7304ea8a1f13a15097619c68d14820e963695573
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static DEFINE_SPINLOCK(offload_lock);
180 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
181 static struct list_head ptype_all __read_mostly; /* Taps */
182 static struct list_head offload_base __read_mostly;
183
184 /*
185 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
186 * semaphore.
187 *
188 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
189 *
190 * Writers must hold the rtnl semaphore while they loop through the
191 * dev_base_head list, and hold dev_base_lock for writing when they do the
192 * actual updates. This allows pure readers to access the list even
193 * while a writer is preparing to update it.
194 *
195 * To put it another way, dev_base_lock is held for writing only to
196 * protect against pure readers; the rtnl semaphore provides the
197 * protection against other writers.
198 *
199 * See, for example usages, register_netdevice() and
200 * unregister_netdevice(), which must be called with the rtnl
201 * semaphore held.
202 */
203 DEFINE_RWLOCK(dev_base_lock);
204 EXPORT_SYMBOL(dev_base_lock);
205
206 static inline void dev_base_seq_inc(struct net *net)
207 {
208 while (++net->dev_base_seq == 0);
209 }
210
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
214
215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233 spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236
237 /* Device list insertion */
238 static int list_netdevice(struct net_device *dev)
239 {
240 struct net *net = dev_net(dev);
241
242 ASSERT_RTNL();
243
244 write_lock_bh(&dev_base_lock);
245 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
246 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
247 hlist_add_head_rcu(&dev->index_hlist,
248 dev_index_hash(net, dev->ifindex));
249 write_unlock_bh(&dev_base_lock);
250
251 dev_base_seq_inc(net);
252
253 return 0;
254 }
255
256 /* Device list removal
257 * caller must respect a RCU grace period before freeing/reusing dev
258 */
259 static void unlist_netdevice(struct net_device *dev)
260 {
261 ASSERT_RTNL();
262
263 /* Unlink dev from the device chain */
264 write_lock_bh(&dev_base_lock);
265 list_del_rcu(&dev->dev_list);
266 hlist_del_rcu(&dev->name_hlist);
267 hlist_del_rcu(&dev->index_hlist);
268 write_unlock_bh(&dev_base_lock);
269
270 dev_base_seq_inc(dev_net(dev));
271 }
272
273 /*
274 * Our notifier list
275 */
276
277 static RAW_NOTIFIER_HEAD(netdev_chain);
278
279 /*
280 * Device drivers call our routines to queue packets here. We empty the
281 * queue in the local softnet handler.
282 */
283
284 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
285 EXPORT_PER_CPU_SYMBOL(softnet_data);
286
287 #ifdef CONFIG_LOCKDEP
288 /*
289 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
290 * according to dev->type
291 */
292 static const unsigned short netdev_lock_type[] =
293 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
294 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
295 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
296 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
297 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
298 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
299 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
300 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
301 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
302 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
303 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
304 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
305 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
306 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
307 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
308
309 static const char *const netdev_lock_name[] =
310 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
311 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
312 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
313 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
314 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
315 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
316 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
317 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
318 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
319 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
320 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
321 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
322 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
323 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
324 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
325
326 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
327 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
328
329 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
330 {
331 int i;
332
333 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
334 if (netdev_lock_type[i] == dev_type)
335 return i;
336 /* the last key is used by default */
337 return ARRAY_SIZE(netdev_lock_type) - 1;
338 }
339
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342 {
343 int i;
344
345 i = netdev_lock_pos(dev_type);
346 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
347 netdev_lock_name[i]);
348 }
349
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 int i;
353
354 i = netdev_lock_pos(dev->type);
355 lockdep_set_class_and_name(&dev->addr_list_lock,
356 &netdev_addr_lock_key[i],
357 netdev_lock_name[i]);
358 }
359 #else
360 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
361 unsigned short dev_type)
362 {
363 }
364 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
365 {
366 }
367 #endif
368
369 /*******************************************************************************
370
371 Protocol management and registration routines
372
373 *******************************************************************************/
374
375 /*
376 * Add a protocol ID to the list. Now that the input handler is
377 * smarter we can dispense with all the messy stuff that used to be
378 * here.
379 *
380 * BEWARE!!! Protocol handlers, mangling input packets,
381 * MUST BE last in hash buckets and checking protocol handlers
382 * MUST start from promiscuous ptype_all chain in net_bh.
383 * It is true now, do not change it.
384 * Explanation follows: if protocol handler, mangling packet, will
385 * be the first on list, it is not able to sense, that packet
386 * is cloned and should be copied-on-write, so that it will
387 * change it and subsequent readers will get broken packet.
388 * --ANK (980803)
389 */
390
391 static inline struct list_head *ptype_head(const struct packet_type *pt)
392 {
393 if (pt->type == htons(ETH_P_ALL))
394 return &ptype_all;
395 else
396 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
397 }
398
399 /**
400 * dev_add_pack - add packet handler
401 * @pt: packet type declaration
402 *
403 * Add a protocol handler to the networking stack. The passed &packet_type
404 * is linked into kernel lists and may not be freed until it has been
405 * removed from the kernel lists.
406 *
407 * This call does not sleep therefore it can not
408 * guarantee all CPU's that are in middle of receiving packets
409 * will see the new packet type (until the next received packet).
410 */
411
412 void dev_add_pack(struct packet_type *pt)
413 {
414 struct list_head *head = ptype_head(pt);
415
416 spin_lock(&ptype_lock);
417 list_add_rcu(&pt->list, head);
418 spin_unlock(&ptype_lock);
419 }
420 EXPORT_SYMBOL(dev_add_pack);
421
422 /**
423 * __dev_remove_pack - remove packet handler
424 * @pt: packet type declaration
425 *
426 * Remove a protocol handler that was previously added to the kernel
427 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
428 * from the kernel lists and can be freed or reused once this function
429 * returns.
430 *
431 * The packet type might still be in use by receivers
432 * and must not be freed until after all the CPU's have gone
433 * through a quiescent state.
434 */
435 void __dev_remove_pack(struct packet_type *pt)
436 {
437 struct list_head *head = ptype_head(pt);
438 struct packet_type *pt1;
439
440 spin_lock(&ptype_lock);
441
442 list_for_each_entry(pt1, head, list) {
443 if (pt == pt1) {
444 list_del_rcu(&pt->list);
445 goto out;
446 }
447 }
448
449 pr_warn("dev_remove_pack: %p not found\n", pt);
450 out:
451 spin_unlock(&ptype_lock);
452 }
453 EXPORT_SYMBOL(__dev_remove_pack);
454
455 /**
456 * dev_remove_pack - remove packet handler
457 * @pt: packet type declaration
458 *
459 * Remove a protocol handler that was previously added to the kernel
460 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
461 * from the kernel lists and can be freed or reused once this function
462 * returns.
463 *
464 * This call sleeps to guarantee that no CPU is looking at the packet
465 * type after return.
466 */
467 void dev_remove_pack(struct packet_type *pt)
468 {
469 __dev_remove_pack(pt);
470
471 synchronize_net();
472 }
473 EXPORT_SYMBOL(dev_remove_pack);
474
475
476 /**
477 * dev_add_offload - register offload handlers
478 * @po: protocol offload declaration
479 *
480 * Add protocol offload handlers to the networking stack. The passed
481 * &proto_offload is linked into kernel lists and may not be freed until
482 * it has been removed from the kernel lists.
483 *
484 * This call does not sleep therefore it can not
485 * guarantee all CPU's that are in middle of receiving packets
486 * will see the new offload handlers (until the next received packet).
487 */
488 void dev_add_offload(struct packet_offload *po)
489 {
490 struct list_head *head = &offload_base;
491
492 spin_lock(&offload_lock);
493 list_add_rcu(&po->list, head);
494 spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
511 void __dev_remove_offload(struct packet_offload *po)
512 {
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
516 spin_lock(&offload_lock);
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 spin_unlock(&offload_lock);
528 }
529 EXPORT_SYMBOL(__dev_remove_offload);
530
531 /**
532 * dev_remove_offload - remove packet offload handler
533 * @po: packet offload declaration
534 *
535 * Remove a packet offload handler that was previously added to the kernel
536 * offload handlers by dev_add_offload(). The passed &offload_type is
537 * removed from the kernel lists and can be freed or reused once this
538 * function returns.
539 *
540 * This call sleeps to guarantee that no CPU is looking at the packet
541 * type after return.
542 */
543 void dev_remove_offload(struct packet_offload *po)
544 {
545 __dev_remove_offload(po);
546
547 synchronize_net();
548 }
549 EXPORT_SYMBOL(dev_remove_offload);
550
551 /******************************************************************************
552
553 Device Boot-time Settings Routines
554
555 *******************************************************************************/
556
557 /* Boot time configuration table */
558 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
559
560 /**
561 * netdev_boot_setup_add - add new setup entry
562 * @name: name of the device
563 * @map: configured settings for the device
564 *
565 * Adds new setup entry to the dev_boot_setup list. The function
566 * returns 0 on error and 1 on success. This is a generic routine to
567 * all netdevices.
568 */
569 static int netdev_boot_setup_add(char *name, struct ifmap *map)
570 {
571 struct netdev_boot_setup *s;
572 int i;
573
574 s = dev_boot_setup;
575 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
576 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
577 memset(s[i].name, 0, sizeof(s[i].name));
578 strlcpy(s[i].name, name, IFNAMSIZ);
579 memcpy(&s[i].map, map, sizeof(s[i].map));
580 break;
581 }
582 }
583
584 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
585 }
586
587 /**
588 * netdev_boot_setup_check - check boot time settings
589 * @dev: the netdevice
590 *
591 * Check boot time settings for the device.
592 * The found settings are set for the device to be used
593 * later in the device probing.
594 * Returns 0 if no settings found, 1 if they are.
595 */
596 int netdev_boot_setup_check(struct net_device *dev)
597 {
598 struct netdev_boot_setup *s = dev_boot_setup;
599 int i;
600
601 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
602 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
603 !strcmp(dev->name, s[i].name)) {
604 dev->irq = s[i].map.irq;
605 dev->base_addr = s[i].map.base_addr;
606 dev->mem_start = s[i].map.mem_start;
607 dev->mem_end = s[i].map.mem_end;
608 return 1;
609 }
610 }
611 return 0;
612 }
613 EXPORT_SYMBOL(netdev_boot_setup_check);
614
615
616 /**
617 * netdev_boot_base - get address from boot time settings
618 * @prefix: prefix for network device
619 * @unit: id for network device
620 *
621 * Check boot time settings for the base address of device.
622 * The found settings are set for the device to be used
623 * later in the device probing.
624 * Returns 0 if no settings found.
625 */
626 unsigned long netdev_boot_base(const char *prefix, int unit)
627 {
628 const struct netdev_boot_setup *s = dev_boot_setup;
629 char name[IFNAMSIZ];
630 int i;
631
632 sprintf(name, "%s%d", prefix, unit);
633
634 /*
635 * If device already registered then return base of 1
636 * to indicate not to probe for this interface
637 */
638 if (__dev_get_by_name(&init_net, name))
639 return 1;
640
641 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
642 if (!strcmp(name, s[i].name))
643 return s[i].map.base_addr;
644 return 0;
645 }
646
647 /*
648 * Saves at boot time configured settings for any netdevice.
649 */
650 int __init netdev_boot_setup(char *str)
651 {
652 int ints[5];
653 struct ifmap map;
654
655 str = get_options(str, ARRAY_SIZE(ints), ints);
656 if (!str || !*str)
657 return 0;
658
659 /* Save settings */
660 memset(&map, 0, sizeof(map));
661 if (ints[0] > 0)
662 map.irq = ints[1];
663 if (ints[0] > 1)
664 map.base_addr = ints[2];
665 if (ints[0] > 2)
666 map.mem_start = ints[3];
667 if (ints[0] > 3)
668 map.mem_end = ints[4];
669
670 /* Add new entry to the list */
671 return netdev_boot_setup_add(str, &map);
672 }
673
674 __setup("netdev=", netdev_boot_setup);
675
676 /*******************************************************************************
677
678 Device Interface Subroutines
679
680 *******************************************************************************/
681
682 /**
683 * __dev_get_by_name - find a device by its name
684 * @net: the applicable net namespace
685 * @name: name to find
686 *
687 * Find an interface by name. Must be called under RTNL semaphore
688 * or @dev_base_lock. If the name is found a pointer to the device
689 * is returned. If the name is not found then %NULL is returned. The
690 * reference counters are not incremented so the caller must be
691 * careful with locks.
692 */
693
694 struct net_device *__dev_get_by_name(struct net *net, const char *name)
695 {
696 struct hlist_node *p;
697 struct net_device *dev;
698 struct hlist_head *head = dev_name_hash(net, name);
699
700 hlist_for_each_entry(dev, p, head, name_hlist)
701 if (!strncmp(dev->name, name, IFNAMSIZ))
702 return dev;
703
704 return NULL;
705 }
706 EXPORT_SYMBOL(__dev_get_by_name);
707
708 /**
709 * dev_get_by_name_rcu - find a device by its name
710 * @net: the applicable net namespace
711 * @name: name to find
712 *
713 * Find an interface by name.
714 * If the name is found a pointer to the device is returned.
715 * If the name is not found then %NULL is returned.
716 * The reference counters are not incremented so the caller must be
717 * careful with locks. The caller must hold RCU lock.
718 */
719
720 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
721 {
722 struct hlist_node *p;
723 struct net_device *dev;
724 struct hlist_head *head = dev_name_hash(net, name);
725
726 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
727 if (!strncmp(dev->name, name, IFNAMSIZ))
728 return dev;
729
730 return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733
734 /**
735 * dev_get_by_name - find a device by its name
736 * @net: the applicable net namespace
737 * @name: name to find
738 *
739 * Find an interface by name. This can be called from any
740 * context and does its own locking. The returned handle has
741 * the usage count incremented and the caller must use dev_put() to
742 * release it when it is no longer needed. %NULL is returned if no
743 * matching device is found.
744 */
745
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748 struct net_device *dev;
749
750 rcu_read_lock();
751 dev = dev_get_by_name_rcu(net, name);
752 if (dev)
753 dev_hold(dev);
754 rcu_read_unlock();
755 return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758
759 /**
760 * __dev_get_by_index - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold either the RTNL semaphore
768 * or @dev_base_lock.
769 */
770
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773 struct hlist_node *p;
774 struct net_device *dev;
775 struct hlist_head *head = dev_index_hash(net, ifindex);
776
777 hlist_for_each_entry(dev, p, head, index_hlist)
778 if (dev->ifindex == ifindex)
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(__dev_get_by_index);
784
785 /**
786 * dev_get_by_index_rcu - find a device by its ifindex
787 * @net: the applicable net namespace
788 * @ifindex: index of device
789 *
790 * Search for an interface by index. Returns %NULL if the device
791 * is not found or a pointer to the device. The device has not
792 * had its reference counter increased so the caller must be careful
793 * about locking. The caller must hold RCU lock.
794 */
795
796 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
797 {
798 struct hlist_node *p;
799 struct net_device *dev;
800 struct hlist_head *head = dev_index_hash(net, ifindex);
801
802 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
803 if (dev->ifindex == ifindex)
804 return dev;
805
806 return NULL;
807 }
808 EXPORT_SYMBOL(dev_get_by_index_rcu);
809
810
811 /**
812 * dev_get_by_index - find a device by its ifindex
813 * @net: the applicable net namespace
814 * @ifindex: index of device
815 *
816 * Search for an interface by index. Returns NULL if the device
817 * is not found or a pointer to the device. The device returned has
818 * had a reference added and the pointer is safe until the user calls
819 * dev_put to indicate they have finished with it.
820 */
821
822 struct net_device *dev_get_by_index(struct net *net, int ifindex)
823 {
824 struct net_device *dev;
825
826 rcu_read_lock();
827 dev = dev_get_by_index_rcu(net, ifindex);
828 if (dev)
829 dev_hold(dev);
830 rcu_read_unlock();
831 return dev;
832 }
833 EXPORT_SYMBOL(dev_get_by_index);
834
835 /**
836 * dev_getbyhwaddr_rcu - find a device by its hardware address
837 * @net: the applicable net namespace
838 * @type: media type of device
839 * @ha: hardware address
840 *
841 * Search for an interface by MAC address. Returns NULL if the device
842 * is not found or a pointer to the device.
843 * The caller must hold RCU or RTNL.
844 * The returned device has not had its ref count increased
845 * and the caller must therefore be careful about locking
846 *
847 */
848
849 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
850 const char *ha)
851 {
852 struct net_device *dev;
853
854 for_each_netdev_rcu(net, dev)
855 if (dev->type == type &&
856 !memcmp(dev->dev_addr, ha, dev->addr_len))
857 return dev;
858
859 return NULL;
860 }
861 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
862
863 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
864 {
865 struct net_device *dev;
866
867 ASSERT_RTNL();
868 for_each_netdev(net, dev)
869 if (dev->type == type)
870 return dev;
871
872 return NULL;
873 }
874 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
875
876 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
877 {
878 struct net_device *dev, *ret = NULL;
879
880 rcu_read_lock();
881 for_each_netdev_rcu(net, dev)
882 if (dev->type == type) {
883 dev_hold(dev);
884 ret = dev;
885 break;
886 }
887 rcu_read_unlock();
888 return ret;
889 }
890 EXPORT_SYMBOL(dev_getfirstbyhwtype);
891
892 /**
893 * dev_get_by_flags_rcu - find any device with given flags
894 * @net: the applicable net namespace
895 * @if_flags: IFF_* values
896 * @mask: bitmask of bits in if_flags to check
897 *
898 * Search for any interface with the given flags. Returns NULL if a device
899 * is not found or a pointer to the device. Must be called inside
900 * rcu_read_lock(), and result refcount is unchanged.
901 */
902
903 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
904 unsigned short mask)
905 {
906 struct net_device *dev, *ret;
907
908 ret = NULL;
909 for_each_netdev_rcu(net, dev) {
910 if (((dev->flags ^ if_flags) & mask) == 0) {
911 ret = dev;
912 break;
913 }
914 }
915 return ret;
916 }
917 EXPORT_SYMBOL(dev_get_by_flags_rcu);
918
919 /**
920 * dev_valid_name - check if name is okay for network device
921 * @name: name string
922 *
923 * Network device names need to be valid file names to
924 * to allow sysfs to work. We also disallow any kind of
925 * whitespace.
926 */
927 bool dev_valid_name(const char *name)
928 {
929 if (*name == '\0')
930 return false;
931 if (strlen(name) >= IFNAMSIZ)
932 return false;
933 if (!strcmp(name, ".") || !strcmp(name, ".."))
934 return false;
935
936 while (*name) {
937 if (*name == '/' || isspace(*name))
938 return false;
939 name++;
940 }
941 return true;
942 }
943 EXPORT_SYMBOL(dev_valid_name);
944
945 /**
946 * __dev_alloc_name - allocate a name for a device
947 * @net: network namespace to allocate the device name in
948 * @name: name format string
949 * @buf: scratch buffer and result name string
950 *
951 * Passed a format string - eg "lt%d" it will try and find a suitable
952 * id. It scans list of devices to build up a free map, then chooses
953 * the first empty slot. The caller must hold the dev_base or rtnl lock
954 * while allocating the name and adding the device in order to avoid
955 * duplicates.
956 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
957 * Returns the number of the unit assigned or a negative errno code.
958 */
959
960 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
961 {
962 int i = 0;
963 const char *p;
964 const int max_netdevices = 8*PAGE_SIZE;
965 unsigned long *inuse;
966 struct net_device *d;
967
968 p = strnchr(name, IFNAMSIZ-1, '%');
969 if (p) {
970 /*
971 * Verify the string as this thing may have come from
972 * the user. There must be either one "%d" and no other "%"
973 * characters.
974 */
975 if (p[1] != 'd' || strchr(p + 2, '%'))
976 return -EINVAL;
977
978 /* Use one page as a bit array of possible slots */
979 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
980 if (!inuse)
981 return -ENOMEM;
982
983 for_each_netdev(net, d) {
984 if (!sscanf(d->name, name, &i))
985 continue;
986 if (i < 0 || i >= max_netdevices)
987 continue;
988
989 /* avoid cases where sscanf is not exact inverse of printf */
990 snprintf(buf, IFNAMSIZ, name, i);
991 if (!strncmp(buf, d->name, IFNAMSIZ))
992 set_bit(i, inuse);
993 }
994
995 i = find_first_zero_bit(inuse, max_netdevices);
996 free_page((unsigned long) inuse);
997 }
998
999 if (buf != name)
1000 snprintf(buf, IFNAMSIZ, name, i);
1001 if (!__dev_get_by_name(net, buf))
1002 return i;
1003
1004 /* It is possible to run out of possible slots
1005 * when the name is long and there isn't enough space left
1006 * for the digits, or if all bits are used.
1007 */
1008 return -ENFILE;
1009 }
1010
1011 /**
1012 * dev_alloc_name - allocate a name for a device
1013 * @dev: device
1014 * @name: name format string
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1023 */
1024
1025 int dev_alloc_name(struct net_device *dev, const char *name)
1026 {
1027 char buf[IFNAMSIZ];
1028 struct net *net;
1029 int ret;
1030
1031 BUG_ON(!dev_net(dev));
1032 net = dev_net(dev);
1033 ret = __dev_alloc_name(net, name, buf);
1034 if (ret >= 0)
1035 strlcpy(dev->name, buf, IFNAMSIZ);
1036 return ret;
1037 }
1038 EXPORT_SYMBOL(dev_alloc_name);
1039
1040 static int dev_alloc_name_ns(struct net *net,
1041 struct net_device *dev,
1042 const char *name)
1043 {
1044 char buf[IFNAMSIZ];
1045 int ret;
1046
1047 ret = __dev_alloc_name(net, name, buf);
1048 if (ret >= 0)
1049 strlcpy(dev->name, buf, IFNAMSIZ);
1050 return ret;
1051 }
1052
1053 static int dev_get_valid_name(struct net *net,
1054 struct net_device *dev,
1055 const char *name)
1056 {
1057 BUG_ON(!net);
1058
1059 if (!dev_valid_name(name))
1060 return -EINVAL;
1061
1062 if (strchr(name, '%'))
1063 return dev_alloc_name_ns(net, dev, name);
1064 else if (__dev_get_by_name(net, name))
1065 return -EEXIST;
1066 else if (dev->name != name)
1067 strlcpy(dev->name, name, IFNAMSIZ);
1068
1069 return 0;
1070 }
1071
1072 /**
1073 * dev_change_name - change name of a device
1074 * @dev: device
1075 * @newname: name (or format string) must be at least IFNAMSIZ
1076 *
1077 * Change name of a device, can pass format strings "eth%d".
1078 * for wildcarding.
1079 */
1080 int dev_change_name(struct net_device *dev, const char *newname)
1081 {
1082 char oldname[IFNAMSIZ];
1083 int err = 0;
1084 int ret;
1085 struct net *net;
1086
1087 ASSERT_RTNL();
1088 BUG_ON(!dev_net(dev));
1089
1090 net = dev_net(dev);
1091 if (dev->flags & IFF_UP)
1092 return -EBUSY;
1093
1094 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1095 return 0;
1096
1097 memcpy(oldname, dev->name, IFNAMSIZ);
1098
1099 err = dev_get_valid_name(net, dev, newname);
1100 if (err < 0)
1101 return err;
1102
1103 rollback:
1104 ret = device_rename(&dev->dev, dev->name);
1105 if (ret) {
1106 memcpy(dev->name, oldname, IFNAMSIZ);
1107 return ret;
1108 }
1109
1110 write_lock_bh(&dev_base_lock);
1111 hlist_del_rcu(&dev->name_hlist);
1112 write_unlock_bh(&dev_base_lock);
1113
1114 synchronize_rcu();
1115
1116 write_lock_bh(&dev_base_lock);
1117 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1118 write_unlock_bh(&dev_base_lock);
1119
1120 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1121 ret = notifier_to_errno(ret);
1122
1123 if (ret) {
1124 /* err >= 0 after dev_alloc_name() or stores the first errno */
1125 if (err >= 0) {
1126 err = ret;
1127 memcpy(dev->name, oldname, IFNAMSIZ);
1128 goto rollback;
1129 } else {
1130 pr_err("%s: name change rollback failed: %d\n",
1131 dev->name, ret);
1132 }
1133 }
1134
1135 return err;
1136 }
1137
1138 /**
1139 * dev_set_alias - change ifalias of a device
1140 * @dev: device
1141 * @alias: name up to IFALIASZ
1142 * @len: limit of bytes to copy from info
1143 *
1144 * Set ifalias for a device,
1145 */
1146 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1147 {
1148 char *new_ifalias;
1149
1150 ASSERT_RTNL();
1151
1152 if (len >= IFALIASZ)
1153 return -EINVAL;
1154
1155 if (!len) {
1156 kfree(dev->ifalias);
1157 dev->ifalias = NULL;
1158 return 0;
1159 }
1160
1161 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1162 if (!new_ifalias)
1163 return -ENOMEM;
1164 dev->ifalias = new_ifalias;
1165
1166 strlcpy(dev->ifalias, alias, len+1);
1167 return len;
1168 }
1169
1170
1171 /**
1172 * netdev_features_change - device changes features
1173 * @dev: device to cause notification
1174 *
1175 * Called to indicate a device has changed features.
1176 */
1177 void netdev_features_change(struct net_device *dev)
1178 {
1179 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1180 }
1181 EXPORT_SYMBOL(netdev_features_change);
1182
1183 /**
1184 * netdev_state_change - device changes state
1185 * @dev: device to cause notification
1186 *
1187 * Called to indicate a device has changed state. This function calls
1188 * the notifier chains for netdev_chain and sends a NEWLINK message
1189 * to the routing socket.
1190 */
1191 void netdev_state_change(struct net_device *dev)
1192 {
1193 if (dev->flags & IFF_UP) {
1194 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1195 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1196 }
1197 }
1198 EXPORT_SYMBOL(netdev_state_change);
1199
1200 /**
1201 * netdev_notify_peers - notify network peers about existence of @dev
1202 * @dev: network device
1203 *
1204 * Generate traffic such that interested network peers are aware of
1205 * @dev, such as by generating a gratuitous ARP. This may be used when
1206 * a device wants to inform the rest of the network about some sort of
1207 * reconfiguration such as a failover event or virtual machine
1208 * migration.
1209 */
1210 void netdev_notify_peers(struct net_device *dev)
1211 {
1212 rtnl_lock();
1213 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1214 rtnl_unlock();
1215 }
1216 EXPORT_SYMBOL(netdev_notify_peers);
1217
1218 /**
1219 * dev_load - load a network module
1220 * @net: the applicable net namespace
1221 * @name: name of interface
1222 *
1223 * If a network interface is not present and the process has suitable
1224 * privileges this function loads the module. If module loading is not
1225 * available in this kernel then it becomes a nop.
1226 */
1227
1228 void dev_load(struct net *net, const char *name)
1229 {
1230 struct net_device *dev;
1231 int no_module;
1232
1233 rcu_read_lock();
1234 dev = dev_get_by_name_rcu(net, name);
1235 rcu_read_unlock();
1236
1237 no_module = !dev;
1238 if (no_module && capable(CAP_NET_ADMIN))
1239 no_module = request_module("netdev-%s", name);
1240 if (no_module && capable(CAP_SYS_MODULE)) {
1241 if (!request_module("%s", name))
1242 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1243 name);
1244 }
1245 }
1246 EXPORT_SYMBOL(dev_load);
1247
1248 static int __dev_open(struct net_device *dev)
1249 {
1250 const struct net_device_ops *ops = dev->netdev_ops;
1251 int ret;
1252
1253 ASSERT_RTNL();
1254
1255 if (!netif_device_present(dev))
1256 return -ENODEV;
1257
1258 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1259 ret = notifier_to_errno(ret);
1260 if (ret)
1261 return ret;
1262
1263 set_bit(__LINK_STATE_START, &dev->state);
1264
1265 if (ops->ndo_validate_addr)
1266 ret = ops->ndo_validate_addr(dev);
1267
1268 if (!ret && ops->ndo_open)
1269 ret = ops->ndo_open(dev);
1270
1271 if (ret)
1272 clear_bit(__LINK_STATE_START, &dev->state);
1273 else {
1274 dev->flags |= IFF_UP;
1275 net_dmaengine_get();
1276 dev_set_rx_mode(dev);
1277 dev_activate(dev);
1278 add_device_randomness(dev->dev_addr, dev->addr_len);
1279 }
1280
1281 return ret;
1282 }
1283
1284 /**
1285 * dev_open - prepare an interface for use.
1286 * @dev: device to open
1287 *
1288 * Takes a device from down to up state. The device's private open
1289 * function is invoked and then the multicast lists are loaded. Finally
1290 * the device is moved into the up state and a %NETDEV_UP message is
1291 * sent to the netdev notifier chain.
1292 *
1293 * Calling this function on an active interface is a nop. On a failure
1294 * a negative errno code is returned.
1295 */
1296 int dev_open(struct net_device *dev)
1297 {
1298 int ret;
1299
1300 if (dev->flags & IFF_UP)
1301 return 0;
1302
1303 ret = __dev_open(dev);
1304 if (ret < 0)
1305 return ret;
1306
1307 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1308 call_netdevice_notifiers(NETDEV_UP, dev);
1309
1310 return ret;
1311 }
1312 EXPORT_SYMBOL(dev_open);
1313
1314 static int __dev_close_many(struct list_head *head)
1315 {
1316 struct net_device *dev;
1317
1318 ASSERT_RTNL();
1319 might_sleep();
1320
1321 list_for_each_entry(dev, head, unreg_list) {
1322 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1323
1324 clear_bit(__LINK_STATE_START, &dev->state);
1325
1326 /* Synchronize to scheduled poll. We cannot touch poll list, it
1327 * can be even on different cpu. So just clear netif_running().
1328 *
1329 * dev->stop() will invoke napi_disable() on all of it's
1330 * napi_struct instances on this device.
1331 */
1332 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1333 }
1334
1335 dev_deactivate_many(head);
1336
1337 list_for_each_entry(dev, head, unreg_list) {
1338 const struct net_device_ops *ops = dev->netdev_ops;
1339
1340 /*
1341 * Call the device specific close. This cannot fail.
1342 * Only if device is UP
1343 *
1344 * We allow it to be called even after a DETACH hot-plug
1345 * event.
1346 */
1347 if (ops->ndo_stop)
1348 ops->ndo_stop(dev);
1349
1350 dev->flags &= ~IFF_UP;
1351 net_dmaengine_put();
1352 }
1353
1354 return 0;
1355 }
1356
1357 static int __dev_close(struct net_device *dev)
1358 {
1359 int retval;
1360 LIST_HEAD(single);
1361
1362 list_add(&dev->unreg_list, &single);
1363 retval = __dev_close_many(&single);
1364 list_del(&single);
1365 return retval;
1366 }
1367
1368 static int dev_close_many(struct list_head *head)
1369 {
1370 struct net_device *dev, *tmp;
1371 LIST_HEAD(tmp_list);
1372
1373 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1374 if (!(dev->flags & IFF_UP))
1375 list_move(&dev->unreg_list, &tmp_list);
1376
1377 __dev_close_many(head);
1378
1379 list_for_each_entry(dev, head, unreg_list) {
1380 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1381 call_netdevice_notifiers(NETDEV_DOWN, dev);
1382 }
1383
1384 /* rollback_registered_many needs the complete original list */
1385 list_splice(&tmp_list, head);
1386 return 0;
1387 }
1388
1389 /**
1390 * dev_close - shutdown an interface.
1391 * @dev: device to shutdown
1392 *
1393 * This function moves an active device into down state. A
1394 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1395 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1396 * chain.
1397 */
1398 int dev_close(struct net_device *dev)
1399 {
1400 if (dev->flags & IFF_UP) {
1401 LIST_HEAD(single);
1402
1403 list_add(&dev->unreg_list, &single);
1404 dev_close_many(&single);
1405 list_del(&single);
1406 }
1407 return 0;
1408 }
1409 EXPORT_SYMBOL(dev_close);
1410
1411
1412 /**
1413 * dev_disable_lro - disable Large Receive Offload on a device
1414 * @dev: device
1415 *
1416 * Disable Large Receive Offload (LRO) on a net device. Must be
1417 * called under RTNL. This is needed if received packets may be
1418 * forwarded to another interface.
1419 */
1420 void dev_disable_lro(struct net_device *dev)
1421 {
1422 /*
1423 * If we're trying to disable lro on a vlan device
1424 * use the underlying physical device instead
1425 */
1426 if (is_vlan_dev(dev))
1427 dev = vlan_dev_real_dev(dev);
1428
1429 dev->wanted_features &= ~NETIF_F_LRO;
1430 netdev_update_features(dev);
1431
1432 if (unlikely(dev->features & NETIF_F_LRO))
1433 netdev_WARN(dev, "failed to disable LRO!\n");
1434 }
1435 EXPORT_SYMBOL(dev_disable_lro);
1436
1437
1438 static int dev_boot_phase = 1;
1439
1440 /**
1441 * register_netdevice_notifier - register a network notifier block
1442 * @nb: notifier
1443 *
1444 * Register a notifier to be called when network device events occur.
1445 * The notifier passed is linked into the kernel structures and must
1446 * not be reused until it has been unregistered. A negative errno code
1447 * is returned on a failure.
1448 *
1449 * When registered all registration and up events are replayed
1450 * to the new notifier to allow device to have a race free
1451 * view of the network device list.
1452 */
1453
1454 int register_netdevice_notifier(struct notifier_block *nb)
1455 {
1456 struct net_device *dev;
1457 struct net_device *last;
1458 struct net *net;
1459 int err;
1460
1461 rtnl_lock();
1462 err = raw_notifier_chain_register(&netdev_chain, nb);
1463 if (err)
1464 goto unlock;
1465 if (dev_boot_phase)
1466 goto unlock;
1467 for_each_net(net) {
1468 for_each_netdev(net, dev) {
1469 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1470 err = notifier_to_errno(err);
1471 if (err)
1472 goto rollback;
1473
1474 if (!(dev->flags & IFF_UP))
1475 continue;
1476
1477 nb->notifier_call(nb, NETDEV_UP, dev);
1478 }
1479 }
1480
1481 unlock:
1482 rtnl_unlock();
1483 return err;
1484
1485 rollback:
1486 last = dev;
1487 for_each_net(net) {
1488 for_each_netdev(net, dev) {
1489 if (dev == last)
1490 goto outroll;
1491
1492 if (dev->flags & IFF_UP) {
1493 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1494 nb->notifier_call(nb, NETDEV_DOWN, dev);
1495 }
1496 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1497 }
1498 }
1499
1500 outroll:
1501 raw_notifier_chain_unregister(&netdev_chain, nb);
1502 goto unlock;
1503 }
1504 EXPORT_SYMBOL(register_netdevice_notifier);
1505
1506 /**
1507 * unregister_netdevice_notifier - unregister a network notifier block
1508 * @nb: notifier
1509 *
1510 * Unregister a notifier previously registered by
1511 * register_netdevice_notifier(). The notifier is unlinked into the
1512 * kernel structures and may then be reused. A negative errno code
1513 * is returned on a failure.
1514 *
1515 * After unregistering unregister and down device events are synthesized
1516 * for all devices on the device list to the removed notifier to remove
1517 * the need for special case cleanup code.
1518 */
1519
1520 int unregister_netdevice_notifier(struct notifier_block *nb)
1521 {
1522 struct net_device *dev;
1523 struct net *net;
1524 int err;
1525
1526 rtnl_lock();
1527 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1528 if (err)
1529 goto unlock;
1530
1531 for_each_net(net) {
1532 for_each_netdev(net, dev) {
1533 if (dev->flags & IFF_UP) {
1534 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1535 nb->notifier_call(nb, NETDEV_DOWN, dev);
1536 }
1537 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1538 }
1539 }
1540 unlock:
1541 rtnl_unlock();
1542 return err;
1543 }
1544 EXPORT_SYMBOL(unregister_netdevice_notifier);
1545
1546 /**
1547 * call_netdevice_notifiers - call all network notifier blocks
1548 * @val: value passed unmodified to notifier function
1549 * @dev: net_device pointer passed unmodified to notifier function
1550 *
1551 * Call all network notifier blocks. Parameters and return value
1552 * are as for raw_notifier_call_chain().
1553 */
1554
1555 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1556 {
1557 ASSERT_RTNL();
1558 return raw_notifier_call_chain(&netdev_chain, val, dev);
1559 }
1560 EXPORT_SYMBOL(call_netdevice_notifiers);
1561
1562 static struct static_key netstamp_needed __read_mostly;
1563 #ifdef HAVE_JUMP_LABEL
1564 /* We are not allowed to call static_key_slow_dec() from irq context
1565 * If net_disable_timestamp() is called from irq context, defer the
1566 * static_key_slow_dec() calls.
1567 */
1568 static atomic_t netstamp_needed_deferred;
1569 #endif
1570
1571 void net_enable_timestamp(void)
1572 {
1573 #ifdef HAVE_JUMP_LABEL
1574 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1575
1576 if (deferred) {
1577 while (--deferred)
1578 static_key_slow_dec(&netstamp_needed);
1579 return;
1580 }
1581 #endif
1582 WARN_ON(in_interrupt());
1583 static_key_slow_inc(&netstamp_needed);
1584 }
1585 EXPORT_SYMBOL(net_enable_timestamp);
1586
1587 void net_disable_timestamp(void)
1588 {
1589 #ifdef HAVE_JUMP_LABEL
1590 if (in_interrupt()) {
1591 atomic_inc(&netstamp_needed_deferred);
1592 return;
1593 }
1594 #endif
1595 static_key_slow_dec(&netstamp_needed);
1596 }
1597 EXPORT_SYMBOL(net_disable_timestamp);
1598
1599 static inline void net_timestamp_set(struct sk_buff *skb)
1600 {
1601 skb->tstamp.tv64 = 0;
1602 if (static_key_false(&netstamp_needed))
1603 __net_timestamp(skb);
1604 }
1605
1606 #define net_timestamp_check(COND, SKB) \
1607 if (static_key_false(&netstamp_needed)) { \
1608 if ((COND) && !(SKB)->tstamp.tv64) \
1609 __net_timestamp(SKB); \
1610 } \
1611
1612 static int net_hwtstamp_validate(struct ifreq *ifr)
1613 {
1614 struct hwtstamp_config cfg;
1615 enum hwtstamp_tx_types tx_type;
1616 enum hwtstamp_rx_filters rx_filter;
1617 int tx_type_valid = 0;
1618 int rx_filter_valid = 0;
1619
1620 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1621 return -EFAULT;
1622
1623 if (cfg.flags) /* reserved for future extensions */
1624 return -EINVAL;
1625
1626 tx_type = cfg.tx_type;
1627 rx_filter = cfg.rx_filter;
1628
1629 switch (tx_type) {
1630 case HWTSTAMP_TX_OFF:
1631 case HWTSTAMP_TX_ON:
1632 case HWTSTAMP_TX_ONESTEP_SYNC:
1633 tx_type_valid = 1;
1634 break;
1635 }
1636
1637 switch (rx_filter) {
1638 case HWTSTAMP_FILTER_NONE:
1639 case HWTSTAMP_FILTER_ALL:
1640 case HWTSTAMP_FILTER_SOME:
1641 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1642 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1643 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1644 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1645 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1646 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1647 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1648 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1649 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1650 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1651 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1652 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1653 rx_filter_valid = 1;
1654 break;
1655 }
1656
1657 if (!tx_type_valid || !rx_filter_valid)
1658 return -ERANGE;
1659
1660 return 0;
1661 }
1662
1663 static inline bool is_skb_forwardable(struct net_device *dev,
1664 struct sk_buff *skb)
1665 {
1666 unsigned int len;
1667
1668 if (!(dev->flags & IFF_UP))
1669 return false;
1670
1671 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1672 if (skb->len <= len)
1673 return true;
1674
1675 /* if TSO is enabled, we don't care about the length as the packet
1676 * could be forwarded without being segmented before
1677 */
1678 if (skb_is_gso(skb))
1679 return true;
1680
1681 return false;
1682 }
1683
1684 /**
1685 * dev_forward_skb - loopback an skb to another netif
1686 *
1687 * @dev: destination network device
1688 * @skb: buffer to forward
1689 *
1690 * return values:
1691 * NET_RX_SUCCESS (no congestion)
1692 * NET_RX_DROP (packet was dropped, but freed)
1693 *
1694 * dev_forward_skb can be used for injecting an skb from the
1695 * start_xmit function of one device into the receive queue
1696 * of another device.
1697 *
1698 * The receiving device may be in another namespace, so
1699 * we have to clear all information in the skb that could
1700 * impact namespace isolation.
1701 */
1702 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1703 {
1704 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1705 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1706 atomic_long_inc(&dev->rx_dropped);
1707 kfree_skb(skb);
1708 return NET_RX_DROP;
1709 }
1710 }
1711
1712 skb_orphan(skb);
1713 nf_reset(skb);
1714
1715 if (unlikely(!is_skb_forwardable(dev, skb))) {
1716 atomic_long_inc(&dev->rx_dropped);
1717 kfree_skb(skb);
1718 return NET_RX_DROP;
1719 }
1720 skb->skb_iif = 0;
1721 skb->dev = dev;
1722 skb_dst_drop(skb);
1723 skb->tstamp.tv64 = 0;
1724 skb->pkt_type = PACKET_HOST;
1725 skb->protocol = eth_type_trans(skb, dev);
1726 skb->mark = 0;
1727 secpath_reset(skb);
1728 nf_reset(skb);
1729 return netif_rx(skb);
1730 }
1731 EXPORT_SYMBOL_GPL(dev_forward_skb);
1732
1733 static inline int deliver_skb(struct sk_buff *skb,
1734 struct packet_type *pt_prev,
1735 struct net_device *orig_dev)
1736 {
1737 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1738 return -ENOMEM;
1739 atomic_inc(&skb->users);
1740 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1741 }
1742
1743 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1744 {
1745 if (!ptype->af_packet_priv || !skb->sk)
1746 return false;
1747
1748 if (ptype->id_match)
1749 return ptype->id_match(ptype, skb->sk);
1750 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1751 return true;
1752
1753 return false;
1754 }
1755
1756 /*
1757 * Support routine. Sends outgoing frames to any network
1758 * taps currently in use.
1759 */
1760
1761 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1762 {
1763 struct packet_type *ptype;
1764 struct sk_buff *skb2 = NULL;
1765 struct packet_type *pt_prev = NULL;
1766
1767 rcu_read_lock();
1768 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1769 /* Never send packets back to the socket
1770 * they originated from - MvS (miquels@drinkel.ow.org)
1771 */
1772 if ((ptype->dev == dev || !ptype->dev) &&
1773 (!skb_loop_sk(ptype, skb))) {
1774 if (pt_prev) {
1775 deliver_skb(skb2, pt_prev, skb->dev);
1776 pt_prev = ptype;
1777 continue;
1778 }
1779
1780 skb2 = skb_clone(skb, GFP_ATOMIC);
1781 if (!skb2)
1782 break;
1783
1784 net_timestamp_set(skb2);
1785
1786 /* skb->nh should be correctly
1787 set by sender, so that the second statement is
1788 just protection against buggy protocols.
1789 */
1790 skb_reset_mac_header(skb2);
1791
1792 if (skb_network_header(skb2) < skb2->data ||
1793 skb2->network_header > skb2->tail) {
1794 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1795 ntohs(skb2->protocol),
1796 dev->name);
1797 skb_reset_network_header(skb2);
1798 }
1799
1800 skb2->transport_header = skb2->network_header;
1801 skb2->pkt_type = PACKET_OUTGOING;
1802 pt_prev = ptype;
1803 }
1804 }
1805 if (pt_prev)
1806 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1807 rcu_read_unlock();
1808 }
1809
1810 /**
1811 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1812 * @dev: Network device
1813 * @txq: number of queues available
1814 *
1815 * If real_num_tx_queues is changed the tc mappings may no longer be
1816 * valid. To resolve this verify the tc mapping remains valid and if
1817 * not NULL the mapping. With no priorities mapping to this
1818 * offset/count pair it will no longer be used. In the worst case TC0
1819 * is invalid nothing can be done so disable priority mappings. If is
1820 * expected that drivers will fix this mapping if they can before
1821 * calling netif_set_real_num_tx_queues.
1822 */
1823 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1824 {
1825 int i;
1826 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1827
1828 /* If TC0 is invalidated disable TC mapping */
1829 if (tc->offset + tc->count > txq) {
1830 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1831 dev->num_tc = 0;
1832 return;
1833 }
1834
1835 /* Invalidated prio to tc mappings set to TC0 */
1836 for (i = 1; i < TC_BITMASK + 1; i++) {
1837 int q = netdev_get_prio_tc_map(dev, i);
1838
1839 tc = &dev->tc_to_txq[q];
1840 if (tc->offset + tc->count > txq) {
1841 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1842 i, q);
1843 netdev_set_prio_tc_map(dev, i, 0);
1844 }
1845 }
1846 }
1847
1848 /*
1849 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1850 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1851 */
1852 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1853 {
1854 int rc;
1855
1856 if (txq < 1 || txq > dev->num_tx_queues)
1857 return -EINVAL;
1858
1859 if (dev->reg_state == NETREG_REGISTERED ||
1860 dev->reg_state == NETREG_UNREGISTERING) {
1861 ASSERT_RTNL();
1862
1863 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1864 txq);
1865 if (rc)
1866 return rc;
1867
1868 if (dev->num_tc)
1869 netif_setup_tc(dev, txq);
1870
1871 if (txq < dev->real_num_tx_queues)
1872 qdisc_reset_all_tx_gt(dev, txq);
1873 }
1874
1875 dev->real_num_tx_queues = txq;
1876 return 0;
1877 }
1878 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1879
1880 #ifdef CONFIG_RPS
1881 /**
1882 * netif_set_real_num_rx_queues - set actual number of RX queues used
1883 * @dev: Network device
1884 * @rxq: Actual number of RX queues
1885 *
1886 * This must be called either with the rtnl_lock held or before
1887 * registration of the net device. Returns 0 on success, or a
1888 * negative error code. If called before registration, it always
1889 * succeeds.
1890 */
1891 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1892 {
1893 int rc;
1894
1895 if (rxq < 1 || rxq > dev->num_rx_queues)
1896 return -EINVAL;
1897
1898 if (dev->reg_state == NETREG_REGISTERED) {
1899 ASSERT_RTNL();
1900
1901 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1902 rxq);
1903 if (rc)
1904 return rc;
1905 }
1906
1907 dev->real_num_rx_queues = rxq;
1908 return 0;
1909 }
1910 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1911 #endif
1912
1913 /**
1914 * netif_get_num_default_rss_queues - default number of RSS queues
1915 *
1916 * This routine should set an upper limit on the number of RSS queues
1917 * used by default by multiqueue devices.
1918 */
1919 int netif_get_num_default_rss_queues(void)
1920 {
1921 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1922 }
1923 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1924
1925 static inline void __netif_reschedule(struct Qdisc *q)
1926 {
1927 struct softnet_data *sd;
1928 unsigned long flags;
1929
1930 local_irq_save(flags);
1931 sd = &__get_cpu_var(softnet_data);
1932 q->next_sched = NULL;
1933 *sd->output_queue_tailp = q;
1934 sd->output_queue_tailp = &q->next_sched;
1935 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1936 local_irq_restore(flags);
1937 }
1938
1939 void __netif_schedule(struct Qdisc *q)
1940 {
1941 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1942 __netif_reschedule(q);
1943 }
1944 EXPORT_SYMBOL(__netif_schedule);
1945
1946 void dev_kfree_skb_irq(struct sk_buff *skb)
1947 {
1948 if (atomic_dec_and_test(&skb->users)) {
1949 struct softnet_data *sd;
1950 unsigned long flags;
1951
1952 local_irq_save(flags);
1953 sd = &__get_cpu_var(softnet_data);
1954 skb->next = sd->completion_queue;
1955 sd->completion_queue = skb;
1956 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1957 local_irq_restore(flags);
1958 }
1959 }
1960 EXPORT_SYMBOL(dev_kfree_skb_irq);
1961
1962 void dev_kfree_skb_any(struct sk_buff *skb)
1963 {
1964 if (in_irq() || irqs_disabled())
1965 dev_kfree_skb_irq(skb);
1966 else
1967 dev_kfree_skb(skb);
1968 }
1969 EXPORT_SYMBOL(dev_kfree_skb_any);
1970
1971
1972 /**
1973 * netif_device_detach - mark device as removed
1974 * @dev: network device
1975 *
1976 * Mark device as removed from system and therefore no longer available.
1977 */
1978 void netif_device_detach(struct net_device *dev)
1979 {
1980 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1981 netif_running(dev)) {
1982 netif_tx_stop_all_queues(dev);
1983 }
1984 }
1985 EXPORT_SYMBOL(netif_device_detach);
1986
1987 /**
1988 * netif_device_attach - mark device as attached
1989 * @dev: network device
1990 *
1991 * Mark device as attached from system and restart if needed.
1992 */
1993 void netif_device_attach(struct net_device *dev)
1994 {
1995 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1996 netif_running(dev)) {
1997 netif_tx_wake_all_queues(dev);
1998 __netdev_watchdog_up(dev);
1999 }
2000 }
2001 EXPORT_SYMBOL(netif_device_attach);
2002
2003 static void skb_warn_bad_offload(const struct sk_buff *skb)
2004 {
2005 static const netdev_features_t null_features = 0;
2006 struct net_device *dev = skb->dev;
2007 const char *driver = "";
2008
2009 if (dev && dev->dev.parent)
2010 driver = dev_driver_string(dev->dev.parent);
2011
2012 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2013 "gso_type=%d ip_summed=%d\n",
2014 driver, dev ? &dev->features : &null_features,
2015 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2016 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2017 skb_shinfo(skb)->gso_type, skb->ip_summed);
2018 }
2019
2020 /*
2021 * Invalidate hardware checksum when packet is to be mangled, and
2022 * complete checksum manually on outgoing path.
2023 */
2024 int skb_checksum_help(struct sk_buff *skb)
2025 {
2026 __wsum csum;
2027 int ret = 0, offset;
2028
2029 if (skb->ip_summed == CHECKSUM_COMPLETE)
2030 goto out_set_summed;
2031
2032 if (unlikely(skb_shinfo(skb)->gso_size)) {
2033 skb_warn_bad_offload(skb);
2034 return -EINVAL;
2035 }
2036
2037 offset = skb_checksum_start_offset(skb);
2038 BUG_ON(offset >= skb_headlen(skb));
2039 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2040
2041 offset += skb->csum_offset;
2042 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2043
2044 if (skb_cloned(skb) &&
2045 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2046 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2047 if (ret)
2048 goto out;
2049 }
2050
2051 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2052 out_set_summed:
2053 skb->ip_summed = CHECKSUM_NONE;
2054 out:
2055 return ret;
2056 }
2057 EXPORT_SYMBOL(skb_checksum_help);
2058
2059 /**
2060 * skb_gso_segment - Perform segmentation on skb.
2061 * @skb: buffer to segment
2062 * @features: features for the output path (see dev->features)
2063 *
2064 * This function segments the given skb and returns a list of segments.
2065 *
2066 * It may return NULL if the skb requires no segmentation. This is
2067 * only possible when GSO is used for verifying header integrity.
2068 */
2069 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2070 netdev_features_t features)
2071 {
2072 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2073 struct packet_offload *ptype;
2074 __be16 type = skb->protocol;
2075 int vlan_depth = ETH_HLEN;
2076 int err;
2077
2078 while (type == htons(ETH_P_8021Q)) {
2079 struct vlan_hdr *vh;
2080
2081 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2082 return ERR_PTR(-EINVAL);
2083
2084 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2085 type = vh->h_vlan_encapsulated_proto;
2086 vlan_depth += VLAN_HLEN;
2087 }
2088
2089 skb_reset_mac_header(skb);
2090 skb->mac_len = skb->network_header - skb->mac_header;
2091 __skb_pull(skb, skb->mac_len);
2092
2093 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2094 skb_warn_bad_offload(skb);
2095
2096 if (skb_header_cloned(skb) &&
2097 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2098 return ERR_PTR(err);
2099 }
2100
2101 rcu_read_lock();
2102 list_for_each_entry_rcu(ptype, &offload_base, list) {
2103 if (ptype->type == type && ptype->callbacks.gso_segment) {
2104 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2105 err = ptype->callbacks.gso_send_check(skb);
2106 segs = ERR_PTR(err);
2107 if (err || skb_gso_ok(skb, features))
2108 break;
2109 __skb_push(skb, (skb->data -
2110 skb_network_header(skb)));
2111 }
2112 segs = ptype->callbacks.gso_segment(skb, features);
2113 break;
2114 }
2115 }
2116 rcu_read_unlock();
2117
2118 __skb_push(skb, skb->data - skb_mac_header(skb));
2119
2120 return segs;
2121 }
2122 EXPORT_SYMBOL(skb_gso_segment);
2123
2124 /* Take action when hardware reception checksum errors are detected. */
2125 #ifdef CONFIG_BUG
2126 void netdev_rx_csum_fault(struct net_device *dev)
2127 {
2128 if (net_ratelimit()) {
2129 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2130 dump_stack();
2131 }
2132 }
2133 EXPORT_SYMBOL(netdev_rx_csum_fault);
2134 #endif
2135
2136 /* Actually, we should eliminate this check as soon as we know, that:
2137 * 1. IOMMU is present and allows to map all the memory.
2138 * 2. No high memory really exists on this machine.
2139 */
2140
2141 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2142 {
2143 #ifdef CONFIG_HIGHMEM
2144 int i;
2145 if (!(dev->features & NETIF_F_HIGHDMA)) {
2146 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2147 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2148 if (PageHighMem(skb_frag_page(frag)))
2149 return 1;
2150 }
2151 }
2152
2153 if (PCI_DMA_BUS_IS_PHYS) {
2154 struct device *pdev = dev->dev.parent;
2155
2156 if (!pdev)
2157 return 0;
2158 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2159 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2160 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2161 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2162 return 1;
2163 }
2164 }
2165 #endif
2166 return 0;
2167 }
2168
2169 struct dev_gso_cb {
2170 void (*destructor)(struct sk_buff *skb);
2171 };
2172
2173 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2174
2175 static void dev_gso_skb_destructor(struct sk_buff *skb)
2176 {
2177 struct dev_gso_cb *cb;
2178
2179 do {
2180 struct sk_buff *nskb = skb->next;
2181
2182 skb->next = nskb->next;
2183 nskb->next = NULL;
2184 kfree_skb(nskb);
2185 } while (skb->next);
2186
2187 cb = DEV_GSO_CB(skb);
2188 if (cb->destructor)
2189 cb->destructor(skb);
2190 }
2191
2192 /**
2193 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2194 * @skb: buffer to segment
2195 * @features: device features as applicable to this skb
2196 *
2197 * This function segments the given skb and stores the list of segments
2198 * in skb->next.
2199 */
2200 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2201 {
2202 struct sk_buff *segs;
2203
2204 segs = skb_gso_segment(skb, features);
2205
2206 /* Verifying header integrity only. */
2207 if (!segs)
2208 return 0;
2209
2210 if (IS_ERR(segs))
2211 return PTR_ERR(segs);
2212
2213 skb->next = segs;
2214 DEV_GSO_CB(skb)->destructor = skb->destructor;
2215 skb->destructor = dev_gso_skb_destructor;
2216
2217 return 0;
2218 }
2219
2220 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2221 {
2222 return ((features & NETIF_F_GEN_CSUM) ||
2223 ((features & NETIF_F_V4_CSUM) &&
2224 protocol == htons(ETH_P_IP)) ||
2225 ((features & NETIF_F_V6_CSUM) &&
2226 protocol == htons(ETH_P_IPV6)) ||
2227 ((features & NETIF_F_FCOE_CRC) &&
2228 protocol == htons(ETH_P_FCOE)));
2229 }
2230
2231 static netdev_features_t harmonize_features(struct sk_buff *skb,
2232 __be16 protocol, netdev_features_t features)
2233 {
2234 if (skb->ip_summed != CHECKSUM_NONE &&
2235 !can_checksum_protocol(features, protocol)) {
2236 features &= ~NETIF_F_ALL_CSUM;
2237 features &= ~NETIF_F_SG;
2238 } else if (illegal_highdma(skb->dev, skb)) {
2239 features &= ~NETIF_F_SG;
2240 }
2241
2242 return features;
2243 }
2244
2245 netdev_features_t netif_skb_features(struct sk_buff *skb)
2246 {
2247 __be16 protocol = skb->protocol;
2248 netdev_features_t features = skb->dev->features;
2249
2250 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2251 features &= ~NETIF_F_GSO_MASK;
2252
2253 if (protocol == htons(ETH_P_8021Q)) {
2254 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2255 protocol = veh->h_vlan_encapsulated_proto;
2256 } else if (!vlan_tx_tag_present(skb)) {
2257 return harmonize_features(skb, protocol, features);
2258 }
2259
2260 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2261
2262 if (protocol != htons(ETH_P_8021Q)) {
2263 return harmonize_features(skb, protocol, features);
2264 } else {
2265 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2266 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2267 return harmonize_features(skb, protocol, features);
2268 }
2269 }
2270 EXPORT_SYMBOL(netif_skb_features);
2271
2272 /*
2273 * Returns true if either:
2274 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2275 * 2. skb is fragmented and the device does not support SG.
2276 */
2277 static inline int skb_needs_linearize(struct sk_buff *skb,
2278 int features)
2279 {
2280 return skb_is_nonlinear(skb) &&
2281 ((skb_has_frag_list(skb) &&
2282 !(features & NETIF_F_FRAGLIST)) ||
2283 (skb_shinfo(skb)->nr_frags &&
2284 !(features & NETIF_F_SG)));
2285 }
2286
2287 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2288 struct netdev_queue *txq)
2289 {
2290 const struct net_device_ops *ops = dev->netdev_ops;
2291 int rc = NETDEV_TX_OK;
2292 unsigned int skb_len;
2293
2294 if (likely(!skb->next)) {
2295 netdev_features_t features;
2296
2297 /*
2298 * If device doesn't need skb->dst, release it right now while
2299 * its hot in this cpu cache
2300 */
2301 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2302 skb_dst_drop(skb);
2303
2304 features = netif_skb_features(skb);
2305
2306 if (vlan_tx_tag_present(skb) &&
2307 !(features & NETIF_F_HW_VLAN_TX)) {
2308 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2309 if (unlikely(!skb))
2310 goto out;
2311
2312 skb->vlan_tci = 0;
2313 }
2314
2315 if (netif_needs_gso(skb, features)) {
2316 if (unlikely(dev_gso_segment(skb, features)))
2317 goto out_kfree_skb;
2318 if (skb->next)
2319 goto gso;
2320 } else {
2321 if (skb_needs_linearize(skb, features) &&
2322 __skb_linearize(skb))
2323 goto out_kfree_skb;
2324
2325 /* If packet is not checksummed and device does not
2326 * support checksumming for this protocol, complete
2327 * checksumming here.
2328 */
2329 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2330 skb_set_transport_header(skb,
2331 skb_checksum_start_offset(skb));
2332 if (!(features & NETIF_F_ALL_CSUM) &&
2333 skb_checksum_help(skb))
2334 goto out_kfree_skb;
2335 }
2336 }
2337
2338 if (!list_empty(&ptype_all))
2339 dev_queue_xmit_nit(skb, dev);
2340
2341 skb_len = skb->len;
2342 rc = ops->ndo_start_xmit(skb, dev);
2343 trace_net_dev_xmit(skb, rc, dev, skb_len);
2344 if (rc == NETDEV_TX_OK)
2345 txq_trans_update(txq);
2346 return rc;
2347 }
2348
2349 gso:
2350 do {
2351 struct sk_buff *nskb = skb->next;
2352
2353 skb->next = nskb->next;
2354 nskb->next = NULL;
2355
2356 /*
2357 * If device doesn't need nskb->dst, release it right now while
2358 * its hot in this cpu cache
2359 */
2360 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2361 skb_dst_drop(nskb);
2362
2363 if (!list_empty(&ptype_all))
2364 dev_queue_xmit_nit(nskb, dev);
2365
2366 skb_len = nskb->len;
2367 rc = ops->ndo_start_xmit(nskb, dev);
2368 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2369 if (unlikely(rc != NETDEV_TX_OK)) {
2370 if (rc & ~NETDEV_TX_MASK)
2371 goto out_kfree_gso_skb;
2372 nskb->next = skb->next;
2373 skb->next = nskb;
2374 return rc;
2375 }
2376 txq_trans_update(txq);
2377 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2378 return NETDEV_TX_BUSY;
2379 } while (skb->next);
2380
2381 out_kfree_gso_skb:
2382 if (likely(skb->next == NULL))
2383 skb->destructor = DEV_GSO_CB(skb)->destructor;
2384 out_kfree_skb:
2385 kfree_skb(skb);
2386 out:
2387 return rc;
2388 }
2389
2390 static u32 hashrnd __read_mostly;
2391
2392 /*
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2395 */
2396 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2397 unsigned int num_tx_queues)
2398 {
2399 u32 hash;
2400 u16 qoffset = 0;
2401 u16 qcount = num_tx_queues;
2402
2403 if (skb_rx_queue_recorded(skb)) {
2404 hash = skb_get_rx_queue(skb);
2405 while (unlikely(hash >= num_tx_queues))
2406 hash -= num_tx_queues;
2407 return hash;
2408 }
2409
2410 if (dev->num_tc) {
2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 qoffset = dev->tc_to_txq[tc].offset;
2413 qcount = dev->tc_to_txq[tc].count;
2414 }
2415
2416 if (skb->sk && skb->sk->sk_hash)
2417 hash = skb->sk->sk_hash;
2418 else
2419 hash = (__force u16) skb->protocol;
2420 hash = jhash_1word(hash, hashrnd);
2421
2422 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2423 }
2424 EXPORT_SYMBOL(__skb_tx_hash);
2425
2426 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2427 {
2428 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2429 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2430 dev->name, queue_index,
2431 dev->real_num_tx_queues);
2432 return 0;
2433 }
2434 return queue_index;
2435 }
2436
2437 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2438 {
2439 #ifdef CONFIG_XPS
2440 struct xps_dev_maps *dev_maps;
2441 struct xps_map *map;
2442 int queue_index = -1;
2443
2444 rcu_read_lock();
2445 dev_maps = rcu_dereference(dev->xps_maps);
2446 if (dev_maps) {
2447 map = rcu_dereference(
2448 dev_maps->cpu_map[raw_smp_processor_id()]);
2449 if (map) {
2450 if (map->len == 1)
2451 queue_index = map->queues[0];
2452 else {
2453 u32 hash;
2454 if (skb->sk && skb->sk->sk_hash)
2455 hash = skb->sk->sk_hash;
2456 else
2457 hash = (__force u16) skb->protocol ^
2458 skb->rxhash;
2459 hash = jhash_1word(hash, hashrnd);
2460 queue_index = map->queues[
2461 ((u64)hash * map->len) >> 32];
2462 }
2463 if (unlikely(queue_index >= dev->real_num_tx_queues))
2464 queue_index = -1;
2465 }
2466 }
2467 rcu_read_unlock();
2468
2469 return queue_index;
2470 #else
2471 return -1;
2472 #endif
2473 }
2474
2475 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2476 struct sk_buff *skb)
2477 {
2478 int queue_index;
2479 const struct net_device_ops *ops = dev->netdev_ops;
2480
2481 if (dev->real_num_tx_queues == 1)
2482 queue_index = 0;
2483 else if (ops->ndo_select_queue) {
2484 queue_index = ops->ndo_select_queue(dev, skb);
2485 queue_index = dev_cap_txqueue(dev, queue_index);
2486 } else {
2487 struct sock *sk = skb->sk;
2488 queue_index = sk_tx_queue_get(sk);
2489
2490 if (queue_index < 0 || skb->ooo_okay ||
2491 queue_index >= dev->real_num_tx_queues) {
2492 int old_index = queue_index;
2493
2494 queue_index = get_xps_queue(dev, skb);
2495 if (queue_index < 0)
2496 queue_index = skb_tx_hash(dev, skb);
2497
2498 if (queue_index != old_index && sk) {
2499 struct dst_entry *dst =
2500 rcu_dereference_check(sk->sk_dst_cache, 1);
2501
2502 if (dst && skb_dst(skb) == dst)
2503 sk_tx_queue_set(sk, queue_index);
2504 }
2505 }
2506 }
2507
2508 skb_set_queue_mapping(skb, queue_index);
2509 return netdev_get_tx_queue(dev, queue_index);
2510 }
2511
2512 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2513 struct net_device *dev,
2514 struct netdev_queue *txq)
2515 {
2516 spinlock_t *root_lock = qdisc_lock(q);
2517 bool contended;
2518 int rc;
2519
2520 qdisc_skb_cb(skb)->pkt_len = skb->len;
2521 qdisc_calculate_pkt_len(skb, q);
2522 /*
2523 * Heuristic to force contended enqueues to serialize on a
2524 * separate lock before trying to get qdisc main lock.
2525 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2526 * and dequeue packets faster.
2527 */
2528 contended = qdisc_is_running(q);
2529 if (unlikely(contended))
2530 spin_lock(&q->busylock);
2531
2532 spin_lock(root_lock);
2533 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2534 kfree_skb(skb);
2535 rc = NET_XMIT_DROP;
2536 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2537 qdisc_run_begin(q)) {
2538 /*
2539 * This is a work-conserving queue; there are no old skbs
2540 * waiting to be sent out; and the qdisc is not running -
2541 * xmit the skb directly.
2542 */
2543 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2544 skb_dst_force(skb);
2545
2546 qdisc_bstats_update(q, skb);
2547
2548 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2549 if (unlikely(contended)) {
2550 spin_unlock(&q->busylock);
2551 contended = false;
2552 }
2553 __qdisc_run(q);
2554 } else
2555 qdisc_run_end(q);
2556
2557 rc = NET_XMIT_SUCCESS;
2558 } else {
2559 skb_dst_force(skb);
2560 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2561 if (qdisc_run_begin(q)) {
2562 if (unlikely(contended)) {
2563 spin_unlock(&q->busylock);
2564 contended = false;
2565 }
2566 __qdisc_run(q);
2567 }
2568 }
2569 spin_unlock(root_lock);
2570 if (unlikely(contended))
2571 spin_unlock(&q->busylock);
2572 return rc;
2573 }
2574
2575 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2576 static void skb_update_prio(struct sk_buff *skb)
2577 {
2578 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2579
2580 if (!skb->priority && skb->sk && map) {
2581 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2582
2583 if (prioidx < map->priomap_len)
2584 skb->priority = map->priomap[prioidx];
2585 }
2586 }
2587 #else
2588 #define skb_update_prio(skb)
2589 #endif
2590
2591 static DEFINE_PER_CPU(int, xmit_recursion);
2592 #define RECURSION_LIMIT 10
2593
2594 /**
2595 * dev_loopback_xmit - loop back @skb
2596 * @skb: buffer to transmit
2597 */
2598 int dev_loopback_xmit(struct sk_buff *skb)
2599 {
2600 skb_reset_mac_header(skb);
2601 __skb_pull(skb, skb_network_offset(skb));
2602 skb->pkt_type = PACKET_LOOPBACK;
2603 skb->ip_summed = CHECKSUM_UNNECESSARY;
2604 WARN_ON(!skb_dst(skb));
2605 skb_dst_force(skb);
2606 netif_rx_ni(skb);
2607 return 0;
2608 }
2609 EXPORT_SYMBOL(dev_loopback_xmit);
2610
2611 /**
2612 * dev_queue_xmit - transmit a buffer
2613 * @skb: buffer to transmit
2614 *
2615 * Queue a buffer for transmission to a network device. The caller must
2616 * have set the device and priority and built the buffer before calling
2617 * this function. The function can be called from an interrupt.
2618 *
2619 * A negative errno code is returned on a failure. A success does not
2620 * guarantee the frame will be transmitted as it may be dropped due
2621 * to congestion or traffic shaping.
2622 *
2623 * -----------------------------------------------------------------------------------
2624 * I notice this method can also return errors from the queue disciplines,
2625 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2626 * be positive.
2627 *
2628 * Regardless of the return value, the skb is consumed, so it is currently
2629 * difficult to retry a send to this method. (You can bump the ref count
2630 * before sending to hold a reference for retry if you are careful.)
2631 *
2632 * When calling this method, interrupts MUST be enabled. This is because
2633 * the BH enable code must have IRQs enabled so that it will not deadlock.
2634 * --BLG
2635 */
2636 int dev_queue_xmit(struct sk_buff *skb)
2637 {
2638 struct net_device *dev = skb->dev;
2639 struct netdev_queue *txq;
2640 struct Qdisc *q;
2641 int rc = -ENOMEM;
2642
2643 /* Disable soft irqs for various locks below. Also
2644 * stops preemption for RCU.
2645 */
2646 rcu_read_lock_bh();
2647
2648 skb_update_prio(skb);
2649
2650 txq = netdev_pick_tx(dev, skb);
2651 q = rcu_dereference_bh(txq->qdisc);
2652
2653 #ifdef CONFIG_NET_CLS_ACT
2654 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2655 #endif
2656 trace_net_dev_queue(skb);
2657 if (q->enqueue) {
2658 rc = __dev_xmit_skb(skb, q, dev, txq);
2659 goto out;
2660 }
2661
2662 /* The device has no queue. Common case for software devices:
2663 loopback, all the sorts of tunnels...
2664
2665 Really, it is unlikely that netif_tx_lock protection is necessary
2666 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2667 counters.)
2668 However, it is possible, that they rely on protection
2669 made by us here.
2670
2671 Check this and shot the lock. It is not prone from deadlocks.
2672 Either shot noqueue qdisc, it is even simpler 8)
2673 */
2674 if (dev->flags & IFF_UP) {
2675 int cpu = smp_processor_id(); /* ok because BHs are off */
2676
2677 if (txq->xmit_lock_owner != cpu) {
2678
2679 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2680 goto recursion_alert;
2681
2682 HARD_TX_LOCK(dev, txq, cpu);
2683
2684 if (!netif_xmit_stopped(txq)) {
2685 __this_cpu_inc(xmit_recursion);
2686 rc = dev_hard_start_xmit(skb, dev, txq);
2687 __this_cpu_dec(xmit_recursion);
2688 if (dev_xmit_complete(rc)) {
2689 HARD_TX_UNLOCK(dev, txq);
2690 goto out;
2691 }
2692 }
2693 HARD_TX_UNLOCK(dev, txq);
2694 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2695 dev->name);
2696 } else {
2697 /* Recursion is detected! It is possible,
2698 * unfortunately
2699 */
2700 recursion_alert:
2701 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2702 dev->name);
2703 }
2704 }
2705
2706 rc = -ENETDOWN;
2707 rcu_read_unlock_bh();
2708
2709 kfree_skb(skb);
2710 return rc;
2711 out:
2712 rcu_read_unlock_bh();
2713 return rc;
2714 }
2715 EXPORT_SYMBOL(dev_queue_xmit);
2716
2717
2718 /*=======================================================================
2719 Receiver routines
2720 =======================================================================*/
2721
2722 int netdev_max_backlog __read_mostly = 1000;
2723 EXPORT_SYMBOL(netdev_max_backlog);
2724
2725 int netdev_tstamp_prequeue __read_mostly = 1;
2726 int netdev_budget __read_mostly = 300;
2727 int weight_p __read_mostly = 64; /* old backlog weight */
2728
2729 /* Called with irq disabled */
2730 static inline void ____napi_schedule(struct softnet_data *sd,
2731 struct napi_struct *napi)
2732 {
2733 list_add_tail(&napi->poll_list, &sd->poll_list);
2734 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2735 }
2736
2737 /*
2738 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2739 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2740 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2741 * if hash is a canonical 4-tuple hash over transport ports.
2742 */
2743 void __skb_get_rxhash(struct sk_buff *skb)
2744 {
2745 struct flow_keys keys;
2746 u32 hash;
2747
2748 if (!skb_flow_dissect(skb, &keys))
2749 return;
2750
2751 if (keys.ports)
2752 skb->l4_rxhash = 1;
2753
2754 /* get a consistent hash (same value on both flow directions) */
2755 if (((__force u32)keys.dst < (__force u32)keys.src) ||
2756 (((__force u32)keys.dst == (__force u32)keys.src) &&
2757 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2758 swap(keys.dst, keys.src);
2759 swap(keys.port16[0], keys.port16[1]);
2760 }
2761
2762 hash = jhash_3words((__force u32)keys.dst,
2763 (__force u32)keys.src,
2764 (__force u32)keys.ports, hashrnd);
2765 if (!hash)
2766 hash = 1;
2767
2768 skb->rxhash = hash;
2769 }
2770 EXPORT_SYMBOL(__skb_get_rxhash);
2771
2772 #ifdef CONFIG_RPS
2773
2774 /* One global table that all flow-based protocols share. */
2775 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2776 EXPORT_SYMBOL(rps_sock_flow_table);
2777
2778 struct static_key rps_needed __read_mostly;
2779
2780 static struct rps_dev_flow *
2781 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2782 struct rps_dev_flow *rflow, u16 next_cpu)
2783 {
2784 if (next_cpu != RPS_NO_CPU) {
2785 #ifdef CONFIG_RFS_ACCEL
2786 struct netdev_rx_queue *rxqueue;
2787 struct rps_dev_flow_table *flow_table;
2788 struct rps_dev_flow *old_rflow;
2789 u32 flow_id;
2790 u16 rxq_index;
2791 int rc;
2792
2793 /* Should we steer this flow to a different hardware queue? */
2794 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2795 !(dev->features & NETIF_F_NTUPLE))
2796 goto out;
2797 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2798 if (rxq_index == skb_get_rx_queue(skb))
2799 goto out;
2800
2801 rxqueue = dev->_rx + rxq_index;
2802 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2803 if (!flow_table)
2804 goto out;
2805 flow_id = skb->rxhash & flow_table->mask;
2806 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2807 rxq_index, flow_id);
2808 if (rc < 0)
2809 goto out;
2810 old_rflow = rflow;
2811 rflow = &flow_table->flows[flow_id];
2812 rflow->filter = rc;
2813 if (old_rflow->filter == rflow->filter)
2814 old_rflow->filter = RPS_NO_FILTER;
2815 out:
2816 #endif
2817 rflow->last_qtail =
2818 per_cpu(softnet_data, next_cpu).input_queue_head;
2819 }
2820
2821 rflow->cpu = next_cpu;
2822 return rflow;
2823 }
2824
2825 /*
2826 * get_rps_cpu is called from netif_receive_skb and returns the target
2827 * CPU from the RPS map of the receiving queue for a given skb.
2828 * rcu_read_lock must be held on entry.
2829 */
2830 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2831 struct rps_dev_flow **rflowp)
2832 {
2833 struct netdev_rx_queue *rxqueue;
2834 struct rps_map *map;
2835 struct rps_dev_flow_table *flow_table;
2836 struct rps_sock_flow_table *sock_flow_table;
2837 int cpu = -1;
2838 u16 tcpu;
2839
2840 if (skb_rx_queue_recorded(skb)) {
2841 u16 index = skb_get_rx_queue(skb);
2842 if (unlikely(index >= dev->real_num_rx_queues)) {
2843 WARN_ONCE(dev->real_num_rx_queues > 1,
2844 "%s received packet on queue %u, but number "
2845 "of RX queues is %u\n",
2846 dev->name, index, dev->real_num_rx_queues);
2847 goto done;
2848 }
2849 rxqueue = dev->_rx + index;
2850 } else
2851 rxqueue = dev->_rx;
2852
2853 map = rcu_dereference(rxqueue->rps_map);
2854 if (map) {
2855 if (map->len == 1 &&
2856 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2857 tcpu = map->cpus[0];
2858 if (cpu_online(tcpu))
2859 cpu = tcpu;
2860 goto done;
2861 }
2862 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2863 goto done;
2864 }
2865
2866 skb_reset_network_header(skb);
2867 if (!skb_get_rxhash(skb))
2868 goto done;
2869
2870 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2871 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2872 if (flow_table && sock_flow_table) {
2873 u16 next_cpu;
2874 struct rps_dev_flow *rflow;
2875
2876 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2877 tcpu = rflow->cpu;
2878
2879 next_cpu = sock_flow_table->ents[skb->rxhash &
2880 sock_flow_table->mask];
2881
2882 /*
2883 * If the desired CPU (where last recvmsg was done) is
2884 * different from current CPU (one in the rx-queue flow
2885 * table entry), switch if one of the following holds:
2886 * - Current CPU is unset (equal to RPS_NO_CPU).
2887 * - Current CPU is offline.
2888 * - The current CPU's queue tail has advanced beyond the
2889 * last packet that was enqueued using this table entry.
2890 * This guarantees that all previous packets for the flow
2891 * have been dequeued, thus preserving in order delivery.
2892 */
2893 if (unlikely(tcpu != next_cpu) &&
2894 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2895 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2896 rflow->last_qtail)) >= 0)) {
2897 tcpu = next_cpu;
2898 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2899 }
2900
2901 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2902 *rflowp = rflow;
2903 cpu = tcpu;
2904 goto done;
2905 }
2906 }
2907
2908 if (map) {
2909 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2910
2911 if (cpu_online(tcpu)) {
2912 cpu = tcpu;
2913 goto done;
2914 }
2915 }
2916
2917 done:
2918 return cpu;
2919 }
2920
2921 #ifdef CONFIG_RFS_ACCEL
2922
2923 /**
2924 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2925 * @dev: Device on which the filter was set
2926 * @rxq_index: RX queue index
2927 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2928 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2929 *
2930 * Drivers that implement ndo_rx_flow_steer() should periodically call
2931 * this function for each installed filter and remove the filters for
2932 * which it returns %true.
2933 */
2934 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2935 u32 flow_id, u16 filter_id)
2936 {
2937 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2938 struct rps_dev_flow_table *flow_table;
2939 struct rps_dev_flow *rflow;
2940 bool expire = true;
2941 int cpu;
2942
2943 rcu_read_lock();
2944 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2945 if (flow_table && flow_id <= flow_table->mask) {
2946 rflow = &flow_table->flows[flow_id];
2947 cpu = ACCESS_ONCE(rflow->cpu);
2948 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2949 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2950 rflow->last_qtail) <
2951 (int)(10 * flow_table->mask)))
2952 expire = false;
2953 }
2954 rcu_read_unlock();
2955 return expire;
2956 }
2957 EXPORT_SYMBOL(rps_may_expire_flow);
2958
2959 #endif /* CONFIG_RFS_ACCEL */
2960
2961 /* Called from hardirq (IPI) context */
2962 static void rps_trigger_softirq(void *data)
2963 {
2964 struct softnet_data *sd = data;
2965
2966 ____napi_schedule(sd, &sd->backlog);
2967 sd->received_rps++;
2968 }
2969
2970 #endif /* CONFIG_RPS */
2971
2972 /*
2973 * Check if this softnet_data structure is another cpu one
2974 * If yes, queue it to our IPI list and return 1
2975 * If no, return 0
2976 */
2977 static int rps_ipi_queued(struct softnet_data *sd)
2978 {
2979 #ifdef CONFIG_RPS
2980 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2981
2982 if (sd != mysd) {
2983 sd->rps_ipi_next = mysd->rps_ipi_list;
2984 mysd->rps_ipi_list = sd;
2985
2986 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2987 return 1;
2988 }
2989 #endif /* CONFIG_RPS */
2990 return 0;
2991 }
2992
2993 /*
2994 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2995 * queue (may be a remote CPU queue).
2996 */
2997 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2998 unsigned int *qtail)
2999 {
3000 struct softnet_data *sd;
3001 unsigned long flags;
3002
3003 sd = &per_cpu(softnet_data, cpu);
3004
3005 local_irq_save(flags);
3006
3007 rps_lock(sd);
3008 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3009 if (skb_queue_len(&sd->input_pkt_queue)) {
3010 enqueue:
3011 __skb_queue_tail(&sd->input_pkt_queue, skb);
3012 input_queue_tail_incr_save(sd, qtail);
3013 rps_unlock(sd);
3014 local_irq_restore(flags);
3015 return NET_RX_SUCCESS;
3016 }
3017
3018 /* Schedule NAPI for backlog device
3019 * We can use non atomic operation since we own the queue lock
3020 */
3021 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3022 if (!rps_ipi_queued(sd))
3023 ____napi_schedule(sd, &sd->backlog);
3024 }
3025 goto enqueue;
3026 }
3027
3028 sd->dropped++;
3029 rps_unlock(sd);
3030
3031 local_irq_restore(flags);
3032
3033 atomic_long_inc(&skb->dev->rx_dropped);
3034 kfree_skb(skb);
3035 return NET_RX_DROP;
3036 }
3037
3038 /**
3039 * netif_rx - post buffer to the network code
3040 * @skb: buffer to post
3041 *
3042 * This function receives a packet from a device driver and queues it for
3043 * the upper (protocol) levels to process. It always succeeds. The buffer
3044 * may be dropped during processing for congestion control or by the
3045 * protocol layers.
3046 *
3047 * return values:
3048 * NET_RX_SUCCESS (no congestion)
3049 * NET_RX_DROP (packet was dropped)
3050 *
3051 */
3052
3053 int netif_rx(struct sk_buff *skb)
3054 {
3055 int ret;
3056
3057 /* if netpoll wants it, pretend we never saw it */
3058 if (netpoll_rx(skb))
3059 return NET_RX_DROP;
3060
3061 net_timestamp_check(netdev_tstamp_prequeue, skb);
3062
3063 trace_netif_rx(skb);
3064 #ifdef CONFIG_RPS
3065 if (static_key_false(&rps_needed)) {
3066 struct rps_dev_flow voidflow, *rflow = &voidflow;
3067 int cpu;
3068
3069 preempt_disable();
3070 rcu_read_lock();
3071
3072 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3073 if (cpu < 0)
3074 cpu = smp_processor_id();
3075
3076 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3077
3078 rcu_read_unlock();
3079 preempt_enable();
3080 } else
3081 #endif
3082 {
3083 unsigned int qtail;
3084 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3085 put_cpu();
3086 }
3087 return ret;
3088 }
3089 EXPORT_SYMBOL(netif_rx);
3090
3091 int netif_rx_ni(struct sk_buff *skb)
3092 {
3093 int err;
3094
3095 preempt_disable();
3096 err = netif_rx(skb);
3097 if (local_softirq_pending())
3098 do_softirq();
3099 preempt_enable();
3100
3101 return err;
3102 }
3103 EXPORT_SYMBOL(netif_rx_ni);
3104
3105 static void net_tx_action(struct softirq_action *h)
3106 {
3107 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3108
3109 if (sd->completion_queue) {
3110 struct sk_buff *clist;
3111
3112 local_irq_disable();
3113 clist = sd->completion_queue;
3114 sd->completion_queue = NULL;
3115 local_irq_enable();
3116
3117 while (clist) {
3118 struct sk_buff *skb = clist;
3119 clist = clist->next;
3120
3121 WARN_ON(atomic_read(&skb->users));
3122 trace_kfree_skb(skb, net_tx_action);
3123 __kfree_skb(skb);
3124 }
3125 }
3126
3127 if (sd->output_queue) {
3128 struct Qdisc *head;
3129
3130 local_irq_disable();
3131 head = sd->output_queue;
3132 sd->output_queue = NULL;
3133 sd->output_queue_tailp = &sd->output_queue;
3134 local_irq_enable();
3135
3136 while (head) {
3137 struct Qdisc *q = head;
3138 spinlock_t *root_lock;
3139
3140 head = head->next_sched;
3141
3142 root_lock = qdisc_lock(q);
3143 if (spin_trylock(root_lock)) {
3144 smp_mb__before_clear_bit();
3145 clear_bit(__QDISC_STATE_SCHED,
3146 &q->state);
3147 qdisc_run(q);
3148 spin_unlock(root_lock);
3149 } else {
3150 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3151 &q->state)) {
3152 __netif_reschedule(q);
3153 } else {
3154 smp_mb__before_clear_bit();
3155 clear_bit(__QDISC_STATE_SCHED,
3156 &q->state);
3157 }
3158 }
3159 }
3160 }
3161 }
3162
3163 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3164 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3165 /* This hook is defined here for ATM LANE */
3166 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3167 unsigned char *addr) __read_mostly;
3168 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3169 #endif
3170
3171 #ifdef CONFIG_NET_CLS_ACT
3172 /* TODO: Maybe we should just force sch_ingress to be compiled in
3173 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3174 * a compare and 2 stores extra right now if we dont have it on
3175 * but have CONFIG_NET_CLS_ACT
3176 * NOTE: This doesn't stop any functionality; if you dont have
3177 * the ingress scheduler, you just can't add policies on ingress.
3178 *
3179 */
3180 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3181 {
3182 struct net_device *dev = skb->dev;
3183 u32 ttl = G_TC_RTTL(skb->tc_verd);
3184 int result = TC_ACT_OK;
3185 struct Qdisc *q;
3186
3187 if (unlikely(MAX_RED_LOOP < ttl++)) {
3188 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3189 skb->skb_iif, dev->ifindex);
3190 return TC_ACT_SHOT;
3191 }
3192
3193 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3194 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3195
3196 q = rxq->qdisc;
3197 if (q != &noop_qdisc) {
3198 spin_lock(qdisc_lock(q));
3199 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3200 result = qdisc_enqueue_root(skb, q);
3201 spin_unlock(qdisc_lock(q));
3202 }
3203
3204 return result;
3205 }
3206
3207 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3208 struct packet_type **pt_prev,
3209 int *ret, struct net_device *orig_dev)
3210 {
3211 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3212
3213 if (!rxq || rxq->qdisc == &noop_qdisc)
3214 goto out;
3215
3216 if (*pt_prev) {
3217 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3218 *pt_prev = NULL;
3219 }
3220
3221 switch (ing_filter(skb, rxq)) {
3222 case TC_ACT_SHOT:
3223 case TC_ACT_STOLEN:
3224 kfree_skb(skb);
3225 return NULL;
3226 }
3227
3228 out:
3229 skb->tc_verd = 0;
3230 return skb;
3231 }
3232 #endif
3233
3234 /**
3235 * netdev_rx_handler_register - register receive handler
3236 * @dev: device to register a handler for
3237 * @rx_handler: receive handler to register
3238 * @rx_handler_data: data pointer that is used by rx handler
3239 *
3240 * Register a receive hander for a device. This handler will then be
3241 * called from __netif_receive_skb. A negative errno code is returned
3242 * on a failure.
3243 *
3244 * The caller must hold the rtnl_mutex.
3245 *
3246 * For a general description of rx_handler, see enum rx_handler_result.
3247 */
3248 int netdev_rx_handler_register(struct net_device *dev,
3249 rx_handler_func_t *rx_handler,
3250 void *rx_handler_data)
3251 {
3252 ASSERT_RTNL();
3253
3254 if (dev->rx_handler)
3255 return -EBUSY;
3256
3257 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3258 rcu_assign_pointer(dev->rx_handler, rx_handler);
3259
3260 return 0;
3261 }
3262 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3263
3264 /**
3265 * netdev_rx_handler_unregister - unregister receive handler
3266 * @dev: device to unregister a handler from
3267 *
3268 * Unregister a receive hander from a device.
3269 *
3270 * The caller must hold the rtnl_mutex.
3271 */
3272 void netdev_rx_handler_unregister(struct net_device *dev)
3273 {
3274
3275 ASSERT_RTNL();
3276 RCU_INIT_POINTER(dev->rx_handler, NULL);
3277 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3278 }
3279 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3280
3281 /*
3282 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3283 * the special handling of PFMEMALLOC skbs.
3284 */
3285 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3286 {
3287 switch (skb->protocol) {
3288 case __constant_htons(ETH_P_ARP):
3289 case __constant_htons(ETH_P_IP):
3290 case __constant_htons(ETH_P_IPV6):
3291 case __constant_htons(ETH_P_8021Q):
3292 return true;
3293 default:
3294 return false;
3295 }
3296 }
3297
3298 static int __netif_receive_skb(struct sk_buff *skb)
3299 {
3300 struct packet_type *ptype, *pt_prev;
3301 rx_handler_func_t *rx_handler;
3302 struct net_device *orig_dev;
3303 struct net_device *null_or_dev;
3304 bool deliver_exact = false;
3305 int ret = NET_RX_DROP;
3306 __be16 type;
3307 unsigned long pflags = current->flags;
3308
3309 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3310
3311 trace_netif_receive_skb(skb);
3312
3313 /*
3314 * PFMEMALLOC skbs are special, they should
3315 * - be delivered to SOCK_MEMALLOC sockets only
3316 * - stay away from userspace
3317 * - have bounded memory usage
3318 *
3319 * Use PF_MEMALLOC as this saves us from propagating the allocation
3320 * context down to all allocation sites.
3321 */
3322 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3323 current->flags |= PF_MEMALLOC;
3324
3325 /* if we've gotten here through NAPI, check netpoll */
3326 if (netpoll_receive_skb(skb))
3327 goto out;
3328
3329 orig_dev = skb->dev;
3330
3331 skb_reset_network_header(skb);
3332 skb_reset_transport_header(skb);
3333 skb_reset_mac_len(skb);
3334
3335 pt_prev = NULL;
3336
3337 rcu_read_lock();
3338
3339 another_round:
3340 skb->skb_iif = skb->dev->ifindex;
3341
3342 __this_cpu_inc(softnet_data.processed);
3343
3344 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3345 skb = vlan_untag(skb);
3346 if (unlikely(!skb))
3347 goto unlock;
3348 }
3349
3350 #ifdef CONFIG_NET_CLS_ACT
3351 if (skb->tc_verd & TC_NCLS) {
3352 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3353 goto ncls;
3354 }
3355 #endif
3356
3357 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3358 goto skip_taps;
3359
3360 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3361 if (!ptype->dev || ptype->dev == skb->dev) {
3362 if (pt_prev)
3363 ret = deliver_skb(skb, pt_prev, orig_dev);
3364 pt_prev = ptype;
3365 }
3366 }
3367
3368 skip_taps:
3369 #ifdef CONFIG_NET_CLS_ACT
3370 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3371 if (!skb)
3372 goto unlock;
3373 ncls:
3374 #endif
3375
3376 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3377 && !skb_pfmemalloc_protocol(skb))
3378 goto drop;
3379
3380 if (vlan_tx_tag_present(skb)) {
3381 if (pt_prev) {
3382 ret = deliver_skb(skb, pt_prev, orig_dev);
3383 pt_prev = NULL;
3384 }
3385 if (vlan_do_receive(&skb))
3386 goto another_round;
3387 else if (unlikely(!skb))
3388 goto unlock;
3389 }
3390
3391 rx_handler = rcu_dereference(skb->dev->rx_handler);
3392 if (rx_handler) {
3393 if (pt_prev) {
3394 ret = deliver_skb(skb, pt_prev, orig_dev);
3395 pt_prev = NULL;
3396 }
3397 switch (rx_handler(&skb)) {
3398 case RX_HANDLER_CONSUMED:
3399 goto unlock;
3400 case RX_HANDLER_ANOTHER:
3401 goto another_round;
3402 case RX_HANDLER_EXACT:
3403 deliver_exact = true;
3404 case RX_HANDLER_PASS:
3405 break;
3406 default:
3407 BUG();
3408 }
3409 }
3410
3411 if (vlan_tx_nonzero_tag_present(skb))
3412 skb->pkt_type = PACKET_OTHERHOST;
3413
3414 /* deliver only exact match when indicated */
3415 null_or_dev = deliver_exact ? skb->dev : NULL;
3416
3417 type = skb->protocol;
3418 list_for_each_entry_rcu(ptype,
3419 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3420 if (ptype->type == type &&
3421 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3422 ptype->dev == orig_dev)) {
3423 if (pt_prev)
3424 ret = deliver_skb(skb, pt_prev, orig_dev);
3425 pt_prev = ptype;
3426 }
3427 }
3428
3429 if (pt_prev) {
3430 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3431 goto drop;
3432 else
3433 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3434 } else {
3435 drop:
3436 atomic_long_inc(&skb->dev->rx_dropped);
3437 kfree_skb(skb);
3438 /* Jamal, now you will not able to escape explaining
3439 * me how you were going to use this. :-)
3440 */
3441 ret = NET_RX_DROP;
3442 }
3443
3444 unlock:
3445 rcu_read_unlock();
3446 out:
3447 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3448 return ret;
3449 }
3450
3451 /**
3452 * netif_receive_skb - process receive buffer from network
3453 * @skb: buffer to process
3454 *
3455 * netif_receive_skb() is the main receive data processing function.
3456 * It always succeeds. The buffer may be dropped during processing
3457 * for congestion control or by the protocol layers.
3458 *
3459 * This function may only be called from softirq context and interrupts
3460 * should be enabled.
3461 *
3462 * Return values (usually ignored):
3463 * NET_RX_SUCCESS: no congestion
3464 * NET_RX_DROP: packet was dropped
3465 */
3466 int netif_receive_skb(struct sk_buff *skb)
3467 {
3468 net_timestamp_check(netdev_tstamp_prequeue, skb);
3469
3470 if (skb_defer_rx_timestamp(skb))
3471 return NET_RX_SUCCESS;
3472
3473 #ifdef CONFIG_RPS
3474 if (static_key_false(&rps_needed)) {
3475 struct rps_dev_flow voidflow, *rflow = &voidflow;
3476 int cpu, ret;
3477
3478 rcu_read_lock();
3479
3480 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3481
3482 if (cpu >= 0) {
3483 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3484 rcu_read_unlock();
3485 return ret;
3486 }
3487 rcu_read_unlock();
3488 }
3489 #endif
3490 return __netif_receive_skb(skb);
3491 }
3492 EXPORT_SYMBOL(netif_receive_skb);
3493
3494 /* Network device is going away, flush any packets still pending
3495 * Called with irqs disabled.
3496 */
3497 static void flush_backlog(void *arg)
3498 {
3499 struct net_device *dev = arg;
3500 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3501 struct sk_buff *skb, *tmp;
3502
3503 rps_lock(sd);
3504 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3505 if (skb->dev == dev) {
3506 __skb_unlink(skb, &sd->input_pkt_queue);
3507 kfree_skb(skb);
3508 input_queue_head_incr(sd);
3509 }
3510 }
3511 rps_unlock(sd);
3512
3513 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3514 if (skb->dev == dev) {
3515 __skb_unlink(skb, &sd->process_queue);
3516 kfree_skb(skb);
3517 input_queue_head_incr(sd);
3518 }
3519 }
3520 }
3521
3522 static int napi_gro_complete(struct sk_buff *skb)
3523 {
3524 struct packet_offload *ptype;
3525 __be16 type = skb->protocol;
3526 struct list_head *head = &offload_base;
3527 int err = -ENOENT;
3528
3529 if (NAPI_GRO_CB(skb)->count == 1) {
3530 skb_shinfo(skb)->gso_size = 0;
3531 goto out;
3532 }
3533
3534 rcu_read_lock();
3535 list_for_each_entry_rcu(ptype, head, list) {
3536 if (ptype->type != type || !ptype->callbacks.gro_complete)
3537 continue;
3538
3539 err = ptype->callbacks.gro_complete(skb);
3540 break;
3541 }
3542 rcu_read_unlock();
3543
3544 if (err) {
3545 WARN_ON(&ptype->list == head);
3546 kfree_skb(skb);
3547 return NET_RX_SUCCESS;
3548 }
3549
3550 out:
3551 return netif_receive_skb(skb);
3552 }
3553
3554 /* napi->gro_list contains packets ordered by age.
3555 * youngest packets at the head of it.
3556 * Complete skbs in reverse order to reduce latencies.
3557 */
3558 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3559 {
3560 struct sk_buff *skb, *prev = NULL;
3561
3562 /* scan list and build reverse chain */
3563 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3564 skb->prev = prev;
3565 prev = skb;
3566 }
3567
3568 for (skb = prev; skb; skb = prev) {
3569 skb->next = NULL;
3570
3571 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3572 return;
3573
3574 prev = skb->prev;
3575 napi_gro_complete(skb);
3576 napi->gro_count--;
3577 }
3578
3579 napi->gro_list = NULL;
3580 }
3581 EXPORT_SYMBOL(napi_gro_flush);
3582
3583 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3584 {
3585 struct sk_buff **pp = NULL;
3586 struct packet_offload *ptype;
3587 __be16 type = skb->protocol;
3588 struct list_head *head = &offload_base;
3589 int same_flow;
3590 int mac_len;
3591 enum gro_result ret;
3592
3593 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3594 goto normal;
3595
3596 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3597 goto normal;
3598
3599 rcu_read_lock();
3600 list_for_each_entry_rcu(ptype, head, list) {
3601 if (ptype->type != type || !ptype->callbacks.gro_receive)
3602 continue;
3603
3604 skb_set_network_header(skb, skb_gro_offset(skb));
3605 mac_len = skb->network_header - skb->mac_header;
3606 skb->mac_len = mac_len;
3607 NAPI_GRO_CB(skb)->same_flow = 0;
3608 NAPI_GRO_CB(skb)->flush = 0;
3609 NAPI_GRO_CB(skb)->free = 0;
3610
3611 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3612 break;
3613 }
3614 rcu_read_unlock();
3615
3616 if (&ptype->list == head)
3617 goto normal;
3618
3619 same_flow = NAPI_GRO_CB(skb)->same_flow;
3620 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3621
3622 if (pp) {
3623 struct sk_buff *nskb = *pp;
3624
3625 *pp = nskb->next;
3626 nskb->next = NULL;
3627 napi_gro_complete(nskb);
3628 napi->gro_count--;
3629 }
3630
3631 if (same_flow)
3632 goto ok;
3633
3634 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3635 goto normal;
3636
3637 napi->gro_count++;
3638 NAPI_GRO_CB(skb)->count = 1;
3639 NAPI_GRO_CB(skb)->age = jiffies;
3640 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3641 skb->next = napi->gro_list;
3642 napi->gro_list = skb;
3643 ret = GRO_HELD;
3644
3645 pull:
3646 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3647 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3648
3649 BUG_ON(skb->end - skb->tail < grow);
3650
3651 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3652
3653 skb->tail += grow;
3654 skb->data_len -= grow;
3655
3656 skb_shinfo(skb)->frags[0].page_offset += grow;
3657 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3658
3659 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3660 skb_frag_unref(skb, 0);
3661 memmove(skb_shinfo(skb)->frags,
3662 skb_shinfo(skb)->frags + 1,
3663 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3664 }
3665 }
3666
3667 ok:
3668 return ret;
3669
3670 normal:
3671 ret = GRO_NORMAL;
3672 goto pull;
3673 }
3674 EXPORT_SYMBOL(dev_gro_receive);
3675
3676 static inline gro_result_t
3677 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3678 {
3679 struct sk_buff *p;
3680 unsigned int maclen = skb->dev->hard_header_len;
3681
3682 for (p = napi->gro_list; p; p = p->next) {
3683 unsigned long diffs;
3684
3685 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3686 diffs |= p->vlan_tci ^ skb->vlan_tci;
3687 if (maclen == ETH_HLEN)
3688 diffs |= compare_ether_header(skb_mac_header(p),
3689 skb_gro_mac_header(skb));
3690 else if (!diffs)
3691 diffs = memcmp(skb_mac_header(p),
3692 skb_gro_mac_header(skb),
3693 maclen);
3694 NAPI_GRO_CB(p)->same_flow = !diffs;
3695 NAPI_GRO_CB(p)->flush = 0;
3696 }
3697
3698 return dev_gro_receive(napi, skb);
3699 }
3700
3701 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3702 {
3703 switch (ret) {
3704 case GRO_NORMAL:
3705 if (netif_receive_skb(skb))
3706 ret = GRO_DROP;
3707 break;
3708
3709 case GRO_DROP:
3710 kfree_skb(skb);
3711 break;
3712
3713 case GRO_MERGED_FREE:
3714 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3715 kmem_cache_free(skbuff_head_cache, skb);
3716 else
3717 __kfree_skb(skb);
3718 break;
3719
3720 case GRO_HELD:
3721 case GRO_MERGED:
3722 break;
3723 }
3724
3725 return ret;
3726 }
3727 EXPORT_SYMBOL(napi_skb_finish);
3728
3729 static void skb_gro_reset_offset(struct sk_buff *skb)
3730 {
3731 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3732 const skb_frag_t *frag0 = &pinfo->frags[0];
3733
3734 NAPI_GRO_CB(skb)->data_offset = 0;
3735 NAPI_GRO_CB(skb)->frag0 = NULL;
3736 NAPI_GRO_CB(skb)->frag0_len = 0;
3737
3738 if (skb->mac_header == skb->tail &&
3739 pinfo->nr_frags &&
3740 !PageHighMem(skb_frag_page(frag0))) {
3741 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3742 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3743 }
3744 }
3745
3746 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3747 {
3748 skb_gro_reset_offset(skb);
3749
3750 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3751 }
3752 EXPORT_SYMBOL(napi_gro_receive);
3753
3754 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3755 {
3756 __skb_pull(skb, skb_headlen(skb));
3757 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3758 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3759 skb->vlan_tci = 0;
3760 skb->dev = napi->dev;
3761 skb->skb_iif = 0;
3762
3763 napi->skb = skb;
3764 }
3765
3766 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3767 {
3768 struct sk_buff *skb = napi->skb;
3769
3770 if (!skb) {
3771 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3772 if (skb)
3773 napi->skb = skb;
3774 }
3775 return skb;
3776 }
3777 EXPORT_SYMBOL(napi_get_frags);
3778
3779 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3780 gro_result_t ret)
3781 {
3782 switch (ret) {
3783 case GRO_NORMAL:
3784 case GRO_HELD:
3785 skb->protocol = eth_type_trans(skb, skb->dev);
3786
3787 if (ret == GRO_HELD)
3788 skb_gro_pull(skb, -ETH_HLEN);
3789 else if (netif_receive_skb(skb))
3790 ret = GRO_DROP;
3791 break;
3792
3793 case GRO_DROP:
3794 case GRO_MERGED_FREE:
3795 napi_reuse_skb(napi, skb);
3796 break;
3797
3798 case GRO_MERGED:
3799 break;
3800 }
3801
3802 return ret;
3803 }
3804 EXPORT_SYMBOL(napi_frags_finish);
3805
3806 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3807 {
3808 struct sk_buff *skb = napi->skb;
3809 struct ethhdr *eth;
3810 unsigned int hlen;
3811 unsigned int off;
3812
3813 napi->skb = NULL;
3814
3815 skb_reset_mac_header(skb);
3816 skb_gro_reset_offset(skb);
3817
3818 off = skb_gro_offset(skb);
3819 hlen = off + sizeof(*eth);
3820 eth = skb_gro_header_fast(skb, off);
3821 if (skb_gro_header_hard(skb, hlen)) {
3822 eth = skb_gro_header_slow(skb, hlen, off);
3823 if (unlikely(!eth)) {
3824 napi_reuse_skb(napi, skb);
3825 skb = NULL;
3826 goto out;
3827 }
3828 }
3829
3830 skb_gro_pull(skb, sizeof(*eth));
3831
3832 /*
3833 * This works because the only protocols we care about don't require
3834 * special handling. We'll fix it up properly at the end.
3835 */
3836 skb->protocol = eth->h_proto;
3837
3838 out:
3839 return skb;
3840 }
3841
3842 gro_result_t napi_gro_frags(struct napi_struct *napi)
3843 {
3844 struct sk_buff *skb = napi_frags_skb(napi);
3845
3846 if (!skb)
3847 return GRO_DROP;
3848
3849 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3850 }
3851 EXPORT_SYMBOL(napi_gro_frags);
3852
3853 /*
3854 * net_rps_action sends any pending IPI's for rps.
3855 * Note: called with local irq disabled, but exits with local irq enabled.
3856 */
3857 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3858 {
3859 #ifdef CONFIG_RPS
3860 struct softnet_data *remsd = sd->rps_ipi_list;
3861
3862 if (remsd) {
3863 sd->rps_ipi_list = NULL;
3864
3865 local_irq_enable();
3866
3867 /* Send pending IPI's to kick RPS processing on remote cpus. */
3868 while (remsd) {
3869 struct softnet_data *next = remsd->rps_ipi_next;
3870
3871 if (cpu_online(remsd->cpu))
3872 __smp_call_function_single(remsd->cpu,
3873 &remsd->csd, 0);
3874 remsd = next;
3875 }
3876 } else
3877 #endif
3878 local_irq_enable();
3879 }
3880
3881 static int process_backlog(struct napi_struct *napi, int quota)
3882 {
3883 int work = 0;
3884 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3885
3886 #ifdef CONFIG_RPS
3887 /* Check if we have pending ipi, its better to send them now,
3888 * not waiting net_rx_action() end.
3889 */
3890 if (sd->rps_ipi_list) {
3891 local_irq_disable();
3892 net_rps_action_and_irq_enable(sd);
3893 }
3894 #endif
3895 napi->weight = weight_p;
3896 local_irq_disable();
3897 while (work < quota) {
3898 struct sk_buff *skb;
3899 unsigned int qlen;
3900
3901 while ((skb = __skb_dequeue(&sd->process_queue))) {
3902 local_irq_enable();
3903 __netif_receive_skb(skb);
3904 local_irq_disable();
3905 input_queue_head_incr(sd);
3906 if (++work >= quota) {
3907 local_irq_enable();
3908 return work;
3909 }
3910 }
3911
3912 rps_lock(sd);
3913 qlen = skb_queue_len(&sd->input_pkt_queue);
3914 if (qlen)
3915 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3916 &sd->process_queue);
3917
3918 if (qlen < quota - work) {
3919 /*
3920 * Inline a custom version of __napi_complete().
3921 * only current cpu owns and manipulates this napi,
3922 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3923 * we can use a plain write instead of clear_bit(),
3924 * and we dont need an smp_mb() memory barrier.
3925 */
3926 list_del(&napi->poll_list);
3927 napi->state = 0;
3928
3929 quota = work + qlen;
3930 }
3931 rps_unlock(sd);
3932 }
3933 local_irq_enable();
3934
3935 return work;
3936 }
3937
3938 /**
3939 * __napi_schedule - schedule for receive
3940 * @n: entry to schedule
3941 *
3942 * The entry's receive function will be scheduled to run
3943 */
3944 void __napi_schedule(struct napi_struct *n)
3945 {
3946 unsigned long flags;
3947
3948 local_irq_save(flags);
3949 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3950 local_irq_restore(flags);
3951 }
3952 EXPORT_SYMBOL(__napi_schedule);
3953
3954 void __napi_complete(struct napi_struct *n)
3955 {
3956 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3957 BUG_ON(n->gro_list);
3958
3959 list_del(&n->poll_list);
3960 smp_mb__before_clear_bit();
3961 clear_bit(NAPI_STATE_SCHED, &n->state);
3962 }
3963 EXPORT_SYMBOL(__napi_complete);
3964
3965 void napi_complete(struct napi_struct *n)
3966 {
3967 unsigned long flags;
3968
3969 /*
3970 * don't let napi dequeue from the cpu poll list
3971 * just in case its running on a different cpu
3972 */
3973 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3974 return;
3975
3976 napi_gro_flush(n, false);
3977 local_irq_save(flags);
3978 __napi_complete(n);
3979 local_irq_restore(flags);
3980 }
3981 EXPORT_SYMBOL(napi_complete);
3982
3983 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3984 int (*poll)(struct napi_struct *, int), int weight)
3985 {
3986 INIT_LIST_HEAD(&napi->poll_list);
3987 napi->gro_count = 0;
3988 napi->gro_list = NULL;
3989 napi->skb = NULL;
3990 napi->poll = poll;
3991 napi->weight = weight;
3992 list_add(&napi->dev_list, &dev->napi_list);
3993 napi->dev = dev;
3994 #ifdef CONFIG_NETPOLL
3995 spin_lock_init(&napi->poll_lock);
3996 napi->poll_owner = -1;
3997 #endif
3998 set_bit(NAPI_STATE_SCHED, &napi->state);
3999 }
4000 EXPORT_SYMBOL(netif_napi_add);
4001
4002 void netif_napi_del(struct napi_struct *napi)
4003 {
4004 struct sk_buff *skb, *next;
4005
4006 list_del_init(&napi->dev_list);
4007 napi_free_frags(napi);
4008
4009 for (skb = napi->gro_list; skb; skb = next) {
4010 next = skb->next;
4011 skb->next = NULL;
4012 kfree_skb(skb);
4013 }
4014
4015 napi->gro_list = NULL;
4016 napi->gro_count = 0;
4017 }
4018 EXPORT_SYMBOL(netif_napi_del);
4019
4020 static void net_rx_action(struct softirq_action *h)
4021 {
4022 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4023 unsigned long time_limit = jiffies + 2;
4024 int budget = netdev_budget;
4025 void *have;
4026
4027 local_irq_disable();
4028
4029 while (!list_empty(&sd->poll_list)) {
4030 struct napi_struct *n;
4031 int work, weight;
4032
4033 /* If softirq window is exhuasted then punt.
4034 * Allow this to run for 2 jiffies since which will allow
4035 * an average latency of 1.5/HZ.
4036 */
4037 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
4038 goto softnet_break;
4039
4040 local_irq_enable();
4041
4042 /* Even though interrupts have been re-enabled, this
4043 * access is safe because interrupts can only add new
4044 * entries to the tail of this list, and only ->poll()
4045 * calls can remove this head entry from the list.
4046 */
4047 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4048
4049 have = netpoll_poll_lock(n);
4050
4051 weight = n->weight;
4052
4053 /* This NAPI_STATE_SCHED test is for avoiding a race
4054 * with netpoll's poll_napi(). Only the entity which
4055 * obtains the lock and sees NAPI_STATE_SCHED set will
4056 * actually make the ->poll() call. Therefore we avoid
4057 * accidentally calling ->poll() when NAPI is not scheduled.
4058 */
4059 work = 0;
4060 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4061 work = n->poll(n, weight);
4062 trace_napi_poll(n);
4063 }
4064
4065 WARN_ON_ONCE(work > weight);
4066
4067 budget -= work;
4068
4069 local_irq_disable();
4070
4071 /* Drivers must not modify the NAPI state if they
4072 * consume the entire weight. In such cases this code
4073 * still "owns" the NAPI instance and therefore can
4074 * move the instance around on the list at-will.
4075 */
4076 if (unlikely(work == weight)) {
4077 if (unlikely(napi_disable_pending(n))) {
4078 local_irq_enable();
4079 napi_complete(n);
4080 local_irq_disable();
4081 } else {
4082 if (n->gro_list) {
4083 /* flush too old packets
4084 * If HZ < 1000, flush all packets.
4085 */
4086 local_irq_enable();
4087 napi_gro_flush(n, HZ >= 1000);
4088 local_irq_disable();
4089 }
4090 list_move_tail(&n->poll_list, &sd->poll_list);
4091 }
4092 }
4093
4094 netpoll_poll_unlock(have);
4095 }
4096 out:
4097 net_rps_action_and_irq_enable(sd);
4098
4099 #ifdef CONFIG_NET_DMA
4100 /*
4101 * There may not be any more sk_buffs coming right now, so push
4102 * any pending DMA copies to hardware
4103 */
4104 dma_issue_pending_all();
4105 #endif
4106
4107 return;
4108
4109 softnet_break:
4110 sd->time_squeeze++;
4111 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4112 goto out;
4113 }
4114
4115 static gifconf_func_t *gifconf_list[NPROTO];
4116
4117 /**
4118 * register_gifconf - register a SIOCGIF handler
4119 * @family: Address family
4120 * @gifconf: Function handler
4121 *
4122 * Register protocol dependent address dumping routines. The handler
4123 * that is passed must not be freed or reused until it has been replaced
4124 * by another handler.
4125 */
4126 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4127 {
4128 if (family >= NPROTO)
4129 return -EINVAL;
4130 gifconf_list[family] = gifconf;
4131 return 0;
4132 }
4133 EXPORT_SYMBOL(register_gifconf);
4134
4135
4136 /*
4137 * Map an interface index to its name (SIOCGIFNAME)
4138 */
4139
4140 /*
4141 * We need this ioctl for efficient implementation of the
4142 * if_indextoname() function required by the IPv6 API. Without
4143 * it, we would have to search all the interfaces to find a
4144 * match. --pb
4145 */
4146
4147 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4148 {
4149 struct net_device *dev;
4150 struct ifreq ifr;
4151
4152 /*
4153 * Fetch the caller's info block.
4154 */
4155
4156 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4157 return -EFAULT;
4158
4159 rcu_read_lock();
4160 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4161 if (!dev) {
4162 rcu_read_unlock();
4163 return -ENODEV;
4164 }
4165
4166 strcpy(ifr.ifr_name, dev->name);
4167 rcu_read_unlock();
4168
4169 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4170 return -EFAULT;
4171 return 0;
4172 }
4173
4174 /*
4175 * Perform a SIOCGIFCONF call. This structure will change
4176 * size eventually, and there is nothing I can do about it.
4177 * Thus we will need a 'compatibility mode'.
4178 */
4179
4180 static int dev_ifconf(struct net *net, char __user *arg)
4181 {
4182 struct ifconf ifc;
4183 struct net_device *dev;
4184 char __user *pos;
4185 int len;
4186 int total;
4187 int i;
4188
4189 /*
4190 * Fetch the caller's info block.
4191 */
4192
4193 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4194 return -EFAULT;
4195
4196 pos = ifc.ifc_buf;
4197 len = ifc.ifc_len;
4198
4199 /*
4200 * Loop over the interfaces, and write an info block for each.
4201 */
4202
4203 total = 0;
4204 for_each_netdev(net, dev) {
4205 for (i = 0; i < NPROTO; i++) {
4206 if (gifconf_list[i]) {
4207 int done;
4208 if (!pos)
4209 done = gifconf_list[i](dev, NULL, 0);
4210 else
4211 done = gifconf_list[i](dev, pos + total,
4212 len - total);
4213 if (done < 0)
4214 return -EFAULT;
4215 total += done;
4216 }
4217 }
4218 }
4219
4220 /*
4221 * All done. Write the updated control block back to the caller.
4222 */
4223 ifc.ifc_len = total;
4224
4225 /*
4226 * Both BSD and Solaris return 0 here, so we do too.
4227 */
4228 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4229 }
4230
4231 #ifdef CONFIG_PROC_FS
4232
4233 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4234
4235 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4236 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4237 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4238
4239 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4240 {
4241 struct net *net = seq_file_net(seq);
4242 struct net_device *dev;
4243 struct hlist_node *p;
4244 struct hlist_head *h;
4245 unsigned int count = 0, offset = get_offset(*pos);
4246
4247 h = &net->dev_name_head[get_bucket(*pos)];
4248 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4249 if (++count == offset)
4250 return dev;
4251 }
4252
4253 return NULL;
4254 }
4255
4256 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4257 {
4258 struct net_device *dev;
4259 unsigned int bucket;
4260
4261 do {
4262 dev = dev_from_same_bucket(seq, pos);
4263 if (dev)
4264 return dev;
4265
4266 bucket = get_bucket(*pos) + 1;
4267 *pos = set_bucket_offset(bucket, 1);
4268 } while (bucket < NETDEV_HASHENTRIES);
4269
4270 return NULL;
4271 }
4272
4273 /*
4274 * This is invoked by the /proc filesystem handler to display a device
4275 * in detail.
4276 */
4277 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4278 __acquires(RCU)
4279 {
4280 rcu_read_lock();
4281 if (!*pos)
4282 return SEQ_START_TOKEN;
4283
4284 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4285 return NULL;
4286
4287 return dev_from_bucket(seq, pos);
4288 }
4289
4290 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4291 {
4292 ++*pos;
4293 return dev_from_bucket(seq, pos);
4294 }
4295
4296 void dev_seq_stop(struct seq_file *seq, void *v)
4297 __releases(RCU)
4298 {
4299 rcu_read_unlock();
4300 }
4301
4302 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4303 {
4304 struct rtnl_link_stats64 temp;
4305 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4306
4307 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4308 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4309 dev->name, stats->rx_bytes, stats->rx_packets,
4310 stats->rx_errors,
4311 stats->rx_dropped + stats->rx_missed_errors,
4312 stats->rx_fifo_errors,
4313 stats->rx_length_errors + stats->rx_over_errors +
4314 stats->rx_crc_errors + stats->rx_frame_errors,
4315 stats->rx_compressed, stats->multicast,
4316 stats->tx_bytes, stats->tx_packets,
4317 stats->tx_errors, stats->tx_dropped,
4318 stats->tx_fifo_errors, stats->collisions,
4319 stats->tx_carrier_errors +
4320 stats->tx_aborted_errors +
4321 stats->tx_window_errors +
4322 stats->tx_heartbeat_errors,
4323 stats->tx_compressed);
4324 }
4325
4326 /*
4327 * Called from the PROCfs module. This now uses the new arbitrary sized
4328 * /proc/net interface to create /proc/net/dev
4329 */
4330 static int dev_seq_show(struct seq_file *seq, void *v)
4331 {
4332 if (v == SEQ_START_TOKEN)
4333 seq_puts(seq, "Inter-| Receive "
4334 " | Transmit\n"
4335 " face |bytes packets errs drop fifo frame "
4336 "compressed multicast|bytes packets errs "
4337 "drop fifo colls carrier compressed\n");
4338 else
4339 dev_seq_printf_stats(seq, v);
4340 return 0;
4341 }
4342
4343 static struct softnet_data *softnet_get_online(loff_t *pos)
4344 {
4345 struct softnet_data *sd = NULL;
4346
4347 while (*pos < nr_cpu_ids)
4348 if (cpu_online(*pos)) {
4349 sd = &per_cpu(softnet_data, *pos);
4350 break;
4351 } else
4352 ++*pos;
4353 return sd;
4354 }
4355
4356 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4357 {
4358 return softnet_get_online(pos);
4359 }
4360
4361 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4362 {
4363 ++*pos;
4364 return softnet_get_online(pos);
4365 }
4366
4367 static void softnet_seq_stop(struct seq_file *seq, void *v)
4368 {
4369 }
4370
4371 static int softnet_seq_show(struct seq_file *seq, void *v)
4372 {
4373 struct softnet_data *sd = v;
4374
4375 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4376 sd->processed, sd->dropped, sd->time_squeeze, 0,
4377 0, 0, 0, 0, /* was fastroute */
4378 sd->cpu_collision, sd->received_rps);
4379 return 0;
4380 }
4381
4382 static const struct seq_operations dev_seq_ops = {
4383 .start = dev_seq_start,
4384 .next = dev_seq_next,
4385 .stop = dev_seq_stop,
4386 .show = dev_seq_show,
4387 };
4388
4389 static int dev_seq_open(struct inode *inode, struct file *file)
4390 {
4391 return seq_open_net(inode, file, &dev_seq_ops,
4392 sizeof(struct seq_net_private));
4393 }
4394
4395 static const struct file_operations dev_seq_fops = {
4396 .owner = THIS_MODULE,
4397 .open = dev_seq_open,
4398 .read = seq_read,
4399 .llseek = seq_lseek,
4400 .release = seq_release_net,
4401 };
4402
4403 static const struct seq_operations softnet_seq_ops = {
4404 .start = softnet_seq_start,
4405 .next = softnet_seq_next,
4406 .stop = softnet_seq_stop,
4407 .show = softnet_seq_show,
4408 };
4409
4410 static int softnet_seq_open(struct inode *inode, struct file *file)
4411 {
4412 return seq_open(file, &softnet_seq_ops);
4413 }
4414
4415 static const struct file_operations softnet_seq_fops = {
4416 .owner = THIS_MODULE,
4417 .open = softnet_seq_open,
4418 .read = seq_read,
4419 .llseek = seq_lseek,
4420 .release = seq_release,
4421 };
4422
4423 static void *ptype_get_idx(loff_t pos)
4424 {
4425 struct packet_type *pt = NULL;
4426 loff_t i = 0;
4427 int t;
4428
4429 list_for_each_entry_rcu(pt, &ptype_all, list) {
4430 if (i == pos)
4431 return pt;
4432 ++i;
4433 }
4434
4435 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4436 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4437 if (i == pos)
4438 return pt;
4439 ++i;
4440 }
4441 }
4442 return NULL;
4443 }
4444
4445 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4446 __acquires(RCU)
4447 {
4448 rcu_read_lock();
4449 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4450 }
4451
4452 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4453 {
4454 struct packet_type *pt;
4455 struct list_head *nxt;
4456 int hash;
4457
4458 ++*pos;
4459 if (v == SEQ_START_TOKEN)
4460 return ptype_get_idx(0);
4461
4462 pt = v;
4463 nxt = pt->list.next;
4464 if (pt->type == htons(ETH_P_ALL)) {
4465 if (nxt != &ptype_all)
4466 goto found;
4467 hash = 0;
4468 nxt = ptype_base[0].next;
4469 } else
4470 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4471
4472 while (nxt == &ptype_base[hash]) {
4473 if (++hash >= PTYPE_HASH_SIZE)
4474 return NULL;
4475 nxt = ptype_base[hash].next;
4476 }
4477 found:
4478 return list_entry(nxt, struct packet_type, list);
4479 }
4480
4481 static void ptype_seq_stop(struct seq_file *seq, void *v)
4482 __releases(RCU)
4483 {
4484 rcu_read_unlock();
4485 }
4486
4487 static int ptype_seq_show(struct seq_file *seq, void *v)
4488 {
4489 struct packet_type *pt = v;
4490
4491 if (v == SEQ_START_TOKEN)
4492 seq_puts(seq, "Type Device Function\n");
4493 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4494 if (pt->type == htons(ETH_P_ALL))
4495 seq_puts(seq, "ALL ");
4496 else
4497 seq_printf(seq, "%04x", ntohs(pt->type));
4498
4499 seq_printf(seq, " %-8s %pF\n",
4500 pt->dev ? pt->dev->name : "", pt->func);
4501 }
4502
4503 return 0;
4504 }
4505
4506 static const struct seq_operations ptype_seq_ops = {
4507 .start = ptype_seq_start,
4508 .next = ptype_seq_next,
4509 .stop = ptype_seq_stop,
4510 .show = ptype_seq_show,
4511 };
4512
4513 static int ptype_seq_open(struct inode *inode, struct file *file)
4514 {
4515 return seq_open_net(inode, file, &ptype_seq_ops,
4516 sizeof(struct seq_net_private));
4517 }
4518
4519 static const struct file_operations ptype_seq_fops = {
4520 .owner = THIS_MODULE,
4521 .open = ptype_seq_open,
4522 .read = seq_read,
4523 .llseek = seq_lseek,
4524 .release = seq_release_net,
4525 };
4526
4527
4528 static int __net_init dev_proc_net_init(struct net *net)
4529 {
4530 int rc = -ENOMEM;
4531
4532 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4533 goto out;
4534 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4535 goto out_dev;
4536 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4537 goto out_softnet;
4538
4539 if (wext_proc_init(net))
4540 goto out_ptype;
4541 rc = 0;
4542 out:
4543 return rc;
4544 out_ptype:
4545 proc_net_remove(net, "ptype");
4546 out_softnet:
4547 proc_net_remove(net, "softnet_stat");
4548 out_dev:
4549 proc_net_remove(net, "dev");
4550 goto out;
4551 }
4552
4553 static void __net_exit dev_proc_net_exit(struct net *net)
4554 {
4555 wext_proc_exit(net);
4556
4557 proc_net_remove(net, "ptype");
4558 proc_net_remove(net, "softnet_stat");
4559 proc_net_remove(net, "dev");
4560 }
4561
4562 static struct pernet_operations __net_initdata dev_proc_ops = {
4563 .init = dev_proc_net_init,
4564 .exit = dev_proc_net_exit,
4565 };
4566
4567 static int __init dev_proc_init(void)
4568 {
4569 return register_pernet_subsys(&dev_proc_ops);
4570 }
4571 #else
4572 #define dev_proc_init() 0
4573 #endif /* CONFIG_PROC_FS */
4574
4575
4576 /**
4577 * netdev_set_master - set up master pointer
4578 * @slave: slave device
4579 * @master: new master device
4580 *
4581 * Changes the master device of the slave. Pass %NULL to break the
4582 * bonding. The caller must hold the RTNL semaphore. On a failure
4583 * a negative errno code is returned. On success the reference counts
4584 * are adjusted and the function returns zero.
4585 */
4586 int netdev_set_master(struct net_device *slave, struct net_device *master)
4587 {
4588 struct net_device *old = slave->master;
4589
4590 ASSERT_RTNL();
4591
4592 if (master) {
4593 if (old)
4594 return -EBUSY;
4595 dev_hold(master);
4596 }
4597
4598 slave->master = master;
4599
4600 if (old)
4601 dev_put(old);
4602 return 0;
4603 }
4604 EXPORT_SYMBOL(netdev_set_master);
4605
4606 /**
4607 * netdev_set_bond_master - set up bonding master/slave pair
4608 * @slave: slave device
4609 * @master: new master device
4610 *
4611 * Changes the master device of the slave. Pass %NULL to break the
4612 * bonding. The caller must hold the RTNL semaphore. On a failure
4613 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4614 * to the routing socket and the function returns zero.
4615 */
4616 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4617 {
4618 int err;
4619
4620 ASSERT_RTNL();
4621
4622 err = netdev_set_master(slave, master);
4623 if (err)
4624 return err;
4625 if (master)
4626 slave->flags |= IFF_SLAVE;
4627 else
4628 slave->flags &= ~IFF_SLAVE;
4629
4630 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4631 return 0;
4632 }
4633 EXPORT_SYMBOL(netdev_set_bond_master);
4634
4635 static void dev_change_rx_flags(struct net_device *dev, int flags)
4636 {
4637 const struct net_device_ops *ops = dev->netdev_ops;
4638
4639 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4640 ops->ndo_change_rx_flags(dev, flags);
4641 }
4642
4643 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4644 {
4645 unsigned int old_flags = dev->flags;
4646 kuid_t uid;
4647 kgid_t gid;
4648
4649 ASSERT_RTNL();
4650
4651 dev->flags |= IFF_PROMISC;
4652 dev->promiscuity += inc;
4653 if (dev->promiscuity == 0) {
4654 /*
4655 * Avoid overflow.
4656 * If inc causes overflow, untouch promisc and return error.
4657 */
4658 if (inc < 0)
4659 dev->flags &= ~IFF_PROMISC;
4660 else {
4661 dev->promiscuity -= inc;
4662 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4663 dev->name);
4664 return -EOVERFLOW;
4665 }
4666 }
4667 if (dev->flags != old_flags) {
4668 pr_info("device %s %s promiscuous mode\n",
4669 dev->name,
4670 dev->flags & IFF_PROMISC ? "entered" : "left");
4671 if (audit_enabled) {
4672 current_uid_gid(&uid, &gid);
4673 audit_log(current->audit_context, GFP_ATOMIC,
4674 AUDIT_ANOM_PROMISCUOUS,
4675 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4676 dev->name, (dev->flags & IFF_PROMISC),
4677 (old_flags & IFF_PROMISC),
4678 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4679 from_kuid(&init_user_ns, uid),
4680 from_kgid(&init_user_ns, gid),
4681 audit_get_sessionid(current));
4682 }
4683
4684 dev_change_rx_flags(dev, IFF_PROMISC);
4685 }
4686 return 0;
4687 }
4688
4689 /**
4690 * dev_set_promiscuity - update promiscuity count on a device
4691 * @dev: device
4692 * @inc: modifier
4693 *
4694 * Add or remove promiscuity from a device. While the count in the device
4695 * remains above zero the interface remains promiscuous. Once it hits zero
4696 * the device reverts back to normal filtering operation. A negative inc
4697 * value is used to drop promiscuity on the device.
4698 * Return 0 if successful or a negative errno code on error.
4699 */
4700 int dev_set_promiscuity(struct net_device *dev, int inc)
4701 {
4702 unsigned int old_flags = dev->flags;
4703 int err;
4704
4705 err = __dev_set_promiscuity(dev, inc);
4706 if (err < 0)
4707 return err;
4708 if (dev->flags != old_flags)
4709 dev_set_rx_mode(dev);
4710 return err;
4711 }
4712 EXPORT_SYMBOL(dev_set_promiscuity);
4713
4714 /**
4715 * dev_set_allmulti - update allmulti count on a device
4716 * @dev: device
4717 * @inc: modifier
4718 *
4719 * Add or remove reception of all multicast frames to a device. While the
4720 * count in the device remains above zero the interface remains listening
4721 * to all interfaces. Once it hits zero the device reverts back to normal
4722 * filtering operation. A negative @inc value is used to drop the counter
4723 * when releasing a resource needing all multicasts.
4724 * Return 0 if successful or a negative errno code on error.
4725 */
4726
4727 int dev_set_allmulti(struct net_device *dev, int inc)
4728 {
4729 unsigned int old_flags = dev->flags;
4730
4731 ASSERT_RTNL();
4732
4733 dev->flags |= IFF_ALLMULTI;
4734 dev->allmulti += inc;
4735 if (dev->allmulti == 0) {
4736 /*
4737 * Avoid overflow.
4738 * If inc causes overflow, untouch allmulti and return error.
4739 */
4740 if (inc < 0)
4741 dev->flags &= ~IFF_ALLMULTI;
4742 else {
4743 dev->allmulti -= inc;
4744 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4745 dev->name);
4746 return -EOVERFLOW;
4747 }
4748 }
4749 if (dev->flags ^ old_flags) {
4750 dev_change_rx_flags(dev, IFF_ALLMULTI);
4751 dev_set_rx_mode(dev);
4752 }
4753 return 0;
4754 }
4755 EXPORT_SYMBOL(dev_set_allmulti);
4756
4757 /*
4758 * Upload unicast and multicast address lists to device and
4759 * configure RX filtering. When the device doesn't support unicast
4760 * filtering it is put in promiscuous mode while unicast addresses
4761 * are present.
4762 */
4763 void __dev_set_rx_mode(struct net_device *dev)
4764 {
4765 const struct net_device_ops *ops = dev->netdev_ops;
4766
4767 /* dev_open will call this function so the list will stay sane. */
4768 if (!(dev->flags&IFF_UP))
4769 return;
4770
4771 if (!netif_device_present(dev))
4772 return;
4773
4774 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4775 /* Unicast addresses changes may only happen under the rtnl,
4776 * therefore calling __dev_set_promiscuity here is safe.
4777 */
4778 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4779 __dev_set_promiscuity(dev, 1);
4780 dev->uc_promisc = true;
4781 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4782 __dev_set_promiscuity(dev, -1);
4783 dev->uc_promisc = false;
4784 }
4785 }
4786
4787 if (ops->ndo_set_rx_mode)
4788 ops->ndo_set_rx_mode(dev);
4789 }
4790
4791 void dev_set_rx_mode(struct net_device *dev)
4792 {
4793 netif_addr_lock_bh(dev);
4794 __dev_set_rx_mode(dev);
4795 netif_addr_unlock_bh(dev);
4796 }
4797
4798 /**
4799 * dev_get_flags - get flags reported to userspace
4800 * @dev: device
4801 *
4802 * Get the combination of flag bits exported through APIs to userspace.
4803 */
4804 unsigned int dev_get_flags(const struct net_device *dev)
4805 {
4806 unsigned int flags;
4807
4808 flags = (dev->flags & ~(IFF_PROMISC |
4809 IFF_ALLMULTI |
4810 IFF_RUNNING |
4811 IFF_LOWER_UP |
4812 IFF_DORMANT)) |
4813 (dev->gflags & (IFF_PROMISC |
4814 IFF_ALLMULTI));
4815
4816 if (netif_running(dev)) {
4817 if (netif_oper_up(dev))
4818 flags |= IFF_RUNNING;
4819 if (netif_carrier_ok(dev))
4820 flags |= IFF_LOWER_UP;
4821 if (netif_dormant(dev))
4822 flags |= IFF_DORMANT;
4823 }
4824
4825 return flags;
4826 }
4827 EXPORT_SYMBOL(dev_get_flags);
4828
4829 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4830 {
4831 unsigned int old_flags = dev->flags;
4832 int ret;
4833
4834 ASSERT_RTNL();
4835
4836 /*
4837 * Set the flags on our device.
4838 */
4839
4840 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4841 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4842 IFF_AUTOMEDIA)) |
4843 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4844 IFF_ALLMULTI));
4845
4846 /*
4847 * Load in the correct multicast list now the flags have changed.
4848 */
4849
4850 if ((old_flags ^ flags) & IFF_MULTICAST)
4851 dev_change_rx_flags(dev, IFF_MULTICAST);
4852
4853 dev_set_rx_mode(dev);
4854
4855 /*
4856 * Have we downed the interface. We handle IFF_UP ourselves
4857 * according to user attempts to set it, rather than blindly
4858 * setting it.
4859 */
4860
4861 ret = 0;
4862 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4863 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4864
4865 if (!ret)
4866 dev_set_rx_mode(dev);
4867 }
4868
4869 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4870 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4871
4872 dev->gflags ^= IFF_PROMISC;
4873 dev_set_promiscuity(dev, inc);
4874 }
4875
4876 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4877 is important. Some (broken) drivers set IFF_PROMISC, when
4878 IFF_ALLMULTI is requested not asking us and not reporting.
4879 */
4880 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4881 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4882
4883 dev->gflags ^= IFF_ALLMULTI;
4884 dev_set_allmulti(dev, inc);
4885 }
4886
4887 return ret;
4888 }
4889
4890 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4891 {
4892 unsigned int changes = dev->flags ^ old_flags;
4893
4894 if (changes & IFF_UP) {
4895 if (dev->flags & IFF_UP)
4896 call_netdevice_notifiers(NETDEV_UP, dev);
4897 else
4898 call_netdevice_notifiers(NETDEV_DOWN, dev);
4899 }
4900
4901 if (dev->flags & IFF_UP &&
4902 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4903 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4904 }
4905
4906 /**
4907 * dev_change_flags - change device settings
4908 * @dev: device
4909 * @flags: device state flags
4910 *
4911 * Change settings on device based state flags. The flags are
4912 * in the userspace exported format.
4913 */
4914 int dev_change_flags(struct net_device *dev, unsigned int flags)
4915 {
4916 int ret;
4917 unsigned int changes, old_flags = dev->flags;
4918
4919 ret = __dev_change_flags(dev, flags);
4920 if (ret < 0)
4921 return ret;
4922
4923 changes = old_flags ^ dev->flags;
4924 if (changes)
4925 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4926
4927 __dev_notify_flags(dev, old_flags);
4928 return ret;
4929 }
4930 EXPORT_SYMBOL(dev_change_flags);
4931
4932 /**
4933 * dev_set_mtu - Change maximum transfer unit
4934 * @dev: device
4935 * @new_mtu: new transfer unit
4936 *
4937 * Change the maximum transfer size of the network device.
4938 */
4939 int dev_set_mtu(struct net_device *dev, int new_mtu)
4940 {
4941 const struct net_device_ops *ops = dev->netdev_ops;
4942 int err;
4943
4944 if (new_mtu == dev->mtu)
4945 return 0;
4946
4947 /* MTU must be positive. */
4948 if (new_mtu < 0)
4949 return -EINVAL;
4950
4951 if (!netif_device_present(dev))
4952 return -ENODEV;
4953
4954 err = 0;
4955 if (ops->ndo_change_mtu)
4956 err = ops->ndo_change_mtu(dev, new_mtu);
4957 else
4958 dev->mtu = new_mtu;
4959
4960 if (!err && dev->flags & IFF_UP)
4961 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4962 return err;
4963 }
4964 EXPORT_SYMBOL(dev_set_mtu);
4965
4966 /**
4967 * dev_set_group - Change group this device belongs to
4968 * @dev: device
4969 * @new_group: group this device should belong to
4970 */
4971 void dev_set_group(struct net_device *dev, int new_group)
4972 {
4973 dev->group = new_group;
4974 }
4975 EXPORT_SYMBOL(dev_set_group);
4976
4977 /**
4978 * dev_set_mac_address - Change Media Access Control Address
4979 * @dev: device
4980 * @sa: new address
4981 *
4982 * Change the hardware (MAC) address of the device
4983 */
4984 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4985 {
4986 const struct net_device_ops *ops = dev->netdev_ops;
4987 int err;
4988
4989 if (!ops->ndo_set_mac_address)
4990 return -EOPNOTSUPP;
4991 if (sa->sa_family != dev->type)
4992 return -EINVAL;
4993 if (!netif_device_present(dev))
4994 return -ENODEV;
4995 err = ops->ndo_set_mac_address(dev, sa);
4996 if (!err)
4997 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4998 add_device_randomness(dev->dev_addr, dev->addr_len);
4999 return err;
5000 }
5001 EXPORT_SYMBOL(dev_set_mac_address);
5002
5003 /*
5004 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
5005 */
5006 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
5007 {
5008 int err;
5009 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
5010
5011 if (!dev)
5012 return -ENODEV;
5013
5014 switch (cmd) {
5015 case SIOCGIFFLAGS: /* Get interface flags */
5016 ifr->ifr_flags = (short) dev_get_flags(dev);
5017 return 0;
5018
5019 case SIOCGIFMETRIC: /* Get the metric on the interface
5020 (currently unused) */
5021 ifr->ifr_metric = 0;
5022 return 0;
5023
5024 case SIOCGIFMTU: /* Get the MTU of a device */
5025 ifr->ifr_mtu = dev->mtu;
5026 return 0;
5027
5028 case SIOCGIFHWADDR:
5029 if (!dev->addr_len)
5030 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
5031 else
5032 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
5033 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5034 ifr->ifr_hwaddr.sa_family = dev->type;
5035 return 0;
5036
5037 case SIOCGIFSLAVE:
5038 err = -EINVAL;
5039 break;
5040
5041 case SIOCGIFMAP:
5042 ifr->ifr_map.mem_start = dev->mem_start;
5043 ifr->ifr_map.mem_end = dev->mem_end;
5044 ifr->ifr_map.base_addr = dev->base_addr;
5045 ifr->ifr_map.irq = dev->irq;
5046 ifr->ifr_map.dma = dev->dma;
5047 ifr->ifr_map.port = dev->if_port;
5048 return 0;
5049
5050 case SIOCGIFINDEX:
5051 ifr->ifr_ifindex = dev->ifindex;
5052 return 0;
5053
5054 case SIOCGIFTXQLEN:
5055 ifr->ifr_qlen = dev->tx_queue_len;
5056 return 0;
5057
5058 default:
5059 /* dev_ioctl() should ensure this case
5060 * is never reached
5061 */
5062 WARN_ON(1);
5063 err = -ENOTTY;
5064 break;
5065
5066 }
5067 return err;
5068 }
5069
5070 /*
5071 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
5072 */
5073 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
5074 {
5075 int err;
5076 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5077 const struct net_device_ops *ops;
5078
5079 if (!dev)
5080 return -ENODEV;
5081
5082 ops = dev->netdev_ops;
5083
5084 switch (cmd) {
5085 case SIOCSIFFLAGS: /* Set interface flags */
5086 return dev_change_flags(dev, ifr->ifr_flags);
5087
5088 case SIOCSIFMETRIC: /* Set the metric on the interface
5089 (currently unused) */
5090 return -EOPNOTSUPP;
5091
5092 case SIOCSIFMTU: /* Set the MTU of a device */
5093 return dev_set_mtu(dev, ifr->ifr_mtu);
5094
5095 case SIOCSIFHWADDR:
5096 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
5097
5098 case SIOCSIFHWBROADCAST:
5099 if (ifr->ifr_hwaddr.sa_family != dev->type)
5100 return -EINVAL;
5101 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
5102 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5103 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5104 return 0;
5105
5106 case SIOCSIFMAP:
5107 if (ops->ndo_set_config) {
5108 if (!netif_device_present(dev))
5109 return -ENODEV;
5110 return ops->ndo_set_config(dev, &ifr->ifr_map);
5111 }
5112 return -EOPNOTSUPP;
5113
5114 case SIOCADDMULTI:
5115 if (!ops->ndo_set_rx_mode ||
5116 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5117 return -EINVAL;
5118 if (!netif_device_present(dev))
5119 return -ENODEV;
5120 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5121
5122 case SIOCDELMULTI:
5123 if (!ops->ndo_set_rx_mode ||
5124 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5125 return -EINVAL;
5126 if (!netif_device_present(dev))
5127 return -ENODEV;
5128 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5129
5130 case SIOCSIFTXQLEN:
5131 if (ifr->ifr_qlen < 0)
5132 return -EINVAL;
5133 dev->tx_queue_len = ifr->ifr_qlen;
5134 return 0;
5135
5136 case SIOCSIFNAME:
5137 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5138 return dev_change_name(dev, ifr->ifr_newname);
5139
5140 case SIOCSHWTSTAMP:
5141 err = net_hwtstamp_validate(ifr);
5142 if (err)
5143 return err;
5144 /* fall through */
5145
5146 /*
5147 * Unknown or private ioctl
5148 */
5149 default:
5150 if ((cmd >= SIOCDEVPRIVATE &&
5151 cmd <= SIOCDEVPRIVATE + 15) ||
5152 cmd == SIOCBONDENSLAVE ||
5153 cmd == SIOCBONDRELEASE ||
5154 cmd == SIOCBONDSETHWADDR ||
5155 cmd == SIOCBONDSLAVEINFOQUERY ||
5156 cmd == SIOCBONDINFOQUERY ||
5157 cmd == SIOCBONDCHANGEACTIVE ||
5158 cmd == SIOCGMIIPHY ||
5159 cmd == SIOCGMIIREG ||
5160 cmd == SIOCSMIIREG ||
5161 cmd == SIOCBRADDIF ||
5162 cmd == SIOCBRDELIF ||
5163 cmd == SIOCSHWTSTAMP ||
5164 cmd == SIOCWANDEV) {
5165 err = -EOPNOTSUPP;
5166 if (ops->ndo_do_ioctl) {
5167 if (netif_device_present(dev))
5168 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5169 else
5170 err = -ENODEV;
5171 }
5172 } else
5173 err = -EINVAL;
5174
5175 }
5176 return err;
5177 }
5178
5179 /*
5180 * This function handles all "interface"-type I/O control requests. The actual
5181 * 'doing' part of this is dev_ifsioc above.
5182 */
5183
5184 /**
5185 * dev_ioctl - network device ioctl
5186 * @net: the applicable net namespace
5187 * @cmd: command to issue
5188 * @arg: pointer to a struct ifreq in user space
5189 *
5190 * Issue ioctl functions to devices. This is normally called by the
5191 * user space syscall interfaces but can sometimes be useful for
5192 * other purposes. The return value is the return from the syscall if
5193 * positive or a negative errno code on error.
5194 */
5195
5196 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5197 {
5198 struct ifreq ifr;
5199 int ret;
5200 char *colon;
5201
5202 /* One special case: SIOCGIFCONF takes ifconf argument
5203 and requires shared lock, because it sleeps writing
5204 to user space.
5205 */
5206
5207 if (cmd == SIOCGIFCONF) {
5208 rtnl_lock();
5209 ret = dev_ifconf(net, (char __user *) arg);
5210 rtnl_unlock();
5211 return ret;
5212 }
5213 if (cmd == SIOCGIFNAME)
5214 return dev_ifname(net, (struct ifreq __user *)arg);
5215
5216 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5217 return -EFAULT;
5218
5219 ifr.ifr_name[IFNAMSIZ-1] = 0;
5220
5221 colon = strchr(ifr.ifr_name, ':');
5222 if (colon)
5223 *colon = 0;
5224
5225 /*
5226 * See which interface the caller is talking about.
5227 */
5228
5229 switch (cmd) {
5230 /*
5231 * These ioctl calls:
5232 * - can be done by all.
5233 * - atomic and do not require locking.
5234 * - return a value
5235 */
5236 case SIOCGIFFLAGS:
5237 case SIOCGIFMETRIC:
5238 case SIOCGIFMTU:
5239 case SIOCGIFHWADDR:
5240 case SIOCGIFSLAVE:
5241 case SIOCGIFMAP:
5242 case SIOCGIFINDEX:
5243 case SIOCGIFTXQLEN:
5244 dev_load(net, ifr.ifr_name);
5245 rcu_read_lock();
5246 ret = dev_ifsioc_locked(net, &ifr, cmd);
5247 rcu_read_unlock();
5248 if (!ret) {
5249 if (colon)
5250 *colon = ':';
5251 if (copy_to_user(arg, &ifr,
5252 sizeof(struct ifreq)))
5253 ret = -EFAULT;
5254 }
5255 return ret;
5256
5257 case SIOCETHTOOL:
5258 dev_load(net, ifr.ifr_name);
5259 rtnl_lock();
5260 ret = dev_ethtool(net, &ifr);
5261 rtnl_unlock();
5262 if (!ret) {
5263 if (colon)
5264 *colon = ':';
5265 if (copy_to_user(arg, &ifr,
5266 sizeof(struct ifreq)))
5267 ret = -EFAULT;
5268 }
5269 return ret;
5270
5271 /*
5272 * These ioctl calls:
5273 * - require superuser power.
5274 * - require strict serialization.
5275 * - return a value
5276 */
5277 case SIOCGMIIPHY:
5278 case SIOCGMIIREG:
5279 case SIOCSIFNAME:
5280 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
5281 return -EPERM;
5282 dev_load(net, ifr.ifr_name);
5283 rtnl_lock();
5284 ret = dev_ifsioc(net, &ifr, cmd);
5285 rtnl_unlock();
5286 if (!ret) {
5287 if (colon)
5288 *colon = ':';
5289 if (copy_to_user(arg, &ifr,
5290 sizeof(struct ifreq)))
5291 ret = -EFAULT;
5292 }
5293 return ret;
5294
5295 /*
5296 * These ioctl calls:
5297 * - require superuser power.
5298 * - require strict serialization.
5299 * - do not return a value
5300 */
5301 case SIOCSIFMAP:
5302 case SIOCSIFTXQLEN:
5303 if (!capable(CAP_NET_ADMIN))
5304 return -EPERM;
5305 /* fall through */
5306 /*
5307 * These ioctl calls:
5308 * - require local superuser power.
5309 * - require strict serialization.
5310 * - do not return a value
5311 */
5312 case SIOCSIFFLAGS:
5313 case SIOCSIFMETRIC:
5314 case SIOCSIFMTU:
5315 case SIOCSIFHWADDR:
5316 case SIOCSIFSLAVE:
5317 case SIOCADDMULTI:
5318 case SIOCDELMULTI:
5319 case SIOCSIFHWBROADCAST:
5320 case SIOCSMIIREG:
5321 case SIOCBONDENSLAVE:
5322 case SIOCBONDRELEASE:
5323 case SIOCBONDSETHWADDR:
5324 case SIOCBONDCHANGEACTIVE:
5325 case SIOCBRADDIF:
5326 case SIOCBRDELIF:
5327 case SIOCSHWTSTAMP:
5328 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
5329 return -EPERM;
5330 /* fall through */
5331 case SIOCBONDSLAVEINFOQUERY:
5332 case SIOCBONDINFOQUERY:
5333 dev_load(net, ifr.ifr_name);
5334 rtnl_lock();
5335 ret = dev_ifsioc(net, &ifr, cmd);
5336 rtnl_unlock();
5337 return ret;
5338
5339 case SIOCGIFMEM:
5340 /* Get the per device memory space. We can add this but
5341 * currently do not support it */
5342 case SIOCSIFMEM:
5343 /* Set the per device memory buffer space.
5344 * Not applicable in our case */
5345 case SIOCSIFLINK:
5346 return -ENOTTY;
5347
5348 /*
5349 * Unknown or private ioctl.
5350 */
5351 default:
5352 if (cmd == SIOCWANDEV ||
5353 (cmd >= SIOCDEVPRIVATE &&
5354 cmd <= SIOCDEVPRIVATE + 15)) {
5355 dev_load(net, ifr.ifr_name);
5356 rtnl_lock();
5357 ret = dev_ifsioc(net, &ifr, cmd);
5358 rtnl_unlock();
5359 if (!ret && copy_to_user(arg, &ifr,
5360 sizeof(struct ifreq)))
5361 ret = -EFAULT;
5362 return ret;
5363 }
5364 /* Take care of Wireless Extensions */
5365 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5366 return wext_handle_ioctl(net, &ifr, cmd, arg);
5367 return -ENOTTY;
5368 }
5369 }
5370
5371
5372 /**
5373 * dev_new_index - allocate an ifindex
5374 * @net: the applicable net namespace
5375 *
5376 * Returns a suitable unique value for a new device interface
5377 * number. The caller must hold the rtnl semaphore or the
5378 * dev_base_lock to be sure it remains unique.
5379 */
5380 static int dev_new_index(struct net *net)
5381 {
5382 int ifindex = net->ifindex;
5383 for (;;) {
5384 if (++ifindex <= 0)
5385 ifindex = 1;
5386 if (!__dev_get_by_index(net, ifindex))
5387 return net->ifindex = ifindex;
5388 }
5389 }
5390
5391 /* Delayed registration/unregisteration */
5392 static LIST_HEAD(net_todo_list);
5393
5394 static void net_set_todo(struct net_device *dev)
5395 {
5396 list_add_tail(&dev->todo_list, &net_todo_list);
5397 }
5398
5399 static void rollback_registered_many(struct list_head *head)
5400 {
5401 struct net_device *dev, *tmp;
5402
5403 BUG_ON(dev_boot_phase);
5404 ASSERT_RTNL();
5405
5406 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5407 /* Some devices call without registering
5408 * for initialization unwind. Remove those
5409 * devices and proceed with the remaining.
5410 */
5411 if (dev->reg_state == NETREG_UNINITIALIZED) {
5412 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5413 dev->name, dev);
5414
5415 WARN_ON(1);
5416 list_del(&dev->unreg_list);
5417 continue;
5418 }
5419 dev->dismantle = true;
5420 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5421 }
5422
5423 /* If device is running, close it first. */
5424 dev_close_many(head);
5425
5426 list_for_each_entry(dev, head, unreg_list) {
5427 /* And unlink it from device chain. */
5428 unlist_netdevice(dev);
5429
5430 dev->reg_state = NETREG_UNREGISTERING;
5431 }
5432
5433 synchronize_net();
5434
5435 list_for_each_entry(dev, head, unreg_list) {
5436 /* Shutdown queueing discipline. */
5437 dev_shutdown(dev);
5438
5439
5440 /* Notify protocols, that we are about to destroy
5441 this device. They should clean all the things.
5442 */
5443 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5444
5445 if (!dev->rtnl_link_ops ||
5446 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5447 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5448
5449 /*
5450 * Flush the unicast and multicast chains
5451 */
5452 dev_uc_flush(dev);
5453 dev_mc_flush(dev);
5454
5455 if (dev->netdev_ops->ndo_uninit)
5456 dev->netdev_ops->ndo_uninit(dev);
5457
5458 /* Notifier chain MUST detach us from master device. */
5459 WARN_ON(dev->master);
5460
5461 /* Remove entries from kobject tree */
5462 netdev_unregister_kobject(dev);
5463 }
5464
5465 synchronize_net();
5466
5467 list_for_each_entry(dev, head, unreg_list)
5468 dev_put(dev);
5469 }
5470
5471 static void rollback_registered(struct net_device *dev)
5472 {
5473 LIST_HEAD(single);
5474
5475 list_add(&dev->unreg_list, &single);
5476 rollback_registered_many(&single);
5477 list_del(&single);
5478 }
5479
5480 static netdev_features_t netdev_fix_features(struct net_device *dev,
5481 netdev_features_t features)
5482 {
5483 /* Fix illegal checksum combinations */
5484 if ((features & NETIF_F_HW_CSUM) &&
5485 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5486 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5487 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5488 }
5489
5490 /* Fix illegal SG+CSUM combinations. */
5491 if ((features & NETIF_F_SG) &&
5492 !(features & NETIF_F_ALL_CSUM)) {
5493 netdev_dbg(dev,
5494 "Dropping NETIF_F_SG since no checksum feature.\n");
5495 features &= ~NETIF_F_SG;
5496 }
5497
5498 /* TSO requires that SG is present as well. */
5499 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5500 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5501 features &= ~NETIF_F_ALL_TSO;
5502 }
5503
5504 /* TSO ECN requires that TSO is present as well. */
5505 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5506 features &= ~NETIF_F_TSO_ECN;
5507
5508 /* Software GSO depends on SG. */
5509 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5510 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5511 features &= ~NETIF_F_GSO;
5512 }
5513
5514 /* UFO needs SG and checksumming */
5515 if (features & NETIF_F_UFO) {
5516 /* maybe split UFO into V4 and V6? */
5517 if (!((features & NETIF_F_GEN_CSUM) ||
5518 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5519 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5520 netdev_dbg(dev,
5521 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5522 features &= ~NETIF_F_UFO;
5523 }
5524
5525 if (!(features & NETIF_F_SG)) {
5526 netdev_dbg(dev,
5527 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5528 features &= ~NETIF_F_UFO;
5529 }
5530 }
5531
5532 return features;
5533 }
5534
5535 int __netdev_update_features(struct net_device *dev)
5536 {
5537 netdev_features_t features;
5538 int err = 0;
5539
5540 ASSERT_RTNL();
5541
5542 features = netdev_get_wanted_features(dev);
5543
5544 if (dev->netdev_ops->ndo_fix_features)
5545 features = dev->netdev_ops->ndo_fix_features(dev, features);
5546
5547 /* driver might be less strict about feature dependencies */
5548 features = netdev_fix_features(dev, features);
5549
5550 if (dev->features == features)
5551 return 0;
5552
5553 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5554 &dev->features, &features);
5555
5556 if (dev->netdev_ops->ndo_set_features)
5557 err = dev->netdev_ops->ndo_set_features(dev, features);
5558
5559 if (unlikely(err < 0)) {
5560 netdev_err(dev,
5561 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5562 err, &features, &dev->features);
5563 return -1;
5564 }
5565
5566 if (!err)
5567 dev->features = features;
5568
5569 return 1;
5570 }
5571
5572 /**
5573 * netdev_update_features - recalculate device features
5574 * @dev: the device to check
5575 *
5576 * Recalculate dev->features set and send notifications if it
5577 * has changed. Should be called after driver or hardware dependent
5578 * conditions might have changed that influence the features.
5579 */
5580 void netdev_update_features(struct net_device *dev)
5581 {
5582 if (__netdev_update_features(dev))
5583 netdev_features_change(dev);
5584 }
5585 EXPORT_SYMBOL(netdev_update_features);
5586
5587 /**
5588 * netdev_change_features - recalculate device features
5589 * @dev: the device to check
5590 *
5591 * Recalculate dev->features set and send notifications even
5592 * if they have not changed. Should be called instead of
5593 * netdev_update_features() if also dev->vlan_features might
5594 * have changed to allow the changes to be propagated to stacked
5595 * VLAN devices.
5596 */
5597 void netdev_change_features(struct net_device *dev)
5598 {
5599 __netdev_update_features(dev);
5600 netdev_features_change(dev);
5601 }
5602 EXPORT_SYMBOL(netdev_change_features);
5603
5604 /**
5605 * netif_stacked_transfer_operstate - transfer operstate
5606 * @rootdev: the root or lower level device to transfer state from
5607 * @dev: the device to transfer operstate to
5608 *
5609 * Transfer operational state from root to device. This is normally
5610 * called when a stacking relationship exists between the root
5611 * device and the device(a leaf device).
5612 */
5613 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5614 struct net_device *dev)
5615 {
5616 if (rootdev->operstate == IF_OPER_DORMANT)
5617 netif_dormant_on(dev);
5618 else
5619 netif_dormant_off(dev);
5620
5621 if (netif_carrier_ok(rootdev)) {
5622 if (!netif_carrier_ok(dev))
5623 netif_carrier_on(dev);
5624 } else {
5625 if (netif_carrier_ok(dev))
5626 netif_carrier_off(dev);
5627 }
5628 }
5629 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5630
5631 #ifdef CONFIG_RPS
5632 static int netif_alloc_rx_queues(struct net_device *dev)
5633 {
5634 unsigned int i, count = dev->num_rx_queues;
5635 struct netdev_rx_queue *rx;
5636
5637 BUG_ON(count < 1);
5638
5639 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5640 if (!rx) {
5641 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5642 return -ENOMEM;
5643 }
5644 dev->_rx = rx;
5645
5646 for (i = 0; i < count; i++)
5647 rx[i].dev = dev;
5648 return 0;
5649 }
5650 #endif
5651
5652 static void netdev_init_one_queue(struct net_device *dev,
5653 struct netdev_queue *queue, void *_unused)
5654 {
5655 /* Initialize queue lock */
5656 spin_lock_init(&queue->_xmit_lock);
5657 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5658 queue->xmit_lock_owner = -1;
5659 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5660 queue->dev = dev;
5661 #ifdef CONFIG_BQL
5662 dql_init(&queue->dql, HZ);
5663 #endif
5664 }
5665
5666 static int netif_alloc_netdev_queues(struct net_device *dev)
5667 {
5668 unsigned int count = dev->num_tx_queues;
5669 struct netdev_queue *tx;
5670
5671 BUG_ON(count < 1);
5672
5673 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5674 if (!tx) {
5675 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5676 return -ENOMEM;
5677 }
5678 dev->_tx = tx;
5679
5680 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5681 spin_lock_init(&dev->tx_global_lock);
5682
5683 return 0;
5684 }
5685
5686 /**
5687 * register_netdevice - register a network device
5688 * @dev: device to register
5689 *
5690 * Take a completed network device structure and add it to the kernel
5691 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5692 * chain. 0 is returned on success. A negative errno code is returned
5693 * on a failure to set up the device, or if the name is a duplicate.
5694 *
5695 * Callers must hold the rtnl semaphore. You may want
5696 * register_netdev() instead of this.
5697 *
5698 * BUGS:
5699 * The locking appears insufficient to guarantee two parallel registers
5700 * will not get the same name.
5701 */
5702
5703 int register_netdevice(struct net_device *dev)
5704 {
5705 int ret;
5706 struct net *net = dev_net(dev);
5707
5708 BUG_ON(dev_boot_phase);
5709 ASSERT_RTNL();
5710
5711 might_sleep();
5712
5713 /* When net_device's are persistent, this will be fatal. */
5714 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5715 BUG_ON(!net);
5716
5717 spin_lock_init(&dev->addr_list_lock);
5718 netdev_set_addr_lockdep_class(dev);
5719
5720 dev->iflink = -1;
5721
5722 ret = dev_get_valid_name(net, dev, dev->name);
5723 if (ret < 0)
5724 goto out;
5725
5726 /* Init, if this function is available */
5727 if (dev->netdev_ops->ndo_init) {
5728 ret = dev->netdev_ops->ndo_init(dev);
5729 if (ret) {
5730 if (ret > 0)
5731 ret = -EIO;
5732 goto out;
5733 }
5734 }
5735
5736 ret = -EBUSY;
5737 if (!dev->ifindex)
5738 dev->ifindex = dev_new_index(net);
5739 else if (__dev_get_by_index(net, dev->ifindex))
5740 goto err_uninit;
5741
5742 if (dev->iflink == -1)
5743 dev->iflink = dev->ifindex;
5744
5745 /* Transfer changeable features to wanted_features and enable
5746 * software offloads (GSO and GRO).
5747 */
5748 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5749 dev->features |= NETIF_F_SOFT_FEATURES;
5750 dev->wanted_features = dev->features & dev->hw_features;
5751
5752 /* Turn on no cache copy if HW is doing checksum */
5753 if (!(dev->flags & IFF_LOOPBACK)) {
5754 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5755 if (dev->features & NETIF_F_ALL_CSUM) {
5756 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5757 dev->features |= NETIF_F_NOCACHE_COPY;
5758 }
5759 }
5760
5761 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5762 */
5763 dev->vlan_features |= NETIF_F_HIGHDMA;
5764
5765 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5766 ret = notifier_to_errno(ret);
5767 if (ret)
5768 goto err_uninit;
5769
5770 ret = netdev_register_kobject(dev);
5771 if (ret)
5772 goto err_uninit;
5773 dev->reg_state = NETREG_REGISTERED;
5774
5775 __netdev_update_features(dev);
5776
5777 /*
5778 * Default initial state at registry is that the
5779 * device is present.
5780 */
5781
5782 set_bit(__LINK_STATE_PRESENT, &dev->state);
5783
5784 linkwatch_init_dev(dev);
5785
5786 dev_init_scheduler(dev);
5787 dev_hold(dev);
5788 list_netdevice(dev);
5789 add_device_randomness(dev->dev_addr, dev->addr_len);
5790
5791 /* Notify protocols, that a new device appeared. */
5792 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5793 ret = notifier_to_errno(ret);
5794 if (ret) {
5795 rollback_registered(dev);
5796 dev->reg_state = NETREG_UNREGISTERED;
5797 }
5798 /*
5799 * Prevent userspace races by waiting until the network
5800 * device is fully setup before sending notifications.
5801 */
5802 if (!dev->rtnl_link_ops ||
5803 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5804 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5805
5806 out:
5807 return ret;
5808
5809 err_uninit:
5810 if (dev->netdev_ops->ndo_uninit)
5811 dev->netdev_ops->ndo_uninit(dev);
5812 goto out;
5813 }
5814 EXPORT_SYMBOL(register_netdevice);
5815
5816 /**
5817 * init_dummy_netdev - init a dummy network device for NAPI
5818 * @dev: device to init
5819 *
5820 * This takes a network device structure and initialize the minimum
5821 * amount of fields so it can be used to schedule NAPI polls without
5822 * registering a full blown interface. This is to be used by drivers
5823 * that need to tie several hardware interfaces to a single NAPI
5824 * poll scheduler due to HW limitations.
5825 */
5826 int init_dummy_netdev(struct net_device *dev)
5827 {
5828 /* Clear everything. Note we don't initialize spinlocks
5829 * are they aren't supposed to be taken by any of the
5830 * NAPI code and this dummy netdev is supposed to be
5831 * only ever used for NAPI polls
5832 */
5833 memset(dev, 0, sizeof(struct net_device));
5834
5835 /* make sure we BUG if trying to hit standard
5836 * register/unregister code path
5837 */
5838 dev->reg_state = NETREG_DUMMY;
5839
5840 /* NAPI wants this */
5841 INIT_LIST_HEAD(&dev->napi_list);
5842
5843 /* a dummy interface is started by default */
5844 set_bit(__LINK_STATE_PRESENT, &dev->state);
5845 set_bit(__LINK_STATE_START, &dev->state);
5846
5847 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5848 * because users of this 'device' dont need to change
5849 * its refcount.
5850 */
5851
5852 return 0;
5853 }
5854 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5855
5856
5857 /**
5858 * register_netdev - register a network device
5859 * @dev: device to register
5860 *
5861 * Take a completed network device structure and add it to the kernel
5862 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5863 * chain. 0 is returned on success. A negative errno code is returned
5864 * on a failure to set up the device, or if the name is a duplicate.
5865 *
5866 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5867 * and expands the device name if you passed a format string to
5868 * alloc_netdev.
5869 */
5870 int register_netdev(struct net_device *dev)
5871 {
5872 int err;
5873
5874 rtnl_lock();
5875 err = register_netdevice(dev);
5876 rtnl_unlock();
5877 return err;
5878 }
5879 EXPORT_SYMBOL(register_netdev);
5880
5881 int netdev_refcnt_read(const struct net_device *dev)
5882 {
5883 int i, refcnt = 0;
5884
5885 for_each_possible_cpu(i)
5886 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5887 return refcnt;
5888 }
5889 EXPORT_SYMBOL(netdev_refcnt_read);
5890
5891 /**
5892 * netdev_wait_allrefs - wait until all references are gone.
5893 * @dev: target net_device
5894 *
5895 * This is called when unregistering network devices.
5896 *
5897 * Any protocol or device that holds a reference should register
5898 * for netdevice notification, and cleanup and put back the
5899 * reference if they receive an UNREGISTER event.
5900 * We can get stuck here if buggy protocols don't correctly
5901 * call dev_put.
5902 */
5903 static void netdev_wait_allrefs(struct net_device *dev)
5904 {
5905 unsigned long rebroadcast_time, warning_time;
5906 int refcnt;
5907
5908 linkwatch_forget_dev(dev);
5909
5910 rebroadcast_time = warning_time = jiffies;
5911 refcnt = netdev_refcnt_read(dev);
5912
5913 while (refcnt != 0) {
5914 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5915 rtnl_lock();
5916
5917 /* Rebroadcast unregister notification */
5918 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5919
5920 __rtnl_unlock();
5921 rcu_barrier();
5922 rtnl_lock();
5923
5924 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5925 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5926 &dev->state)) {
5927 /* We must not have linkwatch events
5928 * pending on unregister. If this
5929 * happens, we simply run the queue
5930 * unscheduled, resulting in a noop
5931 * for this device.
5932 */
5933 linkwatch_run_queue();
5934 }
5935
5936 __rtnl_unlock();
5937
5938 rebroadcast_time = jiffies;
5939 }
5940
5941 msleep(250);
5942
5943 refcnt = netdev_refcnt_read(dev);
5944
5945 if (time_after(jiffies, warning_time + 10 * HZ)) {
5946 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5947 dev->name, refcnt);
5948 warning_time = jiffies;
5949 }
5950 }
5951 }
5952
5953 /* The sequence is:
5954 *
5955 * rtnl_lock();
5956 * ...
5957 * register_netdevice(x1);
5958 * register_netdevice(x2);
5959 * ...
5960 * unregister_netdevice(y1);
5961 * unregister_netdevice(y2);
5962 * ...
5963 * rtnl_unlock();
5964 * free_netdev(y1);
5965 * free_netdev(y2);
5966 *
5967 * We are invoked by rtnl_unlock().
5968 * This allows us to deal with problems:
5969 * 1) We can delete sysfs objects which invoke hotplug
5970 * without deadlocking with linkwatch via keventd.
5971 * 2) Since we run with the RTNL semaphore not held, we can sleep
5972 * safely in order to wait for the netdev refcnt to drop to zero.
5973 *
5974 * We must not return until all unregister events added during
5975 * the interval the lock was held have been completed.
5976 */
5977 void netdev_run_todo(void)
5978 {
5979 struct list_head list;
5980
5981 /* Snapshot list, allow later requests */
5982 list_replace_init(&net_todo_list, &list);
5983
5984 __rtnl_unlock();
5985
5986
5987 /* Wait for rcu callbacks to finish before next phase */
5988 if (!list_empty(&list))
5989 rcu_barrier();
5990
5991 while (!list_empty(&list)) {
5992 struct net_device *dev
5993 = list_first_entry(&list, struct net_device, todo_list);
5994 list_del(&dev->todo_list);
5995
5996 rtnl_lock();
5997 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5998 __rtnl_unlock();
5999
6000 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6001 pr_err("network todo '%s' but state %d\n",
6002 dev->name, dev->reg_state);
6003 dump_stack();
6004 continue;
6005 }
6006
6007 dev->reg_state = NETREG_UNREGISTERED;
6008
6009 on_each_cpu(flush_backlog, dev, 1);
6010
6011 netdev_wait_allrefs(dev);
6012
6013 /* paranoia */
6014 BUG_ON(netdev_refcnt_read(dev));
6015 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6016 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6017 WARN_ON(dev->dn_ptr);
6018
6019 if (dev->destructor)
6020 dev->destructor(dev);
6021
6022 /* Free network device */
6023 kobject_put(&dev->dev.kobj);
6024 }
6025 }
6026
6027 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6028 * fields in the same order, with only the type differing.
6029 */
6030 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6031 const struct net_device_stats *netdev_stats)
6032 {
6033 #if BITS_PER_LONG == 64
6034 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6035 memcpy(stats64, netdev_stats, sizeof(*stats64));
6036 #else
6037 size_t i, n = sizeof(*stats64) / sizeof(u64);
6038 const unsigned long *src = (const unsigned long *)netdev_stats;
6039 u64 *dst = (u64 *)stats64;
6040
6041 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6042 sizeof(*stats64) / sizeof(u64));
6043 for (i = 0; i < n; i++)
6044 dst[i] = src[i];
6045 #endif
6046 }
6047 EXPORT_SYMBOL(netdev_stats_to_stats64);
6048
6049 /**
6050 * dev_get_stats - get network device statistics
6051 * @dev: device to get statistics from
6052 * @storage: place to store stats
6053 *
6054 * Get network statistics from device. Return @storage.
6055 * The device driver may provide its own method by setting
6056 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6057 * otherwise the internal statistics structure is used.
6058 */
6059 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6060 struct rtnl_link_stats64 *storage)
6061 {
6062 const struct net_device_ops *ops = dev->netdev_ops;
6063
6064 if (ops->ndo_get_stats64) {
6065 memset(storage, 0, sizeof(*storage));
6066 ops->ndo_get_stats64(dev, storage);
6067 } else if (ops->ndo_get_stats) {
6068 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6069 } else {
6070 netdev_stats_to_stats64(storage, &dev->stats);
6071 }
6072 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6073 return storage;
6074 }
6075 EXPORT_SYMBOL(dev_get_stats);
6076
6077 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6078 {
6079 struct netdev_queue *queue = dev_ingress_queue(dev);
6080
6081 #ifdef CONFIG_NET_CLS_ACT
6082 if (queue)
6083 return queue;
6084 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6085 if (!queue)
6086 return NULL;
6087 netdev_init_one_queue(dev, queue, NULL);
6088 queue->qdisc = &noop_qdisc;
6089 queue->qdisc_sleeping = &noop_qdisc;
6090 rcu_assign_pointer(dev->ingress_queue, queue);
6091 #endif
6092 return queue;
6093 }
6094
6095 static const struct ethtool_ops default_ethtool_ops;
6096
6097 /**
6098 * alloc_netdev_mqs - allocate network device
6099 * @sizeof_priv: size of private data to allocate space for
6100 * @name: device name format string
6101 * @setup: callback to initialize device
6102 * @txqs: the number of TX subqueues to allocate
6103 * @rxqs: the number of RX subqueues to allocate
6104 *
6105 * Allocates a struct net_device with private data area for driver use
6106 * and performs basic initialization. Also allocates subquue structs
6107 * for each queue on the device.
6108 */
6109 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6110 void (*setup)(struct net_device *),
6111 unsigned int txqs, unsigned int rxqs)
6112 {
6113 struct net_device *dev;
6114 size_t alloc_size;
6115 struct net_device *p;
6116
6117 BUG_ON(strlen(name) >= sizeof(dev->name));
6118
6119 if (txqs < 1) {
6120 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6121 return NULL;
6122 }
6123
6124 #ifdef CONFIG_RPS
6125 if (rxqs < 1) {
6126 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6127 return NULL;
6128 }
6129 #endif
6130
6131 alloc_size = sizeof(struct net_device);
6132 if (sizeof_priv) {
6133 /* ensure 32-byte alignment of private area */
6134 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6135 alloc_size += sizeof_priv;
6136 }
6137 /* ensure 32-byte alignment of whole construct */
6138 alloc_size += NETDEV_ALIGN - 1;
6139
6140 p = kzalloc(alloc_size, GFP_KERNEL);
6141 if (!p) {
6142 pr_err("alloc_netdev: Unable to allocate device\n");
6143 return NULL;
6144 }
6145
6146 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6147 dev->padded = (char *)dev - (char *)p;
6148
6149 dev->pcpu_refcnt = alloc_percpu(int);
6150 if (!dev->pcpu_refcnt)
6151 goto free_p;
6152
6153 if (dev_addr_init(dev))
6154 goto free_pcpu;
6155
6156 dev_mc_init(dev);
6157 dev_uc_init(dev);
6158
6159 dev_net_set(dev, &init_net);
6160
6161 dev->gso_max_size = GSO_MAX_SIZE;
6162 dev->gso_max_segs = GSO_MAX_SEGS;
6163
6164 INIT_LIST_HEAD(&dev->napi_list);
6165 INIT_LIST_HEAD(&dev->unreg_list);
6166 INIT_LIST_HEAD(&dev->link_watch_list);
6167 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6168 setup(dev);
6169
6170 dev->num_tx_queues = txqs;
6171 dev->real_num_tx_queues = txqs;
6172 if (netif_alloc_netdev_queues(dev))
6173 goto free_all;
6174
6175 #ifdef CONFIG_RPS
6176 dev->num_rx_queues = rxqs;
6177 dev->real_num_rx_queues = rxqs;
6178 if (netif_alloc_rx_queues(dev))
6179 goto free_all;
6180 #endif
6181
6182 strcpy(dev->name, name);
6183 dev->group = INIT_NETDEV_GROUP;
6184 if (!dev->ethtool_ops)
6185 dev->ethtool_ops = &default_ethtool_ops;
6186 return dev;
6187
6188 free_all:
6189 free_netdev(dev);
6190 return NULL;
6191
6192 free_pcpu:
6193 free_percpu(dev->pcpu_refcnt);
6194 kfree(dev->_tx);
6195 #ifdef CONFIG_RPS
6196 kfree(dev->_rx);
6197 #endif
6198
6199 free_p:
6200 kfree(p);
6201 return NULL;
6202 }
6203 EXPORT_SYMBOL(alloc_netdev_mqs);
6204
6205 /**
6206 * free_netdev - free network device
6207 * @dev: device
6208 *
6209 * This function does the last stage of destroying an allocated device
6210 * interface. The reference to the device object is released.
6211 * If this is the last reference then it will be freed.
6212 */
6213 void free_netdev(struct net_device *dev)
6214 {
6215 struct napi_struct *p, *n;
6216
6217 release_net(dev_net(dev));
6218
6219 kfree(dev->_tx);
6220 #ifdef CONFIG_RPS
6221 kfree(dev->_rx);
6222 #endif
6223
6224 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6225
6226 /* Flush device addresses */
6227 dev_addr_flush(dev);
6228
6229 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6230 netif_napi_del(p);
6231
6232 free_percpu(dev->pcpu_refcnt);
6233 dev->pcpu_refcnt = NULL;
6234
6235 /* Compatibility with error handling in drivers */
6236 if (dev->reg_state == NETREG_UNINITIALIZED) {
6237 kfree((char *)dev - dev->padded);
6238 return;
6239 }
6240
6241 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6242 dev->reg_state = NETREG_RELEASED;
6243
6244 /* will free via device release */
6245 put_device(&dev->dev);
6246 }
6247 EXPORT_SYMBOL(free_netdev);
6248
6249 /**
6250 * synchronize_net - Synchronize with packet receive processing
6251 *
6252 * Wait for packets currently being received to be done.
6253 * Does not block later packets from starting.
6254 */
6255 void synchronize_net(void)
6256 {
6257 might_sleep();
6258 if (rtnl_is_locked())
6259 synchronize_rcu_expedited();
6260 else
6261 synchronize_rcu();
6262 }
6263 EXPORT_SYMBOL(synchronize_net);
6264
6265 /**
6266 * unregister_netdevice_queue - remove device from the kernel
6267 * @dev: device
6268 * @head: list
6269 *
6270 * This function shuts down a device interface and removes it
6271 * from the kernel tables.
6272 * If head not NULL, device is queued to be unregistered later.
6273 *
6274 * Callers must hold the rtnl semaphore. You may want
6275 * unregister_netdev() instead of this.
6276 */
6277
6278 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6279 {
6280 ASSERT_RTNL();
6281
6282 if (head) {
6283 list_move_tail(&dev->unreg_list, head);
6284 } else {
6285 rollback_registered(dev);
6286 /* Finish processing unregister after unlock */
6287 net_set_todo(dev);
6288 }
6289 }
6290 EXPORT_SYMBOL(unregister_netdevice_queue);
6291
6292 /**
6293 * unregister_netdevice_many - unregister many devices
6294 * @head: list of devices
6295 */
6296 void unregister_netdevice_many(struct list_head *head)
6297 {
6298 struct net_device *dev;
6299
6300 if (!list_empty(head)) {
6301 rollback_registered_many(head);
6302 list_for_each_entry(dev, head, unreg_list)
6303 net_set_todo(dev);
6304 }
6305 }
6306 EXPORT_SYMBOL(unregister_netdevice_many);
6307
6308 /**
6309 * unregister_netdev - remove device from the kernel
6310 * @dev: device
6311 *
6312 * This function shuts down a device interface and removes it
6313 * from the kernel tables.
6314 *
6315 * This is just a wrapper for unregister_netdevice that takes
6316 * the rtnl semaphore. In general you want to use this and not
6317 * unregister_netdevice.
6318 */
6319 void unregister_netdev(struct net_device *dev)
6320 {
6321 rtnl_lock();
6322 unregister_netdevice(dev);
6323 rtnl_unlock();
6324 }
6325 EXPORT_SYMBOL(unregister_netdev);
6326
6327 /**
6328 * dev_change_net_namespace - move device to different nethost namespace
6329 * @dev: device
6330 * @net: network namespace
6331 * @pat: If not NULL name pattern to try if the current device name
6332 * is already taken in the destination network namespace.
6333 *
6334 * This function shuts down a device interface and moves it
6335 * to a new network namespace. On success 0 is returned, on
6336 * a failure a netagive errno code is returned.
6337 *
6338 * Callers must hold the rtnl semaphore.
6339 */
6340
6341 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6342 {
6343 int err;
6344
6345 ASSERT_RTNL();
6346
6347 /* Don't allow namespace local devices to be moved. */
6348 err = -EINVAL;
6349 if (dev->features & NETIF_F_NETNS_LOCAL)
6350 goto out;
6351
6352 /* Ensure the device has been registrered */
6353 if (dev->reg_state != NETREG_REGISTERED)
6354 goto out;
6355
6356 /* Get out if there is nothing todo */
6357 err = 0;
6358 if (net_eq(dev_net(dev), net))
6359 goto out;
6360
6361 /* Pick the destination device name, and ensure
6362 * we can use it in the destination network namespace.
6363 */
6364 err = -EEXIST;
6365 if (__dev_get_by_name(net, dev->name)) {
6366 /* We get here if we can't use the current device name */
6367 if (!pat)
6368 goto out;
6369 if (dev_get_valid_name(net, dev, pat) < 0)
6370 goto out;
6371 }
6372
6373 /*
6374 * And now a mini version of register_netdevice unregister_netdevice.
6375 */
6376
6377 /* If device is running close it first. */
6378 dev_close(dev);
6379
6380 /* And unlink it from device chain */
6381 err = -ENODEV;
6382 unlist_netdevice(dev);
6383
6384 synchronize_net();
6385
6386 /* Shutdown queueing discipline. */
6387 dev_shutdown(dev);
6388
6389 /* Notify protocols, that we are about to destroy
6390 this device. They should clean all the things.
6391
6392 Note that dev->reg_state stays at NETREG_REGISTERED.
6393 This is wanted because this way 8021q and macvlan know
6394 the device is just moving and can keep their slaves up.
6395 */
6396 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6397 rcu_barrier();
6398 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6399 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6400
6401 /*
6402 * Flush the unicast and multicast chains
6403 */
6404 dev_uc_flush(dev);
6405 dev_mc_flush(dev);
6406
6407 /* Actually switch the network namespace */
6408 dev_net_set(dev, net);
6409
6410 /* If there is an ifindex conflict assign a new one */
6411 if (__dev_get_by_index(net, dev->ifindex)) {
6412 int iflink = (dev->iflink == dev->ifindex);
6413 dev->ifindex = dev_new_index(net);
6414 if (iflink)
6415 dev->iflink = dev->ifindex;
6416 }
6417
6418 /* Fixup kobjects */
6419 err = device_rename(&dev->dev, dev->name);
6420 WARN_ON(err);
6421
6422 /* Add the device back in the hashes */
6423 list_netdevice(dev);
6424
6425 /* Notify protocols, that a new device appeared. */
6426 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6427
6428 /*
6429 * Prevent userspace races by waiting until the network
6430 * device is fully setup before sending notifications.
6431 */
6432 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6433
6434 synchronize_net();
6435 err = 0;
6436 out:
6437 return err;
6438 }
6439 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6440
6441 static int dev_cpu_callback(struct notifier_block *nfb,
6442 unsigned long action,
6443 void *ocpu)
6444 {
6445 struct sk_buff **list_skb;
6446 struct sk_buff *skb;
6447 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6448 struct softnet_data *sd, *oldsd;
6449
6450 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6451 return NOTIFY_OK;
6452
6453 local_irq_disable();
6454 cpu = smp_processor_id();
6455 sd = &per_cpu(softnet_data, cpu);
6456 oldsd = &per_cpu(softnet_data, oldcpu);
6457
6458 /* Find end of our completion_queue. */
6459 list_skb = &sd->completion_queue;
6460 while (*list_skb)
6461 list_skb = &(*list_skb)->next;
6462 /* Append completion queue from offline CPU. */
6463 *list_skb = oldsd->completion_queue;
6464 oldsd->completion_queue = NULL;
6465
6466 /* Append output queue from offline CPU. */
6467 if (oldsd->output_queue) {
6468 *sd->output_queue_tailp = oldsd->output_queue;
6469 sd->output_queue_tailp = oldsd->output_queue_tailp;
6470 oldsd->output_queue = NULL;
6471 oldsd->output_queue_tailp = &oldsd->output_queue;
6472 }
6473 /* Append NAPI poll list from offline CPU. */
6474 if (!list_empty(&oldsd->poll_list)) {
6475 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6476 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6477 }
6478
6479 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6480 local_irq_enable();
6481
6482 /* Process offline CPU's input_pkt_queue */
6483 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6484 netif_rx(skb);
6485 input_queue_head_incr(oldsd);
6486 }
6487 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6488 netif_rx(skb);
6489 input_queue_head_incr(oldsd);
6490 }
6491
6492 return NOTIFY_OK;
6493 }
6494
6495
6496 /**
6497 * netdev_increment_features - increment feature set by one
6498 * @all: current feature set
6499 * @one: new feature set
6500 * @mask: mask feature set
6501 *
6502 * Computes a new feature set after adding a device with feature set
6503 * @one to the master device with current feature set @all. Will not
6504 * enable anything that is off in @mask. Returns the new feature set.
6505 */
6506 netdev_features_t netdev_increment_features(netdev_features_t all,
6507 netdev_features_t one, netdev_features_t mask)
6508 {
6509 if (mask & NETIF_F_GEN_CSUM)
6510 mask |= NETIF_F_ALL_CSUM;
6511 mask |= NETIF_F_VLAN_CHALLENGED;
6512
6513 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6514 all &= one | ~NETIF_F_ALL_FOR_ALL;
6515
6516 /* If one device supports hw checksumming, set for all. */
6517 if (all & NETIF_F_GEN_CSUM)
6518 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6519
6520 return all;
6521 }
6522 EXPORT_SYMBOL(netdev_increment_features);
6523
6524 static struct hlist_head *netdev_create_hash(void)
6525 {
6526 int i;
6527 struct hlist_head *hash;
6528
6529 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6530 if (hash != NULL)
6531 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6532 INIT_HLIST_HEAD(&hash[i]);
6533
6534 return hash;
6535 }
6536
6537 /* Initialize per network namespace state */
6538 static int __net_init netdev_init(struct net *net)
6539 {
6540 if (net != &init_net)
6541 INIT_LIST_HEAD(&net->dev_base_head);
6542
6543 net->dev_name_head = netdev_create_hash();
6544 if (net->dev_name_head == NULL)
6545 goto err_name;
6546
6547 net->dev_index_head = netdev_create_hash();
6548 if (net->dev_index_head == NULL)
6549 goto err_idx;
6550
6551 return 0;
6552
6553 err_idx:
6554 kfree(net->dev_name_head);
6555 err_name:
6556 return -ENOMEM;
6557 }
6558
6559 /**
6560 * netdev_drivername - network driver for the device
6561 * @dev: network device
6562 *
6563 * Determine network driver for device.
6564 */
6565 const char *netdev_drivername(const struct net_device *dev)
6566 {
6567 const struct device_driver *driver;
6568 const struct device *parent;
6569 const char *empty = "";
6570
6571 parent = dev->dev.parent;
6572 if (!parent)
6573 return empty;
6574
6575 driver = parent->driver;
6576 if (driver && driver->name)
6577 return driver->name;
6578 return empty;
6579 }
6580
6581 static int __netdev_printk(const char *level, const struct net_device *dev,
6582 struct va_format *vaf)
6583 {
6584 int r;
6585
6586 if (dev && dev->dev.parent) {
6587 r = dev_printk_emit(level[1] - '0',
6588 dev->dev.parent,
6589 "%s %s %s: %pV",
6590 dev_driver_string(dev->dev.parent),
6591 dev_name(dev->dev.parent),
6592 netdev_name(dev), vaf);
6593 } else if (dev) {
6594 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6595 } else {
6596 r = printk("%s(NULL net_device): %pV", level, vaf);
6597 }
6598
6599 return r;
6600 }
6601
6602 int netdev_printk(const char *level, const struct net_device *dev,
6603 const char *format, ...)
6604 {
6605 struct va_format vaf;
6606 va_list args;
6607 int r;
6608
6609 va_start(args, format);
6610
6611 vaf.fmt = format;
6612 vaf.va = &args;
6613
6614 r = __netdev_printk(level, dev, &vaf);
6615
6616 va_end(args);
6617
6618 return r;
6619 }
6620 EXPORT_SYMBOL(netdev_printk);
6621
6622 #define define_netdev_printk_level(func, level) \
6623 int func(const struct net_device *dev, const char *fmt, ...) \
6624 { \
6625 int r; \
6626 struct va_format vaf; \
6627 va_list args; \
6628 \
6629 va_start(args, fmt); \
6630 \
6631 vaf.fmt = fmt; \
6632 vaf.va = &args; \
6633 \
6634 r = __netdev_printk(level, dev, &vaf); \
6635 \
6636 va_end(args); \
6637 \
6638 return r; \
6639 } \
6640 EXPORT_SYMBOL(func);
6641
6642 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6643 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6644 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6645 define_netdev_printk_level(netdev_err, KERN_ERR);
6646 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6647 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6648 define_netdev_printk_level(netdev_info, KERN_INFO);
6649
6650 static void __net_exit netdev_exit(struct net *net)
6651 {
6652 kfree(net->dev_name_head);
6653 kfree(net->dev_index_head);
6654 }
6655
6656 static struct pernet_operations __net_initdata netdev_net_ops = {
6657 .init = netdev_init,
6658 .exit = netdev_exit,
6659 };
6660
6661 static void __net_exit default_device_exit(struct net *net)
6662 {
6663 struct net_device *dev, *aux;
6664 /*
6665 * Push all migratable network devices back to the
6666 * initial network namespace
6667 */
6668 rtnl_lock();
6669 for_each_netdev_safe(net, dev, aux) {
6670 int err;
6671 char fb_name[IFNAMSIZ];
6672
6673 /* Ignore unmoveable devices (i.e. loopback) */
6674 if (dev->features & NETIF_F_NETNS_LOCAL)
6675 continue;
6676
6677 /* Leave virtual devices for the generic cleanup */
6678 if (dev->rtnl_link_ops)
6679 continue;
6680
6681 /* Push remaining network devices to init_net */
6682 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6683 err = dev_change_net_namespace(dev, &init_net, fb_name);
6684 if (err) {
6685 pr_emerg("%s: failed to move %s to init_net: %d\n",
6686 __func__, dev->name, err);
6687 BUG();
6688 }
6689 }
6690 rtnl_unlock();
6691 }
6692
6693 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6694 {
6695 /* At exit all network devices most be removed from a network
6696 * namespace. Do this in the reverse order of registration.
6697 * Do this across as many network namespaces as possible to
6698 * improve batching efficiency.
6699 */
6700 struct net_device *dev;
6701 struct net *net;
6702 LIST_HEAD(dev_kill_list);
6703
6704 rtnl_lock();
6705 list_for_each_entry(net, net_list, exit_list) {
6706 for_each_netdev_reverse(net, dev) {
6707 if (dev->rtnl_link_ops)
6708 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6709 else
6710 unregister_netdevice_queue(dev, &dev_kill_list);
6711 }
6712 }
6713 unregister_netdevice_many(&dev_kill_list);
6714 list_del(&dev_kill_list);
6715 rtnl_unlock();
6716 }
6717
6718 static struct pernet_operations __net_initdata default_device_ops = {
6719 .exit = default_device_exit,
6720 .exit_batch = default_device_exit_batch,
6721 };
6722
6723 /*
6724 * Initialize the DEV module. At boot time this walks the device list and
6725 * unhooks any devices that fail to initialise (normally hardware not
6726 * present) and leaves us with a valid list of present and active devices.
6727 *
6728 */
6729
6730 /*
6731 * This is called single threaded during boot, so no need
6732 * to take the rtnl semaphore.
6733 */
6734 static int __init net_dev_init(void)
6735 {
6736 int i, rc = -ENOMEM;
6737
6738 BUG_ON(!dev_boot_phase);
6739
6740 if (dev_proc_init())
6741 goto out;
6742
6743 if (netdev_kobject_init())
6744 goto out;
6745
6746 INIT_LIST_HEAD(&ptype_all);
6747 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6748 INIT_LIST_HEAD(&ptype_base[i]);
6749
6750 INIT_LIST_HEAD(&offload_base);
6751
6752 if (register_pernet_subsys(&netdev_net_ops))
6753 goto out;
6754
6755 /*
6756 * Initialise the packet receive queues.
6757 */
6758
6759 for_each_possible_cpu(i) {
6760 struct softnet_data *sd = &per_cpu(softnet_data, i);
6761
6762 memset(sd, 0, sizeof(*sd));
6763 skb_queue_head_init(&sd->input_pkt_queue);
6764 skb_queue_head_init(&sd->process_queue);
6765 sd->completion_queue = NULL;
6766 INIT_LIST_HEAD(&sd->poll_list);
6767 sd->output_queue = NULL;
6768 sd->output_queue_tailp = &sd->output_queue;
6769 #ifdef CONFIG_RPS
6770 sd->csd.func = rps_trigger_softirq;
6771 sd->csd.info = sd;
6772 sd->csd.flags = 0;
6773 sd->cpu = i;
6774 #endif
6775
6776 sd->backlog.poll = process_backlog;
6777 sd->backlog.weight = weight_p;
6778 sd->backlog.gro_list = NULL;
6779 sd->backlog.gro_count = 0;
6780 }
6781
6782 dev_boot_phase = 0;
6783
6784 /* The loopback device is special if any other network devices
6785 * is present in a network namespace the loopback device must
6786 * be present. Since we now dynamically allocate and free the
6787 * loopback device ensure this invariant is maintained by
6788 * keeping the loopback device as the first device on the
6789 * list of network devices. Ensuring the loopback devices
6790 * is the first device that appears and the last network device
6791 * that disappears.
6792 */
6793 if (register_pernet_device(&loopback_net_ops))
6794 goto out;
6795
6796 if (register_pernet_device(&default_device_ops))
6797 goto out;
6798
6799 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6800 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6801
6802 hotcpu_notifier(dev_cpu_callback, 0);
6803 dst_init();
6804 dev_mcast_init();
6805 rc = 0;
6806 out:
6807 return rc;
6808 }
6809
6810 subsys_initcall(net_dev_init);
6811
6812 static int __init initialize_hashrnd(void)
6813 {
6814 get_random_bytes(&hashrnd, sizeof(hashrnd));
6815 return 0;
6816 }
6817
6818 late_initcall_sync(initialize_hashrnd);
6819
This page took 0.180807 seconds and 4 git commands to generate.