net: Performance fix for process_backlog
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly; /* Taps */
148 static struct list_head offload_base __read_mostly;
149
150 static int netif_rx_internal(struct sk_buff *skb);
151
152 /*
153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154 * semaphore.
155 *
156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157 *
158 * Writers must hold the rtnl semaphore while they loop through the
159 * dev_base_head list, and hold dev_base_lock for writing when they do the
160 * actual updates. This allows pure readers to access the list even
161 * while a writer is preparing to update it.
162 *
163 * To put it another way, dev_base_lock is held for writing only to
164 * protect against pure readers; the rtnl semaphore provides the
165 * protection against other writers.
166 *
167 * See, for example usages, register_netdevice() and
168 * unregister_netdevice(), which must be called with the rtnl
169 * semaphore held.
170 */
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
173
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
179
180 static seqcount_t devnet_rename_seq;
181
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184 while (++net->dev_base_seq == 0);
185 }
186
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188 {
189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190
191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192 }
193
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195 {
196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197 }
198
199 static inline void rps_lock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202 spin_lock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205
206 static inline void rps_unlock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
215 {
216 struct net *net = dev_net(dev);
217
218 ASSERT_RTNL();
219
220 write_lock_bh(&dev_base_lock);
221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 hlist_add_head_rcu(&dev->index_hlist,
224 dev_index_hash(net, dev->ifindex));
225 write_unlock_bh(&dev_base_lock);
226
227 dev_base_seq_inc(net);
228 }
229
230 /* Device list removal
231 * caller must respect a RCU grace period before freeing/reusing dev
232 */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 ASSERT_RTNL();
236
237 /* Unlink dev from the device chain */
238 write_lock_bh(&dev_base_lock);
239 list_del_rcu(&dev->dev_list);
240 hlist_del_rcu(&dev->name_hlist);
241 hlist_del_rcu(&dev->index_hlist);
242 write_unlock_bh(&dev_base_lock);
243
244 dev_base_seq_inc(dev_net(dev));
245 }
246
247 /*
248 * Our notifier list
249 */
250
251 static RAW_NOTIFIER_HEAD(netdev_chain);
252
253 /*
254 * Device drivers call our routines to queue packets here. We empty the
255 * queue in the local softnet handler.
256 */
257
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
260
261 #ifdef CONFIG_LOCKDEP
262 /*
263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264 * according to dev->type
265 */
266 static const unsigned short netdev_lock_type[] =
267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282
283 static const char *const netdev_lock_name[] =
284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
322 }
323
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 {
326 int i;
327
328 i = netdev_lock_pos(dev->type);
329 lockdep_set_class_and_name(&dev->addr_list_lock,
330 &netdev_addr_lock_key[i],
331 netdev_lock_name[i]);
332 }
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336 {
337 }
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 }
341 #endif
342
343 /*******************************************************************************
344
345 Protocol management and registration routines
346
347 *******************************************************************************/
348
349 /*
350 * Add a protocol ID to the list. Now that the input handler is
351 * smarter we can dispense with all the messy stuff that used to be
352 * here.
353 *
354 * BEWARE!!! Protocol handlers, mangling input packets,
355 * MUST BE last in hash buckets and checking protocol handlers
356 * MUST start from promiscuous ptype_all chain in net_bh.
357 * It is true now, do not change it.
358 * Explanation follows: if protocol handler, mangling packet, will
359 * be the first on list, it is not able to sense, that packet
360 * is cloned and should be copied-on-write, so that it will
361 * change it and subsequent readers will get broken packet.
362 * --ANK (980803)
363 */
364
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
366 {
367 if (pt->type == htons(ETH_P_ALL))
368 return &ptype_all;
369 else
370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 }
372
373 /**
374 * dev_add_pack - add packet handler
375 * @pt: packet type declaration
376 *
377 * Add a protocol handler to the networking stack. The passed &packet_type
378 * is linked into kernel lists and may not be freed until it has been
379 * removed from the kernel lists.
380 *
381 * This call does not sleep therefore it can not
382 * guarantee all CPU's that are in middle of receiving packets
383 * will see the new packet type (until the next received packet).
384 */
385
386 void dev_add_pack(struct packet_type *pt)
387 {
388 struct list_head *head = ptype_head(pt);
389
390 spin_lock(&ptype_lock);
391 list_add_rcu(&pt->list, head);
392 spin_unlock(&ptype_lock);
393 }
394 EXPORT_SYMBOL(dev_add_pack);
395
396 /**
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
399 *
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
404 *
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
408 */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 struct list_head *head = ptype_head(pt);
412 struct packet_type *pt1;
413
414 spin_lock(&ptype_lock);
415
416 list_for_each_entry(pt1, head, list) {
417 if (pt == pt1) {
418 list_del_rcu(&pt->list);
419 goto out;
420 }
421 }
422
423 pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 spin_unlock(&ptype_lock);
426 }
427 EXPORT_SYMBOL(__dev_remove_pack);
428
429 /**
430 * dev_remove_pack - remove packet handler
431 * @pt: packet type declaration
432 *
433 * Remove a protocol handler that was previously added to the kernel
434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
435 * from the kernel lists and can be freed or reused once this function
436 * returns.
437 *
438 * This call sleeps to guarantee that no CPU is looking at the packet
439 * type after return.
440 */
441 void dev_remove_pack(struct packet_type *pt)
442 {
443 __dev_remove_pack(pt);
444
445 synchronize_net();
446 }
447 EXPORT_SYMBOL(dev_remove_pack);
448
449
450 /**
451 * dev_add_offload - register offload handlers
452 * @po: protocol offload declaration
453 *
454 * Add protocol offload handlers to the networking stack. The passed
455 * &proto_offload is linked into kernel lists and may not be freed until
456 * it has been removed from the kernel lists.
457 *
458 * This call does not sleep therefore it can not
459 * guarantee all CPU's that are in middle of receiving packets
460 * will see the new offload handlers (until the next received packet).
461 */
462 void dev_add_offload(struct packet_offload *po)
463 {
464 struct list_head *head = &offload_base;
465
466 spin_lock(&offload_lock);
467 list_add_rcu(&po->list, head);
468 spin_unlock(&offload_lock);
469 }
470 EXPORT_SYMBOL(dev_add_offload);
471
472 /**
473 * __dev_remove_offload - remove offload handler
474 * @po: packet offload declaration
475 *
476 * Remove a protocol offload handler that was previously added to the
477 * kernel offload handlers by dev_add_offload(). The passed &offload_type
478 * is removed from the kernel lists and can be freed or reused once this
479 * function returns.
480 *
481 * The packet type might still be in use by receivers
482 * and must not be freed until after all the CPU's have gone
483 * through a quiescent state.
484 */
485 static void __dev_remove_offload(struct packet_offload *po)
486 {
487 struct list_head *head = &offload_base;
488 struct packet_offload *po1;
489
490 spin_lock(&offload_lock);
491
492 list_for_each_entry(po1, head, list) {
493 if (po == po1) {
494 list_del_rcu(&po->list);
495 goto out;
496 }
497 }
498
499 pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 spin_unlock(&offload_lock);
502 }
503
504 /**
505 * dev_remove_offload - remove packet offload handler
506 * @po: packet offload declaration
507 *
508 * Remove a packet offload handler that was previously added to the kernel
509 * offload handlers by dev_add_offload(). The passed &offload_type is
510 * removed from the kernel lists and can be freed or reused once this
511 * function returns.
512 *
513 * This call sleeps to guarantee that no CPU is looking at the packet
514 * type after return.
515 */
516 void dev_remove_offload(struct packet_offload *po)
517 {
518 __dev_remove_offload(po);
519
520 synchronize_net();
521 }
522 EXPORT_SYMBOL(dev_remove_offload);
523
524 /******************************************************************************
525
526 Device Boot-time Settings Routines
527
528 *******************************************************************************/
529
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532
533 /**
534 * netdev_boot_setup_add - add new setup entry
535 * @name: name of the device
536 * @map: configured settings for the device
537 *
538 * Adds new setup entry to the dev_boot_setup list. The function
539 * returns 0 on error and 1 on success. This is a generic routine to
540 * all netdevices.
541 */
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
543 {
544 struct netdev_boot_setup *s;
545 int i;
546
547 s = dev_boot_setup;
548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 memset(s[i].name, 0, sizeof(s[i].name));
551 strlcpy(s[i].name, name, IFNAMSIZ);
552 memcpy(&s[i].map, map, sizeof(s[i].map));
553 break;
554 }
555 }
556
557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558 }
559
560 /**
561 * netdev_boot_setup_check - check boot time settings
562 * @dev: the netdevice
563 *
564 * Check boot time settings for the device.
565 * The found settings are set for the device to be used
566 * later in the device probing.
567 * Returns 0 if no settings found, 1 if they are.
568 */
569 int netdev_boot_setup_check(struct net_device *dev)
570 {
571 struct netdev_boot_setup *s = dev_boot_setup;
572 int i;
573
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 !strcmp(dev->name, s[i].name)) {
577 dev->irq = s[i].map.irq;
578 dev->base_addr = s[i].map.base_addr;
579 dev->mem_start = s[i].map.mem_start;
580 dev->mem_end = s[i].map.mem_end;
581 return 1;
582 }
583 }
584 return 0;
585 }
586 EXPORT_SYMBOL(netdev_boot_setup_check);
587
588
589 /**
590 * netdev_boot_base - get address from boot time settings
591 * @prefix: prefix for network device
592 * @unit: id for network device
593 *
594 * Check boot time settings for the base address of device.
595 * The found settings are set for the device to be used
596 * later in the device probing.
597 * Returns 0 if no settings found.
598 */
599 unsigned long netdev_boot_base(const char *prefix, int unit)
600 {
601 const struct netdev_boot_setup *s = dev_boot_setup;
602 char name[IFNAMSIZ];
603 int i;
604
605 sprintf(name, "%s%d", prefix, unit);
606
607 /*
608 * If device already registered then return base of 1
609 * to indicate not to probe for this interface
610 */
611 if (__dev_get_by_name(&init_net, name))
612 return 1;
613
614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 if (!strcmp(name, s[i].name))
616 return s[i].map.base_addr;
617 return 0;
618 }
619
620 /*
621 * Saves at boot time configured settings for any netdevice.
622 */
623 int __init netdev_boot_setup(char *str)
624 {
625 int ints[5];
626 struct ifmap map;
627
628 str = get_options(str, ARRAY_SIZE(ints), ints);
629 if (!str || !*str)
630 return 0;
631
632 /* Save settings */
633 memset(&map, 0, sizeof(map));
634 if (ints[0] > 0)
635 map.irq = ints[1];
636 if (ints[0] > 1)
637 map.base_addr = ints[2];
638 if (ints[0] > 2)
639 map.mem_start = ints[3];
640 if (ints[0] > 3)
641 map.mem_end = ints[4];
642
643 /* Add new entry to the list */
644 return netdev_boot_setup_add(str, &map);
645 }
646
647 __setup("netdev=", netdev_boot_setup);
648
649 /*******************************************************************************
650
651 Device Interface Subroutines
652
653 *******************************************************************************/
654
655 /**
656 * __dev_get_by_name - find a device by its name
657 * @net: the applicable net namespace
658 * @name: name to find
659 *
660 * Find an interface by name. Must be called under RTNL semaphore
661 * or @dev_base_lock. If the name is found a pointer to the device
662 * is returned. If the name is not found then %NULL is returned. The
663 * reference counters are not incremented so the caller must be
664 * careful with locks.
665 */
666
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
668 {
669 struct net_device *dev;
670 struct hlist_head *head = dev_name_hash(net, name);
671
672 hlist_for_each_entry(dev, head, name_hlist)
673 if (!strncmp(dev->name, name, IFNAMSIZ))
674 return dev;
675
676 return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_name);
679
680 /**
681 * dev_get_by_name_rcu - find a device by its name
682 * @net: the applicable net namespace
683 * @name: name to find
684 *
685 * Find an interface by name.
686 * If the name is found a pointer to the device is returned.
687 * If the name is not found then %NULL is returned.
688 * The reference counters are not incremented so the caller must be
689 * careful with locks. The caller must hold RCU lock.
690 */
691
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693 {
694 struct net_device *dev;
695 struct hlist_head *head = dev_name_hash(net, name);
696
697 hlist_for_each_entry_rcu(dev, head, name_hlist)
698 if (!strncmp(dev->name, name, IFNAMSIZ))
699 return dev;
700
701 return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
704
705 /**
706 * dev_get_by_name - find a device by its name
707 * @net: the applicable net namespace
708 * @name: name to find
709 *
710 * Find an interface by name. This can be called from any
711 * context and does its own locking. The returned handle has
712 * the usage count incremented and the caller must use dev_put() to
713 * release it when it is no longer needed. %NULL is returned if no
714 * matching device is found.
715 */
716
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
718 {
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_name_rcu(net, name);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_name);
729
730 /**
731 * __dev_get_by_index - find a device by its ifindex
732 * @net: the applicable net namespace
733 * @ifindex: index of device
734 *
735 * Search for an interface by index. Returns %NULL if the device
736 * is not found or a pointer to the device. The device has not
737 * had its reference counter increased so the caller must be careful
738 * about locking. The caller must hold either the RTNL semaphore
739 * or @dev_base_lock.
740 */
741
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743 {
744 struct net_device *dev;
745 struct hlist_head *head = dev_index_hash(net, ifindex);
746
747 hlist_for_each_entry(dev, head, index_hlist)
748 if (dev->ifindex == ifindex)
749 return dev;
750
751 return NULL;
752 }
753 EXPORT_SYMBOL(__dev_get_by_index);
754
755 /**
756 * dev_get_by_index_rcu - find a device by its ifindex
757 * @net: the applicable net namespace
758 * @ifindex: index of device
759 *
760 * Search for an interface by index. Returns %NULL if the device
761 * is not found or a pointer to the device. The device has not
762 * had its reference counter increased so the caller must be careful
763 * about locking. The caller must hold RCU lock.
764 */
765
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767 {
768 struct net_device *dev;
769 struct hlist_head *head = dev_index_hash(net, ifindex);
770
771 hlist_for_each_entry_rcu(dev, head, index_hlist)
772 if (dev->ifindex == ifindex)
773 return dev;
774
775 return NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
778
779
780 /**
781 * dev_get_by_index - find a device by its ifindex
782 * @net: the applicable net namespace
783 * @ifindex: index of device
784 *
785 * Search for an interface by index. Returns NULL if the device
786 * is not found or a pointer to the device. The device returned has
787 * had a reference added and the pointer is safe until the user calls
788 * dev_put to indicate they have finished with it.
789 */
790
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
792 {
793 struct net_device *dev;
794
795 rcu_read_lock();
796 dev = dev_get_by_index_rcu(net, ifindex);
797 if (dev)
798 dev_hold(dev);
799 rcu_read_unlock();
800 return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_index);
803
804 /**
805 * netdev_get_name - get a netdevice name, knowing its ifindex.
806 * @net: network namespace
807 * @name: a pointer to the buffer where the name will be stored.
808 * @ifindex: the ifindex of the interface to get the name from.
809 *
810 * The use of raw_seqcount_begin() and cond_resched() before
811 * retrying is required as we want to give the writers a chance
812 * to complete when CONFIG_PREEMPT is not set.
813 */
814 int netdev_get_name(struct net *net, char *name, int ifindex)
815 {
816 struct net_device *dev;
817 unsigned int seq;
818
819 retry:
820 seq = raw_seqcount_begin(&devnet_rename_seq);
821 rcu_read_lock();
822 dev = dev_get_by_index_rcu(net, ifindex);
823 if (!dev) {
824 rcu_read_unlock();
825 return -ENODEV;
826 }
827
828 strcpy(name, dev->name);
829 rcu_read_unlock();
830 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 cond_resched();
832 goto retry;
833 }
834
835 return 0;
836 }
837
838 /**
839 * dev_getbyhwaddr_rcu - find a device by its hardware address
840 * @net: the applicable net namespace
841 * @type: media type of device
842 * @ha: hardware address
843 *
844 * Search for an interface by MAC address. Returns NULL if the device
845 * is not found or a pointer to the device.
846 * The caller must hold RCU or RTNL.
847 * The returned device has not had its ref count increased
848 * and the caller must therefore be careful about locking
849 *
850 */
851
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 const char *ha)
854 {
855 struct net_device *dev;
856
857 for_each_netdev_rcu(net, dev)
858 if (dev->type == type &&
859 !memcmp(dev->dev_addr, ha, dev->addr_len))
860 return dev;
861
862 return NULL;
863 }
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867 {
868 struct net_device *dev;
869
870 ASSERT_RTNL();
871 for_each_netdev(net, dev)
872 if (dev->type == type)
873 return dev;
874
875 return NULL;
876 }
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881 struct net_device *dev, *ret = NULL;
882
883 rcu_read_lock();
884 for_each_netdev_rcu(net, dev)
885 if (dev->type == type) {
886 dev_hold(dev);
887 ret = dev;
888 break;
889 }
890 rcu_read_unlock();
891 return ret;
892 }
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894
895 /**
896 * dev_get_by_flags_rcu - find any device with given flags
897 * @net: the applicable net namespace
898 * @if_flags: IFF_* values
899 * @mask: bitmask of bits in if_flags to check
900 *
901 * Search for any interface with the given flags. Returns NULL if a device
902 * is not found or a pointer to the device. Must be called inside
903 * rcu_read_lock(), and result refcount is unchanged.
904 */
905
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 unsigned short mask)
908 {
909 struct net_device *dev, *ret;
910
911 ret = NULL;
912 for_each_netdev_rcu(net, dev) {
913 if (((dev->flags ^ if_flags) & mask) == 0) {
914 ret = dev;
915 break;
916 }
917 }
918 return ret;
919 }
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921
922 /**
923 * dev_valid_name - check if name is okay for network device
924 * @name: name string
925 *
926 * Network device names need to be valid file names to
927 * to allow sysfs to work. We also disallow any kind of
928 * whitespace.
929 */
930 bool dev_valid_name(const char *name)
931 {
932 if (*name == '\0')
933 return false;
934 if (strlen(name) >= IFNAMSIZ)
935 return false;
936 if (!strcmp(name, ".") || !strcmp(name, ".."))
937 return false;
938
939 while (*name) {
940 if (*name == '/' || isspace(*name))
941 return false;
942 name++;
943 }
944 return true;
945 }
946 EXPORT_SYMBOL(dev_valid_name);
947
948 /**
949 * __dev_alloc_name - allocate a name for a device
950 * @net: network namespace to allocate the device name in
951 * @name: name format string
952 * @buf: scratch buffer and result name string
953 *
954 * Passed a format string - eg "lt%d" it will try and find a suitable
955 * id. It scans list of devices to build up a free map, then chooses
956 * the first empty slot. The caller must hold the dev_base or rtnl lock
957 * while allocating the name and adding the device in order to avoid
958 * duplicates.
959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960 * Returns the number of the unit assigned or a negative errno code.
961 */
962
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964 {
965 int i = 0;
966 const char *p;
967 const int max_netdevices = 8*PAGE_SIZE;
968 unsigned long *inuse;
969 struct net_device *d;
970
971 p = strnchr(name, IFNAMSIZ-1, '%');
972 if (p) {
973 /*
974 * Verify the string as this thing may have come from
975 * the user. There must be either one "%d" and no other "%"
976 * characters.
977 */
978 if (p[1] != 'd' || strchr(p + 2, '%'))
979 return -EINVAL;
980
981 /* Use one page as a bit array of possible slots */
982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 if (!inuse)
984 return -ENOMEM;
985
986 for_each_netdev(net, d) {
987 if (!sscanf(d->name, name, &i))
988 continue;
989 if (i < 0 || i >= max_netdevices)
990 continue;
991
992 /* avoid cases where sscanf is not exact inverse of printf */
993 snprintf(buf, IFNAMSIZ, name, i);
994 if (!strncmp(buf, d->name, IFNAMSIZ))
995 set_bit(i, inuse);
996 }
997
998 i = find_first_zero_bit(inuse, max_netdevices);
999 free_page((unsigned long) inuse);
1000 }
1001
1002 if (buf != name)
1003 snprintf(buf, IFNAMSIZ, name, i);
1004 if (!__dev_get_by_name(net, buf))
1005 return i;
1006
1007 /* It is possible to run out of possible slots
1008 * when the name is long and there isn't enough space left
1009 * for the digits, or if all bits are used.
1010 */
1011 return -ENFILE;
1012 }
1013
1014 /**
1015 * dev_alloc_name - allocate a name for a device
1016 * @dev: device
1017 * @name: name format string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1029 {
1030 char buf[IFNAMSIZ];
1031 struct net *net;
1032 int ret;
1033
1034 BUG_ON(!dev_net(dev));
1035 net = dev_net(dev);
1036 ret = __dev_alloc_name(net, name, buf);
1037 if (ret >= 0)
1038 strlcpy(dev->name, buf, IFNAMSIZ);
1039 return ret;
1040 }
1041 EXPORT_SYMBOL(dev_alloc_name);
1042
1043 static int dev_alloc_name_ns(struct net *net,
1044 struct net_device *dev,
1045 const char *name)
1046 {
1047 char buf[IFNAMSIZ];
1048 int ret;
1049
1050 ret = __dev_alloc_name(net, name, buf);
1051 if (ret >= 0)
1052 strlcpy(dev->name, buf, IFNAMSIZ);
1053 return ret;
1054 }
1055
1056 static int dev_get_valid_name(struct net *net,
1057 struct net_device *dev,
1058 const char *name)
1059 {
1060 BUG_ON(!net);
1061
1062 if (!dev_valid_name(name))
1063 return -EINVAL;
1064
1065 if (strchr(name, '%'))
1066 return dev_alloc_name_ns(net, dev, name);
1067 else if (__dev_get_by_name(net, name))
1068 return -EEXIST;
1069 else if (dev->name != name)
1070 strlcpy(dev->name, name, IFNAMSIZ);
1071
1072 return 0;
1073 }
1074
1075 /**
1076 * dev_change_name - change name of a device
1077 * @dev: device
1078 * @newname: name (or format string) must be at least IFNAMSIZ
1079 *
1080 * Change name of a device, can pass format strings "eth%d".
1081 * for wildcarding.
1082 */
1083 int dev_change_name(struct net_device *dev, const char *newname)
1084 {
1085 char oldname[IFNAMSIZ];
1086 int err = 0;
1087 int ret;
1088 struct net *net;
1089
1090 ASSERT_RTNL();
1091 BUG_ON(!dev_net(dev));
1092
1093 net = dev_net(dev);
1094 if (dev->flags & IFF_UP)
1095 return -EBUSY;
1096
1097 write_seqcount_begin(&devnet_rename_seq);
1098
1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 write_seqcount_end(&devnet_rename_seq);
1101 return 0;
1102 }
1103
1104 memcpy(oldname, dev->name, IFNAMSIZ);
1105
1106 err = dev_get_valid_name(net, dev, newname);
1107 if (err < 0) {
1108 write_seqcount_end(&devnet_rename_seq);
1109 return err;
1110 }
1111
1112 rollback:
1113 ret = device_rename(&dev->dev, dev->name);
1114 if (ret) {
1115 memcpy(dev->name, oldname, IFNAMSIZ);
1116 write_seqcount_end(&devnet_rename_seq);
1117 return ret;
1118 }
1119
1120 write_seqcount_end(&devnet_rename_seq);
1121
1122 netdev_adjacent_rename_links(dev, oldname);
1123
1124 write_lock_bh(&dev_base_lock);
1125 hlist_del_rcu(&dev->name_hlist);
1126 write_unlock_bh(&dev_base_lock);
1127
1128 synchronize_rcu();
1129
1130 write_lock_bh(&dev_base_lock);
1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 write_unlock_bh(&dev_base_lock);
1133
1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 ret = notifier_to_errno(ret);
1136
1137 if (ret) {
1138 /* err >= 0 after dev_alloc_name() or stores the first errno */
1139 if (err >= 0) {
1140 err = ret;
1141 write_seqcount_begin(&devnet_rename_seq);
1142 memcpy(dev->name, oldname, IFNAMSIZ);
1143 memcpy(oldname, newname, IFNAMSIZ);
1144 goto rollback;
1145 } else {
1146 pr_err("%s: name change rollback failed: %d\n",
1147 dev->name, ret);
1148 }
1149 }
1150
1151 return err;
1152 }
1153
1154 /**
1155 * dev_set_alias - change ifalias of a device
1156 * @dev: device
1157 * @alias: name up to IFALIASZ
1158 * @len: limit of bytes to copy from info
1159 *
1160 * Set ifalias for a device,
1161 */
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 {
1164 char *new_ifalias;
1165
1166 ASSERT_RTNL();
1167
1168 if (len >= IFALIASZ)
1169 return -EINVAL;
1170
1171 if (!len) {
1172 kfree(dev->ifalias);
1173 dev->ifalias = NULL;
1174 return 0;
1175 }
1176
1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 if (!new_ifalias)
1179 return -ENOMEM;
1180 dev->ifalias = new_ifalias;
1181
1182 strlcpy(dev->ifalias, alias, len+1);
1183 return len;
1184 }
1185
1186
1187 /**
1188 * netdev_features_change - device changes features
1189 * @dev: device to cause notification
1190 *
1191 * Called to indicate a device has changed features.
1192 */
1193 void netdev_features_change(struct net_device *dev)
1194 {
1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196 }
1197 EXPORT_SYMBOL(netdev_features_change);
1198
1199 /**
1200 * netdev_state_change - device changes state
1201 * @dev: device to cause notification
1202 *
1203 * Called to indicate a device has changed state. This function calls
1204 * the notifier chains for netdev_chain and sends a NEWLINK message
1205 * to the routing socket.
1206 */
1207 void netdev_state_change(struct net_device *dev)
1208 {
1209 if (dev->flags & IFF_UP) {
1210 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 }
1213 }
1214 EXPORT_SYMBOL(netdev_state_change);
1215
1216 /**
1217 * netdev_notify_peers - notify network peers about existence of @dev
1218 * @dev: network device
1219 *
1220 * Generate traffic such that interested network peers are aware of
1221 * @dev, such as by generating a gratuitous ARP. This may be used when
1222 * a device wants to inform the rest of the network about some sort of
1223 * reconfiguration such as a failover event or virtual machine
1224 * migration.
1225 */
1226 void netdev_notify_peers(struct net_device *dev)
1227 {
1228 rtnl_lock();
1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 rtnl_unlock();
1231 }
1232 EXPORT_SYMBOL(netdev_notify_peers);
1233
1234 static int __dev_open(struct net_device *dev)
1235 {
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237 int ret;
1238
1239 ASSERT_RTNL();
1240
1241 if (!netif_device_present(dev))
1242 return -ENODEV;
1243
1244 /* Block netpoll from trying to do any rx path servicing.
1245 * If we don't do this there is a chance ndo_poll_controller
1246 * or ndo_poll may be running while we open the device
1247 */
1248 netpoll_poll_disable(dev);
1249
1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 ret = notifier_to_errno(ret);
1252 if (ret)
1253 return ret;
1254
1255 set_bit(__LINK_STATE_START, &dev->state);
1256
1257 if (ops->ndo_validate_addr)
1258 ret = ops->ndo_validate_addr(dev);
1259
1260 if (!ret && ops->ndo_open)
1261 ret = ops->ndo_open(dev);
1262
1263 netpoll_poll_enable(dev);
1264
1265 if (ret)
1266 clear_bit(__LINK_STATE_START, &dev->state);
1267 else {
1268 dev->flags |= IFF_UP;
1269 net_dmaengine_get();
1270 dev_set_rx_mode(dev);
1271 dev_activate(dev);
1272 add_device_randomness(dev->dev_addr, dev->addr_len);
1273 }
1274
1275 return ret;
1276 }
1277
1278 /**
1279 * dev_open - prepare an interface for use.
1280 * @dev: device to open
1281 *
1282 * Takes a device from down to up state. The device's private open
1283 * function is invoked and then the multicast lists are loaded. Finally
1284 * the device is moved into the up state and a %NETDEV_UP message is
1285 * sent to the netdev notifier chain.
1286 *
1287 * Calling this function on an active interface is a nop. On a failure
1288 * a negative errno code is returned.
1289 */
1290 int dev_open(struct net_device *dev)
1291 {
1292 int ret;
1293
1294 if (dev->flags & IFF_UP)
1295 return 0;
1296
1297 ret = __dev_open(dev);
1298 if (ret < 0)
1299 return ret;
1300
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 call_netdevice_notifiers(NETDEV_UP, dev);
1303
1304 return ret;
1305 }
1306 EXPORT_SYMBOL(dev_open);
1307
1308 static int __dev_close_many(struct list_head *head)
1309 {
1310 struct net_device *dev;
1311
1312 ASSERT_RTNL();
1313 might_sleep();
1314
1315 list_for_each_entry(dev, head, close_list) {
1316 /* Temporarily disable netpoll until the interface is down */
1317 netpoll_poll_disable(dev);
1318
1319 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1320
1321 clear_bit(__LINK_STATE_START, &dev->state);
1322
1323 /* Synchronize to scheduled poll. We cannot touch poll list, it
1324 * can be even on different cpu. So just clear netif_running().
1325 *
1326 * dev->stop() will invoke napi_disable() on all of it's
1327 * napi_struct instances on this device.
1328 */
1329 smp_mb__after_atomic(); /* Commit netif_running(). */
1330 }
1331
1332 dev_deactivate_many(head);
1333
1334 list_for_each_entry(dev, head, close_list) {
1335 const struct net_device_ops *ops = dev->netdev_ops;
1336
1337 /*
1338 * Call the device specific close. This cannot fail.
1339 * Only if device is UP
1340 *
1341 * We allow it to be called even after a DETACH hot-plug
1342 * event.
1343 */
1344 if (ops->ndo_stop)
1345 ops->ndo_stop(dev);
1346
1347 dev->flags &= ~IFF_UP;
1348 net_dmaengine_put();
1349 netpoll_poll_enable(dev);
1350 }
1351
1352 return 0;
1353 }
1354
1355 static int __dev_close(struct net_device *dev)
1356 {
1357 int retval;
1358 LIST_HEAD(single);
1359
1360 list_add(&dev->close_list, &single);
1361 retval = __dev_close_many(&single);
1362 list_del(&single);
1363
1364 return retval;
1365 }
1366
1367 static int dev_close_many(struct list_head *head)
1368 {
1369 struct net_device *dev, *tmp;
1370
1371 /* Remove the devices that don't need to be closed */
1372 list_for_each_entry_safe(dev, tmp, head, close_list)
1373 if (!(dev->flags & IFF_UP))
1374 list_del_init(&dev->close_list);
1375
1376 __dev_close_many(head);
1377
1378 list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 list_del_init(&dev->close_list);
1382 }
1383
1384 return 0;
1385 }
1386
1387 /**
1388 * dev_close - shutdown an interface.
1389 * @dev: device to shutdown
1390 *
1391 * This function moves an active device into down state. A
1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394 * chain.
1395 */
1396 int dev_close(struct net_device *dev)
1397 {
1398 if (dev->flags & IFF_UP) {
1399 LIST_HEAD(single);
1400
1401 list_add(&dev->close_list, &single);
1402 dev_close_many(&single);
1403 list_del(&single);
1404 }
1405 return 0;
1406 }
1407 EXPORT_SYMBOL(dev_close);
1408
1409
1410 /**
1411 * dev_disable_lro - disable Large Receive Offload on a device
1412 * @dev: device
1413 *
1414 * Disable Large Receive Offload (LRO) on a net device. Must be
1415 * called under RTNL. This is needed if received packets may be
1416 * forwarded to another interface.
1417 */
1418 void dev_disable_lro(struct net_device *dev)
1419 {
1420 /*
1421 * If we're trying to disable lro on a vlan device
1422 * use the underlying physical device instead
1423 */
1424 if (is_vlan_dev(dev))
1425 dev = vlan_dev_real_dev(dev);
1426
1427 /* the same for macvlan devices */
1428 if (netif_is_macvlan(dev))
1429 dev = macvlan_dev_real_dev(dev);
1430
1431 dev->wanted_features &= ~NETIF_F_LRO;
1432 netdev_update_features(dev);
1433
1434 if (unlikely(dev->features & NETIF_F_LRO))
1435 netdev_WARN(dev, "failed to disable LRO!\n");
1436 }
1437 EXPORT_SYMBOL(dev_disable_lro);
1438
1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440 struct net_device *dev)
1441 {
1442 struct netdev_notifier_info info;
1443
1444 netdev_notifier_info_init(&info, dev);
1445 return nb->notifier_call(nb, val, &info);
1446 }
1447
1448 static int dev_boot_phase = 1;
1449
1450 /**
1451 * register_netdevice_notifier - register a network notifier block
1452 * @nb: notifier
1453 *
1454 * Register a notifier to be called when network device events occur.
1455 * The notifier passed is linked into the kernel structures and must
1456 * not be reused until it has been unregistered. A negative errno code
1457 * is returned on a failure.
1458 *
1459 * When registered all registration and up events are replayed
1460 * to the new notifier to allow device to have a race free
1461 * view of the network device list.
1462 */
1463
1464 int register_netdevice_notifier(struct notifier_block *nb)
1465 {
1466 struct net_device *dev;
1467 struct net_device *last;
1468 struct net *net;
1469 int err;
1470
1471 rtnl_lock();
1472 err = raw_notifier_chain_register(&netdev_chain, nb);
1473 if (err)
1474 goto unlock;
1475 if (dev_boot_phase)
1476 goto unlock;
1477 for_each_net(net) {
1478 for_each_netdev(net, dev) {
1479 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480 err = notifier_to_errno(err);
1481 if (err)
1482 goto rollback;
1483
1484 if (!(dev->flags & IFF_UP))
1485 continue;
1486
1487 call_netdevice_notifier(nb, NETDEV_UP, dev);
1488 }
1489 }
1490
1491 unlock:
1492 rtnl_unlock();
1493 return err;
1494
1495 rollback:
1496 last = dev;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev == last)
1500 goto outroll;
1501
1502 if (dev->flags & IFF_UP) {
1503 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504 dev);
1505 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506 }
1507 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508 }
1509 }
1510
1511 outroll:
1512 raw_notifier_chain_unregister(&netdev_chain, nb);
1513 goto unlock;
1514 }
1515 EXPORT_SYMBOL(register_netdevice_notifier);
1516
1517 /**
1518 * unregister_netdevice_notifier - unregister a network notifier block
1519 * @nb: notifier
1520 *
1521 * Unregister a notifier previously registered by
1522 * register_netdevice_notifier(). The notifier is unlinked into the
1523 * kernel structures and may then be reused. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * After unregistering unregister and down device events are synthesized
1527 * for all devices on the device list to the removed notifier to remove
1528 * the need for special case cleanup code.
1529 */
1530
1531 int unregister_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 struct net_device *dev;
1534 struct net *net;
1535 int err;
1536
1537 rtnl_lock();
1538 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 if (err)
1540 goto unlock;
1541
1542 for_each_net(net) {
1543 for_each_netdev(net, dev) {
1544 if (dev->flags & IFF_UP) {
1545 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546 dev);
1547 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548 }
1549 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550 }
1551 }
1552 unlock:
1553 rtnl_unlock();
1554 return err;
1555 }
1556 EXPORT_SYMBOL(unregister_netdevice_notifier);
1557
1558 /**
1559 * call_netdevice_notifiers_info - call all network notifier blocks
1560 * @val: value passed unmodified to notifier function
1561 * @dev: net_device pointer passed unmodified to notifier function
1562 * @info: notifier information data
1563 *
1564 * Call all network notifier blocks. Parameters and return value
1565 * are as for raw_notifier_call_chain().
1566 */
1567
1568 static int call_netdevice_notifiers_info(unsigned long val,
1569 struct net_device *dev,
1570 struct netdev_notifier_info *info)
1571 {
1572 ASSERT_RTNL();
1573 netdev_notifier_info_init(info, dev);
1574 return raw_notifier_call_chain(&netdev_chain, val, info);
1575 }
1576
1577 /**
1578 * call_netdevice_notifiers - call all network notifier blocks
1579 * @val: value passed unmodified to notifier function
1580 * @dev: net_device pointer passed unmodified to notifier function
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587 {
1588 struct netdev_notifier_info info;
1589
1590 return call_netdevice_notifiers_info(val, dev, &info);
1591 }
1592 EXPORT_SYMBOL(call_netdevice_notifiers);
1593
1594 static struct static_key netstamp_needed __read_mostly;
1595 #ifdef HAVE_JUMP_LABEL
1596 /* We are not allowed to call static_key_slow_dec() from irq context
1597 * If net_disable_timestamp() is called from irq context, defer the
1598 * static_key_slow_dec() calls.
1599 */
1600 static atomic_t netstamp_needed_deferred;
1601 #endif
1602
1603 void net_enable_timestamp(void)
1604 {
1605 #ifdef HAVE_JUMP_LABEL
1606 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607
1608 if (deferred) {
1609 while (--deferred)
1610 static_key_slow_dec(&netstamp_needed);
1611 return;
1612 }
1613 #endif
1614 static_key_slow_inc(&netstamp_needed);
1615 }
1616 EXPORT_SYMBOL(net_enable_timestamp);
1617
1618 void net_disable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621 if (in_interrupt()) {
1622 atomic_inc(&netstamp_needed_deferred);
1623 return;
1624 }
1625 #endif
1626 static_key_slow_dec(&netstamp_needed);
1627 }
1628 EXPORT_SYMBOL(net_disable_timestamp);
1629
1630 static inline void net_timestamp_set(struct sk_buff *skb)
1631 {
1632 skb->tstamp.tv64 = 0;
1633 if (static_key_false(&netstamp_needed))
1634 __net_timestamp(skb);
1635 }
1636
1637 #define net_timestamp_check(COND, SKB) \
1638 if (static_key_false(&netstamp_needed)) { \
1639 if ((COND) && !(SKB)->tstamp.tv64) \
1640 __net_timestamp(SKB); \
1641 } \
1642
1643 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1644 {
1645 unsigned int len;
1646
1647 if (!(dev->flags & IFF_UP))
1648 return false;
1649
1650 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1651 if (skb->len <= len)
1652 return true;
1653
1654 /* if TSO is enabled, we don't care about the length as the packet
1655 * could be forwarded without being segmented before
1656 */
1657 if (skb_is_gso(skb))
1658 return true;
1659
1660 return false;
1661 }
1662 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1663
1664 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1665 {
1666 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1667 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1668 atomic_long_inc(&dev->rx_dropped);
1669 kfree_skb(skb);
1670 return NET_RX_DROP;
1671 }
1672 }
1673
1674 if (unlikely(!is_skb_forwardable(dev, skb))) {
1675 atomic_long_inc(&dev->rx_dropped);
1676 kfree_skb(skb);
1677 return NET_RX_DROP;
1678 }
1679
1680 skb_scrub_packet(skb, true);
1681 skb->protocol = eth_type_trans(skb, dev);
1682
1683 return 0;
1684 }
1685 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1686
1687 /**
1688 * dev_forward_skb - loopback an skb to another netif
1689 *
1690 * @dev: destination network device
1691 * @skb: buffer to forward
1692 *
1693 * return values:
1694 * NET_RX_SUCCESS (no congestion)
1695 * NET_RX_DROP (packet was dropped, but freed)
1696 *
1697 * dev_forward_skb can be used for injecting an skb from the
1698 * start_xmit function of one device into the receive queue
1699 * of another device.
1700 *
1701 * The receiving device may be in another namespace, so
1702 * we have to clear all information in the skb that could
1703 * impact namespace isolation.
1704 */
1705 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1706 {
1707 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1708 }
1709 EXPORT_SYMBOL_GPL(dev_forward_skb);
1710
1711 static inline int deliver_skb(struct sk_buff *skb,
1712 struct packet_type *pt_prev,
1713 struct net_device *orig_dev)
1714 {
1715 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1716 return -ENOMEM;
1717 atomic_inc(&skb->users);
1718 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1719 }
1720
1721 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1722 {
1723 if (!ptype->af_packet_priv || !skb->sk)
1724 return false;
1725
1726 if (ptype->id_match)
1727 return ptype->id_match(ptype, skb->sk);
1728 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1729 return true;
1730
1731 return false;
1732 }
1733
1734 /*
1735 * Support routine. Sends outgoing frames to any network
1736 * taps currently in use.
1737 */
1738
1739 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1740 {
1741 struct packet_type *ptype;
1742 struct sk_buff *skb2 = NULL;
1743 struct packet_type *pt_prev = NULL;
1744
1745 rcu_read_lock();
1746 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1747 /* Never send packets back to the socket
1748 * they originated from - MvS (miquels@drinkel.ow.org)
1749 */
1750 if ((ptype->dev == dev || !ptype->dev) &&
1751 (!skb_loop_sk(ptype, skb))) {
1752 if (pt_prev) {
1753 deliver_skb(skb2, pt_prev, skb->dev);
1754 pt_prev = ptype;
1755 continue;
1756 }
1757
1758 skb2 = skb_clone(skb, GFP_ATOMIC);
1759 if (!skb2)
1760 break;
1761
1762 net_timestamp_set(skb2);
1763
1764 /* skb->nh should be correctly
1765 set by sender, so that the second statement is
1766 just protection against buggy protocols.
1767 */
1768 skb_reset_mac_header(skb2);
1769
1770 if (skb_network_header(skb2) < skb2->data ||
1771 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1772 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1773 ntohs(skb2->protocol),
1774 dev->name);
1775 skb_reset_network_header(skb2);
1776 }
1777
1778 skb2->transport_header = skb2->network_header;
1779 skb2->pkt_type = PACKET_OUTGOING;
1780 pt_prev = ptype;
1781 }
1782 }
1783 if (pt_prev)
1784 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1785 rcu_read_unlock();
1786 }
1787
1788 /**
1789 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1790 * @dev: Network device
1791 * @txq: number of queues available
1792 *
1793 * If real_num_tx_queues is changed the tc mappings may no longer be
1794 * valid. To resolve this verify the tc mapping remains valid and if
1795 * not NULL the mapping. With no priorities mapping to this
1796 * offset/count pair it will no longer be used. In the worst case TC0
1797 * is invalid nothing can be done so disable priority mappings. If is
1798 * expected that drivers will fix this mapping if they can before
1799 * calling netif_set_real_num_tx_queues.
1800 */
1801 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1802 {
1803 int i;
1804 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1805
1806 /* If TC0 is invalidated disable TC mapping */
1807 if (tc->offset + tc->count > txq) {
1808 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1809 dev->num_tc = 0;
1810 return;
1811 }
1812
1813 /* Invalidated prio to tc mappings set to TC0 */
1814 for (i = 1; i < TC_BITMASK + 1; i++) {
1815 int q = netdev_get_prio_tc_map(dev, i);
1816
1817 tc = &dev->tc_to_txq[q];
1818 if (tc->offset + tc->count > txq) {
1819 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1820 i, q);
1821 netdev_set_prio_tc_map(dev, i, 0);
1822 }
1823 }
1824 }
1825
1826 #ifdef CONFIG_XPS
1827 static DEFINE_MUTEX(xps_map_mutex);
1828 #define xmap_dereference(P) \
1829 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1830
1831 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1832 int cpu, u16 index)
1833 {
1834 struct xps_map *map = NULL;
1835 int pos;
1836
1837 if (dev_maps)
1838 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1839
1840 for (pos = 0; map && pos < map->len; pos++) {
1841 if (map->queues[pos] == index) {
1842 if (map->len > 1) {
1843 map->queues[pos] = map->queues[--map->len];
1844 } else {
1845 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1846 kfree_rcu(map, rcu);
1847 map = NULL;
1848 }
1849 break;
1850 }
1851 }
1852
1853 return map;
1854 }
1855
1856 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1857 {
1858 struct xps_dev_maps *dev_maps;
1859 int cpu, i;
1860 bool active = false;
1861
1862 mutex_lock(&xps_map_mutex);
1863 dev_maps = xmap_dereference(dev->xps_maps);
1864
1865 if (!dev_maps)
1866 goto out_no_maps;
1867
1868 for_each_possible_cpu(cpu) {
1869 for (i = index; i < dev->num_tx_queues; i++) {
1870 if (!remove_xps_queue(dev_maps, cpu, i))
1871 break;
1872 }
1873 if (i == dev->num_tx_queues)
1874 active = true;
1875 }
1876
1877 if (!active) {
1878 RCU_INIT_POINTER(dev->xps_maps, NULL);
1879 kfree_rcu(dev_maps, rcu);
1880 }
1881
1882 for (i = index; i < dev->num_tx_queues; i++)
1883 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1884 NUMA_NO_NODE);
1885
1886 out_no_maps:
1887 mutex_unlock(&xps_map_mutex);
1888 }
1889
1890 static struct xps_map *expand_xps_map(struct xps_map *map,
1891 int cpu, u16 index)
1892 {
1893 struct xps_map *new_map;
1894 int alloc_len = XPS_MIN_MAP_ALLOC;
1895 int i, pos;
1896
1897 for (pos = 0; map && pos < map->len; pos++) {
1898 if (map->queues[pos] != index)
1899 continue;
1900 return map;
1901 }
1902
1903 /* Need to add queue to this CPU's existing map */
1904 if (map) {
1905 if (pos < map->alloc_len)
1906 return map;
1907
1908 alloc_len = map->alloc_len * 2;
1909 }
1910
1911 /* Need to allocate new map to store queue on this CPU's map */
1912 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1913 cpu_to_node(cpu));
1914 if (!new_map)
1915 return NULL;
1916
1917 for (i = 0; i < pos; i++)
1918 new_map->queues[i] = map->queues[i];
1919 new_map->alloc_len = alloc_len;
1920 new_map->len = pos;
1921
1922 return new_map;
1923 }
1924
1925 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1926 u16 index)
1927 {
1928 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1929 struct xps_map *map, *new_map;
1930 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1931 int cpu, numa_node_id = -2;
1932 bool active = false;
1933
1934 mutex_lock(&xps_map_mutex);
1935
1936 dev_maps = xmap_dereference(dev->xps_maps);
1937
1938 /* allocate memory for queue storage */
1939 for_each_online_cpu(cpu) {
1940 if (!cpumask_test_cpu(cpu, mask))
1941 continue;
1942
1943 if (!new_dev_maps)
1944 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1945 if (!new_dev_maps) {
1946 mutex_unlock(&xps_map_mutex);
1947 return -ENOMEM;
1948 }
1949
1950 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1951 NULL;
1952
1953 map = expand_xps_map(map, cpu, index);
1954 if (!map)
1955 goto error;
1956
1957 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1958 }
1959
1960 if (!new_dev_maps)
1961 goto out_no_new_maps;
1962
1963 for_each_possible_cpu(cpu) {
1964 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1965 /* add queue to CPU maps */
1966 int pos = 0;
1967
1968 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1969 while ((pos < map->len) && (map->queues[pos] != index))
1970 pos++;
1971
1972 if (pos == map->len)
1973 map->queues[map->len++] = index;
1974 #ifdef CONFIG_NUMA
1975 if (numa_node_id == -2)
1976 numa_node_id = cpu_to_node(cpu);
1977 else if (numa_node_id != cpu_to_node(cpu))
1978 numa_node_id = -1;
1979 #endif
1980 } else if (dev_maps) {
1981 /* fill in the new device map from the old device map */
1982 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1983 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1984 }
1985
1986 }
1987
1988 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1989
1990 /* Cleanup old maps */
1991 if (dev_maps) {
1992 for_each_possible_cpu(cpu) {
1993 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1994 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1995 if (map && map != new_map)
1996 kfree_rcu(map, rcu);
1997 }
1998
1999 kfree_rcu(dev_maps, rcu);
2000 }
2001
2002 dev_maps = new_dev_maps;
2003 active = true;
2004
2005 out_no_new_maps:
2006 /* update Tx queue numa node */
2007 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2008 (numa_node_id >= 0) ? numa_node_id :
2009 NUMA_NO_NODE);
2010
2011 if (!dev_maps)
2012 goto out_no_maps;
2013
2014 /* removes queue from unused CPUs */
2015 for_each_possible_cpu(cpu) {
2016 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2017 continue;
2018
2019 if (remove_xps_queue(dev_maps, cpu, index))
2020 active = true;
2021 }
2022
2023 /* free map if not active */
2024 if (!active) {
2025 RCU_INIT_POINTER(dev->xps_maps, NULL);
2026 kfree_rcu(dev_maps, rcu);
2027 }
2028
2029 out_no_maps:
2030 mutex_unlock(&xps_map_mutex);
2031
2032 return 0;
2033 error:
2034 /* remove any maps that we added */
2035 for_each_possible_cpu(cpu) {
2036 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2038 NULL;
2039 if (new_map && new_map != map)
2040 kfree(new_map);
2041 }
2042
2043 mutex_unlock(&xps_map_mutex);
2044
2045 kfree(new_dev_maps);
2046 return -ENOMEM;
2047 }
2048 EXPORT_SYMBOL(netif_set_xps_queue);
2049
2050 #endif
2051 /*
2052 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2053 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2054 */
2055 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2056 {
2057 int rc;
2058
2059 if (txq < 1 || txq > dev->num_tx_queues)
2060 return -EINVAL;
2061
2062 if (dev->reg_state == NETREG_REGISTERED ||
2063 dev->reg_state == NETREG_UNREGISTERING) {
2064 ASSERT_RTNL();
2065
2066 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2067 txq);
2068 if (rc)
2069 return rc;
2070
2071 if (dev->num_tc)
2072 netif_setup_tc(dev, txq);
2073
2074 if (txq < dev->real_num_tx_queues) {
2075 qdisc_reset_all_tx_gt(dev, txq);
2076 #ifdef CONFIG_XPS
2077 netif_reset_xps_queues_gt(dev, txq);
2078 #endif
2079 }
2080 }
2081
2082 dev->real_num_tx_queues = txq;
2083 return 0;
2084 }
2085 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2086
2087 #ifdef CONFIG_SYSFS
2088 /**
2089 * netif_set_real_num_rx_queues - set actual number of RX queues used
2090 * @dev: Network device
2091 * @rxq: Actual number of RX queues
2092 *
2093 * This must be called either with the rtnl_lock held or before
2094 * registration of the net device. Returns 0 on success, or a
2095 * negative error code. If called before registration, it always
2096 * succeeds.
2097 */
2098 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2099 {
2100 int rc;
2101
2102 if (rxq < 1 || rxq > dev->num_rx_queues)
2103 return -EINVAL;
2104
2105 if (dev->reg_state == NETREG_REGISTERED) {
2106 ASSERT_RTNL();
2107
2108 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2109 rxq);
2110 if (rc)
2111 return rc;
2112 }
2113
2114 dev->real_num_rx_queues = rxq;
2115 return 0;
2116 }
2117 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2118 #endif
2119
2120 /**
2121 * netif_get_num_default_rss_queues - default number of RSS queues
2122 *
2123 * This routine should set an upper limit on the number of RSS queues
2124 * used by default by multiqueue devices.
2125 */
2126 int netif_get_num_default_rss_queues(void)
2127 {
2128 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2129 }
2130 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2131
2132 static inline void __netif_reschedule(struct Qdisc *q)
2133 {
2134 struct softnet_data *sd;
2135 unsigned long flags;
2136
2137 local_irq_save(flags);
2138 sd = &__get_cpu_var(softnet_data);
2139 q->next_sched = NULL;
2140 *sd->output_queue_tailp = q;
2141 sd->output_queue_tailp = &q->next_sched;
2142 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2143 local_irq_restore(flags);
2144 }
2145
2146 void __netif_schedule(struct Qdisc *q)
2147 {
2148 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2149 __netif_reschedule(q);
2150 }
2151 EXPORT_SYMBOL(__netif_schedule);
2152
2153 struct dev_kfree_skb_cb {
2154 enum skb_free_reason reason;
2155 };
2156
2157 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2158 {
2159 return (struct dev_kfree_skb_cb *)skb->cb;
2160 }
2161
2162 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2163 {
2164 unsigned long flags;
2165
2166 if (likely(atomic_read(&skb->users) == 1)) {
2167 smp_rmb();
2168 atomic_set(&skb->users, 0);
2169 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2170 return;
2171 }
2172 get_kfree_skb_cb(skb)->reason = reason;
2173 local_irq_save(flags);
2174 skb->next = __this_cpu_read(softnet_data.completion_queue);
2175 __this_cpu_write(softnet_data.completion_queue, skb);
2176 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2177 local_irq_restore(flags);
2178 }
2179 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2180
2181 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2182 {
2183 if (in_irq() || irqs_disabled())
2184 __dev_kfree_skb_irq(skb, reason);
2185 else
2186 dev_kfree_skb(skb);
2187 }
2188 EXPORT_SYMBOL(__dev_kfree_skb_any);
2189
2190
2191 /**
2192 * netif_device_detach - mark device as removed
2193 * @dev: network device
2194 *
2195 * Mark device as removed from system and therefore no longer available.
2196 */
2197 void netif_device_detach(struct net_device *dev)
2198 {
2199 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2200 netif_running(dev)) {
2201 netif_tx_stop_all_queues(dev);
2202 }
2203 }
2204 EXPORT_SYMBOL(netif_device_detach);
2205
2206 /**
2207 * netif_device_attach - mark device as attached
2208 * @dev: network device
2209 *
2210 * Mark device as attached from system and restart if needed.
2211 */
2212 void netif_device_attach(struct net_device *dev)
2213 {
2214 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2215 netif_running(dev)) {
2216 netif_tx_wake_all_queues(dev);
2217 __netdev_watchdog_up(dev);
2218 }
2219 }
2220 EXPORT_SYMBOL(netif_device_attach);
2221
2222 static void skb_warn_bad_offload(const struct sk_buff *skb)
2223 {
2224 static const netdev_features_t null_features = 0;
2225 struct net_device *dev = skb->dev;
2226 const char *driver = "";
2227
2228 if (!net_ratelimit())
2229 return;
2230
2231 if (dev && dev->dev.parent)
2232 driver = dev_driver_string(dev->dev.parent);
2233
2234 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2235 "gso_type=%d ip_summed=%d\n",
2236 driver, dev ? &dev->features : &null_features,
2237 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2238 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2239 skb_shinfo(skb)->gso_type, skb->ip_summed);
2240 }
2241
2242 /*
2243 * Invalidate hardware checksum when packet is to be mangled, and
2244 * complete checksum manually on outgoing path.
2245 */
2246 int skb_checksum_help(struct sk_buff *skb)
2247 {
2248 __wsum csum;
2249 int ret = 0, offset;
2250
2251 if (skb->ip_summed == CHECKSUM_COMPLETE)
2252 goto out_set_summed;
2253
2254 if (unlikely(skb_shinfo(skb)->gso_size)) {
2255 skb_warn_bad_offload(skb);
2256 return -EINVAL;
2257 }
2258
2259 /* Before computing a checksum, we should make sure no frag could
2260 * be modified by an external entity : checksum could be wrong.
2261 */
2262 if (skb_has_shared_frag(skb)) {
2263 ret = __skb_linearize(skb);
2264 if (ret)
2265 goto out;
2266 }
2267
2268 offset = skb_checksum_start_offset(skb);
2269 BUG_ON(offset >= skb_headlen(skb));
2270 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2271
2272 offset += skb->csum_offset;
2273 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2274
2275 if (skb_cloned(skb) &&
2276 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2277 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2278 if (ret)
2279 goto out;
2280 }
2281
2282 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2283 out_set_summed:
2284 skb->ip_summed = CHECKSUM_NONE;
2285 out:
2286 return ret;
2287 }
2288 EXPORT_SYMBOL(skb_checksum_help);
2289
2290 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2291 {
2292 unsigned int vlan_depth = skb->mac_len;
2293 __be16 type = skb->protocol;
2294
2295 /* Tunnel gso handlers can set protocol to ethernet. */
2296 if (type == htons(ETH_P_TEB)) {
2297 struct ethhdr *eth;
2298
2299 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2300 return 0;
2301
2302 eth = (struct ethhdr *)skb_mac_header(skb);
2303 type = eth->h_proto;
2304 }
2305
2306 /* if skb->protocol is 802.1Q/AD then the header should already be
2307 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2308 * ETH_HLEN otherwise
2309 */
2310 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2311 if (vlan_depth) {
2312 if (unlikely(WARN_ON(vlan_depth < VLAN_HLEN)))
2313 return 0;
2314 vlan_depth -= VLAN_HLEN;
2315 } else {
2316 vlan_depth = ETH_HLEN;
2317 }
2318 do {
2319 struct vlan_hdr *vh;
2320
2321 if (unlikely(!pskb_may_pull(skb,
2322 vlan_depth + VLAN_HLEN)))
2323 return 0;
2324
2325 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2326 type = vh->h_vlan_encapsulated_proto;
2327 vlan_depth += VLAN_HLEN;
2328 } while (type == htons(ETH_P_8021Q) ||
2329 type == htons(ETH_P_8021AD));
2330 }
2331
2332 *depth = vlan_depth;
2333
2334 return type;
2335 }
2336
2337 /**
2338 * skb_mac_gso_segment - mac layer segmentation handler.
2339 * @skb: buffer to segment
2340 * @features: features for the output path (see dev->features)
2341 */
2342 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2343 netdev_features_t features)
2344 {
2345 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2346 struct packet_offload *ptype;
2347 int vlan_depth = skb->mac_len;
2348 __be16 type = skb_network_protocol(skb, &vlan_depth);
2349
2350 if (unlikely(!type))
2351 return ERR_PTR(-EINVAL);
2352
2353 __skb_pull(skb, vlan_depth);
2354
2355 rcu_read_lock();
2356 list_for_each_entry_rcu(ptype, &offload_base, list) {
2357 if (ptype->type == type && ptype->callbacks.gso_segment) {
2358 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2359 int err;
2360
2361 err = ptype->callbacks.gso_send_check(skb);
2362 segs = ERR_PTR(err);
2363 if (err || skb_gso_ok(skb, features))
2364 break;
2365 __skb_push(skb, (skb->data -
2366 skb_network_header(skb)));
2367 }
2368 segs = ptype->callbacks.gso_segment(skb, features);
2369 break;
2370 }
2371 }
2372 rcu_read_unlock();
2373
2374 __skb_push(skb, skb->data - skb_mac_header(skb));
2375
2376 return segs;
2377 }
2378 EXPORT_SYMBOL(skb_mac_gso_segment);
2379
2380
2381 /* openvswitch calls this on rx path, so we need a different check.
2382 */
2383 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2384 {
2385 if (tx_path)
2386 return skb->ip_summed != CHECKSUM_PARTIAL;
2387 else
2388 return skb->ip_summed == CHECKSUM_NONE;
2389 }
2390
2391 /**
2392 * __skb_gso_segment - Perform segmentation on skb.
2393 * @skb: buffer to segment
2394 * @features: features for the output path (see dev->features)
2395 * @tx_path: whether it is called in TX path
2396 *
2397 * This function segments the given skb and returns a list of segments.
2398 *
2399 * It may return NULL if the skb requires no segmentation. This is
2400 * only possible when GSO is used for verifying header integrity.
2401 */
2402 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2403 netdev_features_t features, bool tx_path)
2404 {
2405 if (unlikely(skb_needs_check(skb, tx_path))) {
2406 int err;
2407
2408 skb_warn_bad_offload(skb);
2409
2410 if (skb_header_cloned(skb) &&
2411 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2412 return ERR_PTR(err);
2413 }
2414
2415 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2416 SKB_GSO_CB(skb)->encap_level = 0;
2417
2418 skb_reset_mac_header(skb);
2419 skb_reset_mac_len(skb);
2420
2421 return skb_mac_gso_segment(skb, features);
2422 }
2423 EXPORT_SYMBOL(__skb_gso_segment);
2424
2425 /* Take action when hardware reception checksum errors are detected. */
2426 #ifdef CONFIG_BUG
2427 void netdev_rx_csum_fault(struct net_device *dev)
2428 {
2429 if (net_ratelimit()) {
2430 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2431 dump_stack();
2432 }
2433 }
2434 EXPORT_SYMBOL(netdev_rx_csum_fault);
2435 #endif
2436
2437 /* Actually, we should eliminate this check as soon as we know, that:
2438 * 1. IOMMU is present and allows to map all the memory.
2439 * 2. No high memory really exists on this machine.
2440 */
2441
2442 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2443 {
2444 #ifdef CONFIG_HIGHMEM
2445 int i;
2446 if (!(dev->features & NETIF_F_HIGHDMA)) {
2447 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2448 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2449 if (PageHighMem(skb_frag_page(frag)))
2450 return 1;
2451 }
2452 }
2453
2454 if (PCI_DMA_BUS_IS_PHYS) {
2455 struct device *pdev = dev->dev.parent;
2456
2457 if (!pdev)
2458 return 0;
2459 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2460 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2461 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2462 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2463 return 1;
2464 }
2465 }
2466 #endif
2467 return 0;
2468 }
2469
2470 struct dev_gso_cb {
2471 void (*destructor)(struct sk_buff *skb);
2472 };
2473
2474 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2475
2476 static void dev_gso_skb_destructor(struct sk_buff *skb)
2477 {
2478 struct dev_gso_cb *cb;
2479
2480 kfree_skb_list(skb->next);
2481 skb->next = NULL;
2482
2483 cb = DEV_GSO_CB(skb);
2484 if (cb->destructor)
2485 cb->destructor(skb);
2486 }
2487
2488 /**
2489 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2490 * @skb: buffer to segment
2491 * @features: device features as applicable to this skb
2492 *
2493 * This function segments the given skb and stores the list of segments
2494 * in skb->next.
2495 */
2496 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2497 {
2498 struct sk_buff *segs;
2499
2500 segs = skb_gso_segment(skb, features);
2501
2502 /* Verifying header integrity only. */
2503 if (!segs)
2504 return 0;
2505
2506 if (IS_ERR(segs))
2507 return PTR_ERR(segs);
2508
2509 skb->next = segs;
2510 DEV_GSO_CB(skb)->destructor = skb->destructor;
2511 skb->destructor = dev_gso_skb_destructor;
2512
2513 return 0;
2514 }
2515
2516 /* If MPLS offload request, verify we are testing hardware MPLS features
2517 * instead of standard features for the netdev.
2518 */
2519 #ifdef CONFIG_NET_MPLS_GSO
2520 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2521 netdev_features_t features,
2522 __be16 type)
2523 {
2524 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2525 features &= skb->dev->mpls_features;
2526
2527 return features;
2528 }
2529 #else
2530 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2531 netdev_features_t features,
2532 __be16 type)
2533 {
2534 return features;
2535 }
2536 #endif
2537
2538 static netdev_features_t harmonize_features(struct sk_buff *skb,
2539 netdev_features_t features)
2540 {
2541 int tmp;
2542 __be16 type;
2543
2544 type = skb_network_protocol(skb, &tmp);
2545 features = net_mpls_features(skb, features, type);
2546
2547 if (skb->ip_summed != CHECKSUM_NONE &&
2548 !can_checksum_protocol(features, type)) {
2549 features &= ~NETIF_F_ALL_CSUM;
2550 } else if (illegal_highdma(skb->dev, skb)) {
2551 features &= ~NETIF_F_SG;
2552 }
2553
2554 return features;
2555 }
2556
2557 netdev_features_t netif_skb_features(struct sk_buff *skb)
2558 {
2559 __be16 protocol = skb->protocol;
2560 netdev_features_t features = skb->dev->features;
2561
2562 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2563 features &= ~NETIF_F_GSO_MASK;
2564
2565 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2566 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2567 protocol = veh->h_vlan_encapsulated_proto;
2568 } else if (!vlan_tx_tag_present(skb)) {
2569 return harmonize_features(skb, features);
2570 }
2571
2572 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2573 NETIF_F_HW_VLAN_STAG_TX);
2574
2575 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2576 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2577 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2578 NETIF_F_HW_VLAN_STAG_TX;
2579
2580 return harmonize_features(skb, features);
2581 }
2582 EXPORT_SYMBOL(netif_skb_features);
2583
2584 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2585 struct netdev_queue *txq)
2586 {
2587 const struct net_device_ops *ops = dev->netdev_ops;
2588 int rc = NETDEV_TX_OK;
2589 unsigned int skb_len;
2590
2591 if (likely(!skb->next)) {
2592 netdev_features_t features;
2593
2594 /*
2595 * If device doesn't need skb->dst, release it right now while
2596 * its hot in this cpu cache
2597 */
2598 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2599 skb_dst_drop(skb);
2600
2601 features = netif_skb_features(skb);
2602
2603 if (vlan_tx_tag_present(skb) &&
2604 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2605 skb = __vlan_put_tag(skb, skb->vlan_proto,
2606 vlan_tx_tag_get(skb));
2607 if (unlikely(!skb))
2608 goto out;
2609
2610 skb->vlan_tci = 0;
2611 }
2612
2613 /* If encapsulation offload request, verify we are testing
2614 * hardware encapsulation features instead of standard
2615 * features for the netdev
2616 */
2617 if (skb->encapsulation)
2618 features &= dev->hw_enc_features;
2619
2620 if (netif_needs_gso(skb, features)) {
2621 if (unlikely(dev_gso_segment(skb, features)))
2622 goto out_kfree_skb;
2623 if (skb->next)
2624 goto gso;
2625 } else {
2626 if (skb_needs_linearize(skb, features) &&
2627 __skb_linearize(skb))
2628 goto out_kfree_skb;
2629
2630 /* If packet is not checksummed and device does not
2631 * support checksumming for this protocol, complete
2632 * checksumming here.
2633 */
2634 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2635 if (skb->encapsulation)
2636 skb_set_inner_transport_header(skb,
2637 skb_checksum_start_offset(skb));
2638 else
2639 skb_set_transport_header(skb,
2640 skb_checksum_start_offset(skb));
2641 if (!(features & NETIF_F_ALL_CSUM) &&
2642 skb_checksum_help(skb))
2643 goto out_kfree_skb;
2644 }
2645 }
2646
2647 if (!list_empty(&ptype_all))
2648 dev_queue_xmit_nit(skb, dev);
2649
2650 skb_len = skb->len;
2651 trace_net_dev_start_xmit(skb, dev);
2652 rc = ops->ndo_start_xmit(skb, dev);
2653 trace_net_dev_xmit(skb, rc, dev, skb_len);
2654 if (rc == NETDEV_TX_OK)
2655 txq_trans_update(txq);
2656 return rc;
2657 }
2658
2659 gso:
2660 do {
2661 struct sk_buff *nskb = skb->next;
2662
2663 skb->next = nskb->next;
2664 nskb->next = NULL;
2665
2666 if (!list_empty(&ptype_all))
2667 dev_queue_xmit_nit(nskb, dev);
2668
2669 skb_len = nskb->len;
2670 trace_net_dev_start_xmit(nskb, dev);
2671 rc = ops->ndo_start_xmit(nskb, dev);
2672 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2673 if (unlikely(rc != NETDEV_TX_OK)) {
2674 if (rc & ~NETDEV_TX_MASK)
2675 goto out_kfree_gso_skb;
2676 nskb->next = skb->next;
2677 skb->next = nskb;
2678 return rc;
2679 }
2680 txq_trans_update(txq);
2681 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2682 return NETDEV_TX_BUSY;
2683 } while (skb->next);
2684
2685 out_kfree_gso_skb:
2686 if (likely(skb->next == NULL)) {
2687 skb->destructor = DEV_GSO_CB(skb)->destructor;
2688 consume_skb(skb);
2689 return rc;
2690 }
2691 out_kfree_skb:
2692 kfree_skb(skb);
2693 out:
2694 return rc;
2695 }
2696 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2697
2698 static void qdisc_pkt_len_init(struct sk_buff *skb)
2699 {
2700 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2701
2702 qdisc_skb_cb(skb)->pkt_len = skb->len;
2703
2704 /* To get more precise estimation of bytes sent on wire,
2705 * we add to pkt_len the headers size of all segments
2706 */
2707 if (shinfo->gso_size) {
2708 unsigned int hdr_len;
2709 u16 gso_segs = shinfo->gso_segs;
2710
2711 /* mac layer + network layer */
2712 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2713
2714 /* + transport layer */
2715 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2716 hdr_len += tcp_hdrlen(skb);
2717 else
2718 hdr_len += sizeof(struct udphdr);
2719
2720 if (shinfo->gso_type & SKB_GSO_DODGY)
2721 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2722 shinfo->gso_size);
2723
2724 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2725 }
2726 }
2727
2728 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2729 struct net_device *dev,
2730 struct netdev_queue *txq)
2731 {
2732 spinlock_t *root_lock = qdisc_lock(q);
2733 bool contended;
2734 int rc;
2735
2736 qdisc_pkt_len_init(skb);
2737 qdisc_calculate_pkt_len(skb, q);
2738 /*
2739 * Heuristic to force contended enqueues to serialize on a
2740 * separate lock before trying to get qdisc main lock.
2741 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2742 * and dequeue packets faster.
2743 */
2744 contended = qdisc_is_running(q);
2745 if (unlikely(contended))
2746 spin_lock(&q->busylock);
2747
2748 spin_lock(root_lock);
2749 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2750 kfree_skb(skb);
2751 rc = NET_XMIT_DROP;
2752 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2753 qdisc_run_begin(q)) {
2754 /*
2755 * This is a work-conserving queue; there are no old skbs
2756 * waiting to be sent out; and the qdisc is not running -
2757 * xmit the skb directly.
2758 */
2759 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2760 skb_dst_force(skb);
2761
2762 qdisc_bstats_update(q, skb);
2763
2764 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2765 if (unlikely(contended)) {
2766 spin_unlock(&q->busylock);
2767 contended = false;
2768 }
2769 __qdisc_run(q);
2770 } else
2771 qdisc_run_end(q);
2772
2773 rc = NET_XMIT_SUCCESS;
2774 } else {
2775 skb_dst_force(skb);
2776 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2777 if (qdisc_run_begin(q)) {
2778 if (unlikely(contended)) {
2779 spin_unlock(&q->busylock);
2780 contended = false;
2781 }
2782 __qdisc_run(q);
2783 }
2784 }
2785 spin_unlock(root_lock);
2786 if (unlikely(contended))
2787 spin_unlock(&q->busylock);
2788 return rc;
2789 }
2790
2791 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2792 static void skb_update_prio(struct sk_buff *skb)
2793 {
2794 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2795
2796 if (!skb->priority && skb->sk && map) {
2797 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2798
2799 if (prioidx < map->priomap_len)
2800 skb->priority = map->priomap[prioidx];
2801 }
2802 }
2803 #else
2804 #define skb_update_prio(skb)
2805 #endif
2806
2807 static DEFINE_PER_CPU(int, xmit_recursion);
2808 #define RECURSION_LIMIT 10
2809
2810 /**
2811 * dev_loopback_xmit - loop back @skb
2812 * @skb: buffer to transmit
2813 */
2814 int dev_loopback_xmit(struct sk_buff *skb)
2815 {
2816 skb_reset_mac_header(skb);
2817 __skb_pull(skb, skb_network_offset(skb));
2818 skb->pkt_type = PACKET_LOOPBACK;
2819 skb->ip_summed = CHECKSUM_UNNECESSARY;
2820 WARN_ON(!skb_dst(skb));
2821 skb_dst_force(skb);
2822 netif_rx_ni(skb);
2823 return 0;
2824 }
2825 EXPORT_SYMBOL(dev_loopback_xmit);
2826
2827 /**
2828 * __dev_queue_xmit - transmit a buffer
2829 * @skb: buffer to transmit
2830 * @accel_priv: private data used for L2 forwarding offload
2831 *
2832 * Queue a buffer for transmission to a network device. The caller must
2833 * have set the device and priority and built the buffer before calling
2834 * this function. The function can be called from an interrupt.
2835 *
2836 * A negative errno code is returned on a failure. A success does not
2837 * guarantee the frame will be transmitted as it may be dropped due
2838 * to congestion or traffic shaping.
2839 *
2840 * -----------------------------------------------------------------------------------
2841 * I notice this method can also return errors from the queue disciplines,
2842 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2843 * be positive.
2844 *
2845 * Regardless of the return value, the skb is consumed, so it is currently
2846 * difficult to retry a send to this method. (You can bump the ref count
2847 * before sending to hold a reference for retry if you are careful.)
2848 *
2849 * When calling this method, interrupts MUST be enabled. This is because
2850 * the BH enable code must have IRQs enabled so that it will not deadlock.
2851 * --BLG
2852 */
2853 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2854 {
2855 struct net_device *dev = skb->dev;
2856 struct netdev_queue *txq;
2857 struct Qdisc *q;
2858 int rc = -ENOMEM;
2859
2860 skb_reset_mac_header(skb);
2861
2862 /* Disable soft irqs for various locks below. Also
2863 * stops preemption for RCU.
2864 */
2865 rcu_read_lock_bh();
2866
2867 skb_update_prio(skb);
2868
2869 txq = netdev_pick_tx(dev, skb, accel_priv);
2870 q = rcu_dereference_bh(txq->qdisc);
2871
2872 #ifdef CONFIG_NET_CLS_ACT
2873 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2874 #endif
2875 trace_net_dev_queue(skb);
2876 if (q->enqueue) {
2877 rc = __dev_xmit_skb(skb, q, dev, txq);
2878 goto out;
2879 }
2880
2881 /* The device has no queue. Common case for software devices:
2882 loopback, all the sorts of tunnels...
2883
2884 Really, it is unlikely that netif_tx_lock protection is necessary
2885 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2886 counters.)
2887 However, it is possible, that they rely on protection
2888 made by us here.
2889
2890 Check this and shot the lock. It is not prone from deadlocks.
2891 Either shot noqueue qdisc, it is even simpler 8)
2892 */
2893 if (dev->flags & IFF_UP) {
2894 int cpu = smp_processor_id(); /* ok because BHs are off */
2895
2896 if (txq->xmit_lock_owner != cpu) {
2897
2898 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2899 goto recursion_alert;
2900
2901 HARD_TX_LOCK(dev, txq, cpu);
2902
2903 if (!netif_xmit_stopped(txq)) {
2904 __this_cpu_inc(xmit_recursion);
2905 rc = dev_hard_start_xmit(skb, dev, txq);
2906 __this_cpu_dec(xmit_recursion);
2907 if (dev_xmit_complete(rc)) {
2908 HARD_TX_UNLOCK(dev, txq);
2909 goto out;
2910 }
2911 }
2912 HARD_TX_UNLOCK(dev, txq);
2913 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2914 dev->name);
2915 } else {
2916 /* Recursion is detected! It is possible,
2917 * unfortunately
2918 */
2919 recursion_alert:
2920 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2921 dev->name);
2922 }
2923 }
2924
2925 rc = -ENETDOWN;
2926 rcu_read_unlock_bh();
2927
2928 atomic_long_inc(&dev->tx_dropped);
2929 kfree_skb(skb);
2930 return rc;
2931 out:
2932 rcu_read_unlock_bh();
2933 return rc;
2934 }
2935
2936 int dev_queue_xmit(struct sk_buff *skb)
2937 {
2938 return __dev_queue_xmit(skb, NULL);
2939 }
2940 EXPORT_SYMBOL(dev_queue_xmit);
2941
2942 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2943 {
2944 return __dev_queue_xmit(skb, accel_priv);
2945 }
2946 EXPORT_SYMBOL(dev_queue_xmit_accel);
2947
2948
2949 /*=======================================================================
2950 Receiver routines
2951 =======================================================================*/
2952
2953 int netdev_max_backlog __read_mostly = 1000;
2954 EXPORT_SYMBOL(netdev_max_backlog);
2955
2956 int netdev_tstamp_prequeue __read_mostly = 1;
2957 int netdev_budget __read_mostly = 300;
2958 int weight_p __read_mostly = 64; /* old backlog weight */
2959
2960 /* Called with irq disabled */
2961 static inline void ____napi_schedule(struct softnet_data *sd,
2962 struct napi_struct *napi)
2963 {
2964 list_add_tail(&napi->poll_list, &sd->poll_list);
2965 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2966 }
2967
2968 #ifdef CONFIG_RPS
2969
2970 /* One global table that all flow-based protocols share. */
2971 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2972 EXPORT_SYMBOL(rps_sock_flow_table);
2973
2974 struct static_key rps_needed __read_mostly;
2975
2976 static struct rps_dev_flow *
2977 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2978 struct rps_dev_flow *rflow, u16 next_cpu)
2979 {
2980 if (next_cpu != RPS_NO_CPU) {
2981 #ifdef CONFIG_RFS_ACCEL
2982 struct netdev_rx_queue *rxqueue;
2983 struct rps_dev_flow_table *flow_table;
2984 struct rps_dev_flow *old_rflow;
2985 u32 flow_id;
2986 u16 rxq_index;
2987 int rc;
2988
2989 /* Should we steer this flow to a different hardware queue? */
2990 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2991 !(dev->features & NETIF_F_NTUPLE))
2992 goto out;
2993 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2994 if (rxq_index == skb_get_rx_queue(skb))
2995 goto out;
2996
2997 rxqueue = dev->_rx + rxq_index;
2998 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2999 if (!flow_table)
3000 goto out;
3001 flow_id = skb_get_hash(skb) & flow_table->mask;
3002 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3003 rxq_index, flow_id);
3004 if (rc < 0)
3005 goto out;
3006 old_rflow = rflow;
3007 rflow = &flow_table->flows[flow_id];
3008 rflow->filter = rc;
3009 if (old_rflow->filter == rflow->filter)
3010 old_rflow->filter = RPS_NO_FILTER;
3011 out:
3012 #endif
3013 rflow->last_qtail =
3014 per_cpu(softnet_data, next_cpu).input_queue_head;
3015 }
3016
3017 rflow->cpu = next_cpu;
3018 return rflow;
3019 }
3020
3021 /*
3022 * get_rps_cpu is called from netif_receive_skb and returns the target
3023 * CPU from the RPS map of the receiving queue for a given skb.
3024 * rcu_read_lock must be held on entry.
3025 */
3026 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3027 struct rps_dev_flow **rflowp)
3028 {
3029 struct netdev_rx_queue *rxqueue;
3030 struct rps_map *map;
3031 struct rps_dev_flow_table *flow_table;
3032 struct rps_sock_flow_table *sock_flow_table;
3033 int cpu = -1;
3034 u16 tcpu;
3035 u32 hash;
3036
3037 if (skb_rx_queue_recorded(skb)) {
3038 u16 index = skb_get_rx_queue(skb);
3039 if (unlikely(index >= dev->real_num_rx_queues)) {
3040 WARN_ONCE(dev->real_num_rx_queues > 1,
3041 "%s received packet on queue %u, but number "
3042 "of RX queues is %u\n",
3043 dev->name, index, dev->real_num_rx_queues);
3044 goto done;
3045 }
3046 rxqueue = dev->_rx + index;
3047 } else
3048 rxqueue = dev->_rx;
3049
3050 map = rcu_dereference(rxqueue->rps_map);
3051 if (map) {
3052 if (map->len == 1 &&
3053 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3054 tcpu = map->cpus[0];
3055 if (cpu_online(tcpu))
3056 cpu = tcpu;
3057 goto done;
3058 }
3059 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3060 goto done;
3061 }
3062
3063 skb_reset_network_header(skb);
3064 hash = skb_get_hash(skb);
3065 if (!hash)
3066 goto done;
3067
3068 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3069 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3070 if (flow_table && sock_flow_table) {
3071 u16 next_cpu;
3072 struct rps_dev_flow *rflow;
3073
3074 rflow = &flow_table->flows[hash & flow_table->mask];
3075 tcpu = rflow->cpu;
3076
3077 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3078
3079 /*
3080 * If the desired CPU (where last recvmsg was done) is
3081 * different from current CPU (one in the rx-queue flow
3082 * table entry), switch if one of the following holds:
3083 * - Current CPU is unset (equal to RPS_NO_CPU).
3084 * - Current CPU is offline.
3085 * - The current CPU's queue tail has advanced beyond the
3086 * last packet that was enqueued using this table entry.
3087 * This guarantees that all previous packets for the flow
3088 * have been dequeued, thus preserving in order delivery.
3089 */
3090 if (unlikely(tcpu != next_cpu) &&
3091 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3092 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3093 rflow->last_qtail)) >= 0)) {
3094 tcpu = next_cpu;
3095 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3096 }
3097
3098 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3099 *rflowp = rflow;
3100 cpu = tcpu;
3101 goto done;
3102 }
3103 }
3104
3105 if (map) {
3106 tcpu = map->cpus[((u64) hash * map->len) >> 32];
3107
3108 if (cpu_online(tcpu)) {
3109 cpu = tcpu;
3110 goto done;
3111 }
3112 }
3113
3114 done:
3115 return cpu;
3116 }
3117
3118 #ifdef CONFIG_RFS_ACCEL
3119
3120 /**
3121 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3122 * @dev: Device on which the filter was set
3123 * @rxq_index: RX queue index
3124 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3125 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3126 *
3127 * Drivers that implement ndo_rx_flow_steer() should periodically call
3128 * this function for each installed filter and remove the filters for
3129 * which it returns %true.
3130 */
3131 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3132 u32 flow_id, u16 filter_id)
3133 {
3134 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3135 struct rps_dev_flow_table *flow_table;
3136 struct rps_dev_flow *rflow;
3137 bool expire = true;
3138 int cpu;
3139
3140 rcu_read_lock();
3141 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3142 if (flow_table && flow_id <= flow_table->mask) {
3143 rflow = &flow_table->flows[flow_id];
3144 cpu = ACCESS_ONCE(rflow->cpu);
3145 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3146 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3147 rflow->last_qtail) <
3148 (int)(10 * flow_table->mask)))
3149 expire = false;
3150 }
3151 rcu_read_unlock();
3152 return expire;
3153 }
3154 EXPORT_SYMBOL(rps_may_expire_flow);
3155
3156 #endif /* CONFIG_RFS_ACCEL */
3157
3158 /* Called from hardirq (IPI) context */
3159 static void rps_trigger_softirq(void *data)
3160 {
3161 struct softnet_data *sd = data;
3162
3163 ____napi_schedule(sd, &sd->backlog);
3164 sd->received_rps++;
3165 }
3166
3167 #endif /* CONFIG_RPS */
3168
3169 /*
3170 * Check if this softnet_data structure is another cpu one
3171 * If yes, queue it to our IPI list and return 1
3172 * If no, return 0
3173 */
3174 static int rps_ipi_queued(struct softnet_data *sd)
3175 {
3176 #ifdef CONFIG_RPS
3177 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3178
3179 if (sd != mysd) {
3180 sd->rps_ipi_next = mysd->rps_ipi_list;
3181 mysd->rps_ipi_list = sd;
3182
3183 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3184 return 1;
3185 }
3186 #endif /* CONFIG_RPS */
3187 return 0;
3188 }
3189
3190 #ifdef CONFIG_NET_FLOW_LIMIT
3191 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3192 #endif
3193
3194 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3195 {
3196 #ifdef CONFIG_NET_FLOW_LIMIT
3197 struct sd_flow_limit *fl;
3198 struct softnet_data *sd;
3199 unsigned int old_flow, new_flow;
3200
3201 if (qlen < (netdev_max_backlog >> 1))
3202 return false;
3203
3204 sd = &__get_cpu_var(softnet_data);
3205
3206 rcu_read_lock();
3207 fl = rcu_dereference(sd->flow_limit);
3208 if (fl) {
3209 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3210 old_flow = fl->history[fl->history_head];
3211 fl->history[fl->history_head] = new_flow;
3212
3213 fl->history_head++;
3214 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3215
3216 if (likely(fl->buckets[old_flow]))
3217 fl->buckets[old_flow]--;
3218
3219 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3220 fl->count++;
3221 rcu_read_unlock();
3222 return true;
3223 }
3224 }
3225 rcu_read_unlock();
3226 #endif
3227 return false;
3228 }
3229
3230 /*
3231 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3232 * queue (may be a remote CPU queue).
3233 */
3234 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3235 unsigned int *qtail)
3236 {
3237 struct softnet_data *sd;
3238 unsigned long flags;
3239 unsigned int qlen;
3240
3241 sd = &per_cpu(softnet_data, cpu);
3242
3243 local_irq_save(flags);
3244
3245 rps_lock(sd);
3246 qlen = skb_queue_len(&sd->input_pkt_queue);
3247 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3248 if (skb_queue_len(&sd->input_pkt_queue)) {
3249 enqueue:
3250 __skb_queue_tail(&sd->input_pkt_queue, skb);
3251 input_queue_tail_incr_save(sd, qtail);
3252 rps_unlock(sd);
3253 local_irq_restore(flags);
3254 return NET_RX_SUCCESS;
3255 }
3256
3257 /* Schedule NAPI for backlog device
3258 * We can use non atomic operation since we own the queue lock
3259 */
3260 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3261 if (!rps_ipi_queued(sd))
3262 ____napi_schedule(sd, &sd->backlog);
3263 }
3264 goto enqueue;
3265 }
3266
3267 sd->dropped++;
3268 rps_unlock(sd);
3269
3270 local_irq_restore(flags);
3271
3272 atomic_long_inc(&skb->dev->rx_dropped);
3273 kfree_skb(skb);
3274 return NET_RX_DROP;
3275 }
3276
3277 static int netif_rx_internal(struct sk_buff *skb)
3278 {
3279 int ret;
3280
3281 net_timestamp_check(netdev_tstamp_prequeue, skb);
3282
3283 trace_netif_rx(skb);
3284 #ifdef CONFIG_RPS
3285 if (static_key_false(&rps_needed)) {
3286 struct rps_dev_flow voidflow, *rflow = &voidflow;
3287 int cpu;
3288
3289 preempt_disable();
3290 rcu_read_lock();
3291
3292 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3293 if (cpu < 0)
3294 cpu = smp_processor_id();
3295
3296 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3297
3298 rcu_read_unlock();
3299 preempt_enable();
3300 } else
3301 #endif
3302 {
3303 unsigned int qtail;
3304 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3305 put_cpu();
3306 }
3307 return ret;
3308 }
3309
3310 /**
3311 * netif_rx - post buffer to the network code
3312 * @skb: buffer to post
3313 *
3314 * This function receives a packet from a device driver and queues it for
3315 * the upper (protocol) levels to process. It always succeeds. The buffer
3316 * may be dropped during processing for congestion control or by the
3317 * protocol layers.
3318 *
3319 * return values:
3320 * NET_RX_SUCCESS (no congestion)
3321 * NET_RX_DROP (packet was dropped)
3322 *
3323 */
3324
3325 int netif_rx(struct sk_buff *skb)
3326 {
3327 trace_netif_rx_entry(skb);
3328
3329 return netif_rx_internal(skb);
3330 }
3331 EXPORT_SYMBOL(netif_rx);
3332
3333 int netif_rx_ni(struct sk_buff *skb)
3334 {
3335 int err;
3336
3337 trace_netif_rx_ni_entry(skb);
3338
3339 preempt_disable();
3340 err = netif_rx_internal(skb);
3341 if (local_softirq_pending())
3342 do_softirq();
3343 preempt_enable();
3344
3345 return err;
3346 }
3347 EXPORT_SYMBOL(netif_rx_ni);
3348
3349 static void net_tx_action(struct softirq_action *h)
3350 {
3351 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3352
3353 if (sd->completion_queue) {
3354 struct sk_buff *clist;
3355
3356 local_irq_disable();
3357 clist = sd->completion_queue;
3358 sd->completion_queue = NULL;
3359 local_irq_enable();
3360
3361 while (clist) {
3362 struct sk_buff *skb = clist;
3363 clist = clist->next;
3364
3365 WARN_ON(atomic_read(&skb->users));
3366 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3367 trace_consume_skb(skb);
3368 else
3369 trace_kfree_skb(skb, net_tx_action);
3370 __kfree_skb(skb);
3371 }
3372 }
3373
3374 if (sd->output_queue) {
3375 struct Qdisc *head;
3376
3377 local_irq_disable();
3378 head = sd->output_queue;
3379 sd->output_queue = NULL;
3380 sd->output_queue_tailp = &sd->output_queue;
3381 local_irq_enable();
3382
3383 while (head) {
3384 struct Qdisc *q = head;
3385 spinlock_t *root_lock;
3386
3387 head = head->next_sched;
3388
3389 root_lock = qdisc_lock(q);
3390 if (spin_trylock(root_lock)) {
3391 smp_mb__before_atomic();
3392 clear_bit(__QDISC_STATE_SCHED,
3393 &q->state);
3394 qdisc_run(q);
3395 spin_unlock(root_lock);
3396 } else {
3397 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3398 &q->state)) {
3399 __netif_reschedule(q);
3400 } else {
3401 smp_mb__before_atomic();
3402 clear_bit(__QDISC_STATE_SCHED,
3403 &q->state);
3404 }
3405 }
3406 }
3407 }
3408 }
3409
3410 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3411 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3412 /* This hook is defined here for ATM LANE */
3413 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3414 unsigned char *addr) __read_mostly;
3415 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3416 #endif
3417
3418 #ifdef CONFIG_NET_CLS_ACT
3419 /* TODO: Maybe we should just force sch_ingress to be compiled in
3420 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3421 * a compare and 2 stores extra right now if we dont have it on
3422 * but have CONFIG_NET_CLS_ACT
3423 * NOTE: This doesn't stop any functionality; if you dont have
3424 * the ingress scheduler, you just can't add policies on ingress.
3425 *
3426 */
3427 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3428 {
3429 struct net_device *dev = skb->dev;
3430 u32 ttl = G_TC_RTTL(skb->tc_verd);
3431 int result = TC_ACT_OK;
3432 struct Qdisc *q;
3433
3434 if (unlikely(MAX_RED_LOOP < ttl++)) {
3435 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3436 skb->skb_iif, dev->ifindex);
3437 return TC_ACT_SHOT;
3438 }
3439
3440 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3441 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3442
3443 q = rxq->qdisc;
3444 if (q != &noop_qdisc) {
3445 spin_lock(qdisc_lock(q));
3446 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3447 result = qdisc_enqueue_root(skb, q);
3448 spin_unlock(qdisc_lock(q));
3449 }
3450
3451 return result;
3452 }
3453
3454 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3455 struct packet_type **pt_prev,
3456 int *ret, struct net_device *orig_dev)
3457 {
3458 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3459
3460 if (!rxq || rxq->qdisc == &noop_qdisc)
3461 goto out;
3462
3463 if (*pt_prev) {
3464 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3465 *pt_prev = NULL;
3466 }
3467
3468 switch (ing_filter(skb, rxq)) {
3469 case TC_ACT_SHOT:
3470 case TC_ACT_STOLEN:
3471 kfree_skb(skb);
3472 return NULL;
3473 }
3474
3475 out:
3476 skb->tc_verd = 0;
3477 return skb;
3478 }
3479 #endif
3480
3481 /**
3482 * netdev_rx_handler_register - register receive handler
3483 * @dev: device to register a handler for
3484 * @rx_handler: receive handler to register
3485 * @rx_handler_data: data pointer that is used by rx handler
3486 *
3487 * Register a receive handler for a device. This handler will then be
3488 * called from __netif_receive_skb. A negative errno code is returned
3489 * on a failure.
3490 *
3491 * The caller must hold the rtnl_mutex.
3492 *
3493 * For a general description of rx_handler, see enum rx_handler_result.
3494 */
3495 int netdev_rx_handler_register(struct net_device *dev,
3496 rx_handler_func_t *rx_handler,
3497 void *rx_handler_data)
3498 {
3499 ASSERT_RTNL();
3500
3501 if (dev->rx_handler)
3502 return -EBUSY;
3503
3504 /* Note: rx_handler_data must be set before rx_handler */
3505 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3506 rcu_assign_pointer(dev->rx_handler, rx_handler);
3507
3508 return 0;
3509 }
3510 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3511
3512 /**
3513 * netdev_rx_handler_unregister - unregister receive handler
3514 * @dev: device to unregister a handler from
3515 *
3516 * Unregister a receive handler from a device.
3517 *
3518 * The caller must hold the rtnl_mutex.
3519 */
3520 void netdev_rx_handler_unregister(struct net_device *dev)
3521 {
3522
3523 ASSERT_RTNL();
3524 RCU_INIT_POINTER(dev->rx_handler, NULL);
3525 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3526 * section has a guarantee to see a non NULL rx_handler_data
3527 * as well.
3528 */
3529 synchronize_net();
3530 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3531 }
3532 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3533
3534 /*
3535 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3536 * the special handling of PFMEMALLOC skbs.
3537 */
3538 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3539 {
3540 switch (skb->protocol) {
3541 case htons(ETH_P_ARP):
3542 case htons(ETH_P_IP):
3543 case htons(ETH_P_IPV6):
3544 case htons(ETH_P_8021Q):
3545 case htons(ETH_P_8021AD):
3546 return true;
3547 default:
3548 return false;
3549 }
3550 }
3551
3552 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3553 {
3554 struct packet_type *ptype, *pt_prev;
3555 rx_handler_func_t *rx_handler;
3556 struct net_device *orig_dev;
3557 struct net_device *null_or_dev;
3558 bool deliver_exact = false;
3559 int ret = NET_RX_DROP;
3560 __be16 type;
3561
3562 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3563
3564 trace_netif_receive_skb(skb);
3565
3566 orig_dev = skb->dev;
3567
3568 skb_reset_network_header(skb);
3569 if (!skb_transport_header_was_set(skb))
3570 skb_reset_transport_header(skb);
3571 skb_reset_mac_len(skb);
3572
3573 pt_prev = NULL;
3574
3575 rcu_read_lock();
3576
3577 another_round:
3578 skb->skb_iif = skb->dev->ifindex;
3579
3580 __this_cpu_inc(softnet_data.processed);
3581
3582 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3583 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3584 skb = vlan_untag(skb);
3585 if (unlikely(!skb))
3586 goto unlock;
3587 }
3588
3589 #ifdef CONFIG_NET_CLS_ACT
3590 if (skb->tc_verd & TC_NCLS) {
3591 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3592 goto ncls;
3593 }
3594 #endif
3595
3596 if (pfmemalloc)
3597 goto skip_taps;
3598
3599 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3600 if (!ptype->dev || ptype->dev == skb->dev) {
3601 if (pt_prev)
3602 ret = deliver_skb(skb, pt_prev, orig_dev);
3603 pt_prev = ptype;
3604 }
3605 }
3606
3607 skip_taps:
3608 #ifdef CONFIG_NET_CLS_ACT
3609 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3610 if (!skb)
3611 goto unlock;
3612 ncls:
3613 #endif
3614
3615 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3616 goto drop;
3617
3618 if (vlan_tx_tag_present(skb)) {
3619 if (pt_prev) {
3620 ret = deliver_skb(skb, pt_prev, orig_dev);
3621 pt_prev = NULL;
3622 }
3623 if (vlan_do_receive(&skb))
3624 goto another_round;
3625 else if (unlikely(!skb))
3626 goto unlock;
3627 }
3628
3629 rx_handler = rcu_dereference(skb->dev->rx_handler);
3630 if (rx_handler) {
3631 if (pt_prev) {
3632 ret = deliver_skb(skb, pt_prev, orig_dev);
3633 pt_prev = NULL;
3634 }
3635 switch (rx_handler(&skb)) {
3636 case RX_HANDLER_CONSUMED:
3637 ret = NET_RX_SUCCESS;
3638 goto unlock;
3639 case RX_HANDLER_ANOTHER:
3640 goto another_round;
3641 case RX_HANDLER_EXACT:
3642 deliver_exact = true;
3643 case RX_HANDLER_PASS:
3644 break;
3645 default:
3646 BUG();
3647 }
3648 }
3649
3650 if (unlikely(vlan_tx_tag_present(skb))) {
3651 if (vlan_tx_tag_get_id(skb))
3652 skb->pkt_type = PACKET_OTHERHOST;
3653 /* Note: we might in the future use prio bits
3654 * and set skb->priority like in vlan_do_receive()
3655 * For the time being, just ignore Priority Code Point
3656 */
3657 skb->vlan_tci = 0;
3658 }
3659
3660 /* deliver only exact match when indicated */
3661 null_or_dev = deliver_exact ? skb->dev : NULL;
3662
3663 type = skb->protocol;
3664 list_for_each_entry_rcu(ptype,
3665 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3666 if (ptype->type == type &&
3667 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3668 ptype->dev == orig_dev)) {
3669 if (pt_prev)
3670 ret = deliver_skb(skb, pt_prev, orig_dev);
3671 pt_prev = ptype;
3672 }
3673 }
3674
3675 if (pt_prev) {
3676 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3677 goto drop;
3678 else
3679 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3680 } else {
3681 drop:
3682 atomic_long_inc(&skb->dev->rx_dropped);
3683 kfree_skb(skb);
3684 /* Jamal, now you will not able to escape explaining
3685 * me how you were going to use this. :-)
3686 */
3687 ret = NET_RX_DROP;
3688 }
3689
3690 unlock:
3691 rcu_read_unlock();
3692 return ret;
3693 }
3694
3695 static int __netif_receive_skb(struct sk_buff *skb)
3696 {
3697 int ret;
3698
3699 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3700 unsigned long pflags = current->flags;
3701
3702 /*
3703 * PFMEMALLOC skbs are special, they should
3704 * - be delivered to SOCK_MEMALLOC sockets only
3705 * - stay away from userspace
3706 * - have bounded memory usage
3707 *
3708 * Use PF_MEMALLOC as this saves us from propagating the allocation
3709 * context down to all allocation sites.
3710 */
3711 current->flags |= PF_MEMALLOC;
3712 ret = __netif_receive_skb_core(skb, true);
3713 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3714 } else
3715 ret = __netif_receive_skb_core(skb, false);
3716
3717 return ret;
3718 }
3719
3720 static int netif_receive_skb_internal(struct sk_buff *skb)
3721 {
3722 net_timestamp_check(netdev_tstamp_prequeue, skb);
3723
3724 if (skb_defer_rx_timestamp(skb))
3725 return NET_RX_SUCCESS;
3726
3727 #ifdef CONFIG_RPS
3728 if (static_key_false(&rps_needed)) {
3729 struct rps_dev_flow voidflow, *rflow = &voidflow;
3730 int cpu, ret;
3731
3732 rcu_read_lock();
3733
3734 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3735
3736 if (cpu >= 0) {
3737 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3738 rcu_read_unlock();
3739 return ret;
3740 }
3741 rcu_read_unlock();
3742 }
3743 #endif
3744 return __netif_receive_skb(skb);
3745 }
3746
3747 /**
3748 * netif_receive_skb - process receive buffer from network
3749 * @skb: buffer to process
3750 *
3751 * netif_receive_skb() is the main receive data processing function.
3752 * It always succeeds. The buffer may be dropped during processing
3753 * for congestion control or by the protocol layers.
3754 *
3755 * This function may only be called from softirq context and interrupts
3756 * should be enabled.
3757 *
3758 * Return values (usually ignored):
3759 * NET_RX_SUCCESS: no congestion
3760 * NET_RX_DROP: packet was dropped
3761 */
3762 int netif_receive_skb(struct sk_buff *skb)
3763 {
3764 trace_netif_receive_skb_entry(skb);
3765
3766 return netif_receive_skb_internal(skb);
3767 }
3768 EXPORT_SYMBOL(netif_receive_skb);
3769
3770 /* Network device is going away, flush any packets still pending
3771 * Called with irqs disabled.
3772 */
3773 static void flush_backlog(void *arg)
3774 {
3775 struct net_device *dev = arg;
3776 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3777 struct sk_buff *skb, *tmp;
3778
3779 rps_lock(sd);
3780 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3781 if (skb->dev == dev) {
3782 __skb_unlink(skb, &sd->input_pkt_queue);
3783 kfree_skb(skb);
3784 input_queue_head_incr(sd);
3785 }
3786 }
3787 rps_unlock(sd);
3788
3789 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3790 if (skb->dev == dev) {
3791 __skb_unlink(skb, &sd->process_queue);
3792 kfree_skb(skb);
3793 input_queue_head_incr(sd);
3794 }
3795 }
3796 }
3797
3798 static int napi_gro_complete(struct sk_buff *skb)
3799 {
3800 struct packet_offload *ptype;
3801 __be16 type = skb->protocol;
3802 struct list_head *head = &offload_base;
3803 int err = -ENOENT;
3804
3805 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3806
3807 if (NAPI_GRO_CB(skb)->count == 1) {
3808 skb_shinfo(skb)->gso_size = 0;
3809 goto out;
3810 }
3811
3812 rcu_read_lock();
3813 list_for_each_entry_rcu(ptype, head, list) {
3814 if (ptype->type != type || !ptype->callbacks.gro_complete)
3815 continue;
3816
3817 err = ptype->callbacks.gro_complete(skb, 0);
3818 break;
3819 }
3820 rcu_read_unlock();
3821
3822 if (err) {
3823 WARN_ON(&ptype->list == head);
3824 kfree_skb(skb);
3825 return NET_RX_SUCCESS;
3826 }
3827
3828 out:
3829 return netif_receive_skb_internal(skb);
3830 }
3831
3832 /* napi->gro_list contains packets ordered by age.
3833 * youngest packets at the head of it.
3834 * Complete skbs in reverse order to reduce latencies.
3835 */
3836 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3837 {
3838 struct sk_buff *skb, *prev = NULL;
3839
3840 /* scan list and build reverse chain */
3841 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3842 skb->prev = prev;
3843 prev = skb;
3844 }
3845
3846 for (skb = prev; skb; skb = prev) {
3847 skb->next = NULL;
3848
3849 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3850 return;
3851
3852 prev = skb->prev;
3853 napi_gro_complete(skb);
3854 napi->gro_count--;
3855 }
3856
3857 napi->gro_list = NULL;
3858 }
3859 EXPORT_SYMBOL(napi_gro_flush);
3860
3861 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3862 {
3863 struct sk_buff *p;
3864 unsigned int maclen = skb->dev->hard_header_len;
3865 u32 hash = skb_get_hash_raw(skb);
3866
3867 for (p = napi->gro_list; p; p = p->next) {
3868 unsigned long diffs;
3869
3870 NAPI_GRO_CB(p)->flush = 0;
3871
3872 if (hash != skb_get_hash_raw(p)) {
3873 NAPI_GRO_CB(p)->same_flow = 0;
3874 continue;
3875 }
3876
3877 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3878 diffs |= p->vlan_tci ^ skb->vlan_tci;
3879 if (maclen == ETH_HLEN)
3880 diffs |= compare_ether_header(skb_mac_header(p),
3881 skb_mac_header(skb));
3882 else if (!diffs)
3883 diffs = memcmp(skb_mac_header(p),
3884 skb_mac_header(skb),
3885 maclen);
3886 NAPI_GRO_CB(p)->same_flow = !diffs;
3887 }
3888 }
3889
3890 static void skb_gro_reset_offset(struct sk_buff *skb)
3891 {
3892 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3893 const skb_frag_t *frag0 = &pinfo->frags[0];
3894
3895 NAPI_GRO_CB(skb)->data_offset = 0;
3896 NAPI_GRO_CB(skb)->frag0 = NULL;
3897 NAPI_GRO_CB(skb)->frag0_len = 0;
3898
3899 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3900 pinfo->nr_frags &&
3901 !PageHighMem(skb_frag_page(frag0))) {
3902 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3903 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3904 }
3905 }
3906
3907 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3908 {
3909 struct skb_shared_info *pinfo = skb_shinfo(skb);
3910
3911 BUG_ON(skb->end - skb->tail < grow);
3912
3913 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3914
3915 skb->data_len -= grow;
3916 skb->tail += grow;
3917
3918 pinfo->frags[0].page_offset += grow;
3919 skb_frag_size_sub(&pinfo->frags[0], grow);
3920
3921 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3922 skb_frag_unref(skb, 0);
3923 memmove(pinfo->frags, pinfo->frags + 1,
3924 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3925 }
3926 }
3927
3928 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3929 {
3930 struct sk_buff **pp = NULL;
3931 struct packet_offload *ptype;
3932 __be16 type = skb->protocol;
3933 struct list_head *head = &offload_base;
3934 int same_flow;
3935 enum gro_result ret;
3936 int grow;
3937
3938 if (!(skb->dev->features & NETIF_F_GRO))
3939 goto normal;
3940
3941 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3942 goto normal;
3943
3944 gro_list_prepare(napi, skb);
3945 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3946
3947 rcu_read_lock();
3948 list_for_each_entry_rcu(ptype, head, list) {
3949 if (ptype->type != type || !ptype->callbacks.gro_receive)
3950 continue;
3951
3952 skb_set_network_header(skb, skb_gro_offset(skb));
3953 skb_reset_mac_len(skb);
3954 NAPI_GRO_CB(skb)->same_flow = 0;
3955 NAPI_GRO_CB(skb)->flush = 0;
3956 NAPI_GRO_CB(skb)->free = 0;
3957 NAPI_GRO_CB(skb)->udp_mark = 0;
3958
3959 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3960 break;
3961 }
3962 rcu_read_unlock();
3963
3964 if (&ptype->list == head)
3965 goto normal;
3966
3967 same_flow = NAPI_GRO_CB(skb)->same_flow;
3968 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3969
3970 if (pp) {
3971 struct sk_buff *nskb = *pp;
3972
3973 *pp = nskb->next;
3974 nskb->next = NULL;
3975 napi_gro_complete(nskb);
3976 napi->gro_count--;
3977 }
3978
3979 if (same_flow)
3980 goto ok;
3981
3982 if (NAPI_GRO_CB(skb)->flush)
3983 goto normal;
3984
3985 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3986 struct sk_buff *nskb = napi->gro_list;
3987
3988 /* locate the end of the list to select the 'oldest' flow */
3989 while (nskb->next) {
3990 pp = &nskb->next;
3991 nskb = *pp;
3992 }
3993 *pp = NULL;
3994 nskb->next = NULL;
3995 napi_gro_complete(nskb);
3996 } else {
3997 napi->gro_count++;
3998 }
3999 NAPI_GRO_CB(skb)->count = 1;
4000 NAPI_GRO_CB(skb)->age = jiffies;
4001 NAPI_GRO_CB(skb)->last = skb;
4002 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4003 skb->next = napi->gro_list;
4004 napi->gro_list = skb;
4005 ret = GRO_HELD;
4006
4007 pull:
4008 grow = skb_gro_offset(skb) - skb_headlen(skb);
4009 if (grow > 0)
4010 gro_pull_from_frag0(skb, grow);
4011 ok:
4012 return ret;
4013
4014 normal:
4015 ret = GRO_NORMAL;
4016 goto pull;
4017 }
4018
4019 struct packet_offload *gro_find_receive_by_type(__be16 type)
4020 {
4021 struct list_head *offload_head = &offload_base;
4022 struct packet_offload *ptype;
4023
4024 list_for_each_entry_rcu(ptype, offload_head, list) {
4025 if (ptype->type != type || !ptype->callbacks.gro_receive)
4026 continue;
4027 return ptype;
4028 }
4029 return NULL;
4030 }
4031 EXPORT_SYMBOL(gro_find_receive_by_type);
4032
4033 struct packet_offload *gro_find_complete_by_type(__be16 type)
4034 {
4035 struct list_head *offload_head = &offload_base;
4036 struct packet_offload *ptype;
4037
4038 list_for_each_entry_rcu(ptype, offload_head, list) {
4039 if (ptype->type != type || !ptype->callbacks.gro_complete)
4040 continue;
4041 return ptype;
4042 }
4043 return NULL;
4044 }
4045 EXPORT_SYMBOL(gro_find_complete_by_type);
4046
4047 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4048 {
4049 switch (ret) {
4050 case GRO_NORMAL:
4051 if (netif_receive_skb_internal(skb))
4052 ret = GRO_DROP;
4053 break;
4054
4055 case GRO_DROP:
4056 kfree_skb(skb);
4057 break;
4058
4059 case GRO_MERGED_FREE:
4060 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4061 kmem_cache_free(skbuff_head_cache, skb);
4062 else
4063 __kfree_skb(skb);
4064 break;
4065
4066 case GRO_HELD:
4067 case GRO_MERGED:
4068 break;
4069 }
4070
4071 return ret;
4072 }
4073
4074 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4075 {
4076 trace_napi_gro_receive_entry(skb);
4077
4078 skb_gro_reset_offset(skb);
4079
4080 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4081 }
4082 EXPORT_SYMBOL(napi_gro_receive);
4083
4084 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4085 {
4086 __skb_pull(skb, skb_headlen(skb));
4087 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4088 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4089 skb->vlan_tci = 0;
4090 skb->dev = napi->dev;
4091 skb->skb_iif = 0;
4092 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4093
4094 napi->skb = skb;
4095 }
4096
4097 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4098 {
4099 struct sk_buff *skb = napi->skb;
4100
4101 if (!skb) {
4102 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4103 napi->skb = skb;
4104 }
4105 return skb;
4106 }
4107 EXPORT_SYMBOL(napi_get_frags);
4108
4109 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4110 struct sk_buff *skb,
4111 gro_result_t ret)
4112 {
4113 switch (ret) {
4114 case GRO_NORMAL:
4115 case GRO_HELD:
4116 __skb_push(skb, ETH_HLEN);
4117 skb->protocol = eth_type_trans(skb, skb->dev);
4118 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4119 ret = GRO_DROP;
4120 break;
4121
4122 case GRO_DROP:
4123 case GRO_MERGED_FREE:
4124 napi_reuse_skb(napi, skb);
4125 break;
4126
4127 case GRO_MERGED:
4128 break;
4129 }
4130
4131 return ret;
4132 }
4133
4134 /* Upper GRO stack assumes network header starts at gro_offset=0
4135 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4136 * We copy ethernet header into skb->data to have a common layout.
4137 */
4138 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4139 {
4140 struct sk_buff *skb = napi->skb;
4141 const struct ethhdr *eth;
4142 unsigned int hlen = sizeof(*eth);
4143
4144 napi->skb = NULL;
4145
4146 skb_reset_mac_header(skb);
4147 skb_gro_reset_offset(skb);
4148
4149 eth = skb_gro_header_fast(skb, 0);
4150 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4151 eth = skb_gro_header_slow(skb, hlen, 0);
4152 if (unlikely(!eth)) {
4153 napi_reuse_skb(napi, skb);
4154 return NULL;
4155 }
4156 } else {
4157 gro_pull_from_frag0(skb, hlen);
4158 NAPI_GRO_CB(skb)->frag0 += hlen;
4159 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4160 }
4161 __skb_pull(skb, hlen);
4162
4163 /*
4164 * This works because the only protocols we care about don't require
4165 * special handling.
4166 * We'll fix it up properly in napi_frags_finish()
4167 */
4168 skb->protocol = eth->h_proto;
4169
4170 return skb;
4171 }
4172
4173 gro_result_t napi_gro_frags(struct napi_struct *napi)
4174 {
4175 struct sk_buff *skb = napi_frags_skb(napi);
4176
4177 if (!skb)
4178 return GRO_DROP;
4179
4180 trace_napi_gro_frags_entry(skb);
4181
4182 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4183 }
4184 EXPORT_SYMBOL(napi_gro_frags);
4185
4186 /*
4187 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4188 * Note: called with local irq disabled, but exits with local irq enabled.
4189 */
4190 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4191 {
4192 #ifdef CONFIG_RPS
4193 struct softnet_data *remsd = sd->rps_ipi_list;
4194
4195 if (remsd) {
4196 sd->rps_ipi_list = NULL;
4197
4198 local_irq_enable();
4199
4200 /* Send pending IPI's to kick RPS processing on remote cpus. */
4201 while (remsd) {
4202 struct softnet_data *next = remsd->rps_ipi_next;
4203
4204 if (cpu_online(remsd->cpu))
4205 smp_call_function_single_async(remsd->cpu,
4206 &remsd->csd);
4207 remsd = next;
4208 }
4209 } else
4210 #endif
4211 local_irq_enable();
4212 }
4213
4214 static int process_backlog(struct napi_struct *napi, int quota)
4215 {
4216 int work = 0;
4217 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4218
4219 #ifdef CONFIG_RPS
4220 /* Check if we have pending ipi, its better to send them now,
4221 * not waiting net_rx_action() end.
4222 */
4223 if (sd->rps_ipi_list) {
4224 local_irq_disable();
4225 net_rps_action_and_irq_enable(sd);
4226 }
4227 #endif
4228 napi->weight = weight_p;
4229 local_irq_disable();
4230 while (1) {
4231 struct sk_buff *skb;
4232
4233 while ((skb = __skb_dequeue(&sd->process_queue))) {
4234 local_irq_enable();
4235 __netif_receive_skb(skb);
4236 local_irq_disable();
4237 input_queue_head_incr(sd);
4238 if (++work >= quota) {
4239 local_irq_enable();
4240 return work;
4241 }
4242 }
4243
4244 rps_lock(sd);
4245 if (skb_queue_empty(&sd->input_pkt_queue)) {
4246 /*
4247 * Inline a custom version of __napi_complete().
4248 * only current cpu owns and manipulates this napi,
4249 * and NAPI_STATE_SCHED is the only possible flag set
4250 * on backlog.
4251 * We can use a plain write instead of clear_bit(),
4252 * and we dont need an smp_mb() memory barrier.
4253 */
4254 list_del(&napi->poll_list);
4255 napi->state = 0;
4256 rps_unlock(sd);
4257
4258 break;
4259 }
4260
4261 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4262 &sd->process_queue);
4263 rps_unlock(sd);
4264 }
4265 local_irq_enable();
4266
4267 return work;
4268 }
4269
4270 /**
4271 * __napi_schedule - schedule for receive
4272 * @n: entry to schedule
4273 *
4274 * The entry's receive function will be scheduled to run
4275 */
4276 void __napi_schedule(struct napi_struct *n)
4277 {
4278 unsigned long flags;
4279
4280 local_irq_save(flags);
4281 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4282 local_irq_restore(flags);
4283 }
4284 EXPORT_SYMBOL(__napi_schedule);
4285
4286 void __napi_complete(struct napi_struct *n)
4287 {
4288 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4289 BUG_ON(n->gro_list);
4290
4291 list_del(&n->poll_list);
4292 smp_mb__before_atomic();
4293 clear_bit(NAPI_STATE_SCHED, &n->state);
4294 }
4295 EXPORT_SYMBOL(__napi_complete);
4296
4297 void napi_complete(struct napi_struct *n)
4298 {
4299 unsigned long flags;
4300
4301 /*
4302 * don't let napi dequeue from the cpu poll list
4303 * just in case its running on a different cpu
4304 */
4305 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4306 return;
4307
4308 napi_gro_flush(n, false);
4309 local_irq_save(flags);
4310 __napi_complete(n);
4311 local_irq_restore(flags);
4312 }
4313 EXPORT_SYMBOL(napi_complete);
4314
4315 /* must be called under rcu_read_lock(), as we dont take a reference */
4316 struct napi_struct *napi_by_id(unsigned int napi_id)
4317 {
4318 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4319 struct napi_struct *napi;
4320
4321 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4322 if (napi->napi_id == napi_id)
4323 return napi;
4324
4325 return NULL;
4326 }
4327 EXPORT_SYMBOL_GPL(napi_by_id);
4328
4329 void napi_hash_add(struct napi_struct *napi)
4330 {
4331 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4332
4333 spin_lock(&napi_hash_lock);
4334
4335 /* 0 is not a valid id, we also skip an id that is taken
4336 * we expect both events to be extremely rare
4337 */
4338 napi->napi_id = 0;
4339 while (!napi->napi_id) {
4340 napi->napi_id = ++napi_gen_id;
4341 if (napi_by_id(napi->napi_id))
4342 napi->napi_id = 0;
4343 }
4344
4345 hlist_add_head_rcu(&napi->napi_hash_node,
4346 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4347
4348 spin_unlock(&napi_hash_lock);
4349 }
4350 }
4351 EXPORT_SYMBOL_GPL(napi_hash_add);
4352
4353 /* Warning : caller is responsible to make sure rcu grace period
4354 * is respected before freeing memory containing @napi
4355 */
4356 void napi_hash_del(struct napi_struct *napi)
4357 {
4358 spin_lock(&napi_hash_lock);
4359
4360 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4361 hlist_del_rcu(&napi->napi_hash_node);
4362
4363 spin_unlock(&napi_hash_lock);
4364 }
4365 EXPORT_SYMBOL_GPL(napi_hash_del);
4366
4367 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4368 int (*poll)(struct napi_struct *, int), int weight)
4369 {
4370 INIT_LIST_HEAD(&napi->poll_list);
4371 napi->gro_count = 0;
4372 napi->gro_list = NULL;
4373 napi->skb = NULL;
4374 napi->poll = poll;
4375 if (weight > NAPI_POLL_WEIGHT)
4376 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4377 weight, dev->name);
4378 napi->weight = weight;
4379 list_add(&napi->dev_list, &dev->napi_list);
4380 napi->dev = dev;
4381 #ifdef CONFIG_NETPOLL
4382 spin_lock_init(&napi->poll_lock);
4383 napi->poll_owner = -1;
4384 #endif
4385 set_bit(NAPI_STATE_SCHED, &napi->state);
4386 }
4387 EXPORT_SYMBOL(netif_napi_add);
4388
4389 void netif_napi_del(struct napi_struct *napi)
4390 {
4391 list_del_init(&napi->dev_list);
4392 napi_free_frags(napi);
4393
4394 kfree_skb_list(napi->gro_list);
4395 napi->gro_list = NULL;
4396 napi->gro_count = 0;
4397 }
4398 EXPORT_SYMBOL(netif_napi_del);
4399
4400 static void net_rx_action(struct softirq_action *h)
4401 {
4402 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4403 unsigned long time_limit = jiffies + 2;
4404 int budget = netdev_budget;
4405 void *have;
4406
4407 local_irq_disable();
4408
4409 while (!list_empty(&sd->poll_list)) {
4410 struct napi_struct *n;
4411 int work, weight;
4412
4413 /* If softirq window is exhuasted then punt.
4414 * Allow this to run for 2 jiffies since which will allow
4415 * an average latency of 1.5/HZ.
4416 */
4417 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4418 goto softnet_break;
4419
4420 local_irq_enable();
4421
4422 /* Even though interrupts have been re-enabled, this
4423 * access is safe because interrupts can only add new
4424 * entries to the tail of this list, and only ->poll()
4425 * calls can remove this head entry from the list.
4426 */
4427 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4428
4429 have = netpoll_poll_lock(n);
4430
4431 weight = n->weight;
4432
4433 /* This NAPI_STATE_SCHED test is for avoiding a race
4434 * with netpoll's poll_napi(). Only the entity which
4435 * obtains the lock and sees NAPI_STATE_SCHED set will
4436 * actually make the ->poll() call. Therefore we avoid
4437 * accidentally calling ->poll() when NAPI is not scheduled.
4438 */
4439 work = 0;
4440 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4441 work = n->poll(n, weight);
4442 trace_napi_poll(n);
4443 }
4444
4445 WARN_ON_ONCE(work > weight);
4446
4447 budget -= work;
4448
4449 local_irq_disable();
4450
4451 /* Drivers must not modify the NAPI state if they
4452 * consume the entire weight. In such cases this code
4453 * still "owns" the NAPI instance and therefore can
4454 * move the instance around on the list at-will.
4455 */
4456 if (unlikely(work == weight)) {
4457 if (unlikely(napi_disable_pending(n))) {
4458 local_irq_enable();
4459 napi_complete(n);
4460 local_irq_disable();
4461 } else {
4462 if (n->gro_list) {
4463 /* flush too old packets
4464 * If HZ < 1000, flush all packets.
4465 */
4466 local_irq_enable();
4467 napi_gro_flush(n, HZ >= 1000);
4468 local_irq_disable();
4469 }
4470 list_move_tail(&n->poll_list, &sd->poll_list);
4471 }
4472 }
4473
4474 netpoll_poll_unlock(have);
4475 }
4476 out:
4477 net_rps_action_and_irq_enable(sd);
4478
4479 #ifdef CONFIG_NET_DMA
4480 /*
4481 * There may not be any more sk_buffs coming right now, so push
4482 * any pending DMA copies to hardware
4483 */
4484 dma_issue_pending_all();
4485 #endif
4486
4487 return;
4488
4489 softnet_break:
4490 sd->time_squeeze++;
4491 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4492 goto out;
4493 }
4494
4495 struct netdev_adjacent {
4496 struct net_device *dev;
4497
4498 /* upper master flag, there can only be one master device per list */
4499 bool master;
4500
4501 /* counter for the number of times this device was added to us */
4502 u16 ref_nr;
4503
4504 /* private field for the users */
4505 void *private;
4506
4507 struct list_head list;
4508 struct rcu_head rcu;
4509 };
4510
4511 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4512 struct net_device *adj_dev,
4513 struct list_head *adj_list)
4514 {
4515 struct netdev_adjacent *adj;
4516
4517 list_for_each_entry(adj, adj_list, list) {
4518 if (adj->dev == adj_dev)
4519 return adj;
4520 }
4521 return NULL;
4522 }
4523
4524 /**
4525 * netdev_has_upper_dev - Check if device is linked to an upper device
4526 * @dev: device
4527 * @upper_dev: upper device to check
4528 *
4529 * Find out if a device is linked to specified upper device and return true
4530 * in case it is. Note that this checks only immediate upper device,
4531 * not through a complete stack of devices. The caller must hold the RTNL lock.
4532 */
4533 bool netdev_has_upper_dev(struct net_device *dev,
4534 struct net_device *upper_dev)
4535 {
4536 ASSERT_RTNL();
4537
4538 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4539 }
4540 EXPORT_SYMBOL(netdev_has_upper_dev);
4541
4542 /**
4543 * netdev_has_any_upper_dev - Check if device is linked to some device
4544 * @dev: device
4545 *
4546 * Find out if a device is linked to an upper device and return true in case
4547 * it is. The caller must hold the RTNL lock.
4548 */
4549 static bool netdev_has_any_upper_dev(struct net_device *dev)
4550 {
4551 ASSERT_RTNL();
4552
4553 return !list_empty(&dev->all_adj_list.upper);
4554 }
4555
4556 /**
4557 * netdev_master_upper_dev_get - Get master upper device
4558 * @dev: device
4559 *
4560 * Find a master upper device and return pointer to it or NULL in case
4561 * it's not there. The caller must hold the RTNL lock.
4562 */
4563 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4564 {
4565 struct netdev_adjacent *upper;
4566
4567 ASSERT_RTNL();
4568
4569 if (list_empty(&dev->adj_list.upper))
4570 return NULL;
4571
4572 upper = list_first_entry(&dev->adj_list.upper,
4573 struct netdev_adjacent, list);
4574 if (likely(upper->master))
4575 return upper->dev;
4576 return NULL;
4577 }
4578 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4579
4580 void *netdev_adjacent_get_private(struct list_head *adj_list)
4581 {
4582 struct netdev_adjacent *adj;
4583
4584 adj = list_entry(adj_list, struct netdev_adjacent, list);
4585
4586 return adj->private;
4587 }
4588 EXPORT_SYMBOL(netdev_adjacent_get_private);
4589
4590 /**
4591 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4592 * @dev: device
4593 * @iter: list_head ** of the current position
4594 *
4595 * Gets the next device from the dev's upper list, starting from iter
4596 * position. The caller must hold RCU read lock.
4597 */
4598 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4599 struct list_head **iter)
4600 {
4601 struct netdev_adjacent *upper;
4602
4603 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4604
4605 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4606
4607 if (&upper->list == &dev->adj_list.upper)
4608 return NULL;
4609
4610 *iter = &upper->list;
4611
4612 return upper->dev;
4613 }
4614 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4615
4616 /**
4617 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4618 * @dev: device
4619 * @iter: list_head ** of the current position
4620 *
4621 * Gets the next device from the dev's upper list, starting from iter
4622 * position. The caller must hold RCU read lock.
4623 */
4624 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4625 struct list_head **iter)
4626 {
4627 struct netdev_adjacent *upper;
4628
4629 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4630
4631 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4632
4633 if (&upper->list == &dev->all_adj_list.upper)
4634 return NULL;
4635
4636 *iter = &upper->list;
4637
4638 return upper->dev;
4639 }
4640 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4641
4642 /**
4643 * netdev_lower_get_next_private - Get the next ->private from the
4644 * lower neighbour list
4645 * @dev: device
4646 * @iter: list_head ** of the current position
4647 *
4648 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4649 * list, starting from iter position. The caller must hold either hold the
4650 * RTNL lock or its own locking that guarantees that the neighbour lower
4651 * list will remain unchainged.
4652 */
4653 void *netdev_lower_get_next_private(struct net_device *dev,
4654 struct list_head **iter)
4655 {
4656 struct netdev_adjacent *lower;
4657
4658 lower = list_entry(*iter, struct netdev_adjacent, list);
4659
4660 if (&lower->list == &dev->adj_list.lower)
4661 return NULL;
4662
4663 *iter = lower->list.next;
4664
4665 return lower->private;
4666 }
4667 EXPORT_SYMBOL(netdev_lower_get_next_private);
4668
4669 /**
4670 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4671 * lower neighbour list, RCU
4672 * variant
4673 * @dev: device
4674 * @iter: list_head ** of the current position
4675 *
4676 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4677 * list, starting from iter position. The caller must hold RCU read lock.
4678 */
4679 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4680 struct list_head **iter)
4681 {
4682 struct netdev_adjacent *lower;
4683
4684 WARN_ON_ONCE(!rcu_read_lock_held());
4685
4686 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4687
4688 if (&lower->list == &dev->adj_list.lower)
4689 return NULL;
4690
4691 *iter = &lower->list;
4692
4693 return lower->private;
4694 }
4695 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4696
4697 /**
4698 * netdev_lower_get_next - Get the next device from the lower neighbour
4699 * list
4700 * @dev: device
4701 * @iter: list_head ** of the current position
4702 *
4703 * Gets the next netdev_adjacent from the dev's lower neighbour
4704 * list, starting from iter position. The caller must hold RTNL lock or
4705 * its own locking that guarantees that the neighbour lower
4706 * list will remain unchainged.
4707 */
4708 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4709 {
4710 struct netdev_adjacent *lower;
4711
4712 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4713
4714 if (&lower->list == &dev->adj_list.lower)
4715 return NULL;
4716
4717 *iter = &lower->list;
4718
4719 return lower->dev;
4720 }
4721 EXPORT_SYMBOL(netdev_lower_get_next);
4722
4723 /**
4724 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4725 * lower neighbour list, RCU
4726 * variant
4727 * @dev: device
4728 *
4729 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4730 * list. The caller must hold RCU read lock.
4731 */
4732 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4733 {
4734 struct netdev_adjacent *lower;
4735
4736 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4737 struct netdev_adjacent, list);
4738 if (lower)
4739 return lower->private;
4740 return NULL;
4741 }
4742 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4743
4744 /**
4745 * netdev_master_upper_dev_get_rcu - Get master upper device
4746 * @dev: device
4747 *
4748 * Find a master upper device and return pointer to it or NULL in case
4749 * it's not there. The caller must hold the RCU read lock.
4750 */
4751 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4752 {
4753 struct netdev_adjacent *upper;
4754
4755 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4756 struct netdev_adjacent, list);
4757 if (upper && likely(upper->master))
4758 return upper->dev;
4759 return NULL;
4760 }
4761 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4762
4763 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4764 struct net_device *adj_dev,
4765 struct list_head *dev_list)
4766 {
4767 char linkname[IFNAMSIZ+7];
4768 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4769 "upper_%s" : "lower_%s", adj_dev->name);
4770 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4771 linkname);
4772 }
4773 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4774 char *name,
4775 struct list_head *dev_list)
4776 {
4777 char linkname[IFNAMSIZ+7];
4778 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4779 "upper_%s" : "lower_%s", name);
4780 sysfs_remove_link(&(dev->dev.kobj), linkname);
4781 }
4782
4783 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4784 (dev_list == &dev->adj_list.upper || \
4785 dev_list == &dev->adj_list.lower)
4786
4787 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4788 struct net_device *adj_dev,
4789 struct list_head *dev_list,
4790 void *private, bool master)
4791 {
4792 struct netdev_adjacent *adj;
4793 int ret;
4794
4795 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4796
4797 if (adj) {
4798 adj->ref_nr++;
4799 return 0;
4800 }
4801
4802 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4803 if (!adj)
4804 return -ENOMEM;
4805
4806 adj->dev = adj_dev;
4807 adj->master = master;
4808 adj->ref_nr = 1;
4809 adj->private = private;
4810 dev_hold(adj_dev);
4811
4812 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4813 adj_dev->name, dev->name, adj_dev->name);
4814
4815 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4816 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4817 if (ret)
4818 goto free_adj;
4819 }
4820
4821 /* Ensure that master link is always the first item in list. */
4822 if (master) {
4823 ret = sysfs_create_link(&(dev->dev.kobj),
4824 &(adj_dev->dev.kobj), "master");
4825 if (ret)
4826 goto remove_symlinks;
4827
4828 list_add_rcu(&adj->list, dev_list);
4829 } else {
4830 list_add_tail_rcu(&adj->list, dev_list);
4831 }
4832
4833 return 0;
4834
4835 remove_symlinks:
4836 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4837 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4838 free_adj:
4839 kfree(adj);
4840 dev_put(adj_dev);
4841
4842 return ret;
4843 }
4844
4845 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4846 struct net_device *adj_dev,
4847 struct list_head *dev_list)
4848 {
4849 struct netdev_adjacent *adj;
4850
4851 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4852
4853 if (!adj) {
4854 pr_err("tried to remove device %s from %s\n",
4855 dev->name, adj_dev->name);
4856 BUG();
4857 }
4858
4859 if (adj->ref_nr > 1) {
4860 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4861 adj->ref_nr-1);
4862 adj->ref_nr--;
4863 return;
4864 }
4865
4866 if (adj->master)
4867 sysfs_remove_link(&(dev->dev.kobj), "master");
4868
4869 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4870 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4871
4872 list_del_rcu(&adj->list);
4873 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4874 adj_dev->name, dev->name, adj_dev->name);
4875 dev_put(adj_dev);
4876 kfree_rcu(adj, rcu);
4877 }
4878
4879 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4880 struct net_device *upper_dev,
4881 struct list_head *up_list,
4882 struct list_head *down_list,
4883 void *private, bool master)
4884 {
4885 int ret;
4886
4887 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4888 master);
4889 if (ret)
4890 return ret;
4891
4892 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4893 false);
4894 if (ret) {
4895 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4896 return ret;
4897 }
4898
4899 return 0;
4900 }
4901
4902 static int __netdev_adjacent_dev_link(struct net_device *dev,
4903 struct net_device *upper_dev)
4904 {
4905 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4906 &dev->all_adj_list.upper,
4907 &upper_dev->all_adj_list.lower,
4908 NULL, false);
4909 }
4910
4911 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4912 struct net_device *upper_dev,
4913 struct list_head *up_list,
4914 struct list_head *down_list)
4915 {
4916 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4917 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4918 }
4919
4920 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4921 struct net_device *upper_dev)
4922 {
4923 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4924 &dev->all_adj_list.upper,
4925 &upper_dev->all_adj_list.lower);
4926 }
4927
4928 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4929 struct net_device *upper_dev,
4930 void *private, bool master)
4931 {
4932 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4933
4934 if (ret)
4935 return ret;
4936
4937 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4938 &dev->adj_list.upper,
4939 &upper_dev->adj_list.lower,
4940 private, master);
4941 if (ret) {
4942 __netdev_adjacent_dev_unlink(dev, upper_dev);
4943 return ret;
4944 }
4945
4946 return 0;
4947 }
4948
4949 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4950 struct net_device *upper_dev)
4951 {
4952 __netdev_adjacent_dev_unlink(dev, upper_dev);
4953 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4954 &dev->adj_list.upper,
4955 &upper_dev->adj_list.lower);
4956 }
4957
4958 static int __netdev_upper_dev_link(struct net_device *dev,
4959 struct net_device *upper_dev, bool master,
4960 void *private)
4961 {
4962 struct netdev_adjacent *i, *j, *to_i, *to_j;
4963 int ret = 0;
4964
4965 ASSERT_RTNL();
4966
4967 if (dev == upper_dev)
4968 return -EBUSY;
4969
4970 /* To prevent loops, check if dev is not upper device to upper_dev. */
4971 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4972 return -EBUSY;
4973
4974 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4975 return -EEXIST;
4976
4977 if (master && netdev_master_upper_dev_get(dev))
4978 return -EBUSY;
4979
4980 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4981 master);
4982 if (ret)
4983 return ret;
4984
4985 /* Now that we linked these devs, make all the upper_dev's
4986 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4987 * versa, and don't forget the devices itself. All of these
4988 * links are non-neighbours.
4989 */
4990 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4991 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4992 pr_debug("Interlinking %s with %s, non-neighbour\n",
4993 i->dev->name, j->dev->name);
4994 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4995 if (ret)
4996 goto rollback_mesh;
4997 }
4998 }
4999
5000 /* add dev to every upper_dev's upper device */
5001 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5002 pr_debug("linking %s's upper device %s with %s\n",
5003 upper_dev->name, i->dev->name, dev->name);
5004 ret = __netdev_adjacent_dev_link(dev, i->dev);
5005 if (ret)
5006 goto rollback_upper_mesh;
5007 }
5008
5009 /* add upper_dev to every dev's lower device */
5010 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5011 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5012 i->dev->name, upper_dev->name);
5013 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5014 if (ret)
5015 goto rollback_lower_mesh;
5016 }
5017
5018 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5019 return 0;
5020
5021 rollback_lower_mesh:
5022 to_i = i;
5023 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5024 if (i == to_i)
5025 break;
5026 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5027 }
5028
5029 i = NULL;
5030
5031 rollback_upper_mesh:
5032 to_i = i;
5033 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5034 if (i == to_i)
5035 break;
5036 __netdev_adjacent_dev_unlink(dev, i->dev);
5037 }
5038
5039 i = j = NULL;
5040
5041 rollback_mesh:
5042 to_i = i;
5043 to_j = j;
5044 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5045 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5046 if (i == to_i && j == to_j)
5047 break;
5048 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5049 }
5050 if (i == to_i)
5051 break;
5052 }
5053
5054 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5055
5056 return ret;
5057 }
5058
5059 /**
5060 * netdev_upper_dev_link - Add a link to the upper device
5061 * @dev: device
5062 * @upper_dev: new upper device
5063 *
5064 * Adds a link to device which is upper to this one. The caller must hold
5065 * the RTNL lock. On a failure a negative errno code is returned.
5066 * On success the reference counts are adjusted and the function
5067 * returns zero.
5068 */
5069 int netdev_upper_dev_link(struct net_device *dev,
5070 struct net_device *upper_dev)
5071 {
5072 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5073 }
5074 EXPORT_SYMBOL(netdev_upper_dev_link);
5075
5076 /**
5077 * netdev_master_upper_dev_link - Add a master link to the upper device
5078 * @dev: device
5079 * @upper_dev: new upper device
5080 *
5081 * Adds a link to device which is upper to this one. In this case, only
5082 * one master upper device can be linked, although other non-master devices
5083 * might be linked as well. The caller must hold the RTNL lock.
5084 * On a failure a negative errno code is returned. On success the reference
5085 * counts are adjusted and the function returns zero.
5086 */
5087 int netdev_master_upper_dev_link(struct net_device *dev,
5088 struct net_device *upper_dev)
5089 {
5090 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5091 }
5092 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5093
5094 int netdev_master_upper_dev_link_private(struct net_device *dev,
5095 struct net_device *upper_dev,
5096 void *private)
5097 {
5098 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5099 }
5100 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5101
5102 /**
5103 * netdev_upper_dev_unlink - Removes a link to upper device
5104 * @dev: device
5105 * @upper_dev: new upper device
5106 *
5107 * Removes a link to device which is upper to this one. The caller must hold
5108 * the RTNL lock.
5109 */
5110 void netdev_upper_dev_unlink(struct net_device *dev,
5111 struct net_device *upper_dev)
5112 {
5113 struct netdev_adjacent *i, *j;
5114 ASSERT_RTNL();
5115
5116 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5117
5118 /* Here is the tricky part. We must remove all dev's lower
5119 * devices from all upper_dev's upper devices and vice
5120 * versa, to maintain the graph relationship.
5121 */
5122 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5123 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5124 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5125
5126 /* remove also the devices itself from lower/upper device
5127 * list
5128 */
5129 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5130 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5131
5132 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5133 __netdev_adjacent_dev_unlink(dev, i->dev);
5134
5135 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5136 }
5137 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5138
5139 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5140 {
5141 struct netdev_adjacent *iter;
5142
5143 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5144 netdev_adjacent_sysfs_del(iter->dev, oldname,
5145 &iter->dev->adj_list.lower);
5146 netdev_adjacent_sysfs_add(iter->dev, dev,
5147 &iter->dev->adj_list.lower);
5148 }
5149
5150 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5151 netdev_adjacent_sysfs_del(iter->dev, oldname,
5152 &iter->dev->adj_list.upper);
5153 netdev_adjacent_sysfs_add(iter->dev, dev,
5154 &iter->dev->adj_list.upper);
5155 }
5156 }
5157
5158 void *netdev_lower_dev_get_private(struct net_device *dev,
5159 struct net_device *lower_dev)
5160 {
5161 struct netdev_adjacent *lower;
5162
5163 if (!lower_dev)
5164 return NULL;
5165 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5166 if (!lower)
5167 return NULL;
5168
5169 return lower->private;
5170 }
5171 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5172
5173
5174 int dev_get_nest_level(struct net_device *dev,
5175 bool (*type_check)(struct net_device *dev))
5176 {
5177 struct net_device *lower = NULL;
5178 struct list_head *iter;
5179 int max_nest = -1;
5180 int nest;
5181
5182 ASSERT_RTNL();
5183
5184 netdev_for_each_lower_dev(dev, lower, iter) {
5185 nest = dev_get_nest_level(lower, type_check);
5186 if (max_nest < nest)
5187 max_nest = nest;
5188 }
5189
5190 if (type_check(dev))
5191 max_nest++;
5192
5193 return max_nest;
5194 }
5195 EXPORT_SYMBOL(dev_get_nest_level);
5196
5197 static void dev_change_rx_flags(struct net_device *dev, int flags)
5198 {
5199 const struct net_device_ops *ops = dev->netdev_ops;
5200
5201 if (ops->ndo_change_rx_flags)
5202 ops->ndo_change_rx_flags(dev, flags);
5203 }
5204
5205 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5206 {
5207 unsigned int old_flags = dev->flags;
5208 kuid_t uid;
5209 kgid_t gid;
5210
5211 ASSERT_RTNL();
5212
5213 dev->flags |= IFF_PROMISC;
5214 dev->promiscuity += inc;
5215 if (dev->promiscuity == 0) {
5216 /*
5217 * Avoid overflow.
5218 * If inc causes overflow, untouch promisc and return error.
5219 */
5220 if (inc < 0)
5221 dev->flags &= ~IFF_PROMISC;
5222 else {
5223 dev->promiscuity -= inc;
5224 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5225 dev->name);
5226 return -EOVERFLOW;
5227 }
5228 }
5229 if (dev->flags != old_flags) {
5230 pr_info("device %s %s promiscuous mode\n",
5231 dev->name,
5232 dev->flags & IFF_PROMISC ? "entered" : "left");
5233 if (audit_enabled) {
5234 current_uid_gid(&uid, &gid);
5235 audit_log(current->audit_context, GFP_ATOMIC,
5236 AUDIT_ANOM_PROMISCUOUS,
5237 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5238 dev->name, (dev->flags & IFF_PROMISC),
5239 (old_flags & IFF_PROMISC),
5240 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5241 from_kuid(&init_user_ns, uid),
5242 from_kgid(&init_user_ns, gid),
5243 audit_get_sessionid(current));
5244 }
5245
5246 dev_change_rx_flags(dev, IFF_PROMISC);
5247 }
5248 if (notify)
5249 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5250 return 0;
5251 }
5252
5253 /**
5254 * dev_set_promiscuity - update promiscuity count on a device
5255 * @dev: device
5256 * @inc: modifier
5257 *
5258 * Add or remove promiscuity from a device. While the count in the device
5259 * remains above zero the interface remains promiscuous. Once it hits zero
5260 * the device reverts back to normal filtering operation. A negative inc
5261 * value is used to drop promiscuity on the device.
5262 * Return 0 if successful or a negative errno code on error.
5263 */
5264 int dev_set_promiscuity(struct net_device *dev, int inc)
5265 {
5266 unsigned int old_flags = dev->flags;
5267 int err;
5268
5269 err = __dev_set_promiscuity(dev, inc, true);
5270 if (err < 0)
5271 return err;
5272 if (dev->flags != old_flags)
5273 dev_set_rx_mode(dev);
5274 return err;
5275 }
5276 EXPORT_SYMBOL(dev_set_promiscuity);
5277
5278 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5279 {
5280 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5281
5282 ASSERT_RTNL();
5283
5284 dev->flags |= IFF_ALLMULTI;
5285 dev->allmulti += inc;
5286 if (dev->allmulti == 0) {
5287 /*
5288 * Avoid overflow.
5289 * If inc causes overflow, untouch allmulti and return error.
5290 */
5291 if (inc < 0)
5292 dev->flags &= ~IFF_ALLMULTI;
5293 else {
5294 dev->allmulti -= inc;
5295 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5296 dev->name);
5297 return -EOVERFLOW;
5298 }
5299 }
5300 if (dev->flags ^ old_flags) {
5301 dev_change_rx_flags(dev, IFF_ALLMULTI);
5302 dev_set_rx_mode(dev);
5303 if (notify)
5304 __dev_notify_flags(dev, old_flags,
5305 dev->gflags ^ old_gflags);
5306 }
5307 return 0;
5308 }
5309
5310 /**
5311 * dev_set_allmulti - update allmulti count on a device
5312 * @dev: device
5313 * @inc: modifier
5314 *
5315 * Add or remove reception of all multicast frames to a device. While the
5316 * count in the device remains above zero the interface remains listening
5317 * to all interfaces. Once it hits zero the device reverts back to normal
5318 * filtering operation. A negative @inc value is used to drop the counter
5319 * when releasing a resource needing all multicasts.
5320 * Return 0 if successful or a negative errno code on error.
5321 */
5322
5323 int dev_set_allmulti(struct net_device *dev, int inc)
5324 {
5325 return __dev_set_allmulti(dev, inc, true);
5326 }
5327 EXPORT_SYMBOL(dev_set_allmulti);
5328
5329 /*
5330 * Upload unicast and multicast address lists to device and
5331 * configure RX filtering. When the device doesn't support unicast
5332 * filtering it is put in promiscuous mode while unicast addresses
5333 * are present.
5334 */
5335 void __dev_set_rx_mode(struct net_device *dev)
5336 {
5337 const struct net_device_ops *ops = dev->netdev_ops;
5338
5339 /* dev_open will call this function so the list will stay sane. */
5340 if (!(dev->flags&IFF_UP))
5341 return;
5342
5343 if (!netif_device_present(dev))
5344 return;
5345
5346 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5347 /* Unicast addresses changes may only happen under the rtnl,
5348 * therefore calling __dev_set_promiscuity here is safe.
5349 */
5350 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5351 __dev_set_promiscuity(dev, 1, false);
5352 dev->uc_promisc = true;
5353 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5354 __dev_set_promiscuity(dev, -1, false);
5355 dev->uc_promisc = false;
5356 }
5357 }
5358
5359 if (ops->ndo_set_rx_mode)
5360 ops->ndo_set_rx_mode(dev);
5361 }
5362
5363 void dev_set_rx_mode(struct net_device *dev)
5364 {
5365 netif_addr_lock_bh(dev);
5366 __dev_set_rx_mode(dev);
5367 netif_addr_unlock_bh(dev);
5368 }
5369
5370 /**
5371 * dev_get_flags - get flags reported to userspace
5372 * @dev: device
5373 *
5374 * Get the combination of flag bits exported through APIs to userspace.
5375 */
5376 unsigned int dev_get_flags(const struct net_device *dev)
5377 {
5378 unsigned int flags;
5379
5380 flags = (dev->flags & ~(IFF_PROMISC |
5381 IFF_ALLMULTI |
5382 IFF_RUNNING |
5383 IFF_LOWER_UP |
5384 IFF_DORMANT)) |
5385 (dev->gflags & (IFF_PROMISC |
5386 IFF_ALLMULTI));
5387
5388 if (netif_running(dev)) {
5389 if (netif_oper_up(dev))
5390 flags |= IFF_RUNNING;
5391 if (netif_carrier_ok(dev))
5392 flags |= IFF_LOWER_UP;
5393 if (netif_dormant(dev))
5394 flags |= IFF_DORMANT;
5395 }
5396
5397 return flags;
5398 }
5399 EXPORT_SYMBOL(dev_get_flags);
5400
5401 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5402 {
5403 unsigned int old_flags = dev->flags;
5404 int ret;
5405
5406 ASSERT_RTNL();
5407
5408 /*
5409 * Set the flags on our device.
5410 */
5411
5412 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5413 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5414 IFF_AUTOMEDIA)) |
5415 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5416 IFF_ALLMULTI));
5417
5418 /*
5419 * Load in the correct multicast list now the flags have changed.
5420 */
5421
5422 if ((old_flags ^ flags) & IFF_MULTICAST)
5423 dev_change_rx_flags(dev, IFF_MULTICAST);
5424
5425 dev_set_rx_mode(dev);
5426
5427 /*
5428 * Have we downed the interface. We handle IFF_UP ourselves
5429 * according to user attempts to set it, rather than blindly
5430 * setting it.
5431 */
5432
5433 ret = 0;
5434 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5435 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5436
5437 if (!ret)
5438 dev_set_rx_mode(dev);
5439 }
5440
5441 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5442 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5443 unsigned int old_flags = dev->flags;
5444
5445 dev->gflags ^= IFF_PROMISC;
5446
5447 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5448 if (dev->flags != old_flags)
5449 dev_set_rx_mode(dev);
5450 }
5451
5452 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5453 is important. Some (broken) drivers set IFF_PROMISC, when
5454 IFF_ALLMULTI is requested not asking us and not reporting.
5455 */
5456 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5457 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5458
5459 dev->gflags ^= IFF_ALLMULTI;
5460 __dev_set_allmulti(dev, inc, false);
5461 }
5462
5463 return ret;
5464 }
5465
5466 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5467 unsigned int gchanges)
5468 {
5469 unsigned int changes = dev->flags ^ old_flags;
5470
5471 if (gchanges)
5472 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5473
5474 if (changes & IFF_UP) {
5475 if (dev->flags & IFF_UP)
5476 call_netdevice_notifiers(NETDEV_UP, dev);
5477 else
5478 call_netdevice_notifiers(NETDEV_DOWN, dev);
5479 }
5480
5481 if (dev->flags & IFF_UP &&
5482 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5483 struct netdev_notifier_change_info change_info;
5484
5485 change_info.flags_changed = changes;
5486 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5487 &change_info.info);
5488 }
5489 }
5490
5491 /**
5492 * dev_change_flags - change device settings
5493 * @dev: device
5494 * @flags: device state flags
5495 *
5496 * Change settings on device based state flags. The flags are
5497 * in the userspace exported format.
5498 */
5499 int dev_change_flags(struct net_device *dev, unsigned int flags)
5500 {
5501 int ret;
5502 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5503
5504 ret = __dev_change_flags(dev, flags);
5505 if (ret < 0)
5506 return ret;
5507
5508 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5509 __dev_notify_flags(dev, old_flags, changes);
5510 return ret;
5511 }
5512 EXPORT_SYMBOL(dev_change_flags);
5513
5514 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5515 {
5516 const struct net_device_ops *ops = dev->netdev_ops;
5517
5518 if (ops->ndo_change_mtu)
5519 return ops->ndo_change_mtu(dev, new_mtu);
5520
5521 dev->mtu = new_mtu;
5522 return 0;
5523 }
5524
5525 /**
5526 * dev_set_mtu - Change maximum transfer unit
5527 * @dev: device
5528 * @new_mtu: new transfer unit
5529 *
5530 * Change the maximum transfer size of the network device.
5531 */
5532 int dev_set_mtu(struct net_device *dev, int new_mtu)
5533 {
5534 int err, orig_mtu;
5535
5536 if (new_mtu == dev->mtu)
5537 return 0;
5538
5539 /* MTU must be positive. */
5540 if (new_mtu < 0)
5541 return -EINVAL;
5542
5543 if (!netif_device_present(dev))
5544 return -ENODEV;
5545
5546 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5547 err = notifier_to_errno(err);
5548 if (err)
5549 return err;
5550
5551 orig_mtu = dev->mtu;
5552 err = __dev_set_mtu(dev, new_mtu);
5553
5554 if (!err) {
5555 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5556 err = notifier_to_errno(err);
5557 if (err) {
5558 /* setting mtu back and notifying everyone again,
5559 * so that they have a chance to revert changes.
5560 */
5561 __dev_set_mtu(dev, orig_mtu);
5562 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5563 }
5564 }
5565 return err;
5566 }
5567 EXPORT_SYMBOL(dev_set_mtu);
5568
5569 /**
5570 * dev_set_group - Change group this device belongs to
5571 * @dev: device
5572 * @new_group: group this device should belong to
5573 */
5574 void dev_set_group(struct net_device *dev, int new_group)
5575 {
5576 dev->group = new_group;
5577 }
5578 EXPORT_SYMBOL(dev_set_group);
5579
5580 /**
5581 * dev_set_mac_address - Change Media Access Control Address
5582 * @dev: device
5583 * @sa: new address
5584 *
5585 * Change the hardware (MAC) address of the device
5586 */
5587 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5588 {
5589 const struct net_device_ops *ops = dev->netdev_ops;
5590 int err;
5591
5592 if (!ops->ndo_set_mac_address)
5593 return -EOPNOTSUPP;
5594 if (sa->sa_family != dev->type)
5595 return -EINVAL;
5596 if (!netif_device_present(dev))
5597 return -ENODEV;
5598 err = ops->ndo_set_mac_address(dev, sa);
5599 if (err)
5600 return err;
5601 dev->addr_assign_type = NET_ADDR_SET;
5602 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5603 add_device_randomness(dev->dev_addr, dev->addr_len);
5604 return 0;
5605 }
5606 EXPORT_SYMBOL(dev_set_mac_address);
5607
5608 /**
5609 * dev_change_carrier - Change device carrier
5610 * @dev: device
5611 * @new_carrier: new value
5612 *
5613 * Change device carrier
5614 */
5615 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5616 {
5617 const struct net_device_ops *ops = dev->netdev_ops;
5618
5619 if (!ops->ndo_change_carrier)
5620 return -EOPNOTSUPP;
5621 if (!netif_device_present(dev))
5622 return -ENODEV;
5623 return ops->ndo_change_carrier(dev, new_carrier);
5624 }
5625 EXPORT_SYMBOL(dev_change_carrier);
5626
5627 /**
5628 * dev_get_phys_port_id - Get device physical port ID
5629 * @dev: device
5630 * @ppid: port ID
5631 *
5632 * Get device physical port ID
5633 */
5634 int dev_get_phys_port_id(struct net_device *dev,
5635 struct netdev_phys_port_id *ppid)
5636 {
5637 const struct net_device_ops *ops = dev->netdev_ops;
5638
5639 if (!ops->ndo_get_phys_port_id)
5640 return -EOPNOTSUPP;
5641 return ops->ndo_get_phys_port_id(dev, ppid);
5642 }
5643 EXPORT_SYMBOL(dev_get_phys_port_id);
5644
5645 /**
5646 * dev_new_index - allocate an ifindex
5647 * @net: the applicable net namespace
5648 *
5649 * Returns a suitable unique value for a new device interface
5650 * number. The caller must hold the rtnl semaphore or the
5651 * dev_base_lock to be sure it remains unique.
5652 */
5653 static int dev_new_index(struct net *net)
5654 {
5655 int ifindex = net->ifindex;
5656 for (;;) {
5657 if (++ifindex <= 0)
5658 ifindex = 1;
5659 if (!__dev_get_by_index(net, ifindex))
5660 return net->ifindex = ifindex;
5661 }
5662 }
5663
5664 /* Delayed registration/unregisteration */
5665 static LIST_HEAD(net_todo_list);
5666 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5667
5668 static void net_set_todo(struct net_device *dev)
5669 {
5670 list_add_tail(&dev->todo_list, &net_todo_list);
5671 dev_net(dev)->dev_unreg_count++;
5672 }
5673
5674 static void rollback_registered_many(struct list_head *head)
5675 {
5676 struct net_device *dev, *tmp;
5677 LIST_HEAD(close_head);
5678
5679 BUG_ON(dev_boot_phase);
5680 ASSERT_RTNL();
5681
5682 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5683 /* Some devices call without registering
5684 * for initialization unwind. Remove those
5685 * devices and proceed with the remaining.
5686 */
5687 if (dev->reg_state == NETREG_UNINITIALIZED) {
5688 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5689 dev->name, dev);
5690
5691 WARN_ON(1);
5692 list_del(&dev->unreg_list);
5693 continue;
5694 }
5695 dev->dismantle = true;
5696 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5697 }
5698
5699 /* If device is running, close it first. */
5700 list_for_each_entry(dev, head, unreg_list)
5701 list_add_tail(&dev->close_list, &close_head);
5702 dev_close_many(&close_head);
5703
5704 list_for_each_entry(dev, head, unreg_list) {
5705 /* And unlink it from device chain. */
5706 unlist_netdevice(dev);
5707
5708 dev->reg_state = NETREG_UNREGISTERING;
5709 }
5710
5711 synchronize_net();
5712
5713 list_for_each_entry(dev, head, unreg_list) {
5714 /* Shutdown queueing discipline. */
5715 dev_shutdown(dev);
5716
5717
5718 /* Notify protocols, that we are about to destroy
5719 this device. They should clean all the things.
5720 */
5721 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5722
5723 /*
5724 * Flush the unicast and multicast chains
5725 */
5726 dev_uc_flush(dev);
5727 dev_mc_flush(dev);
5728
5729 if (dev->netdev_ops->ndo_uninit)
5730 dev->netdev_ops->ndo_uninit(dev);
5731
5732 if (!dev->rtnl_link_ops ||
5733 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5734 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5735
5736 /* Notifier chain MUST detach us all upper devices. */
5737 WARN_ON(netdev_has_any_upper_dev(dev));
5738
5739 /* Remove entries from kobject tree */
5740 netdev_unregister_kobject(dev);
5741 #ifdef CONFIG_XPS
5742 /* Remove XPS queueing entries */
5743 netif_reset_xps_queues_gt(dev, 0);
5744 #endif
5745 }
5746
5747 synchronize_net();
5748
5749 list_for_each_entry(dev, head, unreg_list)
5750 dev_put(dev);
5751 }
5752
5753 static void rollback_registered(struct net_device *dev)
5754 {
5755 LIST_HEAD(single);
5756
5757 list_add(&dev->unreg_list, &single);
5758 rollback_registered_many(&single);
5759 list_del(&single);
5760 }
5761
5762 static netdev_features_t netdev_fix_features(struct net_device *dev,
5763 netdev_features_t features)
5764 {
5765 /* Fix illegal checksum combinations */
5766 if ((features & NETIF_F_HW_CSUM) &&
5767 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5768 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5769 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5770 }
5771
5772 /* TSO requires that SG is present as well. */
5773 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5774 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5775 features &= ~NETIF_F_ALL_TSO;
5776 }
5777
5778 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5779 !(features & NETIF_F_IP_CSUM)) {
5780 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5781 features &= ~NETIF_F_TSO;
5782 features &= ~NETIF_F_TSO_ECN;
5783 }
5784
5785 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5786 !(features & NETIF_F_IPV6_CSUM)) {
5787 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5788 features &= ~NETIF_F_TSO6;
5789 }
5790
5791 /* TSO ECN requires that TSO is present as well. */
5792 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5793 features &= ~NETIF_F_TSO_ECN;
5794
5795 /* Software GSO depends on SG. */
5796 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5797 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5798 features &= ~NETIF_F_GSO;
5799 }
5800
5801 /* UFO needs SG and checksumming */
5802 if (features & NETIF_F_UFO) {
5803 /* maybe split UFO into V4 and V6? */
5804 if (!((features & NETIF_F_GEN_CSUM) ||
5805 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5806 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5807 netdev_dbg(dev,
5808 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5809 features &= ~NETIF_F_UFO;
5810 }
5811
5812 if (!(features & NETIF_F_SG)) {
5813 netdev_dbg(dev,
5814 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5815 features &= ~NETIF_F_UFO;
5816 }
5817 }
5818
5819 #ifdef CONFIG_NET_RX_BUSY_POLL
5820 if (dev->netdev_ops->ndo_busy_poll)
5821 features |= NETIF_F_BUSY_POLL;
5822 else
5823 #endif
5824 features &= ~NETIF_F_BUSY_POLL;
5825
5826 return features;
5827 }
5828
5829 int __netdev_update_features(struct net_device *dev)
5830 {
5831 netdev_features_t features;
5832 int err = 0;
5833
5834 ASSERT_RTNL();
5835
5836 features = netdev_get_wanted_features(dev);
5837
5838 if (dev->netdev_ops->ndo_fix_features)
5839 features = dev->netdev_ops->ndo_fix_features(dev, features);
5840
5841 /* driver might be less strict about feature dependencies */
5842 features = netdev_fix_features(dev, features);
5843
5844 if (dev->features == features)
5845 return 0;
5846
5847 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5848 &dev->features, &features);
5849
5850 if (dev->netdev_ops->ndo_set_features)
5851 err = dev->netdev_ops->ndo_set_features(dev, features);
5852
5853 if (unlikely(err < 0)) {
5854 netdev_err(dev,
5855 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5856 err, &features, &dev->features);
5857 return -1;
5858 }
5859
5860 if (!err)
5861 dev->features = features;
5862
5863 return 1;
5864 }
5865
5866 /**
5867 * netdev_update_features - recalculate device features
5868 * @dev: the device to check
5869 *
5870 * Recalculate dev->features set and send notifications if it
5871 * has changed. Should be called after driver or hardware dependent
5872 * conditions might have changed that influence the features.
5873 */
5874 void netdev_update_features(struct net_device *dev)
5875 {
5876 if (__netdev_update_features(dev))
5877 netdev_features_change(dev);
5878 }
5879 EXPORT_SYMBOL(netdev_update_features);
5880
5881 /**
5882 * netdev_change_features - recalculate device features
5883 * @dev: the device to check
5884 *
5885 * Recalculate dev->features set and send notifications even
5886 * if they have not changed. Should be called instead of
5887 * netdev_update_features() if also dev->vlan_features might
5888 * have changed to allow the changes to be propagated to stacked
5889 * VLAN devices.
5890 */
5891 void netdev_change_features(struct net_device *dev)
5892 {
5893 __netdev_update_features(dev);
5894 netdev_features_change(dev);
5895 }
5896 EXPORT_SYMBOL(netdev_change_features);
5897
5898 /**
5899 * netif_stacked_transfer_operstate - transfer operstate
5900 * @rootdev: the root or lower level device to transfer state from
5901 * @dev: the device to transfer operstate to
5902 *
5903 * Transfer operational state from root to device. This is normally
5904 * called when a stacking relationship exists between the root
5905 * device and the device(a leaf device).
5906 */
5907 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5908 struct net_device *dev)
5909 {
5910 if (rootdev->operstate == IF_OPER_DORMANT)
5911 netif_dormant_on(dev);
5912 else
5913 netif_dormant_off(dev);
5914
5915 if (netif_carrier_ok(rootdev)) {
5916 if (!netif_carrier_ok(dev))
5917 netif_carrier_on(dev);
5918 } else {
5919 if (netif_carrier_ok(dev))
5920 netif_carrier_off(dev);
5921 }
5922 }
5923 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5924
5925 #ifdef CONFIG_SYSFS
5926 static int netif_alloc_rx_queues(struct net_device *dev)
5927 {
5928 unsigned int i, count = dev->num_rx_queues;
5929 struct netdev_rx_queue *rx;
5930
5931 BUG_ON(count < 1);
5932
5933 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5934 if (!rx)
5935 return -ENOMEM;
5936
5937 dev->_rx = rx;
5938
5939 for (i = 0; i < count; i++)
5940 rx[i].dev = dev;
5941 return 0;
5942 }
5943 #endif
5944
5945 static void netdev_init_one_queue(struct net_device *dev,
5946 struct netdev_queue *queue, void *_unused)
5947 {
5948 /* Initialize queue lock */
5949 spin_lock_init(&queue->_xmit_lock);
5950 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5951 queue->xmit_lock_owner = -1;
5952 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5953 queue->dev = dev;
5954 #ifdef CONFIG_BQL
5955 dql_init(&queue->dql, HZ);
5956 #endif
5957 }
5958
5959 static void netif_free_tx_queues(struct net_device *dev)
5960 {
5961 kvfree(dev->_tx);
5962 }
5963
5964 static int netif_alloc_netdev_queues(struct net_device *dev)
5965 {
5966 unsigned int count = dev->num_tx_queues;
5967 struct netdev_queue *tx;
5968 size_t sz = count * sizeof(*tx);
5969
5970 BUG_ON(count < 1 || count > 0xffff);
5971
5972 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5973 if (!tx) {
5974 tx = vzalloc(sz);
5975 if (!tx)
5976 return -ENOMEM;
5977 }
5978 dev->_tx = tx;
5979
5980 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5981 spin_lock_init(&dev->tx_global_lock);
5982
5983 return 0;
5984 }
5985
5986 /**
5987 * register_netdevice - register a network device
5988 * @dev: device to register
5989 *
5990 * Take a completed network device structure and add it to the kernel
5991 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5992 * chain. 0 is returned on success. A negative errno code is returned
5993 * on a failure to set up the device, or if the name is a duplicate.
5994 *
5995 * Callers must hold the rtnl semaphore. You may want
5996 * register_netdev() instead of this.
5997 *
5998 * BUGS:
5999 * The locking appears insufficient to guarantee two parallel registers
6000 * will not get the same name.
6001 */
6002
6003 int register_netdevice(struct net_device *dev)
6004 {
6005 int ret;
6006 struct net *net = dev_net(dev);
6007
6008 BUG_ON(dev_boot_phase);
6009 ASSERT_RTNL();
6010
6011 might_sleep();
6012
6013 /* When net_device's are persistent, this will be fatal. */
6014 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6015 BUG_ON(!net);
6016
6017 spin_lock_init(&dev->addr_list_lock);
6018 netdev_set_addr_lockdep_class(dev);
6019
6020 dev->iflink = -1;
6021
6022 ret = dev_get_valid_name(net, dev, dev->name);
6023 if (ret < 0)
6024 goto out;
6025
6026 /* Init, if this function is available */
6027 if (dev->netdev_ops->ndo_init) {
6028 ret = dev->netdev_ops->ndo_init(dev);
6029 if (ret) {
6030 if (ret > 0)
6031 ret = -EIO;
6032 goto out;
6033 }
6034 }
6035
6036 if (((dev->hw_features | dev->features) &
6037 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6038 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6039 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6040 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6041 ret = -EINVAL;
6042 goto err_uninit;
6043 }
6044
6045 ret = -EBUSY;
6046 if (!dev->ifindex)
6047 dev->ifindex = dev_new_index(net);
6048 else if (__dev_get_by_index(net, dev->ifindex))
6049 goto err_uninit;
6050
6051 if (dev->iflink == -1)
6052 dev->iflink = dev->ifindex;
6053
6054 /* Transfer changeable features to wanted_features and enable
6055 * software offloads (GSO and GRO).
6056 */
6057 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6058 dev->features |= NETIF_F_SOFT_FEATURES;
6059 dev->wanted_features = dev->features & dev->hw_features;
6060
6061 if (!(dev->flags & IFF_LOOPBACK)) {
6062 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6063 }
6064
6065 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6066 */
6067 dev->vlan_features |= NETIF_F_HIGHDMA;
6068
6069 /* Make NETIF_F_SG inheritable to tunnel devices.
6070 */
6071 dev->hw_enc_features |= NETIF_F_SG;
6072
6073 /* Make NETIF_F_SG inheritable to MPLS.
6074 */
6075 dev->mpls_features |= NETIF_F_SG;
6076
6077 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6078 ret = notifier_to_errno(ret);
6079 if (ret)
6080 goto err_uninit;
6081
6082 ret = netdev_register_kobject(dev);
6083 if (ret)
6084 goto err_uninit;
6085 dev->reg_state = NETREG_REGISTERED;
6086
6087 __netdev_update_features(dev);
6088
6089 /*
6090 * Default initial state at registry is that the
6091 * device is present.
6092 */
6093
6094 set_bit(__LINK_STATE_PRESENT, &dev->state);
6095
6096 linkwatch_init_dev(dev);
6097
6098 dev_init_scheduler(dev);
6099 dev_hold(dev);
6100 list_netdevice(dev);
6101 add_device_randomness(dev->dev_addr, dev->addr_len);
6102
6103 /* If the device has permanent device address, driver should
6104 * set dev_addr and also addr_assign_type should be set to
6105 * NET_ADDR_PERM (default value).
6106 */
6107 if (dev->addr_assign_type == NET_ADDR_PERM)
6108 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6109
6110 /* Notify protocols, that a new device appeared. */
6111 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6112 ret = notifier_to_errno(ret);
6113 if (ret) {
6114 rollback_registered(dev);
6115 dev->reg_state = NETREG_UNREGISTERED;
6116 }
6117 /*
6118 * Prevent userspace races by waiting until the network
6119 * device is fully setup before sending notifications.
6120 */
6121 if (!dev->rtnl_link_ops ||
6122 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6123 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6124
6125 out:
6126 return ret;
6127
6128 err_uninit:
6129 if (dev->netdev_ops->ndo_uninit)
6130 dev->netdev_ops->ndo_uninit(dev);
6131 goto out;
6132 }
6133 EXPORT_SYMBOL(register_netdevice);
6134
6135 /**
6136 * init_dummy_netdev - init a dummy network device for NAPI
6137 * @dev: device to init
6138 *
6139 * This takes a network device structure and initialize the minimum
6140 * amount of fields so it can be used to schedule NAPI polls without
6141 * registering a full blown interface. This is to be used by drivers
6142 * that need to tie several hardware interfaces to a single NAPI
6143 * poll scheduler due to HW limitations.
6144 */
6145 int init_dummy_netdev(struct net_device *dev)
6146 {
6147 /* Clear everything. Note we don't initialize spinlocks
6148 * are they aren't supposed to be taken by any of the
6149 * NAPI code and this dummy netdev is supposed to be
6150 * only ever used for NAPI polls
6151 */
6152 memset(dev, 0, sizeof(struct net_device));
6153
6154 /* make sure we BUG if trying to hit standard
6155 * register/unregister code path
6156 */
6157 dev->reg_state = NETREG_DUMMY;
6158
6159 /* NAPI wants this */
6160 INIT_LIST_HEAD(&dev->napi_list);
6161
6162 /* a dummy interface is started by default */
6163 set_bit(__LINK_STATE_PRESENT, &dev->state);
6164 set_bit(__LINK_STATE_START, &dev->state);
6165
6166 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6167 * because users of this 'device' dont need to change
6168 * its refcount.
6169 */
6170
6171 return 0;
6172 }
6173 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6174
6175
6176 /**
6177 * register_netdev - register a network device
6178 * @dev: device to register
6179 *
6180 * Take a completed network device structure and add it to the kernel
6181 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6182 * chain. 0 is returned on success. A negative errno code is returned
6183 * on a failure to set up the device, or if the name is a duplicate.
6184 *
6185 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6186 * and expands the device name if you passed a format string to
6187 * alloc_netdev.
6188 */
6189 int register_netdev(struct net_device *dev)
6190 {
6191 int err;
6192
6193 rtnl_lock();
6194 err = register_netdevice(dev);
6195 rtnl_unlock();
6196 return err;
6197 }
6198 EXPORT_SYMBOL(register_netdev);
6199
6200 int netdev_refcnt_read(const struct net_device *dev)
6201 {
6202 int i, refcnt = 0;
6203
6204 for_each_possible_cpu(i)
6205 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6206 return refcnt;
6207 }
6208 EXPORT_SYMBOL(netdev_refcnt_read);
6209
6210 /**
6211 * netdev_wait_allrefs - wait until all references are gone.
6212 * @dev: target net_device
6213 *
6214 * This is called when unregistering network devices.
6215 *
6216 * Any protocol or device that holds a reference should register
6217 * for netdevice notification, and cleanup and put back the
6218 * reference if they receive an UNREGISTER event.
6219 * We can get stuck here if buggy protocols don't correctly
6220 * call dev_put.
6221 */
6222 static void netdev_wait_allrefs(struct net_device *dev)
6223 {
6224 unsigned long rebroadcast_time, warning_time;
6225 int refcnt;
6226
6227 linkwatch_forget_dev(dev);
6228
6229 rebroadcast_time = warning_time = jiffies;
6230 refcnt = netdev_refcnt_read(dev);
6231
6232 while (refcnt != 0) {
6233 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6234 rtnl_lock();
6235
6236 /* Rebroadcast unregister notification */
6237 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6238
6239 __rtnl_unlock();
6240 rcu_barrier();
6241 rtnl_lock();
6242
6243 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6244 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6245 &dev->state)) {
6246 /* We must not have linkwatch events
6247 * pending on unregister. If this
6248 * happens, we simply run the queue
6249 * unscheduled, resulting in a noop
6250 * for this device.
6251 */
6252 linkwatch_run_queue();
6253 }
6254
6255 __rtnl_unlock();
6256
6257 rebroadcast_time = jiffies;
6258 }
6259
6260 msleep(250);
6261
6262 refcnt = netdev_refcnt_read(dev);
6263
6264 if (time_after(jiffies, warning_time + 10 * HZ)) {
6265 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6266 dev->name, refcnt);
6267 warning_time = jiffies;
6268 }
6269 }
6270 }
6271
6272 /* The sequence is:
6273 *
6274 * rtnl_lock();
6275 * ...
6276 * register_netdevice(x1);
6277 * register_netdevice(x2);
6278 * ...
6279 * unregister_netdevice(y1);
6280 * unregister_netdevice(y2);
6281 * ...
6282 * rtnl_unlock();
6283 * free_netdev(y1);
6284 * free_netdev(y2);
6285 *
6286 * We are invoked by rtnl_unlock().
6287 * This allows us to deal with problems:
6288 * 1) We can delete sysfs objects which invoke hotplug
6289 * without deadlocking with linkwatch via keventd.
6290 * 2) Since we run with the RTNL semaphore not held, we can sleep
6291 * safely in order to wait for the netdev refcnt to drop to zero.
6292 *
6293 * We must not return until all unregister events added during
6294 * the interval the lock was held have been completed.
6295 */
6296 void netdev_run_todo(void)
6297 {
6298 struct list_head list;
6299
6300 /* Snapshot list, allow later requests */
6301 list_replace_init(&net_todo_list, &list);
6302
6303 __rtnl_unlock();
6304
6305
6306 /* Wait for rcu callbacks to finish before next phase */
6307 if (!list_empty(&list))
6308 rcu_barrier();
6309
6310 while (!list_empty(&list)) {
6311 struct net_device *dev
6312 = list_first_entry(&list, struct net_device, todo_list);
6313 list_del(&dev->todo_list);
6314
6315 rtnl_lock();
6316 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6317 __rtnl_unlock();
6318
6319 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6320 pr_err("network todo '%s' but state %d\n",
6321 dev->name, dev->reg_state);
6322 dump_stack();
6323 continue;
6324 }
6325
6326 dev->reg_state = NETREG_UNREGISTERED;
6327
6328 on_each_cpu(flush_backlog, dev, 1);
6329
6330 netdev_wait_allrefs(dev);
6331
6332 /* paranoia */
6333 BUG_ON(netdev_refcnt_read(dev));
6334 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6335 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6336 WARN_ON(dev->dn_ptr);
6337
6338 if (dev->destructor)
6339 dev->destructor(dev);
6340
6341 /* Report a network device has been unregistered */
6342 rtnl_lock();
6343 dev_net(dev)->dev_unreg_count--;
6344 __rtnl_unlock();
6345 wake_up(&netdev_unregistering_wq);
6346
6347 /* Free network device */
6348 kobject_put(&dev->dev.kobj);
6349 }
6350 }
6351
6352 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6353 * fields in the same order, with only the type differing.
6354 */
6355 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6356 const struct net_device_stats *netdev_stats)
6357 {
6358 #if BITS_PER_LONG == 64
6359 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6360 memcpy(stats64, netdev_stats, sizeof(*stats64));
6361 #else
6362 size_t i, n = sizeof(*stats64) / sizeof(u64);
6363 const unsigned long *src = (const unsigned long *)netdev_stats;
6364 u64 *dst = (u64 *)stats64;
6365
6366 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6367 sizeof(*stats64) / sizeof(u64));
6368 for (i = 0; i < n; i++)
6369 dst[i] = src[i];
6370 #endif
6371 }
6372 EXPORT_SYMBOL(netdev_stats_to_stats64);
6373
6374 /**
6375 * dev_get_stats - get network device statistics
6376 * @dev: device to get statistics from
6377 * @storage: place to store stats
6378 *
6379 * Get network statistics from device. Return @storage.
6380 * The device driver may provide its own method by setting
6381 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6382 * otherwise the internal statistics structure is used.
6383 */
6384 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6385 struct rtnl_link_stats64 *storage)
6386 {
6387 const struct net_device_ops *ops = dev->netdev_ops;
6388
6389 if (ops->ndo_get_stats64) {
6390 memset(storage, 0, sizeof(*storage));
6391 ops->ndo_get_stats64(dev, storage);
6392 } else if (ops->ndo_get_stats) {
6393 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6394 } else {
6395 netdev_stats_to_stats64(storage, &dev->stats);
6396 }
6397 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6398 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6399 return storage;
6400 }
6401 EXPORT_SYMBOL(dev_get_stats);
6402
6403 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6404 {
6405 struct netdev_queue *queue = dev_ingress_queue(dev);
6406
6407 #ifdef CONFIG_NET_CLS_ACT
6408 if (queue)
6409 return queue;
6410 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6411 if (!queue)
6412 return NULL;
6413 netdev_init_one_queue(dev, queue, NULL);
6414 queue->qdisc = &noop_qdisc;
6415 queue->qdisc_sleeping = &noop_qdisc;
6416 rcu_assign_pointer(dev->ingress_queue, queue);
6417 #endif
6418 return queue;
6419 }
6420
6421 static const struct ethtool_ops default_ethtool_ops;
6422
6423 void netdev_set_default_ethtool_ops(struct net_device *dev,
6424 const struct ethtool_ops *ops)
6425 {
6426 if (dev->ethtool_ops == &default_ethtool_ops)
6427 dev->ethtool_ops = ops;
6428 }
6429 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6430
6431 void netdev_freemem(struct net_device *dev)
6432 {
6433 char *addr = (char *)dev - dev->padded;
6434
6435 kvfree(addr);
6436 }
6437
6438 /**
6439 * alloc_netdev_mqs - allocate network device
6440 * @sizeof_priv: size of private data to allocate space for
6441 * @name: device name format string
6442 * @setup: callback to initialize device
6443 * @txqs: the number of TX subqueues to allocate
6444 * @rxqs: the number of RX subqueues to allocate
6445 *
6446 * Allocates a struct net_device with private data area for driver use
6447 * and performs basic initialization. Also allocates subqueue structs
6448 * for each queue on the device.
6449 */
6450 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6451 void (*setup)(struct net_device *),
6452 unsigned int txqs, unsigned int rxqs)
6453 {
6454 struct net_device *dev;
6455 size_t alloc_size;
6456 struct net_device *p;
6457
6458 BUG_ON(strlen(name) >= sizeof(dev->name));
6459
6460 if (txqs < 1) {
6461 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6462 return NULL;
6463 }
6464
6465 #ifdef CONFIG_SYSFS
6466 if (rxqs < 1) {
6467 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6468 return NULL;
6469 }
6470 #endif
6471
6472 alloc_size = sizeof(struct net_device);
6473 if (sizeof_priv) {
6474 /* ensure 32-byte alignment of private area */
6475 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6476 alloc_size += sizeof_priv;
6477 }
6478 /* ensure 32-byte alignment of whole construct */
6479 alloc_size += NETDEV_ALIGN - 1;
6480
6481 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6482 if (!p)
6483 p = vzalloc(alloc_size);
6484 if (!p)
6485 return NULL;
6486
6487 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6488 dev->padded = (char *)dev - (char *)p;
6489
6490 dev->pcpu_refcnt = alloc_percpu(int);
6491 if (!dev->pcpu_refcnt)
6492 goto free_dev;
6493
6494 if (dev_addr_init(dev))
6495 goto free_pcpu;
6496
6497 dev_mc_init(dev);
6498 dev_uc_init(dev);
6499
6500 dev_net_set(dev, &init_net);
6501
6502 dev->gso_max_size = GSO_MAX_SIZE;
6503 dev->gso_max_segs = GSO_MAX_SEGS;
6504
6505 INIT_LIST_HEAD(&dev->napi_list);
6506 INIT_LIST_HEAD(&dev->unreg_list);
6507 INIT_LIST_HEAD(&dev->close_list);
6508 INIT_LIST_HEAD(&dev->link_watch_list);
6509 INIT_LIST_HEAD(&dev->adj_list.upper);
6510 INIT_LIST_HEAD(&dev->adj_list.lower);
6511 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6512 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6513 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6514 setup(dev);
6515
6516 dev->num_tx_queues = txqs;
6517 dev->real_num_tx_queues = txqs;
6518 if (netif_alloc_netdev_queues(dev))
6519 goto free_all;
6520
6521 #ifdef CONFIG_SYSFS
6522 dev->num_rx_queues = rxqs;
6523 dev->real_num_rx_queues = rxqs;
6524 if (netif_alloc_rx_queues(dev))
6525 goto free_all;
6526 #endif
6527
6528 strcpy(dev->name, name);
6529 dev->group = INIT_NETDEV_GROUP;
6530 if (!dev->ethtool_ops)
6531 dev->ethtool_ops = &default_ethtool_ops;
6532 return dev;
6533
6534 free_all:
6535 free_netdev(dev);
6536 return NULL;
6537
6538 free_pcpu:
6539 free_percpu(dev->pcpu_refcnt);
6540 free_dev:
6541 netdev_freemem(dev);
6542 return NULL;
6543 }
6544 EXPORT_SYMBOL(alloc_netdev_mqs);
6545
6546 /**
6547 * free_netdev - free network device
6548 * @dev: device
6549 *
6550 * This function does the last stage of destroying an allocated device
6551 * interface. The reference to the device object is released.
6552 * If this is the last reference then it will be freed.
6553 */
6554 void free_netdev(struct net_device *dev)
6555 {
6556 struct napi_struct *p, *n;
6557
6558 release_net(dev_net(dev));
6559
6560 netif_free_tx_queues(dev);
6561 #ifdef CONFIG_SYSFS
6562 kfree(dev->_rx);
6563 #endif
6564
6565 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6566
6567 /* Flush device addresses */
6568 dev_addr_flush(dev);
6569
6570 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6571 netif_napi_del(p);
6572
6573 free_percpu(dev->pcpu_refcnt);
6574 dev->pcpu_refcnt = NULL;
6575
6576 /* Compatibility with error handling in drivers */
6577 if (dev->reg_state == NETREG_UNINITIALIZED) {
6578 netdev_freemem(dev);
6579 return;
6580 }
6581
6582 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6583 dev->reg_state = NETREG_RELEASED;
6584
6585 /* will free via device release */
6586 put_device(&dev->dev);
6587 }
6588 EXPORT_SYMBOL(free_netdev);
6589
6590 /**
6591 * synchronize_net - Synchronize with packet receive processing
6592 *
6593 * Wait for packets currently being received to be done.
6594 * Does not block later packets from starting.
6595 */
6596 void synchronize_net(void)
6597 {
6598 might_sleep();
6599 if (rtnl_is_locked())
6600 synchronize_rcu_expedited();
6601 else
6602 synchronize_rcu();
6603 }
6604 EXPORT_SYMBOL(synchronize_net);
6605
6606 /**
6607 * unregister_netdevice_queue - remove device from the kernel
6608 * @dev: device
6609 * @head: list
6610 *
6611 * This function shuts down a device interface and removes it
6612 * from the kernel tables.
6613 * If head not NULL, device is queued to be unregistered later.
6614 *
6615 * Callers must hold the rtnl semaphore. You may want
6616 * unregister_netdev() instead of this.
6617 */
6618
6619 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6620 {
6621 ASSERT_RTNL();
6622
6623 if (head) {
6624 list_move_tail(&dev->unreg_list, head);
6625 } else {
6626 rollback_registered(dev);
6627 /* Finish processing unregister after unlock */
6628 net_set_todo(dev);
6629 }
6630 }
6631 EXPORT_SYMBOL(unregister_netdevice_queue);
6632
6633 /**
6634 * unregister_netdevice_many - unregister many devices
6635 * @head: list of devices
6636 *
6637 * Note: As most callers use a stack allocated list_head,
6638 * we force a list_del() to make sure stack wont be corrupted later.
6639 */
6640 void unregister_netdevice_many(struct list_head *head)
6641 {
6642 struct net_device *dev;
6643
6644 if (!list_empty(head)) {
6645 rollback_registered_many(head);
6646 list_for_each_entry(dev, head, unreg_list)
6647 net_set_todo(dev);
6648 list_del(head);
6649 }
6650 }
6651 EXPORT_SYMBOL(unregister_netdevice_many);
6652
6653 /**
6654 * unregister_netdev - remove device from the kernel
6655 * @dev: device
6656 *
6657 * This function shuts down a device interface and removes it
6658 * from the kernel tables.
6659 *
6660 * This is just a wrapper for unregister_netdevice that takes
6661 * the rtnl semaphore. In general you want to use this and not
6662 * unregister_netdevice.
6663 */
6664 void unregister_netdev(struct net_device *dev)
6665 {
6666 rtnl_lock();
6667 unregister_netdevice(dev);
6668 rtnl_unlock();
6669 }
6670 EXPORT_SYMBOL(unregister_netdev);
6671
6672 /**
6673 * dev_change_net_namespace - move device to different nethost namespace
6674 * @dev: device
6675 * @net: network namespace
6676 * @pat: If not NULL name pattern to try if the current device name
6677 * is already taken in the destination network namespace.
6678 *
6679 * This function shuts down a device interface and moves it
6680 * to a new network namespace. On success 0 is returned, on
6681 * a failure a netagive errno code is returned.
6682 *
6683 * Callers must hold the rtnl semaphore.
6684 */
6685
6686 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6687 {
6688 int err;
6689
6690 ASSERT_RTNL();
6691
6692 /* Don't allow namespace local devices to be moved. */
6693 err = -EINVAL;
6694 if (dev->features & NETIF_F_NETNS_LOCAL)
6695 goto out;
6696
6697 /* Ensure the device has been registrered */
6698 if (dev->reg_state != NETREG_REGISTERED)
6699 goto out;
6700
6701 /* Get out if there is nothing todo */
6702 err = 0;
6703 if (net_eq(dev_net(dev), net))
6704 goto out;
6705
6706 /* Pick the destination device name, and ensure
6707 * we can use it in the destination network namespace.
6708 */
6709 err = -EEXIST;
6710 if (__dev_get_by_name(net, dev->name)) {
6711 /* We get here if we can't use the current device name */
6712 if (!pat)
6713 goto out;
6714 if (dev_get_valid_name(net, dev, pat) < 0)
6715 goto out;
6716 }
6717
6718 /*
6719 * And now a mini version of register_netdevice unregister_netdevice.
6720 */
6721
6722 /* If device is running close it first. */
6723 dev_close(dev);
6724
6725 /* And unlink it from device chain */
6726 err = -ENODEV;
6727 unlist_netdevice(dev);
6728
6729 synchronize_net();
6730
6731 /* Shutdown queueing discipline. */
6732 dev_shutdown(dev);
6733
6734 /* Notify protocols, that we are about to destroy
6735 this device. They should clean all the things.
6736
6737 Note that dev->reg_state stays at NETREG_REGISTERED.
6738 This is wanted because this way 8021q and macvlan know
6739 the device is just moving and can keep their slaves up.
6740 */
6741 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6742 rcu_barrier();
6743 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6744 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6745
6746 /*
6747 * Flush the unicast and multicast chains
6748 */
6749 dev_uc_flush(dev);
6750 dev_mc_flush(dev);
6751
6752 /* Send a netdev-removed uevent to the old namespace */
6753 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6754
6755 /* Actually switch the network namespace */
6756 dev_net_set(dev, net);
6757
6758 /* If there is an ifindex conflict assign a new one */
6759 if (__dev_get_by_index(net, dev->ifindex)) {
6760 int iflink = (dev->iflink == dev->ifindex);
6761 dev->ifindex = dev_new_index(net);
6762 if (iflink)
6763 dev->iflink = dev->ifindex;
6764 }
6765
6766 /* Send a netdev-add uevent to the new namespace */
6767 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6768
6769 /* Fixup kobjects */
6770 err = device_rename(&dev->dev, dev->name);
6771 WARN_ON(err);
6772
6773 /* Add the device back in the hashes */
6774 list_netdevice(dev);
6775
6776 /* Notify protocols, that a new device appeared. */
6777 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6778
6779 /*
6780 * Prevent userspace races by waiting until the network
6781 * device is fully setup before sending notifications.
6782 */
6783 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6784
6785 synchronize_net();
6786 err = 0;
6787 out:
6788 return err;
6789 }
6790 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6791
6792 static int dev_cpu_callback(struct notifier_block *nfb,
6793 unsigned long action,
6794 void *ocpu)
6795 {
6796 struct sk_buff **list_skb;
6797 struct sk_buff *skb;
6798 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6799 struct softnet_data *sd, *oldsd;
6800
6801 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6802 return NOTIFY_OK;
6803
6804 local_irq_disable();
6805 cpu = smp_processor_id();
6806 sd = &per_cpu(softnet_data, cpu);
6807 oldsd = &per_cpu(softnet_data, oldcpu);
6808
6809 /* Find end of our completion_queue. */
6810 list_skb = &sd->completion_queue;
6811 while (*list_skb)
6812 list_skb = &(*list_skb)->next;
6813 /* Append completion queue from offline CPU. */
6814 *list_skb = oldsd->completion_queue;
6815 oldsd->completion_queue = NULL;
6816
6817 /* Append output queue from offline CPU. */
6818 if (oldsd->output_queue) {
6819 *sd->output_queue_tailp = oldsd->output_queue;
6820 sd->output_queue_tailp = oldsd->output_queue_tailp;
6821 oldsd->output_queue = NULL;
6822 oldsd->output_queue_tailp = &oldsd->output_queue;
6823 }
6824 /* Append NAPI poll list from offline CPU. */
6825 if (!list_empty(&oldsd->poll_list)) {
6826 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6827 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6828 }
6829
6830 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6831 local_irq_enable();
6832
6833 /* Process offline CPU's input_pkt_queue */
6834 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6835 netif_rx_internal(skb);
6836 input_queue_head_incr(oldsd);
6837 }
6838 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6839 netif_rx_internal(skb);
6840 input_queue_head_incr(oldsd);
6841 }
6842
6843 return NOTIFY_OK;
6844 }
6845
6846
6847 /**
6848 * netdev_increment_features - increment feature set by one
6849 * @all: current feature set
6850 * @one: new feature set
6851 * @mask: mask feature set
6852 *
6853 * Computes a new feature set after adding a device with feature set
6854 * @one to the master device with current feature set @all. Will not
6855 * enable anything that is off in @mask. Returns the new feature set.
6856 */
6857 netdev_features_t netdev_increment_features(netdev_features_t all,
6858 netdev_features_t one, netdev_features_t mask)
6859 {
6860 if (mask & NETIF_F_GEN_CSUM)
6861 mask |= NETIF_F_ALL_CSUM;
6862 mask |= NETIF_F_VLAN_CHALLENGED;
6863
6864 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6865 all &= one | ~NETIF_F_ALL_FOR_ALL;
6866
6867 /* If one device supports hw checksumming, set for all. */
6868 if (all & NETIF_F_GEN_CSUM)
6869 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6870
6871 return all;
6872 }
6873 EXPORT_SYMBOL(netdev_increment_features);
6874
6875 static struct hlist_head * __net_init netdev_create_hash(void)
6876 {
6877 int i;
6878 struct hlist_head *hash;
6879
6880 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6881 if (hash != NULL)
6882 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6883 INIT_HLIST_HEAD(&hash[i]);
6884
6885 return hash;
6886 }
6887
6888 /* Initialize per network namespace state */
6889 static int __net_init netdev_init(struct net *net)
6890 {
6891 if (net != &init_net)
6892 INIT_LIST_HEAD(&net->dev_base_head);
6893
6894 net->dev_name_head = netdev_create_hash();
6895 if (net->dev_name_head == NULL)
6896 goto err_name;
6897
6898 net->dev_index_head = netdev_create_hash();
6899 if (net->dev_index_head == NULL)
6900 goto err_idx;
6901
6902 return 0;
6903
6904 err_idx:
6905 kfree(net->dev_name_head);
6906 err_name:
6907 return -ENOMEM;
6908 }
6909
6910 /**
6911 * netdev_drivername - network driver for the device
6912 * @dev: network device
6913 *
6914 * Determine network driver for device.
6915 */
6916 const char *netdev_drivername(const struct net_device *dev)
6917 {
6918 const struct device_driver *driver;
6919 const struct device *parent;
6920 const char *empty = "";
6921
6922 parent = dev->dev.parent;
6923 if (!parent)
6924 return empty;
6925
6926 driver = parent->driver;
6927 if (driver && driver->name)
6928 return driver->name;
6929 return empty;
6930 }
6931
6932 static int __netdev_printk(const char *level, const struct net_device *dev,
6933 struct va_format *vaf)
6934 {
6935 int r;
6936
6937 if (dev && dev->dev.parent) {
6938 r = dev_printk_emit(level[1] - '0',
6939 dev->dev.parent,
6940 "%s %s %s: %pV",
6941 dev_driver_string(dev->dev.parent),
6942 dev_name(dev->dev.parent),
6943 netdev_name(dev), vaf);
6944 } else if (dev) {
6945 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6946 } else {
6947 r = printk("%s(NULL net_device): %pV", level, vaf);
6948 }
6949
6950 return r;
6951 }
6952
6953 int netdev_printk(const char *level, const struct net_device *dev,
6954 const char *format, ...)
6955 {
6956 struct va_format vaf;
6957 va_list args;
6958 int r;
6959
6960 va_start(args, format);
6961
6962 vaf.fmt = format;
6963 vaf.va = &args;
6964
6965 r = __netdev_printk(level, dev, &vaf);
6966
6967 va_end(args);
6968
6969 return r;
6970 }
6971 EXPORT_SYMBOL(netdev_printk);
6972
6973 #define define_netdev_printk_level(func, level) \
6974 int func(const struct net_device *dev, const char *fmt, ...) \
6975 { \
6976 int r; \
6977 struct va_format vaf; \
6978 va_list args; \
6979 \
6980 va_start(args, fmt); \
6981 \
6982 vaf.fmt = fmt; \
6983 vaf.va = &args; \
6984 \
6985 r = __netdev_printk(level, dev, &vaf); \
6986 \
6987 va_end(args); \
6988 \
6989 return r; \
6990 } \
6991 EXPORT_SYMBOL(func);
6992
6993 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6994 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6995 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6996 define_netdev_printk_level(netdev_err, KERN_ERR);
6997 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6998 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6999 define_netdev_printk_level(netdev_info, KERN_INFO);
7000
7001 static void __net_exit netdev_exit(struct net *net)
7002 {
7003 kfree(net->dev_name_head);
7004 kfree(net->dev_index_head);
7005 }
7006
7007 static struct pernet_operations __net_initdata netdev_net_ops = {
7008 .init = netdev_init,
7009 .exit = netdev_exit,
7010 };
7011
7012 static void __net_exit default_device_exit(struct net *net)
7013 {
7014 struct net_device *dev, *aux;
7015 /*
7016 * Push all migratable network devices back to the
7017 * initial network namespace
7018 */
7019 rtnl_lock();
7020 for_each_netdev_safe(net, dev, aux) {
7021 int err;
7022 char fb_name[IFNAMSIZ];
7023
7024 /* Ignore unmoveable devices (i.e. loopback) */
7025 if (dev->features & NETIF_F_NETNS_LOCAL)
7026 continue;
7027
7028 /* Leave virtual devices for the generic cleanup */
7029 if (dev->rtnl_link_ops)
7030 continue;
7031
7032 /* Push remaining network devices to init_net */
7033 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7034 err = dev_change_net_namespace(dev, &init_net, fb_name);
7035 if (err) {
7036 pr_emerg("%s: failed to move %s to init_net: %d\n",
7037 __func__, dev->name, err);
7038 BUG();
7039 }
7040 }
7041 rtnl_unlock();
7042 }
7043
7044 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7045 {
7046 /* Return with the rtnl_lock held when there are no network
7047 * devices unregistering in any network namespace in net_list.
7048 */
7049 struct net *net;
7050 bool unregistering;
7051 DEFINE_WAIT(wait);
7052
7053 for (;;) {
7054 prepare_to_wait(&netdev_unregistering_wq, &wait,
7055 TASK_UNINTERRUPTIBLE);
7056 unregistering = false;
7057 rtnl_lock();
7058 list_for_each_entry(net, net_list, exit_list) {
7059 if (net->dev_unreg_count > 0) {
7060 unregistering = true;
7061 break;
7062 }
7063 }
7064 if (!unregistering)
7065 break;
7066 __rtnl_unlock();
7067 schedule();
7068 }
7069 finish_wait(&netdev_unregistering_wq, &wait);
7070 }
7071
7072 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7073 {
7074 /* At exit all network devices most be removed from a network
7075 * namespace. Do this in the reverse order of registration.
7076 * Do this across as many network namespaces as possible to
7077 * improve batching efficiency.
7078 */
7079 struct net_device *dev;
7080 struct net *net;
7081 LIST_HEAD(dev_kill_list);
7082
7083 /* To prevent network device cleanup code from dereferencing
7084 * loopback devices or network devices that have been freed
7085 * wait here for all pending unregistrations to complete,
7086 * before unregistring the loopback device and allowing the
7087 * network namespace be freed.
7088 *
7089 * The netdev todo list containing all network devices
7090 * unregistrations that happen in default_device_exit_batch
7091 * will run in the rtnl_unlock() at the end of
7092 * default_device_exit_batch.
7093 */
7094 rtnl_lock_unregistering(net_list);
7095 list_for_each_entry(net, net_list, exit_list) {
7096 for_each_netdev_reverse(net, dev) {
7097 if (dev->rtnl_link_ops)
7098 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7099 else
7100 unregister_netdevice_queue(dev, &dev_kill_list);
7101 }
7102 }
7103 unregister_netdevice_many(&dev_kill_list);
7104 rtnl_unlock();
7105 }
7106
7107 static struct pernet_operations __net_initdata default_device_ops = {
7108 .exit = default_device_exit,
7109 .exit_batch = default_device_exit_batch,
7110 };
7111
7112 /*
7113 * Initialize the DEV module. At boot time this walks the device list and
7114 * unhooks any devices that fail to initialise (normally hardware not
7115 * present) and leaves us with a valid list of present and active devices.
7116 *
7117 */
7118
7119 /*
7120 * This is called single threaded during boot, so no need
7121 * to take the rtnl semaphore.
7122 */
7123 static int __init net_dev_init(void)
7124 {
7125 int i, rc = -ENOMEM;
7126
7127 BUG_ON(!dev_boot_phase);
7128
7129 if (dev_proc_init())
7130 goto out;
7131
7132 if (netdev_kobject_init())
7133 goto out;
7134
7135 INIT_LIST_HEAD(&ptype_all);
7136 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7137 INIT_LIST_HEAD(&ptype_base[i]);
7138
7139 INIT_LIST_HEAD(&offload_base);
7140
7141 if (register_pernet_subsys(&netdev_net_ops))
7142 goto out;
7143
7144 /*
7145 * Initialise the packet receive queues.
7146 */
7147
7148 for_each_possible_cpu(i) {
7149 struct softnet_data *sd = &per_cpu(softnet_data, i);
7150
7151 skb_queue_head_init(&sd->input_pkt_queue);
7152 skb_queue_head_init(&sd->process_queue);
7153 INIT_LIST_HEAD(&sd->poll_list);
7154 sd->output_queue_tailp = &sd->output_queue;
7155 #ifdef CONFIG_RPS
7156 sd->csd.func = rps_trigger_softirq;
7157 sd->csd.info = sd;
7158 sd->cpu = i;
7159 #endif
7160
7161 sd->backlog.poll = process_backlog;
7162 sd->backlog.weight = weight_p;
7163 }
7164
7165 dev_boot_phase = 0;
7166
7167 /* The loopback device is special if any other network devices
7168 * is present in a network namespace the loopback device must
7169 * be present. Since we now dynamically allocate and free the
7170 * loopback device ensure this invariant is maintained by
7171 * keeping the loopback device as the first device on the
7172 * list of network devices. Ensuring the loopback devices
7173 * is the first device that appears and the last network device
7174 * that disappears.
7175 */
7176 if (register_pernet_device(&loopback_net_ops))
7177 goto out;
7178
7179 if (register_pernet_device(&default_device_ops))
7180 goto out;
7181
7182 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7183 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7184
7185 hotcpu_notifier(dev_cpu_callback, 0);
7186 dst_init();
7187 rc = 0;
7188 out:
7189 return rc;
7190 }
7191
7192 subsys_initcall(net_dev_init);
This page took 0.262507 seconds and 5 git commands to generate.