net: introduce IFF_UNICAST_FLT private flag
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/if_tunnel.h>
137
138 #include "net-sysfs.h"
139
140 /* Instead of increasing this, you should create a hash table. */
141 #define MAX_GRO_SKBS 8
142
143 /* This should be increased if a protocol with a bigger head is added. */
144 #define GRO_MAX_HEAD (MAX_HEADER + 128)
145
146 /*
147 * The list of packet types we will receive (as opposed to discard)
148 * and the routines to invoke.
149 *
150 * Why 16. Because with 16 the only overlap we get on a hash of the
151 * low nibble of the protocol value is RARP/SNAP/X.25.
152 *
153 * NOTE: That is no longer true with the addition of VLAN tags. Not
154 * sure which should go first, but I bet it won't make much
155 * difference if we are running VLANs. The good news is that
156 * this protocol won't be in the list unless compiled in, so
157 * the average user (w/out VLANs) will not be adversely affected.
158 * --BLG
159 *
160 * 0800 IP
161 * 8100 802.1Q VLAN
162 * 0001 802.3
163 * 0002 AX.25
164 * 0004 802.2
165 * 8035 RARP
166 * 0005 SNAP
167 * 0805 X.25
168 * 0806 ARP
169 * 8137 IPX
170 * 0009 Localtalk
171 * 86DD IPv6
172 */
173
174 #define PTYPE_HASH_SIZE (16)
175 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
176
177 static DEFINE_SPINLOCK(ptype_lock);
178 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
179 static struct list_head ptype_all __read_mostly; /* Taps */
180
181 /*
182 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
183 * semaphore.
184 *
185 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
186 *
187 * Writers must hold the rtnl semaphore while they loop through the
188 * dev_base_head list, and hold dev_base_lock for writing when they do the
189 * actual updates. This allows pure readers to access the list even
190 * while a writer is preparing to update it.
191 *
192 * To put it another way, dev_base_lock is held for writing only to
193 * protect against pure readers; the rtnl semaphore provides the
194 * protection against other writers.
195 *
196 * See, for example usages, register_netdevice() and
197 * unregister_netdevice(), which must be called with the rtnl
198 * semaphore held.
199 */
200 DEFINE_RWLOCK(dev_base_lock);
201 EXPORT_SYMBOL(dev_base_lock);
202
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 while (++net->dev_base_seq == 0);
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static int list_netdevice(struct net_device *dev)
235 {
236 struct net *net = dev_net(dev);
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
246
247 dev_base_seq_inc(net);
248
249 return 0;
250 }
251
252 /* Device list removal
253 * caller must respect a RCU grace period before freeing/reusing dev
254 */
255 static void unlist_netdevice(struct net_device *dev)
256 {
257 ASSERT_RTNL();
258
259 /* Unlink dev from the device chain */
260 write_lock_bh(&dev_base_lock);
261 list_del_rcu(&dev->dev_list);
262 hlist_del_rcu(&dev->name_hlist);
263 hlist_del_rcu(&dev->index_hlist);
264 write_unlock_bh(&dev_base_lock);
265
266 dev_base_seq_inc(dev_net(dev));
267 }
268
269 /*
270 * Our notifier list
271 */
272
273 static RAW_NOTIFIER_HEAD(netdev_chain);
274
275 /*
276 * Device drivers call our routines to queue packets here. We empty the
277 * queue in the local softnet handler.
278 */
279
280 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
281 EXPORT_PER_CPU_SYMBOL(softnet_data);
282
283 #ifdef CONFIG_LOCKDEP
284 /*
285 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
286 * according to dev->type
287 */
288 static const unsigned short netdev_lock_type[] =
289 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
290 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
291 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
292 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
293 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
294 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
295 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
296 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
297 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
298 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
299 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
300 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
301 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
302 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
303 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
304 ARPHRD_VOID, ARPHRD_NONE};
305
306 static const char *const netdev_lock_name[] =
307 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
308 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
309 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
310 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
311 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
312 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
313 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
314 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
315 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
316 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
317 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
318 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
319 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
320 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
321 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
322 "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 int dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return 0;
853 if (strlen(name) >= IFNAMSIZ)
854 return 0;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return 0;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return 0;
861 name++;
862 }
863 return 1;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 struct net *net;
965
966 BUG_ON(!dev_net(dev));
967 net = dev_net(dev);
968
969 if (!dev_valid_name(name))
970 return -EINVAL;
971
972 if (strchr(name, '%'))
973 return dev_alloc_name(dev, name);
974 else if (__dev_get_by_name(net, name))
975 return -EEXIST;
976 else if (dev->name != name)
977 strlcpy(dev->name, name, IFNAMSIZ);
978
979 return 0;
980 }
981
982 /**
983 * dev_change_name - change name of a device
984 * @dev: device
985 * @newname: name (or format string) must be at least IFNAMSIZ
986 *
987 * Change name of a device, can pass format strings "eth%d".
988 * for wildcarding.
989 */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 char oldname[IFNAMSIZ];
993 int err = 0;
994 int ret;
995 struct net *net;
996
997 ASSERT_RTNL();
998 BUG_ON(!dev_net(dev));
999
1000 net = dev_net(dev);
1001 if (dev->flags & IFF_UP)
1002 return -EBUSY;
1003
1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 return 0;
1006
1007 memcpy(oldname, dev->name, IFNAMSIZ);
1008
1009 err = dev_get_valid_name(dev, newname);
1010 if (err < 0)
1011 return err;
1012
1013 rollback:
1014 ret = device_rename(&dev->dev, dev->name);
1015 if (ret) {
1016 memcpy(dev->name, oldname, IFNAMSIZ);
1017 return ret;
1018 }
1019
1020 write_lock_bh(&dev_base_lock);
1021 hlist_del_rcu(&dev->name_hlist);
1022 write_unlock_bh(&dev_base_lock);
1023
1024 synchronize_rcu();
1025
1026 write_lock_bh(&dev_base_lock);
1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 write_unlock_bh(&dev_base_lock);
1029
1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 ret = notifier_to_errno(ret);
1032
1033 if (ret) {
1034 /* err >= 0 after dev_alloc_name() or stores the first errno */
1035 if (err >= 0) {
1036 err = ret;
1037 memcpy(dev->name, oldname, IFNAMSIZ);
1038 goto rollback;
1039 } else {
1040 printk(KERN_ERR
1041 "%s: name change rollback failed: %d.\n",
1042 dev->name, ret);
1043 }
1044 }
1045
1046 return err;
1047 }
1048
1049 /**
1050 * dev_set_alias - change ifalias of a device
1051 * @dev: device
1052 * @alias: name up to IFALIASZ
1053 * @len: limit of bytes to copy from info
1054 *
1055 * Set ifalias for a device,
1056 */
1057 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1058 {
1059 ASSERT_RTNL();
1060
1061 if (len >= IFALIASZ)
1062 return -EINVAL;
1063
1064 if (!len) {
1065 if (dev->ifalias) {
1066 kfree(dev->ifalias);
1067 dev->ifalias = NULL;
1068 }
1069 return 0;
1070 }
1071
1072 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1073 if (!dev->ifalias)
1074 return -ENOMEM;
1075
1076 strlcpy(dev->ifalias, alias, len+1);
1077 return len;
1078 }
1079
1080
1081 /**
1082 * netdev_features_change - device changes features
1083 * @dev: device to cause notification
1084 *
1085 * Called to indicate a device has changed features.
1086 */
1087 void netdev_features_change(struct net_device *dev)
1088 {
1089 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1090 }
1091 EXPORT_SYMBOL(netdev_features_change);
1092
1093 /**
1094 * netdev_state_change - device changes state
1095 * @dev: device to cause notification
1096 *
1097 * Called to indicate a device has changed state. This function calls
1098 * the notifier chains for netdev_chain and sends a NEWLINK message
1099 * to the routing socket.
1100 */
1101 void netdev_state_change(struct net_device *dev)
1102 {
1103 if (dev->flags & IFF_UP) {
1104 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1105 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1106 }
1107 }
1108 EXPORT_SYMBOL(netdev_state_change);
1109
1110 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1111 {
1112 return call_netdevice_notifiers(event, dev);
1113 }
1114 EXPORT_SYMBOL(netdev_bonding_change);
1115
1116 /**
1117 * dev_load - load a network module
1118 * @net: the applicable net namespace
1119 * @name: name of interface
1120 *
1121 * If a network interface is not present and the process has suitable
1122 * privileges this function loads the module. If module loading is not
1123 * available in this kernel then it becomes a nop.
1124 */
1125
1126 void dev_load(struct net *net, const char *name)
1127 {
1128 struct net_device *dev;
1129 int no_module;
1130
1131 rcu_read_lock();
1132 dev = dev_get_by_name_rcu(net, name);
1133 rcu_read_unlock();
1134
1135 no_module = !dev;
1136 if (no_module && capable(CAP_NET_ADMIN))
1137 no_module = request_module("netdev-%s", name);
1138 if (no_module && capable(CAP_SYS_MODULE)) {
1139 if (!request_module("%s", name))
1140 pr_err("Loading kernel module for a network device "
1141 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1142 "instead\n", name);
1143 }
1144 }
1145 EXPORT_SYMBOL(dev_load);
1146
1147 static int __dev_open(struct net_device *dev)
1148 {
1149 const struct net_device_ops *ops = dev->netdev_ops;
1150 int ret;
1151
1152 ASSERT_RTNL();
1153
1154 if (!netif_device_present(dev))
1155 return -ENODEV;
1156
1157 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1158 ret = notifier_to_errno(ret);
1159 if (ret)
1160 return ret;
1161
1162 set_bit(__LINK_STATE_START, &dev->state);
1163
1164 if (ops->ndo_validate_addr)
1165 ret = ops->ndo_validate_addr(dev);
1166
1167 if (!ret && ops->ndo_open)
1168 ret = ops->ndo_open(dev);
1169
1170 if (ret)
1171 clear_bit(__LINK_STATE_START, &dev->state);
1172 else {
1173 dev->flags |= IFF_UP;
1174 net_dmaengine_get();
1175 dev_set_rx_mode(dev);
1176 dev_activate(dev);
1177 }
1178
1179 return ret;
1180 }
1181
1182 /**
1183 * dev_open - prepare an interface for use.
1184 * @dev: device to open
1185 *
1186 * Takes a device from down to up state. The device's private open
1187 * function is invoked and then the multicast lists are loaded. Finally
1188 * the device is moved into the up state and a %NETDEV_UP message is
1189 * sent to the netdev notifier chain.
1190 *
1191 * Calling this function on an active interface is a nop. On a failure
1192 * a negative errno code is returned.
1193 */
1194 int dev_open(struct net_device *dev)
1195 {
1196 int ret;
1197
1198 if (dev->flags & IFF_UP)
1199 return 0;
1200
1201 ret = __dev_open(dev);
1202 if (ret < 0)
1203 return ret;
1204
1205 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1206 call_netdevice_notifiers(NETDEV_UP, dev);
1207
1208 return ret;
1209 }
1210 EXPORT_SYMBOL(dev_open);
1211
1212 static int __dev_close_many(struct list_head *head)
1213 {
1214 struct net_device *dev;
1215
1216 ASSERT_RTNL();
1217 might_sleep();
1218
1219 list_for_each_entry(dev, head, unreg_list) {
1220 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1221
1222 clear_bit(__LINK_STATE_START, &dev->state);
1223
1224 /* Synchronize to scheduled poll. We cannot touch poll list, it
1225 * can be even on different cpu. So just clear netif_running().
1226 *
1227 * dev->stop() will invoke napi_disable() on all of it's
1228 * napi_struct instances on this device.
1229 */
1230 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1231 }
1232
1233 dev_deactivate_many(head);
1234
1235 list_for_each_entry(dev, head, unreg_list) {
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237
1238 /*
1239 * Call the device specific close. This cannot fail.
1240 * Only if device is UP
1241 *
1242 * We allow it to be called even after a DETACH hot-plug
1243 * event.
1244 */
1245 if (ops->ndo_stop)
1246 ops->ndo_stop(dev);
1247
1248 dev->flags &= ~IFF_UP;
1249 net_dmaengine_put();
1250 }
1251
1252 return 0;
1253 }
1254
1255 static int __dev_close(struct net_device *dev)
1256 {
1257 int retval;
1258 LIST_HEAD(single);
1259
1260 list_add(&dev->unreg_list, &single);
1261 retval = __dev_close_many(&single);
1262 list_del(&single);
1263 return retval;
1264 }
1265
1266 static int dev_close_many(struct list_head *head)
1267 {
1268 struct net_device *dev, *tmp;
1269 LIST_HEAD(tmp_list);
1270
1271 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1272 if (!(dev->flags & IFF_UP))
1273 list_move(&dev->unreg_list, &tmp_list);
1274
1275 __dev_close_many(head);
1276
1277 list_for_each_entry(dev, head, unreg_list) {
1278 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1279 call_netdevice_notifiers(NETDEV_DOWN, dev);
1280 }
1281
1282 /* rollback_registered_many needs the complete original list */
1283 list_splice(&tmp_list, head);
1284 return 0;
1285 }
1286
1287 /**
1288 * dev_close - shutdown an interface.
1289 * @dev: device to shutdown
1290 *
1291 * This function moves an active device into down state. A
1292 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1293 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1294 * chain.
1295 */
1296 int dev_close(struct net_device *dev)
1297 {
1298 if (dev->flags & IFF_UP) {
1299 LIST_HEAD(single);
1300
1301 list_add(&dev->unreg_list, &single);
1302 dev_close_many(&single);
1303 list_del(&single);
1304 }
1305 return 0;
1306 }
1307 EXPORT_SYMBOL(dev_close);
1308
1309
1310 /**
1311 * dev_disable_lro - disable Large Receive Offload on a device
1312 * @dev: device
1313 *
1314 * Disable Large Receive Offload (LRO) on a net device. Must be
1315 * called under RTNL. This is needed if received packets may be
1316 * forwarded to another interface.
1317 */
1318 void dev_disable_lro(struct net_device *dev)
1319 {
1320 u32 flags;
1321
1322 /*
1323 * If we're trying to disable lro on a vlan device
1324 * use the underlying physical device instead
1325 */
1326 if (is_vlan_dev(dev))
1327 dev = vlan_dev_real_dev(dev);
1328
1329 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1330 flags = dev->ethtool_ops->get_flags(dev);
1331 else
1332 flags = ethtool_op_get_flags(dev);
1333
1334 if (!(flags & ETH_FLAG_LRO))
1335 return;
1336
1337 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1338 if (unlikely(dev->features & NETIF_F_LRO))
1339 netdev_WARN(dev, "failed to disable LRO!\n");
1340 }
1341 EXPORT_SYMBOL(dev_disable_lro);
1342
1343
1344 static int dev_boot_phase = 1;
1345
1346 /**
1347 * register_netdevice_notifier - register a network notifier block
1348 * @nb: notifier
1349 *
1350 * Register a notifier to be called when network device events occur.
1351 * The notifier passed is linked into the kernel structures and must
1352 * not be reused until it has been unregistered. A negative errno code
1353 * is returned on a failure.
1354 *
1355 * When registered all registration and up events are replayed
1356 * to the new notifier to allow device to have a race free
1357 * view of the network device list.
1358 */
1359
1360 int register_netdevice_notifier(struct notifier_block *nb)
1361 {
1362 struct net_device *dev;
1363 struct net_device *last;
1364 struct net *net;
1365 int err;
1366
1367 rtnl_lock();
1368 err = raw_notifier_chain_register(&netdev_chain, nb);
1369 if (err)
1370 goto unlock;
1371 if (dev_boot_phase)
1372 goto unlock;
1373 for_each_net(net) {
1374 for_each_netdev(net, dev) {
1375 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1376 err = notifier_to_errno(err);
1377 if (err)
1378 goto rollback;
1379
1380 if (!(dev->flags & IFF_UP))
1381 continue;
1382
1383 nb->notifier_call(nb, NETDEV_UP, dev);
1384 }
1385 }
1386
1387 unlock:
1388 rtnl_unlock();
1389 return err;
1390
1391 rollback:
1392 last = dev;
1393 for_each_net(net) {
1394 for_each_netdev(net, dev) {
1395 if (dev == last)
1396 break;
1397
1398 if (dev->flags & IFF_UP) {
1399 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1400 nb->notifier_call(nb, NETDEV_DOWN, dev);
1401 }
1402 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1403 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1404 }
1405 }
1406
1407 raw_notifier_chain_unregister(&netdev_chain, nb);
1408 goto unlock;
1409 }
1410 EXPORT_SYMBOL(register_netdevice_notifier);
1411
1412 /**
1413 * unregister_netdevice_notifier - unregister a network notifier block
1414 * @nb: notifier
1415 *
1416 * Unregister a notifier previously registered by
1417 * register_netdevice_notifier(). The notifier is unlinked into the
1418 * kernel structures and may then be reused. A negative errno code
1419 * is returned on a failure.
1420 */
1421
1422 int unregister_netdevice_notifier(struct notifier_block *nb)
1423 {
1424 int err;
1425
1426 rtnl_lock();
1427 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1428 rtnl_unlock();
1429 return err;
1430 }
1431 EXPORT_SYMBOL(unregister_netdevice_notifier);
1432
1433 /**
1434 * call_netdevice_notifiers - call all network notifier blocks
1435 * @val: value passed unmodified to notifier function
1436 * @dev: net_device pointer passed unmodified to notifier function
1437 *
1438 * Call all network notifier blocks. Parameters and return value
1439 * are as for raw_notifier_call_chain().
1440 */
1441
1442 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1443 {
1444 ASSERT_RTNL();
1445 return raw_notifier_call_chain(&netdev_chain, val, dev);
1446 }
1447 EXPORT_SYMBOL(call_netdevice_notifiers);
1448
1449 /* When > 0 there are consumers of rx skb time stamps */
1450 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1451
1452 void net_enable_timestamp(void)
1453 {
1454 atomic_inc(&netstamp_needed);
1455 }
1456 EXPORT_SYMBOL(net_enable_timestamp);
1457
1458 void net_disable_timestamp(void)
1459 {
1460 atomic_dec(&netstamp_needed);
1461 }
1462 EXPORT_SYMBOL(net_disable_timestamp);
1463
1464 static inline void net_timestamp_set(struct sk_buff *skb)
1465 {
1466 if (atomic_read(&netstamp_needed))
1467 __net_timestamp(skb);
1468 else
1469 skb->tstamp.tv64 = 0;
1470 }
1471
1472 static inline void net_timestamp_check(struct sk_buff *skb)
1473 {
1474 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1475 __net_timestamp(skb);
1476 }
1477
1478 static inline bool is_skb_forwardable(struct net_device *dev,
1479 struct sk_buff *skb)
1480 {
1481 unsigned int len;
1482
1483 if (!(dev->flags & IFF_UP))
1484 return false;
1485
1486 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1487 if (skb->len <= len)
1488 return true;
1489
1490 /* if TSO is enabled, we don't care about the length as the packet
1491 * could be forwarded without being segmented before
1492 */
1493 if (skb_is_gso(skb))
1494 return true;
1495
1496 return false;
1497 }
1498
1499 /**
1500 * dev_forward_skb - loopback an skb to another netif
1501 *
1502 * @dev: destination network device
1503 * @skb: buffer to forward
1504 *
1505 * return values:
1506 * NET_RX_SUCCESS (no congestion)
1507 * NET_RX_DROP (packet was dropped, but freed)
1508 *
1509 * dev_forward_skb can be used for injecting an skb from the
1510 * start_xmit function of one device into the receive queue
1511 * of another device.
1512 *
1513 * The receiving device may be in another namespace, so
1514 * we have to clear all information in the skb that could
1515 * impact namespace isolation.
1516 */
1517 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1518 {
1519 skb_orphan(skb);
1520 nf_reset(skb);
1521
1522 if (unlikely(!is_skb_forwardable(dev, skb))) {
1523 atomic_long_inc(&dev->rx_dropped);
1524 kfree_skb(skb);
1525 return NET_RX_DROP;
1526 }
1527 skb_set_dev(skb, dev);
1528 skb->tstamp.tv64 = 0;
1529 skb->pkt_type = PACKET_HOST;
1530 skb->protocol = eth_type_trans(skb, dev);
1531 return netif_rx(skb);
1532 }
1533 EXPORT_SYMBOL_GPL(dev_forward_skb);
1534
1535 static inline int deliver_skb(struct sk_buff *skb,
1536 struct packet_type *pt_prev,
1537 struct net_device *orig_dev)
1538 {
1539 atomic_inc(&skb->users);
1540 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1541 }
1542
1543 /*
1544 * Support routine. Sends outgoing frames to any network
1545 * taps currently in use.
1546 */
1547
1548 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1549 {
1550 struct packet_type *ptype;
1551 struct sk_buff *skb2 = NULL;
1552 struct packet_type *pt_prev = NULL;
1553
1554 rcu_read_lock();
1555 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1556 /* Never send packets back to the socket
1557 * they originated from - MvS (miquels@drinkel.ow.org)
1558 */
1559 if ((ptype->dev == dev || !ptype->dev) &&
1560 (ptype->af_packet_priv == NULL ||
1561 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1562 if (pt_prev) {
1563 deliver_skb(skb2, pt_prev, skb->dev);
1564 pt_prev = ptype;
1565 continue;
1566 }
1567
1568 skb2 = skb_clone(skb, GFP_ATOMIC);
1569 if (!skb2)
1570 break;
1571
1572 net_timestamp_set(skb2);
1573
1574 /* skb->nh should be correctly
1575 set by sender, so that the second statement is
1576 just protection against buggy protocols.
1577 */
1578 skb_reset_mac_header(skb2);
1579
1580 if (skb_network_header(skb2) < skb2->data ||
1581 skb2->network_header > skb2->tail) {
1582 if (net_ratelimit())
1583 printk(KERN_CRIT "protocol %04x is "
1584 "buggy, dev %s\n",
1585 ntohs(skb2->protocol),
1586 dev->name);
1587 skb_reset_network_header(skb2);
1588 }
1589
1590 skb2->transport_header = skb2->network_header;
1591 skb2->pkt_type = PACKET_OUTGOING;
1592 pt_prev = ptype;
1593 }
1594 }
1595 if (pt_prev)
1596 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1597 rcu_read_unlock();
1598 }
1599
1600 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1601 * @dev: Network device
1602 * @txq: number of queues available
1603 *
1604 * If real_num_tx_queues is changed the tc mappings may no longer be
1605 * valid. To resolve this verify the tc mapping remains valid and if
1606 * not NULL the mapping. With no priorities mapping to this
1607 * offset/count pair it will no longer be used. In the worst case TC0
1608 * is invalid nothing can be done so disable priority mappings. If is
1609 * expected that drivers will fix this mapping if they can before
1610 * calling netif_set_real_num_tx_queues.
1611 */
1612 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1613 {
1614 int i;
1615 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1616
1617 /* If TC0 is invalidated disable TC mapping */
1618 if (tc->offset + tc->count > txq) {
1619 pr_warning("Number of in use tx queues changed "
1620 "invalidating tc mappings. Priority "
1621 "traffic classification disabled!\n");
1622 dev->num_tc = 0;
1623 return;
1624 }
1625
1626 /* Invalidated prio to tc mappings set to TC0 */
1627 for (i = 1; i < TC_BITMASK + 1; i++) {
1628 int q = netdev_get_prio_tc_map(dev, i);
1629
1630 tc = &dev->tc_to_txq[q];
1631 if (tc->offset + tc->count > txq) {
1632 pr_warning("Number of in use tx queues "
1633 "changed. Priority %i to tc "
1634 "mapping %i is no longer valid "
1635 "setting map to 0\n",
1636 i, q);
1637 netdev_set_prio_tc_map(dev, i, 0);
1638 }
1639 }
1640 }
1641
1642 /*
1643 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1644 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1645 */
1646 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1647 {
1648 int rc;
1649
1650 if (txq < 1 || txq > dev->num_tx_queues)
1651 return -EINVAL;
1652
1653 if (dev->reg_state == NETREG_REGISTERED ||
1654 dev->reg_state == NETREG_UNREGISTERING) {
1655 ASSERT_RTNL();
1656
1657 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1658 txq);
1659 if (rc)
1660 return rc;
1661
1662 if (dev->num_tc)
1663 netif_setup_tc(dev, txq);
1664
1665 if (txq < dev->real_num_tx_queues)
1666 qdisc_reset_all_tx_gt(dev, txq);
1667 }
1668
1669 dev->real_num_tx_queues = txq;
1670 return 0;
1671 }
1672 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1673
1674 #ifdef CONFIG_RPS
1675 /**
1676 * netif_set_real_num_rx_queues - set actual number of RX queues used
1677 * @dev: Network device
1678 * @rxq: Actual number of RX queues
1679 *
1680 * This must be called either with the rtnl_lock held or before
1681 * registration of the net device. Returns 0 on success, or a
1682 * negative error code. If called before registration, it always
1683 * succeeds.
1684 */
1685 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1686 {
1687 int rc;
1688
1689 if (rxq < 1 || rxq > dev->num_rx_queues)
1690 return -EINVAL;
1691
1692 if (dev->reg_state == NETREG_REGISTERED) {
1693 ASSERT_RTNL();
1694
1695 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1696 rxq);
1697 if (rc)
1698 return rc;
1699 }
1700
1701 dev->real_num_rx_queues = rxq;
1702 return 0;
1703 }
1704 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1705 #endif
1706
1707 static inline void __netif_reschedule(struct Qdisc *q)
1708 {
1709 struct softnet_data *sd;
1710 unsigned long flags;
1711
1712 local_irq_save(flags);
1713 sd = &__get_cpu_var(softnet_data);
1714 q->next_sched = NULL;
1715 *sd->output_queue_tailp = q;
1716 sd->output_queue_tailp = &q->next_sched;
1717 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1718 local_irq_restore(flags);
1719 }
1720
1721 void __netif_schedule(struct Qdisc *q)
1722 {
1723 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1724 __netif_reschedule(q);
1725 }
1726 EXPORT_SYMBOL(__netif_schedule);
1727
1728 void dev_kfree_skb_irq(struct sk_buff *skb)
1729 {
1730 if (atomic_dec_and_test(&skb->users)) {
1731 struct softnet_data *sd;
1732 unsigned long flags;
1733
1734 local_irq_save(flags);
1735 sd = &__get_cpu_var(softnet_data);
1736 skb->next = sd->completion_queue;
1737 sd->completion_queue = skb;
1738 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1739 local_irq_restore(flags);
1740 }
1741 }
1742 EXPORT_SYMBOL(dev_kfree_skb_irq);
1743
1744 void dev_kfree_skb_any(struct sk_buff *skb)
1745 {
1746 if (in_irq() || irqs_disabled())
1747 dev_kfree_skb_irq(skb);
1748 else
1749 dev_kfree_skb(skb);
1750 }
1751 EXPORT_SYMBOL(dev_kfree_skb_any);
1752
1753
1754 /**
1755 * netif_device_detach - mark device as removed
1756 * @dev: network device
1757 *
1758 * Mark device as removed from system and therefore no longer available.
1759 */
1760 void netif_device_detach(struct net_device *dev)
1761 {
1762 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1763 netif_running(dev)) {
1764 netif_tx_stop_all_queues(dev);
1765 }
1766 }
1767 EXPORT_SYMBOL(netif_device_detach);
1768
1769 /**
1770 * netif_device_attach - mark device as attached
1771 * @dev: network device
1772 *
1773 * Mark device as attached from system and restart if needed.
1774 */
1775 void netif_device_attach(struct net_device *dev)
1776 {
1777 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1778 netif_running(dev)) {
1779 netif_tx_wake_all_queues(dev);
1780 __netdev_watchdog_up(dev);
1781 }
1782 }
1783 EXPORT_SYMBOL(netif_device_attach);
1784
1785 /**
1786 * skb_dev_set -- assign a new device to a buffer
1787 * @skb: buffer for the new device
1788 * @dev: network device
1789 *
1790 * If an skb is owned by a device already, we have to reset
1791 * all data private to the namespace a device belongs to
1792 * before assigning it a new device.
1793 */
1794 #ifdef CONFIG_NET_NS
1795 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1796 {
1797 skb_dst_drop(skb);
1798 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1799 secpath_reset(skb);
1800 nf_reset(skb);
1801 skb_init_secmark(skb);
1802 skb->mark = 0;
1803 skb->priority = 0;
1804 skb->nf_trace = 0;
1805 skb->ipvs_property = 0;
1806 #ifdef CONFIG_NET_SCHED
1807 skb->tc_index = 0;
1808 #endif
1809 }
1810 skb->dev = dev;
1811 }
1812 EXPORT_SYMBOL(skb_set_dev);
1813 #endif /* CONFIG_NET_NS */
1814
1815 /*
1816 * Invalidate hardware checksum when packet is to be mangled, and
1817 * complete checksum manually on outgoing path.
1818 */
1819 int skb_checksum_help(struct sk_buff *skb)
1820 {
1821 __wsum csum;
1822 int ret = 0, offset;
1823
1824 if (skb->ip_summed == CHECKSUM_COMPLETE)
1825 goto out_set_summed;
1826
1827 if (unlikely(skb_shinfo(skb)->gso_size)) {
1828 /* Let GSO fix up the checksum. */
1829 goto out_set_summed;
1830 }
1831
1832 offset = skb_checksum_start_offset(skb);
1833 BUG_ON(offset >= skb_headlen(skb));
1834 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1835
1836 offset += skb->csum_offset;
1837 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1838
1839 if (skb_cloned(skb) &&
1840 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1841 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1842 if (ret)
1843 goto out;
1844 }
1845
1846 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1847 out_set_summed:
1848 skb->ip_summed = CHECKSUM_NONE;
1849 out:
1850 return ret;
1851 }
1852 EXPORT_SYMBOL(skb_checksum_help);
1853
1854 /**
1855 * skb_gso_segment - Perform segmentation on skb.
1856 * @skb: buffer to segment
1857 * @features: features for the output path (see dev->features)
1858 *
1859 * This function segments the given skb and returns a list of segments.
1860 *
1861 * It may return NULL if the skb requires no segmentation. This is
1862 * only possible when GSO is used for verifying header integrity.
1863 */
1864 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1865 {
1866 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1867 struct packet_type *ptype;
1868 __be16 type = skb->protocol;
1869 int vlan_depth = ETH_HLEN;
1870 int err;
1871
1872 while (type == htons(ETH_P_8021Q)) {
1873 struct vlan_hdr *vh;
1874
1875 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1876 return ERR_PTR(-EINVAL);
1877
1878 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1879 type = vh->h_vlan_encapsulated_proto;
1880 vlan_depth += VLAN_HLEN;
1881 }
1882
1883 skb_reset_mac_header(skb);
1884 skb->mac_len = skb->network_header - skb->mac_header;
1885 __skb_pull(skb, skb->mac_len);
1886
1887 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1888 struct net_device *dev = skb->dev;
1889 struct ethtool_drvinfo info = {};
1890
1891 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1892 dev->ethtool_ops->get_drvinfo(dev, &info);
1893
1894 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1895 info.driver, dev ? dev->features : 0L,
1896 skb->sk ? skb->sk->sk_route_caps : 0L,
1897 skb->len, skb->data_len, skb->ip_summed);
1898
1899 if (skb_header_cloned(skb) &&
1900 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1901 return ERR_PTR(err);
1902 }
1903
1904 rcu_read_lock();
1905 list_for_each_entry_rcu(ptype,
1906 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1907 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1908 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1909 err = ptype->gso_send_check(skb);
1910 segs = ERR_PTR(err);
1911 if (err || skb_gso_ok(skb, features))
1912 break;
1913 __skb_push(skb, (skb->data -
1914 skb_network_header(skb)));
1915 }
1916 segs = ptype->gso_segment(skb, features);
1917 break;
1918 }
1919 }
1920 rcu_read_unlock();
1921
1922 __skb_push(skb, skb->data - skb_mac_header(skb));
1923
1924 return segs;
1925 }
1926 EXPORT_SYMBOL(skb_gso_segment);
1927
1928 /* Take action when hardware reception checksum errors are detected. */
1929 #ifdef CONFIG_BUG
1930 void netdev_rx_csum_fault(struct net_device *dev)
1931 {
1932 if (net_ratelimit()) {
1933 printk(KERN_ERR "%s: hw csum failure.\n",
1934 dev ? dev->name : "<unknown>");
1935 dump_stack();
1936 }
1937 }
1938 EXPORT_SYMBOL(netdev_rx_csum_fault);
1939 #endif
1940
1941 /* Actually, we should eliminate this check as soon as we know, that:
1942 * 1. IOMMU is present and allows to map all the memory.
1943 * 2. No high memory really exists on this machine.
1944 */
1945
1946 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1947 {
1948 #ifdef CONFIG_HIGHMEM
1949 int i;
1950 if (!(dev->features & NETIF_F_HIGHDMA)) {
1951 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1952 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1953 return 1;
1954 }
1955
1956 if (PCI_DMA_BUS_IS_PHYS) {
1957 struct device *pdev = dev->dev.parent;
1958
1959 if (!pdev)
1960 return 0;
1961 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1962 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1963 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1964 return 1;
1965 }
1966 }
1967 #endif
1968 return 0;
1969 }
1970
1971 struct dev_gso_cb {
1972 void (*destructor)(struct sk_buff *skb);
1973 };
1974
1975 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1976
1977 static void dev_gso_skb_destructor(struct sk_buff *skb)
1978 {
1979 struct dev_gso_cb *cb;
1980
1981 do {
1982 struct sk_buff *nskb = skb->next;
1983
1984 skb->next = nskb->next;
1985 nskb->next = NULL;
1986 kfree_skb(nskb);
1987 } while (skb->next);
1988
1989 cb = DEV_GSO_CB(skb);
1990 if (cb->destructor)
1991 cb->destructor(skb);
1992 }
1993
1994 /**
1995 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1996 * @skb: buffer to segment
1997 * @features: device features as applicable to this skb
1998 *
1999 * This function segments the given skb and stores the list of segments
2000 * in skb->next.
2001 */
2002 static int dev_gso_segment(struct sk_buff *skb, int features)
2003 {
2004 struct sk_buff *segs;
2005
2006 segs = skb_gso_segment(skb, features);
2007
2008 /* Verifying header integrity only. */
2009 if (!segs)
2010 return 0;
2011
2012 if (IS_ERR(segs))
2013 return PTR_ERR(segs);
2014
2015 skb->next = segs;
2016 DEV_GSO_CB(skb)->destructor = skb->destructor;
2017 skb->destructor = dev_gso_skb_destructor;
2018
2019 return 0;
2020 }
2021
2022 /*
2023 * Try to orphan skb early, right before transmission by the device.
2024 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2025 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2026 */
2027 static inline void skb_orphan_try(struct sk_buff *skb)
2028 {
2029 struct sock *sk = skb->sk;
2030
2031 if (sk && !skb_shinfo(skb)->tx_flags) {
2032 /* skb_tx_hash() wont be able to get sk.
2033 * We copy sk_hash into skb->rxhash
2034 */
2035 if (!skb->rxhash)
2036 skb->rxhash = sk->sk_hash;
2037 skb_orphan(skb);
2038 }
2039 }
2040
2041 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2042 {
2043 return ((features & NETIF_F_GEN_CSUM) ||
2044 ((features & NETIF_F_V4_CSUM) &&
2045 protocol == htons(ETH_P_IP)) ||
2046 ((features & NETIF_F_V6_CSUM) &&
2047 protocol == htons(ETH_P_IPV6)) ||
2048 ((features & NETIF_F_FCOE_CRC) &&
2049 protocol == htons(ETH_P_FCOE)));
2050 }
2051
2052 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2053 {
2054 if (!can_checksum_protocol(features, protocol)) {
2055 features &= ~NETIF_F_ALL_CSUM;
2056 features &= ~NETIF_F_SG;
2057 } else if (illegal_highdma(skb->dev, skb)) {
2058 features &= ~NETIF_F_SG;
2059 }
2060
2061 return features;
2062 }
2063
2064 u32 netif_skb_features(struct sk_buff *skb)
2065 {
2066 __be16 protocol = skb->protocol;
2067 u32 features = skb->dev->features;
2068
2069 if (protocol == htons(ETH_P_8021Q)) {
2070 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2071 protocol = veh->h_vlan_encapsulated_proto;
2072 } else if (!vlan_tx_tag_present(skb)) {
2073 return harmonize_features(skb, protocol, features);
2074 }
2075
2076 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2077
2078 if (protocol != htons(ETH_P_8021Q)) {
2079 return harmonize_features(skb, protocol, features);
2080 } else {
2081 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2082 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2083 return harmonize_features(skb, protocol, features);
2084 }
2085 }
2086 EXPORT_SYMBOL(netif_skb_features);
2087
2088 /*
2089 * Returns true if either:
2090 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2091 * 2. skb is fragmented and the device does not support SG, or if
2092 * at least one of fragments is in highmem and device does not
2093 * support DMA from it.
2094 */
2095 static inline int skb_needs_linearize(struct sk_buff *skb,
2096 int features)
2097 {
2098 return skb_is_nonlinear(skb) &&
2099 ((skb_has_frag_list(skb) &&
2100 !(features & NETIF_F_FRAGLIST)) ||
2101 (skb_shinfo(skb)->nr_frags &&
2102 !(features & NETIF_F_SG)));
2103 }
2104
2105 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2106 struct netdev_queue *txq)
2107 {
2108 const struct net_device_ops *ops = dev->netdev_ops;
2109 int rc = NETDEV_TX_OK;
2110 unsigned int skb_len;
2111
2112 if (likely(!skb->next)) {
2113 u32 features;
2114
2115 /*
2116 * If device doesn't need skb->dst, release it right now while
2117 * its hot in this cpu cache
2118 */
2119 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2120 skb_dst_drop(skb);
2121
2122 if (!list_empty(&ptype_all))
2123 dev_queue_xmit_nit(skb, dev);
2124
2125 skb_orphan_try(skb);
2126
2127 features = netif_skb_features(skb);
2128
2129 if (vlan_tx_tag_present(skb) &&
2130 !(features & NETIF_F_HW_VLAN_TX)) {
2131 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2132 if (unlikely(!skb))
2133 goto out;
2134
2135 skb->vlan_tci = 0;
2136 }
2137
2138 if (netif_needs_gso(skb, features)) {
2139 if (unlikely(dev_gso_segment(skb, features)))
2140 goto out_kfree_skb;
2141 if (skb->next)
2142 goto gso;
2143 } else {
2144 if (skb_needs_linearize(skb, features) &&
2145 __skb_linearize(skb))
2146 goto out_kfree_skb;
2147
2148 /* If packet is not checksummed and device does not
2149 * support checksumming for this protocol, complete
2150 * checksumming here.
2151 */
2152 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2153 skb_set_transport_header(skb,
2154 skb_checksum_start_offset(skb));
2155 if (!(features & NETIF_F_ALL_CSUM) &&
2156 skb_checksum_help(skb))
2157 goto out_kfree_skb;
2158 }
2159 }
2160
2161 skb_len = skb->len;
2162 rc = ops->ndo_start_xmit(skb, dev);
2163 trace_net_dev_xmit(skb, rc, dev, skb_len);
2164 if (rc == NETDEV_TX_OK)
2165 txq_trans_update(txq);
2166 return rc;
2167 }
2168
2169 gso:
2170 do {
2171 struct sk_buff *nskb = skb->next;
2172
2173 skb->next = nskb->next;
2174 nskb->next = NULL;
2175
2176 /*
2177 * If device doesn't need nskb->dst, release it right now while
2178 * its hot in this cpu cache
2179 */
2180 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2181 skb_dst_drop(nskb);
2182
2183 skb_len = nskb->len;
2184 rc = ops->ndo_start_xmit(nskb, dev);
2185 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2186 if (unlikely(rc != NETDEV_TX_OK)) {
2187 if (rc & ~NETDEV_TX_MASK)
2188 goto out_kfree_gso_skb;
2189 nskb->next = skb->next;
2190 skb->next = nskb;
2191 return rc;
2192 }
2193 txq_trans_update(txq);
2194 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2195 return NETDEV_TX_BUSY;
2196 } while (skb->next);
2197
2198 out_kfree_gso_skb:
2199 if (likely(skb->next == NULL))
2200 skb->destructor = DEV_GSO_CB(skb)->destructor;
2201 out_kfree_skb:
2202 kfree_skb(skb);
2203 out:
2204 return rc;
2205 }
2206
2207 static u32 hashrnd __read_mostly;
2208
2209 /*
2210 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2211 * to be used as a distribution range.
2212 */
2213 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2214 unsigned int num_tx_queues)
2215 {
2216 u32 hash;
2217 u16 qoffset = 0;
2218 u16 qcount = num_tx_queues;
2219
2220 if (skb_rx_queue_recorded(skb)) {
2221 hash = skb_get_rx_queue(skb);
2222 while (unlikely(hash >= num_tx_queues))
2223 hash -= num_tx_queues;
2224 return hash;
2225 }
2226
2227 if (dev->num_tc) {
2228 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2229 qoffset = dev->tc_to_txq[tc].offset;
2230 qcount = dev->tc_to_txq[tc].count;
2231 }
2232
2233 if (skb->sk && skb->sk->sk_hash)
2234 hash = skb->sk->sk_hash;
2235 else
2236 hash = (__force u16) skb->protocol ^ skb->rxhash;
2237 hash = jhash_1word(hash, hashrnd);
2238
2239 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2240 }
2241 EXPORT_SYMBOL(__skb_tx_hash);
2242
2243 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2244 {
2245 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2246 if (net_ratelimit()) {
2247 pr_warning("%s selects TX queue %d, but "
2248 "real number of TX queues is %d\n",
2249 dev->name, queue_index, dev->real_num_tx_queues);
2250 }
2251 return 0;
2252 }
2253 return queue_index;
2254 }
2255
2256 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2257 {
2258 #ifdef CONFIG_XPS
2259 struct xps_dev_maps *dev_maps;
2260 struct xps_map *map;
2261 int queue_index = -1;
2262
2263 rcu_read_lock();
2264 dev_maps = rcu_dereference(dev->xps_maps);
2265 if (dev_maps) {
2266 map = rcu_dereference(
2267 dev_maps->cpu_map[raw_smp_processor_id()]);
2268 if (map) {
2269 if (map->len == 1)
2270 queue_index = map->queues[0];
2271 else {
2272 u32 hash;
2273 if (skb->sk && skb->sk->sk_hash)
2274 hash = skb->sk->sk_hash;
2275 else
2276 hash = (__force u16) skb->protocol ^
2277 skb->rxhash;
2278 hash = jhash_1word(hash, hashrnd);
2279 queue_index = map->queues[
2280 ((u64)hash * map->len) >> 32];
2281 }
2282 if (unlikely(queue_index >= dev->real_num_tx_queues))
2283 queue_index = -1;
2284 }
2285 }
2286 rcu_read_unlock();
2287
2288 return queue_index;
2289 #else
2290 return -1;
2291 #endif
2292 }
2293
2294 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2295 struct sk_buff *skb)
2296 {
2297 int queue_index;
2298 const struct net_device_ops *ops = dev->netdev_ops;
2299
2300 if (dev->real_num_tx_queues == 1)
2301 queue_index = 0;
2302 else if (ops->ndo_select_queue) {
2303 queue_index = ops->ndo_select_queue(dev, skb);
2304 queue_index = dev_cap_txqueue(dev, queue_index);
2305 } else {
2306 struct sock *sk = skb->sk;
2307 queue_index = sk_tx_queue_get(sk);
2308
2309 if (queue_index < 0 || skb->ooo_okay ||
2310 queue_index >= dev->real_num_tx_queues) {
2311 int old_index = queue_index;
2312
2313 queue_index = get_xps_queue(dev, skb);
2314 if (queue_index < 0)
2315 queue_index = skb_tx_hash(dev, skb);
2316
2317 if (queue_index != old_index && sk) {
2318 struct dst_entry *dst =
2319 rcu_dereference_check(sk->sk_dst_cache, 1);
2320
2321 if (dst && skb_dst(skb) == dst)
2322 sk_tx_queue_set(sk, queue_index);
2323 }
2324 }
2325 }
2326
2327 skb_set_queue_mapping(skb, queue_index);
2328 return netdev_get_tx_queue(dev, queue_index);
2329 }
2330
2331 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2332 struct net_device *dev,
2333 struct netdev_queue *txq)
2334 {
2335 spinlock_t *root_lock = qdisc_lock(q);
2336 bool contended;
2337 int rc;
2338
2339 qdisc_skb_cb(skb)->pkt_len = skb->len;
2340 qdisc_calculate_pkt_len(skb, q);
2341 /*
2342 * Heuristic to force contended enqueues to serialize on a
2343 * separate lock before trying to get qdisc main lock.
2344 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2345 * and dequeue packets faster.
2346 */
2347 contended = qdisc_is_running(q);
2348 if (unlikely(contended))
2349 spin_lock(&q->busylock);
2350
2351 spin_lock(root_lock);
2352 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2353 kfree_skb(skb);
2354 rc = NET_XMIT_DROP;
2355 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2356 qdisc_run_begin(q)) {
2357 /*
2358 * This is a work-conserving queue; there are no old skbs
2359 * waiting to be sent out; and the qdisc is not running -
2360 * xmit the skb directly.
2361 */
2362 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2363 skb_dst_force(skb);
2364
2365 qdisc_bstats_update(q, skb);
2366
2367 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2368 if (unlikely(contended)) {
2369 spin_unlock(&q->busylock);
2370 contended = false;
2371 }
2372 __qdisc_run(q);
2373 } else
2374 qdisc_run_end(q);
2375
2376 rc = NET_XMIT_SUCCESS;
2377 } else {
2378 skb_dst_force(skb);
2379 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2380 if (qdisc_run_begin(q)) {
2381 if (unlikely(contended)) {
2382 spin_unlock(&q->busylock);
2383 contended = false;
2384 }
2385 __qdisc_run(q);
2386 }
2387 }
2388 spin_unlock(root_lock);
2389 if (unlikely(contended))
2390 spin_unlock(&q->busylock);
2391 return rc;
2392 }
2393
2394 static DEFINE_PER_CPU(int, xmit_recursion);
2395 #define RECURSION_LIMIT 10
2396
2397 /**
2398 * dev_queue_xmit - transmit a buffer
2399 * @skb: buffer to transmit
2400 *
2401 * Queue a buffer for transmission to a network device. The caller must
2402 * have set the device and priority and built the buffer before calling
2403 * this function. The function can be called from an interrupt.
2404 *
2405 * A negative errno code is returned on a failure. A success does not
2406 * guarantee the frame will be transmitted as it may be dropped due
2407 * to congestion or traffic shaping.
2408 *
2409 * -----------------------------------------------------------------------------------
2410 * I notice this method can also return errors from the queue disciplines,
2411 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2412 * be positive.
2413 *
2414 * Regardless of the return value, the skb is consumed, so it is currently
2415 * difficult to retry a send to this method. (You can bump the ref count
2416 * before sending to hold a reference for retry if you are careful.)
2417 *
2418 * When calling this method, interrupts MUST be enabled. This is because
2419 * the BH enable code must have IRQs enabled so that it will not deadlock.
2420 * --BLG
2421 */
2422 int dev_queue_xmit(struct sk_buff *skb)
2423 {
2424 struct net_device *dev = skb->dev;
2425 struct netdev_queue *txq;
2426 struct Qdisc *q;
2427 int rc = -ENOMEM;
2428
2429 /* Disable soft irqs for various locks below. Also
2430 * stops preemption for RCU.
2431 */
2432 rcu_read_lock_bh();
2433
2434 txq = dev_pick_tx(dev, skb);
2435 q = rcu_dereference_bh(txq->qdisc);
2436
2437 #ifdef CONFIG_NET_CLS_ACT
2438 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2439 #endif
2440 trace_net_dev_queue(skb);
2441 if (q->enqueue) {
2442 rc = __dev_xmit_skb(skb, q, dev, txq);
2443 goto out;
2444 }
2445
2446 /* The device has no queue. Common case for software devices:
2447 loopback, all the sorts of tunnels...
2448
2449 Really, it is unlikely that netif_tx_lock protection is necessary
2450 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2451 counters.)
2452 However, it is possible, that they rely on protection
2453 made by us here.
2454
2455 Check this and shot the lock. It is not prone from deadlocks.
2456 Either shot noqueue qdisc, it is even simpler 8)
2457 */
2458 if (dev->flags & IFF_UP) {
2459 int cpu = smp_processor_id(); /* ok because BHs are off */
2460
2461 if (txq->xmit_lock_owner != cpu) {
2462
2463 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2464 goto recursion_alert;
2465
2466 HARD_TX_LOCK(dev, txq, cpu);
2467
2468 if (!netif_tx_queue_stopped(txq)) {
2469 __this_cpu_inc(xmit_recursion);
2470 rc = dev_hard_start_xmit(skb, dev, txq);
2471 __this_cpu_dec(xmit_recursion);
2472 if (dev_xmit_complete(rc)) {
2473 HARD_TX_UNLOCK(dev, txq);
2474 goto out;
2475 }
2476 }
2477 HARD_TX_UNLOCK(dev, txq);
2478 if (net_ratelimit())
2479 printk(KERN_CRIT "Virtual device %s asks to "
2480 "queue packet!\n", dev->name);
2481 } else {
2482 /* Recursion is detected! It is possible,
2483 * unfortunately
2484 */
2485 recursion_alert:
2486 if (net_ratelimit())
2487 printk(KERN_CRIT "Dead loop on virtual device "
2488 "%s, fix it urgently!\n", dev->name);
2489 }
2490 }
2491
2492 rc = -ENETDOWN;
2493 rcu_read_unlock_bh();
2494
2495 kfree_skb(skb);
2496 return rc;
2497 out:
2498 rcu_read_unlock_bh();
2499 return rc;
2500 }
2501 EXPORT_SYMBOL(dev_queue_xmit);
2502
2503
2504 /*=======================================================================
2505 Receiver routines
2506 =======================================================================*/
2507
2508 int netdev_max_backlog __read_mostly = 1000;
2509 int netdev_tstamp_prequeue __read_mostly = 1;
2510 int netdev_budget __read_mostly = 300;
2511 int weight_p __read_mostly = 64; /* old backlog weight */
2512
2513 /* Called with irq disabled */
2514 static inline void ____napi_schedule(struct softnet_data *sd,
2515 struct napi_struct *napi)
2516 {
2517 list_add_tail(&napi->poll_list, &sd->poll_list);
2518 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2519 }
2520
2521 /*
2522 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2523 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2524 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2525 * if hash is a canonical 4-tuple hash over transport ports.
2526 */
2527 void __skb_get_rxhash(struct sk_buff *skb)
2528 {
2529 int nhoff, hash = 0, poff;
2530 const struct ipv6hdr *ip6;
2531 const struct iphdr *ip;
2532 u8 ip_proto;
2533 u32 addr1, addr2;
2534 u16 proto;
2535 union {
2536 u32 v32;
2537 u16 v16[2];
2538 } ports;
2539
2540 nhoff = skb_network_offset(skb);
2541 proto = skb->protocol;
2542
2543 again:
2544 switch (proto) {
2545 case __constant_htons(ETH_P_IP):
2546 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2547 goto done;
2548
2549 ip = (const struct iphdr *) (skb->data + nhoff);
2550 if (ip_is_fragment(ip))
2551 ip_proto = 0;
2552 else
2553 ip_proto = ip->protocol;
2554 addr1 = (__force u32) ip->saddr;
2555 addr2 = (__force u32) ip->daddr;
2556 nhoff += ip->ihl * 4;
2557 break;
2558 case __constant_htons(ETH_P_IPV6):
2559 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2560 goto done;
2561
2562 ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2563 ip_proto = ip6->nexthdr;
2564 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2565 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2566 nhoff += 40;
2567 break;
2568 default:
2569 goto done;
2570 }
2571
2572 switch (ip_proto) {
2573 case IPPROTO_GRE:
2574 if (pskb_may_pull(skb, nhoff + 16)) {
2575 u8 *h = skb->data + nhoff;
2576 __be16 flags = *(__be16 *)h;
2577
2578 /*
2579 * Only look inside GRE if version zero and no
2580 * routing
2581 */
2582 if (!(flags & (GRE_VERSION|GRE_ROUTING))) {
2583 proto = *(__be16 *)(h + 2);
2584 nhoff += 4;
2585 if (flags & GRE_CSUM)
2586 nhoff += 4;
2587 if (flags & GRE_KEY)
2588 nhoff += 4;
2589 if (flags & GRE_SEQ)
2590 nhoff += 4;
2591 goto again;
2592 }
2593 }
2594 break;
2595 default:
2596 break;
2597 }
2598
2599 ports.v32 = 0;
2600 poff = proto_ports_offset(ip_proto);
2601 if (poff >= 0) {
2602 nhoff += poff;
2603 if (pskb_may_pull(skb, nhoff + 4)) {
2604 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2605 if (ports.v16[1] < ports.v16[0])
2606 swap(ports.v16[0], ports.v16[1]);
2607 skb->l4_rxhash = 1;
2608 }
2609 }
2610
2611 /* get a consistent hash (same value on both flow directions) */
2612 if (addr2 < addr1)
2613 swap(addr1, addr2);
2614
2615 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2616 if (!hash)
2617 hash = 1;
2618
2619 done:
2620 skb->rxhash = hash;
2621 }
2622 EXPORT_SYMBOL(__skb_get_rxhash);
2623
2624 #ifdef CONFIG_RPS
2625
2626 /* One global table that all flow-based protocols share. */
2627 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2628 EXPORT_SYMBOL(rps_sock_flow_table);
2629
2630 static struct rps_dev_flow *
2631 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2632 struct rps_dev_flow *rflow, u16 next_cpu)
2633 {
2634 u16 tcpu;
2635
2636 tcpu = rflow->cpu = next_cpu;
2637 if (tcpu != RPS_NO_CPU) {
2638 #ifdef CONFIG_RFS_ACCEL
2639 struct netdev_rx_queue *rxqueue;
2640 struct rps_dev_flow_table *flow_table;
2641 struct rps_dev_flow *old_rflow;
2642 u32 flow_id;
2643 u16 rxq_index;
2644 int rc;
2645
2646 /* Should we steer this flow to a different hardware queue? */
2647 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2648 !(dev->features & NETIF_F_NTUPLE))
2649 goto out;
2650 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2651 if (rxq_index == skb_get_rx_queue(skb))
2652 goto out;
2653
2654 rxqueue = dev->_rx + rxq_index;
2655 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2656 if (!flow_table)
2657 goto out;
2658 flow_id = skb->rxhash & flow_table->mask;
2659 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2660 rxq_index, flow_id);
2661 if (rc < 0)
2662 goto out;
2663 old_rflow = rflow;
2664 rflow = &flow_table->flows[flow_id];
2665 rflow->cpu = next_cpu;
2666 rflow->filter = rc;
2667 if (old_rflow->filter == rflow->filter)
2668 old_rflow->filter = RPS_NO_FILTER;
2669 out:
2670 #endif
2671 rflow->last_qtail =
2672 per_cpu(softnet_data, tcpu).input_queue_head;
2673 }
2674
2675 return rflow;
2676 }
2677
2678 /*
2679 * get_rps_cpu is called from netif_receive_skb and returns the target
2680 * CPU from the RPS map of the receiving queue for a given skb.
2681 * rcu_read_lock must be held on entry.
2682 */
2683 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2684 struct rps_dev_flow **rflowp)
2685 {
2686 struct netdev_rx_queue *rxqueue;
2687 struct rps_map *map;
2688 struct rps_dev_flow_table *flow_table;
2689 struct rps_sock_flow_table *sock_flow_table;
2690 int cpu = -1;
2691 u16 tcpu;
2692
2693 if (skb_rx_queue_recorded(skb)) {
2694 u16 index = skb_get_rx_queue(skb);
2695 if (unlikely(index >= dev->real_num_rx_queues)) {
2696 WARN_ONCE(dev->real_num_rx_queues > 1,
2697 "%s received packet on queue %u, but number "
2698 "of RX queues is %u\n",
2699 dev->name, index, dev->real_num_rx_queues);
2700 goto done;
2701 }
2702 rxqueue = dev->_rx + index;
2703 } else
2704 rxqueue = dev->_rx;
2705
2706 map = rcu_dereference(rxqueue->rps_map);
2707 if (map) {
2708 if (map->len == 1 &&
2709 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2710 tcpu = map->cpus[0];
2711 if (cpu_online(tcpu))
2712 cpu = tcpu;
2713 goto done;
2714 }
2715 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2716 goto done;
2717 }
2718
2719 skb_reset_network_header(skb);
2720 if (!skb_get_rxhash(skb))
2721 goto done;
2722
2723 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2724 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2725 if (flow_table && sock_flow_table) {
2726 u16 next_cpu;
2727 struct rps_dev_flow *rflow;
2728
2729 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2730 tcpu = rflow->cpu;
2731
2732 next_cpu = sock_flow_table->ents[skb->rxhash &
2733 sock_flow_table->mask];
2734
2735 /*
2736 * If the desired CPU (where last recvmsg was done) is
2737 * different from current CPU (one in the rx-queue flow
2738 * table entry), switch if one of the following holds:
2739 * - Current CPU is unset (equal to RPS_NO_CPU).
2740 * - Current CPU is offline.
2741 * - The current CPU's queue tail has advanced beyond the
2742 * last packet that was enqueued using this table entry.
2743 * This guarantees that all previous packets for the flow
2744 * have been dequeued, thus preserving in order delivery.
2745 */
2746 if (unlikely(tcpu != next_cpu) &&
2747 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2748 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2749 rflow->last_qtail)) >= 0))
2750 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2751
2752 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2753 *rflowp = rflow;
2754 cpu = tcpu;
2755 goto done;
2756 }
2757 }
2758
2759 if (map) {
2760 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2761
2762 if (cpu_online(tcpu)) {
2763 cpu = tcpu;
2764 goto done;
2765 }
2766 }
2767
2768 done:
2769 return cpu;
2770 }
2771
2772 #ifdef CONFIG_RFS_ACCEL
2773
2774 /**
2775 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2776 * @dev: Device on which the filter was set
2777 * @rxq_index: RX queue index
2778 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2779 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2780 *
2781 * Drivers that implement ndo_rx_flow_steer() should periodically call
2782 * this function for each installed filter and remove the filters for
2783 * which it returns %true.
2784 */
2785 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2786 u32 flow_id, u16 filter_id)
2787 {
2788 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2789 struct rps_dev_flow_table *flow_table;
2790 struct rps_dev_flow *rflow;
2791 bool expire = true;
2792 int cpu;
2793
2794 rcu_read_lock();
2795 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2796 if (flow_table && flow_id <= flow_table->mask) {
2797 rflow = &flow_table->flows[flow_id];
2798 cpu = ACCESS_ONCE(rflow->cpu);
2799 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2800 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2801 rflow->last_qtail) <
2802 (int)(10 * flow_table->mask)))
2803 expire = false;
2804 }
2805 rcu_read_unlock();
2806 return expire;
2807 }
2808 EXPORT_SYMBOL(rps_may_expire_flow);
2809
2810 #endif /* CONFIG_RFS_ACCEL */
2811
2812 /* Called from hardirq (IPI) context */
2813 static void rps_trigger_softirq(void *data)
2814 {
2815 struct softnet_data *sd = data;
2816
2817 ____napi_schedule(sd, &sd->backlog);
2818 sd->received_rps++;
2819 }
2820
2821 #endif /* CONFIG_RPS */
2822
2823 /*
2824 * Check if this softnet_data structure is another cpu one
2825 * If yes, queue it to our IPI list and return 1
2826 * If no, return 0
2827 */
2828 static int rps_ipi_queued(struct softnet_data *sd)
2829 {
2830 #ifdef CONFIG_RPS
2831 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2832
2833 if (sd != mysd) {
2834 sd->rps_ipi_next = mysd->rps_ipi_list;
2835 mysd->rps_ipi_list = sd;
2836
2837 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2838 return 1;
2839 }
2840 #endif /* CONFIG_RPS */
2841 return 0;
2842 }
2843
2844 /*
2845 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2846 * queue (may be a remote CPU queue).
2847 */
2848 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2849 unsigned int *qtail)
2850 {
2851 struct softnet_data *sd;
2852 unsigned long flags;
2853
2854 sd = &per_cpu(softnet_data, cpu);
2855
2856 local_irq_save(flags);
2857
2858 rps_lock(sd);
2859 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2860 if (skb_queue_len(&sd->input_pkt_queue)) {
2861 enqueue:
2862 __skb_queue_tail(&sd->input_pkt_queue, skb);
2863 input_queue_tail_incr_save(sd, qtail);
2864 rps_unlock(sd);
2865 local_irq_restore(flags);
2866 return NET_RX_SUCCESS;
2867 }
2868
2869 /* Schedule NAPI for backlog device
2870 * We can use non atomic operation since we own the queue lock
2871 */
2872 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2873 if (!rps_ipi_queued(sd))
2874 ____napi_schedule(sd, &sd->backlog);
2875 }
2876 goto enqueue;
2877 }
2878
2879 sd->dropped++;
2880 rps_unlock(sd);
2881
2882 local_irq_restore(flags);
2883
2884 atomic_long_inc(&skb->dev->rx_dropped);
2885 kfree_skb(skb);
2886 return NET_RX_DROP;
2887 }
2888
2889 /**
2890 * netif_rx - post buffer to the network code
2891 * @skb: buffer to post
2892 *
2893 * This function receives a packet from a device driver and queues it for
2894 * the upper (protocol) levels to process. It always succeeds. The buffer
2895 * may be dropped during processing for congestion control or by the
2896 * protocol layers.
2897 *
2898 * return values:
2899 * NET_RX_SUCCESS (no congestion)
2900 * NET_RX_DROP (packet was dropped)
2901 *
2902 */
2903
2904 int netif_rx(struct sk_buff *skb)
2905 {
2906 int ret;
2907
2908 /* if netpoll wants it, pretend we never saw it */
2909 if (netpoll_rx(skb))
2910 return NET_RX_DROP;
2911
2912 if (netdev_tstamp_prequeue)
2913 net_timestamp_check(skb);
2914
2915 trace_netif_rx(skb);
2916 #ifdef CONFIG_RPS
2917 {
2918 struct rps_dev_flow voidflow, *rflow = &voidflow;
2919 int cpu;
2920
2921 preempt_disable();
2922 rcu_read_lock();
2923
2924 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2925 if (cpu < 0)
2926 cpu = smp_processor_id();
2927
2928 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2929
2930 rcu_read_unlock();
2931 preempt_enable();
2932 }
2933 #else
2934 {
2935 unsigned int qtail;
2936 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2937 put_cpu();
2938 }
2939 #endif
2940 return ret;
2941 }
2942 EXPORT_SYMBOL(netif_rx);
2943
2944 int netif_rx_ni(struct sk_buff *skb)
2945 {
2946 int err;
2947
2948 preempt_disable();
2949 err = netif_rx(skb);
2950 if (local_softirq_pending())
2951 do_softirq();
2952 preempt_enable();
2953
2954 return err;
2955 }
2956 EXPORT_SYMBOL(netif_rx_ni);
2957
2958 static void net_tx_action(struct softirq_action *h)
2959 {
2960 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2961
2962 if (sd->completion_queue) {
2963 struct sk_buff *clist;
2964
2965 local_irq_disable();
2966 clist = sd->completion_queue;
2967 sd->completion_queue = NULL;
2968 local_irq_enable();
2969
2970 while (clist) {
2971 struct sk_buff *skb = clist;
2972 clist = clist->next;
2973
2974 WARN_ON(atomic_read(&skb->users));
2975 trace_kfree_skb(skb, net_tx_action);
2976 __kfree_skb(skb);
2977 }
2978 }
2979
2980 if (sd->output_queue) {
2981 struct Qdisc *head;
2982
2983 local_irq_disable();
2984 head = sd->output_queue;
2985 sd->output_queue = NULL;
2986 sd->output_queue_tailp = &sd->output_queue;
2987 local_irq_enable();
2988
2989 while (head) {
2990 struct Qdisc *q = head;
2991 spinlock_t *root_lock;
2992
2993 head = head->next_sched;
2994
2995 root_lock = qdisc_lock(q);
2996 if (spin_trylock(root_lock)) {
2997 smp_mb__before_clear_bit();
2998 clear_bit(__QDISC_STATE_SCHED,
2999 &q->state);
3000 qdisc_run(q);
3001 spin_unlock(root_lock);
3002 } else {
3003 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3004 &q->state)) {
3005 __netif_reschedule(q);
3006 } else {
3007 smp_mb__before_clear_bit();
3008 clear_bit(__QDISC_STATE_SCHED,
3009 &q->state);
3010 }
3011 }
3012 }
3013 }
3014 }
3015
3016 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3017 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3018 /* This hook is defined here for ATM LANE */
3019 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3020 unsigned char *addr) __read_mostly;
3021 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3022 #endif
3023
3024 #ifdef CONFIG_NET_CLS_ACT
3025 /* TODO: Maybe we should just force sch_ingress to be compiled in
3026 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3027 * a compare and 2 stores extra right now if we dont have it on
3028 * but have CONFIG_NET_CLS_ACT
3029 * NOTE: This doesn't stop any functionality; if you dont have
3030 * the ingress scheduler, you just can't add policies on ingress.
3031 *
3032 */
3033 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3034 {
3035 struct net_device *dev = skb->dev;
3036 u32 ttl = G_TC_RTTL(skb->tc_verd);
3037 int result = TC_ACT_OK;
3038 struct Qdisc *q;
3039
3040 if (unlikely(MAX_RED_LOOP < ttl++)) {
3041 if (net_ratelimit())
3042 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3043 skb->skb_iif, dev->ifindex);
3044 return TC_ACT_SHOT;
3045 }
3046
3047 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3048 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3049
3050 q = rxq->qdisc;
3051 if (q != &noop_qdisc) {
3052 spin_lock(qdisc_lock(q));
3053 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3054 result = qdisc_enqueue_root(skb, q);
3055 spin_unlock(qdisc_lock(q));
3056 }
3057
3058 return result;
3059 }
3060
3061 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3062 struct packet_type **pt_prev,
3063 int *ret, struct net_device *orig_dev)
3064 {
3065 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3066
3067 if (!rxq || rxq->qdisc == &noop_qdisc)
3068 goto out;
3069
3070 if (*pt_prev) {
3071 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3072 *pt_prev = NULL;
3073 }
3074
3075 switch (ing_filter(skb, rxq)) {
3076 case TC_ACT_SHOT:
3077 case TC_ACT_STOLEN:
3078 kfree_skb(skb);
3079 return NULL;
3080 }
3081
3082 out:
3083 skb->tc_verd = 0;
3084 return skb;
3085 }
3086 #endif
3087
3088 /**
3089 * netdev_rx_handler_register - register receive handler
3090 * @dev: device to register a handler for
3091 * @rx_handler: receive handler to register
3092 * @rx_handler_data: data pointer that is used by rx handler
3093 *
3094 * Register a receive hander for a device. This handler will then be
3095 * called from __netif_receive_skb. A negative errno code is returned
3096 * on a failure.
3097 *
3098 * The caller must hold the rtnl_mutex.
3099 *
3100 * For a general description of rx_handler, see enum rx_handler_result.
3101 */
3102 int netdev_rx_handler_register(struct net_device *dev,
3103 rx_handler_func_t *rx_handler,
3104 void *rx_handler_data)
3105 {
3106 ASSERT_RTNL();
3107
3108 if (dev->rx_handler)
3109 return -EBUSY;
3110
3111 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3112 rcu_assign_pointer(dev->rx_handler, rx_handler);
3113
3114 return 0;
3115 }
3116 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3117
3118 /**
3119 * netdev_rx_handler_unregister - unregister receive handler
3120 * @dev: device to unregister a handler from
3121 *
3122 * Unregister a receive hander from a device.
3123 *
3124 * The caller must hold the rtnl_mutex.
3125 */
3126 void netdev_rx_handler_unregister(struct net_device *dev)
3127 {
3128
3129 ASSERT_RTNL();
3130 RCU_INIT_POINTER(dev->rx_handler, NULL);
3131 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3132 }
3133 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3134
3135 static int __netif_receive_skb(struct sk_buff *skb)
3136 {
3137 struct packet_type *ptype, *pt_prev;
3138 rx_handler_func_t *rx_handler;
3139 struct net_device *orig_dev;
3140 struct net_device *null_or_dev;
3141 bool deliver_exact = false;
3142 int ret = NET_RX_DROP;
3143 __be16 type;
3144
3145 if (!netdev_tstamp_prequeue)
3146 net_timestamp_check(skb);
3147
3148 trace_netif_receive_skb(skb);
3149
3150 /* if we've gotten here through NAPI, check netpoll */
3151 if (netpoll_receive_skb(skb))
3152 return NET_RX_DROP;
3153
3154 if (!skb->skb_iif)
3155 skb->skb_iif = skb->dev->ifindex;
3156 orig_dev = skb->dev;
3157
3158 skb_reset_network_header(skb);
3159 skb_reset_transport_header(skb);
3160 skb_reset_mac_len(skb);
3161
3162 pt_prev = NULL;
3163
3164 rcu_read_lock();
3165
3166 another_round:
3167
3168 __this_cpu_inc(softnet_data.processed);
3169
3170 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3171 skb = vlan_untag(skb);
3172 if (unlikely(!skb))
3173 goto out;
3174 }
3175
3176 #ifdef CONFIG_NET_CLS_ACT
3177 if (skb->tc_verd & TC_NCLS) {
3178 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3179 goto ncls;
3180 }
3181 #endif
3182
3183 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3184 if (!ptype->dev || ptype->dev == skb->dev) {
3185 if (pt_prev)
3186 ret = deliver_skb(skb, pt_prev, orig_dev);
3187 pt_prev = ptype;
3188 }
3189 }
3190
3191 #ifdef CONFIG_NET_CLS_ACT
3192 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3193 if (!skb)
3194 goto out;
3195 ncls:
3196 #endif
3197
3198 rx_handler = rcu_dereference(skb->dev->rx_handler);
3199 if (rx_handler) {
3200 if (pt_prev) {
3201 ret = deliver_skb(skb, pt_prev, orig_dev);
3202 pt_prev = NULL;
3203 }
3204 switch (rx_handler(&skb)) {
3205 case RX_HANDLER_CONSUMED:
3206 goto out;
3207 case RX_HANDLER_ANOTHER:
3208 goto another_round;
3209 case RX_HANDLER_EXACT:
3210 deliver_exact = true;
3211 case RX_HANDLER_PASS:
3212 break;
3213 default:
3214 BUG();
3215 }
3216 }
3217
3218 if (vlan_tx_tag_present(skb)) {
3219 if (pt_prev) {
3220 ret = deliver_skb(skb, pt_prev, orig_dev);
3221 pt_prev = NULL;
3222 }
3223 if (vlan_do_receive(&skb)) {
3224 ret = __netif_receive_skb(skb);
3225 goto out;
3226 } else if (unlikely(!skb))
3227 goto out;
3228 }
3229
3230 /* deliver only exact match when indicated */
3231 null_or_dev = deliver_exact ? skb->dev : NULL;
3232
3233 type = skb->protocol;
3234 list_for_each_entry_rcu(ptype,
3235 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3236 if (ptype->type == type &&
3237 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3238 ptype->dev == orig_dev)) {
3239 if (pt_prev)
3240 ret = deliver_skb(skb, pt_prev, orig_dev);
3241 pt_prev = ptype;
3242 }
3243 }
3244
3245 if (pt_prev) {
3246 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3247 } else {
3248 atomic_long_inc(&skb->dev->rx_dropped);
3249 kfree_skb(skb);
3250 /* Jamal, now you will not able to escape explaining
3251 * me how you were going to use this. :-)
3252 */
3253 ret = NET_RX_DROP;
3254 }
3255
3256 out:
3257 rcu_read_unlock();
3258 return ret;
3259 }
3260
3261 /**
3262 * netif_receive_skb - process receive buffer from network
3263 * @skb: buffer to process
3264 *
3265 * netif_receive_skb() is the main receive data processing function.
3266 * It always succeeds. The buffer may be dropped during processing
3267 * for congestion control or by the protocol layers.
3268 *
3269 * This function may only be called from softirq context and interrupts
3270 * should be enabled.
3271 *
3272 * Return values (usually ignored):
3273 * NET_RX_SUCCESS: no congestion
3274 * NET_RX_DROP: packet was dropped
3275 */
3276 int netif_receive_skb(struct sk_buff *skb)
3277 {
3278 if (netdev_tstamp_prequeue)
3279 net_timestamp_check(skb);
3280
3281 if (skb_defer_rx_timestamp(skb))
3282 return NET_RX_SUCCESS;
3283
3284 #ifdef CONFIG_RPS
3285 {
3286 struct rps_dev_flow voidflow, *rflow = &voidflow;
3287 int cpu, ret;
3288
3289 rcu_read_lock();
3290
3291 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3292
3293 if (cpu >= 0) {
3294 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3295 rcu_read_unlock();
3296 } else {
3297 rcu_read_unlock();
3298 ret = __netif_receive_skb(skb);
3299 }
3300
3301 return ret;
3302 }
3303 #else
3304 return __netif_receive_skb(skb);
3305 #endif
3306 }
3307 EXPORT_SYMBOL(netif_receive_skb);
3308
3309 /* Network device is going away, flush any packets still pending
3310 * Called with irqs disabled.
3311 */
3312 static void flush_backlog(void *arg)
3313 {
3314 struct net_device *dev = arg;
3315 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3316 struct sk_buff *skb, *tmp;
3317
3318 rps_lock(sd);
3319 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3320 if (skb->dev == dev) {
3321 __skb_unlink(skb, &sd->input_pkt_queue);
3322 kfree_skb(skb);
3323 input_queue_head_incr(sd);
3324 }
3325 }
3326 rps_unlock(sd);
3327
3328 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3329 if (skb->dev == dev) {
3330 __skb_unlink(skb, &sd->process_queue);
3331 kfree_skb(skb);
3332 input_queue_head_incr(sd);
3333 }
3334 }
3335 }
3336
3337 static int napi_gro_complete(struct sk_buff *skb)
3338 {
3339 struct packet_type *ptype;
3340 __be16 type = skb->protocol;
3341 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3342 int err = -ENOENT;
3343
3344 if (NAPI_GRO_CB(skb)->count == 1) {
3345 skb_shinfo(skb)->gso_size = 0;
3346 goto out;
3347 }
3348
3349 rcu_read_lock();
3350 list_for_each_entry_rcu(ptype, head, list) {
3351 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3352 continue;
3353
3354 err = ptype->gro_complete(skb);
3355 break;
3356 }
3357 rcu_read_unlock();
3358
3359 if (err) {
3360 WARN_ON(&ptype->list == head);
3361 kfree_skb(skb);
3362 return NET_RX_SUCCESS;
3363 }
3364
3365 out:
3366 return netif_receive_skb(skb);
3367 }
3368
3369 inline void napi_gro_flush(struct napi_struct *napi)
3370 {
3371 struct sk_buff *skb, *next;
3372
3373 for (skb = napi->gro_list; skb; skb = next) {
3374 next = skb->next;
3375 skb->next = NULL;
3376 napi_gro_complete(skb);
3377 }
3378
3379 napi->gro_count = 0;
3380 napi->gro_list = NULL;
3381 }
3382 EXPORT_SYMBOL(napi_gro_flush);
3383
3384 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3385 {
3386 struct sk_buff **pp = NULL;
3387 struct packet_type *ptype;
3388 __be16 type = skb->protocol;
3389 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3390 int same_flow;
3391 int mac_len;
3392 enum gro_result ret;
3393
3394 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3395 goto normal;
3396
3397 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3398 goto normal;
3399
3400 rcu_read_lock();
3401 list_for_each_entry_rcu(ptype, head, list) {
3402 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3403 continue;
3404
3405 skb_set_network_header(skb, skb_gro_offset(skb));
3406 mac_len = skb->network_header - skb->mac_header;
3407 skb->mac_len = mac_len;
3408 NAPI_GRO_CB(skb)->same_flow = 0;
3409 NAPI_GRO_CB(skb)->flush = 0;
3410 NAPI_GRO_CB(skb)->free = 0;
3411
3412 pp = ptype->gro_receive(&napi->gro_list, skb);
3413 break;
3414 }
3415 rcu_read_unlock();
3416
3417 if (&ptype->list == head)
3418 goto normal;
3419
3420 same_flow = NAPI_GRO_CB(skb)->same_flow;
3421 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3422
3423 if (pp) {
3424 struct sk_buff *nskb = *pp;
3425
3426 *pp = nskb->next;
3427 nskb->next = NULL;
3428 napi_gro_complete(nskb);
3429 napi->gro_count--;
3430 }
3431
3432 if (same_flow)
3433 goto ok;
3434
3435 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3436 goto normal;
3437
3438 napi->gro_count++;
3439 NAPI_GRO_CB(skb)->count = 1;
3440 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3441 skb->next = napi->gro_list;
3442 napi->gro_list = skb;
3443 ret = GRO_HELD;
3444
3445 pull:
3446 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3447 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3448
3449 BUG_ON(skb->end - skb->tail < grow);
3450
3451 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3452
3453 skb->tail += grow;
3454 skb->data_len -= grow;
3455
3456 skb_shinfo(skb)->frags[0].page_offset += grow;
3457 skb_shinfo(skb)->frags[0].size -= grow;
3458
3459 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3460 put_page(skb_shinfo(skb)->frags[0].page);
3461 memmove(skb_shinfo(skb)->frags,
3462 skb_shinfo(skb)->frags + 1,
3463 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3464 }
3465 }
3466
3467 ok:
3468 return ret;
3469
3470 normal:
3471 ret = GRO_NORMAL;
3472 goto pull;
3473 }
3474 EXPORT_SYMBOL(dev_gro_receive);
3475
3476 static inline gro_result_t
3477 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3478 {
3479 struct sk_buff *p;
3480
3481 for (p = napi->gro_list; p; p = p->next) {
3482 unsigned long diffs;
3483
3484 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3485 diffs |= p->vlan_tci ^ skb->vlan_tci;
3486 diffs |= compare_ether_header(skb_mac_header(p),
3487 skb_gro_mac_header(skb));
3488 NAPI_GRO_CB(p)->same_flow = !diffs;
3489 NAPI_GRO_CB(p)->flush = 0;
3490 }
3491
3492 return dev_gro_receive(napi, skb);
3493 }
3494
3495 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3496 {
3497 switch (ret) {
3498 case GRO_NORMAL:
3499 if (netif_receive_skb(skb))
3500 ret = GRO_DROP;
3501 break;
3502
3503 case GRO_DROP:
3504 case GRO_MERGED_FREE:
3505 kfree_skb(skb);
3506 break;
3507
3508 case GRO_HELD:
3509 case GRO_MERGED:
3510 break;
3511 }
3512
3513 return ret;
3514 }
3515 EXPORT_SYMBOL(napi_skb_finish);
3516
3517 void skb_gro_reset_offset(struct sk_buff *skb)
3518 {
3519 NAPI_GRO_CB(skb)->data_offset = 0;
3520 NAPI_GRO_CB(skb)->frag0 = NULL;
3521 NAPI_GRO_CB(skb)->frag0_len = 0;
3522
3523 if (skb->mac_header == skb->tail &&
3524 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3525 NAPI_GRO_CB(skb)->frag0 =
3526 page_address(skb_shinfo(skb)->frags[0].page) +
3527 skb_shinfo(skb)->frags[0].page_offset;
3528 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3529 }
3530 }
3531 EXPORT_SYMBOL(skb_gro_reset_offset);
3532
3533 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3534 {
3535 skb_gro_reset_offset(skb);
3536
3537 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3538 }
3539 EXPORT_SYMBOL(napi_gro_receive);
3540
3541 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3542 {
3543 __skb_pull(skb, skb_headlen(skb));
3544 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3545 skb->vlan_tci = 0;
3546 skb->dev = napi->dev;
3547 skb->skb_iif = 0;
3548
3549 napi->skb = skb;
3550 }
3551
3552 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3553 {
3554 struct sk_buff *skb = napi->skb;
3555
3556 if (!skb) {
3557 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3558 if (skb)
3559 napi->skb = skb;
3560 }
3561 return skb;
3562 }
3563 EXPORT_SYMBOL(napi_get_frags);
3564
3565 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3566 gro_result_t ret)
3567 {
3568 switch (ret) {
3569 case GRO_NORMAL:
3570 case GRO_HELD:
3571 skb->protocol = eth_type_trans(skb, skb->dev);
3572
3573 if (ret == GRO_HELD)
3574 skb_gro_pull(skb, -ETH_HLEN);
3575 else if (netif_receive_skb(skb))
3576 ret = GRO_DROP;
3577 break;
3578
3579 case GRO_DROP:
3580 case GRO_MERGED_FREE:
3581 napi_reuse_skb(napi, skb);
3582 break;
3583
3584 case GRO_MERGED:
3585 break;
3586 }
3587
3588 return ret;
3589 }
3590 EXPORT_SYMBOL(napi_frags_finish);
3591
3592 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3593 {
3594 struct sk_buff *skb = napi->skb;
3595 struct ethhdr *eth;
3596 unsigned int hlen;
3597 unsigned int off;
3598
3599 napi->skb = NULL;
3600
3601 skb_reset_mac_header(skb);
3602 skb_gro_reset_offset(skb);
3603
3604 off = skb_gro_offset(skb);
3605 hlen = off + sizeof(*eth);
3606 eth = skb_gro_header_fast(skb, off);
3607 if (skb_gro_header_hard(skb, hlen)) {
3608 eth = skb_gro_header_slow(skb, hlen, off);
3609 if (unlikely(!eth)) {
3610 napi_reuse_skb(napi, skb);
3611 skb = NULL;
3612 goto out;
3613 }
3614 }
3615
3616 skb_gro_pull(skb, sizeof(*eth));
3617
3618 /*
3619 * This works because the only protocols we care about don't require
3620 * special handling. We'll fix it up properly at the end.
3621 */
3622 skb->protocol = eth->h_proto;
3623
3624 out:
3625 return skb;
3626 }
3627 EXPORT_SYMBOL(napi_frags_skb);
3628
3629 gro_result_t napi_gro_frags(struct napi_struct *napi)
3630 {
3631 struct sk_buff *skb = napi_frags_skb(napi);
3632
3633 if (!skb)
3634 return GRO_DROP;
3635
3636 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3637 }
3638 EXPORT_SYMBOL(napi_gro_frags);
3639
3640 /*
3641 * net_rps_action sends any pending IPI's for rps.
3642 * Note: called with local irq disabled, but exits with local irq enabled.
3643 */
3644 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3645 {
3646 #ifdef CONFIG_RPS
3647 struct softnet_data *remsd = sd->rps_ipi_list;
3648
3649 if (remsd) {
3650 sd->rps_ipi_list = NULL;
3651
3652 local_irq_enable();
3653
3654 /* Send pending IPI's to kick RPS processing on remote cpus. */
3655 while (remsd) {
3656 struct softnet_data *next = remsd->rps_ipi_next;
3657
3658 if (cpu_online(remsd->cpu))
3659 __smp_call_function_single(remsd->cpu,
3660 &remsd->csd, 0);
3661 remsd = next;
3662 }
3663 } else
3664 #endif
3665 local_irq_enable();
3666 }
3667
3668 static int process_backlog(struct napi_struct *napi, int quota)
3669 {
3670 int work = 0;
3671 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3672
3673 #ifdef CONFIG_RPS
3674 /* Check if we have pending ipi, its better to send them now,
3675 * not waiting net_rx_action() end.
3676 */
3677 if (sd->rps_ipi_list) {
3678 local_irq_disable();
3679 net_rps_action_and_irq_enable(sd);
3680 }
3681 #endif
3682 napi->weight = weight_p;
3683 local_irq_disable();
3684 while (work < quota) {
3685 struct sk_buff *skb;
3686 unsigned int qlen;
3687
3688 while ((skb = __skb_dequeue(&sd->process_queue))) {
3689 local_irq_enable();
3690 __netif_receive_skb(skb);
3691 local_irq_disable();
3692 input_queue_head_incr(sd);
3693 if (++work >= quota) {
3694 local_irq_enable();
3695 return work;
3696 }
3697 }
3698
3699 rps_lock(sd);
3700 qlen = skb_queue_len(&sd->input_pkt_queue);
3701 if (qlen)
3702 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3703 &sd->process_queue);
3704
3705 if (qlen < quota - work) {
3706 /*
3707 * Inline a custom version of __napi_complete().
3708 * only current cpu owns and manipulates this napi,
3709 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3710 * we can use a plain write instead of clear_bit(),
3711 * and we dont need an smp_mb() memory barrier.
3712 */
3713 list_del(&napi->poll_list);
3714 napi->state = 0;
3715
3716 quota = work + qlen;
3717 }
3718 rps_unlock(sd);
3719 }
3720 local_irq_enable();
3721
3722 return work;
3723 }
3724
3725 /**
3726 * __napi_schedule - schedule for receive
3727 * @n: entry to schedule
3728 *
3729 * The entry's receive function will be scheduled to run
3730 */
3731 void __napi_schedule(struct napi_struct *n)
3732 {
3733 unsigned long flags;
3734
3735 local_irq_save(flags);
3736 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3737 local_irq_restore(flags);
3738 }
3739 EXPORT_SYMBOL(__napi_schedule);
3740
3741 void __napi_complete(struct napi_struct *n)
3742 {
3743 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3744 BUG_ON(n->gro_list);
3745
3746 list_del(&n->poll_list);
3747 smp_mb__before_clear_bit();
3748 clear_bit(NAPI_STATE_SCHED, &n->state);
3749 }
3750 EXPORT_SYMBOL(__napi_complete);
3751
3752 void napi_complete(struct napi_struct *n)
3753 {
3754 unsigned long flags;
3755
3756 /*
3757 * don't let napi dequeue from the cpu poll list
3758 * just in case its running on a different cpu
3759 */
3760 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3761 return;
3762
3763 napi_gro_flush(n);
3764 local_irq_save(flags);
3765 __napi_complete(n);
3766 local_irq_restore(flags);
3767 }
3768 EXPORT_SYMBOL(napi_complete);
3769
3770 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3771 int (*poll)(struct napi_struct *, int), int weight)
3772 {
3773 INIT_LIST_HEAD(&napi->poll_list);
3774 napi->gro_count = 0;
3775 napi->gro_list = NULL;
3776 napi->skb = NULL;
3777 napi->poll = poll;
3778 napi->weight = weight;
3779 list_add(&napi->dev_list, &dev->napi_list);
3780 napi->dev = dev;
3781 #ifdef CONFIG_NETPOLL
3782 spin_lock_init(&napi->poll_lock);
3783 napi->poll_owner = -1;
3784 #endif
3785 set_bit(NAPI_STATE_SCHED, &napi->state);
3786 }
3787 EXPORT_SYMBOL(netif_napi_add);
3788
3789 void netif_napi_del(struct napi_struct *napi)
3790 {
3791 struct sk_buff *skb, *next;
3792
3793 list_del_init(&napi->dev_list);
3794 napi_free_frags(napi);
3795
3796 for (skb = napi->gro_list; skb; skb = next) {
3797 next = skb->next;
3798 skb->next = NULL;
3799 kfree_skb(skb);
3800 }
3801
3802 napi->gro_list = NULL;
3803 napi->gro_count = 0;
3804 }
3805 EXPORT_SYMBOL(netif_napi_del);
3806
3807 static void net_rx_action(struct softirq_action *h)
3808 {
3809 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3810 unsigned long time_limit = jiffies + 2;
3811 int budget = netdev_budget;
3812 void *have;
3813
3814 local_irq_disable();
3815
3816 while (!list_empty(&sd->poll_list)) {
3817 struct napi_struct *n;
3818 int work, weight;
3819
3820 /* If softirq window is exhuasted then punt.
3821 * Allow this to run for 2 jiffies since which will allow
3822 * an average latency of 1.5/HZ.
3823 */
3824 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3825 goto softnet_break;
3826
3827 local_irq_enable();
3828
3829 /* Even though interrupts have been re-enabled, this
3830 * access is safe because interrupts can only add new
3831 * entries to the tail of this list, and only ->poll()
3832 * calls can remove this head entry from the list.
3833 */
3834 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3835
3836 have = netpoll_poll_lock(n);
3837
3838 weight = n->weight;
3839
3840 /* This NAPI_STATE_SCHED test is for avoiding a race
3841 * with netpoll's poll_napi(). Only the entity which
3842 * obtains the lock and sees NAPI_STATE_SCHED set will
3843 * actually make the ->poll() call. Therefore we avoid
3844 * accidentally calling ->poll() when NAPI is not scheduled.
3845 */
3846 work = 0;
3847 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3848 work = n->poll(n, weight);
3849 trace_napi_poll(n);
3850 }
3851
3852 WARN_ON_ONCE(work > weight);
3853
3854 budget -= work;
3855
3856 local_irq_disable();
3857
3858 /* Drivers must not modify the NAPI state if they
3859 * consume the entire weight. In such cases this code
3860 * still "owns" the NAPI instance and therefore can
3861 * move the instance around on the list at-will.
3862 */
3863 if (unlikely(work == weight)) {
3864 if (unlikely(napi_disable_pending(n))) {
3865 local_irq_enable();
3866 napi_complete(n);
3867 local_irq_disable();
3868 } else
3869 list_move_tail(&n->poll_list, &sd->poll_list);
3870 }
3871
3872 netpoll_poll_unlock(have);
3873 }
3874 out:
3875 net_rps_action_and_irq_enable(sd);
3876
3877 #ifdef CONFIG_NET_DMA
3878 /*
3879 * There may not be any more sk_buffs coming right now, so push
3880 * any pending DMA copies to hardware
3881 */
3882 dma_issue_pending_all();
3883 #endif
3884
3885 return;
3886
3887 softnet_break:
3888 sd->time_squeeze++;
3889 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3890 goto out;
3891 }
3892
3893 static gifconf_func_t *gifconf_list[NPROTO];
3894
3895 /**
3896 * register_gifconf - register a SIOCGIF handler
3897 * @family: Address family
3898 * @gifconf: Function handler
3899 *
3900 * Register protocol dependent address dumping routines. The handler
3901 * that is passed must not be freed or reused until it has been replaced
3902 * by another handler.
3903 */
3904 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3905 {
3906 if (family >= NPROTO)
3907 return -EINVAL;
3908 gifconf_list[family] = gifconf;
3909 return 0;
3910 }
3911 EXPORT_SYMBOL(register_gifconf);
3912
3913
3914 /*
3915 * Map an interface index to its name (SIOCGIFNAME)
3916 */
3917
3918 /*
3919 * We need this ioctl for efficient implementation of the
3920 * if_indextoname() function required by the IPv6 API. Without
3921 * it, we would have to search all the interfaces to find a
3922 * match. --pb
3923 */
3924
3925 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3926 {
3927 struct net_device *dev;
3928 struct ifreq ifr;
3929
3930 /*
3931 * Fetch the caller's info block.
3932 */
3933
3934 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3935 return -EFAULT;
3936
3937 rcu_read_lock();
3938 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3939 if (!dev) {
3940 rcu_read_unlock();
3941 return -ENODEV;
3942 }
3943
3944 strcpy(ifr.ifr_name, dev->name);
3945 rcu_read_unlock();
3946
3947 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3948 return -EFAULT;
3949 return 0;
3950 }
3951
3952 /*
3953 * Perform a SIOCGIFCONF call. This structure will change
3954 * size eventually, and there is nothing I can do about it.
3955 * Thus we will need a 'compatibility mode'.
3956 */
3957
3958 static int dev_ifconf(struct net *net, char __user *arg)
3959 {
3960 struct ifconf ifc;
3961 struct net_device *dev;
3962 char __user *pos;
3963 int len;
3964 int total;
3965 int i;
3966
3967 /*
3968 * Fetch the caller's info block.
3969 */
3970
3971 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3972 return -EFAULT;
3973
3974 pos = ifc.ifc_buf;
3975 len = ifc.ifc_len;
3976
3977 /*
3978 * Loop over the interfaces, and write an info block for each.
3979 */
3980
3981 total = 0;
3982 for_each_netdev(net, dev) {
3983 for (i = 0; i < NPROTO; i++) {
3984 if (gifconf_list[i]) {
3985 int done;
3986 if (!pos)
3987 done = gifconf_list[i](dev, NULL, 0);
3988 else
3989 done = gifconf_list[i](dev, pos + total,
3990 len - total);
3991 if (done < 0)
3992 return -EFAULT;
3993 total += done;
3994 }
3995 }
3996 }
3997
3998 /*
3999 * All done. Write the updated control block back to the caller.
4000 */
4001 ifc.ifc_len = total;
4002
4003 /*
4004 * Both BSD and Solaris return 0 here, so we do too.
4005 */
4006 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4007 }
4008
4009 #ifdef CONFIG_PROC_FS
4010 /*
4011 * This is invoked by the /proc filesystem handler to display a device
4012 * in detail.
4013 */
4014 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4015 __acquires(RCU)
4016 {
4017 struct net *net = seq_file_net(seq);
4018 loff_t off;
4019 struct net_device *dev;
4020
4021 rcu_read_lock();
4022 if (!*pos)
4023 return SEQ_START_TOKEN;
4024
4025 off = 1;
4026 for_each_netdev_rcu(net, dev)
4027 if (off++ == *pos)
4028 return dev;
4029
4030 return NULL;
4031 }
4032
4033 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4034 {
4035 struct net_device *dev = v;
4036
4037 if (v == SEQ_START_TOKEN)
4038 dev = first_net_device_rcu(seq_file_net(seq));
4039 else
4040 dev = next_net_device_rcu(dev);
4041
4042 ++*pos;
4043 return dev;
4044 }
4045
4046 void dev_seq_stop(struct seq_file *seq, void *v)
4047 __releases(RCU)
4048 {
4049 rcu_read_unlock();
4050 }
4051
4052 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4053 {
4054 struct rtnl_link_stats64 temp;
4055 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4056
4057 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4058 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4059 dev->name, stats->rx_bytes, stats->rx_packets,
4060 stats->rx_errors,
4061 stats->rx_dropped + stats->rx_missed_errors,
4062 stats->rx_fifo_errors,
4063 stats->rx_length_errors + stats->rx_over_errors +
4064 stats->rx_crc_errors + stats->rx_frame_errors,
4065 stats->rx_compressed, stats->multicast,
4066 stats->tx_bytes, stats->tx_packets,
4067 stats->tx_errors, stats->tx_dropped,
4068 stats->tx_fifo_errors, stats->collisions,
4069 stats->tx_carrier_errors +
4070 stats->tx_aborted_errors +
4071 stats->tx_window_errors +
4072 stats->tx_heartbeat_errors,
4073 stats->tx_compressed);
4074 }
4075
4076 /*
4077 * Called from the PROCfs module. This now uses the new arbitrary sized
4078 * /proc/net interface to create /proc/net/dev
4079 */
4080 static int dev_seq_show(struct seq_file *seq, void *v)
4081 {
4082 if (v == SEQ_START_TOKEN)
4083 seq_puts(seq, "Inter-| Receive "
4084 " | Transmit\n"
4085 " face |bytes packets errs drop fifo frame "
4086 "compressed multicast|bytes packets errs "
4087 "drop fifo colls carrier compressed\n");
4088 else
4089 dev_seq_printf_stats(seq, v);
4090 return 0;
4091 }
4092
4093 static struct softnet_data *softnet_get_online(loff_t *pos)
4094 {
4095 struct softnet_data *sd = NULL;
4096
4097 while (*pos < nr_cpu_ids)
4098 if (cpu_online(*pos)) {
4099 sd = &per_cpu(softnet_data, *pos);
4100 break;
4101 } else
4102 ++*pos;
4103 return sd;
4104 }
4105
4106 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4107 {
4108 return softnet_get_online(pos);
4109 }
4110
4111 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4112 {
4113 ++*pos;
4114 return softnet_get_online(pos);
4115 }
4116
4117 static void softnet_seq_stop(struct seq_file *seq, void *v)
4118 {
4119 }
4120
4121 static int softnet_seq_show(struct seq_file *seq, void *v)
4122 {
4123 struct softnet_data *sd = v;
4124
4125 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4126 sd->processed, sd->dropped, sd->time_squeeze, 0,
4127 0, 0, 0, 0, /* was fastroute */
4128 sd->cpu_collision, sd->received_rps);
4129 return 0;
4130 }
4131
4132 static const struct seq_operations dev_seq_ops = {
4133 .start = dev_seq_start,
4134 .next = dev_seq_next,
4135 .stop = dev_seq_stop,
4136 .show = dev_seq_show,
4137 };
4138
4139 static int dev_seq_open(struct inode *inode, struct file *file)
4140 {
4141 return seq_open_net(inode, file, &dev_seq_ops,
4142 sizeof(struct seq_net_private));
4143 }
4144
4145 static const struct file_operations dev_seq_fops = {
4146 .owner = THIS_MODULE,
4147 .open = dev_seq_open,
4148 .read = seq_read,
4149 .llseek = seq_lseek,
4150 .release = seq_release_net,
4151 };
4152
4153 static const struct seq_operations softnet_seq_ops = {
4154 .start = softnet_seq_start,
4155 .next = softnet_seq_next,
4156 .stop = softnet_seq_stop,
4157 .show = softnet_seq_show,
4158 };
4159
4160 static int softnet_seq_open(struct inode *inode, struct file *file)
4161 {
4162 return seq_open(file, &softnet_seq_ops);
4163 }
4164
4165 static const struct file_operations softnet_seq_fops = {
4166 .owner = THIS_MODULE,
4167 .open = softnet_seq_open,
4168 .read = seq_read,
4169 .llseek = seq_lseek,
4170 .release = seq_release,
4171 };
4172
4173 static void *ptype_get_idx(loff_t pos)
4174 {
4175 struct packet_type *pt = NULL;
4176 loff_t i = 0;
4177 int t;
4178
4179 list_for_each_entry_rcu(pt, &ptype_all, list) {
4180 if (i == pos)
4181 return pt;
4182 ++i;
4183 }
4184
4185 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4186 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4187 if (i == pos)
4188 return pt;
4189 ++i;
4190 }
4191 }
4192 return NULL;
4193 }
4194
4195 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4196 __acquires(RCU)
4197 {
4198 rcu_read_lock();
4199 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4200 }
4201
4202 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4203 {
4204 struct packet_type *pt;
4205 struct list_head *nxt;
4206 int hash;
4207
4208 ++*pos;
4209 if (v == SEQ_START_TOKEN)
4210 return ptype_get_idx(0);
4211
4212 pt = v;
4213 nxt = pt->list.next;
4214 if (pt->type == htons(ETH_P_ALL)) {
4215 if (nxt != &ptype_all)
4216 goto found;
4217 hash = 0;
4218 nxt = ptype_base[0].next;
4219 } else
4220 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4221
4222 while (nxt == &ptype_base[hash]) {
4223 if (++hash >= PTYPE_HASH_SIZE)
4224 return NULL;
4225 nxt = ptype_base[hash].next;
4226 }
4227 found:
4228 return list_entry(nxt, struct packet_type, list);
4229 }
4230
4231 static void ptype_seq_stop(struct seq_file *seq, void *v)
4232 __releases(RCU)
4233 {
4234 rcu_read_unlock();
4235 }
4236
4237 static int ptype_seq_show(struct seq_file *seq, void *v)
4238 {
4239 struct packet_type *pt = v;
4240
4241 if (v == SEQ_START_TOKEN)
4242 seq_puts(seq, "Type Device Function\n");
4243 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4244 if (pt->type == htons(ETH_P_ALL))
4245 seq_puts(seq, "ALL ");
4246 else
4247 seq_printf(seq, "%04x", ntohs(pt->type));
4248
4249 seq_printf(seq, " %-8s %pF\n",
4250 pt->dev ? pt->dev->name : "", pt->func);
4251 }
4252
4253 return 0;
4254 }
4255
4256 static const struct seq_operations ptype_seq_ops = {
4257 .start = ptype_seq_start,
4258 .next = ptype_seq_next,
4259 .stop = ptype_seq_stop,
4260 .show = ptype_seq_show,
4261 };
4262
4263 static int ptype_seq_open(struct inode *inode, struct file *file)
4264 {
4265 return seq_open_net(inode, file, &ptype_seq_ops,
4266 sizeof(struct seq_net_private));
4267 }
4268
4269 static const struct file_operations ptype_seq_fops = {
4270 .owner = THIS_MODULE,
4271 .open = ptype_seq_open,
4272 .read = seq_read,
4273 .llseek = seq_lseek,
4274 .release = seq_release_net,
4275 };
4276
4277
4278 static int __net_init dev_proc_net_init(struct net *net)
4279 {
4280 int rc = -ENOMEM;
4281
4282 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4283 goto out;
4284 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4285 goto out_dev;
4286 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4287 goto out_softnet;
4288
4289 if (wext_proc_init(net))
4290 goto out_ptype;
4291 rc = 0;
4292 out:
4293 return rc;
4294 out_ptype:
4295 proc_net_remove(net, "ptype");
4296 out_softnet:
4297 proc_net_remove(net, "softnet_stat");
4298 out_dev:
4299 proc_net_remove(net, "dev");
4300 goto out;
4301 }
4302
4303 static void __net_exit dev_proc_net_exit(struct net *net)
4304 {
4305 wext_proc_exit(net);
4306
4307 proc_net_remove(net, "ptype");
4308 proc_net_remove(net, "softnet_stat");
4309 proc_net_remove(net, "dev");
4310 }
4311
4312 static struct pernet_operations __net_initdata dev_proc_ops = {
4313 .init = dev_proc_net_init,
4314 .exit = dev_proc_net_exit,
4315 };
4316
4317 static int __init dev_proc_init(void)
4318 {
4319 return register_pernet_subsys(&dev_proc_ops);
4320 }
4321 #else
4322 #define dev_proc_init() 0
4323 #endif /* CONFIG_PROC_FS */
4324
4325
4326 /**
4327 * netdev_set_master - set up master pointer
4328 * @slave: slave device
4329 * @master: new master device
4330 *
4331 * Changes the master device of the slave. Pass %NULL to break the
4332 * bonding. The caller must hold the RTNL semaphore. On a failure
4333 * a negative errno code is returned. On success the reference counts
4334 * are adjusted and the function returns zero.
4335 */
4336 int netdev_set_master(struct net_device *slave, struct net_device *master)
4337 {
4338 struct net_device *old = slave->master;
4339
4340 ASSERT_RTNL();
4341
4342 if (master) {
4343 if (old)
4344 return -EBUSY;
4345 dev_hold(master);
4346 }
4347
4348 slave->master = master;
4349
4350 if (old)
4351 dev_put(old);
4352 return 0;
4353 }
4354 EXPORT_SYMBOL(netdev_set_master);
4355
4356 /**
4357 * netdev_set_bond_master - set up bonding master/slave pair
4358 * @slave: slave device
4359 * @master: new master device
4360 *
4361 * Changes the master device of the slave. Pass %NULL to break the
4362 * bonding. The caller must hold the RTNL semaphore. On a failure
4363 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4364 * to the routing socket and the function returns zero.
4365 */
4366 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4367 {
4368 int err;
4369
4370 ASSERT_RTNL();
4371
4372 err = netdev_set_master(slave, master);
4373 if (err)
4374 return err;
4375 if (master)
4376 slave->flags |= IFF_SLAVE;
4377 else
4378 slave->flags &= ~IFF_SLAVE;
4379
4380 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4381 return 0;
4382 }
4383 EXPORT_SYMBOL(netdev_set_bond_master);
4384
4385 static void dev_change_rx_flags(struct net_device *dev, int flags)
4386 {
4387 const struct net_device_ops *ops = dev->netdev_ops;
4388
4389 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4390 ops->ndo_change_rx_flags(dev, flags);
4391 }
4392
4393 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4394 {
4395 unsigned short old_flags = dev->flags;
4396 uid_t uid;
4397 gid_t gid;
4398
4399 ASSERT_RTNL();
4400
4401 dev->flags |= IFF_PROMISC;
4402 dev->promiscuity += inc;
4403 if (dev->promiscuity == 0) {
4404 /*
4405 * Avoid overflow.
4406 * If inc causes overflow, untouch promisc and return error.
4407 */
4408 if (inc < 0)
4409 dev->flags &= ~IFF_PROMISC;
4410 else {
4411 dev->promiscuity -= inc;
4412 printk(KERN_WARNING "%s: promiscuity touches roof, "
4413 "set promiscuity failed, promiscuity feature "
4414 "of device might be broken.\n", dev->name);
4415 return -EOVERFLOW;
4416 }
4417 }
4418 if (dev->flags != old_flags) {
4419 printk(KERN_INFO "device %s %s promiscuous mode\n",
4420 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4421 "left");
4422 if (audit_enabled) {
4423 current_uid_gid(&uid, &gid);
4424 audit_log(current->audit_context, GFP_ATOMIC,
4425 AUDIT_ANOM_PROMISCUOUS,
4426 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4427 dev->name, (dev->flags & IFF_PROMISC),
4428 (old_flags & IFF_PROMISC),
4429 audit_get_loginuid(current),
4430 uid, gid,
4431 audit_get_sessionid(current));
4432 }
4433
4434 dev_change_rx_flags(dev, IFF_PROMISC);
4435 }
4436 return 0;
4437 }
4438
4439 /**
4440 * dev_set_promiscuity - update promiscuity count on a device
4441 * @dev: device
4442 * @inc: modifier
4443 *
4444 * Add or remove promiscuity from a device. While the count in the device
4445 * remains above zero the interface remains promiscuous. Once it hits zero
4446 * the device reverts back to normal filtering operation. A negative inc
4447 * value is used to drop promiscuity on the device.
4448 * Return 0 if successful or a negative errno code on error.
4449 */
4450 int dev_set_promiscuity(struct net_device *dev, int inc)
4451 {
4452 unsigned short old_flags = dev->flags;
4453 int err;
4454
4455 err = __dev_set_promiscuity(dev, inc);
4456 if (err < 0)
4457 return err;
4458 if (dev->flags != old_flags)
4459 dev_set_rx_mode(dev);
4460 return err;
4461 }
4462 EXPORT_SYMBOL(dev_set_promiscuity);
4463
4464 /**
4465 * dev_set_allmulti - update allmulti count on a device
4466 * @dev: device
4467 * @inc: modifier
4468 *
4469 * Add or remove reception of all multicast frames to a device. While the
4470 * count in the device remains above zero the interface remains listening
4471 * to all interfaces. Once it hits zero the device reverts back to normal
4472 * filtering operation. A negative @inc value is used to drop the counter
4473 * when releasing a resource needing all multicasts.
4474 * Return 0 if successful or a negative errno code on error.
4475 */
4476
4477 int dev_set_allmulti(struct net_device *dev, int inc)
4478 {
4479 unsigned short old_flags = dev->flags;
4480
4481 ASSERT_RTNL();
4482
4483 dev->flags |= IFF_ALLMULTI;
4484 dev->allmulti += inc;
4485 if (dev->allmulti == 0) {
4486 /*
4487 * Avoid overflow.
4488 * If inc causes overflow, untouch allmulti and return error.
4489 */
4490 if (inc < 0)
4491 dev->flags &= ~IFF_ALLMULTI;
4492 else {
4493 dev->allmulti -= inc;
4494 printk(KERN_WARNING "%s: allmulti touches roof, "
4495 "set allmulti failed, allmulti feature of "
4496 "device might be broken.\n", dev->name);
4497 return -EOVERFLOW;
4498 }
4499 }
4500 if (dev->flags ^ old_flags) {
4501 dev_change_rx_flags(dev, IFF_ALLMULTI);
4502 dev_set_rx_mode(dev);
4503 }
4504 return 0;
4505 }
4506 EXPORT_SYMBOL(dev_set_allmulti);
4507
4508 /*
4509 * Upload unicast and multicast address lists to device and
4510 * configure RX filtering. When the device doesn't support unicast
4511 * filtering it is put in promiscuous mode while unicast addresses
4512 * are present.
4513 */
4514 void __dev_set_rx_mode(struct net_device *dev)
4515 {
4516 const struct net_device_ops *ops = dev->netdev_ops;
4517
4518 /* dev_open will call this function so the list will stay sane. */
4519 if (!(dev->flags&IFF_UP))
4520 return;
4521
4522 if (!netif_device_present(dev))
4523 return;
4524
4525 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4526 /* Unicast addresses changes may only happen under the rtnl,
4527 * therefore calling __dev_set_promiscuity here is safe.
4528 */
4529 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4530 __dev_set_promiscuity(dev, 1);
4531 dev->uc_promisc = true;
4532 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4533 __dev_set_promiscuity(dev, -1);
4534 dev->uc_promisc = false;
4535 }
4536 }
4537
4538 if (ops->ndo_set_rx_mode)
4539 ops->ndo_set_rx_mode(dev);
4540 else if (ops->ndo_set_multicast_list)
4541 ops->ndo_set_multicast_list(dev);
4542 }
4543
4544 void dev_set_rx_mode(struct net_device *dev)
4545 {
4546 netif_addr_lock_bh(dev);
4547 __dev_set_rx_mode(dev);
4548 netif_addr_unlock_bh(dev);
4549 }
4550
4551 /**
4552 * dev_ethtool_get_settings - call device's ethtool_ops::get_settings()
4553 * @dev: device
4554 * @cmd: memory area for ethtool_ops::get_settings() result
4555 *
4556 * The cmd arg is initialized properly (cleared and
4557 * ethtool_cmd::cmd field set to ETHTOOL_GSET).
4558 *
4559 * Return device's ethtool_ops::get_settings() result value or
4560 * -EOPNOTSUPP when device doesn't expose
4561 * ethtool_ops::get_settings() operation.
4562 */
4563 int dev_ethtool_get_settings(struct net_device *dev,
4564 struct ethtool_cmd *cmd)
4565 {
4566 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
4567 return -EOPNOTSUPP;
4568
4569 memset(cmd, 0, sizeof(struct ethtool_cmd));
4570 cmd->cmd = ETHTOOL_GSET;
4571 return dev->ethtool_ops->get_settings(dev, cmd);
4572 }
4573 EXPORT_SYMBOL(dev_ethtool_get_settings);
4574
4575 /**
4576 * dev_get_flags - get flags reported to userspace
4577 * @dev: device
4578 *
4579 * Get the combination of flag bits exported through APIs to userspace.
4580 */
4581 unsigned dev_get_flags(const struct net_device *dev)
4582 {
4583 unsigned flags;
4584
4585 flags = (dev->flags & ~(IFF_PROMISC |
4586 IFF_ALLMULTI |
4587 IFF_RUNNING |
4588 IFF_LOWER_UP |
4589 IFF_DORMANT)) |
4590 (dev->gflags & (IFF_PROMISC |
4591 IFF_ALLMULTI));
4592
4593 if (netif_running(dev)) {
4594 if (netif_oper_up(dev))
4595 flags |= IFF_RUNNING;
4596 if (netif_carrier_ok(dev))
4597 flags |= IFF_LOWER_UP;
4598 if (netif_dormant(dev))
4599 flags |= IFF_DORMANT;
4600 }
4601
4602 return flags;
4603 }
4604 EXPORT_SYMBOL(dev_get_flags);
4605
4606 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4607 {
4608 int old_flags = dev->flags;
4609 int ret;
4610
4611 ASSERT_RTNL();
4612
4613 /*
4614 * Set the flags on our device.
4615 */
4616
4617 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4618 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4619 IFF_AUTOMEDIA)) |
4620 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4621 IFF_ALLMULTI));
4622
4623 /*
4624 * Load in the correct multicast list now the flags have changed.
4625 */
4626
4627 if ((old_flags ^ flags) & IFF_MULTICAST)
4628 dev_change_rx_flags(dev, IFF_MULTICAST);
4629
4630 dev_set_rx_mode(dev);
4631
4632 /*
4633 * Have we downed the interface. We handle IFF_UP ourselves
4634 * according to user attempts to set it, rather than blindly
4635 * setting it.
4636 */
4637
4638 ret = 0;
4639 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4640 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4641
4642 if (!ret)
4643 dev_set_rx_mode(dev);
4644 }
4645
4646 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4647 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4648
4649 dev->gflags ^= IFF_PROMISC;
4650 dev_set_promiscuity(dev, inc);
4651 }
4652
4653 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4654 is important. Some (broken) drivers set IFF_PROMISC, when
4655 IFF_ALLMULTI is requested not asking us and not reporting.
4656 */
4657 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4658 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4659
4660 dev->gflags ^= IFF_ALLMULTI;
4661 dev_set_allmulti(dev, inc);
4662 }
4663
4664 return ret;
4665 }
4666
4667 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4668 {
4669 unsigned int changes = dev->flags ^ old_flags;
4670
4671 if (changes & IFF_UP) {
4672 if (dev->flags & IFF_UP)
4673 call_netdevice_notifiers(NETDEV_UP, dev);
4674 else
4675 call_netdevice_notifiers(NETDEV_DOWN, dev);
4676 }
4677
4678 if (dev->flags & IFF_UP &&
4679 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4680 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4681 }
4682
4683 /**
4684 * dev_change_flags - change device settings
4685 * @dev: device
4686 * @flags: device state flags
4687 *
4688 * Change settings on device based state flags. The flags are
4689 * in the userspace exported format.
4690 */
4691 int dev_change_flags(struct net_device *dev, unsigned flags)
4692 {
4693 int ret, changes;
4694 int old_flags = dev->flags;
4695
4696 ret = __dev_change_flags(dev, flags);
4697 if (ret < 0)
4698 return ret;
4699
4700 changes = old_flags ^ dev->flags;
4701 if (changes)
4702 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4703
4704 __dev_notify_flags(dev, old_flags);
4705 return ret;
4706 }
4707 EXPORT_SYMBOL(dev_change_flags);
4708
4709 /**
4710 * dev_set_mtu - Change maximum transfer unit
4711 * @dev: device
4712 * @new_mtu: new transfer unit
4713 *
4714 * Change the maximum transfer size of the network device.
4715 */
4716 int dev_set_mtu(struct net_device *dev, int new_mtu)
4717 {
4718 const struct net_device_ops *ops = dev->netdev_ops;
4719 int err;
4720
4721 if (new_mtu == dev->mtu)
4722 return 0;
4723
4724 /* MTU must be positive. */
4725 if (new_mtu < 0)
4726 return -EINVAL;
4727
4728 if (!netif_device_present(dev))
4729 return -ENODEV;
4730
4731 err = 0;
4732 if (ops->ndo_change_mtu)
4733 err = ops->ndo_change_mtu(dev, new_mtu);
4734 else
4735 dev->mtu = new_mtu;
4736
4737 if (!err && dev->flags & IFF_UP)
4738 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4739 return err;
4740 }
4741 EXPORT_SYMBOL(dev_set_mtu);
4742
4743 /**
4744 * dev_set_group - Change group this device belongs to
4745 * @dev: device
4746 * @new_group: group this device should belong to
4747 */
4748 void dev_set_group(struct net_device *dev, int new_group)
4749 {
4750 dev->group = new_group;
4751 }
4752 EXPORT_SYMBOL(dev_set_group);
4753
4754 /**
4755 * dev_set_mac_address - Change Media Access Control Address
4756 * @dev: device
4757 * @sa: new address
4758 *
4759 * Change the hardware (MAC) address of the device
4760 */
4761 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4762 {
4763 const struct net_device_ops *ops = dev->netdev_ops;
4764 int err;
4765
4766 if (!ops->ndo_set_mac_address)
4767 return -EOPNOTSUPP;
4768 if (sa->sa_family != dev->type)
4769 return -EINVAL;
4770 if (!netif_device_present(dev))
4771 return -ENODEV;
4772 err = ops->ndo_set_mac_address(dev, sa);
4773 if (!err)
4774 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4775 return err;
4776 }
4777 EXPORT_SYMBOL(dev_set_mac_address);
4778
4779 /*
4780 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4781 */
4782 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4783 {
4784 int err;
4785 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4786
4787 if (!dev)
4788 return -ENODEV;
4789
4790 switch (cmd) {
4791 case SIOCGIFFLAGS: /* Get interface flags */
4792 ifr->ifr_flags = (short) dev_get_flags(dev);
4793 return 0;
4794
4795 case SIOCGIFMETRIC: /* Get the metric on the interface
4796 (currently unused) */
4797 ifr->ifr_metric = 0;
4798 return 0;
4799
4800 case SIOCGIFMTU: /* Get the MTU of a device */
4801 ifr->ifr_mtu = dev->mtu;
4802 return 0;
4803
4804 case SIOCGIFHWADDR:
4805 if (!dev->addr_len)
4806 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4807 else
4808 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4809 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4810 ifr->ifr_hwaddr.sa_family = dev->type;
4811 return 0;
4812
4813 case SIOCGIFSLAVE:
4814 err = -EINVAL;
4815 break;
4816
4817 case SIOCGIFMAP:
4818 ifr->ifr_map.mem_start = dev->mem_start;
4819 ifr->ifr_map.mem_end = dev->mem_end;
4820 ifr->ifr_map.base_addr = dev->base_addr;
4821 ifr->ifr_map.irq = dev->irq;
4822 ifr->ifr_map.dma = dev->dma;
4823 ifr->ifr_map.port = dev->if_port;
4824 return 0;
4825
4826 case SIOCGIFINDEX:
4827 ifr->ifr_ifindex = dev->ifindex;
4828 return 0;
4829
4830 case SIOCGIFTXQLEN:
4831 ifr->ifr_qlen = dev->tx_queue_len;
4832 return 0;
4833
4834 default:
4835 /* dev_ioctl() should ensure this case
4836 * is never reached
4837 */
4838 WARN_ON(1);
4839 err = -ENOTTY;
4840 break;
4841
4842 }
4843 return err;
4844 }
4845
4846 /*
4847 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4848 */
4849 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4850 {
4851 int err;
4852 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4853 const struct net_device_ops *ops;
4854
4855 if (!dev)
4856 return -ENODEV;
4857
4858 ops = dev->netdev_ops;
4859
4860 switch (cmd) {
4861 case SIOCSIFFLAGS: /* Set interface flags */
4862 return dev_change_flags(dev, ifr->ifr_flags);
4863
4864 case SIOCSIFMETRIC: /* Set the metric on the interface
4865 (currently unused) */
4866 return -EOPNOTSUPP;
4867
4868 case SIOCSIFMTU: /* Set the MTU of a device */
4869 return dev_set_mtu(dev, ifr->ifr_mtu);
4870
4871 case SIOCSIFHWADDR:
4872 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4873
4874 case SIOCSIFHWBROADCAST:
4875 if (ifr->ifr_hwaddr.sa_family != dev->type)
4876 return -EINVAL;
4877 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4878 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4879 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4880 return 0;
4881
4882 case SIOCSIFMAP:
4883 if (ops->ndo_set_config) {
4884 if (!netif_device_present(dev))
4885 return -ENODEV;
4886 return ops->ndo_set_config(dev, &ifr->ifr_map);
4887 }
4888 return -EOPNOTSUPP;
4889
4890 case SIOCADDMULTI:
4891 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4892 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4893 return -EINVAL;
4894 if (!netif_device_present(dev))
4895 return -ENODEV;
4896 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4897
4898 case SIOCDELMULTI:
4899 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4900 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4901 return -EINVAL;
4902 if (!netif_device_present(dev))
4903 return -ENODEV;
4904 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4905
4906 case SIOCSIFTXQLEN:
4907 if (ifr->ifr_qlen < 0)
4908 return -EINVAL;
4909 dev->tx_queue_len = ifr->ifr_qlen;
4910 return 0;
4911
4912 case SIOCSIFNAME:
4913 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4914 return dev_change_name(dev, ifr->ifr_newname);
4915
4916 /*
4917 * Unknown or private ioctl
4918 */
4919 default:
4920 if ((cmd >= SIOCDEVPRIVATE &&
4921 cmd <= SIOCDEVPRIVATE + 15) ||
4922 cmd == SIOCBONDENSLAVE ||
4923 cmd == SIOCBONDRELEASE ||
4924 cmd == SIOCBONDSETHWADDR ||
4925 cmd == SIOCBONDSLAVEINFOQUERY ||
4926 cmd == SIOCBONDINFOQUERY ||
4927 cmd == SIOCBONDCHANGEACTIVE ||
4928 cmd == SIOCGMIIPHY ||
4929 cmd == SIOCGMIIREG ||
4930 cmd == SIOCSMIIREG ||
4931 cmd == SIOCBRADDIF ||
4932 cmd == SIOCBRDELIF ||
4933 cmd == SIOCSHWTSTAMP ||
4934 cmd == SIOCWANDEV) {
4935 err = -EOPNOTSUPP;
4936 if (ops->ndo_do_ioctl) {
4937 if (netif_device_present(dev))
4938 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4939 else
4940 err = -ENODEV;
4941 }
4942 } else
4943 err = -EINVAL;
4944
4945 }
4946 return err;
4947 }
4948
4949 /*
4950 * This function handles all "interface"-type I/O control requests. The actual
4951 * 'doing' part of this is dev_ifsioc above.
4952 */
4953
4954 /**
4955 * dev_ioctl - network device ioctl
4956 * @net: the applicable net namespace
4957 * @cmd: command to issue
4958 * @arg: pointer to a struct ifreq in user space
4959 *
4960 * Issue ioctl functions to devices. This is normally called by the
4961 * user space syscall interfaces but can sometimes be useful for
4962 * other purposes. The return value is the return from the syscall if
4963 * positive or a negative errno code on error.
4964 */
4965
4966 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4967 {
4968 struct ifreq ifr;
4969 int ret;
4970 char *colon;
4971
4972 /* One special case: SIOCGIFCONF takes ifconf argument
4973 and requires shared lock, because it sleeps writing
4974 to user space.
4975 */
4976
4977 if (cmd == SIOCGIFCONF) {
4978 rtnl_lock();
4979 ret = dev_ifconf(net, (char __user *) arg);
4980 rtnl_unlock();
4981 return ret;
4982 }
4983 if (cmd == SIOCGIFNAME)
4984 return dev_ifname(net, (struct ifreq __user *)arg);
4985
4986 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4987 return -EFAULT;
4988
4989 ifr.ifr_name[IFNAMSIZ-1] = 0;
4990
4991 colon = strchr(ifr.ifr_name, ':');
4992 if (colon)
4993 *colon = 0;
4994
4995 /*
4996 * See which interface the caller is talking about.
4997 */
4998
4999 switch (cmd) {
5000 /*
5001 * These ioctl calls:
5002 * - can be done by all.
5003 * - atomic and do not require locking.
5004 * - return a value
5005 */
5006 case SIOCGIFFLAGS:
5007 case SIOCGIFMETRIC:
5008 case SIOCGIFMTU:
5009 case SIOCGIFHWADDR:
5010 case SIOCGIFSLAVE:
5011 case SIOCGIFMAP:
5012 case SIOCGIFINDEX:
5013 case SIOCGIFTXQLEN:
5014 dev_load(net, ifr.ifr_name);
5015 rcu_read_lock();
5016 ret = dev_ifsioc_locked(net, &ifr, cmd);
5017 rcu_read_unlock();
5018 if (!ret) {
5019 if (colon)
5020 *colon = ':';
5021 if (copy_to_user(arg, &ifr,
5022 sizeof(struct ifreq)))
5023 ret = -EFAULT;
5024 }
5025 return ret;
5026
5027 case SIOCETHTOOL:
5028 dev_load(net, ifr.ifr_name);
5029 rtnl_lock();
5030 ret = dev_ethtool(net, &ifr);
5031 rtnl_unlock();
5032 if (!ret) {
5033 if (colon)
5034 *colon = ':';
5035 if (copy_to_user(arg, &ifr,
5036 sizeof(struct ifreq)))
5037 ret = -EFAULT;
5038 }
5039 return ret;
5040
5041 /*
5042 * These ioctl calls:
5043 * - require superuser power.
5044 * - require strict serialization.
5045 * - return a value
5046 */
5047 case SIOCGMIIPHY:
5048 case SIOCGMIIREG:
5049 case SIOCSIFNAME:
5050 if (!capable(CAP_NET_ADMIN))
5051 return -EPERM;
5052 dev_load(net, ifr.ifr_name);
5053 rtnl_lock();
5054 ret = dev_ifsioc(net, &ifr, cmd);
5055 rtnl_unlock();
5056 if (!ret) {
5057 if (colon)
5058 *colon = ':';
5059 if (copy_to_user(arg, &ifr,
5060 sizeof(struct ifreq)))
5061 ret = -EFAULT;
5062 }
5063 return ret;
5064
5065 /*
5066 * These ioctl calls:
5067 * - require superuser power.
5068 * - require strict serialization.
5069 * - do not return a value
5070 */
5071 case SIOCSIFFLAGS:
5072 case SIOCSIFMETRIC:
5073 case SIOCSIFMTU:
5074 case SIOCSIFMAP:
5075 case SIOCSIFHWADDR:
5076 case SIOCSIFSLAVE:
5077 case SIOCADDMULTI:
5078 case SIOCDELMULTI:
5079 case SIOCSIFHWBROADCAST:
5080 case SIOCSIFTXQLEN:
5081 case SIOCSMIIREG:
5082 case SIOCBONDENSLAVE:
5083 case SIOCBONDRELEASE:
5084 case SIOCBONDSETHWADDR:
5085 case SIOCBONDCHANGEACTIVE:
5086 case SIOCBRADDIF:
5087 case SIOCBRDELIF:
5088 case SIOCSHWTSTAMP:
5089 if (!capable(CAP_NET_ADMIN))
5090 return -EPERM;
5091 /* fall through */
5092 case SIOCBONDSLAVEINFOQUERY:
5093 case SIOCBONDINFOQUERY:
5094 dev_load(net, ifr.ifr_name);
5095 rtnl_lock();
5096 ret = dev_ifsioc(net, &ifr, cmd);
5097 rtnl_unlock();
5098 return ret;
5099
5100 case SIOCGIFMEM:
5101 /* Get the per device memory space. We can add this but
5102 * currently do not support it */
5103 case SIOCSIFMEM:
5104 /* Set the per device memory buffer space.
5105 * Not applicable in our case */
5106 case SIOCSIFLINK:
5107 return -ENOTTY;
5108
5109 /*
5110 * Unknown or private ioctl.
5111 */
5112 default:
5113 if (cmd == SIOCWANDEV ||
5114 (cmd >= SIOCDEVPRIVATE &&
5115 cmd <= SIOCDEVPRIVATE + 15)) {
5116 dev_load(net, ifr.ifr_name);
5117 rtnl_lock();
5118 ret = dev_ifsioc(net, &ifr, cmd);
5119 rtnl_unlock();
5120 if (!ret && copy_to_user(arg, &ifr,
5121 sizeof(struct ifreq)))
5122 ret = -EFAULT;
5123 return ret;
5124 }
5125 /* Take care of Wireless Extensions */
5126 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5127 return wext_handle_ioctl(net, &ifr, cmd, arg);
5128 return -ENOTTY;
5129 }
5130 }
5131
5132
5133 /**
5134 * dev_new_index - allocate an ifindex
5135 * @net: the applicable net namespace
5136 *
5137 * Returns a suitable unique value for a new device interface
5138 * number. The caller must hold the rtnl semaphore or the
5139 * dev_base_lock to be sure it remains unique.
5140 */
5141 static int dev_new_index(struct net *net)
5142 {
5143 static int ifindex;
5144 for (;;) {
5145 if (++ifindex <= 0)
5146 ifindex = 1;
5147 if (!__dev_get_by_index(net, ifindex))
5148 return ifindex;
5149 }
5150 }
5151
5152 /* Delayed registration/unregisteration */
5153 static LIST_HEAD(net_todo_list);
5154
5155 static void net_set_todo(struct net_device *dev)
5156 {
5157 list_add_tail(&dev->todo_list, &net_todo_list);
5158 }
5159
5160 static void rollback_registered_many(struct list_head *head)
5161 {
5162 struct net_device *dev, *tmp;
5163
5164 BUG_ON(dev_boot_phase);
5165 ASSERT_RTNL();
5166
5167 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5168 /* Some devices call without registering
5169 * for initialization unwind. Remove those
5170 * devices and proceed with the remaining.
5171 */
5172 if (dev->reg_state == NETREG_UNINITIALIZED) {
5173 pr_debug("unregister_netdevice: device %s/%p never "
5174 "was registered\n", dev->name, dev);
5175
5176 WARN_ON(1);
5177 list_del(&dev->unreg_list);
5178 continue;
5179 }
5180 dev->dismantle = true;
5181 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5182 }
5183
5184 /* If device is running, close it first. */
5185 dev_close_many(head);
5186
5187 list_for_each_entry(dev, head, unreg_list) {
5188 /* And unlink it from device chain. */
5189 unlist_netdevice(dev);
5190
5191 dev->reg_state = NETREG_UNREGISTERING;
5192 }
5193
5194 synchronize_net();
5195
5196 list_for_each_entry(dev, head, unreg_list) {
5197 /* Shutdown queueing discipline. */
5198 dev_shutdown(dev);
5199
5200
5201 /* Notify protocols, that we are about to destroy
5202 this device. They should clean all the things.
5203 */
5204 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5205
5206 if (!dev->rtnl_link_ops ||
5207 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5208 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5209
5210 /*
5211 * Flush the unicast and multicast chains
5212 */
5213 dev_uc_flush(dev);
5214 dev_mc_flush(dev);
5215
5216 if (dev->netdev_ops->ndo_uninit)
5217 dev->netdev_ops->ndo_uninit(dev);
5218
5219 /* Notifier chain MUST detach us from master device. */
5220 WARN_ON(dev->master);
5221
5222 /* Remove entries from kobject tree */
5223 netdev_unregister_kobject(dev);
5224 }
5225
5226 /* Process any work delayed until the end of the batch */
5227 dev = list_first_entry(head, struct net_device, unreg_list);
5228 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5229
5230 rcu_barrier();
5231
5232 list_for_each_entry(dev, head, unreg_list)
5233 dev_put(dev);
5234 }
5235
5236 static void rollback_registered(struct net_device *dev)
5237 {
5238 LIST_HEAD(single);
5239
5240 list_add(&dev->unreg_list, &single);
5241 rollback_registered_many(&single);
5242 list_del(&single);
5243 }
5244
5245 static u32 netdev_fix_features(struct net_device *dev, u32 features)
5246 {
5247 /* Fix illegal checksum combinations */
5248 if ((features & NETIF_F_HW_CSUM) &&
5249 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5250 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5251 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5252 }
5253
5254 if ((features & NETIF_F_NO_CSUM) &&
5255 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5256 netdev_warn(dev, "mixed no checksumming and other settings.\n");
5257 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5258 }
5259
5260 /* Fix illegal SG+CSUM combinations. */
5261 if ((features & NETIF_F_SG) &&
5262 !(features & NETIF_F_ALL_CSUM)) {
5263 netdev_dbg(dev,
5264 "Dropping NETIF_F_SG since no checksum feature.\n");
5265 features &= ~NETIF_F_SG;
5266 }
5267
5268 /* TSO requires that SG is present as well. */
5269 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5270 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5271 features &= ~NETIF_F_ALL_TSO;
5272 }
5273
5274 /* TSO ECN requires that TSO is present as well. */
5275 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5276 features &= ~NETIF_F_TSO_ECN;
5277
5278 /* Software GSO depends on SG. */
5279 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5280 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5281 features &= ~NETIF_F_GSO;
5282 }
5283
5284 /* UFO needs SG and checksumming */
5285 if (features & NETIF_F_UFO) {
5286 /* maybe split UFO into V4 and V6? */
5287 if (!((features & NETIF_F_GEN_CSUM) ||
5288 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5289 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5290 netdev_dbg(dev,
5291 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5292 features &= ~NETIF_F_UFO;
5293 }
5294
5295 if (!(features & NETIF_F_SG)) {
5296 netdev_dbg(dev,
5297 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5298 features &= ~NETIF_F_UFO;
5299 }
5300 }
5301
5302 return features;
5303 }
5304
5305 int __netdev_update_features(struct net_device *dev)
5306 {
5307 u32 features;
5308 int err = 0;
5309
5310 ASSERT_RTNL();
5311
5312 features = netdev_get_wanted_features(dev);
5313
5314 if (dev->netdev_ops->ndo_fix_features)
5315 features = dev->netdev_ops->ndo_fix_features(dev, features);
5316
5317 /* driver might be less strict about feature dependencies */
5318 features = netdev_fix_features(dev, features);
5319
5320 if (dev->features == features)
5321 return 0;
5322
5323 netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n",
5324 dev->features, features);
5325
5326 if (dev->netdev_ops->ndo_set_features)
5327 err = dev->netdev_ops->ndo_set_features(dev, features);
5328
5329 if (unlikely(err < 0)) {
5330 netdev_err(dev,
5331 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5332 err, features, dev->features);
5333 return -1;
5334 }
5335
5336 if (!err)
5337 dev->features = features;
5338
5339 return 1;
5340 }
5341
5342 /**
5343 * netdev_update_features - recalculate device features
5344 * @dev: the device to check
5345 *
5346 * Recalculate dev->features set and send notifications if it
5347 * has changed. Should be called after driver or hardware dependent
5348 * conditions might have changed that influence the features.
5349 */
5350 void netdev_update_features(struct net_device *dev)
5351 {
5352 if (__netdev_update_features(dev))
5353 netdev_features_change(dev);
5354 }
5355 EXPORT_SYMBOL(netdev_update_features);
5356
5357 /**
5358 * netdev_change_features - recalculate device features
5359 * @dev: the device to check
5360 *
5361 * Recalculate dev->features set and send notifications even
5362 * if they have not changed. Should be called instead of
5363 * netdev_update_features() if also dev->vlan_features might
5364 * have changed to allow the changes to be propagated to stacked
5365 * VLAN devices.
5366 */
5367 void netdev_change_features(struct net_device *dev)
5368 {
5369 __netdev_update_features(dev);
5370 netdev_features_change(dev);
5371 }
5372 EXPORT_SYMBOL(netdev_change_features);
5373
5374 /**
5375 * netif_stacked_transfer_operstate - transfer operstate
5376 * @rootdev: the root or lower level device to transfer state from
5377 * @dev: the device to transfer operstate to
5378 *
5379 * Transfer operational state from root to device. This is normally
5380 * called when a stacking relationship exists between the root
5381 * device and the device(a leaf device).
5382 */
5383 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5384 struct net_device *dev)
5385 {
5386 if (rootdev->operstate == IF_OPER_DORMANT)
5387 netif_dormant_on(dev);
5388 else
5389 netif_dormant_off(dev);
5390
5391 if (netif_carrier_ok(rootdev)) {
5392 if (!netif_carrier_ok(dev))
5393 netif_carrier_on(dev);
5394 } else {
5395 if (netif_carrier_ok(dev))
5396 netif_carrier_off(dev);
5397 }
5398 }
5399 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5400
5401 #ifdef CONFIG_RPS
5402 static int netif_alloc_rx_queues(struct net_device *dev)
5403 {
5404 unsigned int i, count = dev->num_rx_queues;
5405 struct netdev_rx_queue *rx;
5406
5407 BUG_ON(count < 1);
5408
5409 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5410 if (!rx) {
5411 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5412 return -ENOMEM;
5413 }
5414 dev->_rx = rx;
5415
5416 for (i = 0; i < count; i++)
5417 rx[i].dev = dev;
5418 return 0;
5419 }
5420 #endif
5421
5422 static void netdev_init_one_queue(struct net_device *dev,
5423 struct netdev_queue *queue, void *_unused)
5424 {
5425 /* Initialize queue lock */
5426 spin_lock_init(&queue->_xmit_lock);
5427 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5428 queue->xmit_lock_owner = -1;
5429 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5430 queue->dev = dev;
5431 }
5432
5433 static int netif_alloc_netdev_queues(struct net_device *dev)
5434 {
5435 unsigned int count = dev->num_tx_queues;
5436 struct netdev_queue *tx;
5437
5438 BUG_ON(count < 1);
5439
5440 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5441 if (!tx) {
5442 pr_err("netdev: Unable to allocate %u tx queues.\n",
5443 count);
5444 return -ENOMEM;
5445 }
5446 dev->_tx = tx;
5447
5448 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5449 spin_lock_init(&dev->tx_global_lock);
5450
5451 return 0;
5452 }
5453
5454 /**
5455 * register_netdevice - register a network device
5456 * @dev: device to register
5457 *
5458 * Take a completed network device structure and add it to the kernel
5459 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5460 * chain. 0 is returned on success. A negative errno code is returned
5461 * on a failure to set up the device, or if the name is a duplicate.
5462 *
5463 * Callers must hold the rtnl semaphore. You may want
5464 * register_netdev() instead of this.
5465 *
5466 * BUGS:
5467 * The locking appears insufficient to guarantee two parallel registers
5468 * will not get the same name.
5469 */
5470
5471 int register_netdevice(struct net_device *dev)
5472 {
5473 int ret;
5474 struct net *net = dev_net(dev);
5475
5476 BUG_ON(dev_boot_phase);
5477 ASSERT_RTNL();
5478
5479 might_sleep();
5480
5481 /* When net_device's are persistent, this will be fatal. */
5482 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5483 BUG_ON(!net);
5484
5485 spin_lock_init(&dev->addr_list_lock);
5486 netdev_set_addr_lockdep_class(dev);
5487
5488 dev->iflink = -1;
5489
5490 ret = dev_get_valid_name(dev, dev->name);
5491 if (ret < 0)
5492 goto out;
5493
5494 /* Init, if this function is available */
5495 if (dev->netdev_ops->ndo_init) {
5496 ret = dev->netdev_ops->ndo_init(dev);
5497 if (ret) {
5498 if (ret > 0)
5499 ret = -EIO;
5500 goto out;
5501 }
5502 }
5503
5504 dev->ifindex = dev_new_index(net);
5505 if (dev->iflink == -1)
5506 dev->iflink = dev->ifindex;
5507
5508 /* Transfer changeable features to wanted_features and enable
5509 * software offloads (GSO and GRO).
5510 */
5511 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5512 dev->features |= NETIF_F_SOFT_FEATURES;
5513 dev->wanted_features = dev->features & dev->hw_features;
5514
5515 /* Turn on no cache copy if HW is doing checksum */
5516 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5517 if ((dev->features & NETIF_F_ALL_CSUM) &&
5518 !(dev->features & NETIF_F_NO_CSUM)) {
5519 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5520 dev->features |= NETIF_F_NOCACHE_COPY;
5521 }
5522
5523 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5524 */
5525 dev->vlan_features |= NETIF_F_HIGHDMA;
5526
5527 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5528 ret = notifier_to_errno(ret);
5529 if (ret)
5530 goto err_uninit;
5531
5532 ret = netdev_register_kobject(dev);
5533 if (ret)
5534 goto err_uninit;
5535 dev->reg_state = NETREG_REGISTERED;
5536
5537 __netdev_update_features(dev);
5538
5539 /*
5540 * Default initial state at registry is that the
5541 * device is present.
5542 */
5543
5544 set_bit(__LINK_STATE_PRESENT, &dev->state);
5545
5546 dev_init_scheduler(dev);
5547 dev_hold(dev);
5548 list_netdevice(dev);
5549
5550 /* Notify protocols, that a new device appeared. */
5551 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5552 ret = notifier_to_errno(ret);
5553 if (ret) {
5554 rollback_registered(dev);
5555 dev->reg_state = NETREG_UNREGISTERED;
5556 }
5557 /*
5558 * Prevent userspace races by waiting until the network
5559 * device is fully setup before sending notifications.
5560 */
5561 if (!dev->rtnl_link_ops ||
5562 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5563 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5564
5565 out:
5566 return ret;
5567
5568 err_uninit:
5569 if (dev->netdev_ops->ndo_uninit)
5570 dev->netdev_ops->ndo_uninit(dev);
5571 goto out;
5572 }
5573 EXPORT_SYMBOL(register_netdevice);
5574
5575 /**
5576 * init_dummy_netdev - init a dummy network device for NAPI
5577 * @dev: device to init
5578 *
5579 * This takes a network device structure and initialize the minimum
5580 * amount of fields so it can be used to schedule NAPI polls without
5581 * registering a full blown interface. This is to be used by drivers
5582 * that need to tie several hardware interfaces to a single NAPI
5583 * poll scheduler due to HW limitations.
5584 */
5585 int init_dummy_netdev(struct net_device *dev)
5586 {
5587 /* Clear everything. Note we don't initialize spinlocks
5588 * are they aren't supposed to be taken by any of the
5589 * NAPI code and this dummy netdev is supposed to be
5590 * only ever used for NAPI polls
5591 */
5592 memset(dev, 0, sizeof(struct net_device));
5593
5594 /* make sure we BUG if trying to hit standard
5595 * register/unregister code path
5596 */
5597 dev->reg_state = NETREG_DUMMY;
5598
5599 /* NAPI wants this */
5600 INIT_LIST_HEAD(&dev->napi_list);
5601
5602 /* a dummy interface is started by default */
5603 set_bit(__LINK_STATE_PRESENT, &dev->state);
5604 set_bit(__LINK_STATE_START, &dev->state);
5605
5606 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5607 * because users of this 'device' dont need to change
5608 * its refcount.
5609 */
5610
5611 return 0;
5612 }
5613 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5614
5615
5616 /**
5617 * register_netdev - register a network device
5618 * @dev: device to register
5619 *
5620 * Take a completed network device structure and add it to the kernel
5621 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5622 * chain. 0 is returned on success. A negative errno code is returned
5623 * on a failure to set up the device, or if the name is a duplicate.
5624 *
5625 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5626 * and expands the device name if you passed a format string to
5627 * alloc_netdev.
5628 */
5629 int register_netdev(struct net_device *dev)
5630 {
5631 int err;
5632
5633 rtnl_lock();
5634 err = register_netdevice(dev);
5635 rtnl_unlock();
5636 return err;
5637 }
5638 EXPORT_SYMBOL(register_netdev);
5639
5640 int netdev_refcnt_read(const struct net_device *dev)
5641 {
5642 int i, refcnt = 0;
5643
5644 for_each_possible_cpu(i)
5645 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5646 return refcnt;
5647 }
5648 EXPORT_SYMBOL(netdev_refcnt_read);
5649
5650 /*
5651 * netdev_wait_allrefs - wait until all references are gone.
5652 *
5653 * This is called when unregistering network devices.
5654 *
5655 * Any protocol or device that holds a reference should register
5656 * for netdevice notification, and cleanup and put back the
5657 * reference if they receive an UNREGISTER event.
5658 * We can get stuck here if buggy protocols don't correctly
5659 * call dev_put.
5660 */
5661 static void netdev_wait_allrefs(struct net_device *dev)
5662 {
5663 unsigned long rebroadcast_time, warning_time;
5664 int refcnt;
5665
5666 linkwatch_forget_dev(dev);
5667
5668 rebroadcast_time = warning_time = jiffies;
5669 refcnt = netdev_refcnt_read(dev);
5670
5671 while (refcnt != 0) {
5672 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5673 rtnl_lock();
5674
5675 /* Rebroadcast unregister notification */
5676 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5677 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5678 * should have already handle it the first time */
5679
5680 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5681 &dev->state)) {
5682 /* We must not have linkwatch events
5683 * pending on unregister. If this
5684 * happens, we simply run the queue
5685 * unscheduled, resulting in a noop
5686 * for this device.
5687 */
5688 linkwatch_run_queue();
5689 }
5690
5691 __rtnl_unlock();
5692
5693 rebroadcast_time = jiffies;
5694 }
5695
5696 msleep(250);
5697
5698 refcnt = netdev_refcnt_read(dev);
5699
5700 if (time_after(jiffies, warning_time + 10 * HZ)) {
5701 printk(KERN_EMERG "unregister_netdevice: "
5702 "waiting for %s to become free. Usage "
5703 "count = %d\n",
5704 dev->name, refcnt);
5705 warning_time = jiffies;
5706 }
5707 }
5708 }
5709
5710 /* The sequence is:
5711 *
5712 * rtnl_lock();
5713 * ...
5714 * register_netdevice(x1);
5715 * register_netdevice(x2);
5716 * ...
5717 * unregister_netdevice(y1);
5718 * unregister_netdevice(y2);
5719 * ...
5720 * rtnl_unlock();
5721 * free_netdev(y1);
5722 * free_netdev(y2);
5723 *
5724 * We are invoked by rtnl_unlock().
5725 * This allows us to deal with problems:
5726 * 1) We can delete sysfs objects which invoke hotplug
5727 * without deadlocking with linkwatch via keventd.
5728 * 2) Since we run with the RTNL semaphore not held, we can sleep
5729 * safely in order to wait for the netdev refcnt to drop to zero.
5730 *
5731 * We must not return until all unregister events added during
5732 * the interval the lock was held have been completed.
5733 */
5734 void netdev_run_todo(void)
5735 {
5736 struct list_head list;
5737
5738 /* Snapshot list, allow later requests */
5739 list_replace_init(&net_todo_list, &list);
5740
5741 __rtnl_unlock();
5742
5743 while (!list_empty(&list)) {
5744 struct net_device *dev
5745 = list_first_entry(&list, struct net_device, todo_list);
5746 list_del(&dev->todo_list);
5747
5748 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5749 printk(KERN_ERR "network todo '%s' but state %d\n",
5750 dev->name, dev->reg_state);
5751 dump_stack();
5752 continue;
5753 }
5754
5755 dev->reg_state = NETREG_UNREGISTERED;
5756
5757 on_each_cpu(flush_backlog, dev, 1);
5758
5759 netdev_wait_allrefs(dev);
5760
5761 /* paranoia */
5762 BUG_ON(netdev_refcnt_read(dev));
5763 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5764 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5765 WARN_ON(dev->dn_ptr);
5766
5767 if (dev->destructor)
5768 dev->destructor(dev);
5769
5770 /* Free network device */
5771 kobject_put(&dev->dev.kobj);
5772 }
5773 }
5774
5775 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5776 * fields in the same order, with only the type differing.
5777 */
5778 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5779 const struct net_device_stats *netdev_stats)
5780 {
5781 #if BITS_PER_LONG == 64
5782 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5783 memcpy(stats64, netdev_stats, sizeof(*stats64));
5784 #else
5785 size_t i, n = sizeof(*stats64) / sizeof(u64);
5786 const unsigned long *src = (const unsigned long *)netdev_stats;
5787 u64 *dst = (u64 *)stats64;
5788
5789 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5790 sizeof(*stats64) / sizeof(u64));
5791 for (i = 0; i < n; i++)
5792 dst[i] = src[i];
5793 #endif
5794 }
5795
5796 /**
5797 * dev_get_stats - get network device statistics
5798 * @dev: device to get statistics from
5799 * @storage: place to store stats
5800 *
5801 * Get network statistics from device. Return @storage.
5802 * The device driver may provide its own method by setting
5803 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5804 * otherwise the internal statistics structure is used.
5805 */
5806 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5807 struct rtnl_link_stats64 *storage)
5808 {
5809 const struct net_device_ops *ops = dev->netdev_ops;
5810
5811 if (ops->ndo_get_stats64) {
5812 memset(storage, 0, sizeof(*storage));
5813 ops->ndo_get_stats64(dev, storage);
5814 } else if (ops->ndo_get_stats) {
5815 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5816 } else {
5817 netdev_stats_to_stats64(storage, &dev->stats);
5818 }
5819 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5820 return storage;
5821 }
5822 EXPORT_SYMBOL(dev_get_stats);
5823
5824 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5825 {
5826 struct netdev_queue *queue = dev_ingress_queue(dev);
5827
5828 #ifdef CONFIG_NET_CLS_ACT
5829 if (queue)
5830 return queue;
5831 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5832 if (!queue)
5833 return NULL;
5834 netdev_init_one_queue(dev, queue, NULL);
5835 queue->qdisc = &noop_qdisc;
5836 queue->qdisc_sleeping = &noop_qdisc;
5837 rcu_assign_pointer(dev->ingress_queue, queue);
5838 #endif
5839 return queue;
5840 }
5841
5842 /**
5843 * alloc_netdev_mqs - allocate network device
5844 * @sizeof_priv: size of private data to allocate space for
5845 * @name: device name format string
5846 * @setup: callback to initialize device
5847 * @txqs: the number of TX subqueues to allocate
5848 * @rxqs: the number of RX subqueues to allocate
5849 *
5850 * Allocates a struct net_device with private data area for driver use
5851 * and performs basic initialization. Also allocates subquue structs
5852 * for each queue on the device.
5853 */
5854 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5855 void (*setup)(struct net_device *),
5856 unsigned int txqs, unsigned int rxqs)
5857 {
5858 struct net_device *dev;
5859 size_t alloc_size;
5860 struct net_device *p;
5861
5862 BUG_ON(strlen(name) >= sizeof(dev->name));
5863
5864 if (txqs < 1) {
5865 pr_err("alloc_netdev: Unable to allocate device "
5866 "with zero queues.\n");
5867 return NULL;
5868 }
5869
5870 #ifdef CONFIG_RPS
5871 if (rxqs < 1) {
5872 pr_err("alloc_netdev: Unable to allocate device "
5873 "with zero RX queues.\n");
5874 return NULL;
5875 }
5876 #endif
5877
5878 alloc_size = sizeof(struct net_device);
5879 if (sizeof_priv) {
5880 /* ensure 32-byte alignment of private area */
5881 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5882 alloc_size += sizeof_priv;
5883 }
5884 /* ensure 32-byte alignment of whole construct */
5885 alloc_size += NETDEV_ALIGN - 1;
5886
5887 p = kzalloc(alloc_size, GFP_KERNEL);
5888 if (!p) {
5889 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5890 return NULL;
5891 }
5892
5893 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5894 dev->padded = (char *)dev - (char *)p;
5895
5896 dev->pcpu_refcnt = alloc_percpu(int);
5897 if (!dev->pcpu_refcnt)
5898 goto free_p;
5899
5900 if (dev_addr_init(dev))
5901 goto free_pcpu;
5902
5903 dev_mc_init(dev);
5904 dev_uc_init(dev);
5905
5906 dev_net_set(dev, &init_net);
5907
5908 dev->gso_max_size = GSO_MAX_SIZE;
5909
5910 INIT_LIST_HEAD(&dev->napi_list);
5911 INIT_LIST_HEAD(&dev->unreg_list);
5912 INIT_LIST_HEAD(&dev->link_watch_list);
5913 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5914 setup(dev);
5915
5916 dev->num_tx_queues = txqs;
5917 dev->real_num_tx_queues = txqs;
5918 if (netif_alloc_netdev_queues(dev))
5919 goto free_all;
5920
5921 #ifdef CONFIG_RPS
5922 dev->num_rx_queues = rxqs;
5923 dev->real_num_rx_queues = rxqs;
5924 if (netif_alloc_rx_queues(dev))
5925 goto free_all;
5926 #endif
5927
5928 strcpy(dev->name, name);
5929 dev->group = INIT_NETDEV_GROUP;
5930 return dev;
5931
5932 free_all:
5933 free_netdev(dev);
5934 return NULL;
5935
5936 free_pcpu:
5937 free_percpu(dev->pcpu_refcnt);
5938 kfree(dev->_tx);
5939 #ifdef CONFIG_RPS
5940 kfree(dev->_rx);
5941 #endif
5942
5943 free_p:
5944 kfree(p);
5945 return NULL;
5946 }
5947 EXPORT_SYMBOL(alloc_netdev_mqs);
5948
5949 /**
5950 * free_netdev - free network device
5951 * @dev: device
5952 *
5953 * This function does the last stage of destroying an allocated device
5954 * interface. The reference to the device object is released.
5955 * If this is the last reference then it will be freed.
5956 */
5957 void free_netdev(struct net_device *dev)
5958 {
5959 struct napi_struct *p, *n;
5960
5961 release_net(dev_net(dev));
5962
5963 kfree(dev->_tx);
5964 #ifdef CONFIG_RPS
5965 kfree(dev->_rx);
5966 #endif
5967
5968 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5969
5970 /* Flush device addresses */
5971 dev_addr_flush(dev);
5972
5973 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5974 netif_napi_del(p);
5975
5976 free_percpu(dev->pcpu_refcnt);
5977 dev->pcpu_refcnt = NULL;
5978
5979 /* Compatibility with error handling in drivers */
5980 if (dev->reg_state == NETREG_UNINITIALIZED) {
5981 kfree((char *)dev - dev->padded);
5982 return;
5983 }
5984
5985 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5986 dev->reg_state = NETREG_RELEASED;
5987
5988 /* will free via device release */
5989 put_device(&dev->dev);
5990 }
5991 EXPORT_SYMBOL(free_netdev);
5992
5993 /**
5994 * synchronize_net - Synchronize with packet receive processing
5995 *
5996 * Wait for packets currently being received to be done.
5997 * Does not block later packets from starting.
5998 */
5999 void synchronize_net(void)
6000 {
6001 might_sleep();
6002 if (rtnl_is_locked())
6003 synchronize_rcu_expedited();
6004 else
6005 synchronize_rcu();
6006 }
6007 EXPORT_SYMBOL(synchronize_net);
6008
6009 /**
6010 * unregister_netdevice_queue - remove device from the kernel
6011 * @dev: device
6012 * @head: list
6013 *
6014 * This function shuts down a device interface and removes it
6015 * from the kernel tables.
6016 * If head not NULL, device is queued to be unregistered later.
6017 *
6018 * Callers must hold the rtnl semaphore. You may want
6019 * unregister_netdev() instead of this.
6020 */
6021
6022 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6023 {
6024 ASSERT_RTNL();
6025
6026 if (head) {
6027 list_move_tail(&dev->unreg_list, head);
6028 } else {
6029 rollback_registered(dev);
6030 /* Finish processing unregister after unlock */
6031 net_set_todo(dev);
6032 }
6033 }
6034 EXPORT_SYMBOL(unregister_netdevice_queue);
6035
6036 /**
6037 * unregister_netdevice_many - unregister many devices
6038 * @head: list of devices
6039 */
6040 void unregister_netdevice_many(struct list_head *head)
6041 {
6042 struct net_device *dev;
6043
6044 if (!list_empty(head)) {
6045 rollback_registered_many(head);
6046 list_for_each_entry(dev, head, unreg_list)
6047 net_set_todo(dev);
6048 }
6049 }
6050 EXPORT_SYMBOL(unregister_netdevice_many);
6051
6052 /**
6053 * unregister_netdev - remove device from the kernel
6054 * @dev: device
6055 *
6056 * This function shuts down a device interface and removes it
6057 * from the kernel tables.
6058 *
6059 * This is just a wrapper for unregister_netdevice that takes
6060 * the rtnl semaphore. In general you want to use this and not
6061 * unregister_netdevice.
6062 */
6063 void unregister_netdev(struct net_device *dev)
6064 {
6065 rtnl_lock();
6066 unregister_netdevice(dev);
6067 rtnl_unlock();
6068 }
6069 EXPORT_SYMBOL(unregister_netdev);
6070
6071 /**
6072 * dev_change_net_namespace - move device to different nethost namespace
6073 * @dev: device
6074 * @net: network namespace
6075 * @pat: If not NULL name pattern to try if the current device name
6076 * is already taken in the destination network namespace.
6077 *
6078 * This function shuts down a device interface and moves it
6079 * to a new network namespace. On success 0 is returned, on
6080 * a failure a netagive errno code is returned.
6081 *
6082 * Callers must hold the rtnl semaphore.
6083 */
6084
6085 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6086 {
6087 int err;
6088
6089 ASSERT_RTNL();
6090
6091 /* Don't allow namespace local devices to be moved. */
6092 err = -EINVAL;
6093 if (dev->features & NETIF_F_NETNS_LOCAL)
6094 goto out;
6095
6096 /* Ensure the device has been registrered */
6097 err = -EINVAL;
6098 if (dev->reg_state != NETREG_REGISTERED)
6099 goto out;
6100
6101 /* Get out if there is nothing todo */
6102 err = 0;
6103 if (net_eq(dev_net(dev), net))
6104 goto out;
6105
6106 /* Pick the destination device name, and ensure
6107 * we can use it in the destination network namespace.
6108 */
6109 err = -EEXIST;
6110 if (__dev_get_by_name(net, dev->name)) {
6111 /* We get here if we can't use the current device name */
6112 if (!pat)
6113 goto out;
6114 if (dev_get_valid_name(dev, pat) < 0)
6115 goto out;
6116 }
6117
6118 /*
6119 * And now a mini version of register_netdevice unregister_netdevice.
6120 */
6121
6122 /* If device is running close it first. */
6123 dev_close(dev);
6124
6125 /* And unlink it from device chain */
6126 err = -ENODEV;
6127 unlist_netdevice(dev);
6128
6129 synchronize_net();
6130
6131 /* Shutdown queueing discipline. */
6132 dev_shutdown(dev);
6133
6134 /* Notify protocols, that we are about to destroy
6135 this device. They should clean all the things.
6136
6137 Note that dev->reg_state stays at NETREG_REGISTERED.
6138 This is wanted because this way 8021q and macvlan know
6139 the device is just moving and can keep their slaves up.
6140 */
6141 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6142 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6143
6144 /*
6145 * Flush the unicast and multicast chains
6146 */
6147 dev_uc_flush(dev);
6148 dev_mc_flush(dev);
6149
6150 /* Actually switch the network namespace */
6151 dev_net_set(dev, net);
6152
6153 /* If there is an ifindex conflict assign a new one */
6154 if (__dev_get_by_index(net, dev->ifindex)) {
6155 int iflink = (dev->iflink == dev->ifindex);
6156 dev->ifindex = dev_new_index(net);
6157 if (iflink)
6158 dev->iflink = dev->ifindex;
6159 }
6160
6161 /* Fixup kobjects */
6162 err = device_rename(&dev->dev, dev->name);
6163 WARN_ON(err);
6164
6165 /* Add the device back in the hashes */
6166 list_netdevice(dev);
6167
6168 /* Notify protocols, that a new device appeared. */
6169 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6170
6171 /*
6172 * Prevent userspace races by waiting until the network
6173 * device is fully setup before sending notifications.
6174 */
6175 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6176
6177 synchronize_net();
6178 err = 0;
6179 out:
6180 return err;
6181 }
6182 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6183
6184 static int dev_cpu_callback(struct notifier_block *nfb,
6185 unsigned long action,
6186 void *ocpu)
6187 {
6188 struct sk_buff **list_skb;
6189 struct sk_buff *skb;
6190 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6191 struct softnet_data *sd, *oldsd;
6192
6193 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6194 return NOTIFY_OK;
6195
6196 local_irq_disable();
6197 cpu = smp_processor_id();
6198 sd = &per_cpu(softnet_data, cpu);
6199 oldsd = &per_cpu(softnet_data, oldcpu);
6200
6201 /* Find end of our completion_queue. */
6202 list_skb = &sd->completion_queue;
6203 while (*list_skb)
6204 list_skb = &(*list_skb)->next;
6205 /* Append completion queue from offline CPU. */
6206 *list_skb = oldsd->completion_queue;
6207 oldsd->completion_queue = NULL;
6208
6209 /* Append output queue from offline CPU. */
6210 if (oldsd->output_queue) {
6211 *sd->output_queue_tailp = oldsd->output_queue;
6212 sd->output_queue_tailp = oldsd->output_queue_tailp;
6213 oldsd->output_queue = NULL;
6214 oldsd->output_queue_tailp = &oldsd->output_queue;
6215 }
6216 /* Append NAPI poll list from offline CPU. */
6217 if (!list_empty(&oldsd->poll_list)) {
6218 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6219 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6220 }
6221
6222 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6223 local_irq_enable();
6224
6225 /* Process offline CPU's input_pkt_queue */
6226 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6227 netif_rx(skb);
6228 input_queue_head_incr(oldsd);
6229 }
6230 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6231 netif_rx(skb);
6232 input_queue_head_incr(oldsd);
6233 }
6234
6235 return NOTIFY_OK;
6236 }
6237
6238
6239 /**
6240 * netdev_increment_features - increment feature set by one
6241 * @all: current feature set
6242 * @one: new feature set
6243 * @mask: mask feature set
6244 *
6245 * Computes a new feature set after adding a device with feature set
6246 * @one to the master device with current feature set @all. Will not
6247 * enable anything that is off in @mask. Returns the new feature set.
6248 */
6249 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6250 {
6251 if (mask & NETIF_F_GEN_CSUM)
6252 mask |= NETIF_F_ALL_CSUM;
6253 mask |= NETIF_F_VLAN_CHALLENGED;
6254
6255 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6256 all &= one | ~NETIF_F_ALL_FOR_ALL;
6257
6258 /* If device needs checksumming, downgrade to it. */
6259 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM))
6260 all &= ~NETIF_F_NO_CSUM;
6261
6262 /* If one device supports hw checksumming, set for all. */
6263 if (all & NETIF_F_GEN_CSUM)
6264 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6265
6266 return all;
6267 }
6268 EXPORT_SYMBOL(netdev_increment_features);
6269
6270 static struct hlist_head *netdev_create_hash(void)
6271 {
6272 int i;
6273 struct hlist_head *hash;
6274
6275 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6276 if (hash != NULL)
6277 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6278 INIT_HLIST_HEAD(&hash[i]);
6279
6280 return hash;
6281 }
6282
6283 /* Initialize per network namespace state */
6284 static int __net_init netdev_init(struct net *net)
6285 {
6286 INIT_LIST_HEAD(&net->dev_base_head);
6287
6288 net->dev_name_head = netdev_create_hash();
6289 if (net->dev_name_head == NULL)
6290 goto err_name;
6291
6292 net->dev_index_head = netdev_create_hash();
6293 if (net->dev_index_head == NULL)
6294 goto err_idx;
6295
6296 return 0;
6297
6298 err_idx:
6299 kfree(net->dev_name_head);
6300 err_name:
6301 return -ENOMEM;
6302 }
6303
6304 /**
6305 * netdev_drivername - network driver for the device
6306 * @dev: network device
6307 *
6308 * Determine network driver for device.
6309 */
6310 const char *netdev_drivername(const struct net_device *dev)
6311 {
6312 const struct device_driver *driver;
6313 const struct device *parent;
6314 const char *empty = "";
6315
6316 parent = dev->dev.parent;
6317 if (!parent)
6318 return empty;
6319
6320 driver = parent->driver;
6321 if (driver && driver->name)
6322 return driver->name;
6323 return empty;
6324 }
6325
6326 static int __netdev_printk(const char *level, const struct net_device *dev,
6327 struct va_format *vaf)
6328 {
6329 int r;
6330
6331 if (dev && dev->dev.parent)
6332 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6333 netdev_name(dev), vaf);
6334 else if (dev)
6335 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6336 else
6337 r = printk("%s(NULL net_device): %pV", level, vaf);
6338
6339 return r;
6340 }
6341
6342 int netdev_printk(const char *level, const struct net_device *dev,
6343 const char *format, ...)
6344 {
6345 struct va_format vaf;
6346 va_list args;
6347 int r;
6348
6349 va_start(args, format);
6350
6351 vaf.fmt = format;
6352 vaf.va = &args;
6353
6354 r = __netdev_printk(level, dev, &vaf);
6355 va_end(args);
6356
6357 return r;
6358 }
6359 EXPORT_SYMBOL(netdev_printk);
6360
6361 #define define_netdev_printk_level(func, level) \
6362 int func(const struct net_device *dev, const char *fmt, ...) \
6363 { \
6364 int r; \
6365 struct va_format vaf; \
6366 va_list args; \
6367 \
6368 va_start(args, fmt); \
6369 \
6370 vaf.fmt = fmt; \
6371 vaf.va = &args; \
6372 \
6373 r = __netdev_printk(level, dev, &vaf); \
6374 va_end(args); \
6375 \
6376 return r; \
6377 } \
6378 EXPORT_SYMBOL(func);
6379
6380 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6381 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6382 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6383 define_netdev_printk_level(netdev_err, KERN_ERR);
6384 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6385 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6386 define_netdev_printk_level(netdev_info, KERN_INFO);
6387
6388 static void __net_exit netdev_exit(struct net *net)
6389 {
6390 kfree(net->dev_name_head);
6391 kfree(net->dev_index_head);
6392 }
6393
6394 static struct pernet_operations __net_initdata netdev_net_ops = {
6395 .init = netdev_init,
6396 .exit = netdev_exit,
6397 };
6398
6399 static void __net_exit default_device_exit(struct net *net)
6400 {
6401 struct net_device *dev, *aux;
6402 /*
6403 * Push all migratable network devices back to the
6404 * initial network namespace
6405 */
6406 rtnl_lock();
6407 for_each_netdev_safe(net, dev, aux) {
6408 int err;
6409 char fb_name[IFNAMSIZ];
6410
6411 /* Ignore unmoveable devices (i.e. loopback) */
6412 if (dev->features & NETIF_F_NETNS_LOCAL)
6413 continue;
6414
6415 /* Leave virtual devices for the generic cleanup */
6416 if (dev->rtnl_link_ops)
6417 continue;
6418
6419 /* Push remaining network devices to init_net */
6420 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6421 err = dev_change_net_namespace(dev, &init_net, fb_name);
6422 if (err) {
6423 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6424 __func__, dev->name, err);
6425 BUG();
6426 }
6427 }
6428 rtnl_unlock();
6429 }
6430
6431 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6432 {
6433 /* At exit all network devices most be removed from a network
6434 * namespace. Do this in the reverse order of registration.
6435 * Do this across as many network namespaces as possible to
6436 * improve batching efficiency.
6437 */
6438 struct net_device *dev;
6439 struct net *net;
6440 LIST_HEAD(dev_kill_list);
6441
6442 rtnl_lock();
6443 list_for_each_entry(net, net_list, exit_list) {
6444 for_each_netdev_reverse(net, dev) {
6445 if (dev->rtnl_link_ops)
6446 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6447 else
6448 unregister_netdevice_queue(dev, &dev_kill_list);
6449 }
6450 }
6451 unregister_netdevice_many(&dev_kill_list);
6452 list_del(&dev_kill_list);
6453 rtnl_unlock();
6454 }
6455
6456 static struct pernet_operations __net_initdata default_device_ops = {
6457 .exit = default_device_exit,
6458 .exit_batch = default_device_exit_batch,
6459 };
6460
6461 /*
6462 * Initialize the DEV module. At boot time this walks the device list and
6463 * unhooks any devices that fail to initialise (normally hardware not
6464 * present) and leaves us with a valid list of present and active devices.
6465 *
6466 */
6467
6468 /*
6469 * This is called single threaded during boot, so no need
6470 * to take the rtnl semaphore.
6471 */
6472 static int __init net_dev_init(void)
6473 {
6474 int i, rc = -ENOMEM;
6475
6476 BUG_ON(!dev_boot_phase);
6477
6478 if (dev_proc_init())
6479 goto out;
6480
6481 if (netdev_kobject_init())
6482 goto out;
6483
6484 INIT_LIST_HEAD(&ptype_all);
6485 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6486 INIT_LIST_HEAD(&ptype_base[i]);
6487
6488 if (register_pernet_subsys(&netdev_net_ops))
6489 goto out;
6490
6491 /*
6492 * Initialise the packet receive queues.
6493 */
6494
6495 for_each_possible_cpu(i) {
6496 struct softnet_data *sd = &per_cpu(softnet_data, i);
6497
6498 memset(sd, 0, sizeof(*sd));
6499 skb_queue_head_init(&sd->input_pkt_queue);
6500 skb_queue_head_init(&sd->process_queue);
6501 sd->completion_queue = NULL;
6502 INIT_LIST_HEAD(&sd->poll_list);
6503 sd->output_queue = NULL;
6504 sd->output_queue_tailp = &sd->output_queue;
6505 #ifdef CONFIG_RPS
6506 sd->csd.func = rps_trigger_softirq;
6507 sd->csd.info = sd;
6508 sd->csd.flags = 0;
6509 sd->cpu = i;
6510 #endif
6511
6512 sd->backlog.poll = process_backlog;
6513 sd->backlog.weight = weight_p;
6514 sd->backlog.gro_list = NULL;
6515 sd->backlog.gro_count = 0;
6516 }
6517
6518 dev_boot_phase = 0;
6519
6520 /* The loopback device is special if any other network devices
6521 * is present in a network namespace the loopback device must
6522 * be present. Since we now dynamically allocate and free the
6523 * loopback device ensure this invariant is maintained by
6524 * keeping the loopback device as the first device on the
6525 * list of network devices. Ensuring the loopback devices
6526 * is the first device that appears and the last network device
6527 * that disappears.
6528 */
6529 if (register_pernet_device(&loopback_net_ops))
6530 goto out;
6531
6532 if (register_pernet_device(&default_device_ops))
6533 goto out;
6534
6535 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6536 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6537
6538 hotcpu_notifier(dev_cpu_callback, 0);
6539 dst_init();
6540 dev_mcast_init();
6541 rc = 0;
6542 out:
6543 return rc;
6544 }
6545
6546 subsys_initcall(net_dev_init);
6547
6548 static int __init initialize_hashrnd(void)
6549 {
6550 get_random_bytes(&hashrnd, sizeof(hashrnd));
6551 return 0;
6552 }
6553
6554 late_initcall_sync(initialize_hashrnd);
6555
This page took 0.167765 seconds and 5 git commands to generate.