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2370 tcpu = rflow->cpu;
2371
2372 next_cpu = sock_flow_table->ents[skb->rxhash &
2373 sock_flow_table->mask];
2374
2375 /*
2376 * If the desired CPU (where last recvmsg was done) is
2377 * different from current CPU (one in the rx-queue flow
2378 * table entry), switch if one of the following holds:
2379 * - Current CPU is unset (equal to RPS_NO_CPU).
2380 * - Current CPU is offline.
2381 * - The current CPU's queue tail has advanced beyond the
2382 * last packet that was enqueued using this table entry.
2383 * This guarantees that all previous packets for the flow
2384 * have been dequeued, thus preserving in order delivery.
2385 */
2386 if (unlikely(tcpu != next_cpu) &&
2387 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2388 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2389 rflow->last_qtail)) >= 0)) {
2390 tcpu = rflow->cpu = next_cpu;
2391 if (tcpu != RPS_NO_CPU)
2392 rflow->last_qtail = per_cpu(softnet_data,
2393 tcpu).input_queue_head;
2394 }
2395 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2396 *rflowp = rflow;
2397 cpu = tcpu;
2398 goto done;
2399 }
2400 }
2401
2402 map = rcu_dereference(rxqueue->rps_map);
2403 if (map) {
2404 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2405
2406 if (cpu_online(tcpu)) {
2407 cpu = tcpu;
2408 goto done;
2409 }
2410 }
2411
2412 done:
2413 return cpu;
2414 }
2415
2416 /* Called from hardirq (IPI) context */
2417 static void rps_trigger_softirq(void *data)
2418 {
2419 struct softnet_data *sd = data;
2420
2421 ____napi_schedule(sd, &sd->backlog);
2422 sd->received_rps++;
2423 }
2424
2425 #endif /* CONFIG_RPS */
2426
2427 /*
2428 * Check if this softnet_data structure is another cpu one
2429 * If yes, queue it to our IPI list and return 1
2430 * If no, return 0
2431 */
2432 static int rps_ipi_queued(struct softnet_data *sd)
2433 {
2434 #ifdef CONFIG_RPS
2435 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2436
2437 if (sd != mysd) {
2438 sd->rps_ipi_next = mysd->rps_ipi_list;
2439 mysd->rps_ipi_list = sd;
2440
2441 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2442 return 1;
2443 }
2444 #endif /* CONFIG_RPS */
2445 return 0;
2446 }
2447
2448 /*
2449 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2450 * queue (may be a remote CPU queue).
2451 */
2452 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2453 unsigned int *qtail)
2454 {
2455 struct softnet_data *sd;
2456 unsigned long flags;
2457
2458 sd = &per_cpu(softnet_data, cpu);
2459
2460 local_irq_save(flags);
2461
2462 rps_lock(sd);
2463 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2464 if (skb_queue_len(&sd->input_pkt_queue)) {
2465 enqueue:
2466 __skb_queue_tail(&sd->input_pkt_queue, skb);
2467 input_queue_tail_incr_save(sd, qtail);
2468 rps_unlock(sd);
2469 local_irq_restore(flags);
2470 return NET_RX_SUCCESS;
2471 }
2472
2473 /* Schedule NAPI for backlog device
2474 * We can use non atomic operation since we own the queue lock
2475 */
2476 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2477 if (!rps_ipi_queued(sd))
2478 ____napi_schedule(sd, &sd->backlog);
2479 }
2480 goto enqueue;
2481 }
2482
2483 sd->dropped++;
2484 rps_unlock(sd);
2485
2486 local_irq_restore(flags);
2487
2488 kfree_skb(skb);
2489 return NET_RX_DROP;
2490 }
2491
2492 /**
2493 * netif_rx - post buffer to the network code
2494 * @skb: buffer to post
2495 *
2496 * This function receives a packet from a device driver and queues it for
2497 * the upper (protocol) levels to process. It always succeeds. The buffer
2498 * may be dropped during processing for congestion control or by the
2499 * protocol layers.
2500 *
2501 * return values:
2502 * NET_RX_SUCCESS (no congestion)
2503 * NET_RX_DROP (packet was dropped)
2504 *
2505 */
2506
2507 int netif_rx(struct sk_buff *skb)
2508 {
2509 int ret;
2510
2511 /* if netpoll wants it, pretend we never saw it */
2512 if (netpoll_rx(skb))
2513 return NET_RX_DROP;
2514
2515 if (netdev_tstamp_prequeue)
2516 net_timestamp_check(skb);
2517
2518 #ifdef CONFIG_RPS
2519 {
2520 struct rps_dev_flow voidflow, *rflow = &voidflow;
2521 int cpu;
2522
2523 rcu_read_lock();
2524
2525 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2526 if (cpu < 0)
2527 cpu = smp_processor_id();
2528
2529 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2530
2531 rcu_read_unlock();
2532 }
2533 #else
2534 {
2535 unsigned int qtail;
2536 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2537 put_cpu();
2538 }
2539 #endif
2540 return ret;
2541 }
2542 EXPORT_SYMBOL(netif_rx);
2543
2544 int netif_rx_ni(struct sk_buff *skb)
2545 {
2546 int err;
2547
2548 preempt_disable();
2549 err = netif_rx(skb);
2550 if (local_softirq_pending())
2551 do_softirq();
2552 preempt_enable();
2553
2554 return err;
2555 }
2556 EXPORT_SYMBOL(netif_rx_ni);
2557
2558 static void net_tx_action(struct softirq_action *h)
2559 {
2560 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2561
2562 if (sd->completion_queue) {
2563 struct sk_buff *clist;
2564
2565 local_irq_disable();
2566 clist = sd->completion_queue;
2567 sd->completion_queue = NULL;
2568 local_irq_enable();
2569
2570 while (clist) {
2571 struct sk_buff *skb = clist;
2572 clist = clist->next;
2573
2574 WARN_ON(atomic_read(&skb->users));
2575 __kfree_skb(skb);
2576 }
2577 }
2578
2579 if (sd->output_queue) {
2580 struct Qdisc *head;
2581
2582 local_irq_disable();
2583 head = sd->output_queue;
2584 sd->output_queue = NULL;
2585 sd->output_queue_tailp = &sd->output_queue;
2586 local_irq_enable();
2587
2588 while (head) {
2589 struct Qdisc *q = head;
2590 spinlock_t *root_lock;
2591
2592 head = head->next_sched;
2593
2594 root_lock = qdisc_lock(q);
2595 if (spin_trylock(root_lock)) {
2596 smp_mb__before_clear_bit();
2597 clear_bit(__QDISC_STATE_SCHED,
2598 &q->state);
2599 qdisc_run(q);
2600 spin_unlock(root_lock);
2601 } else {
2602 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2603 &q->state)) {
2604 __netif_reschedule(q);
2605 } else {
2606 smp_mb__before_clear_bit();
2607 clear_bit(__QDISC_STATE_SCHED,
2608 &q->state);
2609 }
2610 }
2611 }
2612 }
2613 }
2614
2615 static inline int deliver_skb(struct sk_buff *skb,
2616 struct packet_type *pt_prev,
2617 struct net_device *orig_dev)
2618 {
2619 atomic_inc(&skb->users);
2620 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2621 }
2622
2623 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2624 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2625 /* This hook is defined here for ATM LANE */
2626 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2627 unsigned char *addr) __read_mostly;
2628 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2629 #endif
2630
2631 #ifdef CONFIG_NET_CLS_ACT
2632 /* TODO: Maybe we should just force sch_ingress to be compiled in
2633 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2634 * a compare and 2 stores extra right now if we dont have it on
2635 * but have CONFIG_NET_CLS_ACT
2636 * NOTE: This doesnt stop any functionality; if you dont have
2637 * the ingress scheduler, you just cant add policies on ingress.
2638 *
2639 */
2640 static int ing_filter(struct sk_buff *skb)
2641 {
2642 struct net_device *dev = skb->dev;
2643 u32 ttl = G_TC_RTTL(skb->tc_verd);
2644 struct netdev_queue *rxq;
2645 int result = TC_ACT_OK;
2646 struct Qdisc *q;
2647
2648 if (MAX_RED_LOOP < ttl++) {
2649 printk(KERN_WARNING
2650 "Redir loop detected Dropping packet (%d->%d)\n",
2651 skb->skb_iif, dev->ifindex);
2652 return TC_ACT_SHOT;
2653 }
2654
2655 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2656 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2657
2658 rxq = &dev->rx_queue;
2659
2660 q = rxq->qdisc;
2661 if (q != &noop_qdisc) {
2662 spin_lock(qdisc_lock(q));
2663 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2664 result = qdisc_enqueue_root(skb, q);
2665 spin_unlock(qdisc_lock(q));
2666 }
2667
2668 return result;
2669 }
2670
2671 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2672 struct packet_type **pt_prev,
2673 int *ret, struct net_device *orig_dev)
2674 {
2675 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2676 goto out;
2677
2678 if (*pt_prev) {
2679 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2680 *pt_prev = NULL;
2681 }
2682
2683 switch (ing_filter(skb)) {
2684 case TC_ACT_SHOT:
2685 case TC_ACT_STOLEN:
2686 kfree_skb(skb);
2687 return NULL;
2688 }
2689
2690 out:
2691 skb->tc_verd = 0;
2692 return skb;
2693 }
2694 #endif
2695
2696 /*
2697 * netif_nit_deliver - deliver received packets to network taps
2698 * @skb: buffer
2699 *
2700 * This function is used to deliver incoming packets to network
2701 * taps. It should be used when the normal netif_receive_skb path
2702 * is bypassed, for example because of VLAN acceleration.
2703 */
2704 void netif_nit_deliver(struct sk_buff *skb)
2705 {
2706 struct packet_type *ptype;
2707
2708 if (list_empty(&ptype_all))
2709 return;
2710
2711 skb_reset_network_header(skb);
2712 skb_reset_transport_header(skb);
2713 skb->mac_len = skb->network_header - skb->mac_header;
2714
2715 rcu_read_lock();
2716 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2717 if (!ptype->dev || ptype->dev == skb->dev)
2718 deliver_skb(skb, ptype, skb->dev);
2719 }
2720 rcu_read_unlock();
2721 }
2722
2723 /**
2724 * netdev_rx_handler_register - register receive handler
2725 * @dev: device to register a handler for
2726 * @rx_handler: receive handler to register
2727 * @rx_handler_data: data pointer that is used by rx handler
2728 *
2729 * Register a receive hander for a device. This handler will then be
2730 * called from __netif_receive_skb. A negative errno code is returned
2731 * on a failure.
2732 *
2733 * The caller must hold the rtnl_mutex.
2734 */
2735 int netdev_rx_handler_register(struct net_device *dev,
2736 rx_handler_func_t *rx_handler,
2737 void *rx_handler_data)
2738 {
2739 ASSERT_RTNL();
2740
2741 if (dev->rx_handler)
2742 return -EBUSY;
2743
2744 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2745 rcu_assign_pointer(dev->rx_handler, rx_handler);
2746
2747 return 0;
2748 }
2749 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2750
2751 /**
2752 * netdev_rx_handler_unregister - unregister receive handler
2753 * @dev: device to unregister a handler from
2754 *
2755 * Unregister a receive hander from a device.
2756 *
2757 * The caller must hold the rtnl_mutex.
2758 */
2759 void netdev_rx_handler_unregister(struct net_device *dev)
2760 {
2761
2762 ASSERT_RTNL();
2763 rcu_assign_pointer(dev->rx_handler, NULL);
2764 rcu_assign_pointer(dev->rx_handler_data, NULL);
2765 }
2766 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2767
2768 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2769 struct net_device *master)
2770 {
2771 if (skb->pkt_type == PACKET_HOST) {
2772 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2773
2774 memcpy(dest, master->dev_addr, ETH_ALEN);
2775 }
2776 }
2777
2778 /* On bonding slaves other than the currently active slave, suppress
2779 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2780 * ARP on active-backup slaves with arp_validate enabled.
2781 */
2782 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2783 {
2784 struct net_device *dev = skb->dev;
2785
2786 if (master->priv_flags & IFF_MASTER_ARPMON)
2787 dev->last_rx = jiffies;
2788
2789 if ((master->priv_flags & IFF_MASTER_ALB) &&
2790 (master->priv_flags & IFF_BRIDGE_PORT)) {
2791 /* Do address unmangle. The local destination address
2792 * will be always the one master has. Provides the right
2793 * functionality in a bridge.
2794 */
2795 skb_bond_set_mac_by_master(skb, master);
2796 }
2797
2798 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2799 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2800 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2801 return 0;
2802
2803 if (master->priv_flags & IFF_MASTER_ALB) {
2804 if (skb->pkt_type != PACKET_BROADCAST &&
2805 skb->pkt_type != PACKET_MULTICAST)
2806 return 0;
2807 }
2808 if (master->priv_flags & IFF_MASTER_8023AD &&
2809 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2810 return 0;
2811
2812 return 1;
2813 }
2814 return 0;
2815 }
2816 EXPORT_SYMBOL(__skb_bond_should_drop);
2817
2818 static int __netif_receive_skb(struct sk_buff *skb)
2819 {
2820 struct packet_type *ptype, *pt_prev;
2821 rx_handler_func_t *rx_handler;
2822 struct net_device *orig_dev;
2823 struct net_device *master;
2824 struct net_device *null_or_orig;
2825 struct net_device *orig_or_bond;
2826 int ret = NET_RX_DROP;
2827 __be16 type;
2828
2829 if (!netdev_tstamp_prequeue)
2830 net_timestamp_check(skb);
2831
2832 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2833 return NET_RX_SUCCESS;
2834
2835 /* if we've gotten here through NAPI, check netpoll */
2836 if (netpoll_receive_skb(skb))
2837 return NET_RX_DROP;
2838
2839 if (!skb->skb_iif)
2840 skb->skb_iif = skb->dev->ifindex;
2841
2842 /*
2843 * bonding note: skbs received on inactive slaves should only
2844 * be delivered to pkt handlers that are exact matches. Also
2845 * the deliver_no_wcard flag will be set. If packet handlers
2846 * are sensitive to duplicate packets these skbs will need to
2847 * be dropped at the handler. The vlan accel path may have
2848 * already set the deliver_no_wcard flag.
2849 */
2850 null_or_orig = NULL;
2851 orig_dev = skb->dev;
2852 master = ACCESS_ONCE(orig_dev->master);
2853 if (skb->deliver_no_wcard)
2854 null_or_orig = orig_dev;
2855 else if (master) {
2856 if (skb_bond_should_drop(skb, master)) {
2857 skb->deliver_no_wcard = 1;
2858 null_or_orig = orig_dev; /* deliver only exact match */
2859 } else
2860 skb->dev = master;
2861 }
2862
2863 __this_cpu_inc(softnet_data.processed);
2864 skb_reset_network_header(skb);
2865 skb_reset_transport_header(skb);
2866 skb->mac_len = skb->network_header - skb->mac_header;
2867
2868 pt_prev = NULL;
2869
2870 rcu_read_lock();
2871
2872 #ifdef CONFIG_NET_CLS_ACT
2873 if (skb->tc_verd & TC_NCLS) {
2874 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2875 goto ncls;
2876 }
2877 #endif
2878
2879 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2880 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2881 ptype->dev == orig_dev) {
2882 if (pt_prev)
2883 ret = deliver_skb(skb, pt_prev, orig_dev);
2884 pt_prev = ptype;
2885 }
2886 }
2887
2888 #ifdef CONFIG_NET_CLS_ACT
2889 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2890 if (!skb)
2891 goto out;
2892 ncls:
2893 #endif
2894
2895 /* Handle special case of bridge or macvlan */
2896 rx_handler = rcu_dereference(skb->dev->rx_handler);
2897 if (rx_handler) {
2898 if (pt_prev) {
2899 ret = deliver_skb(skb, pt_prev, orig_dev);
2900 pt_prev = NULL;
2901 }
2902 skb = rx_handler(skb);
2903 if (!skb)
2904 goto out;
2905 }
2906
2907 /*
2908 * Make sure frames received on VLAN interfaces stacked on
2909 * bonding interfaces still make their way to any base bonding
2910 * device that may have registered for a specific ptype. The
2911 * handler may have to adjust skb->dev and orig_dev.
2912 */
2913 orig_or_bond = orig_dev;
2914 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2915 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2916 orig_or_bond = vlan_dev_real_dev(skb->dev);
2917 }
2918
2919 type = skb->protocol;
2920 list_for_each_entry_rcu(ptype,
2921 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2922 if (ptype->type == type && (ptype->dev == null_or_orig ||
2923 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2924 ptype->dev == orig_or_bond)) {
2925 if (pt_prev)
2926 ret = deliver_skb(skb, pt_prev, orig_dev);
2927 pt_prev = ptype;
2928 }
2929 }
2930
2931 if (pt_prev) {
2932 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2933 } else {
2934 kfree_skb(skb);
2935 /* Jamal, now you will not able to escape explaining
2936 * me how you were going to use this. :-)
2937 */
2938 ret = NET_RX_DROP;
2939 }
2940
2941 out:
2942 rcu_read_unlock();
2943 return ret;
2944 }
2945
2946 /**
2947 * netif_receive_skb - process receive buffer from network
2948 * @skb: buffer to process
2949 *
2950 * netif_receive_skb() is the main receive data processing function.
2951 * It always succeeds. The buffer may be dropped during processing
2952 * for congestion control or by the protocol layers.
2953 *
2954 * This function may only be called from softirq context and interrupts
2955 * should be enabled.
2956 *
2957 * Return values (usually ignored):
2958 * NET_RX_SUCCESS: no congestion
2959 * NET_RX_DROP: packet was dropped
2960 */
2961 int netif_receive_skb(struct sk_buff *skb)
2962 {
2963 if (netdev_tstamp_prequeue)
2964 net_timestamp_check(skb);
2965
2966 if (skb_defer_rx_timestamp(skb))
2967 return NET_RX_SUCCESS;
2968
2969 #ifdef CONFIG_RPS
2970 {
2971 struct rps_dev_flow voidflow, *rflow = &voidflow;
2972 int cpu, ret;
2973
2974 rcu_read_lock();
2975
2976 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2977
2978 if (cpu >= 0) {
2979 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2980 rcu_read_unlock();
2981 } else {
2982 rcu_read_unlock();
2983 ret = __netif_receive_skb(skb);
2984 }
2985
2986 return ret;
2987 }
2988 #else
2989 return __netif_receive_skb(skb);
2990 #endif
2991 }
2992 EXPORT_SYMBOL(netif_receive_skb);
2993
2994 /* Network device is going away, flush any packets still pending
2995 * Called with irqs disabled.
2996 */
2997 static void flush_backlog(void *arg)
2998 {
2999 struct net_device *dev = arg;
3000 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3001 struct sk_buff *skb, *tmp;
3002
3003 rps_lock(sd);
3004 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3005 if (skb->dev == dev) {
3006 __skb_unlink(skb, &sd->input_pkt_queue);
3007 kfree_skb(skb);
3008 input_queue_head_incr(sd);
3009 }
3010 }
3011 rps_unlock(sd);
3012
3013 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3014 if (skb->dev == dev) {
3015 __skb_unlink(skb, &sd->process_queue);
3016 kfree_skb(skb);
3017 input_queue_head_incr(sd);
3018 }
3019 }
3020 }
3021
3022 static int napi_gro_complete(struct sk_buff *skb)
3023 {
3024 struct packet_type *ptype;
3025 __be16 type = skb->protocol;
3026 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3027 int err = -ENOENT;
3028
3029 if (NAPI_GRO_CB(skb)->count == 1) {
3030 skb_shinfo(skb)->gso_size = 0;
3031 goto out;
3032 }
3033
3034 rcu_read_lock();
3035 list_for_each_entry_rcu(ptype, head, list) {
3036 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3037 continue;
3038
3039 err = ptype->gro_complete(skb);
3040 break;
3041 }
3042 rcu_read_unlock();
3043
3044 if (err) {
3045 WARN_ON(&ptype->list == head);
3046 kfree_skb(skb);
3047 return NET_RX_SUCCESS;
3048 }
3049
3050 out:
3051 return netif_receive_skb(skb);
3052 }
3053
3054 static void napi_gro_flush(struct napi_struct *napi)
3055 {
3056 struct sk_buff *skb, *next;
3057
3058 for (skb = napi->gro_list; skb; skb = next) {
3059 next = skb->next;
3060 skb->next = NULL;
3061 napi_gro_complete(skb);
3062 }
3063
3064 napi->gro_count = 0;
3065 napi->gro_list = NULL;
3066 }
3067
3068 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3069 {
3070 struct sk_buff **pp = NULL;
3071 struct packet_type *ptype;
3072 __be16 type = skb->protocol;
3073 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3074 int same_flow;
3075 int mac_len;
3076 enum gro_result ret;
3077
3078 if (!(skb->dev->features & NETIF_F_GRO))
3079 goto normal;
3080
3081 if (skb_is_gso(skb) || skb_has_frags(skb))
3082 goto normal;
3083
3084 rcu_read_lock();
3085 list_for_each_entry_rcu(ptype, head, list) {
3086 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3087 continue;
3088
3089 skb_set_network_header(skb, skb_gro_offset(skb));
3090 mac_len = skb->network_header - skb->mac_header;
3091 skb->mac_len = mac_len;
3092 NAPI_GRO_CB(skb)->same_flow = 0;
3093 NAPI_GRO_CB(skb)->flush = 0;
3094 NAPI_GRO_CB(skb)->free = 0;
3095
3096 pp = ptype->gro_receive(&napi->gro_list, skb);
3097 break;
3098 }
3099 rcu_read_unlock();
3100
3101 if (&ptype->list == head)
3102 goto normal;
3103
3104 same_flow = NAPI_GRO_CB(skb)->same_flow;
3105 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3106
3107 if (pp) {
3108 struct sk_buff *nskb = *pp;
3109
3110 *pp = nskb->next;
3111 nskb->next = NULL;
3112 napi_gro_complete(nskb);
3113 napi->gro_count--;
3114 }
3115
3116 if (same_flow)
3117 goto ok;
3118
3119 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3120 goto normal;
3121
3122 napi->gro_count++;
3123 NAPI_GRO_CB(skb)->count = 1;
3124 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3125 skb->next = napi->gro_list;
3126 napi->gro_list = skb;
3127 ret = GRO_HELD;
3128
3129 pull:
3130 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3131 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3132
3133 BUG_ON(skb->end - skb->tail < grow);
3134
3135 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3136
3137 skb->tail += grow;
3138 skb->data_len -= grow;
3139
3140 skb_shinfo(skb)->frags[0].page_offset += grow;
3141 skb_shinfo(skb)->frags[0].size -= grow;
3142
3143 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3144 put_page(skb_shinfo(skb)->frags[0].page);
3145 memmove(skb_shinfo(skb)->frags,
3146 skb_shinfo(skb)->frags + 1,
3147 --skb_shinfo(skb)->nr_frags);
3148 }
3149 }
3150
3151 ok:
3152 return ret;
3153
3154 normal:
3155 ret = GRO_NORMAL;
3156 goto pull;
3157 }
3158 EXPORT_SYMBOL(dev_gro_receive);
3159
3160 static gro_result_t
3161 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3162 {
3163 struct sk_buff *p;
3164
3165 if (netpoll_rx_on(skb))
3166 return GRO_NORMAL;
3167
3168 for (p = napi->gro_list; p; p = p->next) {
3169 NAPI_GRO_CB(p)->same_flow =
3170 (p->dev == skb->dev) &&
3171 !compare_ether_header(skb_mac_header(p),
3172 skb_gro_mac_header(skb));
3173 NAPI_GRO_CB(p)->flush = 0;
3174 }
3175
3176 return dev_gro_receive(napi, skb);
3177 }
3178
3179 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3180 {
3181 switch (ret) {
3182 case GRO_NORMAL:
3183 if (netif_receive_skb(skb))
3184 ret = GRO_DROP;
3185 break;
3186
3187 case GRO_DROP:
3188 case GRO_MERGED_FREE:
3189 kfree_skb(skb);
3190 break;
3191
3192 case GRO_HELD:
3193 case GRO_MERGED:
3194 break;
3195 }
3196
3197 return ret;
3198 }
3199 EXPORT_SYMBOL(napi_skb_finish);
3200
3201 void skb_gro_reset_offset(struct sk_buff *skb)
3202 {
3203 NAPI_GRO_CB(skb)->data_offset = 0;
3204 NAPI_GRO_CB(skb)->frag0 = NULL;
3205 NAPI_GRO_CB(skb)->frag0_len = 0;
3206
3207 if (skb->mac_header == skb->tail &&
3208 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3209 NAPI_GRO_CB(skb)->frag0 =
3210 page_address(skb_shinfo(skb)->frags[0].page) +
3211 skb_shinfo(skb)->frags[0].page_offset;
3212 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3213 }
3214 }
3215 EXPORT_SYMBOL(skb_gro_reset_offset);
3216
3217 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3218 {
3219 skb_gro_reset_offset(skb);
3220
3221 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3222 }
3223 EXPORT_SYMBOL(napi_gro_receive);
3224
3225 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3226 {
3227 __skb_pull(skb, skb_headlen(skb));
3228 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3229
3230 napi->skb = skb;
3231 }
3232 EXPORT_SYMBOL(napi_reuse_skb);
3233
3234 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3235 {
3236 struct sk_buff *skb = napi->skb;
3237
3238 if (!skb) {
3239 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3240 if (skb)
3241 napi->skb = skb;
3242 }
3243 return skb;
3244 }
3245 EXPORT_SYMBOL(napi_get_frags);
3246
3247 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3248 gro_result_t ret)
3249 {
3250 switch (ret) {
3251 case GRO_NORMAL:
3252 case GRO_HELD:
3253 skb->protocol = eth_type_trans(skb, skb->dev);
3254
3255 if (ret == GRO_HELD)
3256 skb_gro_pull(skb, -ETH_HLEN);
3257 else if (netif_receive_skb(skb))
3258 ret = GRO_DROP;
3259 break;
3260
3261 case GRO_DROP:
3262 case GRO_MERGED_FREE:
3263 napi_reuse_skb(napi, skb);
3264 break;
3265
3266 case GRO_MERGED:
3267 break;
3268 }
3269
3270 return ret;
3271 }
3272 EXPORT_SYMBOL(napi_frags_finish);
3273
3274 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3275 {
3276 struct sk_buff *skb = napi->skb;
3277 struct ethhdr *eth;
3278 unsigned int hlen;
3279 unsigned int off;
3280
3281 napi->skb = NULL;
3282
3283 skb_reset_mac_header(skb);
3284 skb_gro_reset_offset(skb);
3285
3286 off = skb_gro_offset(skb);
3287 hlen = off + sizeof(*eth);
3288 eth = skb_gro_header_fast(skb, off);
3289 if (skb_gro_header_hard(skb, hlen)) {
3290 eth = skb_gro_header_slow(skb, hlen, off);
3291 if (unlikely(!eth)) {
3292 napi_reuse_skb(napi, skb);
3293 skb = NULL;
3294 goto out;
3295 }
3296 }
3297
3298 skb_gro_pull(skb, sizeof(*eth));
3299
3300 /*
3301 * This works because the only protocols we care about don't require
3302 * special handling. We'll fix it up properly at the end.
3303 */
3304 skb->protocol = eth->h_proto;
3305
3306 out:
3307 return skb;
3308 }
3309 EXPORT_SYMBOL(napi_frags_skb);
3310
3311 gro_result_t napi_gro_frags(struct napi_struct *napi)
3312 {
3313 struct sk_buff *skb = napi_frags_skb(napi);
3314
3315 if (!skb)
3316 return GRO_DROP;
3317
3318 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3319 }
3320 EXPORT_SYMBOL(napi_gro_frags);
3321
3322 /*
3323 * net_rps_action sends any pending IPI's for rps.
3324 * Note: called with local irq disabled, but exits with local irq enabled.
3325 */
3326 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3327 {
3328 #ifdef CONFIG_RPS
3329 struct softnet_data *remsd = sd->rps_ipi_list;
3330
3331 if (remsd) {
3332 sd->rps_ipi_list = NULL;
3333
3334 local_irq_enable();
3335
3336 /* Send pending IPI's to kick RPS processing on remote cpus. */
3337 while (remsd) {
3338 struct softnet_data *next = remsd->rps_ipi_next;
3339
3340 if (cpu_online(remsd->cpu))
3341 __smp_call_function_single(remsd->cpu,
3342 &remsd->csd, 0);
3343 remsd = next;
3344 }
3345 } else
3346 #endif
3347 local_irq_enable();
3348 }
3349
3350 static int process_backlog(struct napi_struct *napi, int quota)
3351 {
3352 int work = 0;
3353 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3354
3355 #ifdef CONFIG_RPS
3356 /* Check if we have pending ipi, its better to send them now,
3357 * not waiting net_rx_action() end.
3358 */
3359 if (sd->rps_ipi_list) {
3360 local_irq_disable();
3361 net_rps_action_and_irq_enable(sd);
3362 }
3363 #endif
3364 napi->weight = weight_p;
3365 local_irq_disable();
3366 while (work < quota) {
3367 struct sk_buff *skb;
3368 unsigned int qlen;
3369
3370 while ((skb = __skb_dequeue(&sd->process_queue))) {
3371 local_irq_enable();
3372 __netif_receive_skb(skb);
3373 local_irq_disable();
3374 input_queue_head_incr(sd);
3375 if (++work >= quota) {
3376 local_irq_enable();
3377 return work;
3378 }
3379 }
3380
3381 rps_lock(sd);
3382 qlen = skb_queue_len(&sd->input_pkt_queue);
3383 if (qlen)
3384 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3385 &sd->process_queue);
3386
3387 if (qlen < quota - work) {
3388 /*
3389 * Inline a custom version of __napi_complete().
3390 * only current cpu owns and manipulates this napi,
3391 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3392 * we can use a plain write instead of clear_bit(),
3393 * and we dont need an smp_mb() memory barrier.
3394 */
3395 list_del(&napi->poll_list);
3396 napi->state = 0;
3397
3398 quota = work + qlen;
3399 }
3400 rps_unlock(sd);
3401 }
3402 local_irq_enable();
3403
3404 return work;
3405 }
3406
3407 /**
3408 * __napi_schedule - schedule for receive
3409 * @n: entry to schedule
3410 *
3411 * The entry's receive function will be scheduled to run
3412 */
3413 void __napi_schedule(struct napi_struct *n)
3414 {
3415 unsigned long flags;
3416
3417 local_irq_save(flags);
3418 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3419 local_irq_restore(flags);
3420 }
3421 EXPORT_SYMBOL(__napi_schedule);
3422
3423 void __napi_complete(struct napi_struct *n)
3424 {
3425 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3426 BUG_ON(n->gro_list);
3427
3428 list_del(&n->poll_list);
3429 smp_mb__before_clear_bit();
3430 clear_bit(NAPI_STATE_SCHED, &n->state);
3431 }
3432 EXPORT_SYMBOL(__napi_complete);
3433
3434 void napi_complete(struct napi_struct *n)
3435 {
3436 unsigned long flags;
3437
3438 /*
3439 * don't let napi dequeue from the cpu poll list
3440 * just in case its running on a different cpu
3441 */
3442 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3443 return;
3444
3445 napi_gro_flush(n);
3446 local_irq_save(flags);
3447 __napi_complete(n);
3448 local_irq_restore(flags);
3449 }
3450 EXPORT_SYMBOL(napi_complete);
3451
3452 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3453 int (*poll)(struct napi_struct *, int), int weight)
3454 {
3455 INIT_LIST_HEAD(&napi->poll_list);
3456 napi->gro_count = 0;
3457 napi->gro_list = NULL;
3458 napi->skb = NULL;
3459 napi->poll = poll;
3460 napi->weight = weight;
3461 list_add(&napi->dev_list, &dev->napi_list);
3462 napi->dev = dev;
3463 #ifdef CONFIG_NETPOLL
3464 spin_lock_init(&napi->poll_lock);
3465 napi->poll_owner = -1;
3466 #endif
3467 set_bit(NAPI_STATE_SCHED, &napi->state);
3468 }
3469 EXPORT_SYMBOL(netif_napi_add);
3470
3471 void netif_napi_del(struct napi_struct *napi)
3472 {
3473 struct sk_buff *skb, *next;
3474
3475 list_del_init(&napi->dev_list);
3476 napi_free_frags(napi);
3477
3478 for (skb = napi->gro_list; skb; skb = next) {
3479 next = skb->next;
3480 skb->next = NULL;
3481 kfree_skb(skb);
3482 }
3483
3484 napi->gro_list = NULL;
3485 napi->gro_count = 0;
3486 }
3487 EXPORT_SYMBOL(netif_napi_del);
3488
3489 static void net_rx_action(struct softirq_action *h)
3490 {
3491 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3492 unsigned long time_limit = jiffies + 2;
3493 int budget = netdev_budget;
3494 void *have;
3495
3496 local_irq_disable();
3497
3498 while (!list_empty(&sd->poll_list)) {
3499 struct napi_struct *n;
3500 int work, weight;
3501
3502 /* If softirq window is exhuasted then punt.
3503 * Allow this to run for 2 jiffies since which will allow
3504 * an average latency of 1.5/HZ.
3505 */
3506 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3507 goto softnet_break;
3508
3509 local_irq_enable();
3510
3511 /* Even though interrupts have been re-enabled, this
3512 * access is safe because interrupts can only add new
3513 * entries to the tail of this list, and only ->poll()
3514 * calls can remove this head entry from the list.
3515 */
3516 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3517
3518 have = netpoll_poll_lock(n);
3519
3520 weight = n->weight;
3521
3522 /* This NAPI_STATE_SCHED test is for avoiding a race
3523 * with netpoll's poll_napi(). Only the entity which
3524 * obtains the lock and sees NAPI_STATE_SCHED set will
3525 * actually make the ->poll() call. Therefore we avoid
3526 * accidently calling ->poll() when NAPI is not scheduled.
3527 */
3528 work = 0;
3529 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3530 work = n->poll(n, weight);
3531 trace_napi_poll(n);
3532 }
3533
3534 WARN_ON_ONCE(work > weight);
3535
3536 budget -= work;
3537
3538 local_irq_disable();
3539
3540 /* Drivers must not modify the NAPI state if they
3541 * consume the entire weight. In such cases this code
3542 * still "owns" the NAPI instance and therefore can
3543 * move the instance around on the list at-will.
3544 */
3545 if (unlikely(work == weight)) {
3546 if (unlikely(napi_disable_pending(n))) {
3547 local_irq_enable();
3548 napi_complete(n);
3549 local_irq_disable();
3550 } else
3551 list_move_tail(&n->poll_list, &sd->poll_list);
3552 }
3553
3554 netpoll_poll_unlock(have);
3555 }
3556 out:
3557 net_rps_action_and_irq_enable(sd);
3558
3559 #ifdef CONFIG_NET_DMA
3560 /*
3561 * There may not be any more sk_buffs coming right now, so push
3562 * any pending DMA copies to hardware
3563 */
3564 dma_issue_pending_all();
3565 #endif
3566
3567 return;
3568
3569 softnet_break:
3570 sd->time_squeeze++;
3571 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3572 goto out;
3573 }
3574
3575 static gifconf_func_t *gifconf_list[NPROTO];
3576
3577 /**
3578 * register_gifconf - register a SIOCGIF handler
3579 * @family: Address family
3580 * @gifconf: Function handler
3581 *
3582 * Register protocol dependent address dumping routines. The handler
3583 * that is passed must not be freed or reused until it has been replaced
3584 * by another handler.
3585 */
3586 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3587 {
3588 if (family >= NPROTO)
3589 return -EINVAL;
3590 gifconf_list[family] = gifconf;
3591 return 0;
3592 }
3593 EXPORT_SYMBOL(register_gifconf);
3594
3595
3596 /*
3597 * Map an interface index to its name (SIOCGIFNAME)
3598 */
3599
3600 /*
3601 * We need this ioctl for efficient implementation of the
3602 * if_indextoname() function required by the IPv6 API. Without
3603 * it, we would have to search all the interfaces to find a
3604 * match. --pb
3605 */
3606
3607 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3608 {
3609 struct net_device *dev;
3610 struct ifreq ifr;
3611
3612 /*
3613 * Fetch the caller's info block.
3614 */
3615
3616 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3617 return -EFAULT;
3618
3619 rcu_read_lock();
3620 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3621 if (!dev) {
3622 rcu_read_unlock();
3623 return -ENODEV;
3624 }
3625
3626 strcpy(ifr.ifr_name, dev->name);
3627 rcu_read_unlock();
3628
3629 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3630 return -EFAULT;
3631 return 0;
3632 }
3633
3634 /*
3635 * Perform a SIOCGIFCONF call. This structure will change
3636 * size eventually, and there is nothing I can do about it.
3637 * Thus we will need a 'compatibility mode'.
3638 */
3639
3640 static int dev_ifconf(struct net *net, char __user *arg)
3641 {
3642 struct ifconf ifc;
3643 struct net_device *dev;
3644 char __user *pos;
3645 int len;
3646 int total;
3647 int i;
3648
3649 /*
3650 * Fetch the caller's info block.
3651 */
3652
3653 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3654 return -EFAULT;
3655
3656 pos = ifc.ifc_buf;
3657 len = ifc.ifc_len;
3658
3659 /*
3660 * Loop over the interfaces, and write an info block for each.
3661 */
3662
3663 total = 0;
3664 for_each_netdev(net, dev) {
3665 for (i = 0; i < NPROTO; i++) {
3666 if (gifconf_list[i]) {
3667 int done;
3668 if (!pos)
3669 done = gifconf_list[i](dev, NULL, 0);
3670 else
3671 done = gifconf_list[i](dev, pos + total,
3672 len - total);
3673 if (done < 0)
3674 return -EFAULT;
3675 total += done;
3676 }
3677 }
3678 }
3679
3680 /*
3681 * All done. Write the updated control block back to the caller.
3682 */
3683 ifc.ifc_len = total;
3684
3685 /*
3686 * Both BSD and Solaris return 0 here, so we do too.
3687 */
3688 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3689 }
3690
3691 #ifdef CONFIG_PROC_FS
3692 /*
3693 * This is invoked by the /proc filesystem handler to display a device
3694 * in detail.
3695 */
3696 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3697 __acquires(RCU)
3698 {
3699 struct net *net = seq_file_net(seq);
3700 loff_t off;
3701 struct net_device *dev;
3702
3703 rcu_read_lock();
3704 if (!*pos)
3705 return SEQ_START_TOKEN;
3706
3707 off = 1;
3708 for_each_netdev_rcu(net, dev)
3709 if (off++ == *pos)
3710 return dev;
3711
3712 return NULL;
3713 }
3714
3715 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3716 {
3717 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3718 first_net_device(seq_file_net(seq)) :
3719 next_net_device((struct net_device *)v);
3720
3721 ++*pos;
3722 return rcu_dereference(dev);
3723 }
3724
3725 void dev_seq_stop(struct seq_file *seq, void *v)
3726 __releases(RCU)
3727 {
3728 rcu_read_unlock();
3729 }
3730
3731 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3732 {
3733 struct rtnl_link_stats64 temp;
3734 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3735
3736 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3737 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3738 dev->name, stats->rx_bytes, stats->rx_packets,
3739 stats->rx_errors,
3740 stats->rx_dropped + stats->rx_missed_errors,
3741 stats->rx_fifo_errors,
3742 stats->rx_length_errors + stats->rx_over_errors +
3743 stats->rx_crc_errors + stats->rx_frame_errors,
3744 stats->rx_compressed, stats->multicast,
3745 stats->tx_bytes, stats->tx_packets,
3746 stats->tx_errors, stats->tx_dropped,
3747 stats->tx_fifo_errors, stats->collisions,
3748 stats->tx_carrier_errors +
3749 stats->tx_aborted_errors +
3750 stats->tx_window_errors +
3751 stats->tx_heartbeat_errors,
3752 stats->tx_compressed);
3753 }
3754
3755 /*
3756 * Called from the PROCfs module. This now uses the new arbitrary sized
3757 * /proc/net interface to create /proc/net/dev
3758 */
3759 static int dev_seq_show(struct seq_file *seq, void *v)
3760 {
3761 if (v == SEQ_START_TOKEN)
3762 seq_puts(seq, "Inter-| Receive "
3763 " | Transmit\n"
3764 " face |bytes packets errs drop fifo frame "
3765 "compressed multicast|bytes packets errs "
3766 "drop fifo colls carrier compressed\n");
3767 else
3768 dev_seq_printf_stats(seq, v);
3769 return 0;
3770 }
3771
3772 static struct softnet_data *softnet_get_online(loff_t *pos)
3773 {
3774 struct softnet_data *sd = NULL;
3775
3776 while (*pos < nr_cpu_ids)
3777 if (cpu_online(*pos)) {
3778 sd = &per_cpu(softnet_data, *pos);
3779 break;
3780 } else
3781 ++*pos;
3782 return sd;
3783 }
3784
3785 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3786 {
3787 return softnet_get_online(pos);
3788 }
3789
3790 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3791 {
3792 ++*pos;
3793 return softnet_get_online(pos);
3794 }
3795
3796 static void softnet_seq_stop(struct seq_file *seq, void *v)
3797 {
3798 }
3799
3800 static int softnet_seq_show(struct seq_file *seq, void *v)
3801 {
3802 struct softnet_data *sd = v;
3803
3804 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3805 sd->processed, sd->dropped, sd->time_squeeze, 0,
3806 0, 0, 0, 0, /* was fastroute */
3807 sd->cpu_collision, sd->received_rps);
3808 return 0;
3809 }
3810
3811 static const struct seq_operations dev_seq_ops = {
3812 .start = dev_seq_start,
3813 .next = dev_seq_next,
3814 .stop = dev_seq_stop,
3815 .show = dev_seq_show,
3816 };
3817
3818 static int dev_seq_open(struct inode *inode, struct file *file)
3819 {
3820 return seq_open_net(inode, file, &dev_seq_ops,
3821 sizeof(struct seq_net_private));
3822 }
3823
3824 static const struct file_operations dev_seq_fops = {
3825 .owner = THIS_MODULE,
3826 .open = dev_seq_open,
3827 .read = seq_read,
3828 .llseek = seq_lseek,
3829 .release = seq_release_net,
3830 };
3831
3832 static const struct seq_operations softnet_seq_ops = {
3833 .start = softnet_seq_start,
3834 .next = softnet_seq_next,
3835 .stop = softnet_seq_stop,
3836 .show = softnet_seq_show,
3837 };
3838
3839 static int softnet_seq_open(struct inode *inode, struct file *file)
3840 {
3841 return seq_open(file, &softnet_seq_ops);
3842 }
3843
3844 static const struct file_operations softnet_seq_fops = {
3845 .owner = THIS_MODULE,
3846 .open = softnet_seq_open,
3847 .read = seq_read,
3848 .llseek = seq_lseek,
3849 .release = seq_release,
3850 };
3851
3852 static void *ptype_get_idx(loff_t pos)
3853 {
3854 struct packet_type *pt = NULL;
3855 loff_t i = 0;
3856 int t;
3857
3858 list_for_each_entry_rcu(pt, &ptype_all, list) {
3859 if (i == pos)
3860 return pt;
3861 ++i;
3862 }
3863
3864 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3865 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3866 if (i == pos)
3867 return pt;
3868 ++i;
3869 }
3870 }
3871 return NULL;
3872 }
3873
3874 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3875 __acquires(RCU)
3876 {
3877 rcu_read_lock();
3878 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3879 }
3880
3881 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3882 {
3883 struct packet_type *pt;
3884 struct list_head *nxt;
3885 int hash;
3886
3887 ++*pos;
3888 if (v == SEQ_START_TOKEN)
3889 return ptype_get_idx(0);
3890
3891 pt = v;
3892 nxt = pt->list.next;
3893 if (pt->type == htons(ETH_P_ALL)) {
3894 if (nxt != &ptype_all)
3895 goto found;
3896 hash = 0;
3897 nxt = ptype_base[0].next;
3898 } else
3899 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3900
3901 while (nxt == &ptype_base[hash]) {
3902 if (++hash >= PTYPE_HASH_SIZE)
3903 return NULL;
3904 nxt = ptype_base[hash].next;
3905 }
3906 found:
3907 return list_entry(nxt, struct packet_type, list);
3908 }
3909
3910 static void ptype_seq_stop(struct seq_file *seq, void *v)
3911 __releases(RCU)
3912 {
3913 rcu_read_unlock();
3914 }
3915
3916 static int ptype_seq_show(struct seq_file *seq, void *v)
3917 {
3918 struct packet_type *pt = v;
3919
3920 if (v == SEQ_START_TOKEN)
3921 seq_puts(seq, "Type Device Function\n");
3922 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3923 if (pt->type == htons(ETH_P_ALL))
3924 seq_puts(seq, "ALL ");
3925 else
3926 seq_printf(seq, "%04x", ntohs(pt->type));
3927
3928 seq_printf(seq, " %-8s %pF\n",
3929 pt->dev ? pt->dev->name : "", pt->func);
3930 }
3931
3932 return 0;
3933 }
3934
3935 static const struct seq_operations ptype_seq_ops = {
3936 .start = ptype_seq_start,
3937 .next = ptype_seq_next,
3938 .stop = ptype_seq_stop,
3939 .show = ptype_seq_show,
3940 };
3941
3942 static int ptype_seq_open(struct inode *inode, struct file *file)
3943 {
3944 return seq_open_net(inode, file, &ptype_seq_ops,
3945 sizeof(struct seq_net_private));
3946 }
3947
3948 static const struct file_operations ptype_seq_fops = {
3949 .owner = THIS_MODULE,
3950 .open = ptype_seq_open,
3951 .read = seq_read,
3952 .llseek = seq_lseek,
3953 .release = seq_release_net,
3954 };
3955
3956
3957 static int __net_init dev_proc_net_init(struct net *net)
3958 {
3959 int rc = -ENOMEM;
3960
3961 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3962 goto out;
3963 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3964 goto out_dev;
3965 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3966 goto out_softnet;
3967
3968 if (wext_proc_init(net))
3969 goto out_ptype;
3970 rc = 0;
3971 out:
3972 return rc;
3973 out_ptype:
3974 proc_net_remove(net, "ptype");
3975 out_softnet:
3976 proc_net_remove(net, "softnet_stat");
3977 out_dev:
3978 proc_net_remove(net, "dev");
3979 goto out;
3980 }
3981
3982 static void __net_exit dev_proc_net_exit(struct net *net)
3983 {
3984 wext_proc_exit(net);
3985
3986 proc_net_remove(net, "ptype");
3987 proc_net_remove(net, "softnet_stat");
3988 proc_net_remove(net, "dev");
3989 }
3990
3991 static struct pernet_operations __net_initdata dev_proc_ops = {
3992 .init = dev_proc_net_init,
3993 .exit = dev_proc_net_exit,
3994 };
3995
3996 static int __init dev_proc_init(void)
3997 {
3998 return register_pernet_subsys(&dev_proc_ops);
3999 }
4000 #else
4001 #define dev_proc_init() 0
4002 #endif /* CONFIG_PROC_FS */
4003
4004
4005 /**
4006 * netdev_set_master - set up master/slave pair
4007 * @slave: slave device
4008 * @master: new master device
4009 *
4010 * Changes the master device of the slave. Pass %NULL to break the
4011 * bonding. The caller must hold the RTNL semaphore. On a failure
4012 * a negative errno code is returned. On success the reference counts
4013 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4014 * function returns zero.
4015 */
4016 int netdev_set_master(struct net_device *slave, struct net_device *master)
4017 {
4018 struct net_device *old = slave->master;
4019
4020 ASSERT_RTNL();
4021
4022 if (master) {
4023 if (old)
4024 return -EBUSY;
4025 dev_hold(master);
4026 }
4027
4028 slave->master = master;
4029
4030 if (old) {
4031 synchronize_net();
4032 dev_put(old);
4033 }
4034 if (master)
4035 slave->flags |= IFF_SLAVE;
4036 else
4037 slave->flags &= ~IFF_SLAVE;
4038
4039 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4040 return 0;
4041 }
4042 EXPORT_SYMBOL(netdev_set_master);
4043
4044 static void dev_change_rx_flags(struct net_device *dev, int flags)
4045 {
4046 const struct net_device_ops *ops = dev->netdev_ops;
4047
4048 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4049 ops->ndo_change_rx_flags(dev, flags);
4050 }
4051
4052 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4053 {
4054 unsigned short old_flags = dev->flags;
4055 uid_t uid;
4056 gid_t gid;
4057
4058 ASSERT_RTNL();
4059
4060 dev->flags |= IFF_PROMISC;
4061 dev->promiscuity += inc;
4062 if (dev->promiscuity == 0) {
4063 /*
4064 * Avoid overflow.
4065 * If inc causes overflow, untouch promisc and return error.
4066 */
4067 if (inc < 0)
4068 dev->flags &= ~IFF_PROMISC;
4069 else {
4070 dev->promiscuity -= inc;
4071 printk(KERN_WARNING "%s: promiscuity touches roof, "
4072 "set promiscuity failed, promiscuity feature "
4073 "of device might be broken.\n", dev->name);
4074 return -EOVERFLOW;
4075 }
4076 }
4077 if (dev->flags != old_flags) {
4078 printk(KERN_INFO "device %s %s promiscuous mode\n",
4079 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4080 "left");
4081 if (audit_enabled) {
4082 current_uid_gid(&uid, &gid);
4083 audit_log(current->audit_context, GFP_ATOMIC,
4084 AUDIT_ANOM_PROMISCUOUS,
4085 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4086 dev->name, (dev->flags & IFF_PROMISC),
4087 (old_flags & IFF_PROMISC),
4088 audit_get_loginuid(current),
4089 uid, gid,
4090 audit_get_sessionid(current));
4091 }
4092
4093 dev_change_rx_flags(dev, IFF_PROMISC);
4094 }
4095 return 0;
4096 }
4097
4098 /**
4099 * dev_set_promiscuity - update promiscuity count on a device
4100 * @dev: device
4101 * @inc: modifier
4102 *
4103 * Add or remove promiscuity from a device. While the count in the device
4104 * remains above zero the interface remains promiscuous. Once it hits zero
4105 * the device reverts back to normal filtering operation. A negative inc
4106 * value is used to drop promiscuity on the device.
4107 * Return 0 if successful or a negative errno code on error.
4108 */
4109 int dev_set_promiscuity(struct net_device *dev, int inc)
4110 {
4111 unsigned short old_flags = dev->flags;
4112 int err;
4113
4114 err = __dev_set_promiscuity(dev, inc);
4115 if (err < 0)
4116 return err;
4117 if (dev->flags != old_flags)
4118 dev_set_rx_mode(dev);
4119 return err;
4120 }
4121 EXPORT_SYMBOL(dev_set_promiscuity);
4122
4123 /**
4124 * dev_set_allmulti - update allmulti count on a device
4125 * @dev: device
4126 * @inc: modifier
4127 *
4128 * Add or remove reception of all multicast frames to a device. While the
4129 * count in the device remains above zero the interface remains listening
4130 * to all interfaces. Once it hits zero the device reverts back to normal
4131 * filtering operation. A negative @inc value is used to drop the counter
4132 * when releasing a resource needing all multicasts.
4133 * Return 0 if successful or a negative errno code on error.
4134 */
4135
4136 int dev_set_allmulti(struct net_device *dev, int inc)
4137 {
4138 unsigned short old_flags = dev->flags;
4139
4140 ASSERT_RTNL();
4141
4142 dev->flags |= IFF_ALLMULTI;
4143 dev->allmulti += inc;
4144 if (dev->allmulti == 0) {
4145 /*
4146 * Avoid overflow.
4147 * If inc causes overflow, untouch allmulti and return error.
4148 */
4149 if (inc < 0)
4150 dev->flags &= ~IFF_ALLMULTI;
4151 else {
4152 dev->allmulti -= inc;
4153 printk(KERN_WARNING "%s: allmulti touches roof, "
4154 "set allmulti failed, allmulti feature of "
4155 "device might be broken.\n", dev->name);
4156 return -EOVERFLOW;
4157 }
4158 }
4159 if (dev->flags ^ old_flags) {
4160 dev_change_rx_flags(dev, IFF_ALLMULTI);
4161 dev_set_rx_mode(dev);
4162 }
4163 return 0;
4164 }
4165 EXPORT_SYMBOL(dev_set_allmulti);
4166
4167 /*
4168 * Upload unicast and multicast address lists to device and
4169 * configure RX filtering. When the device doesn't support unicast
4170 * filtering it is put in promiscuous mode while unicast addresses
4171 * are present.
4172 */
4173 void __dev_set_rx_mode(struct net_device *dev)
4174 {
4175 const struct net_device_ops *ops = dev->netdev_ops;
4176
4177 /* dev_open will call this function so the list will stay sane. */
4178 if (!(dev->flags&IFF_UP))
4179 return;
4180
4181 if (!netif_device_present(dev))
4182 return;
4183
4184 if (ops->ndo_set_rx_mode)
4185 ops->ndo_set_rx_mode(dev);
4186 else {
4187 /* Unicast addresses changes may only happen under the rtnl,
4188 * therefore calling __dev_set_promiscuity here is safe.
4189 */
4190 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4191 __dev_set_promiscuity(dev, 1);
4192 dev->uc_promisc = 1;
4193 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4194 __dev_set_promiscuity(dev, -1);
4195 dev->uc_promisc = 0;
4196 }
4197
4198 if (ops->ndo_set_multicast_list)
4199 ops->ndo_set_multicast_list(dev);
4200 }
4201 }
4202
4203 void dev_set_rx_mode(struct net_device *dev)
4204 {
4205 netif_addr_lock_bh(dev);
4206 __dev_set_rx_mode(dev);
4207 netif_addr_unlock_bh(dev);
4208 }
4209
4210 /**
4211 * dev_get_flags - get flags reported to userspace
4212 * @dev: device
4213 *
4214 * Get the combination of flag bits exported through APIs to userspace.
4215 */
4216 unsigned dev_get_flags(const struct net_device *dev)
4217 {
4218 unsigned flags;
4219
4220 flags = (dev->flags & ~(IFF_PROMISC |
4221 IFF_ALLMULTI |
4222 IFF_RUNNING |
4223 IFF_LOWER_UP |
4224 IFF_DORMANT)) |
4225 (dev->gflags & (IFF_PROMISC |
4226 IFF_ALLMULTI));
4227
4228 if (netif_running(dev)) {
4229 if (netif_oper_up(dev))
4230 flags |= IFF_RUNNING;
4231 if (netif_carrier_ok(dev))
4232 flags |= IFF_LOWER_UP;
4233 if (netif_dormant(dev))
4234 flags |= IFF_DORMANT;
4235 }
4236
4237 return flags;
4238 }
4239 EXPORT_SYMBOL(dev_get_flags);
4240
4241 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4242 {
4243 int old_flags = dev->flags;
4244 int ret;
4245
4246 ASSERT_RTNL();
4247
4248 /*
4249 * Set the flags on our device.
4250 */
4251
4252 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4253 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4254 IFF_AUTOMEDIA)) |
4255 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4256 IFF_ALLMULTI));
4257
4258 /*
4259 * Load in the correct multicast list now the flags have changed.
4260 */
4261
4262 if ((old_flags ^ flags) & IFF_MULTICAST)
4263 dev_change_rx_flags(dev, IFF_MULTICAST);
4264
4265 dev_set_rx_mode(dev);
4266
4267 /*
4268 * Have we downed the interface. We handle IFF_UP ourselves
4269 * according to user attempts to set it, rather than blindly
4270 * setting it.
4271 */
4272
4273 ret = 0;
4274 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4275 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4276
4277 if (!ret)
4278 dev_set_rx_mode(dev);
4279 }
4280
4281 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4282 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4283
4284 dev->gflags ^= IFF_PROMISC;
4285 dev_set_promiscuity(dev, inc);
4286 }
4287
4288 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4289 is important. Some (broken) drivers set IFF_PROMISC, when
4290 IFF_ALLMULTI is requested not asking us and not reporting.
4291 */
4292 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4293 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4294
4295 dev->gflags ^= IFF_ALLMULTI;
4296 dev_set_allmulti(dev, inc);
4297 }
4298
4299 return ret;
4300 }
4301
4302 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4303 {
4304 unsigned int changes = dev->flags ^ old_flags;
4305
4306 if (changes & IFF_UP) {
4307 if (dev->flags & IFF_UP)
4308 call_netdevice_notifiers(NETDEV_UP, dev);
4309 else
4310 call_netdevice_notifiers(NETDEV_DOWN, dev);
4311 }
4312
4313 if (dev->flags & IFF_UP &&
4314 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4315 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4316 }
4317
4318 /**
4319 * dev_change_flags - change device settings
4320 * @dev: device
4321 * @flags: device state flags
4322 *
4323 * Change settings on device based state flags. The flags are
4324 * in the userspace exported format.
4325 */
4326 int dev_change_flags(struct net_device *dev, unsigned flags)
4327 {
4328 int ret, changes;
4329 int old_flags = dev->flags;
4330
4331 ret = __dev_change_flags(dev, flags);
4332 if (ret < 0)
4333 return ret;
4334
4335 changes = old_flags ^ dev->flags;
4336 if (changes)
4337 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4338
4339 __dev_notify_flags(dev, old_flags);
4340 return ret;
4341 }
4342 EXPORT_SYMBOL(dev_change_flags);
4343
4344 /**
4345 * dev_set_mtu - Change maximum transfer unit
4346 * @dev: device
4347 * @new_mtu: new transfer unit
4348 *
4349 * Change the maximum transfer size of the network device.
4350 */
4351 int dev_set_mtu(struct net_device *dev, int new_mtu)
4352 {
4353 const struct net_device_ops *ops = dev->netdev_ops;
4354 int err;
4355
4356 if (new_mtu == dev->mtu)
4357 return 0;
4358
4359 /* MTU must be positive. */
4360 if (new_mtu < 0)
4361 return -EINVAL;
4362
4363 if (!netif_device_present(dev))
4364 return -ENODEV;
4365
4366 err = 0;
4367 if (ops->ndo_change_mtu)
4368 err = ops->ndo_change_mtu(dev, new_mtu);
4369 else
4370 dev->mtu = new_mtu;
4371
4372 if (!err && dev->flags & IFF_UP)
4373 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4374 return err;
4375 }
4376 EXPORT_SYMBOL(dev_set_mtu);
4377
4378 /**
4379 * dev_set_mac_address - Change Media Access Control Address
4380 * @dev: device
4381 * @sa: new address
4382 *
4383 * Change the hardware (MAC) address of the device
4384 */
4385 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4386 {
4387 const struct net_device_ops *ops = dev->netdev_ops;
4388 int err;
4389
4390 if (!ops->ndo_set_mac_address)
4391 return -EOPNOTSUPP;
4392 if (sa->sa_family != dev->type)
4393 return -EINVAL;
4394 if (!netif_device_present(dev))
4395 return -ENODEV;
4396 err = ops->ndo_set_mac_address(dev, sa);
4397 if (!err)
4398 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4399 return err;
4400 }
4401 EXPORT_SYMBOL(dev_set_mac_address);
4402
4403 /*
4404 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4405 */
4406 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4407 {
4408 int err;
4409 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4410
4411 if (!dev)
4412 return -ENODEV;
4413
4414 switch (cmd) {
4415 case SIOCGIFFLAGS: /* Get interface flags */
4416 ifr->ifr_flags = (short) dev_get_flags(dev);
4417 return 0;
4418
4419 case SIOCGIFMETRIC: /* Get the metric on the interface
4420 (currently unused) */
4421 ifr->ifr_metric = 0;
4422 return 0;
4423
4424 case SIOCGIFMTU: /* Get the MTU of a device */
4425 ifr->ifr_mtu = dev->mtu;
4426 return 0;
4427
4428 case SIOCGIFHWADDR:
4429 if (!dev->addr_len)
4430 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4431 else
4432 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4433 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4434 ifr->ifr_hwaddr.sa_family = dev->type;
4435 return 0;
4436
4437 case SIOCGIFSLAVE:
4438 err = -EINVAL;
4439 break;
4440
4441 case SIOCGIFMAP:
4442 ifr->ifr_map.mem_start = dev->mem_start;
4443 ifr->ifr_map.mem_end = dev->mem_end;
4444 ifr->ifr_map.base_addr = dev->base_addr;
4445 ifr->ifr_map.irq = dev->irq;
4446 ifr->ifr_map.dma = dev->dma;
4447 ifr->ifr_map.port = dev->if_port;
4448 return 0;
4449
4450 case SIOCGIFINDEX:
4451 ifr->ifr_ifindex = dev->ifindex;
4452 return 0;
4453
4454 case SIOCGIFTXQLEN:
4455 ifr->ifr_qlen = dev->tx_queue_len;
4456 return 0;
4457
4458 default:
4459 /* dev_ioctl() should ensure this case
4460 * is never reached
4461 */
4462 WARN_ON(1);
4463 err = -EINVAL;
4464 break;
4465
4466 }
4467 return err;
4468 }
4469
4470 /*
4471 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4472 */
4473 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4474 {
4475 int err;
4476 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4477 const struct net_device_ops *ops;
4478
4479 if (!dev)
4480 return -ENODEV;
4481
4482 ops = dev->netdev_ops;
4483
4484 switch (cmd) {
4485 case SIOCSIFFLAGS: /* Set interface flags */
4486 return dev_change_flags(dev, ifr->ifr_flags);
4487
4488 case SIOCSIFMETRIC: /* Set the metric on the interface
4489 (currently unused) */
4490 return -EOPNOTSUPP;
4491
4492 case SIOCSIFMTU: /* Set the MTU of a device */
4493 return dev_set_mtu(dev, ifr->ifr_mtu);
4494
4495 case SIOCSIFHWADDR:
4496 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4497
4498 case SIOCSIFHWBROADCAST:
4499 if (ifr->ifr_hwaddr.sa_family != dev->type)
4500 return -EINVAL;
4501 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4502 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4503 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4504 return 0;
4505
4506 case SIOCSIFMAP:
4507 if (ops->ndo_set_config) {
4508 if (!netif_device_present(dev))
4509 return -ENODEV;
4510 return ops->ndo_set_config(dev, &ifr->ifr_map);
4511 }
4512 return -EOPNOTSUPP;
4513
4514 case SIOCADDMULTI:
4515 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4516 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4517 return -EINVAL;
4518 if (!netif_device_present(dev))
4519 return -ENODEV;
4520 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4521
4522 case SIOCDELMULTI:
4523 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4524 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4525 return -EINVAL;
4526 if (!netif_device_present(dev))
4527 return -ENODEV;
4528 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4529
4530 case SIOCSIFTXQLEN:
4531 if (ifr->ifr_qlen < 0)
4532 return -EINVAL;
4533 dev->tx_queue_len = ifr->ifr_qlen;
4534 return 0;
4535
4536 case SIOCSIFNAME:
4537 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4538 return dev_change_name(dev, ifr->ifr_newname);
4539
4540 /*
4541 * Unknown or private ioctl
4542 */
4543 default:
4544 if ((cmd >= SIOCDEVPRIVATE &&
4545 cmd <= SIOCDEVPRIVATE + 15) ||
4546 cmd == SIOCBONDENSLAVE ||
4547 cmd == SIOCBONDRELEASE ||
4548 cmd == SIOCBONDSETHWADDR ||
4549 cmd == SIOCBONDSLAVEINFOQUERY ||
4550 cmd == SIOCBONDINFOQUERY ||
4551 cmd == SIOCBONDCHANGEACTIVE ||
4552 cmd == SIOCGMIIPHY ||
4553 cmd == SIOCGMIIREG ||
4554 cmd == SIOCSMIIREG ||
4555 cmd == SIOCBRADDIF ||
4556 cmd == SIOCBRDELIF ||
4557 cmd == SIOCSHWTSTAMP ||
4558 cmd == SIOCWANDEV) {
4559 err = -EOPNOTSUPP;
4560 if (ops->ndo_do_ioctl) {
4561 if (netif_device_present(dev))
4562 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4563 else
4564 err = -ENODEV;
4565 }
4566 } else
4567 err = -EINVAL;
4568
4569 }
4570 return err;
4571 }
4572
4573 /*
4574 * This function handles all "interface"-type I/O control requests. The actual
4575 * 'doing' part of this is dev_ifsioc above.
4576 */
4577
4578 /**
4579 * dev_ioctl - network device ioctl
4580 * @net: the applicable net namespace
4581 * @cmd: command to issue
4582 * @arg: pointer to a struct ifreq in user space
4583 *
4584 * Issue ioctl functions to devices. This is normally called by the
4585 * user space syscall interfaces but can sometimes be useful for
4586 * other purposes. The return value is the return from the syscall if
4587 * positive or a negative errno code on error.
4588 */
4589
4590 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4591 {
4592 struct ifreq ifr;
4593 int ret;
4594 char *colon;
4595
4596 /* One special case: SIOCGIFCONF takes ifconf argument
4597 and requires shared lock, because it sleeps writing
4598 to user space.
4599 */
4600
4601 if (cmd == SIOCGIFCONF) {
4602 rtnl_lock();
4603 ret = dev_ifconf(net, (char __user *) arg);
4604 rtnl_unlock();
4605 return ret;
4606 }
4607 if (cmd == SIOCGIFNAME)
4608 return dev_ifname(net, (struct ifreq __user *)arg);
4609
4610 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4611 return -EFAULT;
4612
4613 ifr.ifr_name[IFNAMSIZ-1] = 0;
4614
4615 colon = strchr(ifr.ifr_name, ':');
4616 if (colon)
4617 *colon = 0;
4618
4619 /*
4620 * See which interface the caller is talking about.
4621 */
4622
4623 switch (cmd) {
4624 /*
4625 * These ioctl calls:
4626 * - can be done by all.
4627 * - atomic and do not require locking.
4628 * - return a value
4629 */
4630 case SIOCGIFFLAGS:
4631 case SIOCGIFMETRIC:
4632 case SIOCGIFMTU:
4633 case SIOCGIFHWADDR:
4634 case SIOCGIFSLAVE:
4635 case SIOCGIFMAP:
4636 case SIOCGIFINDEX:
4637 case SIOCGIFTXQLEN:
4638 dev_load(net, ifr.ifr_name);
4639 rcu_read_lock();
4640 ret = dev_ifsioc_locked(net, &ifr, cmd);
4641 rcu_read_unlock();
4642 if (!ret) {
4643 if (colon)
4644 *colon = ':';
4645 if (copy_to_user(arg, &ifr,
4646 sizeof(struct ifreq)))
4647 ret = -EFAULT;
4648 }
4649 return ret;
4650
4651 case SIOCETHTOOL:
4652 dev_load(net, ifr.ifr_name);
4653 rtnl_lock();
4654 ret = dev_ethtool(net, &ifr);
4655 rtnl_unlock();
4656 if (!ret) {
4657 if (colon)
4658 *colon = ':';
4659 if (copy_to_user(arg, &ifr,
4660 sizeof(struct ifreq)))
4661 ret = -EFAULT;
4662 }
4663 return ret;
4664
4665 /*
4666 * These ioctl calls:
4667 * - require superuser power.
4668 * - require strict serialization.
4669 * - return a value
4670 */
4671 case SIOCGMIIPHY:
4672 case SIOCGMIIREG:
4673 case SIOCSIFNAME:
4674 if (!capable(CAP_NET_ADMIN))
4675 return -EPERM;
4676 dev_load(net, ifr.ifr_name);
4677 rtnl_lock();
4678 ret = dev_ifsioc(net, &ifr, cmd);
4679 rtnl_unlock();
4680 if (!ret) {
4681 if (colon)
4682 *colon = ':';
4683 if (copy_to_user(arg, &ifr,
4684 sizeof(struct ifreq)))
4685 ret = -EFAULT;
4686 }
4687 return ret;
4688
4689 /*
4690 * These ioctl calls:
4691 * - require superuser power.
4692 * - require strict serialization.
4693 * - do not return a value
4694 */
4695 case SIOCSIFFLAGS:
4696 case SIOCSIFMETRIC:
4697 case SIOCSIFMTU:
4698 case SIOCSIFMAP:
4699 case SIOCSIFHWADDR:
4700 case SIOCSIFSLAVE:
4701 case SIOCADDMULTI:
4702 case SIOCDELMULTI:
4703 case SIOCSIFHWBROADCAST:
4704 case SIOCSIFTXQLEN:
4705 case SIOCSMIIREG:
4706 case SIOCBONDENSLAVE:
4707 case SIOCBONDRELEASE:
4708 case SIOCBONDSETHWADDR:
4709 case SIOCBONDCHANGEACTIVE:
4710 case SIOCBRADDIF:
4711 case SIOCBRDELIF:
4712 case SIOCSHWTSTAMP:
4713 if (!capable(CAP_NET_ADMIN))
4714 return -EPERM;
4715 /* fall through */
4716 case SIOCBONDSLAVEINFOQUERY:
4717 case SIOCBONDINFOQUERY:
4718 dev_load(net, ifr.ifr_name);
4719 rtnl_lock();
4720 ret = dev_ifsioc(net, &ifr, cmd);
4721 rtnl_unlock();
4722 return ret;
4723
4724 case SIOCGIFMEM:
4725 /* Get the per device memory space. We can add this but
4726 * currently do not support it */
4727 case SIOCSIFMEM:
4728 /* Set the per device memory buffer space.
4729 * Not applicable in our case */
4730 case SIOCSIFLINK:
4731 return -EINVAL;
4732
4733 /*
4734 * Unknown or private ioctl.
4735 */
4736 default:
4737 if (cmd == SIOCWANDEV ||
4738 (cmd >= SIOCDEVPRIVATE &&
4739 cmd <= SIOCDEVPRIVATE + 15)) {
4740 dev_load(net, ifr.ifr_name);
4741 rtnl_lock();
4742 ret = dev_ifsioc(net, &ifr, cmd);
4743 rtnl_unlock();
4744 if (!ret && copy_to_user(arg, &ifr,
4745 sizeof(struct ifreq)))
4746 ret = -EFAULT;
4747 return ret;
4748 }
4749 /* Take care of Wireless Extensions */
4750 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4751 return wext_handle_ioctl(net, &ifr, cmd, arg);
4752 return -EINVAL;
4753 }
4754 }
4755
4756
4757 /**
4758 * dev_new_index - allocate an ifindex
4759 * @net: the applicable net namespace
4760 *
4761 * Returns a suitable unique value for a new device interface
4762 * number. The caller must hold the rtnl semaphore or the
4763 * dev_base_lock to be sure it remains unique.
4764 */
4765 static int dev_new_index(struct net *net)
4766 {
4767 static int ifindex;
4768 for (;;) {
4769 if (++ifindex <= 0)
4770 ifindex = 1;
4771 if (!__dev_get_by_index(net, ifindex))
4772 return ifindex;
4773 }
4774 }
4775
4776 /* Delayed registration/unregisteration */
4777 static LIST_HEAD(net_todo_list);
4778
4779 static void net_set_todo(struct net_device *dev)
4780 {
4781 list_add_tail(&dev->todo_list, &net_todo_list);
4782 }
4783
4784 static void rollback_registered_many(struct list_head *head)
4785 {
4786 struct net_device *dev, *tmp;
4787
4788 BUG_ON(dev_boot_phase);
4789 ASSERT_RTNL();
4790
4791 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4792 /* Some devices call without registering
4793 * for initialization unwind. Remove those
4794 * devices and proceed with the remaining.
4795 */
4796 if (dev->reg_state == NETREG_UNINITIALIZED) {
4797 pr_debug("unregister_netdevice: device %s/%p never "
4798 "was registered\n", dev->name, dev);
4799
4800 WARN_ON(1);
4801 list_del(&dev->unreg_list);
4802 continue;
4803 }
4804
4805 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4806
4807 /* If device is running, close it first. */
4808 dev_close(dev);
4809
4810 /* And unlink it from device chain. */
4811 unlist_netdevice(dev);
4812
4813 dev->reg_state = NETREG_UNREGISTERING;
4814 }
4815
4816 synchronize_net();
4817
4818 list_for_each_entry(dev, head, unreg_list) {
4819 /* Shutdown queueing discipline. */
4820 dev_shutdown(dev);
4821
4822
4823 /* Notify protocols, that we are about to destroy
4824 this device. They should clean all the things.
4825 */
4826 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4827
4828 if (!dev->rtnl_link_ops ||
4829 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4830 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4831
4832 /*
4833 * Flush the unicast and multicast chains
4834 */
4835 dev_uc_flush(dev);
4836 dev_mc_flush(dev);
4837
4838 if (dev->netdev_ops->ndo_uninit)
4839 dev->netdev_ops->ndo_uninit(dev);
4840
4841 /* Notifier chain MUST detach us from master device. */
4842 WARN_ON(dev->master);
4843
4844 /* Remove entries from kobject tree */
4845 netdev_unregister_kobject(dev);
4846 }
4847
4848 /* Process any work delayed until the end of the batch */
4849 dev = list_first_entry(head, struct net_device, unreg_list);
4850 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4851
4852 synchronize_net();
4853
4854 list_for_each_entry(dev, head, unreg_list)
4855 dev_put(dev);
4856 }
4857
4858 static void rollback_registered(struct net_device *dev)
4859 {
4860 LIST_HEAD(single);
4861
4862 list_add(&dev->unreg_list, &single);
4863 rollback_registered_many(&single);
4864 }
4865
4866 static void __netdev_init_queue_locks_one(struct net_device *dev,
4867 struct netdev_queue *dev_queue,
4868 void *_unused)
4869 {
4870 spin_lock_init(&dev_queue->_xmit_lock);
4871 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4872 dev_queue->xmit_lock_owner = -1;
4873 }
4874
4875 static void netdev_init_queue_locks(struct net_device *dev)
4876 {
4877 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4878 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4879 }
4880
4881 unsigned long netdev_fix_features(unsigned long features, const char *name)
4882 {
4883 /* Fix illegal SG+CSUM combinations. */
4884 if ((features & NETIF_F_SG) &&
4885 !(features & NETIF_F_ALL_CSUM)) {
4886 if (name)
4887 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4888 "checksum feature.\n", name);
4889 features &= ~NETIF_F_SG;
4890 }
4891
4892 /* TSO requires that SG is present as well. */
4893 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4894 if (name)
4895 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4896 "SG feature.\n", name);
4897 features &= ~NETIF_F_TSO;
4898 }
4899
4900 if (features & NETIF_F_UFO) {
4901 if (!(features & NETIF_F_GEN_CSUM)) {
4902 if (name)
4903 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4904 "since no NETIF_F_HW_CSUM feature.\n",
4905 name);
4906 features &= ~NETIF_F_UFO;
4907 }
4908
4909 if (!(features & NETIF_F_SG)) {
4910 if (name)
4911 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4912 "since no NETIF_F_SG feature.\n", name);
4913 features &= ~NETIF_F_UFO;
4914 }
4915 }
4916
4917 return features;
4918 }
4919 EXPORT_SYMBOL(netdev_fix_features);
4920
4921 /**
4922 * netif_stacked_transfer_operstate - transfer operstate
4923 * @rootdev: the root or lower level device to transfer state from
4924 * @dev: the device to transfer operstate to
4925 *
4926 * Transfer operational state from root to device. This is normally
4927 * called when a stacking relationship exists between the root
4928 * device and the device(a leaf device).
4929 */
4930 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4931 struct net_device *dev)
4932 {
4933 if (rootdev->operstate == IF_OPER_DORMANT)
4934 netif_dormant_on(dev);
4935 else
4936 netif_dormant_off(dev);
4937
4938 if (netif_carrier_ok(rootdev)) {
4939 if (!netif_carrier_ok(dev))
4940 netif_carrier_on(dev);
4941 } else {
4942 if (netif_carrier_ok(dev))
4943 netif_carrier_off(dev);
4944 }
4945 }
4946 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4947
4948 /**
4949 * register_netdevice - register a network device
4950 * @dev: device to register
4951 *
4952 * Take a completed network device structure and add it to the kernel
4953 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4954 * chain. 0 is returned on success. A negative errno code is returned
4955 * on a failure to set up the device, or if the name is a duplicate.
4956 *
4957 * Callers must hold the rtnl semaphore. You may want
4958 * register_netdev() instead of this.
4959 *
4960 * BUGS:
4961 * The locking appears insufficient to guarantee two parallel registers
4962 * will not get the same name.
4963 */
4964
4965 int register_netdevice(struct net_device *dev)
4966 {
4967 int ret;
4968 struct net *net = dev_net(dev);
4969
4970 BUG_ON(dev_boot_phase);
4971 ASSERT_RTNL();
4972
4973 might_sleep();
4974
4975 /* When net_device's are persistent, this will be fatal. */
4976 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4977 BUG_ON(!net);
4978
4979 spin_lock_init(&dev->addr_list_lock);
4980 netdev_set_addr_lockdep_class(dev);
4981 netdev_init_queue_locks(dev);
4982
4983 dev->iflink = -1;
4984
4985 #ifdef CONFIG_RPS
4986 if (!dev->num_rx_queues) {
4987 /*
4988 * Allocate a single RX queue if driver never called
4989 * alloc_netdev_mq
4990 */
4991
4992 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4993 if (!dev->_rx) {
4994 ret = -ENOMEM;
4995 goto out;
4996 }
4997
4998 dev->_rx->first = dev->_rx;
4999 atomic_set(&dev->_rx->count, 1);
5000 dev->num_rx_queues = 1;
5001 }
5002 #endif
5003 /* Init, if this function is available */
5004 if (dev->netdev_ops->ndo_init) {
5005 ret = dev->netdev_ops->ndo_init(dev);
5006 if (ret) {
5007 if (ret > 0)
5008 ret = -EIO;
5009 goto out;
5010 }
5011 }
5012
5013 ret = dev_get_valid_name(dev, dev->name, 0);
5014 if (ret)
5015 goto err_uninit;
5016
5017 dev->ifindex = dev_new_index(net);
5018 if (dev->iflink == -1)
5019 dev->iflink = dev->ifindex;
5020
5021 /* Fix illegal checksum combinations */
5022 if ((dev->features & NETIF_F_HW_CSUM) &&
5023 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5024 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5025 dev->name);
5026 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5027 }
5028
5029 if ((dev->features & NETIF_F_NO_CSUM) &&
5030 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5031 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5032 dev->name);
5033 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5034 }
5035
5036 dev->features = netdev_fix_features(dev->features, dev->name);
5037
5038 /* Enable software GSO if SG is supported. */
5039 if (dev->features & NETIF_F_SG)
5040 dev->features |= NETIF_F_GSO;
5041
5042 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5043 ret = notifier_to_errno(ret);
5044 if (ret)
5045 goto err_uninit;
5046
5047 ret = netdev_register_kobject(dev);
5048 if (ret)
5049 goto err_uninit;
5050 dev->reg_state = NETREG_REGISTERED;
5051
5052 /*
5053 * Default initial state at registry is that the
5054 * device is present.
5055 */
5056
5057 set_bit(__LINK_STATE_PRESENT, &dev->state);
5058
5059 dev_init_scheduler(dev);
5060 dev_hold(dev);
5061 list_netdevice(dev);
5062
5063 /* Notify protocols, that a new device appeared. */
5064 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5065 ret = notifier_to_errno(ret);
5066 if (ret) {
5067 rollback_registered(dev);
5068 dev->reg_state = NETREG_UNREGISTERED;
5069 }
5070 /*
5071 * Prevent userspace races by waiting until the network
5072 * device is fully setup before sending notifications.
5073 */
5074 if (!dev->rtnl_link_ops ||
5075 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5076 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5077
5078 out:
5079 return ret;
5080
5081 err_uninit:
5082 if (dev->netdev_ops->ndo_uninit)
5083 dev->netdev_ops->ndo_uninit(dev);
5084 goto out;
5085 }
5086 EXPORT_SYMBOL(register_netdevice);
5087
5088 /**
5089 * init_dummy_netdev - init a dummy network device for NAPI
5090 * @dev: device to init
5091 *
5092 * This takes a network device structure and initialize the minimum
5093 * amount of fields so it can be used to schedule NAPI polls without
5094 * registering a full blown interface. This is to be used by drivers
5095 * that need to tie several hardware interfaces to a single NAPI
5096 * poll scheduler due to HW limitations.
5097 */
5098 int init_dummy_netdev(struct net_device *dev)
5099 {
5100 /* Clear everything. Note we don't initialize spinlocks
5101 * are they aren't supposed to be taken by any of the
5102 * NAPI code and this dummy netdev is supposed to be
5103 * only ever used for NAPI polls
5104 */
5105 memset(dev, 0, sizeof(struct net_device));
5106
5107 /* make sure we BUG if trying to hit standard
5108 * register/unregister code path
5109 */
5110 dev->reg_state = NETREG_DUMMY;
5111
5112 /* initialize the ref count */
5113 atomic_set(&dev->refcnt, 1);
5114
5115 /* NAPI wants this */
5116 INIT_LIST_HEAD(&dev->napi_list);
5117
5118 /* a dummy interface is started by default */
5119 set_bit(__LINK_STATE_PRESENT, &dev->state);
5120 set_bit(__LINK_STATE_START, &dev->state);
5121
5122 return 0;
5123 }
5124 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5125
5126
5127 /**
5128 * register_netdev - register a network device
5129 * @dev: device to register
5130 *
5131 * Take a completed network device structure and add it to the kernel
5132 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5133 * chain. 0 is returned on success. A negative errno code is returned
5134 * on a failure to set up the device, or if the name is a duplicate.
5135 *
5136 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5137 * and expands the device name if you passed a format string to
5138 * alloc_netdev.
5139 */
5140 int register_netdev(struct net_device *dev)
5141 {
5142 int err;
5143
5144 rtnl_lock();
5145
5146 /*
5147 * If the name is a format string the caller wants us to do a
5148 * name allocation.
5149 */
5150 if (strchr(dev->name, '%')) {
5151 err = dev_alloc_name(dev, dev->name);
5152 if (err < 0)
5153 goto out;
5154 }
5155
5156 err = register_netdevice(dev);
5157 out:
5158 rtnl_unlock();
5159 return err;
5160 }
5161 EXPORT_SYMBOL(register_netdev);
5162
5163 /*
5164 * netdev_wait_allrefs - wait until all references are gone.
5165 *
5166 * This is called when unregistering network devices.
5167 *
5168 * Any protocol or device that holds a reference should register
5169 * for netdevice notification, and cleanup and put back the
5170 * reference if they receive an UNREGISTER event.
5171 * We can get stuck here if buggy protocols don't correctly
5172 * call dev_put.
5173 */
5174 static void netdev_wait_allrefs(struct net_device *dev)
5175 {
5176 unsigned long rebroadcast_time, warning_time;
5177
5178 linkwatch_forget_dev(dev);
5179
5180 rebroadcast_time = warning_time = jiffies;
5181 while (atomic_read(&dev->refcnt) != 0) {
5182 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5183 rtnl_lock();
5184
5185 /* Rebroadcast unregister notification */
5186 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5187 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5188 * should have already handle it the first time */
5189
5190 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5191 &dev->state)) {
5192 /* We must not have linkwatch events
5193 * pending on unregister. If this
5194 * happens, we simply run the queue
5195 * unscheduled, resulting in a noop
5196 * for this device.
5197 */
5198 linkwatch_run_queue();
5199 }
5200
5201 __rtnl_unlock();
5202
5203 rebroadcast_time = jiffies;
5204 }
5205
5206 msleep(250);
5207
5208 if (time_after(jiffies, warning_time + 10 * HZ)) {
5209 printk(KERN_EMERG "unregister_netdevice: "
5210 "waiting for %s to become free. Usage "
5211 "count = %d\n",
5212 dev->name, atomic_read(&dev->refcnt));
5213 warning_time = jiffies;
5214 }
5215 }
5216 }
5217
5218 /* The sequence is:
5219 *
5220 * rtnl_lock();
5221 * ...
5222 * register_netdevice(x1);
5223 * register_netdevice(x2);
5224 * ...
5225 * unregister_netdevice(y1);
5226 * unregister_netdevice(y2);
5227 * ...
5228 * rtnl_unlock();
5229 * free_netdev(y1);
5230 * free_netdev(y2);
5231 *
5232 * We are invoked by rtnl_unlock().
5233 * This allows us to deal with problems:
5234 * 1) We can delete sysfs objects which invoke hotplug
5235 * without deadlocking with linkwatch via keventd.
5236 * 2) Since we run with the RTNL semaphore not held, we can sleep
5237 * safely in order to wait for the netdev refcnt to drop to zero.
5238 *
5239 * We must not return until all unregister events added during
5240 * the interval the lock was held have been completed.
5241 */
5242 void netdev_run_todo(void)
5243 {
5244 struct list_head list;
5245
5246 /* Snapshot list, allow later requests */
5247 list_replace_init(&net_todo_list, &list);
5248
5249 __rtnl_unlock();
5250
5251 while (!list_empty(&list)) {
5252 struct net_device *dev
5253 = list_first_entry(&list, struct net_device, todo_list);
5254 list_del(&dev->todo_list);
5255
5256 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5257 printk(KERN_ERR "network todo '%s' but state %d\n",
5258 dev->name, dev->reg_state);
5259 dump_stack();
5260 continue;
5261 }
5262
5263 dev->reg_state = NETREG_UNREGISTERED;
5264
5265 on_each_cpu(flush_backlog, dev, 1);
5266
5267 netdev_wait_allrefs(dev);
5268
5269 /* paranoia */
5270 BUG_ON(atomic_read(&dev->refcnt));
5271 WARN_ON(dev->ip_ptr);
5272 WARN_ON(dev->ip6_ptr);
5273 WARN_ON(dev->dn_ptr);
5274
5275 if (dev->destructor)
5276 dev->destructor(dev);
5277
5278 /* Free network device */
5279 kobject_put(&dev->dev.kobj);
5280 }
5281 }
5282
5283 /**
5284 * dev_txq_stats_fold - fold tx_queues stats
5285 * @dev: device to get statistics from
5286 * @stats: struct rtnl_link_stats64 to hold results
5287 */
5288 void dev_txq_stats_fold(const struct net_device *dev,
5289 struct rtnl_link_stats64 *stats)
5290 {
5291 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5292 unsigned int i;
5293 struct netdev_queue *txq;
5294
5295 for (i = 0; i < dev->num_tx_queues; i++) {
5296 txq = netdev_get_tx_queue(dev, i);
5297 spin_lock_bh(&txq->_xmit_lock);
5298 tx_bytes += txq->tx_bytes;
5299 tx_packets += txq->tx_packets;
5300 tx_dropped += txq->tx_dropped;
5301 spin_unlock_bh(&txq->_xmit_lock);
5302 }
5303 if (tx_bytes || tx_packets || tx_dropped) {
5304 stats->tx_bytes = tx_bytes;
5305 stats->tx_packets = tx_packets;
5306 stats->tx_dropped = tx_dropped;
5307 }
5308 }
5309 EXPORT_SYMBOL(dev_txq_stats_fold);
5310
5311 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5312 * fields in the same order, with only the type differing.
5313 */
5314 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5315 const struct net_device_stats *netdev_stats)
5316 {
5317 #if BITS_PER_LONG == 64
5318 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5319 memcpy(stats64, netdev_stats, sizeof(*stats64));
5320 #else
5321 size_t i, n = sizeof(*stats64) / sizeof(u64);
5322 const unsigned long *src = (const unsigned long *)netdev_stats;
5323 u64 *dst = (u64 *)stats64;
5324
5325 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5326 sizeof(*stats64) / sizeof(u64));
5327 for (i = 0; i < n; i++)
5328 dst[i] = src[i];
5329 #endif
5330 }
5331
5332 /**
5333 * dev_get_stats - get network device statistics
5334 * @dev: device to get statistics from
5335 * @storage: place to store stats
5336 *
5337 * Get network statistics from device. Return @storage.
5338 * The device driver may provide its own method by setting
5339 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5340 * otherwise the internal statistics structure is used.
5341 */
5342 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5343 struct rtnl_link_stats64 *storage)
5344 {
5345 const struct net_device_ops *ops = dev->netdev_ops;
5346
5347 if (ops->ndo_get_stats64) {
5348 memset(storage, 0, sizeof(*storage));
5349 return ops->ndo_get_stats64(dev, storage);
5350 }
5351 if (ops->ndo_get_stats) {
5352 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5353 return storage;
5354 }
5355 netdev_stats_to_stats64(storage, &dev->stats);
5356 dev_txq_stats_fold(dev, storage);
5357 return storage;
5358 }
5359 EXPORT_SYMBOL(dev_get_stats);
5360
5361 static void netdev_init_one_queue(struct net_device *dev,
5362 struct netdev_queue *queue,
5363 void *_unused)
5364 {
5365 queue->dev = dev;
5366 }
5367
5368 static void netdev_init_queues(struct net_device *dev)
5369 {
5370 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5371 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5372 spin_lock_init(&dev->tx_global_lock);
5373 }
5374
5375 /**
5376 * alloc_netdev_mq - allocate network device
5377 * @sizeof_priv: size of private data to allocate space for
5378 * @name: device name format string
5379 * @setup: callback to initialize device
5380 * @queue_count: the number of subqueues to allocate
5381 *
5382 * Allocates a struct net_device with private data area for driver use
5383 * and performs basic initialization. Also allocates subquue structs
5384 * for each queue on the device at the end of the netdevice.
5385 */
5386 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5387 void (*setup)(struct net_device *), unsigned int queue_count)
5388 {
5389 struct netdev_queue *tx;
5390 struct net_device *dev;
5391 size_t alloc_size;
5392 struct net_device *p;
5393 #ifdef CONFIG_RPS
5394 struct netdev_rx_queue *rx;
5395 int i;
5396 #endif
5397
5398 BUG_ON(strlen(name) >= sizeof(dev->name));
5399
5400 alloc_size = sizeof(struct net_device);
5401 if (sizeof_priv) {
5402 /* ensure 32-byte alignment of private area */
5403 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5404 alloc_size += sizeof_priv;
5405 }
5406 /* ensure 32-byte alignment of whole construct */
5407 alloc_size += NETDEV_ALIGN - 1;
5408
5409 p = kzalloc(alloc_size, GFP_KERNEL);
5410 if (!p) {
5411 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5412 return NULL;
5413 }
5414
5415 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5416 if (!tx) {
5417 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5418 "tx qdiscs.\n");
5419 goto free_p;
5420 }
5421
5422 #ifdef CONFIG_RPS
5423 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5424 if (!rx) {
5425 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5426 "rx queues.\n");
5427 goto free_tx;
5428 }
5429
5430 atomic_set(&rx->count, queue_count);
5431
5432 /*
5433 * Set a pointer to first element in the array which holds the
5434 * reference count.
5435 */
5436 for (i = 0; i < queue_count; i++)
5437 rx[i].first = rx;
5438 #endif
5439
5440 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5441 dev->padded = (char *)dev - (char *)p;
5442
5443 if (dev_addr_init(dev))
5444 goto free_rx;
5445
5446 dev_mc_init(dev);
5447 dev_uc_init(dev);
5448
5449 dev_net_set(dev, &init_net);
5450
5451 dev->_tx = tx;
5452 dev->num_tx_queues = queue_count;
5453 dev->real_num_tx_queues = queue_count;
5454
5455 #ifdef CONFIG_RPS
5456 dev->_rx = rx;
5457 dev->num_rx_queues = queue_count;
5458 #endif
5459
5460 dev->gso_max_size = GSO_MAX_SIZE;
5461
5462 netdev_init_queues(dev);
5463
5464 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5465 dev->ethtool_ntuple_list.count = 0;
5466 INIT_LIST_HEAD(&dev->napi_list);
5467 INIT_LIST_HEAD(&dev->unreg_list);
5468 INIT_LIST_HEAD(&dev->link_watch_list);
5469 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5470 setup(dev);
5471 strcpy(dev->name, name);
5472 return dev;
5473
5474 free_rx:
5475 #ifdef CONFIG_RPS
5476 kfree(rx);
5477 free_tx:
5478 #endif
5479 kfree(tx);
5480 free_p:
5481 kfree(p);
5482 return NULL;
5483 }
5484 EXPORT_SYMBOL(alloc_netdev_mq);
5485
5486 /**
5487 * free_netdev - free network device
5488 * @dev: device
5489 *
5490 * This function does the last stage of destroying an allocated device
5491 * interface. The reference to the device object is released.
5492 * If this is the last reference then it will be freed.
5493 */
5494 void free_netdev(struct net_device *dev)
5495 {
5496 struct napi_struct *p, *n;
5497
5498 release_net(dev_net(dev));
5499
5500 kfree(dev->_tx);
5501
5502 /* Flush device addresses */
5503 dev_addr_flush(dev);
5504
5505 /* Clear ethtool n-tuple list */
5506 ethtool_ntuple_flush(dev);
5507
5508 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5509 netif_napi_del(p);
5510
5511 /* Compatibility with error handling in drivers */
5512 if (dev->reg_state == NETREG_UNINITIALIZED) {
5513 kfree((char *)dev - dev->padded);
5514 return;
5515 }
5516
5517 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5518 dev->reg_state = NETREG_RELEASED;
5519
5520 /* will free via device release */
5521 put_device(&dev->dev);
5522 }
5523 EXPORT_SYMBOL(free_netdev);
5524
5525 /**
5526 * synchronize_net - Synchronize with packet receive processing
5527 *
5528 * Wait for packets currently being received to be done.
5529 * Does not block later packets from starting.
5530 */
5531 void synchronize_net(void)
5532 {
5533 might_sleep();
5534 synchronize_rcu();
5535 }
5536 EXPORT_SYMBOL(synchronize_net);
5537
5538 /**
5539 * unregister_netdevice_queue - remove device from the kernel
5540 * @dev: device
5541 * @head: list
5542 *
5543 * This function shuts down a device interface and removes it
5544 * from the kernel tables.
5545 * If head not NULL, device is queued to be unregistered later.
5546 *
5547 * Callers must hold the rtnl semaphore. You may want
5548 * unregister_netdev() instead of this.
5549 */
5550
5551 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5552 {
5553 ASSERT_RTNL();
5554
5555 if (head) {
5556 list_move_tail(&dev->unreg_list, head);
5557 } else {
5558 rollback_registered(dev);
5559 /* Finish processing unregister after unlock */
5560 net_set_todo(dev);
5561 }
5562 }
5563 EXPORT_SYMBOL(unregister_netdevice_queue);
5564
5565 /**
5566 * unregister_netdevice_many - unregister many devices
5567 * @head: list of devices
5568 */
5569 void unregister_netdevice_many(struct list_head *head)
5570 {
5571 struct net_device *dev;
5572
5573 if (!list_empty(head)) {
5574 rollback_registered_many(head);
5575 list_for_each_entry(dev, head, unreg_list)
5576 net_set_todo(dev);
5577 }
5578 }
5579 EXPORT_SYMBOL(unregister_netdevice_many);
5580
5581 /**
5582 * unregister_netdev - remove device from the kernel
5583 * @dev: device
5584 *
5585 * This function shuts down a device interface and removes it
5586 * from the kernel tables.
5587 *
5588 * This is just a wrapper for unregister_netdevice that takes
5589 * the rtnl semaphore. In general you want to use this and not
5590 * unregister_netdevice.
5591 */
5592 void unregister_netdev(struct net_device *dev)
5593 {
5594 rtnl_lock();
5595 unregister_netdevice(dev);
5596 rtnl_unlock();
5597 }
5598 EXPORT_SYMBOL(unregister_netdev);
5599
5600 /**
5601 * dev_change_net_namespace - move device to different nethost namespace
5602 * @dev: device
5603 * @net: network namespace
5604 * @pat: If not NULL name pattern to try if the current device name
5605 * is already taken in the destination network namespace.
5606 *
5607 * This function shuts down a device interface and moves it
5608 * to a new network namespace. On success 0 is returned, on
5609 * a failure a netagive errno code is returned.
5610 *
5611 * Callers must hold the rtnl semaphore.
5612 */
5613
5614 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5615 {
5616 int err;
5617
5618 ASSERT_RTNL();
5619
5620 /* Don't allow namespace local devices to be moved. */
5621 err = -EINVAL;
5622 if (dev->features & NETIF_F_NETNS_LOCAL)
5623 goto out;
5624
5625 /* Ensure the device has been registrered */
5626 err = -EINVAL;
5627 if (dev->reg_state != NETREG_REGISTERED)
5628 goto out;
5629
5630 /* Get out if there is nothing todo */
5631 err = 0;
5632 if (net_eq(dev_net(dev), net))
5633 goto out;
5634
5635 /* Pick the destination device name, and ensure
5636 * we can use it in the destination network namespace.
5637 */
5638 err = -EEXIST;
5639 if (__dev_get_by_name(net, dev->name)) {
5640 /* We get here if we can't use the current device name */
5641 if (!pat)
5642 goto out;
5643 if (dev_get_valid_name(dev, pat, 1))
5644 goto out;
5645 }
5646
5647 /*
5648 * And now a mini version of register_netdevice unregister_netdevice.
5649 */
5650
5651 /* If device is running close it first. */
5652 dev_close(dev);
5653
5654 /* And unlink it from device chain */
5655 err = -ENODEV;
5656 unlist_netdevice(dev);
5657
5658 synchronize_net();
5659
5660 /* Shutdown queueing discipline. */
5661 dev_shutdown(dev);
5662
5663 /* Notify protocols, that we are about to destroy
5664 this device. They should clean all the things.
5665 */
5666 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5667 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5668
5669 /*
5670 * Flush the unicast and multicast chains
5671 */
5672 dev_uc_flush(dev);
5673 dev_mc_flush(dev);
5674
5675 /* Actually switch the network namespace */
5676 dev_net_set(dev, net);
5677
5678 /* If there is an ifindex conflict assign a new one */
5679 if (__dev_get_by_index(net, dev->ifindex)) {
5680 int iflink = (dev->iflink == dev->ifindex);
5681 dev->ifindex = dev_new_index(net);
5682 if (iflink)
5683 dev->iflink = dev->ifindex;
5684 }
5685
5686 /* Fixup kobjects */
5687 err = device_rename(&dev->dev, dev->name);
5688 WARN_ON(err);
5689
5690 /* Add the device back in the hashes */
5691 list_netdevice(dev);
5692
5693 /* Notify protocols, that a new device appeared. */
5694 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5695
5696 /*
5697 * Prevent userspace races by waiting until the network
5698 * device is fully setup before sending notifications.
5699 */
5700 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5701
5702 synchronize_net();
5703 err = 0;
5704 out:
5705 return err;
5706 }
5707 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5708
5709 static int dev_cpu_callback(struct notifier_block *nfb,
5710 unsigned long action,
5711 void *ocpu)
5712 {
5713 struct sk_buff **list_skb;
5714 struct sk_buff *skb;
5715 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5716 struct softnet_data *sd, *oldsd;
5717
5718 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5719 return NOTIFY_OK;
5720
5721 local_irq_disable();
5722 cpu = smp_processor_id();
5723 sd = &per_cpu(softnet_data, cpu);
5724 oldsd = &per_cpu(softnet_data, oldcpu);
5725
5726 /* Find end of our completion_queue. */
5727 list_skb = &sd->completion_queue;
5728 while (*list_skb)
5729 list_skb = &(*list_skb)->next;
5730 /* Append completion queue from offline CPU. */
5731 *list_skb = oldsd->completion_queue;
5732 oldsd->completion_queue = NULL;
5733
5734 /* Append output queue from offline CPU. */
5735 if (oldsd->output_queue) {
5736 *sd->output_queue_tailp = oldsd->output_queue;
5737 sd->output_queue_tailp = oldsd->output_queue_tailp;
5738 oldsd->output_queue = NULL;
5739 oldsd->output_queue_tailp = &oldsd->output_queue;
5740 }
5741
5742 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5743 local_irq_enable();
5744
5745 /* Process offline CPU's input_pkt_queue */
5746 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5747 netif_rx(skb);
5748 input_queue_head_incr(oldsd);
5749 }
5750 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5751 netif_rx(skb);
5752 input_queue_head_incr(oldsd);
5753 }
5754
5755 return NOTIFY_OK;
5756 }
5757
5758
5759 /**
5760 * netdev_increment_features - increment feature set by one
5761 * @all: current feature set
5762 * @one: new feature set
5763 * @mask: mask feature set
5764 *
5765 * Computes a new feature set after adding a device with feature set
5766 * @one to the master device with current feature set @all. Will not
5767 * enable anything that is off in @mask. Returns the new feature set.
5768 */
5769 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5770 unsigned long mask)
5771 {
5772 /* If device needs checksumming, downgrade to it. */
5773 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5774 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5775 else if (mask & NETIF_F_ALL_CSUM) {
5776 /* If one device supports v4/v6 checksumming, set for all. */
5777 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5778 !(all & NETIF_F_GEN_CSUM)) {
5779 all &= ~NETIF_F_ALL_CSUM;
5780 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5781 }
5782
5783 /* If one device supports hw checksumming, set for all. */
5784 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5785 all &= ~NETIF_F_ALL_CSUM;
5786 all |= NETIF_F_HW_CSUM;
5787 }
5788 }
5789
5790 one |= NETIF_F_ALL_CSUM;
5791
5792 one |= all & NETIF_F_ONE_FOR_ALL;
5793 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5794 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5795
5796 return all;
5797 }
5798 EXPORT_SYMBOL(netdev_increment_features);
5799
5800 static struct hlist_head *netdev_create_hash(void)
5801 {
5802 int i;
5803 struct hlist_head *hash;
5804
5805 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5806 if (hash != NULL)
5807 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5808 INIT_HLIST_HEAD(&hash[i]);
5809
5810 return hash;
5811 }
5812
5813 /* Initialize per network namespace state */
5814 static int __net_init netdev_init(struct net *net)
5815 {
5816 INIT_LIST_HEAD(&net->dev_base_head);
5817
5818 net->dev_name_head = netdev_create_hash();
5819 if (net->dev_name_head == NULL)
5820 goto err_name;
5821
5822 net->dev_index_head = netdev_create_hash();
5823 if (net->dev_index_head == NULL)
5824 goto err_idx;
5825
5826 return 0;
5827
5828 err_idx:
5829 kfree(net->dev_name_head);
5830 err_name:
5831 return -ENOMEM;
5832 }
5833
5834 /**
5835 * netdev_drivername - network driver for the device
5836 * @dev: network device
5837 * @buffer: buffer for resulting name
5838 * @len: size of buffer
5839 *
5840 * Determine network driver for device.
5841 */
5842 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5843 {
5844 const struct device_driver *driver;
5845 const struct device *parent;
5846
5847 if (len <= 0 || !buffer)
5848 return buffer;
5849 buffer[0] = 0;
5850
5851 parent = dev->dev.parent;
5852
5853 if (!parent)
5854 return buffer;
5855
5856 driver = parent->driver;
5857 if (driver && driver->name)
5858 strlcpy(buffer, driver->name, len);
5859 return buffer;
5860 }
5861
5862 static int __netdev_printk(const char *level, const struct net_device *dev,
5863 struct va_format *vaf)
5864 {
5865 int r;
5866
5867 if (dev && dev->dev.parent)
5868 r = dev_printk(level, dev->dev.parent, "%s: %pV",
5869 netdev_name(dev), vaf);
5870 else if (dev)
5871 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5872 else
5873 r = printk("%s(NULL net_device): %pV", level, vaf);
5874
5875 return r;
5876 }
5877
5878 int netdev_printk(const char *level, const struct net_device *dev,
5879 const char *format, ...)
5880 {
5881 struct va_format vaf;
5882 va_list args;
5883 int r;
5884
5885 va_start(args, format);
5886
5887 vaf.fmt = format;
5888 vaf.va = &args;
5889
5890 r = __netdev_printk(level, dev, &vaf);
5891 va_end(args);
5892
5893 return r;
5894 }
5895 EXPORT_SYMBOL(netdev_printk);
5896
5897 #define define_netdev_printk_level(func, level) \
5898 int func(const struct net_device *dev, const char *fmt, ...) \
5899 { \
5900 int r; \
5901 struct va_format vaf; \
5902 va_list args; \
5903 \
5904 va_start(args, fmt); \
5905 \
5906 vaf.fmt = fmt; \
5907 vaf.va = &args; \
5908 \
5909 r = __netdev_printk(level, dev, &vaf); \
5910 va_end(args); \
5911 \
5912 return r; \
5913 } \
5914 EXPORT_SYMBOL(func);
5915
5916 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
5917 define_netdev_printk_level(netdev_alert, KERN_ALERT);
5918 define_netdev_printk_level(netdev_crit, KERN_CRIT);
5919 define_netdev_printk_level(netdev_err, KERN_ERR);
5920 define_netdev_printk_level(netdev_warn, KERN_WARNING);
5921 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
5922 define_netdev_printk_level(netdev_info, KERN_INFO);
5923
5924 static void __net_exit netdev_exit(struct net *net)
5925 {
5926 kfree(net->dev_name_head);
5927 kfree(net->dev_index_head);
5928 }
5929
5930 static struct pernet_operations __net_initdata netdev_net_ops = {
5931 .init = netdev_init,
5932 .exit = netdev_exit,
5933 };
5934
5935 static void __net_exit default_device_exit(struct net *net)
5936 {
5937 struct net_device *dev, *aux;
5938 /*
5939 * Push all migratable network devices back to the
5940 * initial network namespace
5941 */
5942 rtnl_lock();
5943 for_each_netdev_safe(net, dev, aux) {
5944 int err;
5945 char fb_name[IFNAMSIZ];
5946
5947 /* Ignore unmoveable devices (i.e. loopback) */
5948 if (dev->features & NETIF_F_NETNS_LOCAL)
5949 continue;
5950
5951 /* Leave virtual devices for the generic cleanup */
5952 if (dev->rtnl_link_ops)
5953 continue;
5954
5955 /* Push remaing network devices to init_net */
5956 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5957 err = dev_change_net_namespace(dev, &init_net, fb_name);
5958 if (err) {
5959 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5960 __func__, dev->name, err);
5961 BUG();
5962 }
5963 }
5964 rtnl_unlock();
5965 }
5966
5967 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5968 {
5969 /* At exit all network devices most be removed from a network
5970 * namespace. Do this in the reverse order of registeration.
5971 * Do this across as many network namespaces as possible to
5972 * improve batching efficiency.
5973 */
5974 struct net_device *dev;
5975 struct net *net;
5976 LIST_HEAD(dev_kill_list);
5977
5978 rtnl_lock();
5979 list_for_each_entry(net, net_list, exit_list) {
5980 for_each_netdev_reverse(net, dev) {
5981 if (dev->rtnl_link_ops)
5982 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5983 else
5984 unregister_netdevice_queue(dev, &dev_kill_list);
5985 }
5986 }
5987 unregister_netdevice_many(&dev_kill_list);
5988 rtnl_unlock();
5989 }
5990
5991 static struct pernet_operations __net_initdata default_device_ops = {
5992 .exit = default_device_exit,
5993 .exit_batch = default_device_exit_batch,
5994 };
5995
5996 /*
5997 * Initialize the DEV module. At boot time this walks the device list and
5998 * unhooks any devices that fail to initialise (normally hardware not
5999 * present) and leaves us with a valid list of present and active devices.
6000 *
6001 */
6002
6003 /*
6004 * This is called single threaded during boot, so no need
6005 * to take the rtnl semaphore.
6006 */
6007 static int __init net_dev_init(void)
6008 {
6009 int i, rc = -ENOMEM;
6010
6011 BUG_ON(!dev_boot_phase);
6012
6013 if (dev_proc_init())
6014 goto out;
6015
6016 if (netdev_kobject_init())
6017 goto out;
6018
6019 INIT_LIST_HEAD(&ptype_all);
6020 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6021 INIT_LIST_HEAD(&ptype_base[i]);
6022
6023 if (register_pernet_subsys(&netdev_net_ops))
6024 goto out;
6025
6026 /*
6027 * Initialise the packet receive queues.
6028 */
6029
6030 for_each_possible_cpu(i) {
6031 struct softnet_data *sd = &per_cpu(softnet_data, i);
6032
6033 memset(sd, 0, sizeof(*sd));
6034 skb_queue_head_init(&sd->input_pkt_queue);
6035 skb_queue_head_init(&sd->process_queue);
6036 sd->completion_queue = NULL;
6037 INIT_LIST_HEAD(&sd->poll_list);
6038 sd->output_queue = NULL;
6039 sd->output_queue_tailp = &sd->output_queue;
6040 #ifdef CONFIG_RPS
6041 sd->csd.func = rps_trigger_softirq;
6042 sd->csd.info = sd;
6043 sd->csd.flags = 0;
6044 sd->cpu = i;
6045 #endif
6046
6047 sd->backlog.poll = process_backlog;
6048 sd->backlog.weight = weight_p;
6049 sd->backlog.gro_list = NULL;
6050 sd->backlog.gro_count = 0;
6051 }
6052
6053 dev_boot_phase = 0;
6054
6055 /* The loopback device is special if any other network devices
6056 * is present in a network namespace the loopback device must
6057 * be present. Since we now dynamically allocate and free the
6058 * loopback device ensure this invariant is maintained by
6059 * keeping the loopback device as the first device on the
6060 * list of network devices. Ensuring the loopback devices
6061 * is the first device that appears and the last network device
6062 * that disappears.
6063 */
6064 if (register_pernet_device(&loopback_net_ops))
6065 goto out;
6066
6067 if (register_pernet_device(&default_device_ops))
6068 goto out;
6069
6070 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6071 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6072
6073 hotcpu_notifier(dev_cpu_callback, 0);
6074 dst_init();
6075 dev_mcast_init();
6076 rc = 0;
6077 out:
6078 return rc;
6079 }
6080
6081 subsys_initcall(net_dev_init);
6082
6083 static int __init initialize_hashrnd(void)
6084 {
6085 get_random_bytes(&hashrnd, sizeof(hashrnd));
6086 return 0;
6087 }
6088
6089 late_initcall_sync(initialize_hashrnd);
6090
This page took 0.158164 seconds and 5 git commands to generate.